src/share/vm/opto/escape.cpp

Mon, 31 Oct 2011 03:06:42 -0700

author
twisti
date
Mon, 31 Oct 2011 03:06:42 -0700
changeset 3249
e3b0dcc327b9
parent 3242
e69a66a1457b
child 3254
59e515ee9354
permissions
-rw-r--r--

7104561: UseRDPCForConstantTableBase doesn't work after shorten branches changes
Reviewed-by: never, kvn

duke@435 1 /*
kvn@2556 2 * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/bcEscapeAnalyzer.hpp"
stefank@2314 27 #include "libadt/vectset.hpp"
stefank@2314 28 #include "memory/allocation.hpp"
stefank@2314 29 #include "opto/c2compiler.hpp"
stefank@2314 30 #include "opto/callnode.hpp"
stefank@2314 31 #include "opto/cfgnode.hpp"
stefank@2314 32 #include "opto/compile.hpp"
stefank@2314 33 #include "opto/escape.hpp"
stefank@2314 34 #include "opto/phaseX.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
duke@435 36
duke@435 37 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 38 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 39 if (_edges == NULL) {
duke@435 40 Arena *a = Compile::current()->comp_arena();
duke@435 41 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 42 }
duke@435 43 _edges->append_if_missing(v);
duke@435 44 }
duke@435 45
duke@435 46 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 47 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 48
duke@435 49 _edges->remove(v);
duke@435 50 }
duke@435 51
duke@435 52 #ifndef PRODUCT
kvn@512 53 static const char *node_type_names[] = {
duke@435 54 "UnknownType",
duke@435 55 "JavaObject",
duke@435 56 "LocalVar",
duke@435 57 "Field"
duke@435 58 };
duke@435 59
kvn@512 60 static const char *esc_names[] = {
duke@435 61 "UnknownEscape",
kvn@500 62 "NoEscape",
kvn@500 63 "ArgEscape",
kvn@500 64 "GlobalEscape"
duke@435 65 };
duke@435 66
kvn@512 67 static const char *edge_type_suffix[] = {
duke@435 68 "?", // UnknownEdge
duke@435 69 "P", // PointsToEdge
duke@435 70 "D", // DeferredEdge
duke@435 71 "F" // FieldEdge
duke@435 72 };
duke@435 73
kvn@688 74 void PointsToNode::dump(bool print_state) const {
duke@435 75 NodeType nt = node_type();
kvn@688 76 tty->print("%s ", node_type_names[(int) nt]);
kvn@688 77 if (print_state) {
kvn@688 78 EscapeState es = escape_state();
kvn@688 79 tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
kvn@688 80 }
kvn@688 81 tty->print("[[");
duke@435 82 for (uint i = 0; i < edge_count(); i++) {
duke@435 83 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 84 }
duke@435 85 tty->print("]] ");
duke@435 86 if (_node == NULL)
duke@435 87 tty->print_cr("<null>");
duke@435 88 else
duke@435 89 _node->dump();
duke@435 90 }
duke@435 91 #endif
duke@435 92
kvn@1989 93 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
kvn@679 94 _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
kvn@679 95 _processed(C->comp_arena()),
kvn@2556 96 pt_ptset(C->comp_arena()),
kvn@2556 97 pt_visited(C->comp_arena()),
kvn@2556 98 pt_worklist(C->comp_arena(), 4, 0, 0),
kvn@679 99 _collecting(true),
kvn@2276 100 _progress(false),
kvn@679 101 _compile(C),
kvn@1989 102 _igvn(igvn),
kvn@679 103 _node_map(C->comp_arena()) {
kvn@679 104
kvn@688 105 _phantom_object = C->top()->_idx,
kvn@688 106 add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
kvn@688 107
kvn@688 108 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 109 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@688 110 _oop_null = oop_null->_idx;
kvn@3242 111 assert(_oop_null < nodes_size(), "should be created already");
kvn@688 112 add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 113
kvn@688 114 if (UseCompressedOops) {
kvn@688 115 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@688 116 _noop_null = noop_null->_idx;
kvn@3242 117 assert(_noop_null < nodes_size(), "should be created already");
kvn@688 118 add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@3242 119 } else {
kvn@3242 120 _noop_null = _oop_null; // Should be initialized
kvn@688 121 }
duke@435 122 }
duke@435 123
duke@435 124 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 125 PointsToNode *f = ptnode_adr(from_i);
duke@435 126 PointsToNode *t = ptnode_adr(to_i);
duke@435 127
duke@435 128 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 129 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 130 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
kvn@2276 131 add_edge(f, to_i, PointsToNode::PointsToEdge);
duke@435 132 }
duke@435 133
duke@435 134 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 135 PointsToNode *f = ptnode_adr(from_i);
duke@435 136 PointsToNode *t = ptnode_adr(to_i);
duke@435 137
duke@435 138 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 139 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 140 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 141 // don't add a self-referential edge, this can occur during removal of
duke@435 142 // deferred edges
duke@435 143 if (from_i != to_i)
kvn@2276 144 add_edge(f, to_i, PointsToNode::DeferredEdge);
duke@435 145 }
duke@435 146
kvn@500 147 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 148 const Type *adr_type = phase->type(adr);
kvn@500 149 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 150 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 151 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 152 // We are computing a raw address for a store captured by an Initialize
kvn@500 153 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 154 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 155 assert(offs != Type::OffsetBot ||
kvn@500 156 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 157 "offset must be a constant or it is initialization of array");
kvn@500 158 return offs;
kvn@500 159 }
kvn@500 160 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 161 assert(t_ptr != NULL, "must be a pointer type");
duke@435 162 return t_ptr->offset();
duke@435 163 }
duke@435 164
duke@435 165 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 166 PointsToNode *f = ptnode_adr(from_i);
duke@435 167 PointsToNode *t = ptnode_adr(to_i);
duke@435 168
duke@435 169 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 170 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 171 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 172 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 173 t->set_offset(offset);
duke@435 174
kvn@2276 175 add_edge(f, to_i, PointsToNode::FieldEdge);
duke@435 176 }
duke@435 177
duke@435 178 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
kvn@3242 179 // Don't change non-escaping state of NULL pointer.
kvn@3242 180 if (ni == _noop_null || ni == _oop_null)
kvn@3242 181 return;
duke@435 182 PointsToNode *npt = ptnode_adr(ni);
duke@435 183 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 184 if (es > old_es)
duke@435 185 npt->set_escape_state(es);
duke@435 186 }
duke@435 187
kvn@500 188 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 189 PointsToNode::EscapeState es, bool done) {
kvn@500 190 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 191 ptadr->_node = n;
kvn@500 192 ptadr->set_node_type(nt);
kvn@500 193
kvn@500 194 // inline set_escape_state(idx, es);
kvn@500 195 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 196 if (es > old_es)
kvn@500 197 ptadr->set_escape_state(es);
kvn@500 198
kvn@500 199 if (done)
kvn@500 200 _processed.set(n->_idx);
kvn@500 201 }
kvn@500 202
kvn@1989 203 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
duke@435 204 uint idx = n->_idx;
duke@435 205 PointsToNode::EscapeState es;
duke@435 206
kvn@500 207 // If we are still collecting or there were no non-escaping allocations
kvn@500 208 // we don't know the answer yet
kvn@679 209 if (_collecting)
duke@435 210 return PointsToNode::UnknownEscape;
duke@435 211
duke@435 212 // if the node was created after the escape computation, return
duke@435 213 // UnknownEscape
kvn@679 214 if (idx >= nodes_size())
duke@435 215 return PointsToNode::UnknownEscape;
duke@435 216
kvn@679 217 es = ptnode_adr(idx)->escape_state();
duke@435 218
duke@435 219 // if we have already computed a value, return it
kvn@895 220 if (es != PointsToNode::UnknownEscape &&
kvn@895 221 ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
duke@435 222 return es;
duke@435 223
kvn@679 224 // PointsTo() calls n->uncast() which can return a new ideal node.
kvn@679 225 if (n->uncast()->_idx >= nodes_size())
kvn@679 226 return PointsToNode::UnknownEscape;
kvn@679 227
kvn@1989 228 PointsToNode::EscapeState orig_es = es;
kvn@1989 229
duke@435 230 // compute max escape state of anything this node could point to
kvn@2556 231 for(VectorSetI i(PointsTo(n)); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 232 uint pt = i.elem;
kvn@679 233 PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
duke@435 234 if (pes > es)
duke@435 235 es = pes;
duke@435 236 }
kvn@1989 237 if (orig_es != es) {
kvn@1989 238 // cache the computed escape state
kvn@3242 239 assert(es > orig_es, "should have computed an escape state");
kvn@3242 240 set_escape_state(idx, es);
kvn@1989 241 } // orig_es could be PointsToNode::UnknownEscape
duke@435 242 return es;
duke@435 243 }
duke@435 244
kvn@2556 245 VectorSet* ConnectionGraph::PointsTo(Node * n) {
kvn@2556 246 pt_ptset.Reset();
kvn@2556 247 pt_visited.Reset();
kvn@2556 248 pt_worklist.clear();
duke@435 249
kvn@559 250 #ifdef ASSERT
kvn@559 251 Node *orig_n = n;
kvn@559 252 #endif
kvn@559 253
kvn@500 254 n = n->uncast();
kvn@679 255 PointsToNode* npt = ptnode_adr(n->_idx);
duke@435 256
duke@435 257 // If we have a JavaObject, return just that object
kvn@679 258 if (npt->node_type() == PointsToNode::JavaObject) {
kvn@2556 259 pt_ptset.set(n->_idx);
kvn@2556 260 return &pt_ptset;
duke@435 261 }
kvn@559 262 #ifdef ASSERT
kvn@679 263 if (npt->_node == NULL) {
kvn@559 264 if (orig_n != n)
kvn@559 265 orig_n->dump();
kvn@559 266 n->dump();
kvn@679 267 assert(npt->_node != NULL, "unregistered node");
kvn@559 268 }
kvn@559 269 #endif
kvn@2556 270 pt_worklist.push(n->_idx);
kvn@2556 271 while(pt_worklist.length() > 0) {
kvn@2556 272 int ni = pt_worklist.pop();
kvn@2556 273 if (pt_visited.test_set(ni))
kvn@679 274 continue;
duke@435 275
kvn@679 276 PointsToNode* pn = ptnode_adr(ni);
kvn@679 277 // ensure that all inputs of a Phi have been processed
kvn@679 278 assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
kvn@679 279
kvn@679 280 int edges_processed = 0;
kvn@679 281 uint e_cnt = pn->edge_count();
kvn@679 282 for (uint e = 0; e < e_cnt; e++) {
kvn@679 283 uint etgt = pn->edge_target(e);
kvn@679 284 PointsToNode::EdgeType et = pn->edge_type(e);
kvn@679 285 if (et == PointsToNode::PointsToEdge) {
kvn@2556 286 pt_ptset.set(etgt);
kvn@679 287 edges_processed++;
kvn@679 288 } else if (et == PointsToNode::DeferredEdge) {
kvn@2556 289 pt_worklist.push(etgt);
kvn@679 290 edges_processed++;
kvn@679 291 } else {
kvn@679 292 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 293 }
kvn@679 294 }
kvn@679 295 if (edges_processed == 0) {
kvn@679 296 // no deferred or pointsto edges found. Assume the value was set
kvn@679 297 // outside this method. Add the phantom object to the pointsto set.
kvn@2556 298 pt_ptset.set(_phantom_object);
duke@435 299 }
duke@435 300 }
kvn@2556 301 return &pt_ptset;
duke@435 302 }
duke@435 303
kvn@536 304 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 305 // This method is most expensive during ConnectionGraph construction.
kvn@536 306 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 307 deferred_edges->clear();
kvn@2556 308 visited->Reset();
duke@435 309
kvn@679 310 visited->set(ni);
duke@435 311 PointsToNode *ptn = ptnode_adr(ni);
duke@435 312
kvn@536 313 // Mark current edges as visited and move deferred edges to separate array.
kvn@679 314 for (uint i = 0; i < ptn->edge_count(); ) {
kvn@500 315 uint t = ptn->edge_target(i);
kvn@536 316 #ifdef ASSERT
kvn@536 317 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 318 #else
kvn@536 319 visited->set(t);
kvn@536 320 #endif
kvn@536 321 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 322 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 323 deferred_edges->append(t);
kvn@559 324 } else {
kvn@559 325 i++;
kvn@536 326 }
kvn@536 327 }
kvn@536 328 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 329 uint t = deferred_edges->at(next);
kvn@500 330 PointsToNode *ptt = ptnode_adr(t);
kvn@679 331 uint e_cnt = ptt->edge_count();
kvn@679 332 for (uint e = 0; e < e_cnt; e++) {
kvn@679 333 uint etgt = ptt->edge_target(e);
kvn@679 334 if (visited->test_set(etgt))
kvn@536 335 continue;
kvn@679 336
kvn@679 337 PointsToNode::EdgeType et = ptt->edge_type(e);
kvn@679 338 if (et == PointsToNode::PointsToEdge) {
kvn@679 339 add_pointsto_edge(ni, etgt);
kvn@679 340 if(etgt == _phantom_object) {
kvn@679 341 // Special case - field set outside (globally escaping).
kvn@3242 342 set_escape_state(ni, PointsToNode::GlobalEscape);
kvn@679 343 }
kvn@679 344 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 345 deferred_edges->append(etgt);
kvn@679 346 } else {
kvn@679 347 assert(false,"invalid connection graph");
duke@435 348 }
duke@435 349 }
duke@435 350 }
duke@435 351 }
duke@435 352
duke@435 353
duke@435 354 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 355 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 356 // a pointsto edge is added if it is a JavaObject
duke@435 357
duke@435 358 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
kvn@679 359 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 360 PointsToNode* to = ptnode_adr(to_i);
kvn@679 361 bool deferred = (to->node_type() == PointsToNode::LocalVar);
duke@435 362
kvn@679 363 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 364 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 365 int fi = an->edge_target(fe);
kvn@679 366 PointsToNode* pf = ptnode_adr(fi);
kvn@679 367 int po = pf->offset();
duke@435 368 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 369 if (deferred)
duke@435 370 add_deferred_edge(fi, to_i);
duke@435 371 else
duke@435 372 add_pointsto_edge(fi, to_i);
duke@435 373 }
duke@435 374 }
duke@435 375 }
duke@435 376
kvn@500 377 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 378 // whose offset matches "offset".
duke@435 379 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
kvn@679 380 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 381 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 382 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 383 int fi = an->edge_target(fe);
kvn@679 384 PointsToNode* pf = ptnode_adr(fi);
kvn@679 385 int po = pf->offset();
kvn@679 386 if (pf->edge_count() == 0) {
duke@435 387 // we have not seen any stores to this field, assume it was set outside this method
duke@435 388 add_pointsto_edge(fi, _phantom_object);
duke@435 389 }
duke@435 390 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 391 add_deferred_edge(from_i, fi);
duke@435 392 }
duke@435 393 }
duke@435 394 }
duke@435 395
kvn@500 396 // Helper functions
kvn@500 397
kvn@500 398 static Node* get_addp_base(Node *addp) {
kvn@500 399 assert(addp->is_AddP(), "must be AddP");
kvn@500 400 //
kvn@500 401 // AddP cases for Base and Address inputs:
kvn@500 402 // case #1. Direct object's field reference:
kvn@500 403 // Allocate
kvn@500 404 // |
kvn@500 405 // Proj #5 ( oop result )
kvn@500 406 // |
kvn@500 407 // CheckCastPP (cast to instance type)
kvn@500 408 // | |
kvn@500 409 // AddP ( base == address )
kvn@500 410 //
kvn@500 411 // case #2. Indirect object's field reference:
kvn@500 412 // Phi
kvn@500 413 // |
kvn@500 414 // CastPP (cast to instance type)
kvn@500 415 // | |
kvn@500 416 // AddP ( base == address )
kvn@500 417 //
kvn@500 418 // case #3. Raw object's field reference for Initialize node:
kvn@500 419 // Allocate
kvn@500 420 // |
kvn@500 421 // Proj #5 ( oop result )
kvn@500 422 // top |
kvn@500 423 // \ |
kvn@500 424 // AddP ( base == top )
kvn@500 425 //
kvn@500 426 // case #4. Array's element reference:
kvn@500 427 // {CheckCastPP | CastPP}
kvn@500 428 // | | |
kvn@500 429 // | AddP ( array's element offset )
kvn@500 430 // | |
kvn@500 431 // AddP ( array's offset )
kvn@500 432 //
kvn@500 433 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 434 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 435 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 436 // Allocate
kvn@500 437 // |
kvn@500 438 // Proj #5 ( oop result )
kvn@500 439 // | |
kvn@500 440 // AddP ( base == address )
kvn@500 441 //
kvn@512 442 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 443 // Raw object's field reference:
kvn@512 444 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 445 // top |
kvn@500 446 // \ |
kvn@500 447 // AddP ( base == top )
kvn@500 448 //
kvn@512 449 // case #7. Klass's field reference.
kvn@512 450 // LoadKlass
kvn@512 451 // | |
kvn@512 452 // AddP ( base == address )
kvn@512 453 //
kvn@599 454 // case #8. narrow Klass's field reference.
kvn@599 455 // LoadNKlass
kvn@599 456 // |
kvn@599 457 // DecodeN
kvn@599 458 // | |
kvn@599 459 // AddP ( base == address )
kvn@599 460 //
kvn@500 461 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 462 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 463 base = addp->in(AddPNode::Address)->uncast();
kvn@1392 464 while (base->is_AddP()) {
kvn@1392 465 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@1392 466 assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
kvn@1392 467 base = base->in(AddPNode::Address)->uncast();
kvn@1392 468 }
kvn@500 469 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@603 470 base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
kvn@512 471 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 472 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 473 }
kvn@500 474 return base;
kvn@500 475 }
kvn@500 476
kvn@500 477 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 478 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 479
kvn@500 480 Node* addp2 = addp->raw_out(0);
kvn@500 481 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 482 addp2->in(AddPNode::Base) == n &&
kvn@500 483 addp2->in(AddPNode::Address) == addp) {
kvn@500 484
kvn@500 485 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 486 //
kvn@500 487 // Find array's offset to push it on worklist first and
kvn@500 488 // as result process an array's element offset first (pushed second)
kvn@500 489 // to avoid CastPP for the array's offset.
kvn@500 490 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 491 // the AddP (Field) points to. Which would be wrong since
kvn@500 492 // the algorithm expects the CastPP has the same point as
kvn@500 493 // as AddP's base CheckCastPP (LocalVar).
kvn@500 494 //
kvn@500 495 // ArrayAllocation
kvn@500 496 // |
kvn@500 497 // CheckCastPP
kvn@500 498 // |
kvn@500 499 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 500 // | ||
kvn@500 501 // | || Int (element index)
kvn@500 502 // | || | ConI (log(element size))
kvn@500 503 // | || | /
kvn@500 504 // | || LShift
kvn@500 505 // | || /
kvn@500 506 // | AddP (array's element offset)
kvn@500 507 // | |
kvn@500 508 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 509 // | / /
kvn@500 510 // AddP (array's offset)
kvn@500 511 // |
kvn@500 512 // Load/Store (memory operation on array's element)
kvn@500 513 //
kvn@500 514 return addp2;
kvn@500 515 }
kvn@500 516 return NULL;
duke@435 517 }
duke@435 518
duke@435 519 //
duke@435 520 // Adjust the type and inputs of an AddP which computes the
duke@435 521 // address of a field of an instance
duke@435 522 //
kvn@728 523 bool ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 524 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 525 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 526 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 527 if (t == NULL) {
kvn@500 528 // We are computing a raw address for a store captured by an Initialize
kvn@728 529 // compute an appropriate address type (cases #3 and #5).
kvn@500 530 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 531 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 532 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 533 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 534 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 535 }
kvn@658 536 int inst_id = base_t->instance_id();
kvn@658 537 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 538 "old type must be non-instance or match new type");
kvn@728 539
kvn@728 540 // The type 't' could be subclass of 'base_t'.
kvn@728 541 // As result t->offset() could be large then base_t's size and it will
kvn@728 542 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 543 // constructor verifies correctness of the offset.
kvn@728 544 //
twisti@1040 545 // It could happened on subclass's branch (from the type profiling
kvn@728 546 // inlining) which was not eliminated during parsing since the exactness
kvn@728 547 // of the allocation type was not propagated to the subclass type check.
kvn@728 548 //
kvn@1423 549 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 550 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 551 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 552 //
kvn@728 553 // Do nothing for such AddP node and don't process its users since
kvn@728 554 // this code branch will go away.
kvn@728 555 //
kvn@728 556 if (!t->is_known_instance() &&
kvn@1423 557 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 558 return false; // bail out
kvn@728 559 }
kvn@728 560
duke@435 561 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@1497 562 // Do NOT remove the next line: ensure a new alias index is allocated
kvn@1497 563 // for the instance type. Note: C++ will not remove it since the call
kvn@1497 564 // has side effect.
duke@435 565 int alias_idx = _compile->get_alias_index(tinst);
duke@435 566 igvn->set_type(addp, tinst);
duke@435 567 // record the allocation in the node map
kvn@1536 568 assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
duke@435 569 set_map(addp->_idx, get_map(base->_idx));
kvn@688 570
kvn@688 571 // Set addp's Base and Address to 'base'.
kvn@688 572 Node *abase = addp->in(AddPNode::Base);
kvn@688 573 Node *adr = addp->in(AddPNode::Address);
kvn@688 574 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 575 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 576 // Skip AddP cases #3 and #5.
kvn@688 577 } else {
kvn@688 578 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 579 if (abase != base) {
kvn@688 580 igvn->hash_delete(addp);
kvn@688 581 addp->set_req(AddPNode::Base, base);
kvn@688 582 if (abase == adr) {
kvn@688 583 addp->set_req(AddPNode::Address, base);
kvn@688 584 } else {
kvn@688 585 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 586 #ifdef ASSERT
kvn@688 587 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 588 assert(adr->is_AddP() && atype != NULL &&
kvn@688 589 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 590 #endif
kvn@688 591 }
kvn@688 592 igvn->hash_insert(addp);
duke@435 593 }
duke@435 594 }
kvn@500 595 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 596 record_for_optimizer(addp);
kvn@728 597 return true;
duke@435 598 }
duke@435 599
duke@435 600 //
duke@435 601 // Create a new version of orig_phi if necessary. Returns either the newly
kvn@2741 602 // created phi or an existing phi. Sets create_new to indicate whether a new
duke@435 603 // phi was created. Cache the last newly created phi in the node map.
duke@435 604 //
duke@435 605 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 606 Compile *C = _compile;
duke@435 607 new_created = false;
duke@435 608 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 609 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 610 if (phi_alias_idx == alias_idx) {
duke@435 611 return orig_phi;
duke@435 612 }
kvn@1286 613 // Have we recently created a Phi for this alias index?
duke@435 614 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 615 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 616 return result;
duke@435 617 }
kvn@1286 618 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 619 // for different memory slices. Search all Phis for this region.
kvn@1286 620 if (result != NULL) {
kvn@1286 621 Node* region = orig_phi->in(0);
kvn@1286 622 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 623 Node* phi = region->fast_out(i);
kvn@1286 624 if (phi->is_Phi() &&
kvn@1286 625 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 626 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 627 return phi->as_Phi();
kvn@1286 628 }
kvn@1286 629 }
kvn@1286 630 }
kvn@473 631 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 632 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 633 // Retry compilation without escape analysis.
kvn@473 634 // If this is the first failure, the sentinel string will "stick"
kvn@473 635 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 636 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 637 }
kvn@473 638 return NULL;
kvn@473 639 }
duke@435 640 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 641 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 642 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 643 C->copy_node_notes_to(result, orig_phi);
duke@435 644 igvn->set_type(result, result->bottom_type());
duke@435 645 record_for_optimizer(result);
kvn@1536 646
kvn@1536 647 debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
kvn@1536 648 assert(pn == NULL || pn == orig_phi, "wrong node");
kvn@1536 649 set_map(orig_phi->_idx, result);
kvn@1536 650 ptnode_adr(orig_phi->_idx)->_node = orig_phi;
kvn@1536 651
duke@435 652 new_created = true;
duke@435 653 return result;
duke@435 654 }
duke@435 655
duke@435 656 //
kvn@2741 657 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 658 // specified alias index.
duke@435 659 //
duke@435 660 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 661
duke@435 662 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 663 Compile *C = _compile;
duke@435 664 bool new_phi_created;
kvn@500 665 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 666 if (!new_phi_created) {
duke@435 667 return result;
duke@435 668 }
duke@435 669
duke@435 670 GrowableArray<PhiNode *> phi_list;
duke@435 671 GrowableArray<uint> cur_input;
duke@435 672
duke@435 673 PhiNode *phi = orig_phi;
duke@435 674 uint idx = 1;
duke@435 675 bool finished = false;
duke@435 676 while(!finished) {
duke@435 677 while (idx < phi->req()) {
kvn@500 678 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 679 if (mem != NULL && mem->is_Phi()) {
kvn@500 680 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 681 if (new_phi_created) {
duke@435 682 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 683 // processing new one
duke@435 684 phi_list.push(phi);
duke@435 685 cur_input.push(idx);
duke@435 686 phi = mem->as_Phi();
kvn@500 687 result = newphi;
duke@435 688 idx = 1;
duke@435 689 continue;
duke@435 690 } else {
kvn@500 691 mem = newphi;
duke@435 692 }
duke@435 693 }
kvn@473 694 if (C->failing()) {
kvn@473 695 return NULL;
kvn@473 696 }
duke@435 697 result->set_req(idx++, mem);
duke@435 698 }
duke@435 699 #ifdef ASSERT
duke@435 700 // verify that the new Phi has an input for each input of the original
duke@435 701 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 702 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 703 #endif
kvn@500 704 // Check if all new phi's inputs have specified alias index.
kvn@500 705 // Otherwise use old phi.
duke@435 706 for (uint i = 1; i < phi->req(); i++) {
kvn@500 707 Node* in = result->in(i);
kvn@500 708 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 709 }
duke@435 710 // we have finished processing a Phi, see if there are any more to do
duke@435 711 finished = (phi_list.length() == 0 );
duke@435 712 if (!finished) {
duke@435 713 phi = phi_list.pop();
duke@435 714 idx = cur_input.pop();
kvn@500 715 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 716 prev_result->set_req(idx++, result);
kvn@500 717 result = prev_result;
duke@435 718 }
duke@435 719 }
duke@435 720 return result;
duke@435 721 }
duke@435 722
kvn@500 723
kvn@500 724 //
kvn@500 725 // The next methods are derived from methods in MemNode.
kvn@500 726 //
never@2170 727 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
kvn@500 728 Node *mem = mmem;
never@2170 729 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 730 // means an array I have not precisely typed yet. Do not do any
kvn@500 731 // alias stuff with it any time soon.
never@2170 732 if( toop->base() != Type::AnyPtr &&
never@2170 733 !(toop->klass() != NULL &&
never@2170 734 toop->klass()->is_java_lang_Object() &&
never@2170 735 toop->offset() == Type::OffsetBot) ) {
kvn@500 736 mem = mmem->memory_at(alias_idx);
kvn@500 737 // Update input if it is progress over what we have now
kvn@500 738 }
kvn@500 739 return mem;
kvn@500 740 }
kvn@500 741
kvn@500 742 //
kvn@1536 743 // Move memory users to their memory slices.
kvn@1536 744 //
kvn@1536 745 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *igvn) {
kvn@1536 746 Compile* C = _compile;
kvn@1536 747
kvn@1536 748 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
kvn@1536 749 assert(tp != NULL, "ptr type");
kvn@1536 750 int alias_idx = C->get_alias_index(tp);
kvn@1536 751 int general_idx = C->get_general_index(alias_idx);
kvn@1536 752
kvn@1536 753 // Move users first
kvn@1536 754 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1536 755 Node* use = n->fast_out(i);
kvn@1536 756 if (use->is_MergeMem()) {
kvn@1536 757 MergeMemNode* mmem = use->as_MergeMem();
kvn@1536 758 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
kvn@1536 759 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
kvn@1536 760 continue; // Nothing to do
kvn@1536 761 }
kvn@1536 762 // Replace previous general reference to mem node.
kvn@1536 763 uint orig_uniq = C->unique();
kvn@1536 764 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 765 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 766 mmem->set_memory_at(general_idx, m);
kvn@1536 767 --imax;
kvn@1536 768 --i;
kvn@1536 769 } else if (use->is_MemBar()) {
kvn@1536 770 assert(!use->is_Initialize(), "initializing stores should not be moved");
kvn@1536 771 if (use->req() > MemBarNode::Precedent &&
kvn@1536 772 use->in(MemBarNode::Precedent) == n) {
kvn@1536 773 // Don't move related membars.
kvn@1536 774 record_for_optimizer(use);
kvn@1536 775 continue;
kvn@1536 776 }
kvn@1536 777 tp = use->as_MemBar()->adr_type()->isa_ptr();
kvn@1536 778 if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
kvn@1536 779 alias_idx == general_idx) {
kvn@1536 780 continue; // Nothing to do
kvn@1536 781 }
kvn@1536 782 // Move to general memory slice.
kvn@1536 783 uint orig_uniq = C->unique();
kvn@1536 784 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 785 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 786 igvn->hash_delete(use);
kvn@1536 787 imax -= use->replace_edge(n, m);
kvn@1536 788 igvn->hash_insert(use);
kvn@1536 789 record_for_optimizer(use);
kvn@1536 790 --i;
kvn@1536 791 #ifdef ASSERT
kvn@1536 792 } else if (use->is_Mem()) {
kvn@1536 793 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
kvn@1536 794 // Don't move related cardmark.
kvn@1536 795 continue;
kvn@1536 796 }
kvn@1536 797 // Memory nodes should have new memory input.
kvn@1536 798 tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
kvn@1536 799 assert(tp != NULL, "ptr type");
kvn@1536 800 int idx = C->get_alias_index(tp);
kvn@1536 801 assert(get_map(use->_idx) != NULL || idx == alias_idx,
kvn@1536 802 "Following memory nodes should have new memory input or be on the same memory slice");
kvn@1536 803 } else if (use->is_Phi()) {
kvn@1536 804 // Phi nodes should be split and moved already.
kvn@1536 805 tp = use->as_Phi()->adr_type()->isa_ptr();
kvn@1536 806 assert(tp != NULL, "ptr type");
kvn@1536 807 int idx = C->get_alias_index(tp);
kvn@1536 808 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
kvn@1536 809 } else {
kvn@1536 810 use->dump();
kvn@1536 811 assert(false, "should not be here");
kvn@1536 812 #endif
kvn@1536 813 }
kvn@1536 814 }
kvn@1536 815 }
kvn@1536 816
kvn@1536 817 //
kvn@500 818 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 819 // is the specified alias index.
kvn@500 820 //
kvn@500 821 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 822 if (orig_mem == NULL)
kvn@500 823 return orig_mem;
kvn@500 824 Compile* C = phase->C;
never@2170 825 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
never@2170 826 bool is_instance = (toop != NULL) && toop->is_known_instance();
kvn@688 827 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 828 Node *prev = NULL;
kvn@500 829 Node *result = orig_mem;
kvn@500 830 while (prev != result) {
kvn@500 831 prev = result;
kvn@688 832 if (result == start_mem)
twisti@1040 833 break; // hit one of our sentinels
kvn@500 834 if (result->is_Mem()) {
kvn@688 835 const Type *at = phase->type(result->in(MemNode::Address));
kvn@2741 836 if (at == Type::TOP)
kvn@2741 837 break; // Dead
kvn@2741 838 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@2741 839 int idx = C->get_alias_index(at->is_ptr());
kvn@2741 840 if (idx == alias_idx)
kvn@2741 841 break; // Found
kvn@2741 842 if (!is_instance && (at->isa_oopptr() == NULL ||
kvn@2741 843 !at->is_oopptr()->is_known_instance())) {
kvn@2741 844 break; // Do not skip store to general memory slice.
kvn@500 845 }
kvn@688 846 result = result->in(MemNode::Memory);
kvn@500 847 }
kvn@500 848 if (!is_instance)
kvn@500 849 continue; // don't search further for non-instance types
kvn@500 850 // skip over a call which does not affect this memory slice
kvn@500 851 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 852 Node *proj_in = result->in(0);
never@2170 853 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
twisti@1040 854 break; // hit one of our sentinels
kvn@688 855 } else if (proj_in->is_Call()) {
kvn@500 856 CallNode *call = proj_in->as_Call();
never@2170 857 if (!call->may_modify(toop, phase)) {
kvn@500 858 result = call->in(TypeFunc::Memory);
kvn@500 859 }
kvn@500 860 } else if (proj_in->is_Initialize()) {
kvn@500 861 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 862 // Stop if this is the initialization for the object instance which
kvn@500 863 // which contains this memory slice, otherwise skip over it.
never@2170 864 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
kvn@500 865 result = proj_in->in(TypeFunc::Memory);
kvn@500 866 }
kvn@500 867 } else if (proj_in->is_MemBar()) {
kvn@500 868 result = proj_in->in(TypeFunc::Memory);
kvn@500 869 }
kvn@500 870 } else if (result->is_MergeMem()) {
kvn@500 871 MergeMemNode *mmem = result->as_MergeMem();
never@2170 872 result = step_through_mergemem(mmem, alias_idx, toop);
kvn@500 873 if (result == mmem->base_memory()) {
kvn@500 874 // Didn't find instance memory, search through general slice recursively.
kvn@500 875 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 876 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 877 if (C->failing()) {
kvn@500 878 return NULL;
kvn@500 879 }
kvn@500 880 mmem->set_memory_at(alias_idx, result);
kvn@500 881 }
kvn@500 882 } else if (result->is_Phi() &&
kvn@500 883 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 884 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 885 if (un != NULL) {
kvn@1536 886 orig_phis.append_if_missing(result->as_Phi());
kvn@500 887 result = un;
kvn@500 888 } else {
kvn@500 889 break;
kvn@500 890 }
kvn@1535 891 } else if (result->is_ClearArray()) {
never@2170 892 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) {
kvn@1535 893 // Can not bypass initialization of the instance
kvn@1535 894 // we are looking for.
kvn@1535 895 break;
kvn@1535 896 }
kvn@1535 897 // Otherwise skip it (the call updated 'result' value).
kvn@1019 898 } else if (result->Opcode() == Op_SCMemProj) {
kvn@1019 899 assert(result->in(0)->is_LoadStore(), "sanity");
kvn@1019 900 const Type *at = phase->type(result->in(0)->in(MemNode::Address));
kvn@1019 901 if (at != Type::TOP) {
kvn@1019 902 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 903 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 904 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 905 break;
kvn@1019 906 }
kvn@1019 907 result = result->in(0)->in(MemNode::Memory);
kvn@500 908 }
kvn@500 909 }
kvn@682 910 if (result->is_Phi()) {
kvn@500 911 PhiNode *mphi = result->as_Phi();
kvn@500 912 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 913 const TypePtr *t = mphi->adr_type();
kvn@2741 914 if (!is_instance) {
kvn@682 915 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 916 // during Phase 4 if needed.
kvn@682 917 orig_phis.append_if_missing(mphi);
kvn@2741 918 } else if (C->get_alias_index(t) != alias_idx) {
kvn@2741 919 // Create a new Phi with the specified alias index type.
kvn@2741 920 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@500 921 }
kvn@500 922 }
kvn@500 923 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 924 return result;
kvn@500 925 }
kvn@500 926
duke@435 927 //
duke@435 928 // Convert the types of unescaped object to instance types where possible,
duke@435 929 // propagate the new type information through the graph, and update memory
duke@435 930 // edges and MergeMem inputs to reflect the new type.
duke@435 931 //
duke@435 932 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 933 // The processing is done in 4 phases:
duke@435 934 //
duke@435 935 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 936 // types for the CheckCastPP for allocations where possible.
duke@435 937 // Propagate the the new types through users as follows:
duke@435 938 // casts and Phi: push users on alloc_worklist
duke@435 939 // AddP: cast Base and Address inputs to the instance type
duke@435 940 // push any AddP users on alloc_worklist and push any memnode
duke@435 941 // users onto memnode_worklist.
duke@435 942 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 943 // search the Memory chain for a store with the appropriate type
duke@435 944 // address type. If a Phi is found, create a new version with
twisti@1040 945 // the appropriate memory slices from each of the Phi inputs.
duke@435 946 // For stores, process the users as follows:
duke@435 947 // MemNode: push on memnode_worklist
duke@435 948 // MergeMem: push on mergemem_worklist
duke@435 949 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 950 // moving the first node encountered of each instance type to the
duke@435 951 // the input corresponding to its alias index.
duke@435 952 // appropriate memory slice.
duke@435 953 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 954 //
duke@435 955 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 956 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 957 // instance type.
duke@435 958 //
duke@435 959 // We start with:
duke@435 960 //
duke@435 961 // 7 Parm #memory
duke@435 962 // 10 ConI "12"
duke@435 963 // 19 CheckCastPP "Foo"
duke@435 964 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 965 // 29 CheckCastPP "Foo"
duke@435 966 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 967 //
duke@435 968 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 969 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 970 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 971 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 972 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 973 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 974 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 975 //
duke@435 976 //
duke@435 977 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 978 // and creating a new alias index for node 30. This gives:
duke@435 979 //
duke@435 980 // 7 Parm #memory
duke@435 981 // 10 ConI "12"
duke@435 982 // 19 CheckCastPP "Foo"
duke@435 983 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 984 // 29 CheckCastPP "Foo" iid=24
duke@435 985 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 986 //
duke@435 987 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 988 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 989 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 990 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 991 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 992 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 993 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 994 //
duke@435 995 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 996 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 997 // node 80 are updated and then the memory nodes are updated with the
duke@435 998 // values computed in phase 2. This results in:
duke@435 999 //
duke@435 1000 // 7 Parm #memory
duke@435 1001 // 10 ConI "12"
duke@435 1002 // 19 CheckCastPP "Foo"
duke@435 1003 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 1004 // 29 CheckCastPP "Foo" iid=24
duke@435 1005 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 1006 //
duke@435 1007 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 1008 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 1009 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 1010 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 1011 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 1012 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 1013 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 1014 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 1015 //
duke@435 1016 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 1017 GrowableArray<Node *> memnode_worklist;
duke@435 1018 GrowableArray<PhiNode *> orig_phis;
kvn@1536 1019
kvn@2276 1020 PhaseIterGVN *igvn = _igvn;
duke@435 1021 uint new_index_start = (uint) _compile->num_alias_types();
kvn@1536 1022 Arena* arena = Thread::current()->resource_area();
kvn@1536 1023 VectorSet visited(arena);
duke@435 1024
kvn@500 1025
kvn@500 1026 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 1027 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 1028 //
kvn@679 1029 // (Note: don't forget to change the order of the second AddP node on
kvn@679 1030 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 1031 // see the comment in find_second_addp().)
kvn@679 1032 //
duke@435 1033 while (alloc_worklist.length() != 0) {
duke@435 1034 Node *n = alloc_worklist.pop();
duke@435 1035 uint ni = n->_idx;
kvn@500 1036 const TypeOopPtr* tinst = NULL;
duke@435 1037 if (n->is_Call()) {
duke@435 1038 CallNode *alloc = n->as_Call();
duke@435 1039 // copy escape information to call node
kvn@679 1040 PointsToNode* ptn = ptnode_adr(alloc->_idx);
kvn@1989 1041 PointsToNode::EscapeState es = escape_state(alloc);
kvn@500 1042 // We have an allocation or call which returns a Java object,
kvn@500 1043 // see if it is unescaped.
kvn@500 1044 if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
duke@435 1045 continue;
kvn@1219 1046
kvn@1219 1047 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 1048 n = alloc->result_cast();
kvn@1219 1049 if (n == NULL) { // No uses except Initialize node
kvn@1219 1050 if (alloc->is_Allocate()) {
kvn@1219 1051 // Set the scalar_replaceable flag for allocation
kvn@1219 1052 // so it could be eliminated if it has no uses.
kvn@1219 1053 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1054 }
kvn@1219 1055 continue;
kvn@474 1056 }
kvn@1219 1057 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 1058 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 1059 continue;
kvn@1219 1060 }
kvn@1219 1061
kvn@500 1062 // The inline code for Object.clone() casts the allocation result to
kvn@682 1063 // java.lang.Object and then to the actual type of the allocated
kvn@500 1064 // object. Detect this case and use the second cast.
kvn@682 1065 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 1066 // the allocation result is cast to java.lang.Object and then
kvn@682 1067 // to the actual Array type.
kvn@500 1068 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 1069 && (alloc->is_AllocateArray() ||
kvn@682 1070 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 1071 Node *cast2 = NULL;
kvn@500 1072 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1073 Node *use = n->fast_out(i);
kvn@500 1074 if (use->is_CheckCastPP()) {
kvn@500 1075 cast2 = use;
kvn@500 1076 break;
kvn@500 1077 }
kvn@500 1078 }
kvn@500 1079 if (cast2 != NULL) {
kvn@500 1080 n = cast2;
kvn@500 1081 } else {
kvn@1219 1082 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 1083 // (reflection allocation), the object can't be restored during
kvn@1219 1084 // deoptimization without precise type.
kvn@500 1085 continue;
kvn@500 1086 }
kvn@500 1087 }
kvn@1219 1088 if (alloc->is_Allocate()) {
kvn@1219 1089 // Set the scalar_replaceable flag for allocation
kvn@1219 1090 // so it could be eliminated.
kvn@1219 1091 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1092 }
kvn@500 1093 set_escape_state(n->_idx, es);
kvn@682 1094 // in order for an object to be scalar-replaceable, it must be:
kvn@500 1095 // - a direct allocation (not a call returning an object)
kvn@500 1096 // - non-escaping
kvn@500 1097 // - eligible to be a unique type
kvn@500 1098 // - not determined to be ineligible by escape analysis
kvn@1536 1099 assert(ptnode_adr(alloc->_idx)->_node != NULL &&
kvn@1536 1100 ptnode_adr(n->_idx)->_node != NULL, "should be registered");
duke@435 1101 set_map(alloc->_idx, n);
duke@435 1102 set_map(n->_idx, alloc);
kvn@500 1103 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 1104 if (t == NULL)
duke@435 1105 continue; // not a TypeInstPtr
kvn@682 1106 tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
duke@435 1107 igvn->hash_delete(n);
duke@435 1108 igvn->set_type(n, tinst);
duke@435 1109 n->raise_bottom_type(tinst);
duke@435 1110 igvn->hash_insert(n);
kvn@500 1111 record_for_optimizer(n);
kvn@500 1112 if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
kvn@500 1113 (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 1114
kvn@598 1115 // First, put on the worklist all Field edges from Connection Graph
kvn@598 1116 // which is more accurate then putting immediate users from Ideal Graph.
kvn@598 1117 for (uint e = 0; e < ptn->edge_count(); e++) {
kvn@679 1118 Node *use = ptnode_adr(ptn->edge_target(e))->_node;
kvn@598 1119 assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
kvn@598 1120 "only AddP nodes are Field edges in CG");
kvn@598 1121 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 1122 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 1123 if (addp2 != NULL) {
kvn@598 1124 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 1125 alloc_worklist.append_if_missing(addp2);
kvn@598 1126 }
kvn@598 1127 alloc_worklist.append_if_missing(use);
kvn@598 1128 }
kvn@598 1129 }
kvn@598 1130
kvn@500 1131 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 1132 // the users of the raw allocation result and push AddP users
kvn@500 1133 // on alloc_worklist.
kvn@500 1134 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 1135 assert (raw_result != NULL, "must have an allocation result");
kvn@500 1136 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 1137 Node *use = raw_result->fast_out(i);
kvn@500 1138 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 1139 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 1140 if (addp2 != NULL) {
kvn@500 1141 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 1142 alloc_worklist.append_if_missing(addp2);
kvn@500 1143 }
kvn@500 1144 alloc_worklist.append_if_missing(use);
kvn@1535 1145 } else if (use->is_MemBar()) {
kvn@500 1146 memnode_worklist.append_if_missing(use);
kvn@500 1147 }
kvn@500 1148 }
kvn@500 1149 }
duke@435 1150 } else if (n->is_AddP()) {
kvn@2556 1151 VectorSet* ptset = PointsTo(get_addp_base(n));
kvn@2556 1152 assert(ptset->Size() == 1, "AddP address is unique");
kvn@2556 1153 uint elem = ptset->getelem(); // Allocation node's index
kvn@1535 1154 if (elem == _phantom_object) {
kvn@1535 1155 assert(false, "escaped allocation");
kvn@500 1156 continue; // Assume the value was set outside this method.
kvn@1535 1157 }
kvn@500 1158 Node *base = get_map(elem); // CheckCastPP node
kvn@1535 1159 if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
kvn@500 1160 tinst = igvn->type(base)->isa_oopptr();
kvn@500 1161 } else if (n->is_Phi() ||
kvn@500 1162 n->is_CheckCastPP() ||
kvn@603 1163 n->is_EncodeP() ||
kvn@603 1164 n->is_DecodeN() ||
kvn@500 1165 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 1166 if (visited.test_set(n->_idx)) {
duke@435 1167 assert(n->is_Phi(), "loops only through Phi's");
duke@435 1168 continue; // already processed
duke@435 1169 }
kvn@2556 1170 VectorSet* ptset = PointsTo(n);
kvn@2556 1171 if (ptset->Size() == 1) {
kvn@2556 1172 uint elem = ptset->getelem(); // Allocation node's index
kvn@1535 1173 if (elem == _phantom_object) {
kvn@1535 1174 assert(false, "escaped allocation");
kvn@500 1175 continue; // Assume the value was set outside this method.
kvn@1535 1176 }
kvn@500 1177 Node *val = get_map(elem); // CheckCastPP node
duke@435 1178 TypeNode *tn = n->as_Type();
kvn@500 1179 tinst = igvn->type(val)->isa_oopptr();
kvn@658 1180 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@658 1181 (uint)tinst->instance_id() == elem , "instance type expected.");
kvn@598 1182
kvn@598 1183 const Type *tn_type = igvn->type(tn);
kvn@658 1184 const TypeOopPtr *tn_t;
kvn@658 1185 if (tn_type->isa_narrowoop()) {
kvn@658 1186 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 1187 } else {
kvn@658 1188 tn_t = tn_type->isa_oopptr();
kvn@658 1189 }
duke@435 1190
kvn@1535 1191 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
kvn@598 1192 if (tn_type->isa_narrowoop()) {
kvn@598 1193 tn_type = tinst->make_narrowoop();
kvn@598 1194 } else {
kvn@598 1195 tn_type = tinst;
kvn@598 1196 }
duke@435 1197 igvn->hash_delete(tn);
kvn@598 1198 igvn->set_type(tn, tn_type);
kvn@598 1199 tn->set_type(tn_type);
duke@435 1200 igvn->hash_insert(tn);
kvn@500 1201 record_for_optimizer(n);
kvn@728 1202 } else {
kvn@1535 1203 assert(tn_type == TypePtr::NULL_PTR ||
kvn@1535 1204 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
kvn@1535 1205 "unexpected type");
kvn@1535 1206 continue; // Skip dead path with different type
duke@435 1207 }
duke@435 1208 }
duke@435 1209 } else {
kvn@1535 1210 debug_only(n->dump();)
kvn@1535 1211 assert(false, "EA: unexpected node");
duke@435 1212 continue;
duke@435 1213 }
kvn@1535 1214 // push allocation's users on appropriate worklist
duke@435 1215 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1216 Node *use = n->fast_out(i);
duke@435 1217 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@1535 1218 // Load/store to instance's field
kvn@500 1219 memnode_worklist.append_if_missing(use);
kvn@1535 1220 } else if (use->is_MemBar()) {
kvn@500 1221 memnode_worklist.append_if_missing(use);
kvn@500 1222 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 1223 Node* addp2 = find_second_addp(use, n);
kvn@500 1224 if (addp2 != NULL) {
kvn@500 1225 alloc_worklist.append_if_missing(addp2);
kvn@500 1226 }
kvn@500 1227 alloc_worklist.append_if_missing(use);
kvn@500 1228 } else if (use->is_Phi() ||
kvn@500 1229 use->is_CheckCastPP() ||
kvn@603 1230 use->is_EncodeP() ||
kvn@603 1231 use->is_DecodeN() ||
kvn@500 1232 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 1233 alloc_worklist.append_if_missing(use);
kvn@1535 1234 #ifdef ASSERT
kvn@1535 1235 } else if (use->is_Mem()) {
kvn@1535 1236 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
kvn@1535 1237 } else if (use->is_MergeMem()) {
kvn@1535 1238 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1239 } else if (use->is_SafePoint()) {
kvn@1535 1240 // Look for MergeMem nodes for calls which reference unique allocation
kvn@1535 1241 // (through CheckCastPP nodes) even for debug info.
kvn@1535 1242 Node* m = use->in(TypeFunc::Memory);
kvn@1535 1243 if (m->is_MergeMem()) {
kvn@1535 1244 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1245 }
kvn@1535 1246 } else {
kvn@1535 1247 uint op = use->Opcode();
kvn@1535 1248 if (!(op == Op_CmpP || op == Op_Conv2B ||
kvn@1535 1249 op == Op_CastP2X || op == Op_StoreCM ||
kvn@1535 1250 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1251 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1252 n->dump();
kvn@1535 1253 use->dump();
kvn@1535 1254 assert(false, "EA: missing allocation reference path");
kvn@1535 1255 }
kvn@1535 1256 #endif
duke@435 1257 }
duke@435 1258 }
duke@435 1259
duke@435 1260 }
kvn@500 1261 // New alias types were created in split_AddP().
duke@435 1262 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 1263
duke@435 1264 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 1265 // compute new values for Memory inputs (the Memory inputs are not
duke@435 1266 // actually updated until phase 4.)
duke@435 1267 if (memnode_worklist.length() == 0)
duke@435 1268 return; // nothing to do
duke@435 1269
duke@435 1270 while (memnode_worklist.length() != 0) {
duke@435 1271 Node *n = memnode_worklist.pop();
kvn@500 1272 if (visited.test_set(n->_idx))
kvn@500 1273 continue;
kvn@1535 1274 if (n->is_Phi() || n->is_ClearArray()) {
kvn@1535 1275 // we don't need to do anything, but the users must be pushed
kvn@1535 1276 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
kvn@1535 1277 // we don't need to do anything, but the users must be pushed
kvn@1535 1278 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
kvn@500 1279 if (n == NULL)
duke@435 1280 continue;
duke@435 1281 } else {
duke@435 1282 assert(n->is_Mem(), "memory node required.");
duke@435 1283 Node *addr = n->in(MemNode::Address);
duke@435 1284 const Type *addr_t = igvn->type(addr);
duke@435 1285 if (addr_t == Type::TOP)
duke@435 1286 continue;
duke@435 1287 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1288 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1289 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1290 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1291 if (_compile->failing()) {
kvn@473 1292 return;
kvn@473 1293 }
kvn@500 1294 if (mem != n->in(MemNode::Memory)) {
kvn@1536 1295 // We delay the memory edge update since we need old one in
kvn@1536 1296 // MergeMem code below when instances memory slices are separated.
kvn@1536 1297 debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
kvn@1536 1298 assert(pn == NULL || pn == n, "wrong node");
duke@435 1299 set_map(n->_idx, mem);
kvn@679 1300 ptnode_adr(n->_idx)->_node = n;
kvn@500 1301 }
duke@435 1302 if (n->is_Load()) {
duke@435 1303 continue; // don't push users
duke@435 1304 } else if (n->is_LoadStore()) {
duke@435 1305 // get the memory projection
duke@435 1306 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1307 Node *use = n->fast_out(i);
duke@435 1308 if (use->Opcode() == Op_SCMemProj) {
duke@435 1309 n = use;
duke@435 1310 break;
duke@435 1311 }
duke@435 1312 }
duke@435 1313 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1314 }
duke@435 1315 }
duke@435 1316 // push user on appropriate worklist
duke@435 1317 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1318 Node *use = n->fast_out(i);
kvn@1535 1319 if (use->is_Phi() || use->is_ClearArray()) {
kvn@500 1320 memnode_worklist.append_if_missing(use);
duke@435 1321 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@1535 1322 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
kvn@1535 1323 continue;
kvn@500 1324 memnode_worklist.append_if_missing(use);
kvn@1535 1325 } else if (use->is_MemBar()) {
kvn@500 1326 memnode_worklist.append_if_missing(use);
kvn@1535 1327 #ifdef ASSERT
kvn@1535 1328 } else if(use->is_Mem()) {
kvn@1535 1329 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
duke@435 1330 } else if (use->is_MergeMem()) {
kvn@1535 1331 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1332 } else {
kvn@1535 1333 uint op = use->Opcode();
kvn@1535 1334 if (!(op == Op_StoreCM ||
kvn@1535 1335 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
kvn@1535 1336 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
kvn@1535 1337 op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1338 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1339 n->dump();
kvn@1535 1340 use->dump();
kvn@1535 1341 assert(false, "EA: missing memory path");
kvn@1535 1342 }
kvn@1535 1343 #endif
duke@435 1344 }
duke@435 1345 }
duke@435 1346 }
duke@435 1347
kvn@500 1348 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@1535 1349 // Walk each memory slice moving the first node encountered of each
kvn@500 1350 // instance type to the the input corresponding to its alias index.
kvn@1535 1351 uint length = _mergemem_worklist.length();
kvn@1535 1352 for( uint next = 0; next < length; ++next ) {
kvn@1535 1353 MergeMemNode* nmm = _mergemem_worklist.at(next);
kvn@1535 1354 assert(!visited.test_set(nmm->_idx), "should not be visited before");
duke@435 1355 // Note: we don't want to use MergeMemStream here because we only want to
kvn@1535 1356 // scan inputs which exist at the start, not ones we add during processing.
kvn@1535 1357 // Note 2: MergeMem may already contains instance memory slices added
kvn@1535 1358 // during find_inst_mem() call when memory nodes were processed above.
kvn@1535 1359 igvn->hash_delete(nmm);
duke@435 1360 uint nslices = nmm->req();
duke@435 1361 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1362 Node* mem = nmm->in(i);
kvn@500 1363 Node* cur = NULL;
duke@435 1364 if (mem == NULL || mem->is_top())
duke@435 1365 continue;
kvn@1536 1366 // First, update mergemem by moving memory nodes to corresponding slices
kvn@1536 1367 // if their type became more precise since this mergemem was created.
duke@435 1368 while (mem->is_Mem()) {
duke@435 1369 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1370 if (at != Type::TOP) {
duke@435 1371 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1372 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1373 if (idx == i) {
duke@435 1374 if (cur == NULL)
duke@435 1375 cur = mem;
duke@435 1376 } else {
duke@435 1377 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1378 nmm->set_memory_at(idx, mem);
duke@435 1379 }
duke@435 1380 }
duke@435 1381 }
duke@435 1382 mem = mem->in(MemNode::Memory);
duke@435 1383 }
duke@435 1384 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1385 // Find any instance of the current type if we haven't encountered
kvn@1536 1386 // already a memory slice of the instance along the memory chain.
kvn@500 1387 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1388 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1389 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1390 if (nmm->is_empty_memory(m)) {
kvn@500 1391 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1392 if (_compile->failing()) {
kvn@500 1393 return;
kvn@500 1394 }
kvn@500 1395 nmm->set_memory_at(ni, result);
kvn@500 1396 }
kvn@500 1397 }
kvn@500 1398 }
kvn@500 1399 }
kvn@500 1400 // Find the rest of instances values
kvn@500 1401 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@1536 1402 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
kvn@500 1403 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1404 if (result == nmm->base_memory()) {
kvn@500 1405 // Didn't find instance memory, search through general slice recursively.
kvn@1536 1406 result = nmm->memory_at(_compile->get_general_index(ni));
kvn@500 1407 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1408 if (_compile->failing()) {
kvn@500 1409 return;
kvn@500 1410 }
kvn@500 1411 nmm->set_memory_at(ni, result);
kvn@500 1412 }
kvn@500 1413 }
kvn@500 1414 igvn->hash_insert(nmm);
kvn@500 1415 record_for_optimizer(nmm);
duke@435 1416 }
duke@435 1417
kvn@500 1418 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1419 // the Memory input of memnodes
duke@435 1420 // First update the inputs of any non-instance Phi's from
duke@435 1421 // which we split out an instance Phi. Note we don't have
duke@435 1422 // to recursively process Phi's encounted on the input memory
duke@435 1423 // chains as is done in split_memory_phi() since they will
duke@435 1424 // also be processed here.
kvn@682 1425 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 1426 PhiNode *phi = orig_phis.at(j);
duke@435 1427 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1428 igvn->hash_delete(phi);
duke@435 1429 for (uint i = 1; i < phi->req(); i++) {
duke@435 1430 Node *mem = phi->in(i);
kvn@500 1431 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1432 if (_compile->failing()) {
kvn@500 1433 return;
kvn@500 1434 }
duke@435 1435 if (mem != new_mem) {
duke@435 1436 phi->set_req(i, new_mem);
duke@435 1437 }
duke@435 1438 }
duke@435 1439 igvn->hash_insert(phi);
duke@435 1440 record_for_optimizer(phi);
duke@435 1441 }
duke@435 1442
duke@435 1443 // Update the memory inputs of MemNodes with the value we computed
kvn@1536 1444 // in Phase 2 and move stores memory users to corresponding memory slices.
kvn@2810 1445
kvn@2810 1446 // Disable memory split verification code until the fix for 6984348.
kvn@2810 1447 // Currently it produces false negative results since it does not cover all cases.
kvn@2810 1448 #if 0 // ifdef ASSERT
kvn@2556 1449 visited.Reset();
kvn@1536 1450 Node_Stack old_mems(arena, _compile->unique() >> 2);
kvn@1536 1451 #endif
kvn@679 1452 for (uint i = 0; i < nodes_size(); i++) {
duke@435 1453 Node *nmem = get_map(i);
duke@435 1454 if (nmem != NULL) {
kvn@679 1455 Node *n = ptnode_adr(i)->_node;
kvn@1536 1456 assert(n != NULL, "sanity");
kvn@1536 1457 if (n->is_Mem()) {
kvn@2810 1458 #if 0 // ifdef ASSERT
kvn@1536 1459 Node* old_mem = n->in(MemNode::Memory);
kvn@1536 1460 if (!visited.test_set(old_mem->_idx)) {
kvn@1536 1461 old_mems.push(old_mem, old_mem->outcnt());
kvn@1536 1462 }
kvn@1536 1463 #endif
kvn@1536 1464 assert(n->in(MemNode::Memory) != nmem, "sanity");
kvn@1536 1465 if (!n->is_Load()) {
kvn@1536 1466 // Move memory users of a store first.
kvn@1536 1467 move_inst_mem(n, orig_phis, igvn);
kvn@1536 1468 }
kvn@1536 1469 // Now update memory input
duke@435 1470 igvn->hash_delete(n);
duke@435 1471 n->set_req(MemNode::Memory, nmem);
duke@435 1472 igvn->hash_insert(n);
duke@435 1473 record_for_optimizer(n);
kvn@1536 1474 } else {
kvn@1536 1475 assert(n->is_Allocate() || n->is_CheckCastPP() ||
kvn@1536 1476 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
duke@435 1477 }
duke@435 1478 }
duke@435 1479 }
kvn@2810 1480 #if 0 // ifdef ASSERT
kvn@1536 1481 // Verify that memory was split correctly
kvn@1536 1482 while (old_mems.is_nonempty()) {
kvn@1536 1483 Node* old_mem = old_mems.node();
kvn@1536 1484 uint old_cnt = old_mems.index();
kvn@1536 1485 old_mems.pop();
kvn@2810 1486 assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
kvn@1536 1487 }
kvn@1536 1488 #endif
duke@435 1489 }
duke@435 1490
kvn@679 1491 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@679 1492 // EA brings benefits only when the code has allocations and/or locks which
kvn@679 1493 // are represented by ideal Macro nodes.
kvn@679 1494 int cnt = C->macro_count();
kvn@679 1495 for( int i=0; i < cnt; i++ ) {
kvn@679 1496 Node *n = C->macro_node(i);
kvn@679 1497 if ( n->is_Allocate() )
kvn@679 1498 return true;
kvn@679 1499 if( n->is_Lock() ) {
kvn@679 1500 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@679 1501 if( !(obj->is_Parm() || obj->is_Con()) )
kvn@679 1502 return true;
kvn@679 1503 }
kvn@679 1504 }
kvn@679 1505 return false;
kvn@679 1506 }
kvn@679 1507
kvn@1989 1508 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
kvn@1989 1509 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
kvn@1989 1510 // to create space for them in ConnectionGraph::_nodes[].
kvn@1989 1511 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@1989 1512 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@1989 1513
kvn@1989 1514 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
kvn@1989 1515 // Perform escape analysis
kvn@1989 1516 if (congraph->compute_escape()) {
kvn@1989 1517 // There are non escaping objects.
kvn@1989 1518 C->set_congraph(congraph);
kvn@1989 1519 }
kvn@1989 1520
kvn@1989 1521 // Cleanup.
kvn@1989 1522 if (oop_null->outcnt() == 0)
kvn@1989 1523 igvn->hash_delete(oop_null);
kvn@1989 1524 if (noop_null->outcnt() == 0)
kvn@1989 1525 igvn->hash_delete(noop_null);
kvn@1989 1526 }
kvn@1989 1527
kvn@679 1528 bool ConnectionGraph::compute_escape() {
kvn@679 1529 Compile* C = _compile;
duke@435 1530
kvn@598 1531 // 1. Populate Connection Graph (CG) with Ideal nodes.
duke@435 1532
kvn@500 1533 Unique_Node_List worklist_init;
kvn@679 1534 worklist_init.map(C->unique(), NULL); // preallocate space
kvn@500 1535
kvn@500 1536 // Initialize worklist
kvn@679 1537 if (C->root() != NULL) {
kvn@679 1538 worklist_init.push(C->root());
kvn@500 1539 }
kvn@500 1540
kvn@500 1541 GrowableArray<int> cg_worklist;
kvn@1989 1542 PhaseGVN* igvn = _igvn;
kvn@500 1543 bool has_allocations = false;
kvn@500 1544
kvn@500 1545 // Push all useful nodes onto CG list and set their type.
kvn@500 1546 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1547 Node* n = worklist_init.at(next);
kvn@500 1548 record_for_escape_analysis(n, igvn);
kvn@679 1549 // Only allocations and java static calls results are checked
kvn@679 1550 // for an escape status. See process_call_result() below.
kvn@679 1551 if (n->is_Allocate() || n->is_CallStaticJava() &&
kvn@679 1552 ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1553 has_allocations = true;
kvn@500 1554 }
kvn@1535 1555 if(n->is_AddP()) {
kvn@2276 1556 // Collect address nodes. Use them during stage 3 below
kvn@2276 1557 // to build initial connection graph field edges.
kvn@2276 1558 cg_worklist.append(n->_idx);
kvn@1535 1559 } else if (n->is_MergeMem()) {
kvn@1535 1560 // Collect all MergeMem nodes to add memory slices for
kvn@1535 1561 // scalar replaceable objects in split_unique_types().
kvn@1535 1562 _mergemem_worklist.append(n->as_MergeMem());
kvn@1535 1563 }
kvn@500 1564 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1565 Node* m = n->fast_out(i); // Get user
kvn@500 1566 worklist_init.push(m);
kvn@500 1567 }
kvn@500 1568 }
kvn@500 1569
kvn@679 1570 if (!has_allocations) {
kvn@500 1571 _collecting = false;
kvn@679 1572 return false; // Nothing to do.
kvn@500 1573 }
kvn@500 1574
kvn@500 1575 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@679 1576 uint delayed_size = _delayed_worklist.size();
kvn@679 1577 for( uint next = 0; next < delayed_size; ++next ) {
kvn@500 1578 Node* n = _delayed_worklist.at(next);
kvn@500 1579 build_connection_graph(n, igvn);
kvn@500 1580 }
kvn@500 1581
kvn@2276 1582 // 3. Pass to create initial fields edges (JavaObject -F-> AddP)
kvn@2276 1583 // to reduce number of iterations during stage 4 below.
kvn@679 1584 uint cg_length = cg_worklist.length();
kvn@679 1585 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1586 int ni = cg_worklist.at(next);
kvn@2276 1587 Node* n = ptnode_adr(ni)->_node;
kvn@2276 1588 Node* base = get_addp_base(n);
kvn@2276 1589 if (base->is_Proj())
kvn@2276 1590 base = base->in(0);
kvn@2276 1591 PointsToNode::NodeType nt = ptnode_adr(base->_idx)->node_type();
kvn@2276 1592 if (nt == PointsToNode::JavaObject) {
kvn@2276 1593 build_connection_graph(n, igvn);
kvn@2276 1594 }
kvn@500 1595 }
kvn@500 1596
kvn@500 1597 cg_worklist.clear();
kvn@500 1598 cg_worklist.append(_phantom_object);
kvn@2276 1599 GrowableArray<uint> worklist;
kvn@500 1600
kvn@500 1601 // 4. Build Connection Graph which need
kvn@500 1602 // to walk the connection graph.
kvn@2276 1603 _progress = false;
kvn@679 1604 for (uint ni = 0; ni < nodes_size(); ni++) {
kvn@679 1605 PointsToNode* ptn = ptnode_adr(ni);
kvn@500 1606 Node *n = ptn->_node;
kvn@500 1607 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1608 build_connection_graph(n, igvn);
kvn@500 1609 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1610 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@2276 1611 if (!_processed.test(n->_idx))
kvn@2276 1612 worklist.append(n->_idx); // Collect C/A/L/S nodes
kvn@500 1613 }
duke@435 1614 }
duke@435 1615
kvn@2276 1616 // After IGVN user nodes may have smaller _idx than
kvn@2276 1617 // their inputs so they will be processed first in
kvn@2276 1618 // previous loop. Because of that not all Graph
kvn@2276 1619 // edges will be created. Walk over interesting
kvn@2276 1620 // nodes again until no new edges are created.
kvn@2276 1621 //
kvn@2276 1622 // Normally only 1-3 passes needed to build
kvn@2276 1623 // Connection Graph depending on graph complexity.
kvn@2409 1624 // Observed 8 passes in jvm2008 compiler.compiler.
kvn@2409 1625 // Set limit to 20 to catch situation when something
kvn@2276 1626 // did go wrong and recompile the method without EA.
kvn@2276 1627
kvn@2409 1628 #define CG_BUILD_ITER_LIMIT 20
kvn@2276 1629
kvn@2276 1630 uint length = worklist.length();
kvn@2276 1631 int iterations = 0;
kvn@2276 1632 while(_progress && (iterations++ < CG_BUILD_ITER_LIMIT)) {
kvn@2276 1633 _progress = false;
kvn@2276 1634 for( uint next = 0; next < length; ++next ) {
kvn@2276 1635 int ni = worklist.at(next);
kvn@2276 1636 PointsToNode* ptn = ptnode_adr(ni);
kvn@2276 1637 Node* n = ptn->_node;
kvn@2276 1638 assert(n != NULL, "should be known node");
kvn@2276 1639 build_connection_graph(n, igvn);
kvn@2276 1640 }
kvn@2276 1641 }
kvn@2276 1642 if (iterations >= CG_BUILD_ITER_LIMIT) {
kvn@2276 1643 assert(iterations < CG_BUILD_ITER_LIMIT,
kvn@2276 1644 err_msg("infinite EA connection graph build with %d nodes and worklist size %d",
kvn@2276 1645 nodes_size(), length));
kvn@2276 1646 // Possible infinite build_connection_graph loop,
kvn@2276 1647 // retry compilation without escape analysis.
kvn@2276 1648 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@2276 1649 _collecting = false;
kvn@2276 1650 return false;
kvn@2276 1651 }
kvn@2276 1652 #undef CG_BUILD_ITER_LIMIT
kvn@2276 1653
kvn@1535 1654 Arena* arena = Thread::current()->resource_area();
kvn@1535 1655 VectorSet visited(arena);
kvn@2276 1656 worklist.clear();
duke@435 1657
kvn@1535 1658 // 5. Remove deferred edges from the graph and adjust
kvn@1535 1659 // escape state of nonescaping objects.
kvn@679 1660 cg_length = cg_worklist.length();
kvn@679 1661 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1662 int ni = cg_worklist.at(next);
kvn@679 1663 PointsToNode* ptn = ptnode_adr(ni);
duke@435 1664 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1665 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@2276 1666 remove_deferred(ni, &worklist, &visited);
kvn@679 1667 Node *n = ptn->_node;
duke@435 1668 if (n->is_AddP()) {
kvn@1535 1669 // Search for objects which are not scalar replaceable
kvn@1535 1670 // and adjust their escape state.
kvn@2556 1671 adjust_escape_state(ni, igvn);
duke@435 1672 }
duke@435 1673 }
duke@435 1674 }
kvn@500 1675
kvn@679 1676 // 6. Propagate escape states.
kvn@2276 1677 worklist.clear();
kvn@679 1678 bool has_non_escaping_obj = false;
kvn@679 1679
duke@435 1680 // push all GlobalEscape nodes on the worklist
kvn@679 1681 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1682 int nk = cg_worklist.at(next);
kvn@679 1683 if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
kvn@679 1684 worklist.push(nk);
duke@435 1685 }
kvn@679 1686 // mark all nodes reachable from GlobalEscape nodes
duke@435 1687 while(worklist.length() > 0) {
kvn@679 1688 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1689 uint e_cnt = ptn->edge_count();
kvn@679 1690 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1691 uint npi = ptn->edge_target(ei);
duke@435 1692 PointsToNode *np = ptnode_adr(npi);
kvn@500 1693 if (np->escape_state() < PointsToNode::GlobalEscape) {
kvn@3242 1694 set_escape_state(npi, PointsToNode::GlobalEscape);
kvn@679 1695 worklist.push(npi);
duke@435 1696 }
duke@435 1697 }
duke@435 1698 }
duke@435 1699
duke@435 1700 // push all ArgEscape nodes on the worklist
kvn@679 1701 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1702 int nk = cg_worklist.at(next);
kvn@679 1703 if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
duke@435 1704 worklist.push(nk);
duke@435 1705 }
kvn@679 1706 // mark all nodes reachable from ArgEscape nodes
duke@435 1707 while(worklist.length() > 0) {
kvn@679 1708 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1709 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1710 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1711 uint e_cnt = ptn->edge_count();
kvn@679 1712 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1713 uint npi = ptn->edge_target(ei);
duke@435 1714 PointsToNode *np = ptnode_adr(npi);
kvn@500 1715 if (np->escape_state() < PointsToNode::ArgEscape) {
kvn@3242 1716 set_escape_state(npi, PointsToNode::ArgEscape);
kvn@679 1717 worklist.push(npi);
duke@435 1718 }
duke@435 1719 }
duke@435 1720 }
kvn@500 1721
kvn@679 1722 GrowableArray<Node*> alloc_worklist;
kvn@679 1723
kvn@500 1724 // push all NoEscape nodes on the worklist
kvn@679 1725 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1726 int nk = cg_worklist.at(next);
kvn@679 1727 if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1728 worklist.push(nk);
kvn@500 1729 }
kvn@679 1730 // mark all nodes reachable from NoEscape nodes
kvn@500 1731 while(worklist.length() > 0) {
kvn@3242 1732 uint nk = worklist.pop();
kvn@3242 1733 PointsToNode* ptn = ptnode_adr(nk);
kvn@3242 1734 if (ptn->node_type() == PointsToNode::JavaObject &&
kvn@3242 1735 !(nk == _noop_null || nk == _oop_null))
kvn@3242 1736 has_non_escaping_obj = true; // Non Escape
kvn@679 1737 Node* n = ptn->_node;
kvn@679 1738 if (n->is_Allocate() && ptn->_scalar_replaceable ) {
twisti@1040 1739 // Push scalar replaceable allocations on alloc_worklist
kvn@679 1740 // for processing in split_unique_types().
kvn@679 1741 alloc_worklist.append(n);
kvn@679 1742 }
kvn@679 1743 uint e_cnt = ptn->edge_count();
kvn@679 1744 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1745 uint npi = ptn->edge_target(ei);
kvn@500 1746 PointsToNode *np = ptnode_adr(npi);
kvn@500 1747 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@3242 1748 set_escape_state(npi, PointsToNode::NoEscape);
kvn@679 1749 worklist.push(npi);
kvn@500 1750 }
kvn@500 1751 }
kvn@500 1752 }
kvn@500 1753
duke@435 1754 _collecting = false;
kvn@679 1755 assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
duke@435 1756
kvn@3242 1757 assert(ptnode_adr(_oop_null)->escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3242 1758 if (UseCompressedOops) {
kvn@3242 1759 assert(ptnode_adr(_noop_null)->escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3242 1760 }
kvn@3242 1761
kvn@2951 1762 if (EliminateLocks) {
kvn@2951 1763 // Mark locks before changing ideal graph.
kvn@2951 1764 int cnt = C->macro_count();
kvn@2951 1765 for( int i=0; i < cnt; i++ ) {
kvn@2951 1766 Node *n = C->macro_node(i);
kvn@2951 1767 if (n->is_AbstractLock()) { // Lock and Unlock nodes
kvn@2951 1768 AbstractLockNode* alock = n->as_AbstractLock();
kvn@2951 1769 if (!alock->is_eliminated()) {
kvn@2951 1770 PointsToNode::EscapeState es = escape_state(alock->obj_node());
kvn@2951 1771 assert(es != PointsToNode::UnknownEscape, "should know");
kvn@2951 1772 if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
kvn@2951 1773 // Mark it eliminated
kvn@2951 1774 alock->set_eliminated();
kvn@2951 1775 }
kvn@2951 1776 }
kvn@2951 1777 }
kvn@2951 1778 }
kvn@2951 1779 }
kvn@2951 1780
kvn@1989 1781 #ifndef PRODUCT
kvn@1989 1782 if (PrintEscapeAnalysis) {
kvn@1989 1783 dump(); // Dump ConnectionGraph
kvn@1989 1784 }
kvn@1989 1785 #endif
kvn@1989 1786
kvn@679 1787 bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
kvn@679 1788 if ( has_scalar_replaceable_candidates &&
kvn@679 1789 C->AliasLevel() >= 3 && EliminateAllocations ) {
kvn@473 1790
kvn@679 1791 // Now use the escape information to create unique types for
kvn@679 1792 // scalar replaceable objects.
kvn@679 1793 split_unique_types(alloc_worklist);
duke@435 1794
kvn@679 1795 if (C->failing()) return false;
duke@435 1796
kvn@679 1797 C->print_method("After Escape Analysis", 2);
duke@435 1798
kvn@500 1799 #ifdef ASSERT
kvn@679 1800 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@500 1801 tty->print("=== No allocations eliminated for ");
kvn@679 1802 C->method()->print_short_name();
kvn@500 1803 if(!EliminateAllocations) {
kvn@500 1804 tty->print(" since EliminateAllocations is off ===");
kvn@679 1805 } else if(!has_scalar_replaceable_candidates) {
kvn@679 1806 tty->print(" since there are no scalar replaceable candidates ===");
kvn@679 1807 } else if(C->AliasLevel() < 3) {
kvn@500 1808 tty->print(" since AliasLevel < 3 ===");
duke@435 1809 }
kvn@500 1810 tty->cr();
kvn@500 1811 #endif
duke@435 1812 }
kvn@679 1813 return has_non_escaping_obj;
duke@435 1814 }
duke@435 1815
kvn@2556 1816 // Adjust escape state after Connection Graph is built.
kvn@2556 1817 void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) {
kvn@1535 1818 PointsToNode* ptn = ptnode_adr(nidx);
kvn@1535 1819 Node* n = ptn->_node;
kvn@1535 1820 assert(n->is_AddP(), "Should be called for AddP nodes only");
kvn@1535 1821 // Search for objects which are not scalar replaceable.
kvn@1535 1822 // Mark their escape state as ArgEscape to propagate the state
kvn@1535 1823 // to referenced objects.
kvn@1535 1824 // Note: currently there are no difference in compiler optimizations
kvn@1535 1825 // for ArgEscape objects and NoEscape objects which are not
kvn@1535 1826 // scalar replaceable.
kvn@1535 1827
kvn@1535 1828 Compile* C = _compile;
kvn@1535 1829
kvn@1535 1830 int offset = ptn->offset();
kvn@1535 1831 Node* base = get_addp_base(n);
kvn@2556 1832 VectorSet* ptset = PointsTo(base);
kvn@2556 1833 int ptset_size = ptset->Size();
kvn@1535 1834
kvn@1535 1835 // Check if a oop field's initializing value is recorded and add
kvn@1535 1836 // a corresponding NULL field's value if it is not recorded.
kvn@1535 1837 // Connection Graph does not record a default initialization by NULL
kvn@1535 1838 // captured by Initialize node.
kvn@1535 1839 //
kvn@1535 1840 // Note: it will disable scalar replacement in some cases:
kvn@1535 1841 //
kvn@1535 1842 // Point p[] = new Point[1];
kvn@1535 1843 // p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1844 //
kvn@1535 1845 // but it will save us from incorrect optimizations in next cases:
kvn@1535 1846 //
kvn@1535 1847 // Point p[] = new Point[1];
kvn@1535 1848 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1849 //
kvn@1535 1850 // Do a simple control flow analysis to distinguish above cases.
kvn@1535 1851 //
kvn@1535 1852 if (offset != Type::OffsetBot && ptset_size == 1) {
kvn@2556 1853 uint elem = ptset->getelem(); // Allocation node's index
kvn@1535 1854 // It does not matter if it is not Allocation node since
kvn@1535 1855 // only non-escaping allocations are scalar replaced.
kvn@1535 1856 if (ptnode_adr(elem)->_node->is_Allocate() &&
kvn@1535 1857 ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
kvn@1535 1858 AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
kvn@1535 1859 InitializeNode* ini = alloc->initialization();
kvn@1535 1860
kvn@1535 1861 // Check only oop fields.
kvn@1535 1862 const Type* adr_type = n->as_AddP()->bottom_type();
kvn@1535 1863 BasicType basic_field_type = T_INT;
kvn@1535 1864 if (adr_type->isa_instptr()) {
kvn@1535 1865 ciField* field = C->alias_type(adr_type->isa_instptr())->field();
kvn@1535 1866 if (field != NULL) {
kvn@1535 1867 basic_field_type = field->layout_type();
kvn@1535 1868 } else {
kvn@1535 1869 // Ignore non field load (for example, klass load)
kvn@1535 1870 }
kvn@1535 1871 } else if (adr_type->isa_aryptr()) {
kvn@1535 1872 const Type* elemtype = adr_type->isa_aryptr()->elem();
kvn@1535 1873 basic_field_type = elemtype->array_element_basic_type();
kvn@1535 1874 } else {
kvn@1535 1875 // Raw pointers are used for initializing stores so skip it.
kvn@1535 1876 assert(adr_type->isa_rawptr() && base->is_Proj() &&
kvn@1535 1877 (base->in(0) == alloc),"unexpected pointer type");
kvn@1535 1878 }
kvn@1535 1879 if (basic_field_type == T_OBJECT ||
kvn@1535 1880 basic_field_type == T_NARROWOOP ||
kvn@1535 1881 basic_field_type == T_ARRAY) {
kvn@1535 1882 Node* value = NULL;
kvn@1535 1883 if (ini != NULL) {
kvn@1535 1884 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
kvn@1535 1885 Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
kvn@1535 1886 if (store != NULL && store->is_Store()) {
kvn@1535 1887 value = store->in(MemNode::ValueIn);
kvn@1535 1888 } else if (ptn->edge_count() > 0) { // Are there oop stores?
kvn@1535 1889 // Check for a store which follows allocation without branches.
kvn@1535 1890 // For example, a volatile field store is not collected
kvn@1535 1891 // by Initialize node. TODO: it would be nice to use idom() here.
kvn@1535 1892 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1893 store = n->fast_out(i);
kvn@1535 1894 if (store->is_Store() && store->in(0) != NULL) {
kvn@1535 1895 Node* ctrl = store->in(0);
kvn@1535 1896 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
kvn@1535 1897 ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
kvn@1535 1898 ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
kvn@1535 1899 ctrl = ctrl->in(0);
kvn@1535 1900 }
kvn@1535 1901 if (ctrl == ini || ctrl == alloc) {
kvn@1535 1902 value = store->in(MemNode::ValueIn);
kvn@1535 1903 break;
kvn@1535 1904 }
kvn@1535 1905 }
kvn@1535 1906 }
kvn@1535 1907 }
kvn@1535 1908 }
kvn@1535 1909 if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
kvn@1535 1910 // A field's initializing value was not recorded. Add NULL.
kvn@1535 1911 uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
kvn@1535 1912 add_pointsto_edge(nidx, null_idx);
kvn@1535 1913 }
kvn@1535 1914 }
kvn@1535 1915 }
kvn@1535 1916 }
kvn@1535 1917
kvn@1535 1918 // An object is not scalar replaceable if the field which may point
kvn@1535 1919 // to it has unknown offset (unknown element of an array of objects).
kvn@1535 1920 //
kvn@1535 1921 if (offset == Type::OffsetBot) {
kvn@1535 1922 uint e_cnt = ptn->edge_count();
kvn@1535 1923 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@1535 1924 uint npi = ptn->edge_target(ei);
kvn@1535 1925 set_escape_state(npi, PointsToNode::ArgEscape);
kvn@1535 1926 ptnode_adr(npi)->_scalar_replaceable = false;
kvn@1535 1927 }
kvn@1535 1928 }
kvn@1535 1929
kvn@1535 1930 // Currently an object is not scalar replaceable if a LoadStore node
kvn@1535 1931 // access its field since the field value is unknown after it.
kvn@1535 1932 //
kvn@1535 1933 bool has_LoadStore = false;
kvn@1535 1934 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1935 Node *use = n->fast_out(i);
kvn@1535 1936 if (use->is_LoadStore()) {
kvn@1535 1937 has_LoadStore = true;
kvn@1535 1938 break;
kvn@1535 1939 }
kvn@1535 1940 }
kvn@1535 1941 // An object is not scalar replaceable if the address points
kvn@1535 1942 // to unknown field (unknown element for arrays, offset is OffsetBot).
kvn@1535 1943 //
kvn@1535 1944 // Or the address may point to more then one object. This may produce
kvn@1535 1945 // the false positive result (set scalar_replaceable to false)
kvn@1535 1946 // since the flow-insensitive escape analysis can't separate
kvn@1535 1947 // the case when stores overwrite the field's value from the case
kvn@1535 1948 // when stores happened on different control branches.
kvn@1535 1949 //
kvn@1535 1950 if (ptset_size > 1 || ptset_size != 0 &&
kvn@1535 1951 (has_LoadStore || offset == Type::OffsetBot)) {
kvn@2556 1952 for( VectorSetI j(ptset); j.test(); ++j ) {
kvn@1535 1953 set_escape_state(j.elem, PointsToNode::ArgEscape);
kvn@1535 1954 ptnode_adr(j.elem)->_scalar_replaceable = false;
kvn@1535 1955 }
kvn@1535 1956 }
kvn@1535 1957 }
kvn@1535 1958
duke@435 1959 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 1960
duke@435 1961 switch (call->Opcode()) {
kvn@500 1962 #ifdef ASSERT
duke@435 1963 case Op_Allocate:
duke@435 1964 case Op_AllocateArray:
duke@435 1965 case Op_Lock:
duke@435 1966 case Op_Unlock:
kvn@500 1967 assert(false, "should be done already");
duke@435 1968 break;
kvn@500 1969 #endif
kvn@1535 1970 case Op_CallLeaf:
kvn@500 1971 case Op_CallLeafNoFP:
kvn@500 1972 {
kvn@500 1973 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 1974 // Adjust escape state for outgoing arguments.
kvn@500 1975 const TypeTuple * d = call->tf()->domain();
kvn@500 1976 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1977 const Type* at = d->field_at(i);
kvn@500 1978 Node *arg = call->in(i)->uncast();
kvn@500 1979 const Type *aat = phase->type(arg);
kvn@1535 1980 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
kvn@1535 1981 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
kvn@1535 1982
kvn@500 1983 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 1984 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 1985 #ifdef ASSERT
kvn@1535 1986 if (!(call->Opcode() == Op_CallLeafNoFP &&
kvn@1535 1987 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1988 (strstr(call->as_CallLeaf()->_name, "arraycopy") != 0) ||
kvn@1535 1989 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1990 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
kvn@1535 1991 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
kvn@1535 1992 ) {
kvn@1535 1993 call->dump();
kvn@1535 1994 assert(false, "EA: unexpected CallLeaf");
kvn@1535 1995 }
kvn@1535 1996 #endif
kvn@500 1997 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1998 if (arg->is_AddP()) {
kvn@500 1999 //
kvn@500 2000 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 2001 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 2002 //
kvn@500 2003 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 2004 // pointer to the base (with offset) is passed as argument.
kvn@500 2005 //
kvn@500 2006 arg = get_addp_base(arg);
kvn@500 2007 }
kvn@2556 2008 for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
kvn@500 2009 uint pt = j.elem;
kvn@500 2010 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 2011 }
kvn@500 2012 }
kvn@500 2013 }
kvn@500 2014 break;
kvn@500 2015 }
duke@435 2016
duke@435 2017 case Op_CallStaticJava:
duke@435 2018 // For a static call, we know exactly what method is being called.
duke@435 2019 // Use bytecode estimator to record the call's escape affects
duke@435 2020 {
duke@435 2021 ciMethod *meth = call->as_CallJava()->method();
kvn@500 2022 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 2023 // fall-through if not a Java method or no analyzer information
kvn@500 2024 if (call_analyzer != NULL) {
duke@435 2025 const TypeTuple * d = call->tf()->domain();
kvn@500 2026 bool copy_dependencies = false;
duke@435 2027 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2028 const Type* at = d->field_at(i);
duke@435 2029 int k = i - TypeFunc::Parms;
kvn@1535 2030 Node *arg = call->in(i)->uncast();
duke@435 2031
kvn@1535 2032 if (at->isa_oopptr() != NULL &&
kvn@1571 2033 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) {
duke@435 2034
kvn@500 2035 bool global_escapes = false;
kvn@500 2036 bool fields_escapes = false;
kvn@500 2037 if (!call_analyzer->is_arg_stack(k)) {
duke@435 2038 // The argument global escapes, mark everything it could point to
kvn@500 2039 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 2040 global_escapes = true;
kvn@500 2041 } else {
kvn@500 2042 if (!call_analyzer->is_arg_local(k)) {
kvn@500 2043 // The argument itself doesn't escape, but any fields might
kvn@500 2044 fields_escapes = true;
kvn@500 2045 }
kvn@500 2046 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 2047 copy_dependencies = true;
kvn@500 2048 }
duke@435 2049
kvn@2556 2050 for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
kvn@500 2051 uint pt = j.elem;
kvn@500 2052 if (global_escapes) {
kvn@500 2053 //The argument global escapes, mark everything it could point to
duke@435 2054 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 2055 } else {
kvn@500 2056 if (fields_escapes) {
kvn@500 2057 // The argument itself doesn't escape, but any fields might
kvn@500 2058 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 2059 }
kvn@500 2060 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 2061 }
duke@435 2062 }
duke@435 2063 }
duke@435 2064 }
kvn@500 2065 if (copy_dependencies)
kvn@679 2066 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 2067 break;
duke@435 2068 }
duke@435 2069 }
duke@435 2070
duke@435 2071 default:
kvn@500 2072 // Fall-through here if not a Java method or no analyzer information
kvn@500 2073 // or some other type of call, assume the worst case: all arguments
duke@435 2074 // globally escape.
duke@435 2075 {
duke@435 2076 // adjust escape state for outgoing arguments
duke@435 2077 const TypeTuple * d = call->tf()->domain();
duke@435 2078 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2079 const Type* at = d->field_at(i);
duke@435 2080 if (at->isa_oopptr() != NULL) {
kvn@500 2081 Node *arg = call->in(i)->uncast();
kvn@500 2082 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@2556 2083 for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
duke@435 2084 uint pt = j.elem;
duke@435 2085 set_escape_state(pt, PointsToNode::GlobalEscape);
duke@435 2086 }
duke@435 2087 }
duke@435 2088 }
duke@435 2089 }
duke@435 2090 }
duke@435 2091 }
duke@435 2092 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
kvn@679 2093 CallNode *call = resproj->in(0)->as_Call();
kvn@679 2094 uint call_idx = call->_idx;
kvn@679 2095 uint resproj_idx = resproj->_idx;
duke@435 2096
duke@435 2097 switch (call->Opcode()) {
duke@435 2098 case Op_Allocate:
duke@435 2099 {
duke@435 2100 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2101 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
duke@435 2102 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 2103 ciKlass* cik = kt->klass();
duke@435 2104
kvn@500 2105 PointsToNode::EscapeState es;
kvn@500 2106 uint edge_to;
kvn@1894 2107 if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
kvn@1894 2108 !cik->is_instance_klass() || // StressReflectiveCode
kvn@1894 2109 cik->as_instance_klass()->has_finalizer()) {
kvn@500 2110 es = PointsToNode::GlobalEscape;
kvn@500 2111 edge_to = _phantom_object; // Could not be worse
duke@435 2112 } else {
kvn@500 2113 es = PointsToNode::NoEscape;
kvn@679 2114 edge_to = call_idx;
duke@435 2115 }
kvn@679 2116 set_escape_state(call_idx, es);
kvn@679 2117 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2118 _processed.set(resproj_idx);
duke@435 2119 break;
duke@435 2120 }
duke@435 2121
duke@435 2122 case Op_AllocateArray:
duke@435 2123 {
kvn@1894 2124
kvn@1894 2125 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2126 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
kvn@1894 2127 assert(kt != NULL, "TypeKlassPtr required.");
kvn@1894 2128 ciKlass* cik = kt->klass();
kvn@1894 2129
kvn@1894 2130 PointsToNode::EscapeState es;
kvn@1894 2131 uint edge_to;
kvn@1894 2132 if (!cik->is_array_klass()) { // StressReflectiveCode
kvn@1894 2133 es = PointsToNode::GlobalEscape;
kvn@1894 2134 edge_to = _phantom_object;
kvn@1894 2135 } else {
kvn@1894 2136 es = PointsToNode::NoEscape;
kvn@1894 2137 edge_to = call_idx;
kvn@1894 2138 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@1894 2139 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@1894 2140 // Not scalar replaceable if the length is not constant or too big.
kvn@1894 2141 ptnode_adr(call_idx)->_scalar_replaceable = false;
kvn@1894 2142 }
kvn@500 2143 }
kvn@1894 2144 set_escape_state(call_idx, es);
kvn@1894 2145 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2146 _processed.set(resproj_idx);
duke@435 2147 break;
duke@435 2148 }
duke@435 2149
duke@435 2150 case Op_CallStaticJava:
duke@435 2151 // For a static call, we know exactly what method is being called.
duke@435 2152 // Use bytecode estimator to record whether the call's return value escapes
duke@435 2153 {
kvn@500 2154 bool done = true;
duke@435 2155 const TypeTuple *r = call->tf()->range();
duke@435 2156 const Type* ret_type = NULL;
duke@435 2157
duke@435 2158 if (r->cnt() > TypeFunc::Parms)
duke@435 2159 ret_type = r->field_at(TypeFunc::Parms);
duke@435 2160
duke@435 2161 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2162 // _multianewarray functions return a TypeRawPtr.
kvn@500 2163 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@679 2164 _processed.set(resproj_idx);
duke@435 2165 break; // doesn't return a pointer type
kvn@500 2166 }
duke@435 2167 ciMethod *meth = call->as_CallJava()->method();
kvn@500 2168 const TypeTuple * d = call->tf()->domain();
duke@435 2169 if (meth == NULL) {
duke@435 2170 // not a Java method, assume global escape
kvn@679 2171 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2172 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2173 } else {
kvn@500 2174 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
kvn@500 2175 bool copy_dependencies = false;
duke@435 2176
kvn@500 2177 if (call_analyzer->is_return_allocated()) {
kvn@500 2178 // Returns a newly allocated unescaped object, simply
kvn@500 2179 // update dependency information.
kvn@500 2180 // Mark it as NoEscape so that objects referenced by
kvn@500 2181 // it's fields will be marked as NoEscape at least.
kvn@679 2182 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 2183 add_pointsto_edge(resproj_idx, call_idx);
kvn@500 2184 copy_dependencies = true;
kvn@679 2185 } else if (call_analyzer->is_return_local()) {
duke@435 2186 // determine whether any arguments are returned
kvn@679 2187 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@742 2188 bool ret_arg = false;
duke@435 2189 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2190 const Type* at = d->field_at(i);
duke@435 2191
duke@435 2192 if (at->isa_oopptr() != NULL) {
kvn@500 2193 Node *arg = call->in(i)->uncast();
duke@435 2194
kvn@500 2195 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@742 2196 ret_arg = true;
kvn@679 2197 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2198 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 2199 done = false;
kvn@500 2200 else if (arg_esp->node_type() == PointsToNode::JavaObject)
kvn@679 2201 add_pointsto_edge(resproj_idx, arg->_idx);
duke@435 2202 else
kvn@679 2203 add_deferred_edge(resproj_idx, arg->_idx);
duke@435 2204 arg_esp->_hidden_alias = true;
duke@435 2205 }
duke@435 2206 }
duke@435 2207 }
kvn@742 2208 if (done && !ret_arg) {
kvn@742 2209 // Returns unknown object.
kvn@742 2210 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@742 2211 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@742 2212 }
kvn@500 2213 copy_dependencies = true;
duke@435 2214 } else {
kvn@679 2215 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2216 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@500 2217 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 2218 const Type* at = d->field_at(i);
kvn@500 2219 if (at->isa_oopptr() != NULL) {
kvn@500 2220 Node *arg = call->in(i)->uncast();
kvn@679 2221 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2222 arg_esp->_hidden_alias = true;
kvn@500 2223 }
kvn@500 2224 }
duke@435 2225 }
kvn@500 2226 if (copy_dependencies)
kvn@679 2227 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 2228 }
kvn@500 2229 if (done)
kvn@679 2230 _processed.set(resproj_idx);
duke@435 2231 break;
duke@435 2232 }
duke@435 2233
duke@435 2234 default:
duke@435 2235 // Some other type of call, assume the worst case that the
duke@435 2236 // returned value, if any, globally escapes.
duke@435 2237 {
duke@435 2238 const TypeTuple *r = call->tf()->range();
duke@435 2239 if (r->cnt() > TypeFunc::Parms) {
duke@435 2240 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 2241
duke@435 2242 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2243 // _multianewarray functions return a TypeRawPtr.
duke@435 2244 if (ret_type->isa_ptr() != NULL) {
kvn@679 2245 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2246 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2247 }
duke@435 2248 }
kvn@679 2249 _processed.set(resproj_idx);
duke@435 2250 }
duke@435 2251 }
duke@435 2252 }
duke@435 2253
kvn@500 2254 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 2255 // connection graph edges (do not need to check the node_type of inputs
kvn@500 2256 // or to call PointsTo() to walk the connection graph).
kvn@500 2257 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 2258 if (_processed.test(n->_idx))
kvn@500 2259 return; // No need to redefine node's state.
kvn@500 2260
kvn@500 2261 if (n->is_Call()) {
kvn@500 2262 // Arguments to allocation and locking don't escape.
kvn@500 2263 if (n->is_Allocate()) {
kvn@500 2264 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 2265 record_for_optimizer(n);
kvn@500 2266 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 2267 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 2268 // the first IGVN optimization when escape information is still available.
kvn@500 2269 record_for_optimizer(n);
kvn@500 2270 _processed.set(n->_idx);
kvn@500 2271 } else {
kvn@1535 2272 // Don't mark as processed since call's arguments have to be processed.
kvn@500 2273 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@1535 2274 PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
kvn@500 2275
kvn@500 2276 // Check if a call returns an object.
kvn@500 2277 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@1535 2278 if (r->cnt() > TypeFunc::Parms &&
kvn@1535 2279 r->field_at(TypeFunc::Parms)->isa_ptr() &&
kvn@500 2280 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@1535 2281 nt = PointsToNode::JavaObject;
kvn@1535 2282 if (!n->is_CallStaticJava()) {
kvn@1535 2283 // Since the called mathod is statically unknown assume
kvn@1535 2284 // the worst case that the returned value globally escapes.
kvn@1535 2285 es = PointsToNode::GlobalEscape;
kvn@500 2286 }
duke@435 2287 }
kvn@1535 2288 add_node(n, nt, es, false);
duke@435 2289 }
kvn@500 2290 return;
duke@435 2291 }
kvn@500 2292
kvn@500 2293 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 2294 // ThreadLocal has RawPrt type.
kvn@500 2295 switch (n->Opcode()) {
kvn@500 2296 case Op_AddP:
kvn@500 2297 {
kvn@500 2298 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 2299 break;
kvn@500 2300 }
kvn@500 2301 case Op_CastX2P:
kvn@500 2302 { // "Unsafe" memory access.
kvn@500 2303 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2304 break;
kvn@500 2305 }
kvn@500 2306 case Op_CastPP:
kvn@500 2307 case Op_CheckCastPP:
kvn@559 2308 case Op_EncodeP:
kvn@559 2309 case Op_DecodeN:
kvn@500 2310 {
kvn@500 2311 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2312 int ti = n->in(1)->_idx;
kvn@679 2313 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2314 if (nt == PointsToNode::UnknownType) {
kvn@500 2315 _delayed_worklist.push(n); // Process it later.
kvn@500 2316 break;
kvn@500 2317 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2318 add_pointsto_edge(n->_idx, ti);
kvn@500 2319 } else {
kvn@500 2320 add_deferred_edge(n->_idx, ti);
kvn@500 2321 }
kvn@500 2322 _processed.set(n->_idx);
kvn@500 2323 break;
kvn@500 2324 }
kvn@500 2325 case Op_ConP:
kvn@500 2326 {
kvn@500 2327 // assume all pointer constants globally escape except for null
kvn@500 2328 PointsToNode::EscapeState es;
kvn@500 2329 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 2330 es = PointsToNode::NoEscape;
kvn@500 2331 else
kvn@500 2332 es = PointsToNode::GlobalEscape;
kvn@500 2333
kvn@500 2334 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 2335 break;
kvn@500 2336 }
coleenp@548 2337 case Op_ConN:
coleenp@548 2338 {
coleenp@548 2339 // assume all narrow oop constants globally escape except for null
coleenp@548 2340 PointsToNode::EscapeState es;
coleenp@548 2341 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 2342 es = PointsToNode::NoEscape;
coleenp@548 2343 else
coleenp@548 2344 es = PointsToNode::GlobalEscape;
coleenp@548 2345
coleenp@548 2346 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 2347 break;
coleenp@548 2348 }
kvn@559 2349 case Op_CreateEx:
kvn@559 2350 {
kvn@559 2351 // assume that all exception objects globally escape
kvn@559 2352 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@559 2353 break;
kvn@559 2354 }
kvn@500 2355 case Op_LoadKlass:
kvn@599 2356 case Op_LoadNKlass:
kvn@500 2357 {
kvn@500 2358 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2359 break;
kvn@500 2360 }
kvn@500 2361 case Op_LoadP:
coleenp@548 2362 case Op_LoadN:
kvn@500 2363 {
kvn@500 2364 const Type *t = phase->type(n);
kvn@688 2365 if (t->make_ptr() == NULL) {
kvn@500 2366 _processed.set(n->_idx);
kvn@500 2367 return;
kvn@500 2368 }
kvn@500 2369 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2370 break;
kvn@500 2371 }
kvn@500 2372 case Op_Parm:
kvn@500 2373 {
kvn@500 2374 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 2375 uint con = n->as_Proj()->_con;
kvn@500 2376 if (con < TypeFunc::Parms)
kvn@500 2377 return;
kvn@500 2378 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 2379 if (t->isa_ptr() == NULL)
kvn@500 2380 return;
kvn@500 2381 // We have to assume all input parameters globally escape
kvn@500 2382 // (Note: passing 'false' since _processed is already set).
kvn@500 2383 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 2384 break;
kvn@500 2385 }
kvn@500 2386 case Op_Phi:
kvn@500 2387 {
kvn@688 2388 const Type *t = n->as_Phi()->type();
kvn@688 2389 if (t->make_ptr() == NULL) {
kvn@688 2390 // nothing to do if not an oop or narrow oop
kvn@500 2391 _processed.set(n->_idx);
kvn@500 2392 return;
kvn@500 2393 }
kvn@500 2394 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2395 uint i;
kvn@500 2396 for (i = 1; i < n->req() ; i++) {
kvn@500 2397 Node* in = n->in(i);
kvn@500 2398 if (in == NULL)
kvn@500 2399 continue; // ignore NULL
kvn@500 2400 in = in->uncast();
kvn@500 2401 if (in->is_top() || in == n)
kvn@500 2402 continue; // ignore top or inputs which go back this node
kvn@500 2403 int ti = in->_idx;
kvn@679 2404 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2405 if (nt == PointsToNode::UnknownType) {
kvn@500 2406 break;
kvn@500 2407 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2408 add_pointsto_edge(n->_idx, ti);
kvn@500 2409 } else {
kvn@500 2410 add_deferred_edge(n->_idx, ti);
kvn@500 2411 }
kvn@500 2412 }
kvn@500 2413 if (i >= n->req())
kvn@500 2414 _processed.set(n->_idx);
kvn@500 2415 else
kvn@500 2416 _delayed_worklist.push(n);
kvn@500 2417 break;
kvn@500 2418 }
kvn@500 2419 case Op_Proj:
kvn@500 2420 {
kvn@1535 2421 // we are only interested in the oop result projection from a call
kvn@500 2422 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2423 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2424 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2425 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2426 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@1535 2427 int ti = n->in(0)->_idx;
kvn@1535 2428 // The call may not be registered yet (since not all its inputs are registered)
kvn@1535 2429 // if this is the projection from backbranch edge of Phi.
kvn@1535 2430 if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
kvn@1535 2431 process_call_result(n->as_Proj(), phase);
kvn@1535 2432 }
kvn@1535 2433 if (!_processed.test(n->_idx)) {
kvn@1535 2434 // The call's result may need to be processed later if the call
kvn@1535 2435 // returns it's argument and the argument is not processed yet.
kvn@1535 2436 _delayed_worklist.push(n);
kvn@1535 2437 }
kvn@1535 2438 break;
kvn@500 2439 }
kvn@500 2440 }
kvn@1535 2441 _processed.set(n->_idx);
kvn@500 2442 break;
kvn@500 2443 }
kvn@500 2444 case Op_Return:
kvn@500 2445 {
kvn@500 2446 if( n->req() > TypeFunc::Parms &&
kvn@500 2447 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2448 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 2449 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 2450 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2451 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2452 if (nt == PointsToNode::UnknownType) {
kvn@500 2453 _delayed_worklist.push(n); // Process it later.
kvn@500 2454 break;
kvn@500 2455 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2456 add_pointsto_edge(n->_idx, ti);
kvn@500 2457 } else {
kvn@500 2458 add_deferred_edge(n->_idx, ti);
kvn@500 2459 }
kvn@500 2460 }
kvn@500 2461 _processed.set(n->_idx);
kvn@500 2462 break;
kvn@500 2463 }
kvn@500 2464 case Op_StoreP:
coleenp@548 2465 case Op_StoreN:
kvn@500 2466 {
kvn@500 2467 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2468 adr_type = adr_type->make_ptr();
kvn@500 2469 if (adr_type->isa_oopptr()) {
kvn@500 2470 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2471 } else {
kvn@500 2472 Node* adr = n->in(MemNode::Address);
kvn@500 2473 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 2474 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2475 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2476 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2477 // We are computing a raw address for a store captured
kvn@500 2478 // by an Initialize compute an appropriate address type.
kvn@500 2479 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2480 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2481 } else {
kvn@500 2482 _processed.set(n->_idx);
kvn@500 2483 return;
kvn@500 2484 }
kvn@500 2485 }
kvn@500 2486 break;
kvn@500 2487 }
kvn@500 2488 case Op_StorePConditional:
kvn@500 2489 case Op_CompareAndSwapP:
coleenp@548 2490 case Op_CompareAndSwapN:
kvn@500 2491 {
kvn@500 2492 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2493 adr_type = adr_type->make_ptr();
kvn@500 2494 if (adr_type->isa_oopptr()) {
kvn@500 2495 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2496 } else {
kvn@500 2497 _processed.set(n->_idx);
kvn@500 2498 return;
kvn@500 2499 }
kvn@500 2500 break;
kvn@500 2501 }
kvn@1535 2502 case Op_AryEq:
kvn@1535 2503 case Op_StrComp:
kvn@1535 2504 case Op_StrEquals:
kvn@1535 2505 case Op_StrIndexOf:
kvn@1535 2506 {
kvn@1535 2507 // char[] arrays passed to string intrinsics are not scalar replaceable.
kvn@1535 2508 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@1535 2509 break;
kvn@1535 2510 }
kvn@500 2511 case Op_ThreadLocal:
kvn@500 2512 {
kvn@500 2513 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 2514 break;
kvn@500 2515 }
kvn@500 2516 default:
kvn@500 2517 ;
kvn@500 2518 // nothing to do
kvn@500 2519 }
kvn@500 2520 return;
duke@435 2521 }
duke@435 2522
kvn@500 2523 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@679 2524 uint n_idx = n->_idx;
kvn@1535 2525 assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
kvn@679 2526
kvn@500 2527 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 2528 // they may need more then one pass to process.
kvn@2276 2529 // Also don't mark as processed Call nodes since their
kvn@2276 2530 // arguments may need more then one pass to process.
kvn@679 2531 if (_processed.test(n_idx))
kvn@500 2532 return; // No need to redefine node's state.
duke@435 2533
duke@435 2534 if (n->is_Call()) {
duke@435 2535 CallNode *call = n->as_Call();
duke@435 2536 process_call_arguments(call, phase);
duke@435 2537 return;
duke@435 2538 }
duke@435 2539
kvn@500 2540 switch (n->Opcode()) {
duke@435 2541 case Op_AddP:
duke@435 2542 {
kvn@500 2543 Node *base = get_addp_base(n);
kvn@500 2544 // Create a field edge to this node from everything base could point to.
kvn@2556 2545 for( VectorSetI i(PointsTo(base)); i.test(); ++i ) {
duke@435 2546 uint pt = i.elem;
kvn@679 2547 add_field_edge(pt, n_idx, address_offset(n, phase));
kvn@500 2548 }
kvn@500 2549 break;
kvn@500 2550 }
kvn@500 2551 case Op_CastX2P:
kvn@500 2552 {
kvn@500 2553 assert(false, "Op_CastX2P");
kvn@500 2554 break;
kvn@500 2555 }
kvn@500 2556 case Op_CastPP:
kvn@500 2557 case Op_CheckCastPP:
coleenp@548 2558 case Op_EncodeP:
coleenp@548 2559 case Op_DecodeN:
kvn@500 2560 {
kvn@500 2561 int ti = n->in(1)->_idx;
kvn@1535 2562 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
kvn@679 2563 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2564 add_pointsto_edge(n_idx, ti);
kvn@500 2565 } else {
kvn@679 2566 add_deferred_edge(n_idx, ti);
kvn@500 2567 }
kvn@679 2568 _processed.set(n_idx);
kvn@500 2569 break;
kvn@500 2570 }
kvn@500 2571 case Op_ConP:
kvn@500 2572 {
kvn@500 2573 assert(false, "Op_ConP");
kvn@500 2574 break;
kvn@500 2575 }
kvn@598 2576 case Op_ConN:
kvn@598 2577 {
kvn@598 2578 assert(false, "Op_ConN");
kvn@598 2579 break;
kvn@598 2580 }
kvn@500 2581 case Op_CreateEx:
kvn@500 2582 {
kvn@500 2583 assert(false, "Op_CreateEx");
kvn@500 2584 break;
kvn@500 2585 }
kvn@500 2586 case Op_LoadKlass:
kvn@599 2587 case Op_LoadNKlass:
kvn@500 2588 {
kvn@500 2589 assert(false, "Op_LoadKlass");
kvn@500 2590 break;
kvn@500 2591 }
kvn@500 2592 case Op_LoadP:
kvn@559 2593 case Op_LoadN:
kvn@500 2594 {
kvn@500 2595 const Type *t = phase->type(n);
kvn@500 2596 #ifdef ASSERT
kvn@688 2597 if (t->make_ptr() == NULL)
kvn@500 2598 assert(false, "Op_LoadP");
kvn@500 2599 #endif
kvn@500 2600
kvn@500 2601 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 2602 Node* adr_base;
kvn@500 2603 if (adr->is_AddP()) {
kvn@500 2604 adr_base = get_addp_base(adr);
kvn@500 2605 } else {
kvn@500 2606 adr_base = adr;
kvn@500 2607 }
kvn@500 2608
kvn@500 2609 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 2610 // this node to each field with the same offset.
kvn@500 2611 int offset = address_offset(adr, phase);
kvn@2556 2612 for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
kvn@500 2613 uint pt = i.elem;
kvn@679 2614 add_deferred_edge_to_fields(n_idx, pt, offset);
duke@435 2615 }
duke@435 2616 break;
duke@435 2617 }
duke@435 2618 case Op_Parm:
duke@435 2619 {
kvn@500 2620 assert(false, "Op_Parm");
kvn@500 2621 break;
kvn@500 2622 }
kvn@500 2623 case Op_Phi:
kvn@500 2624 {
kvn@500 2625 #ifdef ASSERT
kvn@688 2626 const Type *t = n->as_Phi()->type();
kvn@688 2627 if (t->make_ptr() == NULL)
kvn@500 2628 assert(false, "Op_Phi");
kvn@500 2629 #endif
kvn@500 2630 for (uint i = 1; i < n->req() ; i++) {
kvn@500 2631 Node* in = n->in(i);
kvn@500 2632 if (in == NULL)
kvn@500 2633 continue; // ignore NULL
kvn@500 2634 in = in->uncast();
kvn@500 2635 if (in->is_top() || in == n)
kvn@500 2636 continue; // ignore top or inputs which go back this node
kvn@500 2637 int ti = in->_idx;
kvn@742 2638 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@742 2639 assert(nt != PointsToNode::UnknownType, "all nodes should be known");
kvn@742 2640 if (nt == PointsToNode::JavaObject) {
kvn@679 2641 add_pointsto_edge(n_idx, ti);
kvn@500 2642 } else {
kvn@679 2643 add_deferred_edge(n_idx, ti);
kvn@500 2644 }
duke@435 2645 }
kvn@679 2646 _processed.set(n_idx);
duke@435 2647 break;
duke@435 2648 }
kvn@500 2649 case Op_Proj:
duke@435 2650 {
kvn@1535 2651 // we are only interested in the oop result projection from a call
kvn@500 2652 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2653 assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
kvn@1535 2654 "all nodes should be registered");
kvn@1535 2655 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2656 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2657 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2658 process_call_result(n->as_Proj(), phase);
kvn@1535 2659 assert(_processed.test(n_idx), "all call results should be processed");
kvn@1535 2660 break;
kvn@1535 2661 }
kvn@500 2662 }
kvn@1535 2663 assert(false, "Op_Proj");
duke@435 2664 break;
duke@435 2665 }
kvn@500 2666 case Op_Return:
duke@435 2667 {
kvn@500 2668 #ifdef ASSERT
kvn@500 2669 if( n->req() <= TypeFunc::Parms ||
kvn@500 2670 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2671 assert(false, "Op_Return");
kvn@500 2672 }
kvn@500 2673 #endif
kvn@500 2674 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@1535 2675 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
kvn@679 2676 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2677 add_pointsto_edge(n_idx, ti);
kvn@500 2678 } else {
kvn@679 2679 add_deferred_edge(n_idx, ti);
kvn@500 2680 }
kvn@679 2681 _processed.set(n_idx);
duke@435 2682 break;
duke@435 2683 }
duke@435 2684 case Op_StoreP:
kvn@559 2685 case Op_StoreN:
duke@435 2686 case Op_StorePConditional:
duke@435 2687 case Op_CompareAndSwapP:
kvn@559 2688 case Op_CompareAndSwapN:
duke@435 2689 {
duke@435 2690 Node *adr = n->in(MemNode::Address);
kvn@656 2691 const Type *adr_type = phase->type(adr)->make_ptr();
kvn@500 2692 #ifdef ASSERT
duke@435 2693 if (!adr_type->isa_oopptr())
kvn@500 2694 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2695 #endif
duke@435 2696
kvn@500 2697 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2698 Node *adr_base = get_addp_base(adr);
kvn@500 2699 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@500 2700 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2701 // to "val" from each field with the same offset.
kvn@2556 2702 for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
duke@435 2703 uint pt = i.elem;
kvn@500 2704 add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
duke@435 2705 }
duke@435 2706 break;
duke@435 2707 }
kvn@1535 2708 case Op_AryEq:
kvn@1535 2709 case Op_StrComp:
kvn@1535 2710 case Op_StrEquals:
kvn@1535 2711 case Op_StrIndexOf:
kvn@1535 2712 {
kvn@1535 2713 // char[] arrays passed to string intrinsic do not escape but
kvn@1535 2714 // they are not scalar replaceable. Adjust escape state for them.
kvn@1535 2715 // Start from in(2) edge since in(1) is memory edge.
kvn@1535 2716 for (uint i = 2; i < n->req(); i++) {
kvn@1535 2717 Node* adr = n->in(i)->uncast();
kvn@1535 2718 const Type *at = phase->type(adr);
kvn@1535 2719 if (!adr->is_top() && at->isa_ptr()) {
kvn@1535 2720 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
kvn@1535 2721 at->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 2722 if (adr->is_AddP()) {
kvn@1535 2723 adr = get_addp_base(adr);
kvn@1535 2724 }
kvn@1535 2725 // Mark as ArgEscape everything "adr" could point to.
kvn@1535 2726 set_escape_state(adr->_idx, PointsToNode::ArgEscape);
kvn@1535 2727 }
kvn@1535 2728 }
kvn@1535 2729 _processed.set(n_idx);
kvn@1535 2730 break;
kvn@1535 2731 }
kvn@500 2732 case Op_ThreadLocal:
duke@435 2733 {
kvn@500 2734 assert(false, "Op_ThreadLocal");
duke@435 2735 break;
duke@435 2736 }
duke@435 2737 default:
kvn@1535 2738 // This method should be called only for EA specific nodes.
kvn@1535 2739 ShouldNotReachHere();
duke@435 2740 }
duke@435 2741 }
duke@435 2742
duke@435 2743 #ifndef PRODUCT
duke@435 2744 void ConnectionGraph::dump() {
duke@435 2745 bool first = true;
duke@435 2746
kvn@679 2747 uint size = nodes_size();
kvn@500 2748 for (uint ni = 0; ni < size; ni++) {
kvn@679 2749 PointsToNode *ptn = ptnode_adr(ni);
kvn@500 2750 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2751
kvn@500 2752 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2753 continue;
kvn@1989 2754 PointsToNode::EscapeState es = escape_state(ptn->_node);
kvn@500 2755 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2756 if (first) {
kvn@500 2757 tty->cr();
kvn@500 2758 tty->print("======== Connection graph for ");
kvn@679 2759 _compile->method()->print_short_name();
kvn@500 2760 tty->cr();
kvn@500 2761 first = false;
kvn@500 2762 }
kvn@500 2763 tty->print("%6d ", ni);
kvn@500 2764 ptn->dump();
kvn@500 2765 // Print all locals which reference this allocation
kvn@500 2766 for (uint li = ni; li < size; li++) {
kvn@679 2767 PointsToNode *ptn_loc = ptnode_adr(li);
kvn@500 2768 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2769 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2770 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@688 2771 ptnode_adr(li)->dump(false);
duke@435 2772 }
duke@435 2773 }
kvn@500 2774 if (Verbose) {
kvn@500 2775 // Print all fields which reference this allocation
kvn@500 2776 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2777 uint ei = ptn->edge_target(i);
kvn@688 2778 ptnode_adr(ei)->dump(false);
kvn@500 2779 }
kvn@500 2780 }
kvn@500 2781 tty->cr();
duke@435 2782 }
duke@435 2783 }
duke@435 2784 }
duke@435 2785 #endif

mercurial