src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Tue, 19 Aug 2014 02:05:49 -0700

author
poonam
date
Tue, 19 Aug 2014 02:05:49 -0700
changeset 7452
e2ed74d2e054
parent 6735
a45a4f5a9609
child 7476
c2844108a708
permissions
-rw-r--r--

8044406: JVM crash with JDK8 (build 1.8.0-b132) with G1 GC
Summary: Fill the last card that has been allocated into with a dummy object
Reviewed-by: tschatzl, mgerdin

ysr@777 1 /*
tschatzl@6402 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/concurrentMark.hpp"
sla@5237 29 #include "gc_implementation/g1/evacuationInfo.hpp"
tonyp@2715 30 #include "gc_implementation/g1/g1AllocRegion.hpp"
tonyp@2975 31 #include "gc_implementation/g1/g1HRPrinter.hpp"
sla@5237 32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
stefank@2314 33 #include "gc_implementation/g1/g1RemSet.hpp"
mgerdin@5811 34 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
sla@5237 35 #include "gc_implementation/g1/g1YCTypes.hpp"
tonyp@2963 36 #include "gc_implementation/g1/heapRegionSeq.hpp"
brutisso@6385 37 #include "gc_implementation/g1/heapRegionSet.hpp"
jmasa@2821 38 #include "gc_implementation/shared/hSpaceCounters.hpp"
johnc@3982 39 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
stefank@2314 40 #include "memory/barrierSet.hpp"
stefank@2314 41 #include "memory/memRegion.hpp"
stefank@2314 42 #include "memory/sharedHeap.hpp"
brutisso@4579 43 #include "utilities/stack.hpp"
stefank@2314 44
ysr@777 45 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 46 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 47 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 48 // heap subsets that will yield large amounts of garbage.
ysr@777 49
johnc@5548 50 // Forward declarations
ysr@777 51 class HeapRegion;
tonyp@2493 52 class HRRSCleanupTask;
ysr@777 53 class GenerationSpec;
ysr@777 54 class OopsInHeapRegionClosure;
coleenp@4037 55 class G1KlassScanClosure;
ysr@777 56 class G1ScanHeapEvacClosure;
ysr@777 57 class ObjectClosure;
ysr@777 58 class SpaceClosure;
ysr@777 59 class CompactibleSpaceClosure;
ysr@777 60 class Space;
ysr@777 61 class G1CollectorPolicy;
ysr@777 62 class GenRemSet;
ysr@777 63 class G1RemSet;
ysr@777 64 class HeapRegionRemSetIterator;
ysr@777 65 class ConcurrentMark;
ysr@777 66 class ConcurrentMarkThread;
ysr@777 67 class ConcurrentG1Refine;
sla@5237 68 class ConcurrentGCTimer;
jmasa@2821 69 class GenerationCounters;
sla@5237 70 class STWGCTimer;
sla@5237 71 class G1NewTracer;
sla@5237 72 class G1OldTracer;
sla@5237 73 class EvacuationFailedInfo;
johnc@5548 74 class nmethod;
mgronlun@6131 75 class Ticks;
ysr@777 76
zgu@3900 77 typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
zgu@3900 78 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
ysr@777 79
johnc@1242 80 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 81 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 82
ysr@777 83 enum GCAllocPurpose {
ysr@777 84 GCAllocForTenured,
ysr@777 85 GCAllocForSurvived,
ysr@777 86 GCAllocPurposeCount
ysr@777 87 };
ysr@777 88
zgu@3900 89 class YoungList : public CHeapObj<mtGC> {
ysr@777 90 private:
ysr@777 91 G1CollectedHeap* _g1h;
ysr@777 92
ysr@777 93 HeapRegion* _head;
ysr@777 94
johnc@1829 95 HeapRegion* _survivor_head;
johnc@1829 96 HeapRegion* _survivor_tail;
johnc@1829 97
johnc@1829 98 HeapRegion* _curr;
johnc@1829 99
tonyp@3713 100 uint _length;
tonyp@3713 101 uint _survivor_length;
ysr@777 102
ysr@777 103 size_t _last_sampled_rs_lengths;
ysr@777 104 size_t _sampled_rs_lengths;
ysr@777 105
johnc@1829 106 void empty_list(HeapRegion* list);
ysr@777 107
ysr@777 108 public:
ysr@777 109 YoungList(G1CollectedHeap* g1h);
ysr@777 110
johnc@1829 111 void push_region(HeapRegion* hr);
johnc@1829 112 void add_survivor_region(HeapRegion* hr);
johnc@1829 113
johnc@1829 114 void empty_list();
johnc@1829 115 bool is_empty() { return _length == 0; }
tonyp@3713 116 uint length() { return _length; }
tonyp@3713 117 uint survivor_length() { return _survivor_length; }
ysr@777 118
tonyp@2961 119 // Currently we do not keep track of the used byte sum for the
tonyp@2961 120 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 121 // do so. When we'll eventually replace the young list with
tonyp@2961 122 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 123 // we'll report the more accurate information then.
tonyp@2961 124 size_t eden_used_bytes() {
tonyp@2961 125 assert(length() >= survivor_length(), "invariant");
tonyp@3713 126 return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 127 }
tonyp@2961 128 size_t survivor_used_bytes() {
tonyp@3713 129 return (size_t) survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 130 }
tonyp@2961 131
ysr@777 132 void rs_length_sampling_init();
ysr@777 133 bool rs_length_sampling_more();
ysr@777 134 void rs_length_sampling_next();
ysr@777 135
ysr@777 136 void reset_sampled_info() {
ysr@777 137 _last_sampled_rs_lengths = 0;
ysr@777 138 }
ysr@777 139 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 140
ysr@777 141 // for development purposes
ysr@777 142 void reset_auxilary_lists();
johnc@1829 143 void clear() { _head = NULL; _length = 0; }
johnc@1829 144
johnc@1829 145 void clear_survivors() {
johnc@1829 146 _survivor_head = NULL;
johnc@1829 147 _survivor_tail = NULL;
johnc@1829 148 _survivor_length = 0;
johnc@1829 149 }
johnc@1829 150
ysr@777 151 HeapRegion* first_region() { return _head; }
ysr@777 152 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 153 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 154
ysr@777 155 // debugging
ysr@777 156 bool check_list_well_formed();
johnc@1829 157 bool check_list_empty(bool check_sample = true);
ysr@777 158 void print();
ysr@777 159 };
ysr@777 160
tonyp@2715 161 class MutatorAllocRegion : public G1AllocRegion {
tonyp@2715 162 protected:
tonyp@2715 163 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@2715 164 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@2715 165 public:
tonyp@2715 166 MutatorAllocRegion()
tonyp@2715 167 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
tonyp@2715 168 };
tonyp@2715 169
tonyp@3028 170 class SurvivorGCAllocRegion : public G1AllocRegion {
tonyp@3028 171 protected:
tonyp@3028 172 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 173 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 174 public:
tonyp@3028 175 SurvivorGCAllocRegion()
tonyp@3028 176 : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
tonyp@3028 177 };
tonyp@3028 178
tonyp@3028 179 class OldGCAllocRegion : public G1AllocRegion {
tonyp@3028 180 protected:
tonyp@3028 181 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 182 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 183 public:
tonyp@3028 184 OldGCAllocRegion()
tonyp@3028 185 : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
poonam@7452 186
poonam@7452 187 // This specialization of release() makes sure that the last card that has been
poonam@7452 188 // allocated into has been completely filled by a dummy object.
poonam@7452 189 // This avoids races when remembered set scanning wants to update the BOT of the
poonam@7452 190 // last card in the retained old gc alloc region, and allocation threads
poonam@7452 191 // allocating into that card at the same time.
poonam@7452 192 virtual HeapRegion* release();
tonyp@3028 193 };
tonyp@3028 194
johnc@5548 195 // The G1 STW is alive closure.
johnc@5548 196 // An instance is embedded into the G1CH and used as the
johnc@5548 197 // (optional) _is_alive_non_header closure in the STW
johnc@5548 198 // reference processor. It is also extensively used during
johnc@5548 199 // reference processing during STW evacuation pauses.
johnc@5548 200 class G1STWIsAliveClosure: public BoolObjectClosure {
johnc@5548 201 G1CollectedHeap* _g1;
johnc@5548 202 public:
johnc@5548 203 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
johnc@5548 204 bool do_object_b(oop p);
johnc@5548 205 };
johnc@5548 206
ysr@777 207 class RefineCardTableEntryClosure;
johnc@3175 208
ysr@777 209 class G1CollectedHeap : public SharedHeap {
ysr@777 210 friend class VM_G1CollectForAllocation;
ysr@777 211 friend class VM_G1CollectFull;
ysr@777 212 friend class VM_G1IncCollectionPause;
ysr@777 213 friend class VMStructs;
tonyp@2715 214 friend class MutatorAllocRegion;
tonyp@3028 215 friend class SurvivorGCAllocRegion;
tonyp@3028 216 friend class OldGCAllocRegion;
ysr@777 217
ysr@777 218 // Closures used in implementation.
tschatzl@6231 219 template <G1Barrier barrier, bool do_mark_object>
brutisso@3690 220 friend class G1ParCopyClosure;
ysr@777 221 friend class G1IsAliveClosure;
ysr@777 222 friend class G1EvacuateFollowersClosure;
ysr@777 223 friend class G1ParScanThreadState;
ysr@777 224 friend class G1ParScanClosureSuper;
ysr@777 225 friend class G1ParEvacuateFollowersClosure;
ysr@777 226 friend class G1ParTask;
ysr@777 227 friend class G1FreeGarbageRegionClosure;
ysr@777 228 friend class RefineCardTableEntryClosure;
ysr@777 229 friend class G1PrepareCompactClosure;
ysr@777 230 friend class RegionSorter;
tonyp@2472 231 friend class RegionResetter;
ysr@777 232 friend class CountRCClosure;
ysr@777 233 friend class EvacPopObjClosure;
apetrusenko@1231 234 friend class G1ParCleanupCTTask;
ysr@777 235
ysr@777 236 // Other related classes.
ysr@777 237 friend class G1MarkSweep;
ysr@777 238
ysr@777 239 private:
ysr@777 240 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 241 static G1CollectedHeap* _g1h;
ysr@777 242
tonyp@1377 243 static size_t _humongous_object_threshold_in_words;
tonyp@1377 244
coleenp@4037 245 // Storage for the G1 heap.
ysr@777 246 VirtualSpace _g1_storage;
ysr@777 247 MemRegion _g1_reserved;
ysr@777 248
ysr@777 249 // The part of _g1_storage that is currently committed.
ysr@777 250 MemRegion _g1_committed;
ysr@777 251
tonyp@2472 252 // The master free list. It will satisfy all new region allocations.
brutisso@6385 253 FreeRegionList _free_list;
tonyp@2472 254
tonyp@2472 255 // The secondary free list which contains regions that have been
tonyp@2472 256 // freed up during the cleanup process. This will be appended to the
tonyp@2472 257 // master free list when appropriate.
brutisso@6385 258 FreeRegionList _secondary_free_list;
tonyp@2472 259
tonyp@3268 260 // It keeps track of the old regions.
brutisso@6385 261 HeapRegionSet _old_set;
tonyp@3268 262
tonyp@2472 263 // It keeps track of the humongous regions.
brutisso@6385 264 HeapRegionSet _humongous_set;
ysr@777 265
ysr@777 266 // The number of regions we could create by expansion.
tonyp@3713 267 uint _expansion_regions;
ysr@777 268
ysr@777 269 // The block offset table for the G1 heap.
ysr@777 270 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 271
tonyp@3268 272 // Tears down the region sets / lists so that they are empty and the
tonyp@3268 273 // regions on the heap do not belong to a region set / list. The
tonyp@3268 274 // only exception is the humongous set which we leave unaltered. If
tonyp@3268 275 // free_list_only is true, it will only tear down the master free
tonyp@3268 276 // list. It is called before a Full GC (free_list_only == false) or
tonyp@3268 277 // before heap shrinking (free_list_only == true).
tonyp@3268 278 void tear_down_region_sets(bool free_list_only);
tonyp@3268 279
tonyp@3268 280 // Rebuilds the region sets / lists so that they are repopulated to
tonyp@3268 281 // reflect the contents of the heap. The only exception is the
tonyp@3268 282 // humongous set which was not torn down in the first place. If
tonyp@3268 283 // free_list_only is true, it will only rebuild the master free
tonyp@3268 284 // list. It is called after a Full GC (free_list_only == false) or
tonyp@3268 285 // after heap shrinking (free_list_only == true).
tonyp@3268 286 void rebuild_region_sets(bool free_list_only);
ysr@777 287
ysr@777 288 // The sequence of all heap regions in the heap.
tonyp@2963 289 HeapRegionSeq _hrs;
ysr@777 290
tonyp@2715 291 // Alloc region used to satisfy mutator allocation requests.
tonyp@2715 292 MutatorAllocRegion _mutator_alloc_region;
ysr@777 293
tonyp@3028 294 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 295 // survivor objects.
tonyp@3028 296 SurvivorGCAllocRegion _survivor_gc_alloc_region;
tonyp@3028 297
johnc@3982 298 // PLAB sizing policy for survivors.
johnc@3982 299 PLABStats _survivor_plab_stats;
johnc@3982 300
tonyp@3028 301 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 302 // old objects.
tonyp@3028 303 OldGCAllocRegion _old_gc_alloc_region;
tonyp@3028 304
johnc@3982 305 // PLAB sizing policy for tenured objects.
johnc@3982 306 PLABStats _old_plab_stats;
johnc@3982 307
johnc@3982 308 PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
johnc@3982 309 PLABStats* stats = NULL;
johnc@3982 310
johnc@3982 311 switch (purpose) {
johnc@3982 312 case GCAllocForSurvived:
johnc@3982 313 stats = &_survivor_plab_stats;
johnc@3982 314 break;
johnc@3982 315 case GCAllocForTenured:
johnc@3982 316 stats = &_old_plab_stats;
johnc@3982 317 break;
johnc@3982 318 default:
johnc@3982 319 assert(false, "unrecognized GCAllocPurpose");
johnc@3982 320 }
johnc@3982 321
johnc@3982 322 return stats;
johnc@3982 323 }
johnc@3982 324
tonyp@3028 325 // The last old region we allocated to during the last GC.
tonyp@3028 326 // Typically, it is not full so we should re-use it during the next GC.
tonyp@3028 327 HeapRegion* _retained_old_gc_alloc_region;
tonyp@3028 328
tonyp@3410 329 // It specifies whether we should attempt to expand the heap after a
tonyp@3410 330 // region allocation failure. If heap expansion fails we set this to
tonyp@3410 331 // false so that we don't re-attempt the heap expansion (it's likely
tonyp@3410 332 // that subsequent expansion attempts will also fail if one fails).
tonyp@3410 333 // Currently, it is only consulted during GC and it's reset at the
tonyp@3410 334 // start of each GC.
tonyp@3410 335 bool _expand_heap_after_alloc_failure;
tonyp@3410 336
tonyp@2715 337 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 338 void init_mutator_alloc_region();
tonyp@2715 339
tonyp@2715 340 // It releases the mutator alloc region.
tonyp@2715 341 void release_mutator_alloc_region();
tonyp@2715 342
tonyp@3028 343 // It initializes the GC alloc regions at the start of a GC.
sla@5237 344 void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
tonyp@3028 345
tonyp@3028 346 // It releases the GC alloc regions at the end of a GC.
sla@5237 347 void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
tonyp@3028 348
tonyp@3028 349 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 350 // before a Full GC.
tonyp@1071 351 void abandon_gc_alloc_regions();
ysr@777 352
jmasa@2821 353 // Helper for monitoring and management support.
jmasa@2821 354 G1MonitoringSupport* _g1mm;
jmasa@2821 355
apetrusenko@1826 356 // Determines PLAB size for a particular allocation purpose.
johnc@3982 357 size_t desired_plab_sz(GCAllocPurpose purpose);
apetrusenko@1826 358
ysr@777 359 // Outside of GC pauses, the number of bytes used in all regions other
ysr@777 360 // than the current allocation region.
ysr@777 361 size_t _summary_bytes_used;
ysr@777 362
tonyp@961 363 // This is used for a quick test on whether a reference points into
tonyp@961 364 // the collection set or not. Basically, we have an array, with one
tonyp@961 365 // byte per region, and that byte denotes whether the corresponding
tonyp@961 366 // region is in the collection set or not. The entry corresponding
tonyp@961 367 // the bottom of the heap, i.e., region 0, is pointed to by
tonyp@961 368 // _in_cset_fast_test_base. The _in_cset_fast_test field has been
tonyp@961 369 // biased so that it actually points to address 0 of the address
tonyp@961 370 // space, to make the test as fast as possible (we can simply shift
tonyp@961 371 // the address to address into it, instead of having to subtract the
tonyp@961 372 // bottom of the heap from the address before shifting it; basically
tonyp@961 373 // it works in the same way the card table works).
tonyp@961 374 bool* _in_cset_fast_test;
tonyp@961 375
tonyp@961 376 // The allocated array used for the fast test on whether a reference
tonyp@961 377 // points into the collection set or not. This field is also used to
tonyp@961 378 // free the array.
tonyp@961 379 bool* _in_cset_fast_test_base;
tonyp@961 380
tonyp@961 381 // The length of the _in_cset_fast_test_base array.
tonyp@3713 382 uint _in_cset_fast_test_length;
tonyp@961 383
iveresov@788 384 volatile unsigned _gc_time_stamp;
ysr@777 385
ysr@777 386 size_t* _surviving_young_words;
ysr@777 387
tonyp@2975 388 G1HRPrinter _hr_printer;
tonyp@2975 389
ysr@777 390 void setup_surviving_young_words();
ysr@777 391 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 392 void cleanup_surviving_young_words();
ysr@777 393
tonyp@2011 394 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 395 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 396 // explicitly started if:
tonyp@2011 397 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 398 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
brutisso@3456 399 // (c) cause == _g1_humongous_allocation
tonyp@2011 400 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 401
brutisso@3823 402 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 403 // concurrent cycles) we have started.
brutisso@3823 404 volatile unsigned int _old_marking_cycles_started;
brutisso@3823 405
brutisso@3823 406 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 407 // concurrent cycles) we have completed.
brutisso@3823 408 volatile unsigned int _old_marking_cycles_completed;
tonyp@2011 409
sla@5237 410 bool _concurrent_cycle_started;
sla@5237 411
tonyp@2817 412 // This is a non-product method that is helpful for testing. It is
tonyp@2817 413 // called at the end of a GC and artificially expands the heap by
tonyp@2817 414 // allocating a number of dead regions. This way we can induce very
tonyp@2817 415 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 416 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 417 // this method will be found dead by the marking cycle).
tonyp@2817 418 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 419
tonyp@3957 420 // Clear RSets after a compaction. It also resets the GC time stamps.
tonyp@3957 421 void clear_rsets_post_compaction();
tonyp@3957 422
tonyp@3957 423 // If the HR printer is active, dump the state of the regions in the
tonyp@3957 424 // heap after a compaction.
tonyp@3957 425 void print_hrs_post_compaction();
tonyp@3957 426
brutisso@4015 427 double verify(bool guard, const char* msg);
brutisso@4015 428 void verify_before_gc();
brutisso@4015 429 void verify_after_gc();
brutisso@4015 430
brutisso@4063 431 void log_gc_header();
brutisso@4063 432 void log_gc_footer(double pause_time_sec);
brutisso@4063 433
tonyp@2315 434 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 435 // line number, file, etc.
tonyp@2315 436
tonyp@2643 437 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 438 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 439 (_extra_message_), \
tonyp@2472 440 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 441 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 442 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 443
tonyp@2315 444 #define assert_heap_locked() \
tonyp@2315 445 do { \
tonyp@2315 446 assert(Heap_lock->owned_by_self(), \
tonyp@2315 447 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 448 } while (0)
tonyp@2315 449
tonyp@2643 450 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 451 do { \
tonyp@2315 452 assert(Heap_lock->owned_by_self() || \
tonyp@2472 453 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 454 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 455 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 456 "should be at a safepoint")); \
tonyp@2315 457 } while (0)
tonyp@2315 458
tonyp@2315 459 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 460 do { \
tonyp@2315 461 assert(Heap_lock->owned_by_self() && \
tonyp@2315 462 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 463 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 464 "should not be at a safepoint")); \
tonyp@2315 465 } while (0)
tonyp@2315 466
tonyp@2315 467 #define assert_heap_not_locked() \
tonyp@2315 468 do { \
tonyp@2315 469 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 470 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 471 } while (0)
tonyp@2315 472
tonyp@2315 473 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 474 do { \
tonyp@2315 475 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 476 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 477 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 478 "should not be at a safepoint")); \
tonyp@2315 479 } while (0)
tonyp@2315 480
tonyp@2643 481 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 482 do { \
tonyp@2472 483 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 484 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 485 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 486 } while (0)
tonyp@2315 487
tonyp@2315 488 #define assert_not_at_safepoint() \
tonyp@2315 489 do { \
tonyp@2315 490 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 491 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 492 } while (0)
tonyp@2315 493
ysr@777 494 protected:
ysr@777 495
johnc@3021 496 // The young region list.
ysr@777 497 YoungList* _young_list;
ysr@777 498
ysr@777 499 // The current policy object for the collector.
ysr@777 500 G1CollectorPolicy* _g1_policy;
ysr@777 501
tonyp@2472 502 // This is the second level of trying to allocate a new region. If
tonyp@2715 503 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 504 // check whether there's anything available on the
tonyp@2715 505 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 506 // that list, if _free_regions_coming is set.
jwilhelm@6422 507 HeapRegion* new_region_try_secondary_free_list(bool is_old);
ysr@777 508
tonyp@2643 509 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 510 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 511 // attempt to expand the heap if necessary to satisfy the allocation
jwilhelm@6422 512 // request. If the region is to be used as an old region or for a
jwilhelm@6422 513 // humongous object, set is_old to true. If not, to false.
jwilhelm@6422 514 HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
ysr@777 515
tonyp@2643 516 // Attempt to satisfy a humongous allocation request of the given
tonyp@2643 517 // size by finding a contiguous set of free regions of num_regions
tonyp@2643 518 // length and remove them from the master free list. Return the
tonyp@2963 519 // index of the first region or G1_NULL_HRS_INDEX if the search
tonyp@2963 520 // was unsuccessful.
tonyp@3713 521 uint humongous_obj_allocate_find_first(uint num_regions,
tonyp@3713 522 size_t word_size);
ysr@777 523
tonyp@2643 524 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 525 // and starting at index first so that they appear as a single
tonyp@2643 526 // humongous region.
tonyp@3713 527 HeapWord* humongous_obj_allocate_initialize_regions(uint first,
tonyp@3713 528 uint num_regions,
tonyp@2643 529 size_t word_size);
tonyp@2643 530
tonyp@2643 531 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 532 // NULL if unsuccessful.
tonyp@2472 533 HeapWord* humongous_obj_allocate(size_t word_size);
ysr@777 534
tonyp@2315 535 // The following two methods, allocate_new_tlab() and
tonyp@2315 536 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 537 // into the G1's allocation routines. They have the following
tonyp@2315 538 // assumptions:
tonyp@2315 539 //
tonyp@2315 540 // * They should both be called outside safepoints.
tonyp@2315 541 //
tonyp@2315 542 // * They should both be called without holding the Heap_lock.
tonyp@2315 543 //
tonyp@2315 544 // * All allocation requests for new TLABs should go to
tonyp@2315 545 // allocate_new_tlab().
tonyp@2315 546 //
tonyp@2971 547 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 548 //
tonyp@2315 549 // * If either call cannot satisfy the allocation request using the
tonyp@2315 550 // current allocating region, they will try to get a new one. If
tonyp@2315 551 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 552 // retry the allocation.
tonyp@2315 553 //
tonyp@2315 554 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 555 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 556 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 557 // schedule a Full GC.
tonyp@2315 558 //
tonyp@2315 559 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 560 // should never be called with word_size being humongous. All
tonyp@2315 561 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 562 // will satisfy them with a special path.
ysr@777 563
tonyp@2315 564 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 565
tonyp@2315 566 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 567 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 568
tonyp@2715 569 // The following three methods take a gc_count_before_ret
tonyp@2715 570 // parameter which is used to return the GC count if the method
tonyp@2715 571 // returns NULL. Given that we are required to read the GC count
tonyp@2715 572 // while holding the Heap_lock, and these paths will take the
tonyp@2715 573 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 574 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 575 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 576 // Heap_lock just to read the GC count.
tonyp@2315 577
tonyp@2715 578 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 579 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 580 // should only be used for non-humongous allocations.
tonyp@2715 581 inline HeapWord* attempt_allocation(size_t word_size,
mgerdin@4853 582 unsigned int* gc_count_before_ret,
mgerdin@4853 583 int* gclocker_retry_count_ret);
tonyp@2315 584
tonyp@2715 585 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 586 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 587 // pause. This should only be used for non-humongous allocations.
tonyp@2715 588 HeapWord* attempt_allocation_slow(size_t word_size,
mgerdin@4853 589 unsigned int* gc_count_before_ret,
mgerdin@4853 590 int* gclocker_retry_count_ret);
tonyp@2315 591
tonyp@2715 592 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 593 // potentially schedule a GC pause.
tonyp@2715 594 HeapWord* attempt_allocation_humongous(size_t word_size,
mgerdin@4853 595 unsigned int* gc_count_before_ret,
mgerdin@4853 596 int* gclocker_retry_count_ret);
tonyp@2454 597
tonyp@2715 598 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 599 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 600 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 601 // or not.
tonyp@2315 602 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
tonyp@2715 603 bool expect_null_mutator_alloc_region);
tonyp@2315 604
tonyp@2315 605 // It dirties the cards that cover the block so that so that the post
tonyp@2315 606 // write barrier never queues anything when updating objects on this
tonyp@2315 607 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 608 // belongs to a young region.
tonyp@2315 609 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 610
ysr@777 611 // Allocate blocks during garbage collection. Will ensure an
ysr@777 612 // allocation region, either by picking one or expanding the
ysr@777 613 // heap, and then allocate a block of the given size. The block
ysr@777 614 // may not be a humongous - it must fit into a single heap region.
ysr@777 615 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 616
tschatzl@6332 617 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
tschatzl@6332 618 HeapRegion* alloc_region,
tschatzl@6332 619 bool par,
tschatzl@6332 620 size_t word_size);
tschatzl@6332 621
ysr@777 622 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 623 // that parallel threads might be attempting allocations.
ysr@777 624 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 625
tonyp@3028 626 // Allocation attempt during GC for a survivor object / PLAB.
tonyp@3028 627 inline HeapWord* survivor_attempt_allocation(size_t word_size);
apetrusenko@980 628
tonyp@3028 629 // Allocation attempt during GC for an old object / PLAB.
tonyp@3028 630 inline HeapWord* old_attempt_allocation(size_t word_size);
tonyp@2715 631
tonyp@3028 632 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 633
tonyp@3028 634 // For mutator alloc regions.
tonyp@2715 635 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 636 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 637 size_t allocated_bytes);
tonyp@2715 638
tonyp@3028 639 // For GC alloc regions.
tonyp@3713 640 HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
tonyp@3028 641 GCAllocPurpose ap);
tonyp@3028 642 void retire_gc_alloc_region(HeapRegion* alloc_region,
tonyp@3028 643 size_t allocated_bytes, GCAllocPurpose ap);
tonyp@3028 644
tonyp@2011 645 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 646 // inspection request and should collect the entire heap
tonyp@2315 647 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 648 // cleared during the GC
tonyp@2011 649 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 650 // the GC should attempt (at least) to satisfy
tonyp@2315 651 // - it returns false if it is unable to do the collection due to the
tonyp@2315 652 // GC locker being active, true otherwise
tonyp@2315 653 bool do_collection(bool explicit_gc,
tonyp@2011 654 bool clear_all_soft_refs,
ysr@777 655 size_t word_size);
ysr@777 656
ysr@777 657 // Callback from VM_G1CollectFull operation.
ysr@777 658 // Perform a full collection.
coleenp@4037 659 virtual void do_full_collection(bool clear_all_soft_refs);
ysr@777 660
ysr@777 661 // Resize the heap if necessary after a full collection. If this is
ysr@777 662 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 663 // and will be considered part of the used portion of the heap.
ysr@777 664 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 665
ysr@777 666 // Callback from VM_G1CollectForAllocation operation.
ysr@777 667 // This function does everything necessary/possible to satisfy a
ysr@777 668 // failed allocation request (including collection, expansion, etc.)
tonyp@2315 669 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
ysr@777 670
ysr@777 671 // Attempting to expand the heap sufficiently
ysr@777 672 // to support an allocation of the given "word_size". If
ysr@777 673 // successful, perform the allocation and return the address of the
ysr@777 674 // allocated block, or else "NULL".
tonyp@2315 675 HeapWord* expand_and_allocate(size_t word_size);
ysr@777 676
johnc@3175 677 // Process any reference objects discovered during
johnc@3175 678 // an incremental evacuation pause.
johnc@4130 679 void process_discovered_references(uint no_of_gc_workers);
johnc@3175 680
johnc@3175 681 // Enqueue any remaining discovered references
johnc@3175 682 // after processing.
johnc@4130 683 void enqueue_discovered_references(uint no_of_gc_workers);
johnc@3175 684
ysr@777 685 public:
jmasa@2821 686
tonyp@3176 687 G1MonitoringSupport* g1mm() {
tonyp@3176 688 assert(_g1mm != NULL, "should have been initialized");
tonyp@3176 689 return _g1mm;
tonyp@3176 690 }
jmasa@2821 691
ysr@777 692 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 693 // Returns true if the heap was expanded by the requested amount;
johnc@2504 694 // false otherwise.
ysr@777 695 // (Rounds up to a HeapRegion boundary.)
johnc@2504 696 bool expand(size_t expand_bytes);
ysr@777 697
ysr@777 698 // Do anything common to GC's.
ysr@777 699 virtual void gc_prologue(bool full);
ysr@777 700 virtual void gc_epilogue(bool full);
ysr@777 701
tonyp@961 702 // We register a region with the fast "in collection set" test. We
tonyp@961 703 // simply set to true the array slot corresponding to this region.
tonyp@961 704 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tonyp@961 705 assert(_in_cset_fast_test_base != NULL, "sanity");
tonyp@961 706 assert(r->in_collection_set(), "invariant");
tonyp@3713 707 uint index = r->hrs_index();
tonyp@2963 708 assert(index < _in_cset_fast_test_length, "invariant");
tonyp@961 709 assert(!_in_cset_fast_test_base[index], "invariant");
tonyp@961 710 _in_cset_fast_test_base[index] = true;
tonyp@961 711 }
tonyp@961 712
tonyp@961 713 // This is a fast test on whether a reference points into the
tschatzl@6330 714 // collection set or not. Assume that the reference
tschatzl@6330 715 // points into the heap.
tschatzl@6541 716 inline bool in_cset_fast_test(oop obj);
tonyp@961 717
johnc@1829 718 void clear_cset_fast_test() {
johnc@1829 719 assert(_in_cset_fast_test_base != NULL, "sanity");
johnc@1829 720 memset(_in_cset_fast_test_base, false,
tonyp@3713 721 (size_t) _in_cset_fast_test_length * sizeof(bool));
johnc@1829 722 }
johnc@1829 723
brutisso@3823 724 // This is called at the start of either a concurrent cycle or a Full
brutisso@3823 725 // GC to update the number of old marking cycles started.
brutisso@3823 726 void increment_old_marking_cycles_started();
brutisso@3823 727
tonyp@2011 728 // This is called at the end of either a concurrent cycle or a Full
brutisso@3823 729 // GC to update the number of old marking cycles completed. Those two
tonyp@2011 730 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 731 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 732 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 733 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 734 // tighter consistency checking in the method. If concurrent is
tonyp@2372 735 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 736 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 737 // in this nesting (i.e., the concurrent cycle). Further nesting is
brutisso@3823 738 // not currently supported. The end of this call also notifies
tonyp@2372 739 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 740 // GC to happen (e.g., it called System.gc() with
tonyp@2011 741 // +ExplicitGCInvokesConcurrent).
brutisso@3823 742 void increment_old_marking_cycles_completed(bool concurrent);
tonyp@2011 743
brutisso@3823 744 unsigned int old_marking_cycles_completed() {
brutisso@3823 745 return _old_marking_cycles_completed;
tonyp@2011 746 }
tonyp@2011 747
mgronlun@6131 748 void register_concurrent_cycle_start(const Ticks& start_time);
sla@5237 749 void register_concurrent_cycle_end();
sla@5237 750 void trace_heap_after_concurrent_cycle();
sla@5237 751
sla@5237 752 G1YCType yc_type();
sla@5237 753
tonyp@2975 754 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 755
brutisso@6385 756 // Frees a non-humongous region by initializing its contents and
brutisso@6385 757 // adding it to the free list that's passed as a parameter (this is
brutisso@6385 758 // usually a local list which will be appended to the master free
brutisso@6385 759 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 760 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 761 // up. The assumption is that this will be done later.
tschatzl@6404 762 // The locked parameter indicates if the caller has already taken
tschatzl@6404 763 // care of proper synchronization. This may allow some optimizations.
brutisso@6385 764 void free_region(HeapRegion* hr,
brutisso@6385 765 FreeRegionList* free_list,
tschatzl@6404 766 bool par,
tschatzl@6404 767 bool locked = false);
brutisso@6385 768
brutisso@6385 769 // Frees a humongous region by collapsing it into individual regions
brutisso@6385 770 // and calling free_region() for each of them. The freed regions
brutisso@6385 771 // will be added to the free list that's passed as a parameter (this
brutisso@6385 772 // is usually a local list which will be appended to the master free
brutisso@6385 773 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 774 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 775 // up. The assumption is that this will be done later.
brutisso@6385 776 void free_humongous_region(HeapRegion* hr,
brutisso@6385 777 FreeRegionList* free_list,
brutisso@6385 778 bool par);
ysr@777 779 protected:
ysr@777 780
ysr@777 781 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 782 // (Rounds down to a HeapRegion boundary.)
ysr@777 783 virtual void shrink(size_t expand_bytes);
ysr@777 784 void shrink_helper(size_t expand_bytes);
ysr@777 785
jcoomes@2064 786 #if TASKQUEUE_STATS
jcoomes@2064 787 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 788 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 789 void reset_taskqueue_stats();
jcoomes@2064 790 #endif // TASKQUEUE_STATS
jcoomes@2064 791
tonyp@2315 792 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 793 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 794 // return whether the VM operation was successful (it did do an
tonyp@2315 795 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 796 // locker was active). Given that we should not be holding the
tonyp@2315 797 // Heap_lock when we enter this method, we will pass the
tonyp@2315 798 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 799 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 800 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 801 // before the call, so it's easy to read gc_count_before just before.
brutisso@5581 802 HeapWord* do_collection_pause(size_t word_size,
brutisso@5581 803 unsigned int gc_count_before,
brutisso@5581 804 bool* succeeded,
brutisso@5581 805 GCCause::Cause gc_cause);
ysr@777 806
ysr@777 807 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 808 // thread. It returns false if it is unable to do the collection due
tonyp@2315 809 // to the GC locker being active, true otherwise
tonyp@2315 810 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 811
ysr@777 812 // Actually do the work of evacuating the collection set.
sla@5237 813 void evacuate_collection_set(EvacuationInfo& evacuation_info);
ysr@777 814
ysr@777 815 // The g1 remembered set of the heap.
ysr@777 816 G1RemSet* _g1_rem_set;
ysr@777 817
iveresov@1051 818 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 819 // concurrently after the collection.
iveresov@1051 820 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 821
ysr@777 822 // The closure used to refine a single card.
ysr@777 823 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 824
ysr@777 825 // A function to check the consistency of dirty card logs.
ysr@777 826 void check_ct_logs_at_safepoint();
ysr@777 827
johnc@2060 828 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 829 // references into the current collection set. This is used to
johnc@2060 830 // update the remembered sets of the regions in the collection
johnc@2060 831 // set in the event of an evacuation failure.
johnc@2060 832 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 833
ysr@777 834 // After a collection pause, make the regions in the CS into free
ysr@777 835 // regions.
sla@5237 836 void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
ysr@777 837
johnc@1829 838 // Abandon the current collection set without recording policy
johnc@1829 839 // statistics or updating free lists.
johnc@1829 840 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 841
ysr@777 842 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 843 // "scan_rs" to roots inside the heap (having done "set_region" to
coleenp@4037 844 // indicate the region in which the root resides),
coleenp@4037 845 // and does "scan_metadata" If "scan_rs" is
ysr@777 846 // NULL, then this step is skipped. The "worker_i"
ysr@777 847 // param is for use with parallel roots processing, and should be
ysr@777 848 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 849 // In the sequential case this param will be ignored.
coleenp@4037 850 void g1_process_strong_roots(bool is_scavenging,
tonyp@3537 851 ScanningOption so,
ysr@777 852 OopClosure* scan_non_heap_roots,
ysr@777 853 OopsInHeapRegionClosure* scan_rs,
coleenp@4037 854 G1KlassScanClosure* scan_klasses,
vkempik@6552 855 uint worker_i);
ysr@777 856
ysr@777 857 // Apply "blk" to all the weak roots of the system. These include
ysr@777 858 // JNI weak roots, the code cache, system dictionary, symbol table,
ysr@777 859 // string table, and referents of reachable weak refs.
stefank@5011 860 void g1_process_weak_roots(OopClosure* root_closure);
ysr@777 861
tonyp@2963 862 // Notifies all the necessary spaces that the committed space has
tonyp@2963 863 // been updated (either expanded or shrunk). It should be called
tonyp@2963 864 // after _g1_storage is updated.
tonyp@2963 865 void update_committed_space(HeapWord* old_end, HeapWord* new_end);
tonyp@2963 866
ysr@777 867 // The concurrent marker (and the thread it runs in.)
ysr@777 868 ConcurrentMark* _cm;
ysr@777 869 ConcurrentMarkThread* _cmThread;
ysr@777 870 bool _mark_in_progress;
ysr@777 871
ysr@777 872 // The concurrent refiner.
ysr@777 873 ConcurrentG1Refine* _cg1r;
ysr@777 874
ysr@777 875 // The parallel task queues
ysr@777 876 RefToScanQueueSet *_task_queues;
ysr@777 877
ysr@777 878 // True iff a evacuation has failed in the current collection.
ysr@777 879 bool _evacuation_failed;
ysr@777 880
sla@5237 881 EvacuationFailedInfo* _evacuation_failed_info_array;
ysr@777 882
ysr@777 883 // Failed evacuations cause some logical from-space objects to have
ysr@777 884 // forwarding pointers to themselves. Reset them.
ysr@777 885 void remove_self_forwarding_pointers();
ysr@777 886
brutisso@4579 887 // Together, these store an object with a preserved mark, and its mark value.
brutisso@4579 888 Stack<oop, mtGC> _objs_with_preserved_marks;
brutisso@4579 889 Stack<markOop, mtGC> _preserved_marks_of_objs;
ysr@777 890
ysr@777 891 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 892 // word being overwritten with a self-forwarding-pointer.
ysr@777 893 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 894
ysr@777 895 // The stack of evac-failure objects left to be scanned.
ysr@777 896 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 897 // The closure to apply to evac-failure objects.
ysr@777 898
ysr@777 899 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 900 // Set the field above.
ysr@777 901 void
ysr@777 902 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 903 _evac_failure_closure = evac_failure_closure;
ysr@777 904 }
ysr@777 905
ysr@777 906 // Push "obj" on the scan stack.
ysr@777 907 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 908 // Process scan stack entries until the stack is empty.
ysr@777 909 void drain_evac_failure_scan_stack();
ysr@777 910 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 911 // prevent unnecessary recursion.
ysr@777 912 bool _drain_in_progress;
ysr@777 913
ysr@777 914 // Do any necessary initialization for evacuation-failure handling.
ysr@777 915 // "cl" is the closure that will be used to process evac-failure
ysr@777 916 // objects.
ysr@777 917 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 918 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 919 // structures.
ysr@777 920 void finalize_for_evac_failure();
ysr@777 921
ysr@777 922 // An attempt to evacuate "obj" has failed; take necessary steps.
sla@5237 923 oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
ysr@777 924 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 925
johnc@4016 926 #ifndef PRODUCT
johnc@4016 927 // Support for forcing evacuation failures. Analogous to
johnc@4016 928 // PromotionFailureALot for the other collectors.
johnc@4016 929
johnc@4016 930 // Records whether G1EvacuationFailureALot should be in effect
johnc@4016 931 // for the current GC
johnc@4016 932 bool _evacuation_failure_alot_for_current_gc;
johnc@4016 933
johnc@4016 934 // Used to record the GC number for interval checking when
johnc@4016 935 // determining whether G1EvaucationFailureALot is in effect
johnc@4016 936 // for the current GC.
johnc@4016 937 size_t _evacuation_failure_alot_gc_number;
johnc@4016 938
johnc@4016 939 // Count of the number of evacuations between failures.
johnc@4016 940 volatile size_t _evacuation_failure_alot_count;
johnc@4016 941
johnc@4016 942 // Set whether G1EvacuationFailureALot should be in effect
johnc@4016 943 // for the current GC (based upon the type of GC and which
johnc@4016 944 // command line flags are set);
johnc@4016 945 inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
johnc@4016 946 bool during_initial_mark,
johnc@4016 947 bool during_marking);
johnc@4016 948
johnc@4016 949 inline void set_evacuation_failure_alot_for_current_gc();
johnc@4016 950
johnc@4016 951 // Return true if it's time to cause an evacuation failure.
johnc@4016 952 inline bool evacuation_should_fail();
johnc@4016 953
johnc@4016 954 // Reset the G1EvacuationFailureALot counters. Should be called at
sla@5237 955 // the end of an evacuation pause in which an evacuation failure occurred.
johnc@4016 956 inline void reset_evacuation_should_fail();
johnc@4016 957 #endif // !PRODUCT
johnc@4016 958
johnc@3175 959 // ("Weak") Reference processing support.
johnc@3175 960 //
sla@5237 961 // G1 has 2 instances of the reference processor class. One
johnc@3175 962 // (_ref_processor_cm) handles reference object discovery
johnc@3175 963 // and subsequent processing during concurrent marking cycles.
johnc@3175 964 //
johnc@3175 965 // The other (_ref_processor_stw) handles reference object
johnc@3175 966 // discovery and processing during full GCs and incremental
johnc@3175 967 // evacuation pauses.
johnc@3175 968 //
johnc@3175 969 // During an incremental pause, reference discovery will be
johnc@3175 970 // temporarily disabled for _ref_processor_cm and will be
johnc@3175 971 // enabled for _ref_processor_stw. At the end of the evacuation
johnc@3175 972 // pause references discovered by _ref_processor_stw will be
johnc@3175 973 // processed and discovery will be disabled. The previous
johnc@3175 974 // setting for reference object discovery for _ref_processor_cm
johnc@3175 975 // will be re-instated.
johnc@3175 976 //
johnc@3175 977 // At the start of marking:
johnc@3175 978 // * Discovery by the CM ref processor is verified to be inactive
johnc@3175 979 // and it's discovered lists are empty.
johnc@3175 980 // * Discovery by the CM ref processor is then enabled.
johnc@3175 981 //
johnc@3175 982 // At the end of marking:
johnc@3175 983 // * Any references on the CM ref processor's discovered
johnc@3175 984 // lists are processed (possibly MT).
johnc@3175 985 //
johnc@3175 986 // At the start of full GC we:
johnc@3175 987 // * Disable discovery by the CM ref processor and
johnc@3175 988 // empty CM ref processor's discovered lists
johnc@3175 989 // (without processing any entries).
johnc@3175 990 // * Verify that the STW ref processor is inactive and it's
johnc@3175 991 // discovered lists are empty.
johnc@3175 992 // * Temporarily set STW ref processor discovery as single threaded.
johnc@3175 993 // * Temporarily clear the STW ref processor's _is_alive_non_header
johnc@3175 994 // field.
johnc@3175 995 // * Finally enable discovery by the STW ref processor.
johnc@3175 996 //
johnc@3175 997 // The STW ref processor is used to record any discovered
johnc@3175 998 // references during the full GC.
johnc@3175 999 //
johnc@3175 1000 // At the end of a full GC we:
johnc@3175 1001 // * Enqueue any reference objects discovered by the STW ref processor
johnc@3175 1002 // that have non-live referents. This has the side-effect of
johnc@3175 1003 // making the STW ref processor inactive by disabling discovery.
johnc@3175 1004 // * Verify that the CM ref processor is still inactive
johnc@3175 1005 // and no references have been placed on it's discovered
johnc@3175 1006 // lists (also checked as a precondition during initial marking).
johnc@3175 1007
johnc@3175 1008 // The (stw) reference processor...
johnc@3175 1009 ReferenceProcessor* _ref_processor_stw;
johnc@3175 1010
sla@5237 1011 STWGCTimer* _gc_timer_stw;
sla@5237 1012 ConcurrentGCTimer* _gc_timer_cm;
sla@5237 1013
sla@5237 1014 G1OldTracer* _gc_tracer_cm;
sla@5237 1015 G1NewTracer* _gc_tracer_stw;
sla@5237 1016
johnc@3175 1017 // During reference object discovery, the _is_alive_non_header
johnc@3175 1018 // closure (if non-null) is applied to the referent object to
johnc@3175 1019 // determine whether the referent is live. If so then the
johnc@3175 1020 // reference object does not need to be 'discovered' and can
johnc@3175 1021 // be treated as a regular oop. This has the benefit of reducing
johnc@3175 1022 // the number of 'discovered' reference objects that need to
johnc@3175 1023 // be processed.
johnc@3175 1024 //
johnc@3175 1025 // Instance of the is_alive closure for embedding into the
johnc@3175 1026 // STW reference processor as the _is_alive_non_header field.
johnc@3175 1027 // Supplying a value for the _is_alive_non_header field is
johnc@3175 1028 // optional but doing so prevents unnecessary additions to
johnc@3175 1029 // the discovered lists during reference discovery.
johnc@3175 1030 G1STWIsAliveClosure _is_alive_closure_stw;
johnc@3175 1031
johnc@3175 1032 // The (concurrent marking) reference processor...
johnc@3175 1033 ReferenceProcessor* _ref_processor_cm;
johnc@3175 1034
johnc@2379 1035 // Instance of the concurrent mark is_alive closure for embedding
johnc@3175 1036 // into the Concurrent Marking reference processor as the
johnc@3175 1037 // _is_alive_non_header field. Supplying a value for the
johnc@3175 1038 // _is_alive_non_header field is optional but doing so prevents
johnc@3175 1039 // unnecessary additions to the discovered lists during reference
johnc@3175 1040 // discovery.
johnc@3175 1041 G1CMIsAliveClosure _is_alive_closure_cm;
ysr@777 1042
johnc@3336 1043 // Cache used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1044 HeapRegion** _worker_cset_start_region;
johnc@3336 1045
johnc@3336 1046 // Time stamp to validate the regions recorded in the cache
johnc@3336 1047 // used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1048 // The heap region entry for a given worker is valid iff
johnc@3336 1049 // the associated time stamp value matches the current value
johnc@3336 1050 // of G1CollectedHeap::_gc_time_stamp.
johnc@3336 1051 unsigned int* _worker_cset_start_region_time_stamp;
johnc@3336 1052
ysr@777 1053 enum G1H_process_strong_roots_tasks {
tonyp@3416 1054 G1H_PS_filter_satb_buffers,
ysr@777 1055 G1H_PS_refProcessor_oops_do,
ysr@777 1056 // Leave this one last.
ysr@777 1057 G1H_PS_NumElements
ysr@777 1058 };
ysr@777 1059
ysr@777 1060 SubTasksDone* _process_strong_tasks;
ysr@777 1061
tonyp@2472 1062 volatile bool _free_regions_coming;
ysr@777 1063
ysr@777 1064 public:
jmasa@2188 1065
jmasa@2188 1066 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 1067
ysr@777 1068 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 1069
jcoomes@2064 1070 RefToScanQueue *task_queue(int i) const;
ysr@777 1071
iveresov@1051 1072 // A set of cards where updates happened during the GC
iveresov@1051 1073 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 1074
johnc@2060 1075 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 1076 // references into the current collection set. This is used to
johnc@2060 1077 // update the remembered sets of the regions in the collection
johnc@2060 1078 // set in the event of an evacuation failure.
johnc@2060 1079 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 1080 { return _into_cset_dirty_card_queue_set; }
johnc@2060 1081
ysr@777 1082 // Create a G1CollectedHeap with the specified policy.
ysr@777 1083 // Must call the initialize method afterwards.
ysr@777 1084 // May not return if something goes wrong.
ysr@777 1085 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 1086
ysr@777 1087 // Initialize the G1CollectedHeap to have the initial and
coleenp@4037 1088 // maximum sizes and remembered and barrier sets
ysr@777 1089 // specified by the policy object.
ysr@777 1090 jint initialize();
ysr@777 1091
pliden@6690 1092 virtual void stop();
pliden@6690 1093
tschatzl@5701 1094 // Return the (conservative) maximum heap alignment for any G1 heap
tschatzl@5701 1095 static size_t conservative_max_heap_alignment();
tschatzl@5701 1096
johnc@3175 1097 // Initialize weak reference processing.
johnc@2379 1098 virtual void ref_processing_init();
ysr@777 1099
jmasa@3357 1100 void set_par_threads(uint t) {
ysr@777 1101 SharedHeap::set_par_threads(t);
jmasa@3294 1102 // Done in SharedHeap but oddly there are
jmasa@3294 1103 // two _process_strong_tasks's in a G1CollectedHeap
jmasa@3294 1104 // so do it here too.
jmasa@3294 1105 _process_strong_tasks->set_n_threads(t);
jmasa@3294 1106 }
jmasa@3294 1107
jmasa@3294 1108 // Set _n_par_threads according to a policy TBD.
jmasa@3294 1109 void set_par_threads();
jmasa@3294 1110
jmasa@3294 1111 void set_n_termination(int t) {
jmasa@2188 1112 _process_strong_tasks->set_n_threads(t);
ysr@777 1113 }
ysr@777 1114
ysr@777 1115 virtual CollectedHeap::Name kind() const {
ysr@777 1116 return CollectedHeap::G1CollectedHeap;
ysr@777 1117 }
ysr@777 1118
ysr@777 1119 // The current policy object for the collector.
ysr@777 1120 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 1121
coleenp@4037 1122 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
coleenp@4037 1123
ysr@777 1124 // Adaptive size policy. No such thing for g1.
ysr@777 1125 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 1126
ysr@777 1127 // The rem set and barrier set.
ysr@777 1128 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 1129
ysr@777 1130 unsigned get_gc_time_stamp() {
ysr@777 1131 return _gc_time_stamp;
ysr@777 1132 }
ysr@777 1133
ysr@777 1134 void reset_gc_time_stamp() {
ysr@777 1135 _gc_time_stamp = 0;
iveresov@788 1136 OrderAccess::fence();
johnc@3336 1137 // Clear the cached CSet starting regions and time stamps.
johnc@3336 1138 // Their validity is dependent on the GC timestamp.
johnc@3336 1139 clear_cset_start_regions();
iveresov@788 1140 }
iveresov@788 1141
tonyp@3957 1142 void check_gc_time_stamps() PRODUCT_RETURN;
tonyp@3957 1143
iveresov@788 1144 void increment_gc_time_stamp() {
iveresov@788 1145 ++_gc_time_stamp;
iveresov@788 1146 OrderAccess::fence();
ysr@777 1147 }
ysr@777 1148
tonyp@3957 1149 // Reset the given region's GC timestamp. If it's starts humongous,
tonyp@3957 1150 // also reset the GC timestamp of its corresponding
tonyp@3957 1151 // continues humongous regions too.
tonyp@3957 1152 void reset_gc_time_stamps(HeapRegion* hr);
tonyp@3957 1153
johnc@2060 1154 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 1155 DirtyCardQueue* into_cset_dcq,
vkempik@6552 1156 bool concurrent, uint worker_i);
ysr@777 1157
ysr@777 1158 // The shared block offset table array.
ysr@777 1159 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 1160
johnc@3175 1161 // Reference Processing accessors
johnc@3175 1162
johnc@3175 1163 // The STW reference processor....
johnc@3175 1164 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
johnc@3175 1165
sla@5237 1166 // The Concurrent Marking reference processor...
johnc@3175 1167 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
ysr@777 1168
sla@5237 1169 ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
sla@5237 1170 G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
sla@5237 1171
ysr@777 1172 virtual size_t capacity() const;
ysr@777 1173 virtual size_t used() const;
tonyp@1281 1174 // This should be called when we're not holding the heap lock. The
tonyp@1281 1175 // result might be a bit inaccurate.
tonyp@1281 1176 size_t used_unlocked() const;
ysr@777 1177 size_t recalculate_used() const;
ysr@777 1178
ysr@777 1179 // These virtual functions do the actual allocation.
ysr@777 1180 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 1181 // allocation, via inlined code (by exporting the address of the top and
ysr@777 1182 // end fields defining the extent of the contiguous allocation region.)
ysr@777 1183 // But G1CollectedHeap doesn't yet support this.
ysr@777 1184
ysr@777 1185 // Return an estimate of the maximum allocation that could be performed
ysr@777 1186 // without triggering any collection or expansion activity. In a
ysr@777 1187 // generational collector, for example, this is probably the largest
ysr@777 1188 // allocation that could be supported (without expansion) in the youngest
ysr@777 1189 // generation. It is "unsafe" because no locks are taken; the result
ysr@777 1190 // should be treated as an approximation, not a guarantee, for use in
ysr@777 1191 // heuristic resizing decisions.
ysr@777 1192 virtual size_t unsafe_max_alloc();
ysr@777 1193
ysr@777 1194 virtual bool is_maximal_no_gc() const {
ysr@777 1195 return _g1_storage.uncommitted_size() == 0;
ysr@777 1196 }
ysr@777 1197
ysr@777 1198 // The total number of regions in the heap.
tonyp@3713 1199 uint n_regions() { return _hrs.length(); }
tonyp@2963 1200
tonyp@2963 1201 // The max number of regions in the heap.
tonyp@3713 1202 uint max_regions() { return _hrs.max_length(); }
ysr@777 1203
ysr@777 1204 // The number of regions that are completely free.
tonyp@3713 1205 uint free_regions() { return _free_list.length(); }
ysr@777 1206
ysr@777 1207 // The number of regions that are not completely free.
tonyp@3713 1208 uint used_regions() { return n_regions() - free_regions(); }
ysr@777 1209
ysr@777 1210 // The number of regions available for "regular" expansion.
tonyp@3713 1211 uint expansion_regions() { return _expansion_regions; }
ysr@777 1212
tonyp@2963 1213 // Factory method for HeapRegion instances. It will return NULL if
tonyp@2963 1214 // the allocation fails.
tonyp@3713 1215 HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
tonyp@2963 1216
tonyp@2849 1217 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 1218 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 1219 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 1220 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 1221
tonyp@2472 1222 // verify_region_sets() performs verification over the region
tonyp@2472 1223 // lists. It will be compiled in the product code to be used when
tonyp@2472 1224 // necessary (i.e., during heap verification).
tonyp@2472 1225 void verify_region_sets();
ysr@777 1226
tonyp@2472 1227 // verify_region_sets_optional() is planted in the code for
tonyp@2472 1228 // list verification in non-product builds (and it can be enabled in
sla@5237 1229 // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 1230 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1231 void verify_region_sets_optional() {
tonyp@2472 1232 verify_region_sets();
tonyp@2472 1233 }
tonyp@2472 1234 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1235 void verify_region_sets_optional() { }
tonyp@2472 1236 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 1237
tonyp@2472 1238 #ifdef ASSERT
tonyp@2643 1239 bool is_on_master_free_list(HeapRegion* hr) {
tonyp@2472 1240 return hr->containing_set() == &_free_list;
tonyp@2472 1241 }
tonyp@2472 1242 #endif // ASSERT
ysr@777 1243
tonyp@2472 1244 // Wrapper for the region list operations that can be called from
tonyp@2472 1245 // methods outside this class.
ysr@777 1246
jwilhelm@6422 1247 void secondary_free_list_add(FreeRegionList* list) {
jwilhelm@6422 1248 _secondary_free_list.add_ordered(list);
tonyp@2472 1249 }
ysr@777 1250
tonyp@2472 1251 void append_secondary_free_list() {
jwilhelm@6422 1252 _free_list.add_ordered(&_secondary_free_list);
tonyp@2472 1253 }
ysr@777 1254
tonyp@2643 1255 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1256 // If the secondary free list looks empty there's no reason to
tonyp@2643 1257 // take the lock and then try to append it.
tonyp@2472 1258 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1259 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1260 append_secondary_free_list();
tonyp@2472 1261 }
tonyp@2472 1262 }
ysr@777 1263
tschatzl@6541 1264 inline void old_set_remove(HeapRegion* hr);
tonyp@3268 1265
brutisso@3456 1266 size_t non_young_capacity_bytes() {
brutisso@3456 1267 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
brutisso@3456 1268 }
brutisso@3456 1269
tonyp@2472 1270 void set_free_regions_coming();
tonyp@2472 1271 void reset_free_regions_coming();
tonyp@2472 1272 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1273 void wait_while_free_regions_coming();
ysr@777 1274
tonyp@3539 1275 // Determine whether the given region is one that we are using as an
tonyp@3539 1276 // old GC alloc region.
tonyp@3539 1277 bool is_old_gc_alloc_region(HeapRegion* hr) {
tonyp@3539 1278 return hr == _retained_old_gc_alloc_region;
tonyp@3539 1279 }
tonyp@3539 1280
ysr@777 1281 // Perform a collection of the heap; intended for use in implementing
ysr@777 1282 // "System.gc". This probably implies as full a collection as the
ysr@777 1283 // "CollectedHeap" supports.
ysr@777 1284 virtual void collect(GCCause::Cause cause);
ysr@777 1285
ysr@777 1286 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1287 void collect_locked(GCCause::Cause cause);
ysr@777 1288
sla@5237 1289 // True iff an evacuation has failed in the most-recent collection.
ysr@777 1290 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1291
brutisso@6385 1292 void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
brutisso@6385 1293 void prepend_to_freelist(FreeRegionList* list);
brutisso@6385 1294 void decrement_summary_bytes(size_t bytes);
ysr@777 1295
stefank@3335 1296 // Returns "TRUE" iff "p" points into the committed areas of the heap.
ysr@777 1297 virtual bool is_in(const void* p) const;
ysr@777 1298
ysr@777 1299 // Return "TRUE" iff the given object address is within the collection
ysr@777 1300 // set.
ysr@777 1301 inline bool obj_in_cs(oop obj);
ysr@777 1302
ysr@777 1303 // Return "TRUE" iff the given object address is in the reserved
coleenp@4037 1304 // region of g1.
ysr@777 1305 bool is_in_g1_reserved(const void* p) const {
ysr@777 1306 return _g1_reserved.contains(p);
ysr@777 1307 }
ysr@777 1308
tonyp@2717 1309 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1310 // reserved for the heap
tonyp@2717 1311 MemRegion g1_reserved() {
tonyp@2717 1312 return _g1_reserved;
tonyp@2717 1313 }
tonyp@2717 1314
tonyp@2717 1315 // Returns a MemRegion that corresponds to the space that has been
ysr@777 1316 // committed in the heap
ysr@777 1317 MemRegion g1_committed() {
ysr@777 1318 return _g1_committed;
ysr@777 1319 }
ysr@777 1320
johnc@2593 1321 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1322
mgerdin@5811 1323 G1SATBCardTableModRefBS* g1_barrier_set() {
mgerdin@5811 1324 return (G1SATBCardTableModRefBS*) barrier_set();
mgerdin@5811 1325 }
mgerdin@5811 1326
ysr@777 1327 // This resets the card table to all zeros. It is used after
ysr@777 1328 // a collection pause which used the card table to claim cards.
ysr@777 1329 void cleanUpCardTable();
ysr@777 1330
ysr@777 1331 // Iteration functions.
ysr@777 1332
ysr@777 1333 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1334 // "cl.do_oop" on each.
coleenp@4037 1335 virtual void oop_iterate(ExtendedOopClosure* cl);
ysr@777 1336
ysr@777 1337 // Same as above, restricted to a memory region.
coleenp@4037 1338 void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
ysr@777 1339
ysr@777 1340 // Iterate over all objects, calling "cl.do_object" on each.
coleenp@4037 1341 virtual void object_iterate(ObjectClosure* cl);
coleenp@4037 1342
coleenp@4037 1343 virtual void safe_object_iterate(ObjectClosure* cl) {
coleenp@4037 1344 object_iterate(cl);
iveresov@1113 1345 }
ysr@777 1346
ysr@777 1347 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1348 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1349
ysr@777 1350 // Iterate over heap regions, in address order, terminating the
ysr@777 1351 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1352 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1353
tonyp@2963 1354 // Return the region with the given index. It assumes the index is valid.
tschatzl@6541 1355 inline HeapRegion* region_at(uint index) const;
ysr@777 1356
ysr@777 1357 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1358 // of regions divided by the number of parallel threads times some
ysr@777 1359 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1360 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1361 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1362 // calls will use the same "claim_value", and that that claim value is
ysr@777 1363 // different from the claim_value of any heap region before the start of
ysr@777 1364 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1365 // attempting to claim the first region in each chunk, and, if
ysr@777 1366 // successful, applying the closure to each region in the chunk (and
ysr@777 1367 // setting the claim value of the second and subsequent regions of the
ysr@777 1368 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1369 // i.e., that a closure never attempt to abort a traversal.
ysr@777 1370 void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
jmasa@3357 1371 uint worker,
jmasa@3357 1372 uint no_of_par_workers,
ysr@777 1373 jint claim_value);
ysr@777 1374
tonyp@825 1375 // It resets all the region claim values to the default.
tonyp@825 1376 void reset_heap_region_claim_values();
tonyp@825 1377
johnc@3412 1378 // Resets the claim values of regions in the current
johnc@3412 1379 // collection set to the default.
johnc@3412 1380 void reset_cset_heap_region_claim_values();
johnc@3412 1381
tonyp@790 1382 #ifdef ASSERT
tonyp@790 1383 bool check_heap_region_claim_values(jint claim_value);
johnc@3296 1384
johnc@3296 1385 // Same as the routine above but only checks regions in the
johnc@3296 1386 // current collection set.
johnc@3296 1387 bool check_cset_heap_region_claim_values(jint claim_value);
tonyp@790 1388 #endif // ASSERT
tonyp@790 1389
johnc@3336 1390 // Clear the cached cset start regions and (more importantly)
johnc@3336 1391 // the time stamps. Called when we reset the GC time stamp.
johnc@3336 1392 void clear_cset_start_regions();
johnc@3336 1393
johnc@3336 1394 // Given the id of a worker, obtain or calculate a suitable
johnc@3336 1395 // starting region for iterating over the current collection set.
vkempik@6552 1396 HeapRegion* start_cset_region_for_worker(uint worker_i);
johnc@3296 1397
tonyp@3957 1398 // This is a convenience method that is used by the
tonyp@3957 1399 // HeapRegionIterator classes to calculate the starting region for
tonyp@3957 1400 // each worker so that they do not all start from the same region.
tonyp@3957 1401 HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
tonyp@3957 1402
ysr@777 1403 // Iterate over the regions (if any) in the current collection set.
ysr@777 1404 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1405
ysr@777 1406 // As above but starting from region r
ysr@777 1407 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1408
ysr@777 1409 // Returns the first (lowest address) compactible space in the heap.
ysr@777 1410 virtual CompactibleSpace* first_compactible_space();
ysr@777 1411
ysr@777 1412 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1413 // space containing a given address, or else returns NULL.
ysr@777 1414 virtual Space* space_containing(const void* addr) const;
ysr@777 1415
ysr@777 1416 // A G1CollectedHeap will contain some number of heap regions. This
ysr@777 1417 // finds the region containing a given address, or else returns NULL.
tonyp@2963 1418 template <class T>
tonyp@2963 1419 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1420
ysr@777 1421 // Like the above, but requires "addr" to be in the heap (to avoid a
ysr@777 1422 // null-check), and unlike the above, may return an continuing humongous
ysr@777 1423 // region.
tonyp@2963 1424 template <class T>
tonyp@2963 1425 inline HeapRegion* heap_region_containing_raw(const T addr) const;
ysr@777 1426
ysr@777 1427 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1428 // each address in the (reserved) heap is a member of exactly
ysr@777 1429 // one block. The defining characteristic of a block is that it is
ysr@777 1430 // possible to find its size, and thus to progress forward to the next
ysr@777 1431 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1432 // represent Java objects, or they might be free blocks in a
ysr@777 1433 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1434 // distinguishable and the size of each is determinable.
ysr@777 1435
ysr@777 1436 // Returns the address of the start of the "block" that contains the
ysr@777 1437 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1438 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1439 // non-object.
ysr@777 1440 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1441
ysr@777 1442 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1443 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1444 // of the active area of the heap.
ysr@777 1445 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1446
ysr@777 1447 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1448 // the block is an object.
ysr@777 1449 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1450
ysr@777 1451 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1452 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1453
ysr@777 1454 // Section on thread-local allocation buffers (TLABs)
ysr@777 1455 // See CollectedHeap for semantics.
ysr@777 1456
brutisso@6376 1457 bool supports_tlab_allocation() const;
brutisso@6376 1458 size_t tlab_capacity(Thread* ignored) const;
brutisso@6376 1459 size_t tlab_used(Thread* ignored) const;
brutisso@6376 1460 size_t max_tlab_size() const;
brutisso@6376 1461 size_t unsafe_max_tlab_alloc(Thread* ignored) const;
ysr@777 1462
ysr@777 1463 // Can a compiler initialize a new object without store barriers?
ysr@777 1464 // This permission only extends from the creation of a new object
ysr@1462 1465 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1466 // is granted for this heap type, the compiler promises to call
ysr@1462 1467 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1468 // a new object for which such initializing store barriers will
ysr@1462 1469 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1470 // ready to provide a compensating write barrier as necessary
ysr@1462 1471 // if that storage came out of a non-young region. The efficiency
ysr@1462 1472 // of this implementation depends crucially on being able to
ysr@1462 1473 // answer very efficiently in constant time whether a piece of
ysr@1462 1474 // storage in the heap comes from a young region or not.
ysr@1462 1475 // See ReduceInitialCardMarks.
ysr@777 1476 virtual bool can_elide_tlab_store_barriers() const {
brutisso@3184 1477 return true;
ysr@1462 1478 }
ysr@1462 1479
ysr@1601 1480 virtual bool card_mark_must_follow_store() const {
ysr@1601 1481 return true;
ysr@1601 1482 }
ysr@1601 1483
tschatzl@6541 1484 inline bool is_in_young(const oop obj);
ysr@1462 1485
jmasa@2909 1486 #ifdef ASSERT
jmasa@2909 1487 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1488 #endif
jmasa@2909 1489
jmasa@2909 1490 virtual bool is_scavengable(const void* addr);
jmasa@2909 1491
ysr@1462 1492 // We don't need barriers for initializing stores to objects
ysr@1462 1493 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1494 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1495 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1496 // information for young gen objects.
tschatzl@6541 1497 virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
ysr@777 1498
ysr@777 1499 // Returns "true" iff the given word_size is "very large".
ysr@777 1500 static bool isHumongous(size_t word_size) {
johnc@1748 1501 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1502 // are capped at the humongous thresold and we want to
johnc@1748 1503 // ensure that we don't try to allocate a TLAB as
johnc@1748 1504 // humongous and that we don't allocate a humongous
johnc@1748 1505 // object in a TLAB.
johnc@1748 1506 return word_size > _humongous_object_threshold_in_words;
ysr@777 1507 }
ysr@777 1508
ysr@777 1509 // Update mod union table with the set of dirty cards.
ysr@777 1510 void updateModUnion();
ysr@777 1511
ysr@777 1512 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1513 // that this is always a safe operation, since it doesn't clear any
ysr@777 1514 // bits.
ysr@777 1515 void markModUnionRange(MemRegion mr);
ysr@777 1516
ysr@777 1517 // Records the fact that a marking phase is no longer in progress.
ysr@777 1518 void set_marking_complete() {
ysr@777 1519 _mark_in_progress = false;
ysr@777 1520 }
ysr@777 1521 void set_marking_started() {
ysr@777 1522 _mark_in_progress = true;
ysr@777 1523 }
ysr@777 1524 bool mark_in_progress() {
ysr@777 1525 return _mark_in_progress;
ysr@777 1526 }
ysr@777 1527
ysr@777 1528 // Print the maximum heap capacity.
ysr@777 1529 virtual size_t max_capacity() const;
ysr@777 1530
ysr@777 1531 virtual jlong millis_since_last_gc();
ysr@777 1532
tonyp@2974 1533
ysr@777 1534 // Convenience function to be used in situations where the heap type can be
ysr@777 1535 // asserted to be this type.
ysr@777 1536 static G1CollectedHeap* heap();
ysr@777 1537
ysr@777 1538 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1539 // add appropriate methods for any other surv rate groups
ysr@777 1540
brutisso@6376 1541 YoungList* young_list() const { return _young_list; }
ysr@777 1542
ysr@777 1543 // debugging
ysr@777 1544 bool check_young_list_well_formed() {
ysr@777 1545 return _young_list->check_list_well_formed();
ysr@777 1546 }
johnc@1829 1547
johnc@1829 1548 bool check_young_list_empty(bool check_heap,
ysr@777 1549 bool check_sample = true);
ysr@777 1550
ysr@777 1551 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1552 // many of these need to be public.
ysr@777 1553
ysr@777 1554 // The functions below are helper functions that a subclass of
ysr@777 1555 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1556 // functions.
ysr@777 1557 // This performs a concurrent marking of the live objects in a
ysr@777 1558 // bitmap off to the side.
ysr@777 1559 void doConcurrentMark();
ysr@777 1560
ysr@777 1561 bool isMarkedPrev(oop obj) const;
ysr@777 1562 bool isMarkedNext(oop obj) const;
ysr@777 1563
ysr@777 1564 // Determine if an object is dead, given the object and also
ysr@777 1565 // the region to which the object belongs. An object is dead
ysr@777 1566 // iff a) it was not allocated since the last mark and b) it
ysr@777 1567 // is not marked.
ysr@777 1568
ysr@777 1569 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1570 return
ysr@777 1571 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1572 !isMarkedPrev(obj);
ysr@777 1573 }
ysr@777 1574
ysr@777 1575 // This function returns true when an object has been
ysr@777 1576 // around since the previous marking and hasn't yet
ysr@777 1577 // been marked during this marking.
ysr@777 1578
ysr@777 1579 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1580 return
ysr@777 1581 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1582 !isMarkedNext(obj);
ysr@777 1583 }
ysr@777 1584
ysr@777 1585 // Determine if an object is dead, given only the object itself.
ysr@777 1586 // This will find the region to which the object belongs and
ysr@777 1587 // then call the region version of the same function.
ysr@777 1588
ysr@777 1589 // Added if it is NULL it isn't dead.
ysr@777 1590
tschatzl@6541 1591 inline bool is_obj_dead(const oop obj) const;
ysr@777 1592
tschatzl@6541 1593 inline bool is_obj_ill(const oop obj) const;
ysr@777 1594
johnc@5548 1595 bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
johnc@5548 1596 HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
johnc@5548 1597 bool is_marked(oop obj, VerifyOption vo);
johnc@5548 1598 const char* top_at_mark_start_str(VerifyOption vo);
johnc@5548 1599
johnc@5548 1600 ConcurrentMark* concurrent_mark() const { return _cm; }
johnc@5548 1601
johnc@5548 1602 // Refinement
johnc@5548 1603
johnc@5548 1604 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
johnc@5548 1605
johnc@5548 1606 // The dirty cards region list is used to record a subset of regions
johnc@5548 1607 // whose cards need clearing. The list if populated during the
johnc@5548 1608 // remembered set scanning and drained during the card table
johnc@5548 1609 // cleanup. Although the methods are reentrant, population/draining
johnc@5548 1610 // phases must not overlap. For synchronization purposes the last
johnc@5548 1611 // element on the list points to itself.
johnc@5548 1612 HeapRegion* _dirty_cards_region_list;
johnc@5548 1613 void push_dirty_cards_region(HeapRegion* hr);
johnc@5548 1614 HeapRegion* pop_dirty_cards_region();
johnc@5548 1615
johnc@5548 1616 // Optimized nmethod scanning support routines
johnc@5548 1617
johnc@5548 1618 // Register the given nmethod with the G1 heap
johnc@5548 1619 virtual void register_nmethod(nmethod* nm);
johnc@5548 1620
johnc@5548 1621 // Unregister the given nmethod from the G1 heap
johnc@5548 1622 virtual void unregister_nmethod(nmethod* nm);
johnc@5548 1623
johnc@5548 1624 // Migrate the nmethods in the code root lists of the regions
johnc@5548 1625 // in the collection set to regions in to-space. In the event
johnc@5548 1626 // of an evacuation failure, nmethods that reference objects
johnc@5548 1627 // that were not successfullly evacuated are not migrated.
johnc@5548 1628 void migrate_strong_code_roots();
johnc@5548 1629
tschatzl@6402 1630 // Free up superfluous code root memory.
tschatzl@6402 1631 void purge_code_root_memory();
tschatzl@6402 1632
johnc@5548 1633 // During an initial mark pause, mark all the code roots that
johnc@5548 1634 // point into regions *not* in the collection set.
johnc@5548 1635 void mark_strong_code_roots(uint worker_id);
johnc@5548 1636
johnc@5548 1637 // Rebuild the stong code root lists for each region
johnc@5548 1638 // after a full GC
johnc@5548 1639 void rebuild_strong_code_roots();
johnc@5548 1640
tschatzl@6229 1641 // Delete entries for dead interned string and clean up unreferenced symbols
tschatzl@6229 1642 // in symbol table, possibly in parallel.
tschatzl@6229 1643 void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
tschatzl@6229 1644
tschatzl@6405 1645 // Redirty logged cards in the refinement queue.
tschatzl@6405 1646 void redirty_logged_cards();
johnc@5548 1647 // Verification
johnc@5548 1648
johnc@5548 1649 // The following is just to alert the verification code
johnc@5548 1650 // that a full collection has occurred and that the
johnc@5548 1651 // remembered sets are no longer up to date.
johnc@5548 1652 bool _full_collection;
johnc@5548 1653 void set_full_collection() { _full_collection = true;}
johnc@5548 1654 void clear_full_collection() {_full_collection = false;}
johnc@5548 1655 bool full_collection() {return _full_collection;}
johnc@5548 1656
johnc@5548 1657 // Perform any cleanup actions necessary before allowing a verification.
johnc@5548 1658 virtual void prepare_for_verify();
johnc@5548 1659
johnc@5548 1660 // Perform verification.
johnc@5548 1661
johnc@5548 1662 // vo == UsePrevMarking -> use "prev" marking information,
johnc@5548 1663 // vo == UseNextMarking -> use "next" marking information
johnc@5548 1664 // vo == UseMarkWord -> use the mark word in the object header
johnc@5548 1665 //
johnc@5548 1666 // NOTE: Only the "prev" marking information is guaranteed to be
johnc@5548 1667 // consistent most of the time, so most calls to this should use
johnc@5548 1668 // vo == UsePrevMarking.
johnc@5548 1669 // Currently, there is only one case where this is called with
johnc@5548 1670 // vo == UseNextMarking, which is to verify the "next" marking
johnc@5548 1671 // information at the end of remark.
johnc@5548 1672 // Currently there is only one place where this is called with
johnc@5548 1673 // vo == UseMarkWord, which is to verify the marking during a
johnc@5548 1674 // full GC.
johnc@5548 1675 void verify(bool silent, VerifyOption vo);
johnc@5548 1676
johnc@5548 1677 // Override; it uses the "prev" marking information
johnc@5548 1678 virtual void verify(bool silent);
johnc@5548 1679
tonyp@3957 1680 // The methods below are here for convenience and dispatch the
tonyp@3957 1681 // appropriate method depending on value of the given VerifyOption
johnc@5548 1682 // parameter. The values for that parameter, and their meanings,
johnc@5548 1683 // are the same as those above.
tonyp@3957 1684
tonyp@3957 1685 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1686 const HeapRegion* hr,
tschatzl@6541 1687 const VerifyOption vo) const;
tonyp@3957 1688
tonyp@3957 1689 bool is_obj_dead_cond(const oop obj,
tschatzl@6541 1690 const VerifyOption vo) const;
tonyp@3957 1691
johnc@5548 1692 // Printing
tonyp@3957 1693
johnc@5548 1694 virtual void print_on(outputStream* st) const;
johnc@5548 1695 virtual void print_extended_on(outputStream* st) const;
johnc@5548 1696 virtual void print_on_error(outputStream* st) const;
ysr@777 1697
johnc@5548 1698 virtual void print_gc_threads_on(outputStream* st) const;
johnc@5548 1699 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1700
johnc@5548 1701 // Override
johnc@5548 1702 void print_tracing_info() const;
johnc@5548 1703
johnc@5548 1704 // The following two methods are helpful for debugging RSet issues.
johnc@5548 1705 void print_cset_rsets() PRODUCT_RETURN;
johnc@5548 1706 void print_all_rsets() PRODUCT_RETURN;
apetrusenko@1231 1707
ysr@777 1708 public:
ysr@777 1709 size_t pending_card_num();
ysr@777 1710 size_t cards_scanned();
ysr@777 1711
ysr@777 1712 protected:
ysr@777 1713 size_t _max_heap_capacity;
ysr@777 1714 };
ysr@777 1715
ysr@1280 1716 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@1280 1717 private:
ysr@1280 1718 bool _retired;
ysr@1280 1719
ysr@1280 1720 public:
johnc@3086 1721 G1ParGCAllocBuffer(size_t gclab_word_size);
ysr@1280 1722
tonyp@3416 1723 void set_buf(HeapWord* buf) {
ysr@1280 1724 ParGCAllocBuffer::set_buf(buf);
ysr@1280 1725 _retired = false;
ysr@1280 1726 }
ysr@1280 1727
tonyp@3416 1728 void retire(bool end_of_gc, bool retain) {
ysr@1280 1729 if (_retired)
ysr@1280 1730 return;
ysr@1280 1731 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@1280 1732 _retired = true;
ysr@1280 1733 }
ysr@1280 1734 };
ysr@1280 1735
ysr@1280 1736 class G1ParScanThreadState : public StackObj {
ysr@1280 1737 protected:
ysr@1280 1738 G1CollectedHeap* _g1h;
ysr@1280 1739 RefToScanQueue* _refs;
ysr@1280 1740 DirtyCardQueue _dcq;
mgerdin@5811 1741 G1SATBCardTableModRefBS* _ct_bs;
ysr@1280 1742 G1RemSet* _g1_rem;
ysr@1280 1743
tschatzl@6332 1744 G1ParGCAllocBuffer _surviving_alloc_buffer;
tschatzl@6332 1745 G1ParGCAllocBuffer _tenured_alloc_buffer;
tschatzl@6332 1746 G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
apetrusenko@1826 1747 ageTable _age_table;
ysr@1280 1748
tschatzl@6331 1749 G1ParScanClosure _scanner;
tschatzl@6331 1750
ysr@1280 1751 size_t _alloc_buffer_waste;
ysr@1280 1752 size_t _undo_waste;
ysr@1280 1753
ysr@1280 1754 OopsInHeapRegionClosure* _evac_failure_cl;
ysr@1280 1755
sla@5237 1756 int _hash_seed;
johnc@3463 1757 uint _queue_num;
ysr@1280 1758
tonyp@1966 1759 size_t _term_attempts;
ysr@1280 1760
ysr@1280 1761 double _start;
ysr@1280 1762 double _start_strong_roots;
ysr@1280 1763 double _strong_roots_time;
ysr@1280 1764 double _start_term;
ysr@1280 1765 double _term_time;
ysr@1280 1766
ysr@1280 1767 // Map from young-age-index (0 == not young, 1 is youngest) to
ysr@1280 1768 // surviving words. base is what we get back from the malloc call
ysr@1280 1769 size_t* _surviving_young_words_base;
ysr@1280 1770 // this points into the array, as we use the first few entries for padding
ysr@1280 1771 size_t* _surviving_young_words;
ysr@1280 1772
jcoomes@2064 1773 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
ysr@1280 1774
ysr@1280 1775 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
ysr@1280 1776
ysr@1280 1777 void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
ysr@1280 1778
ysr@1280 1779 DirtyCardQueue& dirty_card_queue() { return _dcq; }
mgerdin@5811 1780 G1SATBCardTableModRefBS* ctbs() { return _ct_bs; }
ysr@1280 1781
tschatzl@6541 1782 template <class T> inline void immediate_rs_update(HeapRegion* from, T* p, int tid);
ysr@1280 1783
ysr@1280 1784 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1785 // If the new value of the field points to the same region or
ysr@1280 1786 // is the to-space, we don't need to include it in the Rset updates.
ysr@1280 1787 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
ysr@1280 1788 size_t card_index = ctbs()->index_for(p);
ysr@1280 1789 // If the card hasn't been added to the buffer, do it.
ysr@1280 1790 if (ctbs()->mark_card_deferred(card_index)) {
ysr@1280 1791 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
ysr@1280 1792 }
ysr@1280 1793 }
ysr@1280 1794 }
ysr@1280 1795
ysr@1280 1796 public:
tschatzl@6331 1797 G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp);
ysr@1280 1798
ysr@1280 1799 ~G1ParScanThreadState() {
zgu@3900 1800 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
ysr@1280 1801 }
ysr@1280 1802
ysr@1280 1803 RefToScanQueue* refs() { return _refs; }
ysr@1280 1804 ageTable* age_table() { return &_age_table; }
ysr@1280 1805
tschatzl@6332 1806 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
apetrusenko@1826 1807 return _alloc_buffers[purpose];
ysr@1280 1808 }
ysr@1280 1809
jcoomes@2064 1810 size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
jcoomes@2064 1811 size_t undo_waste() const { return _undo_waste; }
ysr@1280 1812
jcoomes@2217 1813 #ifdef ASSERT
jcoomes@2217 1814 bool verify_ref(narrowOop* ref) const;
jcoomes@2217 1815 bool verify_ref(oop* ref) const;
jcoomes@2217 1816 bool verify_task(StarTask ref) const;
jcoomes@2217 1817 #endif // ASSERT
jcoomes@2217 1818
ysr@1280 1819 template <class T> void push_on_queue(T* ref) {
jcoomes@2217 1820 assert(verify_ref(ref), "sanity");
jcoomes@2064 1821 refs()->push(ref);
ysr@1280 1822 }
ysr@1280 1823
tschatzl@6541 1824 template <class T> inline void update_rs(HeapRegion* from, T* p, int tid);
ysr@1280 1825
ysr@1280 1826 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1827 HeapWord* obj = NULL;
apetrusenko@1826 1828 size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
apetrusenko@1826 1829 if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
tschatzl@6332 1830 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
tschatzl@6332 1831 add_to_alloc_buffer_waste(alloc_buf->words_remaining());
tschatzl@6332 1832 alloc_buf->retire(false /* end_of_gc */, false /* retain */);
ysr@1280 1833
apetrusenko@1826 1834 HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
ysr@1280 1835 if (buf == NULL) return NULL; // Let caller handle allocation failure.
tschatzl@6332 1836 // Otherwise.
tschatzl@6332 1837 alloc_buf->set_word_size(gclab_word_size);
tschatzl@6332 1838 alloc_buf->set_buf(buf);
ysr@1280 1839
ysr@1280 1840 obj = alloc_buf->allocate(word_sz);
ysr@1280 1841 assert(obj != NULL, "buffer was definitely big enough...");
ysr@1280 1842 } else {
ysr@1280 1843 obj = _g1h->par_allocate_during_gc(purpose, word_sz);
ysr@1280 1844 }
ysr@1280 1845 return obj;
ysr@1280 1846 }
ysr@1280 1847
ysr@1280 1848 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1849 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
ysr@1280 1850 if (obj != NULL) return obj;
ysr@1280 1851 return allocate_slow(purpose, word_sz);
ysr@1280 1852 }
ysr@1280 1853
ysr@1280 1854 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
ysr@1280 1855 if (alloc_buffer(purpose)->contains(obj)) {
ysr@1280 1856 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
ysr@1280 1857 "should contain whole object");
ysr@1280 1858 alloc_buffer(purpose)->undo_allocation(obj, word_sz);
ysr@1280 1859 } else {
ysr@1280 1860 CollectedHeap::fill_with_object(obj, word_sz);
ysr@1280 1861 add_to_undo_waste(word_sz);
ysr@1280 1862 }
ysr@1280 1863 }
ysr@1280 1864
ysr@1280 1865 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
ysr@1280 1866 _evac_failure_cl = evac_failure_cl;
ysr@1280 1867 }
ysr@1280 1868 OopsInHeapRegionClosure* evac_failure_closure() {
ysr@1280 1869 return _evac_failure_cl;
ysr@1280 1870 }
ysr@1280 1871
ysr@1280 1872 int* hash_seed() { return &_hash_seed; }
johnc@3463 1873 uint queue_num() { return _queue_num; }
ysr@1280 1874
jcoomes@2064 1875 size_t term_attempts() const { return _term_attempts; }
tonyp@1966 1876 void note_term_attempt() { _term_attempts++; }
ysr@1280 1877
ysr@1280 1878 void start_strong_roots() {
ysr@1280 1879 _start_strong_roots = os::elapsedTime();
ysr@1280 1880 }
ysr@1280 1881 void end_strong_roots() {
ysr@1280 1882 _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
ysr@1280 1883 }
jcoomes@2064 1884 double strong_roots_time() const { return _strong_roots_time; }
ysr@1280 1885
ysr@1280 1886 void start_term_time() {
ysr@1280 1887 note_term_attempt();
ysr@1280 1888 _start_term = os::elapsedTime();
ysr@1280 1889 }
ysr@1280 1890 void end_term_time() {
ysr@1280 1891 _term_time += (os::elapsedTime() - _start_term);
ysr@1280 1892 }
jcoomes@2064 1893 double term_time() const { return _term_time; }
ysr@1280 1894
jcoomes@2064 1895 double elapsed_time() const {
ysr@1280 1896 return os::elapsedTime() - _start;
ysr@1280 1897 }
ysr@1280 1898
jcoomes@2064 1899 static void
jcoomes@2064 1900 print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 1901 void
jcoomes@2064 1902 print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
jcoomes@2064 1903
ysr@1280 1904 size_t* surviving_young_words() {
ysr@1280 1905 // We add on to hide entry 0 which accumulates surviving words for
ysr@1280 1906 // age -1 regions (i.e. non-young ones)
ysr@1280 1907 return _surviving_young_words;
ysr@1280 1908 }
ysr@1280 1909
ysr@1280 1910 void retire_alloc_buffers() {
ysr@1280 1911 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
apetrusenko@1826 1912 size_t waste = _alloc_buffers[ap]->words_remaining();
ysr@1280 1913 add_to_alloc_buffer_waste(waste);
johnc@3982 1914 _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
johnc@3982 1915 true /* end_of_gc */,
johnc@3982 1916 false /* retain */);
ysr@1280 1917 }
ysr@1280 1918 }
tschatzl@6408 1919 private:
tschatzl@6408 1920 #define G1_PARTIAL_ARRAY_MASK 0x2
tschatzl@6408 1921
tschatzl@6408 1922 inline bool has_partial_array_mask(oop* ref) const {
tschatzl@6408 1923 return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
tschatzl@6408 1924 }
tschatzl@6408 1925
tschatzl@6408 1926 // We never encode partial array oops as narrowOop*, so return false immediately.
tschatzl@6408 1927 // This allows the compiler to create optimized code when popping references from
tschatzl@6408 1928 // the work queue.
tschatzl@6408 1929 inline bool has_partial_array_mask(narrowOop* ref) const {
tschatzl@6408 1930 assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
tschatzl@6408 1931 return false;
tschatzl@6408 1932 }
tschatzl@6408 1933
tschatzl@6408 1934 // Only implement set_partial_array_mask() for regular oops, not for narrowOops.
tschatzl@6408 1935 // We always encode partial arrays as regular oop, to allow the
tschatzl@6408 1936 // specialization for has_partial_array_mask() for narrowOops above.
tschatzl@6408 1937 // This means that unintentional use of this method with narrowOops are caught
tschatzl@6408 1938 // by the compiler.
tschatzl@6408 1939 inline oop* set_partial_array_mask(oop obj) const {
tschatzl@6408 1940 assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
tschatzl@6408 1941 return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
tschatzl@6408 1942 }
tschatzl@6408 1943
tschatzl@6408 1944 inline oop clear_partial_array_mask(oop* ref) const {
tschatzl@6408 1945 return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
tschatzl@6408 1946 }
tschatzl@6408 1947
tschatzl@6541 1948 inline void do_oop_partial_array(oop* p);
tschatzl@6408 1949
tschatzl@6408 1950 // This method is applied to the fields of the objects that have just been copied.
tschatzl@6408 1951 template <class T> void do_oop_evac(T* p, HeapRegion* from) {
tschatzl@6408 1952 assert(!oopDesc::is_null(oopDesc::load_decode_heap_oop(p)),
tschatzl@6408 1953 "Reference should not be NULL here as such are never pushed to the task queue.");
tschatzl@6408 1954 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
tschatzl@6408 1955
tschatzl@6408 1956 // Although we never intentionally push references outside of the collection
tschatzl@6408 1957 // set, due to (benign) races in the claim mechanism during RSet scanning more
tschatzl@6408 1958 // than one thread might claim the same card. So the same card may be
tschatzl@6408 1959 // processed multiple times. So redo this check.
tschatzl@6408 1960 if (_g1h->in_cset_fast_test(obj)) {
tschatzl@6408 1961 oop forwardee;
tschatzl@6408 1962 if (obj->is_forwarded()) {
tschatzl@6408 1963 forwardee = obj->forwardee();
tschatzl@6408 1964 } else {
tschatzl@6408 1965 forwardee = copy_to_survivor_space(obj);
tschatzl@6408 1966 }
tschatzl@6408 1967 assert(forwardee != NULL, "forwardee should not be NULL");
tschatzl@6408 1968 oopDesc::encode_store_heap_oop(p, forwardee);
tschatzl@6408 1969 }
tschatzl@6408 1970
tschatzl@6408 1971 assert(obj != NULL, "Must be");
tschatzl@6408 1972 update_rs(from, p, queue_num());
tschatzl@6408 1973 }
tschatzl@6408 1974 public:
ysr@1280 1975
tschatzl@6331 1976 oop copy_to_survivor_space(oop const obj);
tschatzl@6331 1977
tschatzl@6541 1978 template <class T> inline void deal_with_reference(T* ref_to_scan);
ysr@1280 1979
tschatzl@6541 1980 inline void deal_with_reference(StarTask ref);
jcoomes@2217 1981
tschatzl@6332 1982 public:
jcoomes@2217 1983 void trim_queue();
ysr@1280 1984 };
stefank@2314 1985
stefank@2314 1986 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial