src/share/vm/opto/runtime.cpp

Wed, 11 Jun 2014 11:05:10 -0700

author
kvn
date
Wed, 11 Jun 2014 11:05:10 -0700
changeset 7027
b20a35eae442
parent 6680
78bbf4d43a14
child 7152
166d744df0de
permissions
-rw-r--r--

8035968: Leverage CPU Instructions to Improve SHA Performance on SPARC
Summary: Add C2 SHA intrinsics on SPARC
Reviewed-by: kvn, roland
Contributed-by: james.cheng@oracle.com

duke@435 1 /*
kvn@6653 2 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/nmethod.hpp"
stefank@2314 31 #include "code/pcDesc.hpp"
stefank@2314 32 #include "code/scopeDesc.hpp"
stefank@2314 33 #include "code/vtableStubs.hpp"
stefank@2314 34 #include "compiler/compileBroker.hpp"
stefank@2314 35 #include "compiler/compilerOracle.hpp"
stefank@2314 36 #include "compiler/oopMap.hpp"
stefank@2314 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
stefank@2314 38 #include "gc_implementation/g1/heapRegion.hpp"
stefank@2314 39 #include "gc_interface/collectedHeap.hpp"
stefank@2314 40 #include "interpreter/bytecode.hpp"
stefank@2314 41 #include "interpreter/interpreter.hpp"
stefank@2314 42 #include "interpreter/linkResolver.hpp"
stefank@2314 43 #include "memory/barrierSet.hpp"
stefank@2314 44 #include "memory/gcLocker.inline.hpp"
stefank@2314 45 #include "memory/oopFactory.hpp"
stefank@2314 46 #include "oops/objArrayKlass.hpp"
stefank@2314 47 #include "oops/oop.inline.hpp"
stefank@2314 48 #include "opto/addnode.hpp"
stefank@2314 49 #include "opto/callnode.hpp"
stefank@2314 50 #include "opto/cfgnode.hpp"
stefank@2314 51 #include "opto/connode.hpp"
stefank@2314 52 #include "opto/graphKit.hpp"
stefank@2314 53 #include "opto/machnode.hpp"
stefank@2314 54 #include "opto/matcher.hpp"
stefank@2314 55 #include "opto/memnode.hpp"
stefank@2314 56 #include "opto/mulnode.hpp"
stefank@2314 57 #include "opto/runtime.hpp"
stefank@2314 58 #include "opto/subnode.hpp"
stefank@2314 59 #include "runtime/fprofiler.hpp"
stefank@2314 60 #include "runtime/handles.inline.hpp"
stefank@2314 61 #include "runtime/interfaceSupport.hpp"
stefank@2314 62 #include "runtime/javaCalls.hpp"
stefank@2314 63 #include "runtime/sharedRuntime.hpp"
stefank@2314 64 #include "runtime/signature.hpp"
stefank@2314 65 #include "runtime/threadCritical.hpp"
stefank@2314 66 #include "runtime/vframe.hpp"
stefank@2314 67 #include "runtime/vframeArray.hpp"
stefank@2314 68 #include "runtime/vframe_hp.hpp"
stefank@2314 69 #include "utilities/copy.hpp"
stefank@2314 70 #include "utilities/preserveException.hpp"
stefank@2314 71 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 72 # include "adfiles/ad_x86_32.hpp"
stefank@2314 73 #endif
stefank@2314 74 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 75 # include "adfiles/ad_x86_64.hpp"
stefank@2314 76 #endif
stefank@2314 77 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 78 # include "adfiles/ad_sparc.hpp"
stefank@2314 79 #endif
stefank@2314 80 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 81 # include "adfiles/ad_zero.hpp"
stefank@2314 82 #endif
bobv@2508 83 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 84 # include "adfiles/ad_arm.hpp"
bobv@2508 85 #endif
goetz@6441 86 #ifdef TARGET_ARCH_MODEL_ppc_32
goetz@6441 87 # include "adfiles/ad_ppc_32.hpp"
goetz@6441 88 #endif
goetz@6441 89 #ifdef TARGET_ARCH_MODEL_ppc_64
goetz@6441 90 # include "adfiles/ad_ppc_64.hpp"
bobv@2508 91 #endif
duke@435 92
duke@435 93
duke@435 94 // For debugging purposes:
duke@435 95 // To force FullGCALot inside a runtime function, add the following two lines
duke@435 96 //
duke@435 97 // Universe::release_fullgc_alot_dummy();
duke@435 98 // MarkSweep::invoke(0, "Debugging");
duke@435 99 //
duke@435 100 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
duke@435 101
duke@435 102
duke@435 103
duke@435 104
duke@435 105 // Compiled code entry points
duke@435 106 address OptoRuntime::_new_instance_Java = NULL;
duke@435 107 address OptoRuntime::_new_array_Java = NULL;
kvn@3157 108 address OptoRuntime::_new_array_nozero_Java = NULL;
duke@435 109 address OptoRuntime::_multianewarray2_Java = NULL;
duke@435 110 address OptoRuntime::_multianewarray3_Java = NULL;
duke@435 111 address OptoRuntime::_multianewarray4_Java = NULL;
duke@435 112 address OptoRuntime::_multianewarray5_Java = NULL;
iveresov@3002 113 address OptoRuntime::_multianewarrayN_Java = NULL;
ysr@777 114 address OptoRuntime::_g1_wb_pre_Java = NULL;
ysr@777 115 address OptoRuntime::_g1_wb_post_Java = NULL;
duke@435 116 address OptoRuntime::_vtable_must_compile_Java = NULL;
duke@435 117 address OptoRuntime::_complete_monitor_locking_Java = NULL;
duke@435 118 address OptoRuntime::_rethrow_Java = NULL;
duke@435 119
duke@435 120 address OptoRuntime::_slow_arraycopy_Java = NULL;
duke@435 121 address OptoRuntime::_register_finalizer_Java = NULL;
duke@435 122
duke@435 123 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 124 address OptoRuntime::_zap_dead_Java_locals_Java = NULL;
duke@435 125 address OptoRuntime::_zap_dead_native_locals_Java = NULL;
duke@435 126 # endif
duke@435 127
never@2950 128 ExceptionBlob* OptoRuntime::_exception_blob;
duke@435 129
duke@435 130 // This should be called in an assertion at the start of OptoRuntime routines
duke@435 131 // which are entered from compiled code (all of them)
roland@5106 132 #ifdef ASSERT
duke@435 133 static bool check_compiled_frame(JavaThread* thread) {
duke@435 134 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
duke@435 135 RegisterMap map(thread, false);
duke@435 136 frame caller = thread->last_frame().sender(&map);
duke@435 137 assert(caller.is_compiled_frame(), "not being called from compiled like code");
duke@435 138 return true;
duke@435 139 }
roland@5106 140 #endif // ASSERT
duke@435 141
duke@435 142
duke@435 143 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
anoll@5919 144 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
anoll@5919 145 if (var == NULL) { return false; }
duke@435 146
anoll@5919 147 bool OptoRuntime::generate(ciEnv* env) {
duke@435 148
duke@435 149 generate_exception_blob();
duke@435 150
duke@435 151 // Note: tls: Means fetching the return oop out of the thread-local storage
duke@435 152 //
duke@435 153 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc
duke@435 154 // -------------------------------------------------------------------------------------------------------------------------------
duke@435 155 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false);
duke@435 156 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false);
kvn@3157 157 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false);
duke@435 158 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false);
duke@435 159 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false);
duke@435 160 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false);
duke@435 161 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false);
iveresov@3002 162 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false);
ysr@777 163 gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false);
ysr@777 164 gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false);
anoll@5919 165 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
duke@435 166 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true );
duke@435 167
duke@435 168 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false);
duke@435 169 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false);
duke@435 170
duke@435 171 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 172 gen(env, _zap_dead_Java_locals_Java , zap_dead_locals_Type , zap_dead_Java_locals_C , 0 , false, true , false );
duke@435 173 gen(env, _zap_dead_native_locals_Java , zap_dead_locals_Type , zap_dead_native_locals_C , 0 , false, true , false );
duke@435 174 # endif
anoll@5919 175 return true;
duke@435 176 }
duke@435 177
duke@435 178 #undef gen
duke@435 179
duke@435 180
duke@435 181 // Helper method to do generation of RunTimeStub's
duke@435 182 address OptoRuntime::generate_stub( ciEnv* env,
duke@435 183 TypeFunc_generator gen, address C_function,
duke@435 184 const char *name, int is_fancy_jump,
duke@435 185 bool pass_tls,
duke@435 186 bool save_argument_registers,
duke@435 187 bool return_pc ) {
duke@435 188 ResourceMark rm;
duke@435 189 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
duke@435 190 return C.stub_entry_point();
duke@435 191 }
duke@435 192
duke@435 193 const char* OptoRuntime::stub_name(address entry) {
duke@435 194 #ifndef PRODUCT
duke@435 195 CodeBlob* cb = CodeCache::find_blob(entry);
duke@435 196 RuntimeStub* rs =(RuntimeStub *)cb;
duke@435 197 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
duke@435 198 return rs->name();
duke@435 199 #else
duke@435 200 // Fast implementation for product mode (maybe it should be inlined too)
duke@435 201 return "runtime stub";
duke@435 202 #endif
duke@435 203 }
duke@435 204
duke@435 205
duke@435 206 //=============================================================================
duke@435 207 // Opto compiler runtime routines
duke@435 208 //=============================================================================
duke@435 209
duke@435 210
duke@435 211 //=============================allocation======================================
duke@435 212 // We failed the fast-path allocation. Now we need to do a scavenge or GC
duke@435 213 // and try allocation again.
duke@435 214
ysr@1601 215 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
duke@435 216 // After any safepoint, just before going back to compiled code,
ysr@1462 217 // we inform the GC that we will be doing initializing writes to
ysr@1462 218 // this object in the future without emitting card-marks, so
ysr@1462 219 // GC may take any compensating steps.
ysr@1462 220 // NOTE: Keep this code consistent with GraphKit::store_barrier.
duke@435 221
duke@435 222 oop new_obj = thread->vm_result();
duke@435 223 if (new_obj == NULL) return;
duke@435 224
duke@435 225 assert(Universe::heap()->can_elide_tlab_store_barriers(),
duke@435 226 "compiler must check this first");
ysr@1462 227 // GC may decide to give back a safer copy of new_obj.
ysr@1601 228 new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
duke@435 229 thread->set_vm_result(new_obj);
duke@435 230 }
duke@435 231
duke@435 232 // object allocation
coleenp@4037 233 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
duke@435 234 JRT_BLOCK;
duke@435 235 #ifndef PRODUCT
duke@435 236 SharedRuntime::_new_instance_ctr++; // new instance requires GC
duke@435 237 #endif
duke@435 238 assert(check_compiled_frame(thread), "incorrect caller");
duke@435 239
duke@435 240 // These checks are cheap to make and support reflective allocation.
hseigel@4278 241 int lh = klass->layout_helper();
duke@435 242 if (Klass::layout_helper_needs_slow_path(lh)
coleenp@4037 243 || !InstanceKlass::cast(klass)->is_initialized()) {
duke@435 244 KlassHandle kh(THREAD, klass);
duke@435 245 kh->check_valid_for_instantiation(false, THREAD);
duke@435 246 if (!HAS_PENDING_EXCEPTION) {
coleenp@4037 247 InstanceKlass::cast(kh())->initialize(THREAD);
duke@435 248 }
duke@435 249 if (!HAS_PENDING_EXCEPTION) {
duke@435 250 klass = kh();
duke@435 251 } else {
duke@435 252 klass = NULL;
duke@435 253 }
duke@435 254 }
duke@435 255
duke@435 256 if (klass != NULL) {
duke@435 257 // Scavenge and allocate an instance.
coleenp@4037 258 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
duke@435 259 thread->set_vm_result(result);
duke@435 260
duke@435 261 // Pass oops back through thread local storage. Our apparent type to Java
duke@435 262 // is that we return an oop, but we can block on exit from this routine and
duke@435 263 // a GC can trash the oop in C's return register. The generated stub will
duke@435 264 // fetch the oop from TLS after any possible GC.
duke@435 265 }
duke@435 266
duke@435 267 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 268 JRT_BLOCK_END;
duke@435 269
duke@435 270 if (GraphKit::use_ReduceInitialCardMarks()) {
ysr@1462 271 // inform GC that we won't do card marks for initializing writes.
ysr@1601 272 new_store_pre_barrier(thread);
duke@435 273 }
duke@435 274 JRT_END
duke@435 275
duke@435 276
duke@435 277 // array allocation
coleenp@4037 278 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
duke@435 279 JRT_BLOCK;
duke@435 280 #ifndef PRODUCT
duke@435 281 SharedRuntime::_new_array_ctr++; // new array requires GC
duke@435 282 #endif
duke@435 283 assert(check_compiled_frame(thread), "incorrect caller");
duke@435 284
duke@435 285 // Scavenge and allocate an instance.
duke@435 286 oop result;
duke@435 287
hseigel@4278 288 if (array_type->oop_is_typeArray()) {
duke@435 289 // The oopFactory likes to work with the element type.
duke@435 290 // (We could bypass the oopFactory, since it doesn't add much value.)
coleenp@4142 291 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
duke@435 292 result = oopFactory::new_typeArray(elem_type, len, THREAD);
duke@435 293 } else {
duke@435 294 // Although the oopFactory likes to work with the elem_type,
duke@435 295 // the compiler prefers the array_type, since it must already have
duke@435 296 // that latter value in hand for the fast path.
coleenp@4142 297 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
duke@435 298 result = oopFactory::new_objArray(elem_type, len, THREAD);
duke@435 299 }
duke@435 300
duke@435 301 // Pass oops back through thread local storage. Our apparent type to Java
duke@435 302 // is that we return an oop, but we can block on exit from this routine and
duke@435 303 // a GC can trash the oop in C's return register. The generated stub will
duke@435 304 // fetch the oop from TLS after any possible GC.
duke@435 305 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 306 thread->set_vm_result(result);
duke@435 307 JRT_BLOCK_END;
duke@435 308
duke@435 309 if (GraphKit::use_ReduceInitialCardMarks()) {
ysr@1462 310 // inform GC that we won't do card marks for initializing writes.
ysr@1601 311 new_store_pre_barrier(thread);
duke@435 312 }
duke@435 313 JRT_END
duke@435 314
kvn@3157 315 // array allocation without zeroing
coleenp@4037 316 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
kvn@3157 317 JRT_BLOCK;
kvn@3157 318 #ifndef PRODUCT
kvn@3157 319 SharedRuntime::_new_array_ctr++; // new array requires GC
kvn@3157 320 #endif
kvn@3157 321 assert(check_compiled_frame(thread), "incorrect caller");
kvn@3157 322
kvn@3157 323 // Scavenge and allocate an instance.
kvn@3157 324 oop result;
kvn@3157 325
hseigel@4278 326 assert(array_type->oop_is_typeArray(), "should be called only for type array");
kvn@3157 327 // The oopFactory likes to work with the element type.
coleenp@4142 328 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
kvn@3157 329 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
kvn@3157 330
kvn@3157 331 // Pass oops back through thread local storage. Our apparent type to Java
kvn@3157 332 // is that we return an oop, but we can block on exit from this routine and
kvn@3157 333 // a GC can trash the oop in C's return register. The generated stub will
kvn@3157 334 // fetch the oop from TLS after any possible GC.
kvn@3157 335 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
kvn@3157 336 thread->set_vm_result(result);
kvn@3157 337 JRT_BLOCK_END;
kvn@3157 338
kvn@3157 339 if (GraphKit::use_ReduceInitialCardMarks()) {
kvn@3157 340 // inform GC that we won't do card marks for initializing writes.
kvn@3157 341 new_store_pre_barrier(thread);
kvn@3157 342 }
kvn@3259 343
kvn@3259 344 oop result = thread->vm_result();
kvn@3259 345 if ((len > 0) && (result != NULL) &&
kvn@3259 346 is_deoptimized_caller_frame(thread)) {
kvn@3259 347 // Zero array here if the caller is deoptimized.
kvn@3259 348 int size = ((typeArrayOop)result)->object_size();
coleenp@4142 349 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
kvn@3259 350 const size_t hs = arrayOopDesc::header_size(elem_type);
kvn@3259 351 // Align to next 8 bytes to avoid trashing arrays's length.
kvn@3259 352 const size_t aligned_hs = align_object_offset(hs);
kvn@3259 353 HeapWord* obj = (HeapWord*)result;
kvn@3259 354 if (aligned_hs > hs) {
kvn@3259 355 Copy::zero_to_words(obj+hs, aligned_hs-hs);
kvn@3259 356 }
kvn@3259 357 // Optimized zeroing.
kvn@3259 358 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
kvn@3259 359 }
kvn@3259 360
kvn@3157 361 JRT_END
kvn@3157 362
duke@435 363 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
duke@435 364
duke@435 365 // multianewarray for 2 dimensions
coleenp@4037 366 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
duke@435 367 #ifndef PRODUCT
duke@435 368 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
duke@435 369 #endif
duke@435 370 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 371 assert(elem_type->is_klass(), "not a class");
duke@435 372 jint dims[2];
duke@435 373 dims[0] = len1;
duke@435 374 dims[1] = len2;
coleenp@4142 375 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
duke@435 376 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 377 thread->set_vm_result(obj);
duke@435 378 JRT_END
duke@435 379
duke@435 380 // multianewarray for 3 dimensions
coleenp@4037 381 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
duke@435 382 #ifndef PRODUCT
duke@435 383 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
duke@435 384 #endif
duke@435 385 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 386 assert(elem_type->is_klass(), "not a class");
duke@435 387 jint dims[3];
duke@435 388 dims[0] = len1;
duke@435 389 dims[1] = len2;
duke@435 390 dims[2] = len3;
coleenp@4142 391 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
duke@435 392 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 393 thread->set_vm_result(obj);
duke@435 394 JRT_END
duke@435 395
duke@435 396 // multianewarray for 4 dimensions
coleenp@4037 397 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
duke@435 398 #ifndef PRODUCT
duke@435 399 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
duke@435 400 #endif
duke@435 401 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 402 assert(elem_type->is_klass(), "not a class");
duke@435 403 jint dims[4];
duke@435 404 dims[0] = len1;
duke@435 405 dims[1] = len2;
duke@435 406 dims[2] = len3;
duke@435 407 dims[3] = len4;
coleenp@4142 408 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
duke@435 409 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 410 thread->set_vm_result(obj);
duke@435 411 JRT_END
duke@435 412
duke@435 413 // multianewarray for 5 dimensions
coleenp@4037 414 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
duke@435 415 #ifndef PRODUCT
duke@435 416 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
duke@435 417 #endif
duke@435 418 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 419 assert(elem_type->is_klass(), "not a class");
duke@435 420 jint dims[5];
duke@435 421 dims[0] = len1;
duke@435 422 dims[1] = len2;
duke@435 423 dims[2] = len3;
duke@435 424 dims[3] = len4;
duke@435 425 dims[4] = len5;
coleenp@4142 426 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
duke@435 427 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 428 thread->set_vm_result(obj);
duke@435 429 JRT_END
duke@435 430
coleenp@4037 431 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
iveresov@3002 432 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 433 assert(elem_type->is_klass(), "not a class");
iveresov@3002 434 assert(oop(dims)->is_typeArray(), "not an array");
iveresov@3002 435
iveresov@3002 436 ResourceMark rm;
iveresov@3002 437 jint len = dims->length();
iveresov@3002 438 assert(len > 0, "Dimensions array should contain data");
iveresov@3002 439 jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
iveresov@3002 440 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
iveresov@3002 441 Copy::conjoint_jints_atomic(j_dims, c_dims, len);
iveresov@3002 442
coleenp@4142 443 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
iveresov@3002 444 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
iveresov@3002 445 thread->set_vm_result(obj);
iveresov@3002 446 JRT_END
iveresov@3002 447
iveresov@3002 448
duke@435 449 const TypeFunc *OptoRuntime::new_instance_Type() {
duke@435 450 // create input type (domain)
duke@435 451 const Type **fields = TypeTuple::fields(1);
duke@435 452 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
duke@435 453 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 454
duke@435 455 // create result type (range)
duke@435 456 fields = TypeTuple::fields(1);
duke@435 457 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 458
duke@435 459 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 460
duke@435 461 return TypeFunc::make(domain, range);
duke@435 462 }
duke@435 463
duke@435 464
duke@435 465 const TypeFunc *OptoRuntime::athrow_Type() {
duke@435 466 // create input type (domain)
duke@435 467 const Type **fields = TypeTuple::fields(1);
duke@435 468 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
duke@435 469 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 470
duke@435 471 // create result type (range)
duke@435 472 fields = TypeTuple::fields(0);
duke@435 473
duke@435 474 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 475
duke@435 476 return TypeFunc::make(domain, range);
duke@435 477 }
duke@435 478
duke@435 479
duke@435 480 const TypeFunc *OptoRuntime::new_array_Type() {
duke@435 481 // create input type (domain)
duke@435 482 const Type **fields = TypeTuple::fields(2);
duke@435 483 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
duke@435 484 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
duke@435 485 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 486
duke@435 487 // create result type (range)
duke@435 488 fields = TypeTuple::fields(1);
duke@435 489 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 490
duke@435 491 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 492
duke@435 493 return TypeFunc::make(domain, range);
duke@435 494 }
duke@435 495
duke@435 496 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
duke@435 497 // create input type (domain)
duke@435 498 const int nargs = ndim + 1;
duke@435 499 const Type **fields = TypeTuple::fields(nargs);
duke@435 500 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
duke@435 501 for( int i = 1; i < nargs; i++ )
duke@435 502 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
duke@435 503 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
duke@435 504
duke@435 505 // create result type (range)
duke@435 506 fields = TypeTuple::fields(1);
duke@435 507 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 508 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 509
duke@435 510 return TypeFunc::make(domain, range);
duke@435 511 }
duke@435 512
duke@435 513 const TypeFunc *OptoRuntime::multianewarray2_Type() {
duke@435 514 return multianewarray_Type(2);
duke@435 515 }
duke@435 516
duke@435 517 const TypeFunc *OptoRuntime::multianewarray3_Type() {
duke@435 518 return multianewarray_Type(3);
duke@435 519 }
duke@435 520
duke@435 521 const TypeFunc *OptoRuntime::multianewarray4_Type() {
duke@435 522 return multianewarray_Type(4);
duke@435 523 }
duke@435 524
duke@435 525 const TypeFunc *OptoRuntime::multianewarray5_Type() {
duke@435 526 return multianewarray_Type(5);
duke@435 527 }
duke@435 528
iveresov@3002 529 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
iveresov@3002 530 // create input type (domain)
iveresov@3002 531 const Type **fields = TypeTuple::fields(2);
iveresov@3002 532 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
iveresov@3002 533 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes
iveresov@3002 534 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
iveresov@3002 535
iveresov@3002 536 // create result type (range)
iveresov@3002 537 fields = TypeTuple::fields(1);
iveresov@3002 538 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
iveresov@3002 539 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
iveresov@3002 540
iveresov@3002 541 return TypeFunc::make(domain, range);
iveresov@3002 542 }
iveresov@3002 543
ysr@777 544 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
ysr@777 545 const Type **fields = TypeTuple::fields(2);
ysr@777 546 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
ysr@777 547 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
ysr@777 548 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
ysr@777 549
ysr@777 550 // create result type (range)
ysr@777 551 fields = TypeTuple::fields(0);
ysr@777 552 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
ysr@777 553
ysr@777 554 return TypeFunc::make(domain, range);
ysr@777 555 }
ysr@777 556
ysr@777 557 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
ysr@777 558
ysr@777 559 const Type **fields = TypeTuple::fields(2);
ysr@777 560 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr
ysr@777 561 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
ysr@777 562 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
ysr@777 563
ysr@777 564 // create result type (range)
ysr@777 565 fields = TypeTuple::fields(0);
ysr@777 566 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
ysr@777 567
ysr@777 568 return TypeFunc::make(domain, range);
ysr@777 569 }
ysr@777 570
duke@435 571 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
duke@435 572 // create input type (domain)
duke@435 573 const Type **fields = TypeTuple::fields(1);
coleenp@2497 574 // Symbol* name of class to be loaded
duke@435 575 fields[TypeFunc::Parms+0] = TypeInt::INT;
duke@435 576 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 577
duke@435 578 // create result type (range)
duke@435 579 fields = TypeTuple::fields(0);
duke@435 580 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 581
duke@435 582 return TypeFunc::make(domain, range);
duke@435 583 }
duke@435 584
duke@435 585 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 586 // Type used for stub generation for zap_dead_locals.
duke@435 587 // No inputs or outputs
duke@435 588 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
duke@435 589 // create input type (domain)
duke@435 590 const Type **fields = TypeTuple::fields(0);
duke@435 591 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
duke@435 592
duke@435 593 // create result type (range)
duke@435 594 fields = TypeTuple::fields(0);
duke@435 595 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
duke@435 596
duke@435 597 return TypeFunc::make(domain,range);
duke@435 598 }
duke@435 599 # endif
duke@435 600
duke@435 601
duke@435 602 //-----------------------------------------------------------------------------
duke@435 603 // Monitor Handling
duke@435 604 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
duke@435 605 // create input type (domain)
duke@435 606 const Type **fields = TypeTuple::fields(2);
duke@435 607 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 608 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 609 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 610
duke@435 611 // create result type (range)
duke@435 612 fields = TypeTuple::fields(0);
duke@435 613
duke@435 614 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 615
duke@435 616 return TypeFunc::make(domain,range);
duke@435 617 }
duke@435 618
duke@435 619
duke@435 620 //-----------------------------------------------------------------------------
duke@435 621 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
duke@435 622 // create input type (domain)
duke@435 623 const Type **fields = TypeTuple::fields(2);
duke@435 624 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 625 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 626 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 627
duke@435 628 // create result type (range)
duke@435 629 fields = TypeTuple::fields(0);
duke@435 630
duke@435 631 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 632
duke@435 633 return TypeFunc::make(domain,range);
duke@435 634 }
duke@435 635
duke@435 636 const TypeFunc* OptoRuntime::flush_windows_Type() {
duke@435 637 // create input type (domain)
duke@435 638 const Type** fields = TypeTuple::fields(1);
duke@435 639 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 640 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 641
duke@435 642 // create result type
duke@435 643 fields = TypeTuple::fields(1);
duke@435 644 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 645 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 646
duke@435 647 return TypeFunc::make(domain, range);
duke@435 648 }
duke@435 649
duke@435 650 const TypeFunc* OptoRuntime::l2f_Type() {
duke@435 651 // create input type (domain)
duke@435 652 const Type **fields = TypeTuple::fields(2);
duke@435 653 fields[TypeFunc::Parms+0] = TypeLong::LONG;
duke@435 654 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 655 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 656
duke@435 657 // create result type (range)
duke@435 658 fields = TypeTuple::fields(1);
duke@435 659 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 660 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 661
duke@435 662 return TypeFunc::make(domain, range);
duke@435 663 }
duke@435 664
duke@435 665 const TypeFunc* OptoRuntime::modf_Type() {
duke@435 666 const Type **fields = TypeTuple::fields(2);
duke@435 667 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 668 fields[TypeFunc::Parms+1] = Type::FLOAT;
duke@435 669 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 670
duke@435 671 // create result type (range)
duke@435 672 fields = TypeTuple::fields(1);
duke@435 673 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 674
duke@435 675 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 676
duke@435 677 return TypeFunc::make(domain, range);
duke@435 678 }
duke@435 679
duke@435 680 const TypeFunc *OptoRuntime::Math_D_D_Type() {
duke@435 681 // create input type (domain)
duke@435 682 const Type **fields = TypeTuple::fields(2);
coleenp@2497 683 // Symbol* name of class to be loaded
duke@435 684 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 685 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 686 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 687
duke@435 688 // create result type (range)
duke@435 689 fields = TypeTuple::fields(2);
duke@435 690 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 691 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 692 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 693
duke@435 694 return TypeFunc::make(domain, range);
duke@435 695 }
duke@435 696
duke@435 697 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
duke@435 698 const Type **fields = TypeTuple::fields(4);
duke@435 699 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 700 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 701 fields[TypeFunc::Parms+2] = Type::DOUBLE;
duke@435 702 fields[TypeFunc::Parms+3] = Type::HALF;
duke@435 703 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
duke@435 704
duke@435 705 // create result type (range)
duke@435 706 fields = TypeTuple::fields(2);
duke@435 707 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 708 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 709 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 710
duke@435 711 return TypeFunc::make(domain, range);
duke@435 712 }
duke@435 713
rbackman@3709 714 //-------------- currentTimeMillis, currentTimeNanos, etc
duke@435 715
rbackman@3709 716 const TypeFunc* OptoRuntime::void_long_Type() {
duke@435 717 // create input type (domain)
duke@435 718 const Type **fields = TypeTuple::fields(0);
duke@435 719 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 720
duke@435 721 // create result type (range)
duke@435 722 fields = TypeTuple::fields(2);
duke@435 723 fields[TypeFunc::Parms+0] = TypeLong::LONG;
duke@435 724 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 725 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 726
duke@435 727 return TypeFunc::make(domain, range);
duke@435 728 }
duke@435 729
duke@435 730 // arraycopy stub variations:
duke@435 731 enum ArrayCopyType {
duke@435 732 ac_fast, // void(ptr, ptr, size_t)
duke@435 733 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
duke@435 734 ac_slow, // void(ptr, int, ptr, int, int)
duke@435 735 ac_generic // int(ptr, int, ptr, int, int)
duke@435 736 };
duke@435 737
duke@435 738 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
duke@435 739 // create input type (domain)
duke@435 740 int num_args = (act == ac_fast ? 3 : 5);
duke@435 741 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
duke@435 742 int argcnt = num_args;
duke@435 743 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
duke@435 744 const Type** fields = TypeTuple::fields(argcnt);
duke@435 745 int argp = TypeFunc::Parms;
duke@435 746 fields[argp++] = TypePtr::NOTNULL; // src
duke@435 747 if (num_size_args == 0) {
duke@435 748 fields[argp++] = TypeInt::INT; // src_pos
duke@435 749 }
duke@435 750 fields[argp++] = TypePtr::NOTNULL; // dest
duke@435 751 if (num_size_args == 0) {
duke@435 752 fields[argp++] = TypeInt::INT; // dest_pos
duke@435 753 fields[argp++] = TypeInt::INT; // length
duke@435 754 }
duke@435 755 while (num_size_args-- > 0) {
duke@435 756 fields[argp++] = TypeX_X; // size in whatevers (size_t)
duke@435 757 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
duke@435 758 }
duke@435 759 if (act == ac_checkcast) {
duke@435 760 fields[argp++] = TypePtr::NOTNULL; // super_klass
duke@435 761 }
duke@435 762 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
duke@435 763 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
duke@435 764
duke@435 765 // create result type if needed
duke@435 766 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
duke@435 767 fields = TypeTuple::fields(1);
duke@435 768 if (retcnt == 0)
duke@435 769 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 770 else
duke@435 771 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
duke@435 772 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
duke@435 773 return TypeFunc::make(domain, range);
duke@435 774 }
duke@435 775
duke@435 776 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
duke@435 777 // This signature is simple: Two base pointers and a size_t.
duke@435 778 return make_arraycopy_Type(ac_fast);
duke@435 779 }
duke@435 780
duke@435 781 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
duke@435 782 // An extension of fast_arraycopy_Type which adds type checking.
duke@435 783 return make_arraycopy_Type(ac_checkcast);
duke@435 784 }
duke@435 785
duke@435 786 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
duke@435 787 // This signature is exactly the same as System.arraycopy.
duke@435 788 // There are no intptr_t (int/long) arguments.
duke@435 789 return make_arraycopy_Type(ac_slow);
duke@435 790 }
duke@435 791
duke@435 792 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
duke@435 793 // This signature is like System.arraycopy, except that it returns status.
duke@435 794 return make_arraycopy_Type(ac_generic);
duke@435 795 }
duke@435 796
duke@435 797
never@2118 798 const TypeFunc* OptoRuntime::array_fill_Type() {
goetz@6468 799 const Type** fields;
goetz@6468 800 int argp = TypeFunc::Parms;
goetz@6468 801 if (CCallingConventionRequiresIntsAsLongs) {
never@2199 802 // create input type (domain): pointer, int, size_t
goetz@6468 803 fields = TypeTuple::fields(3 LP64_ONLY( + 2));
goetz@6468 804 fields[argp++] = TypePtr::NOTNULL;
goetz@6468 805 fields[argp++] = TypeLong::LONG;
goetz@6468 806 fields[argp++] = Type::HALF;
goetz@6468 807 } else {
goetz@6468 808 // create input type (domain): pointer, int, size_t
goetz@6468 809 fields = TypeTuple::fields(3 LP64_ONLY( + 1));
goetz@6468 810 fields[argp++] = TypePtr::NOTNULL;
goetz@6468 811 fields[argp++] = TypeInt::INT;
goetz@6468 812 }
never@2199 813 fields[argp++] = TypeX_X; // size in whatevers (size_t)
never@2199 814 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
never@2199 815 const TypeTuple *domain = TypeTuple::make(argp, fields);
never@2118 816
never@2118 817 // create result type
never@2118 818 fields = TypeTuple::fields(1);
never@2118 819 fields[TypeFunc::Parms+0] = NULL; // void
never@2118 820 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
never@2118 821
never@2118 822 return TypeFunc::make(domain, range);
never@2118 823 }
never@2118 824
kvn@4205 825 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
kvn@4205 826 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
kvn@4205 827 // create input type (domain)
kvn@4205 828 int num_args = 3;
kvn@6312 829 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 830 num_args = 4;
kvn@6312 831 }
kvn@4205 832 int argcnt = num_args;
kvn@4205 833 const Type** fields = TypeTuple::fields(argcnt);
kvn@4205 834 int argp = TypeFunc::Parms;
kvn@4205 835 fields[argp++] = TypePtr::NOTNULL; // src
kvn@4205 836 fields[argp++] = TypePtr::NOTNULL; // dest
kvn@4205 837 fields[argp++] = TypePtr::NOTNULL; // k array
kvn@6312 838 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 839 fields[argp++] = TypePtr::NOTNULL; // original k array
kvn@6312 840 }
kvn@4205 841 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@4205 842 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@4205 843
kvn@4205 844 // no result type needed
kvn@4205 845 fields = TypeTuple::fields(1);
kvn@4205 846 fields[TypeFunc::Parms+0] = NULL; // void
kvn@4205 847 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
kvn@4205 848 return TypeFunc::make(domain, range);
kvn@4205 849 }
kvn@4205 850
drchase@5353 851 /**
drchase@5353 852 * int updateBytesCRC32(int crc, byte* b, int len)
drchase@5353 853 */
drchase@5353 854 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
drchase@5353 855 // create input type (domain)
drchase@5353 856 int num_args = 3;
drchase@5353 857 int argcnt = num_args;
drchase@5353 858 const Type** fields = TypeTuple::fields(argcnt);
drchase@5353 859 int argp = TypeFunc::Parms;
drchase@5353 860 fields[argp++] = TypeInt::INT; // crc
drchase@5353 861 fields[argp++] = TypePtr::NOTNULL; // src
drchase@5353 862 fields[argp++] = TypeInt::INT; // len
drchase@5353 863 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
drchase@5353 864 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
drchase@5353 865
drchase@5353 866 // result type needed
drchase@5353 867 fields = TypeTuple::fields(1);
drchase@5353 868 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
drchase@5353 869 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
drchase@5353 870 return TypeFunc::make(domain, range);
drchase@5353 871 }
drchase@5353 872
kvn@6653 873 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
kvn@4205 874 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
kvn@4205 875 // create input type (domain)
kvn@4205 876 int num_args = 5;
kvn@6312 877 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 878 num_args = 6;
kvn@6312 879 }
kvn@4205 880 int argcnt = num_args;
kvn@4205 881 const Type** fields = TypeTuple::fields(argcnt);
kvn@4205 882 int argp = TypeFunc::Parms;
kvn@4205 883 fields[argp++] = TypePtr::NOTNULL; // src
kvn@4205 884 fields[argp++] = TypePtr::NOTNULL; // dest
kvn@4205 885 fields[argp++] = TypePtr::NOTNULL; // k array
kvn@4205 886 fields[argp++] = TypePtr::NOTNULL; // r array
kvn@4205 887 fields[argp++] = TypeInt::INT; // src len
kvn@6312 888 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 889 fields[argp++] = TypePtr::NOTNULL; // original k array
kvn@6312 890 }
kvn@4205 891 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@4205 892 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@4205 893
kvn@6312 894 // returning cipher len (int)
kvn@4205 895 fields = TypeTuple::fields(1);
kvn@6312 896 fields[TypeFunc::Parms+0] = TypeInt::INT;
kvn@6312 897 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
kvn@4205 898 return TypeFunc::make(domain, range);
kvn@4205 899 }
kvn@4205 900
kvn@7027 901 /*
kvn@7027 902 * void implCompress(byte[] buf, int ofs)
kvn@7027 903 */
kvn@7027 904 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
kvn@7027 905 // create input type (domain)
kvn@7027 906 int num_args = 2;
kvn@7027 907 int argcnt = num_args;
kvn@7027 908 const Type** fields = TypeTuple::fields(argcnt);
kvn@7027 909 int argp = TypeFunc::Parms;
kvn@7027 910 fields[argp++] = TypePtr::NOTNULL; // buf
kvn@7027 911 fields[argp++] = TypePtr::NOTNULL; // state
kvn@7027 912 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@7027 913 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@7027 914
kvn@7027 915 // no result type needed
kvn@7027 916 fields = TypeTuple::fields(1);
kvn@7027 917 fields[TypeFunc::Parms+0] = NULL; // void
kvn@7027 918 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
kvn@7027 919 return TypeFunc::make(domain, range);
kvn@7027 920 }
kvn@7027 921
kvn@7027 922 /*
kvn@7027 923 * int implCompressMultiBlock(byte[] b, int ofs, int limit)
kvn@7027 924 */
kvn@7027 925 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
kvn@7027 926 // create input type (domain)
kvn@7027 927 int num_args = 4;
kvn@7027 928 int argcnt = num_args;
kvn@7027 929 const Type** fields = TypeTuple::fields(argcnt);
kvn@7027 930 int argp = TypeFunc::Parms;
kvn@7027 931 fields[argp++] = TypePtr::NOTNULL; // buf
kvn@7027 932 fields[argp++] = TypePtr::NOTNULL; // state
kvn@7027 933 fields[argp++] = TypeInt::INT; // ofs
kvn@7027 934 fields[argp++] = TypeInt::INT; // limit
kvn@7027 935 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@7027 936 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@7027 937
kvn@7027 938 // returning ofs (int)
kvn@7027 939 fields = TypeTuple::fields(1);
kvn@7027 940 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
kvn@7027 941 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
kvn@7027 942 return TypeFunc::make(domain, range);
kvn@7027 943 }
kvn@7027 944
duke@435 945 //------------- Interpreter state access for on stack replacement
duke@435 946 const TypeFunc* OptoRuntime::osr_end_Type() {
duke@435 947 // create input type (domain)
duke@435 948 const Type **fields = TypeTuple::fields(1);
duke@435 949 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
duke@435 950 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 951
duke@435 952 // create result type
duke@435 953 fields = TypeTuple::fields(1);
duke@435 954 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
duke@435 955 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 956 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 957 return TypeFunc::make(domain, range);
duke@435 958 }
duke@435 959
duke@435 960 //-------------- methodData update helpers
duke@435 961
duke@435 962 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
duke@435 963 // create input type (domain)
duke@435 964 const Type **fields = TypeTuple::fields(2);
duke@435 965 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer
duke@435 966 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop
duke@435 967 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 968
duke@435 969 // create result type
duke@435 970 fields = TypeTuple::fields(1);
duke@435 971 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 972 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 973 return TypeFunc::make(domain,range);
duke@435 974 }
duke@435 975
duke@435 976 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
duke@435 977 if (receiver == NULL) return;
coleenp@4037 978 Klass* receiver_klass = receiver->klass();
duke@435 979
duke@435 980 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
duke@435 981 int empty_row = -1; // free row, if any is encountered
duke@435 982
duke@435 983 // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
duke@435 984 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
duke@435 985 // if (vc->receiver(row) == receiver_klass)
duke@435 986 int receiver_off = ReceiverTypeData::receiver_cell_index(row);
duke@435 987 intptr_t row_recv = *(mdp + receiver_off);
duke@435 988 if (row_recv == (intptr_t) receiver_klass) {
duke@435 989 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
duke@435 990 int count_off = ReceiverTypeData::receiver_count_cell_index(row);
duke@435 991 *(mdp + count_off) += DataLayout::counter_increment;
duke@435 992 return;
duke@435 993 } else if (row_recv == 0) {
duke@435 994 // else if (vc->receiver(row) == NULL)
duke@435 995 empty_row = (int) row;
duke@435 996 }
duke@435 997 }
duke@435 998
duke@435 999 if (empty_row != -1) {
duke@435 1000 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
duke@435 1001 // vc->set_receiver(empty_row, receiver_klass);
duke@435 1002 *(mdp + receiver_off) = (intptr_t) receiver_klass;
duke@435 1003 // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
duke@435 1004 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
duke@435 1005 *(mdp + count_off) = DataLayout::counter_increment;
kvn@1641 1006 } else {
kvn@1641 1007 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 1008 // Increment total counter to indicate polymorphic case.
kvn@1641 1009 intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
kvn@1641 1010 *count_p += DataLayout::counter_increment;
duke@435 1011 }
duke@435 1012 JRT_END
duke@435 1013
duke@435 1014 //-------------------------------------------------------------------------------------
duke@435 1015 // register policy
duke@435 1016
duke@435 1017 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
duke@435 1018 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
duke@435 1019 switch (register_save_policy[reg]) {
duke@435 1020 case 'C': return false; //SOC
duke@435 1021 case 'E': return true ; //SOE
duke@435 1022 case 'N': return false; //NS
duke@435 1023 case 'A': return false; //AS
duke@435 1024 }
duke@435 1025 ShouldNotReachHere();
duke@435 1026 return false;
duke@435 1027 }
duke@435 1028
duke@435 1029 //-----------------------------------------------------------------------
duke@435 1030 // Exceptions
duke@435 1031 //
duke@435 1032
duke@435 1033 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
duke@435 1034
duke@435 1035 // The method is an entry that is always called by a C++ method not
duke@435 1036 // directly from compiled code. Compiled code will call the C++ method following.
duke@435 1037 // We can't allow async exception to be installed during exception processing.
duke@435 1038 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
duke@435 1039
duke@435 1040 // Do not confuse exception_oop with pending_exception. The exception_oop
duke@435 1041 // is only used to pass arguments into the method. Not for general
duke@435 1042 // exception handling. DO NOT CHANGE IT to use pending_exception, since
duke@435 1043 // the runtime stubs checks this on exit.
duke@435 1044 assert(thread->exception_oop() != NULL, "exception oop is found");
duke@435 1045 address handler_address = NULL;
duke@435 1046
duke@435 1047 Handle exception(thread, thread->exception_oop());
twisti@5915 1048 address pc = thread->exception_pc();
twisti@5915 1049
twisti@5915 1050 // Clear out the exception oop and pc since looking up an
twisti@5915 1051 // exception handler can cause class loading, which might throw an
twisti@5915 1052 // exception and those fields are expected to be clear during
twisti@5915 1053 // normal bytecode execution.
twisti@5915 1054 thread->clear_exception_oop_and_pc();
duke@435 1055
duke@435 1056 if (TraceExceptions) {
twisti@5915 1057 trace_exception(exception(), pc, "");
duke@435 1058 }
twisti@5915 1059
duke@435 1060 // for AbortVMOnException flag
duke@435 1061 NOT_PRODUCT(Exceptions::debug_check_abort(exception));
duke@435 1062
twisti@5915 1063 #ifdef ASSERT
twisti@5915 1064 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
twisti@5915 1065 // should throw an exception here
twisti@5915 1066 ShouldNotReachHere();
twisti@5915 1067 }
twisti@5915 1068 #endif
duke@435 1069
duke@435 1070 // new exception handling: this method is entered only from adapters
duke@435 1071 // exceptions from compiled java methods are handled in compiled code
duke@435 1072 // using rethrow node
duke@435 1073
duke@435 1074 nm = CodeCache::find_nmethod(pc);
duke@435 1075 assert(nm != NULL, "No NMethod found");
duke@435 1076 if (nm->is_native_method()) {
twisti@5915 1077 fatal("Native method should not have path to exception handling");
duke@435 1078 } else {
duke@435 1079 // we are switching to old paradigm: search for exception handler in caller_frame
duke@435 1080 // instead in exception handler of caller_frame.sender()
duke@435 1081
dcubed@1648 1082 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 1083 // "Full-speed catching" is not necessary here,
duke@435 1084 // since we're notifying the VM on every catch.
duke@435 1085 // Force deoptimization and the rest of the lookup
duke@435 1086 // will be fine.
kvn@4364 1087 deoptimize_caller_frame(thread);
duke@435 1088 }
duke@435 1089
duke@435 1090 // Check the stack guard pages. If enabled, look for handler in this frame;
duke@435 1091 // otherwise, forcibly unwind the frame.
duke@435 1092 //
duke@435 1093 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
duke@435 1094 bool force_unwind = !thread->reguard_stack();
duke@435 1095 bool deopting = false;
duke@435 1096 if (nm->is_deopt_pc(pc)) {
duke@435 1097 deopting = true;
duke@435 1098 RegisterMap map(thread, false);
duke@435 1099 frame deoptee = thread->last_frame().sender(&map);
duke@435 1100 assert(deoptee.is_deoptimized_frame(), "must be deopted");
duke@435 1101 // Adjust the pc back to the original throwing pc
duke@435 1102 pc = deoptee.pc();
duke@435 1103 }
duke@435 1104
duke@435 1105 // If we are forcing an unwind because of stack overflow then deopt is
goetz@6441 1106 // irrelevant since we are throwing the frame away anyway.
duke@435 1107
duke@435 1108 if (deopting && !force_unwind) {
duke@435 1109 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 1110 } else {
duke@435 1111
duke@435 1112 handler_address =
duke@435 1113 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
duke@435 1114
duke@435 1115 if (handler_address == NULL) {
kvn@3194 1116 Handle original_exception(thread, exception());
duke@435 1117 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
duke@435 1118 assert (handler_address != NULL, "must have compiled handler");
kvn@3194 1119 // Update the exception cache only when the unwind was not forced
kvn@3194 1120 // and there didn't happen another exception during the computation of the
kvn@3194 1121 // compiled exception handler.
kvn@3194 1122 if (!force_unwind && original_exception() == exception()) {
duke@435 1123 nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
duke@435 1124 }
duke@435 1125 } else {
duke@435 1126 assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
duke@435 1127 }
duke@435 1128 }
duke@435 1129
duke@435 1130 thread->set_exception_pc(pc);
duke@435 1131 thread->set_exception_handler_pc(handler_address);
twisti@1570 1132
twisti@1730 1133 // Check if the exception PC is a MethodHandle call site.
twisti@1803 1134 thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
duke@435 1135 }
duke@435 1136
duke@435 1137 // Restore correct return pc. Was saved above.
duke@435 1138 thread->set_exception_oop(exception());
duke@435 1139 return handler_address;
duke@435 1140
duke@435 1141 JRT_END
duke@435 1142
duke@435 1143 // We are entering here from exception_blob
duke@435 1144 // If there is a compiled exception handler in this method, we will continue there;
duke@435 1145 // otherwise we will unwind the stack and continue at the caller of top frame method
duke@435 1146 // Note we enter without the usual JRT wrapper. We will call a helper routine that
duke@435 1147 // will do the normal VM entry. We do it this way so that we can see if the nmethod
duke@435 1148 // we looked up the handler for has been deoptimized in the meantime. If it has been
goetz@6441 1149 // we must not use the handler and instead return the deopt blob.
duke@435 1150 address OptoRuntime::handle_exception_C(JavaThread* thread) {
duke@435 1151 //
duke@435 1152 // We are in Java not VM and in debug mode we have a NoHandleMark
duke@435 1153 //
duke@435 1154 #ifndef PRODUCT
duke@435 1155 SharedRuntime::_find_handler_ctr++; // find exception handler
duke@435 1156 #endif
duke@435 1157 debug_only(NoHandleMark __hm;)
duke@435 1158 nmethod* nm = NULL;
duke@435 1159 address handler_address = NULL;
duke@435 1160 {
duke@435 1161 // Enter the VM
duke@435 1162
duke@435 1163 ResetNoHandleMark rnhm;
duke@435 1164 handler_address = handle_exception_C_helper(thread, nm);
duke@435 1165 }
duke@435 1166
duke@435 1167 // Back in java: Use no oops, DON'T safepoint
duke@435 1168
duke@435 1169 // Now check to see if the handler we are returning is in a now
duke@435 1170 // deoptimized frame
duke@435 1171
duke@435 1172 if (nm != NULL) {
duke@435 1173 RegisterMap map(thread, false);
duke@435 1174 frame caller = thread->last_frame().sender(&map);
duke@435 1175 #ifdef ASSERT
duke@435 1176 assert(caller.is_compiled_frame(), "must be");
duke@435 1177 #endif // ASSERT
duke@435 1178 if (caller.is_deoptimized_frame()) {
duke@435 1179 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 1180 }
duke@435 1181 }
duke@435 1182 return handler_address;
duke@435 1183 }
duke@435 1184
duke@435 1185 //------------------------------rethrow----------------------------------------
duke@435 1186 // We get here after compiled code has executed a 'RethrowNode'. The callee
duke@435 1187 // is either throwing or rethrowing an exception. The callee-save registers
duke@435 1188 // have been restored, synchronized objects have been unlocked and the callee
duke@435 1189 // stack frame has been removed. The return address was passed in.
duke@435 1190 // Exception oop is passed as the 1st argument. This routine is then called
duke@435 1191 // from the stub. On exit, we know where to jump in the caller's code.
duke@435 1192 // After this C code exits, the stub will pop his frame and end in a jump
duke@435 1193 // (instead of a return). We enter the caller's default handler.
duke@435 1194 //
duke@435 1195 // This must be JRT_LEAF:
duke@435 1196 // - caller will not change its state as we cannot block on exit,
duke@435 1197 // therefore raw_exception_handler_for_return_address is all it takes
duke@435 1198 // to handle deoptimized blobs
duke@435 1199 //
duke@435 1200 // However, there needs to be a safepoint check in the middle! So compiled
duke@435 1201 // safepoints are completely watertight.
duke@435 1202 //
duke@435 1203 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
duke@435 1204 //
duke@435 1205 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
duke@435 1206 //
duke@435 1207 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
duke@435 1208 #ifndef PRODUCT
duke@435 1209 SharedRuntime::_rethrow_ctr++; // count rethrows
duke@435 1210 #endif
duke@435 1211 assert (exception != NULL, "should have thrown a NULLPointerException");
duke@435 1212 #ifdef ASSERT
never@1577 1213 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
duke@435 1214 // should throw an exception here
duke@435 1215 ShouldNotReachHere();
duke@435 1216 }
duke@435 1217 #endif
duke@435 1218
duke@435 1219 thread->set_vm_result(exception);
duke@435 1220 // Frame not compiled (handles deoptimization blob)
twisti@1730 1221 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
duke@435 1222 }
duke@435 1223
duke@435 1224
duke@435 1225 const TypeFunc *OptoRuntime::rethrow_Type() {
duke@435 1226 // create input type (domain)
duke@435 1227 const Type **fields = TypeTuple::fields(1);
duke@435 1228 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
duke@435 1229 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
duke@435 1230
duke@435 1231 // create result type (range)
duke@435 1232 fields = TypeTuple::fields(1);
duke@435 1233 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
duke@435 1234 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 1235
duke@435 1236 return TypeFunc::make(domain, range);
duke@435 1237 }
duke@435 1238
duke@435 1239
duke@435 1240 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
kvn@4364 1241 // Deoptimize the caller before continuing, as the compiled
kvn@4364 1242 // exception handler table may not be valid.
kvn@4364 1243 if (!StressCompiledExceptionHandlers && doit) {
kvn@4364 1244 deoptimize_caller_frame(thread);
kvn@4364 1245 }
kvn@4364 1246 }
duke@435 1247
kvn@4364 1248 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
kvn@4364 1249 // Called from within the owner thread, so no need for safepoint
kvn@4364 1250 RegisterMap reg_map(thread);
kvn@4364 1251 frame stub_frame = thread->last_frame();
kvn@4364 1252 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
kvn@4364 1253 frame caller_frame = stub_frame.sender(&reg_map);
kvn@4364 1254
kvn@4364 1255 // Deoptimize the caller frame.
kvn@4364 1256 Deoptimization::deoptimize_frame(thread, caller_frame.id());
duke@435 1257 }
duke@435 1258
duke@435 1259
kvn@3259 1260 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
kvn@3259 1261 // Called from within the owner thread, so no need for safepoint
kvn@3259 1262 RegisterMap reg_map(thread);
kvn@3259 1263 frame stub_frame = thread->last_frame();
kvn@3259 1264 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
kvn@3259 1265 frame caller_frame = stub_frame.sender(&reg_map);
kvn@3259 1266 return caller_frame.is_deoptimized_frame();
kvn@3259 1267 }
kvn@3259 1268
kvn@3259 1269
duke@435 1270 const TypeFunc *OptoRuntime::register_finalizer_Type() {
duke@435 1271 // create input type (domain)
duke@435 1272 const Type **fields = TypeTuple::fields(1);
duke@435 1273 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
duke@435 1274 // // The JavaThread* is passed to each routine as the last argument
duke@435 1275 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
duke@435 1276 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
duke@435 1277
duke@435 1278 // create result type (range)
duke@435 1279 fields = TypeTuple::fields(0);
duke@435 1280
duke@435 1281 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1282
duke@435 1283 return TypeFunc::make(domain,range);
duke@435 1284 }
duke@435 1285
duke@435 1286
duke@435 1287 //-----------------------------------------------------------------------------
duke@435 1288 // Dtrace support. entry and exit probes have the same signature
duke@435 1289 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
duke@435 1290 // create input type (domain)
duke@435 1291 const Type **fields = TypeTuple::fields(2);
duke@435 1292 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
roland@4051 1293 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
duke@435 1294 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 1295
duke@435 1296 // create result type (range)
duke@435 1297 fields = TypeTuple::fields(0);
duke@435 1298
duke@435 1299 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1300
duke@435 1301 return TypeFunc::make(domain,range);
duke@435 1302 }
duke@435 1303
duke@435 1304 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
duke@435 1305 // create input type (domain)
duke@435 1306 const Type **fields = TypeTuple::fields(2);
duke@435 1307 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
duke@435 1308 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
duke@435 1309
duke@435 1310 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 1311
duke@435 1312 // create result type (range)
duke@435 1313 fields = TypeTuple::fields(0);
duke@435 1314
duke@435 1315 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1316
duke@435 1317 return TypeFunc::make(domain,range);
duke@435 1318 }
duke@435 1319
duke@435 1320
duke@435 1321 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
duke@435 1322 assert(obj->is_oop(), "must be a valid oop");
coleenp@4037 1323 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
coleenp@4037 1324 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 1325 JRT_END
duke@435 1326
duke@435 1327 //-----------------------------------------------------------------------------
duke@435 1328
duke@435 1329 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
duke@435 1330
duke@435 1331 //
duke@435 1332 // dump the collected NamedCounters.
duke@435 1333 //
duke@435 1334 void OptoRuntime::print_named_counters() {
duke@435 1335 int total_lock_count = 0;
duke@435 1336 int eliminated_lock_count = 0;
duke@435 1337
duke@435 1338 NamedCounter* c = _named_counters;
duke@435 1339 while (c) {
duke@435 1340 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
duke@435 1341 int count = c->count();
duke@435 1342 if (count > 0) {
duke@435 1343 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
duke@435 1344 if (Verbose) {
duke@435 1345 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
duke@435 1346 }
duke@435 1347 total_lock_count += count;
duke@435 1348 if (eliminated) {
duke@435 1349 eliminated_lock_count += count;
duke@435 1350 }
duke@435 1351 }
duke@435 1352 } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
duke@435 1353 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
duke@435 1354 if (blc->nonzero()) {
duke@435 1355 tty->print_cr("%s", c->name());
duke@435 1356 blc->print_on(tty);
duke@435 1357 }
kvn@6429 1358 #if INCLUDE_RTM_OPT
kvn@6429 1359 } else if (c->tag() == NamedCounter::RTMLockingCounter) {
kvn@6429 1360 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
kvn@6429 1361 if (rlc->nonzero()) {
kvn@6429 1362 tty->print_cr("%s", c->name());
kvn@6429 1363 rlc->print_on(tty);
kvn@6429 1364 }
kvn@6429 1365 #endif
duke@435 1366 }
duke@435 1367 c = c->next();
duke@435 1368 }
duke@435 1369 if (total_lock_count > 0) {
duke@435 1370 tty->print_cr("dynamic locks: %d", total_lock_count);
duke@435 1371 if (eliminated_lock_count) {
duke@435 1372 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
duke@435 1373 (int)(eliminated_lock_count * 100.0 / total_lock_count));
duke@435 1374 }
duke@435 1375 }
duke@435 1376 }
duke@435 1377
duke@435 1378 //
duke@435 1379 // Allocate a new NamedCounter. The JVMState is used to generate the
duke@435 1380 // name which consists of method@line for the inlining tree.
duke@435 1381 //
duke@435 1382
duke@435 1383 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
duke@435 1384 int max_depth = youngest_jvms->depth();
duke@435 1385
duke@435 1386 // Visit scopes from youngest to oldest.
duke@435 1387 bool first = true;
duke@435 1388 stringStream st;
duke@435 1389 for (int depth = max_depth; depth >= 1; depth--) {
duke@435 1390 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 1391 ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
duke@435 1392 if (!first) {
duke@435 1393 st.print(" ");
duke@435 1394 } else {
duke@435 1395 first = false;
duke@435 1396 }
duke@435 1397 int bci = jvms->bci();
duke@435 1398 if (bci < 0) bci = 0;
duke@435 1399 st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
duke@435 1400 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
duke@435 1401 }
duke@435 1402 NamedCounter* c;
duke@435 1403 if (tag == NamedCounter::BiasedLockingCounter) {
duke@435 1404 c = new BiasedLockingNamedCounter(strdup(st.as_string()));
kvn@6429 1405 } else if (tag == NamedCounter::RTMLockingCounter) {
kvn@6429 1406 c = new RTMLockingNamedCounter(strdup(st.as_string()));
duke@435 1407 } else {
duke@435 1408 c = new NamedCounter(strdup(st.as_string()), tag);
duke@435 1409 }
duke@435 1410
duke@435 1411 // atomically add the new counter to the head of the list. We only
duke@435 1412 // add counters so this is safe.
duke@435 1413 NamedCounter* head;
duke@435 1414 do {
kvn@6429 1415 c->set_next(NULL);
duke@435 1416 head = _named_counters;
duke@435 1417 c->set_next(head);
duke@435 1418 } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
duke@435 1419 return c;
duke@435 1420 }
duke@435 1421
duke@435 1422 //-----------------------------------------------------------------------------
duke@435 1423 // Non-product code
duke@435 1424 #ifndef PRODUCT
duke@435 1425
duke@435 1426 int trace_exception_counter = 0;
duke@435 1427 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
duke@435 1428 ttyLocker ttyl;
duke@435 1429 trace_exception_counter++;
duke@435 1430 tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
duke@435 1431 exception_oop->print_value();
duke@435 1432 tty->print(" in ");
duke@435 1433 CodeBlob* blob = CodeCache::find_blob(exception_pc);
duke@435 1434 if (blob->is_nmethod()) {
twisti@5915 1435 nmethod* nm = blob->as_nmethod_or_null();
twisti@5915 1436 nm->method()->print_value();
duke@435 1437 } else if (blob->is_runtime_stub()) {
duke@435 1438 tty->print("<runtime-stub>");
duke@435 1439 } else {
duke@435 1440 tty->print("<unknown>");
duke@435 1441 }
drchase@6680 1442 tty->print(" at " INTPTR_FORMAT, p2i(exception_pc));
duke@435 1443 tty->print_cr("]");
duke@435 1444 }
duke@435 1445
duke@435 1446 #endif // PRODUCT
duke@435 1447
duke@435 1448
duke@435 1449 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1450 // Called from call sites in compiled code with oop maps (actually safepoints)
duke@435 1451 // Zaps dead locals in first java frame.
duke@435 1452 // Is entry because may need to lock to generate oop maps
duke@435 1453 // Currently, only used for compiler frames, but someday may be used
duke@435 1454 // for interpreter frames, too.
duke@435 1455
duke@435 1456 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
duke@435 1457
duke@435 1458 // avoid pointers to member funcs with these helpers
duke@435 1459 static bool is_java_frame( frame* f) { return f->is_java_frame(); }
duke@435 1460 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
duke@435 1461
duke@435 1462
duke@435 1463 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
duke@435 1464 bool (*is_this_the_right_frame_to_zap)(frame*)) {
duke@435 1465 assert(JavaThread::current() == thread, "is this needed?");
duke@435 1466
duke@435 1467 if ( !ZapDeadCompiledLocals ) return;
duke@435 1468
duke@435 1469 bool skip = false;
duke@435 1470
duke@435 1471 if ( ZapDeadCompiledLocalsFirst == 0 ) ; // nothing special
duke@435 1472 else if ( ZapDeadCompiledLocalsFirst > ZapDeadCompiledLocals_count ) skip = true;
duke@435 1473 else if ( ZapDeadCompiledLocalsFirst == ZapDeadCompiledLocals_count )
duke@435 1474 warning("starting zapping after skipping");
duke@435 1475
duke@435 1476 if ( ZapDeadCompiledLocalsLast == -1 ) ; // nothing special
duke@435 1477 else if ( ZapDeadCompiledLocalsLast < ZapDeadCompiledLocals_count ) skip = true;
duke@435 1478 else if ( ZapDeadCompiledLocalsLast == ZapDeadCompiledLocals_count )
duke@435 1479 warning("about to zap last zap");
duke@435 1480
duke@435 1481 ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
duke@435 1482
duke@435 1483 if ( skip ) return;
duke@435 1484
duke@435 1485 // find java frame and zap it
duke@435 1486
duke@435 1487 for (StackFrameStream sfs(thread); !sfs.is_done(); sfs.next()) {
duke@435 1488 if (is_this_the_right_frame_to_zap(sfs.current()) ) {
duke@435 1489 sfs.current()->zap_dead_locals(thread, sfs.register_map());
duke@435 1490 return;
duke@435 1491 }
duke@435 1492 }
duke@435 1493 warning("no frame found to zap in zap_dead_Java_locals_C");
duke@435 1494 }
duke@435 1495
duke@435 1496 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
duke@435 1497 zap_dead_java_or_native_locals(thread, is_java_frame);
duke@435 1498 JRT_END
duke@435 1499
duke@435 1500 // The following does not work because for one thing, the
duke@435 1501 // thread state is wrong; it expects java, but it is native.
twisti@1040 1502 // Also, the invariants in a native stub are different and
duke@435 1503 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
duke@435 1504 // in there.
duke@435 1505 // So for now, we do not zap in native stubs.
duke@435 1506
duke@435 1507 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
duke@435 1508 zap_dead_java_or_native_locals(thread, is_native_frame);
duke@435 1509 JRT_END
duke@435 1510
duke@435 1511 # endif

mercurial