src/share/vm/opto/runtime.cpp

Thu, 20 Mar 2014 17:49:27 -0700

author
kvn
date
Thu, 20 Mar 2014 17:49:27 -0700
changeset 6429
606acabe7b5c
parent 6312
04d32e7fad07
child 6518
62c54fcc0a35
permissions
-rw-r--r--

8031320: Use Intel RTM instructions for locks
Summary: Use RTM for inflated locks and stack locks.
Reviewed-by: iveresov, twisti, roland, dcubed

duke@435 1 /*
drchase@5353 2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/nmethod.hpp"
stefank@2314 31 #include "code/pcDesc.hpp"
stefank@2314 32 #include "code/scopeDesc.hpp"
stefank@2314 33 #include "code/vtableStubs.hpp"
stefank@2314 34 #include "compiler/compileBroker.hpp"
stefank@2314 35 #include "compiler/compilerOracle.hpp"
stefank@2314 36 #include "compiler/oopMap.hpp"
stefank@2314 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
stefank@2314 38 #include "gc_implementation/g1/heapRegion.hpp"
stefank@2314 39 #include "gc_interface/collectedHeap.hpp"
stefank@2314 40 #include "interpreter/bytecode.hpp"
stefank@2314 41 #include "interpreter/interpreter.hpp"
stefank@2314 42 #include "interpreter/linkResolver.hpp"
stefank@2314 43 #include "memory/barrierSet.hpp"
stefank@2314 44 #include "memory/gcLocker.inline.hpp"
stefank@2314 45 #include "memory/oopFactory.hpp"
stefank@2314 46 #include "oops/objArrayKlass.hpp"
stefank@2314 47 #include "oops/oop.inline.hpp"
stefank@2314 48 #include "opto/addnode.hpp"
stefank@2314 49 #include "opto/callnode.hpp"
stefank@2314 50 #include "opto/cfgnode.hpp"
stefank@2314 51 #include "opto/connode.hpp"
stefank@2314 52 #include "opto/graphKit.hpp"
stefank@2314 53 #include "opto/machnode.hpp"
stefank@2314 54 #include "opto/matcher.hpp"
stefank@2314 55 #include "opto/memnode.hpp"
stefank@2314 56 #include "opto/mulnode.hpp"
stefank@2314 57 #include "opto/runtime.hpp"
stefank@2314 58 #include "opto/subnode.hpp"
stefank@2314 59 #include "runtime/fprofiler.hpp"
stefank@2314 60 #include "runtime/handles.inline.hpp"
stefank@2314 61 #include "runtime/interfaceSupport.hpp"
stefank@2314 62 #include "runtime/javaCalls.hpp"
stefank@2314 63 #include "runtime/sharedRuntime.hpp"
stefank@2314 64 #include "runtime/signature.hpp"
stefank@2314 65 #include "runtime/threadCritical.hpp"
stefank@2314 66 #include "runtime/vframe.hpp"
stefank@2314 67 #include "runtime/vframeArray.hpp"
stefank@2314 68 #include "runtime/vframe_hp.hpp"
stefank@2314 69 #include "utilities/copy.hpp"
stefank@2314 70 #include "utilities/preserveException.hpp"
stefank@2314 71 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 72 # include "adfiles/ad_x86_32.hpp"
stefank@2314 73 #endif
stefank@2314 74 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 75 # include "adfiles/ad_x86_64.hpp"
stefank@2314 76 #endif
stefank@2314 77 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 78 # include "adfiles/ad_sparc.hpp"
stefank@2314 79 #endif
stefank@2314 80 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 81 # include "adfiles/ad_zero.hpp"
stefank@2314 82 #endif
bobv@2508 83 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 84 # include "adfiles/ad_arm.hpp"
bobv@2508 85 #endif
bobv@2508 86 #ifdef TARGET_ARCH_MODEL_ppc
bobv@2508 87 # include "adfiles/ad_ppc.hpp"
bobv@2508 88 #endif
duke@435 89
duke@435 90
duke@435 91 // For debugging purposes:
duke@435 92 // To force FullGCALot inside a runtime function, add the following two lines
duke@435 93 //
duke@435 94 // Universe::release_fullgc_alot_dummy();
duke@435 95 // MarkSweep::invoke(0, "Debugging");
duke@435 96 //
duke@435 97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
duke@435 98
duke@435 99
duke@435 100
duke@435 101
duke@435 102 // Compiled code entry points
duke@435 103 address OptoRuntime::_new_instance_Java = NULL;
duke@435 104 address OptoRuntime::_new_array_Java = NULL;
kvn@3157 105 address OptoRuntime::_new_array_nozero_Java = NULL;
duke@435 106 address OptoRuntime::_multianewarray2_Java = NULL;
duke@435 107 address OptoRuntime::_multianewarray3_Java = NULL;
duke@435 108 address OptoRuntime::_multianewarray4_Java = NULL;
duke@435 109 address OptoRuntime::_multianewarray5_Java = NULL;
iveresov@3002 110 address OptoRuntime::_multianewarrayN_Java = NULL;
ysr@777 111 address OptoRuntime::_g1_wb_pre_Java = NULL;
ysr@777 112 address OptoRuntime::_g1_wb_post_Java = NULL;
duke@435 113 address OptoRuntime::_vtable_must_compile_Java = NULL;
duke@435 114 address OptoRuntime::_complete_monitor_locking_Java = NULL;
duke@435 115 address OptoRuntime::_rethrow_Java = NULL;
duke@435 116
duke@435 117 address OptoRuntime::_slow_arraycopy_Java = NULL;
duke@435 118 address OptoRuntime::_register_finalizer_Java = NULL;
duke@435 119
duke@435 120 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 121 address OptoRuntime::_zap_dead_Java_locals_Java = NULL;
duke@435 122 address OptoRuntime::_zap_dead_native_locals_Java = NULL;
duke@435 123 # endif
duke@435 124
never@2950 125 ExceptionBlob* OptoRuntime::_exception_blob;
duke@435 126
duke@435 127 // This should be called in an assertion at the start of OptoRuntime routines
duke@435 128 // which are entered from compiled code (all of them)
roland@5106 129 #ifdef ASSERT
duke@435 130 static bool check_compiled_frame(JavaThread* thread) {
duke@435 131 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
duke@435 132 RegisterMap map(thread, false);
duke@435 133 frame caller = thread->last_frame().sender(&map);
duke@435 134 assert(caller.is_compiled_frame(), "not being called from compiled like code");
duke@435 135 return true;
duke@435 136 }
roland@5106 137 #endif // ASSERT
duke@435 138
duke@435 139
duke@435 140 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
anoll@5919 141 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
anoll@5919 142 if (var == NULL) { return false; }
duke@435 143
anoll@5919 144 bool OptoRuntime::generate(ciEnv* env) {
duke@435 145
duke@435 146 generate_exception_blob();
duke@435 147
duke@435 148 // Note: tls: Means fetching the return oop out of the thread-local storage
duke@435 149 //
duke@435 150 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc
duke@435 151 // -------------------------------------------------------------------------------------------------------------------------------
duke@435 152 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false);
duke@435 153 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false);
kvn@3157 154 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false);
duke@435 155 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false);
duke@435 156 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false);
duke@435 157 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false);
duke@435 158 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false);
iveresov@3002 159 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false);
ysr@777 160 gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false);
ysr@777 161 gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false);
anoll@5919 162 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
duke@435 163 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true );
duke@435 164
duke@435 165 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false);
duke@435 166 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false);
duke@435 167
duke@435 168 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 169 gen(env, _zap_dead_Java_locals_Java , zap_dead_locals_Type , zap_dead_Java_locals_C , 0 , false, true , false );
duke@435 170 gen(env, _zap_dead_native_locals_Java , zap_dead_locals_Type , zap_dead_native_locals_C , 0 , false, true , false );
duke@435 171 # endif
anoll@5919 172 return true;
duke@435 173 }
duke@435 174
duke@435 175 #undef gen
duke@435 176
duke@435 177
duke@435 178 // Helper method to do generation of RunTimeStub's
duke@435 179 address OptoRuntime::generate_stub( ciEnv* env,
duke@435 180 TypeFunc_generator gen, address C_function,
duke@435 181 const char *name, int is_fancy_jump,
duke@435 182 bool pass_tls,
duke@435 183 bool save_argument_registers,
duke@435 184 bool return_pc ) {
duke@435 185 ResourceMark rm;
duke@435 186 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
duke@435 187 return C.stub_entry_point();
duke@435 188 }
duke@435 189
duke@435 190 const char* OptoRuntime::stub_name(address entry) {
duke@435 191 #ifndef PRODUCT
duke@435 192 CodeBlob* cb = CodeCache::find_blob(entry);
duke@435 193 RuntimeStub* rs =(RuntimeStub *)cb;
duke@435 194 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
duke@435 195 return rs->name();
duke@435 196 #else
duke@435 197 // Fast implementation for product mode (maybe it should be inlined too)
duke@435 198 return "runtime stub";
duke@435 199 #endif
duke@435 200 }
duke@435 201
duke@435 202
duke@435 203 //=============================================================================
duke@435 204 // Opto compiler runtime routines
duke@435 205 //=============================================================================
duke@435 206
duke@435 207
duke@435 208 //=============================allocation======================================
duke@435 209 // We failed the fast-path allocation. Now we need to do a scavenge or GC
duke@435 210 // and try allocation again.
duke@435 211
ysr@1601 212 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
duke@435 213 // After any safepoint, just before going back to compiled code,
ysr@1462 214 // we inform the GC that we will be doing initializing writes to
ysr@1462 215 // this object in the future without emitting card-marks, so
ysr@1462 216 // GC may take any compensating steps.
ysr@1462 217 // NOTE: Keep this code consistent with GraphKit::store_barrier.
duke@435 218
duke@435 219 oop new_obj = thread->vm_result();
duke@435 220 if (new_obj == NULL) return;
duke@435 221
duke@435 222 assert(Universe::heap()->can_elide_tlab_store_barriers(),
duke@435 223 "compiler must check this first");
ysr@1462 224 // GC may decide to give back a safer copy of new_obj.
ysr@1601 225 new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
duke@435 226 thread->set_vm_result(new_obj);
duke@435 227 }
duke@435 228
duke@435 229 // object allocation
coleenp@4037 230 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
duke@435 231 JRT_BLOCK;
duke@435 232 #ifndef PRODUCT
duke@435 233 SharedRuntime::_new_instance_ctr++; // new instance requires GC
duke@435 234 #endif
duke@435 235 assert(check_compiled_frame(thread), "incorrect caller");
duke@435 236
duke@435 237 // These checks are cheap to make and support reflective allocation.
hseigel@4278 238 int lh = klass->layout_helper();
duke@435 239 if (Klass::layout_helper_needs_slow_path(lh)
coleenp@4037 240 || !InstanceKlass::cast(klass)->is_initialized()) {
duke@435 241 KlassHandle kh(THREAD, klass);
duke@435 242 kh->check_valid_for_instantiation(false, THREAD);
duke@435 243 if (!HAS_PENDING_EXCEPTION) {
coleenp@4037 244 InstanceKlass::cast(kh())->initialize(THREAD);
duke@435 245 }
duke@435 246 if (!HAS_PENDING_EXCEPTION) {
duke@435 247 klass = kh();
duke@435 248 } else {
duke@435 249 klass = NULL;
duke@435 250 }
duke@435 251 }
duke@435 252
duke@435 253 if (klass != NULL) {
duke@435 254 // Scavenge and allocate an instance.
coleenp@4037 255 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
duke@435 256 thread->set_vm_result(result);
duke@435 257
duke@435 258 // Pass oops back through thread local storage. Our apparent type to Java
duke@435 259 // is that we return an oop, but we can block on exit from this routine and
duke@435 260 // a GC can trash the oop in C's return register. The generated stub will
duke@435 261 // fetch the oop from TLS after any possible GC.
duke@435 262 }
duke@435 263
duke@435 264 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 265 JRT_BLOCK_END;
duke@435 266
duke@435 267 if (GraphKit::use_ReduceInitialCardMarks()) {
ysr@1462 268 // inform GC that we won't do card marks for initializing writes.
ysr@1601 269 new_store_pre_barrier(thread);
duke@435 270 }
duke@435 271 JRT_END
duke@435 272
duke@435 273
duke@435 274 // array allocation
coleenp@4037 275 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
duke@435 276 JRT_BLOCK;
duke@435 277 #ifndef PRODUCT
duke@435 278 SharedRuntime::_new_array_ctr++; // new array requires GC
duke@435 279 #endif
duke@435 280 assert(check_compiled_frame(thread), "incorrect caller");
duke@435 281
duke@435 282 // Scavenge and allocate an instance.
duke@435 283 oop result;
duke@435 284
hseigel@4278 285 if (array_type->oop_is_typeArray()) {
duke@435 286 // The oopFactory likes to work with the element type.
duke@435 287 // (We could bypass the oopFactory, since it doesn't add much value.)
coleenp@4142 288 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
duke@435 289 result = oopFactory::new_typeArray(elem_type, len, THREAD);
duke@435 290 } else {
duke@435 291 // Although the oopFactory likes to work with the elem_type,
duke@435 292 // the compiler prefers the array_type, since it must already have
duke@435 293 // that latter value in hand for the fast path.
coleenp@4142 294 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
duke@435 295 result = oopFactory::new_objArray(elem_type, len, THREAD);
duke@435 296 }
duke@435 297
duke@435 298 // Pass oops back through thread local storage. Our apparent type to Java
duke@435 299 // is that we return an oop, but we can block on exit from this routine and
duke@435 300 // a GC can trash the oop in C's return register. The generated stub will
duke@435 301 // fetch the oop from TLS after any possible GC.
duke@435 302 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 303 thread->set_vm_result(result);
duke@435 304 JRT_BLOCK_END;
duke@435 305
duke@435 306 if (GraphKit::use_ReduceInitialCardMarks()) {
ysr@1462 307 // inform GC that we won't do card marks for initializing writes.
ysr@1601 308 new_store_pre_barrier(thread);
duke@435 309 }
duke@435 310 JRT_END
duke@435 311
kvn@3157 312 // array allocation without zeroing
coleenp@4037 313 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
kvn@3157 314 JRT_BLOCK;
kvn@3157 315 #ifndef PRODUCT
kvn@3157 316 SharedRuntime::_new_array_ctr++; // new array requires GC
kvn@3157 317 #endif
kvn@3157 318 assert(check_compiled_frame(thread), "incorrect caller");
kvn@3157 319
kvn@3157 320 // Scavenge and allocate an instance.
kvn@3157 321 oop result;
kvn@3157 322
hseigel@4278 323 assert(array_type->oop_is_typeArray(), "should be called only for type array");
kvn@3157 324 // The oopFactory likes to work with the element type.
coleenp@4142 325 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
kvn@3157 326 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
kvn@3157 327
kvn@3157 328 // Pass oops back through thread local storage. Our apparent type to Java
kvn@3157 329 // is that we return an oop, but we can block on exit from this routine and
kvn@3157 330 // a GC can trash the oop in C's return register. The generated stub will
kvn@3157 331 // fetch the oop from TLS after any possible GC.
kvn@3157 332 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
kvn@3157 333 thread->set_vm_result(result);
kvn@3157 334 JRT_BLOCK_END;
kvn@3157 335
kvn@3157 336 if (GraphKit::use_ReduceInitialCardMarks()) {
kvn@3157 337 // inform GC that we won't do card marks for initializing writes.
kvn@3157 338 new_store_pre_barrier(thread);
kvn@3157 339 }
kvn@3259 340
kvn@3259 341 oop result = thread->vm_result();
kvn@3259 342 if ((len > 0) && (result != NULL) &&
kvn@3259 343 is_deoptimized_caller_frame(thread)) {
kvn@3259 344 // Zero array here if the caller is deoptimized.
kvn@3259 345 int size = ((typeArrayOop)result)->object_size();
coleenp@4142 346 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
kvn@3259 347 const size_t hs = arrayOopDesc::header_size(elem_type);
kvn@3259 348 // Align to next 8 bytes to avoid trashing arrays's length.
kvn@3259 349 const size_t aligned_hs = align_object_offset(hs);
kvn@3259 350 HeapWord* obj = (HeapWord*)result;
kvn@3259 351 if (aligned_hs > hs) {
kvn@3259 352 Copy::zero_to_words(obj+hs, aligned_hs-hs);
kvn@3259 353 }
kvn@3259 354 // Optimized zeroing.
kvn@3259 355 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
kvn@3259 356 }
kvn@3259 357
kvn@3157 358 JRT_END
kvn@3157 359
duke@435 360 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
duke@435 361
duke@435 362 // multianewarray for 2 dimensions
coleenp@4037 363 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
duke@435 364 #ifndef PRODUCT
duke@435 365 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
duke@435 366 #endif
duke@435 367 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 368 assert(elem_type->is_klass(), "not a class");
duke@435 369 jint dims[2];
duke@435 370 dims[0] = len1;
duke@435 371 dims[1] = len2;
coleenp@4142 372 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
duke@435 373 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 374 thread->set_vm_result(obj);
duke@435 375 JRT_END
duke@435 376
duke@435 377 // multianewarray for 3 dimensions
coleenp@4037 378 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
duke@435 379 #ifndef PRODUCT
duke@435 380 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
duke@435 381 #endif
duke@435 382 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 383 assert(elem_type->is_klass(), "not a class");
duke@435 384 jint dims[3];
duke@435 385 dims[0] = len1;
duke@435 386 dims[1] = len2;
duke@435 387 dims[2] = len3;
coleenp@4142 388 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
duke@435 389 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 390 thread->set_vm_result(obj);
duke@435 391 JRT_END
duke@435 392
duke@435 393 // multianewarray for 4 dimensions
coleenp@4037 394 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
duke@435 395 #ifndef PRODUCT
duke@435 396 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
duke@435 397 #endif
duke@435 398 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 399 assert(elem_type->is_klass(), "not a class");
duke@435 400 jint dims[4];
duke@435 401 dims[0] = len1;
duke@435 402 dims[1] = len2;
duke@435 403 dims[2] = len3;
duke@435 404 dims[3] = len4;
coleenp@4142 405 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
duke@435 406 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 407 thread->set_vm_result(obj);
duke@435 408 JRT_END
duke@435 409
duke@435 410 // multianewarray for 5 dimensions
coleenp@4037 411 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
duke@435 412 #ifndef PRODUCT
duke@435 413 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
duke@435 414 #endif
duke@435 415 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 416 assert(elem_type->is_klass(), "not a class");
duke@435 417 jint dims[5];
duke@435 418 dims[0] = len1;
duke@435 419 dims[1] = len2;
duke@435 420 dims[2] = len3;
duke@435 421 dims[3] = len4;
duke@435 422 dims[4] = len5;
coleenp@4142 423 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
duke@435 424 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 425 thread->set_vm_result(obj);
duke@435 426 JRT_END
duke@435 427
coleenp@4037 428 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
iveresov@3002 429 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 430 assert(elem_type->is_klass(), "not a class");
iveresov@3002 431 assert(oop(dims)->is_typeArray(), "not an array");
iveresov@3002 432
iveresov@3002 433 ResourceMark rm;
iveresov@3002 434 jint len = dims->length();
iveresov@3002 435 assert(len > 0, "Dimensions array should contain data");
iveresov@3002 436 jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
iveresov@3002 437 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
iveresov@3002 438 Copy::conjoint_jints_atomic(j_dims, c_dims, len);
iveresov@3002 439
coleenp@4142 440 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
iveresov@3002 441 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
iveresov@3002 442 thread->set_vm_result(obj);
iveresov@3002 443 JRT_END
iveresov@3002 444
iveresov@3002 445
duke@435 446 const TypeFunc *OptoRuntime::new_instance_Type() {
duke@435 447 // create input type (domain)
duke@435 448 const Type **fields = TypeTuple::fields(1);
duke@435 449 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
duke@435 450 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 451
duke@435 452 // create result type (range)
duke@435 453 fields = TypeTuple::fields(1);
duke@435 454 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 455
duke@435 456 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 457
duke@435 458 return TypeFunc::make(domain, range);
duke@435 459 }
duke@435 460
duke@435 461
duke@435 462 const TypeFunc *OptoRuntime::athrow_Type() {
duke@435 463 // create input type (domain)
duke@435 464 const Type **fields = TypeTuple::fields(1);
duke@435 465 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
duke@435 466 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 467
duke@435 468 // create result type (range)
duke@435 469 fields = TypeTuple::fields(0);
duke@435 470
duke@435 471 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 472
duke@435 473 return TypeFunc::make(domain, range);
duke@435 474 }
duke@435 475
duke@435 476
duke@435 477 const TypeFunc *OptoRuntime::new_array_Type() {
duke@435 478 // create input type (domain)
duke@435 479 const Type **fields = TypeTuple::fields(2);
duke@435 480 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
duke@435 481 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
duke@435 482 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 483
duke@435 484 // create result type (range)
duke@435 485 fields = TypeTuple::fields(1);
duke@435 486 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 487
duke@435 488 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 489
duke@435 490 return TypeFunc::make(domain, range);
duke@435 491 }
duke@435 492
duke@435 493 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
duke@435 494 // create input type (domain)
duke@435 495 const int nargs = ndim + 1;
duke@435 496 const Type **fields = TypeTuple::fields(nargs);
duke@435 497 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
duke@435 498 for( int i = 1; i < nargs; i++ )
duke@435 499 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
duke@435 500 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
duke@435 501
duke@435 502 // create result type (range)
duke@435 503 fields = TypeTuple::fields(1);
duke@435 504 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 505 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 506
duke@435 507 return TypeFunc::make(domain, range);
duke@435 508 }
duke@435 509
duke@435 510 const TypeFunc *OptoRuntime::multianewarray2_Type() {
duke@435 511 return multianewarray_Type(2);
duke@435 512 }
duke@435 513
duke@435 514 const TypeFunc *OptoRuntime::multianewarray3_Type() {
duke@435 515 return multianewarray_Type(3);
duke@435 516 }
duke@435 517
duke@435 518 const TypeFunc *OptoRuntime::multianewarray4_Type() {
duke@435 519 return multianewarray_Type(4);
duke@435 520 }
duke@435 521
duke@435 522 const TypeFunc *OptoRuntime::multianewarray5_Type() {
duke@435 523 return multianewarray_Type(5);
duke@435 524 }
duke@435 525
iveresov@3002 526 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
iveresov@3002 527 // create input type (domain)
iveresov@3002 528 const Type **fields = TypeTuple::fields(2);
iveresov@3002 529 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
iveresov@3002 530 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes
iveresov@3002 531 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
iveresov@3002 532
iveresov@3002 533 // create result type (range)
iveresov@3002 534 fields = TypeTuple::fields(1);
iveresov@3002 535 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
iveresov@3002 536 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
iveresov@3002 537
iveresov@3002 538 return TypeFunc::make(domain, range);
iveresov@3002 539 }
iveresov@3002 540
ysr@777 541 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
ysr@777 542 const Type **fields = TypeTuple::fields(2);
ysr@777 543 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
ysr@777 544 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
ysr@777 545 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
ysr@777 546
ysr@777 547 // create result type (range)
ysr@777 548 fields = TypeTuple::fields(0);
ysr@777 549 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
ysr@777 550
ysr@777 551 return TypeFunc::make(domain, range);
ysr@777 552 }
ysr@777 553
ysr@777 554 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
ysr@777 555
ysr@777 556 const Type **fields = TypeTuple::fields(2);
ysr@777 557 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr
ysr@777 558 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
ysr@777 559 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
ysr@777 560
ysr@777 561 // create result type (range)
ysr@777 562 fields = TypeTuple::fields(0);
ysr@777 563 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
ysr@777 564
ysr@777 565 return TypeFunc::make(domain, range);
ysr@777 566 }
ysr@777 567
duke@435 568 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
duke@435 569 // create input type (domain)
duke@435 570 const Type **fields = TypeTuple::fields(1);
coleenp@2497 571 // Symbol* name of class to be loaded
duke@435 572 fields[TypeFunc::Parms+0] = TypeInt::INT;
duke@435 573 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 574
duke@435 575 // create result type (range)
duke@435 576 fields = TypeTuple::fields(0);
duke@435 577 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 578
duke@435 579 return TypeFunc::make(domain, range);
duke@435 580 }
duke@435 581
duke@435 582 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 583 // Type used for stub generation for zap_dead_locals.
duke@435 584 // No inputs or outputs
duke@435 585 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
duke@435 586 // create input type (domain)
duke@435 587 const Type **fields = TypeTuple::fields(0);
duke@435 588 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
duke@435 589
duke@435 590 // create result type (range)
duke@435 591 fields = TypeTuple::fields(0);
duke@435 592 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
duke@435 593
duke@435 594 return TypeFunc::make(domain,range);
duke@435 595 }
duke@435 596 # endif
duke@435 597
duke@435 598
duke@435 599 //-----------------------------------------------------------------------------
duke@435 600 // Monitor Handling
duke@435 601 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
duke@435 602 // create input type (domain)
duke@435 603 const Type **fields = TypeTuple::fields(2);
duke@435 604 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 605 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 606 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 607
duke@435 608 // create result type (range)
duke@435 609 fields = TypeTuple::fields(0);
duke@435 610
duke@435 611 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 612
duke@435 613 return TypeFunc::make(domain,range);
duke@435 614 }
duke@435 615
duke@435 616
duke@435 617 //-----------------------------------------------------------------------------
duke@435 618 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
duke@435 619 // create input type (domain)
duke@435 620 const Type **fields = TypeTuple::fields(2);
duke@435 621 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 622 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 623 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 624
duke@435 625 // create result type (range)
duke@435 626 fields = TypeTuple::fields(0);
duke@435 627
duke@435 628 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 629
duke@435 630 return TypeFunc::make(domain,range);
duke@435 631 }
duke@435 632
duke@435 633 const TypeFunc* OptoRuntime::flush_windows_Type() {
duke@435 634 // create input type (domain)
duke@435 635 const Type** fields = TypeTuple::fields(1);
duke@435 636 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 637 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 638
duke@435 639 // create result type
duke@435 640 fields = TypeTuple::fields(1);
duke@435 641 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 642 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 643
duke@435 644 return TypeFunc::make(domain, range);
duke@435 645 }
duke@435 646
duke@435 647 const TypeFunc* OptoRuntime::l2f_Type() {
duke@435 648 // create input type (domain)
duke@435 649 const Type **fields = TypeTuple::fields(2);
duke@435 650 fields[TypeFunc::Parms+0] = TypeLong::LONG;
duke@435 651 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 652 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 653
duke@435 654 // create result type (range)
duke@435 655 fields = TypeTuple::fields(1);
duke@435 656 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 657 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 658
duke@435 659 return TypeFunc::make(domain, range);
duke@435 660 }
duke@435 661
duke@435 662 const TypeFunc* OptoRuntime::modf_Type() {
duke@435 663 const Type **fields = TypeTuple::fields(2);
duke@435 664 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 665 fields[TypeFunc::Parms+1] = Type::FLOAT;
duke@435 666 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 667
duke@435 668 // create result type (range)
duke@435 669 fields = TypeTuple::fields(1);
duke@435 670 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 671
duke@435 672 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 673
duke@435 674 return TypeFunc::make(domain, range);
duke@435 675 }
duke@435 676
duke@435 677 const TypeFunc *OptoRuntime::Math_D_D_Type() {
duke@435 678 // create input type (domain)
duke@435 679 const Type **fields = TypeTuple::fields(2);
coleenp@2497 680 // Symbol* name of class to be loaded
duke@435 681 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 682 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 683 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 684
duke@435 685 // create result type (range)
duke@435 686 fields = TypeTuple::fields(2);
duke@435 687 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 688 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 689 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 690
duke@435 691 return TypeFunc::make(domain, range);
duke@435 692 }
duke@435 693
duke@435 694 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
duke@435 695 const Type **fields = TypeTuple::fields(4);
duke@435 696 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 697 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 698 fields[TypeFunc::Parms+2] = Type::DOUBLE;
duke@435 699 fields[TypeFunc::Parms+3] = Type::HALF;
duke@435 700 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
duke@435 701
duke@435 702 // create result type (range)
duke@435 703 fields = TypeTuple::fields(2);
duke@435 704 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 705 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 706 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 707
duke@435 708 return TypeFunc::make(domain, range);
duke@435 709 }
duke@435 710
rbackman@3709 711 //-------------- currentTimeMillis, currentTimeNanos, etc
duke@435 712
rbackman@3709 713 const TypeFunc* OptoRuntime::void_long_Type() {
duke@435 714 // create input type (domain)
duke@435 715 const Type **fields = TypeTuple::fields(0);
duke@435 716 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 717
duke@435 718 // create result type (range)
duke@435 719 fields = TypeTuple::fields(2);
duke@435 720 fields[TypeFunc::Parms+0] = TypeLong::LONG;
duke@435 721 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 722 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 723
duke@435 724 return TypeFunc::make(domain, range);
duke@435 725 }
duke@435 726
duke@435 727 // arraycopy stub variations:
duke@435 728 enum ArrayCopyType {
duke@435 729 ac_fast, // void(ptr, ptr, size_t)
duke@435 730 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
duke@435 731 ac_slow, // void(ptr, int, ptr, int, int)
duke@435 732 ac_generic // int(ptr, int, ptr, int, int)
duke@435 733 };
duke@435 734
duke@435 735 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
duke@435 736 // create input type (domain)
duke@435 737 int num_args = (act == ac_fast ? 3 : 5);
duke@435 738 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
duke@435 739 int argcnt = num_args;
duke@435 740 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
duke@435 741 const Type** fields = TypeTuple::fields(argcnt);
duke@435 742 int argp = TypeFunc::Parms;
duke@435 743 fields[argp++] = TypePtr::NOTNULL; // src
duke@435 744 if (num_size_args == 0) {
duke@435 745 fields[argp++] = TypeInt::INT; // src_pos
duke@435 746 }
duke@435 747 fields[argp++] = TypePtr::NOTNULL; // dest
duke@435 748 if (num_size_args == 0) {
duke@435 749 fields[argp++] = TypeInt::INT; // dest_pos
duke@435 750 fields[argp++] = TypeInt::INT; // length
duke@435 751 }
duke@435 752 while (num_size_args-- > 0) {
duke@435 753 fields[argp++] = TypeX_X; // size in whatevers (size_t)
duke@435 754 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
duke@435 755 }
duke@435 756 if (act == ac_checkcast) {
duke@435 757 fields[argp++] = TypePtr::NOTNULL; // super_klass
duke@435 758 }
duke@435 759 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
duke@435 760 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
duke@435 761
duke@435 762 // create result type if needed
duke@435 763 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
duke@435 764 fields = TypeTuple::fields(1);
duke@435 765 if (retcnt == 0)
duke@435 766 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 767 else
duke@435 768 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
duke@435 769 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
duke@435 770 return TypeFunc::make(domain, range);
duke@435 771 }
duke@435 772
duke@435 773 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
duke@435 774 // This signature is simple: Two base pointers and a size_t.
duke@435 775 return make_arraycopy_Type(ac_fast);
duke@435 776 }
duke@435 777
duke@435 778 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
duke@435 779 // An extension of fast_arraycopy_Type which adds type checking.
duke@435 780 return make_arraycopy_Type(ac_checkcast);
duke@435 781 }
duke@435 782
duke@435 783 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
duke@435 784 // This signature is exactly the same as System.arraycopy.
duke@435 785 // There are no intptr_t (int/long) arguments.
duke@435 786 return make_arraycopy_Type(ac_slow);
duke@435 787 }
duke@435 788
duke@435 789 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
duke@435 790 // This signature is like System.arraycopy, except that it returns status.
duke@435 791 return make_arraycopy_Type(ac_generic);
duke@435 792 }
duke@435 793
duke@435 794
never@2118 795 const TypeFunc* OptoRuntime::array_fill_Type() {
never@2199 796 // create input type (domain): pointer, int, size_t
never@2199 797 const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
never@2199 798 int argp = TypeFunc::Parms;
never@2199 799 fields[argp++] = TypePtr::NOTNULL;
never@2199 800 fields[argp++] = TypeInt::INT;
never@2199 801 fields[argp++] = TypeX_X; // size in whatevers (size_t)
never@2199 802 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
never@2199 803 const TypeTuple *domain = TypeTuple::make(argp, fields);
never@2118 804
never@2118 805 // create result type
never@2118 806 fields = TypeTuple::fields(1);
never@2118 807 fields[TypeFunc::Parms+0] = NULL; // void
never@2118 808 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
never@2118 809
never@2118 810 return TypeFunc::make(domain, range);
never@2118 811 }
never@2118 812
kvn@4205 813 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
kvn@4205 814 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
kvn@4205 815 // create input type (domain)
kvn@4205 816 int num_args = 3;
kvn@6312 817 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 818 num_args = 4;
kvn@6312 819 }
kvn@4205 820 int argcnt = num_args;
kvn@4205 821 const Type** fields = TypeTuple::fields(argcnt);
kvn@4205 822 int argp = TypeFunc::Parms;
kvn@4205 823 fields[argp++] = TypePtr::NOTNULL; // src
kvn@4205 824 fields[argp++] = TypePtr::NOTNULL; // dest
kvn@4205 825 fields[argp++] = TypePtr::NOTNULL; // k array
kvn@6312 826 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 827 fields[argp++] = TypePtr::NOTNULL; // original k array
kvn@6312 828 }
kvn@4205 829 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@4205 830 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@4205 831
kvn@4205 832 // no result type needed
kvn@4205 833 fields = TypeTuple::fields(1);
kvn@4205 834 fields[TypeFunc::Parms+0] = NULL; // void
kvn@4205 835 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
kvn@4205 836 return TypeFunc::make(domain, range);
kvn@4205 837 }
kvn@4205 838
drchase@5353 839 /**
drchase@5353 840 * int updateBytesCRC32(int crc, byte* b, int len)
drchase@5353 841 */
drchase@5353 842 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
drchase@5353 843 // create input type (domain)
drchase@5353 844 int num_args = 3;
drchase@5353 845 int argcnt = num_args;
drchase@5353 846 const Type** fields = TypeTuple::fields(argcnt);
drchase@5353 847 int argp = TypeFunc::Parms;
drchase@5353 848 fields[argp++] = TypeInt::INT; // crc
drchase@5353 849 fields[argp++] = TypePtr::NOTNULL; // src
drchase@5353 850 fields[argp++] = TypeInt::INT; // len
drchase@5353 851 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
drchase@5353 852 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
drchase@5353 853
drchase@5353 854 // result type needed
drchase@5353 855 fields = TypeTuple::fields(1);
drchase@5353 856 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
drchase@5353 857 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
drchase@5353 858 return TypeFunc::make(domain, range);
drchase@5353 859 }
drchase@5353 860
kvn@4205 861 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning void
kvn@4205 862 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
kvn@4205 863 // create input type (domain)
kvn@4205 864 int num_args = 5;
kvn@6312 865 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 866 num_args = 6;
kvn@6312 867 }
kvn@4205 868 int argcnt = num_args;
kvn@4205 869 const Type** fields = TypeTuple::fields(argcnt);
kvn@4205 870 int argp = TypeFunc::Parms;
kvn@4205 871 fields[argp++] = TypePtr::NOTNULL; // src
kvn@4205 872 fields[argp++] = TypePtr::NOTNULL; // dest
kvn@4205 873 fields[argp++] = TypePtr::NOTNULL; // k array
kvn@4205 874 fields[argp++] = TypePtr::NOTNULL; // r array
kvn@4205 875 fields[argp++] = TypeInt::INT; // src len
kvn@6312 876 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 877 fields[argp++] = TypePtr::NOTNULL; // original k array
kvn@6312 878 }
kvn@4205 879 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@4205 880 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@4205 881
kvn@6312 882 // returning cipher len (int)
kvn@4205 883 fields = TypeTuple::fields(1);
kvn@6312 884 fields[TypeFunc::Parms+0] = TypeInt::INT;
kvn@6312 885 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
kvn@4205 886 return TypeFunc::make(domain, range);
kvn@4205 887 }
kvn@4205 888
duke@435 889 //------------- Interpreter state access for on stack replacement
duke@435 890 const TypeFunc* OptoRuntime::osr_end_Type() {
duke@435 891 // create input type (domain)
duke@435 892 const Type **fields = TypeTuple::fields(1);
duke@435 893 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
duke@435 894 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 895
duke@435 896 // create result type
duke@435 897 fields = TypeTuple::fields(1);
duke@435 898 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
duke@435 899 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 900 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 901 return TypeFunc::make(domain, range);
duke@435 902 }
duke@435 903
duke@435 904 //-------------- methodData update helpers
duke@435 905
duke@435 906 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
duke@435 907 // create input type (domain)
duke@435 908 const Type **fields = TypeTuple::fields(2);
duke@435 909 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer
duke@435 910 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop
duke@435 911 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 912
duke@435 913 // create result type
duke@435 914 fields = TypeTuple::fields(1);
duke@435 915 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 916 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 917 return TypeFunc::make(domain,range);
duke@435 918 }
duke@435 919
duke@435 920 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
duke@435 921 if (receiver == NULL) return;
coleenp@4037 922 Klass* receiver_klass = receiver->klass();
duke@435 923
duke@435 924 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
duke@435 925 int empty_row = -1; // free row, if any is encountered
duke@435 926
duke@435 927 // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
duke@435 928 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
duke@435 929 // if (vc->receiver(row) == receiver_klass)
duke@435 930 int receiver_off = ReceiverTypeData::receiver_cell_index(row);
duke@435 931 intptr_t row_recv = *(mdp + receiver_off);
duke@435 932 if (row_recv == (intptr_t) receiver_klass) {
duke@435 933 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
duke@435 934 int count_off = ReceiverTypeData::receiver_count_cell_index(row);
duke@435 935 *(mdp + count_off) += DataLayout::counter_increment;
duke@435 936 return;
duke@435 937 } else if (row_recv == 0) {
duke@435 938 // else if (vc->receiver(row) == NULL)
duke@435 939 empty_row = (int) row;
duke@435 940 }
duke@435 941 }
duke@435 942
duke@435 943 if (empty_row != -1) {
duke@435 944 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
duke@435 945 // vc->set_receiver(empty_row, receiver_klass);
duke@435 946 *(mdp + receiver_off) = (intptr_t) receiver_klass;
duke@435 947 // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
duke@435 948 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
duke@435 949 *(mdp + count_off) = DataLayout::counter_increment;
kvn@1641 950 } else {
kvn@1641 951 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 952 // Increment total counter to indicate polymorphic case.
kvn@1641 953 intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
kvn@1641 954 *count_p += DataLayout::counter_increment;
duke@435 955 }
duke@435 956 JRT_END
duke@435 957
duke@435 958 //-------------------------------------------------------------------------------------
duke@435 959 // register policy
duke@435 960
duke@435 961 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
duke@435 962 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
duke@435 963 switch (register_save_policy[reg]) {
duke@435 964 case 'C': return false; //SOC
duke@435 965 case 'E': return true ; //SOE
duke@435 966 case 'N': return false; //NS
duke@435 967 case 'A': return false; //AS
duke@435 968 }
duke@435 969 ShouldNotReachHere();
duke@435 970 return false;
duke@435 971 }
duke@435 972
duke@435 973 //-----------------------------------------------------------------------
duke@435 974 // Exceptions
duke@435 975 //
duke@435 976
duke@435 977 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
duke@435 978
duke@435 979 // The method is an entry that is always called by a C++ method not
duke@435 980 // directly from compiled code. Compiled code will call the C++ method following.
duke@435 981 // We can't allow async exception to be installed during exception processing.
duke@435 982 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
duke@435 983
duke@435 984 // Do not confuse exception_oop with pending_exception. The exception_oop
duke@435 985 // is only used to pass arguments into the method. Not for general
duke@435 986 // exception handling. DO NOT CHANGE IT to use pending_exception, since
duke@435 987 // the runtime stubs checks this on exit.
duke@435 988 assert(thread->exception_oop() != NULL, "exception oop is found");
duke@435 989 address handler_address = NULL;
duke@435 990
duke@435 991 Handle exception(thread, thread->exception_oop());
twisti@5915 992 address pc = thread->exception_pc();
twisti@5915 993
twisti@5915 994 // Clear out the exception oop and pc since looking up an
twisti@5915 995 // exception handler can cause class loading, which might throw an
twisti@5915 996 // exception and those fields are expected to be clear during
twisti@5915 997 // normal bytecode execution.
twisti@5915 998 thread->clear_exception_oop_and_pc();
duke@435 999
duke@435 1000 if (TraceExceptions) {
twisti@5915 1001 trace_exception(exception(), pc, "");
duke@435 1002 }
twisti@5915 1003
duke@435 1004 // for AbortVMOnException flag
duke@435 1005 NOT_PRODUCT(Exceptions::debug_check_abort(exception));
duke@435 1006
twisti@5915 1007 #ifdef ASSERT
twisti@5915 1008 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
twisti@5915 1009 // should throw an exception here
twisti@5915 1010 ShouldNotReachHere();
twisti@5915 1011 }
twisti@5915 1012 #endif
duke@435 1013
duke@435 1014 // new exception handling: this method is entered only from adapters
duke@435 1015 // exceptions from compiled java methods are handled in compiled code
duke@435 1016 // using rethrow node
duke@435 1017
duke@435 1018 nm = CodeCache::find_nmethod(pc);
duke@435 1019 assert(nm != NULL, "No NMethod found");
duke@435 1020 if (nm->is_native_method()) {
twisti@5915 1021 fatal("Native method should not have path to exception handling");
duke@435 1022 } else {
duke@435 1023 // we are switching to old paradigm: search for exception handler in caller_frame
duke@435 1024 // instead in exception handler of caller_frame.sender()
duke@435 1025
dcubed@1648 1026 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 1027 // "Full-speed catching" is not necessary here,
duke@435 1028 // since we're notifying the VM on every catch.
duke@435 1029 // Force deoptimization and the rest of the lookup
duke@435 1030 // will be fine.
kvn@4364 1031 deoptimize_caller_frame(thread);
duke@435 1032 }
duke@435 1033
duke@435 1034 // Check the stack guard pages. If enabled, look for handler in this frame;
duke@435 1035 // otherwise, forcibly unwind the frame.
duke@435 1036 //
duke@435 1037 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
duke@435 1038 bool force_unwind = !thread->reguard_stack();
duke@435 1039 bool deopting = false;
duke@435 1040 if (nm->is_deopt_pc(pc)) {
duke@435 1041 deopting = true;
duke@435 1042 RegisterMap map(thread, false);
duke@435 1043 frame deoptee = thread->last_frame().sender(&map);
duke@435 1044 assert(deoptee.is_deoptimized_frame(), "must be deopted");
duke@435 1045 // Adjust the pc back to the original throwing pc
duke@435 1046 pc = deoptee.pc();
duke@435 1047 }
duke@435 1048
duke@435 1049 // If we are forcing an unwind because of stack overflow then deopt is
duke@435 1050 // irrelevant sice we are throwing the frame away anyway.
duke@435 1051
duke@435 1052 if (deopting && !force_unwind) {
duke@435 1053 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 1054 } else {
duke@435 1055
duke@435 1056 handler_address =
duke@435 1057 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
duke@435 1058
duke@435 1059 if (handler_address == NULL) {
kvn@3194 1060 Handle original_exception(thread, exception());
duke@435 1061 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
duke@435 1062 assert (handler_address != NULL, "must have compiled handler");
kvn@3194 1063 // Update the exception cache only when the unwind was not forced
kvn@3194 1064 // and there didn't happen another exception during the computation of the
kvn@3194 1065 // compiled exception handler.
kvn@3194 1066 if (!force_unwind && original_exception() == exception()) {
duke@435 1067 nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
duke@435 1068 }
duke@435 1069 } else {
duke@435 1070 assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
duke@435 1071 }
duke@435 1072 }
duke@435 1073
duke@435 1074 thread->set_exception_pc(pc);
duke@435 1075 thread->set_exception_handler_pc(handler_address);
twisti@1570 1076
twisti@1730 1077 // Check if the exception PC is a MethodHandle call site.
twisti@1803 1078 thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
duke@435 1079 }
duke@435 1080
duke@435 1081 // Restore correct return pc. Was saved above.
duke@435 1082 thread->set_exception_oop(exception());
duke@435 1083 return handler_address;
duke@435 1084
duke@435 1085 JRT_END
duke@435 1086
duke@435 1087 // We are entering here from exception_blob
duke@435 1088 // If there is a compiled exception handler in this method, we will continue there;
duke@435 1089 // otherwise we will unwind the stack and continue at the caller of top frame method
duke@435 1090 // Note we enter without the usual JRT wrapper. We will call a helper routine that
duke@435 1091 // will do the normal VM entry. We do it this way so that we can see if the nmethod
duke@435 1092 // we looked up the handler for has been deoptimized in the meantime. If it has been
duke@435 1093 // we must not use the handler and instread return the deopt blob.
duke@435 1094 address OptoRuntime::handle_exception_C(JavaThread* thread) {
duke@435 1095 //
duke@435 1096 // We are in Java not VM and in debug mode we have a NoHandleMark
duke@435 1097 //
duke@435 1098 #ifndef PRODUCT
duke@435 1099 SharedRuntime::_find_handler_ctr++; // find exception handler
duke@435 1100 #endif
duke@435 1101 debug_only(NoHandleMark __hm;)
duke@435 1102 nmethod* nm = NULL;
duke@435 1103 address handler_address = NULL;
duke@435 1104 {
duke@435 1105 // Enter the VM
duke@435 1106
duke@435 1107 ResetNoHandleMark rnhm;
duke@435 1108 handler_address = handle_exception_C_helper(thread, nm);
duke@435 1109 }
duke@435 1110
duke@435 1111 // Back in java: Use no oops, DON'T safepoint
duke@435 1112
duke@435 1113 // Now check to see if the handler we are returning is in a now
duke@435 1114 // deoptimized frame
duke@435 1115
duke@435 1116 if (nm != NULL) {
duke@435 1117 RegisterMap map(thread, false);
duke@435 1118 frame caller = thread->last_frame().sender(&map);
duke@435 1119 #ifdef ASSERT
duke@435 1120 assert(caller.is_compiled_frame(), "must be");
duke@435 1121 #endif // ASSERT
duke@435 1122 if (caller.is_deoptimized_frame()) {
duke@435 1123 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 1124 }
duke@435 1125 }
duke@435 1126 return handler_address;
duke@435 1127 }
duke@435 1128
duke@435 1129 //------------------------------rethrow----------------------------------------
duke@435 1130 // We get here after compiled code has executed a 'RethrowNode'. The callee
duke@435 1131 // is either throwing or rethrowing an exception. The callee-save registers
duke@435 1132 // have been restored, synchronized objects have been unlocked and the callee
duke@435 1133 // stack frame has been removed. The return address was passed in.
duke@435 1134 // Exception oop is passed as the 1st argument. This routine is then called
duke@435 1135 // from the stub. On exit, we know where to jump in the caller's code.
duke@435 1136 // After this C code exits, the stub will pop his frame and end in a jump
duke@435 1137 // (instead of a return). We enter the caller's default handler.
duke@435 1138 //
duke@435 1139 // This must be JRT_LEAF:
duke@435 1140 // - caller will not change its state as we cannot block on exit,
duke@435 1141 // therefore raw_exception_handler_for_return_address is all it takes
duke@435 1142 // to handle deoptimized blobs
duke@435 1143 //
duke@435 1144 // However, there needs to be a safepoint check in the middle! So compiled
duke@435 1145 // safepoints are completely watertight.
duke@435 1146 //
duke@435 1147 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
duke@435 1148 //
duke@435 1149 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
duke@435 1150 //
duke@435 1151 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
duke@435 1152 #ifndef PRODUCT
duke@435 1153 SharedRuntime::_rethrow_ctr++; // count rethrows
duke@435 1154 #endif
duke@435 1155 assert (exception != NULL, "should have thrown a NULLPointerException");
duke@435 1156 #ifdef ASSERT
never@1577 1157 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
duke@435 1158 // should throw an exception here
duke@435 1159 ShouldNotReachHere();
duke@435 1160 }
duke@435 1161 #endif
duke@435 1162
duke@435 1163 thread->set_vm_result(exception);
duke@435 1164 // Frame not compiled (handles deoptimization blob)
twisti@1730 1165 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
duke@435 1166 }
duke@435 1167
duke@435 1168
duke@435 1169 const TypeFunc *OptoRuntime::rethrow_Type() {
duke@435 1170 // create input type (domain)
duke@435 1171 const Type **fields = TypeTuple::fields(1);
duke@435 1172 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
duke@435 1173 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
duke@435 1174
duke@435 1175 // create result type (range)
duke@435 1176 fields = TypeTuple::fields(1);
duke@435 1177 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
duke@435 1178 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 1179
duke@435 1180 return TypeFunc::make(domain, range);
duke@435 1181 }
duke@435 1182
duke@435 1183
duke@435 1184 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
kvn@4364 1185 // Deoptimize the caller before continuing, as the compiled
kvn@4364 1186 // exception handler table may not be valid.
kvn@4364 1187 if (!StressCompiledExceptionHandlers && doit) {
kvn@4364 1188 deoptimize_caller_frame(thread);
kvn@4364 1189 }
kvn@4364 1190 }
duke@435 1191
kvn@4364 1192 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
kvn@4364 1193 // Called from within the owner thread, so no need for safepoint
kvn@4364 1194 RegisterMap reg_map(thread);
kvn@4364 1195 frame stub_frame = thread->last_frame();
kvn@4364 1196 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
kvn@4364 1197 frame caller_frame = stub_frame.sender(&reg_map);
kvn@4364 1198
kvn@4364 1199 // Deoptimize the caller frame.
kvn@4364 1200 Deoptimization::deoptimize_frame(thread, caller_frame.id());
duke@435 1201 }
duke@435 1202
duke@435 1203
kvn@3259 1204 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
kvn@3259 1205 // Called from within the owner thread, so no need for safepoint
kvn@3259 1206 RegisterMap reg_map(thread);
kvn@3259 1207 frame stub_frame = thread->last_frame();
kvn@3259 1208 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
kvn@3259 1209 frame caller_frame = stub_frame.sender(&reg_map);
kvn@3259 1210 return caller_frame.is_deoptimized_frame();
kvn@3259 1211 }
kvn@3259 1212
kvn@3259 1213
duke@435 1214 const TypeFunc *OptoRuntime::register_finalizer_Type() {
duke@435 1215 // create input type (domain)
duke@435 1216 const Type **fields = TypeTuple::fields(1);
duke@435 1217 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
duke@435 1218 // // The JavaThread* is passed to each routine as the last argument
duke@435 1219 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
duke@435 1220 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
duke@435 1221
duke@435 1222 // create result type (range)
duke@435 1223 fields = TypeTuple::fields(0);
duke@435 1224
duke@435 1225 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1226
duke@435 1227 return TypeFunc::make(domain,range);
duke@435 1228 }
duke@435 1229
duke@435 1230
duke@435 1231 //-----------------------------------------------------------------------------
duke@435 1232 // Dtrace support. entry and exit probes have the same signature
duke@435 1233 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
duke@435 1234 // create input type (domain)
duke@435 1235 const Type **fields = TypeTuple::fields(2);
duke@435 1236 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
roland@4051 1237 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
duke@435 1238 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 1239
duke@435 1240 // create result type (range)
duke@435 1241 fields = TypeTuple::fields(0);
duke@435 1242
duke@435 1243 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1244
duke@435 1245 return TypeFunc::make(domain,range);
duke@435 1246 }
duke@435 1247
duke@435 1248 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
duke@435 1249 // create input type (domain)
duke@435 1250 const Type **fields = TypeTuple::fields(2);
duke@435 1251 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
duke@435 1252 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
duke@435 1253
duke@435 1254 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 1255
duke@435 1256 // create result type (range)
duke@435 1257 fields = TypeTuple::fields(0);
duke@435 1258
duke@435 1259 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1260
duke@435 1261 return TypeFunc::make(domain,range);
duke@435 1262 }
duke@435 1263
duke@435 1264
duke@435 1265 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
duke@435 1266 assert(obj->is_oop(), "must be a valid oop");
coleenp@4037 1267 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
coleenp@4037 1268 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 1269 JRT_END
duke@435 1270
duke@435 1271 //-----------------------------------------------------------------------------
duke@435 1272
duke@435 1273 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
duke@435 1274
duke@435 1275 //
duke@435 1276 // dump the collected NamedCounters.
duke@435 1277 //
duke@435 1278 void OptoRuntime::print_named_counters() {
duke@435 1279 int total_lock_count = 0;
duke@435 1280 int eliminated_lock_count = 0;
duke@435 1281
duke@435 1282 NamedCounter* c = _named_counters;
duke@435 1283 while (c) {
duke@435 1284 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
duke@435 1285 int count = c->count();
duke@435 1286 if (count > 0) {
duke@435 1287 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
duke@435 1288 if (Verbose) {
duke@435 1289 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
duke@435 1290 }
duke@435 1291 total_lock_count += count;
duke@435 1292 if (eliminated) {
duke@435 1293 eliminated_lock_count += count;
duke@435 1294 }
duke@435 1295 }
duke@435 1296 } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
duke@435 1297 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
duke@435 1298 if (blc->nonzero()) {
duke@435 1299 tty->print_cr("%s", c->name());
duke@435 1300 blc->print_on(tty);
duke@435 1301 }
kvn@6429 1302 #if INCLUDE_RTM_OPT
kvn@6429 1303 } else if (c->tag() == NamedCounter::RTMLockingCounter) {
kvn@6429 1304 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
kvn@6429 1305 if (rlc->nonzero()) {
kvn@6429 1306 tty->print_cr("%s", c->name());
kvn@6429 1307 rlc->print_on(tty);
kvn@6429 1308 }
kvn@6429 1309 #endif
duke@435 1310 }
duke@435 1311 c = c->next();
duke@435 1312 }
duke@435 1313 if (total_lock_count > 0) {
duke@435 1314 tty->print_cr("dynamic locks: %d", total_lock_count);
duke@435 1315 if (eliminated_lock_count) {
duke@435 1316 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
duke@435 1317 (int)(eliminated_lock_count * 100.0 / total_lock_count));
duke@435 1318 }
duke@435 1319 }
duke@435 1320 }
duke@435 1321
duke@435 1322 //
duke@435 1323 // Allocate a new NamedCounter. The JVMState is used to generate the
duke@435 1324 // name which consists of method@line for the inlining tree.
duke@435 1325 //
duke@435 1326
duke@435 1327 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
duke@435 1328 int max_depth = youngest_jvms->depth();
duke@435 1329
duke@435 1330 // Visit scopes from youngest to oldest.
duke@435 1331 bool first = true;
duke@435 1332 stringStream st;
duke@435 1333 for (int depth = max_depth; depth >= 1; depth--) {
duke@435 1334 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 1335 ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
duke@435 1336 if (!first) {
duke@435 1337 st.print(" ");
duke@435 1338 } else {
duke@435 1339 first = false;
duke@435 1340 }
duke@435 1341 int bci = jvms->bci();
duke@435 1342 if (bci < 0) bci = 0;
duke@435 1343 st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
duke@435 1344 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
duke@435 1345 }
duke@435 1346 NamedCounter* c;
duke@435 1347 if (tag == NamedCounter::BiasedLockingCounter) {
duke@435 1348 c = new BiasedLockingNamedCounter(strdup(st.as_string()));
kvn@6429 1349 } else if (tag == NamedCounter::RTMLockingCounter) {
kvn@6429 1350 c = new RTMLockingNamedCounter(strdup(st.as_string()));
duke@435 1351 } else {
duke@435 1352 c = new NamedCounter(strdup(st.as_string()), tag);
duke@435 1353 }
duke@435 1354
duke@435 1355 // atomically add the new counter to the head of the list. We only
duke@435 1356 // add counters so this is safe.
duke@435 1357 NamedCounter* head;
duke@435 1358 do {
kvn@6429 1359 c->set_next(NULL);
duke@435 1360 head = _named_counters;
duke@435 1361 c->set_next(head);
duke@435 1362 } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
duke@435 1363 return c;
duke@435 1364 }
duke@435 1365
duke@435 1366 //-----------------------------------------------------------------------------
duke@435 1367 // Non-product code
duke@435 1368 #ifndef PRODUCT
duke@435 1369
duke@435 1370 int trace_exception_counter = 0;
duke@435 1371 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
duke@435 1372 ttyLocker ttyl;
duke@435 1373 trace_exception_counter++;
duke@435 1374 tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
duke@435 1375 exception_oop->print_value();
duke@435 1376 tty->print(" in ");
duke@435 1377 CodeBlob* blob = CodeCache::find_blob(exception_pc);
duke@435 1378 if (blob->is_nmethod()) {
twisti@5915 1379 nmethod* nm = blob->as_nmethod_or_null();
twisti@5915 1380 nm->method()->print_value();
duke@435 1381 } else if (blob->is_runtime_stub()) {
duke@435 1382 tty->print("<runtime-stub>");
duke@435 1383 } else {
duke@435 1384 tty->print("<unknown>");
duke@435 1385 }
duke@435 1386 tty->print(" at " INTPTR_FORMAT, exception_pc);
duke@435 1387 tty->print_cr("]");
duke@435 1388 }
duke@435 1389
duke@435 1390 #endif // PRODUCT
duke@435 1391
duke@435 1392
duke@435 1393 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1394 // Called from call sites in compiled code with oop maps (actually safepoints)
duke@435 1395 // Zaps dead locals in first java frame.
duke@435 1396 // Is entry because may need to lock to generate oop maps
duke@435 1397 // Currently, only used for compiler frames, but someday may be used
duke@435 1398 // for interpreter frames, too.
duke@435 1399
duke@435 1400 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
duke@435 1401
duke@435 1402 // avoid pointers to member funcs with these helpers
duke@435 1403 static bool is_java_frame( frame* f) { return f->is_java_frame(); }
duke@435 1404 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
duke@435 1405
duke@435 1406
duke@435 1407 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
duke@435 1408 bool (*is_this_the_right_frame_to_zap)(frame*)) {
duke@435 1409 assert(JavaThread::current() == thread, "is this needed?");
duke@435 1410
duke@435 1411 if ( !ZapDeadCompiledLocals ) return;
duke@435 1412
duke@435 1413 bool skip = false;
duke@435 1414
duke@435 1415 if ( ZapDeadCompiledLocalsFirst == 0 ) ; // nothing special
duke@435 1416 else if ( ZapDeadCompiledLocalsFirst > ZapDeadCompiledLocals_count ) skip = true;
duke@435 1417 else if ( ZapDeadCompiledLocalsFirst == ZapDeadCompiledLocals_count )
duke@435 1418 warning("starting zapping after skipping");
duke@435 1419
duke@435 1420 if ( ZapDeadCompiledLocalsLast == -1 ) ; // nothing special
duke@435 1421 else if ( ZapDeadCompiledLocalsLast < ZapDeadCompiledLocals_count ) skip = true;
duke@435 1422 else if ( ZapDeadCompiledLocalsLast == ZapDeadCompiledLocals_count )
duke@435 1423 warning("about to zap last zap");
duke@435 1424
duke@435 1425 ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
duke@435 1426
duke@435 1427 if ( skip ) return;
duke@435 1428
duke@435 1429 // find java frame and zap it
duke@435 1430
duke@435 1431 for (StackFrameStream sfs(thread); !sfs.is_done(); sfs.next()) {
duke@435 1432 if (is_this_the_right_frame_to_zap(sfs.current()) ) {
duke@435 1433 sfs.current()->zap_dead_locals(thread, sfs.register_map());
duke@435 1434 return;
duke@435 1435 }
duke@435 1436 }
duke@435 1437 warning("no frame found to zap in zap_dead_Java_locals_C");
duke@435 1438 }
duke@435 1439
duke@435 1440 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
duke@435 1441 zap_dead_java_or_native_locals(thread, is_java_frame);
duke@435 1442 JRT_END
duke@435 1443
duke@435 1444 // The following does not work because for one thing, the
duke@435 1445 // thread state is wrong; it expects java, but it is native.
twisti@1040 1446 // Also, the invariants in a native stub are different and
duke@435 1447 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
duke@435 1448 // in there.
duke@435 1449 // So for now, we do not zap in native stubs.
duke@435 1450
duke@435 1451 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
duke@435 1452 zap_dead_java_or_native_locals(thread, is_native_frame);
duke@435 1453 JRT_END
duke@435 1454
duke@435 1455 # endif

mercurial