src/share/vm/opto/runtime.cpp

Wed, 24 Oct 2012 14:33:22 -0700

author
kvn
date
Wed, 24 Oct 2012 14:33:22 -0700
changeset 4205
a3ecd773a7b9
parent 4142
d8ce2825b193
child 4278
070d523b96a7
permissions
-rw-r--r--

7184394: add intrinsics to use AES instructions
Summary: Use new x86 AES instructions for AESCrypt.
Reviewed-by: twisti, kvn, roland
Contributed-by: tom.deneau@amd.com

duke@435 1 /*
rbackman@3709 2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/nmethod.hpp"
stefank@2314 31 #include "code/pcDesc.hpp"
stefank@2314 32 #include "code/scopeDesc.hpp"
stefank@2314 33 #include "code/vtableStubs.hpp"
stefank@2314 34 #include "compiler/compileBroker.hpp"
stefank@2314 35 #include "compiler/compilerOracle.hpp"
stefank@2314 36 #include "compiler/oopMap.hpp"
stefank@2314 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
stefank@2314 38 #include "gc_implementation/g1/heapRegion.hpp"
stefank@2314 39 #include "gc_interface/collectedHeap.hpp"
stefank@2314 40 #include "interpreter/bytecode.hpp"
stefank@2314 41 #include "interpreter/interpreter.hpp"
stefank@2314 42 #include "interpreter/linkResolver.hpp"
stefank@2314 43 #include "memory/barrierSet.hpp"
stefank@2314 44 #include "memory/gcLocker.inline.hpp"
stefank@2314 45 #include "memory/oopFactory.hpp"
stefank@2314 46 #include "oops/objArrayKlass.hpp"
stefank@2314 47 #include "oops/oop.inline.hpp"
stefank@2314 48 #include "opto/addnode.hpp"
stefank@2314 49 #include "opto/callnode.hpp"
stefank@2314 50 #include "opto/cfgnode.hpp"
stefank@2314 51 #include "opto/connode.hpp"
stefank@2314 52 #include "opto/graphKit.hpp"
stefank@2314 53 #include "opto/machnode.hpp"
stefank@2314 54 #include "opto/matcher.hpp"
stefank@2314 55 #include "opto/memnode.hpp"
stefank@2314 56 #include "opto/mulnode.hpp"
stefank@2314 57 #include "opto/runtime.hpp"
stefank@2314 58 #include "opto/subnode.hpp"
stefank@2314 59 #include "runtime/fprofiler.hpp"
stefank@2314 60 #include "runtime/handles.inline.hpp"
stefank@2314 61 #include "runtime/interfaceSupport.hpp"
stefank@2314 62 #include "runtime/javaCalls.hpp"
stefank@2314 63 #include "runtime/sharedRuntime.hpp"
stefank@2314 64 #include "runtime/signature.hpp"
stefank@2314 65 #include "runtime/threadCritical.hpp"
stefank@2314 66 #include "runtime/vframe.hpp"
stefank@2314 67 #include "runtime/vframeArray.hpp"
stefank@2314 68 #include "runtime/vframe_hp.hpp"
stefank@2314 69 #include "utilities/copy.hpp"
stefank@2314 70 #include "utilities/preserveException.hpp"
stefank@2314 71 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 72 # include "adfiles/ad_x86_32.hpp"
stefank@2314 73 #endif
stefank@2314 74 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 75 # include "adfiles/ad_x86_64.hpp"
stefank@2314 76 #endif
stefank@2314 77 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 78 # include "adfiles/ad_sparc.hpp"
stefank@2314 79 #endif
stefank@2314 80 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 81 # include "adfiles/ad_zero.hpp"
stefank@2314 82 #endif
bobv@2508 83 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 84 # include "adfiles/ad_arm.hpp"
bobv@2508 85 #endif
bobv@2508 86 #ifdef TARGET_ARCH_MODEL_ppc
bobv@2508 87 # include "adfiles/ad_ppc.hpp"
bobv@2508 88 #endif
duke@435 89
duke@435 90
duke@435 91 // For debugging purposes:
duke@435 92 // To force FullGCALot inside a runtime function, add the following two lines
duke@435 93 //
duke@435 94 // Universe::release_fullgc_alot_dummy();
duke@435 95 // MarkSweep::invoke(0, "Debugging");
duke@435 96 //
duke@435 97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
duke@435 98
duke@435 99
duke@435 100
duke@435 101
duke@435 102 // Compiled code entry points
duke@435 103 address OptoRuntime::_new_instance_Java = NULL;
duke@435 104 address OptoRuntime::_new_array_Java = NULL;
kvn@3157 105 address OptoRuntime::_new_array_nozero_Java = NULL;
duke@435 106 address OptoRuntime::_multianewarray2_Java = NULL;
duke@435 107 address OptoRuntime::_multianewarray3_Java = NULL;
duke@435 108 address OptoRuntime::_multianewarray4_Java = NULL;
duke@435 109 address OptoRuntime::_multianewarray5_Java = NULL;
iveresov@3002 110 address OptoRuntime::_multianewarrayN_Java = NULL;
ysr@777 111 address OptoRuntime::_g1_wb_pre_Java = NULL;
ysr@777 112 address OptoRuntime::_g1_wb_post_Java = NULL;
duke@435 113 address OptoRuntime::_vtable_must_compile_Java = NULL;
duke@435 114 address OptoRuntime::_complete_monitor_locking_Java = NULL;
duke@435 115 address OptoRuntime::_rethrow_Java = NULL;
duke@435 116
duke@435 117 address OptoRuntime::_slow_arraycopy_Java = NULL;
duke@435 118 address OptoRuntime::_register_finalizer_Java = NULL;
duke@435 119
duke@435 120 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 121 address OptoRuntime::_zap_dead_Java_locals_Java = NULL;
duke@435 122 address OptoRuntime::_zap_dead_native_locals_Java = NULL;
duke@435 123 # endif
duke@435 124
never@2950 125 ExceptionBlob* OptoRuntime::_exception_blob;
duke@435 126
duke@435 127 // This should be called in an assertion at the start of OptoRuntime routines
duke@435 128 // which are entered from compiled code (all of them)
duke@435 129 #ifndef PRODUCT
duke@435 130 static bool check_compiled_frame(JavaThread* thread) {
duke@435 131 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
duke@435 132 #ifdef ASSERT
duke@435 133 RegisterMap map(thread, false);
duke@435 134 frame caller = thread->last_frame().sender(&map);
duke@435 135 assert(caller.is_compiled_frame(), "not being called from compiled like code");
duke@435 136 #endif /* ASSERT */
duke@435 137 return true;
duke@435 138 }
duke@435 139 #endif
duke@435 140
duke@435 141
duke@435 142 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
duke@435 143 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
duke@435 144
duke@435 145 void OptoRuntime::generate(ciEnv* env) {
duke@435 146
duke@435 147 generate_exception_blob();
duke@435 148
duke@435 149 // Note: tls: Means fetching the return oop out of the thread-local storage
duke@435 150 //
duke@435 151 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc
duke@435 152 // -------------------------------------------------------------------------------------------------------------------------------
duke@435 153 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false);
duke@435 154 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false);
kvn@3157 155 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false);
duke@435 156 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false);
duke@435 157 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false);
duke@435 158 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false);
duke@435 159 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false);
iveresov@3002 160 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false);
ysr@777 161 gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false);
ysr@777 162 gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false);
duke@435 163 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C , 0 , false, false, false);
duke@435 164 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true );
duke@435 165
duke@435 166 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false);
duke@435 167 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false);
duke@435 168
duke@435 169 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 170 gen(env, _zap_dead_Java_locals_Java , zap_dead_locals_Type , zap_dead_Java_locals_C , 0 , false, true , false );
duke@435 171 gen(env, _zap_dead_native_locals_Java , zap_dead_locals_Type , zap_dead_native_locals_C , 0 , false, true , false );
duke@435 172 # endif
duke@435 173
duke@435 174 }
duke@435 175
duke@435 176 #undef gen
duke@435 177
duke@435 178
duke@435 179 // Helper method to do generation of RunTimeStub's
duke@435 180 address OptoRuntime::generate_stub( ciEnv* env,
duke@435 181 TypeFunc_generator gen, address C_function,
duke@435 182 const char *name, int is_fancy_jump,
duke@435 183 bool pass_tls,
duke@435 184 bool save_argument_registers,
duke@435 185 bool return_pc ) {
duke@435 186 ResourceMark rm;
duke@435 187 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
duke@435 188 return C.stub_entry_point();
duke@435 189 }
duke@435 190
duke@435 191 const char* OptoRuntime::stub_name(address entry) {
duke@435 192 #ifndef PRODUCT
duke@435 193 CodeBlob* cb = CodeCache::find_blob(entry);
duke@435 194 RuntimeStub* rs =(RuntimeStub *)cb;
duke@435 195 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
duke@435 196 return rs->name();
duke@435 197 #else
duke@435 198 // Fast implementation for product mode (maybe it should be inlined too)
duke@435 199 return "runtime stub";
duke@435 200 #endif
duke@435 201 }
duke@435 202
duke@435 203
duke@435 204 //=============================================================================
duke@435 205 // Opto compiler runtime routines
duke@435 206 //=============================================================================
duke@435 207
duke@435 208
duke@435 209 //=============================allocation======================================
duke@435 210 // We failed the fast-path allocation. Now we need to do a scavenge or GC
duke@435 211 // and try allocation again.
duke@435 212
ysr@1601 213 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
duke@435 214 // After any safepoint, just before going back to compiled code,
ysr@1462 215 // we inform the GC that we will be doing initializing writes to
ysr@1462 216 // this object in the future without emitting card-marks, so
ysr@1462 217 // GC may take any compensating steps.
ysr@1462 218 // NOTE: Keep this code consistent with GraphKit::store_barrier.
duke@435 219
duke@435 220 oop new_obj = thread->vm_result();
duke@435 221 if (new_obj == NULL) return;
duke@435 222
duke@435 223 assert(Universe::heap()->can_elide_tlab_store_barriers(),
duke@435 224 "compiler must check this first");
ysr@1462 225 // GC may decide to give back a safer copy of new_obj.
ysr@1601 226 new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
duke@435 227 thread->set_vm_result(new_obj);
duke@435 228 }
duke@435 229
duke@435 230 // object allocation
coleenp@4037 231 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
duke@435 232 JRT_BLOCK;
duke@435 233 #ifndef PRODUCT
duke@435 234 SharedRuntime::_new_instance_ctr++; // new instance requires GC
duke@435 235 #endif
duke@435 236 assert(check_compiled_frame(thread), "incorrect caller");
duke@435 237
duke@435 238 // These checks are cheap to make and support reflective allocation.
duke@435 239 int lh = Klass::cast(klass)->layout_helper();
duke@435 240 if (Klass::layout_helper_needs_slow_path(lh)
coleenp@4037 241 || !InstanceKlass::cast(klass)->is_initialized()) {
duke@435 242 KlassHandle kh(THREAD, klass);
duke@435 243 kh->check_valid_for_instantiation(false, THREAD);
duke@435 244 if (!HAS_PENDING_EXCEPTION) {
coleenp@4037 245 InstanceKlass::cast(kh())->initialize(THREAD);
duke@435 246 }
duke@435 247 if (!HAS_PENDING_EXCEPTION) {
duke@435 248 klass = kh();
duke@435 249 } else {
duke@435 250 klass = NULL;
duke@435 251 }
duke@435 252 }
duke@435 253
duke@435 254 if (klass != NULL) {
duke@435 255 // Scavenge and allocate an instance.
coleenp@4037 256 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
duke@435 257 thread->set_vm_result(result);
duke@435 258
duke@435 259 // Pass oops back through thread local storage. Our apparent type to Java
duke@435 260 // is that we return an oop, but we can block on exit from this routine and
duke@435 261 // a GC can trash the oop in C's return register. The generated stub will
duke@435 262 // fetch the oop from TLS after any possible GC.
duke@435 263 }
duke@435 264
duke@435 265 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 266 JRT_BLOCK_END;
duke@435 267
duke@435 268 if (GraphKit::use_ReduceInitialCardMarks()) {
ysr@1462 269 // inform GC that we won't do card marks for initializing writes.
ysr@1601 270 new_store_pre_barrier(thread);
duke@435 271 }
duke@435 272 JRT_END
duke@435 273
duke@435 274
duke@435 275 // array allocation
coleenp@4037 276 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
duke@435 277 JRT_BLOCK;
duke@435 278 #ifndef PRODUCT
duke@435 279 SharedRuntime::_new_array_ctr++; // new array requires GC
duke@435 280 #endif
duke@435 281 assert(check_compiled_frame(thread), "incorrect caller");
duke@435 282
duke@435 283 // Scavenge and allocate an instance.
duke@435 284 oop result;
duke@435 285
duke@435 286 if (Klass::cast(array_type)->oop_is_typeArray()) {
duke@435 287 // The oopFactory likes to work with the element type.
duke@435 288 // (We could bypass the oopFactory, since it doesn't add much value.)
coleenp@4142 289 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
duke@435 290 result = oopFactory::new_typeArray(elem_type, len, THREAD);
duke@435 291 } else {
duke@435 292 // Although the oopFactory likes to work with the elem_type,
duke@435 293 // the compiler prefers the array_type, since it must already have
duke@435 294 // that latter value in hand for the fast path.
coleenp@4142 295 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
duke@435 296 result = oopFactory::new_objArray(elem_type, len, THREAD);
duke@435 297 }
duke@435 298
duke@435 299 // Pass oops back through thread local storage. Our apparent type to Java
duke@435 300 // is that we return an oop, but we can block on exit from this routine and
duke@435 301 // a GC can trash the oop in C's return register. The generated stub will
duke@435 302 // fetch the oop from TLS after any possible GC.
duke@435 303 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 304 thread->set_vm_result(result);
duke@435 305 JRT_BLOCK_END;
duke@435 306
duke@435 307 if (GraphKit::use_ReduceInitialCardMarks()) {
ysr@1462 308 // inform GC that we won't do card marks for initializing writes.
ysr@1601 309 new_store_pre_barrier(thread);
duke@435 310 }
duke@435 311 JRT_END
duke@435 312
kvn@3157 313 // array allocation without zeroing
coleenp@4037 314 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
kvn@3157 315 JRT_BLOCK;
kvn@3157 316 #ifndef PRODUCT
kvn@3157 317 SharedRuntime::_new_array_ctr++; // new array requires GC
kvn@3157 318 #endif
kvn@3157 319 assert(check_compiled_frame(thread), "incorrect caller");
kvn@3157 320
kvn@3157 321 // Scavenge and allocate an instance.
kvn@3157 322 oop result;
kvn@3157 323
kvn@3157 324 assert(Klass::cast(array_type)->oop_is_typeArray(), "should be called only for type array");
kvn@3157 325 // The oopFactory likes to work with the element type.
coleenp@4142 326 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
kvn@3157 327 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
kvn@3157 328
kvn@3157 329 // Pass oops back through thread local storage. Our apparent type to Java
kvn@3157 330 // is that we return an oop, but we can block on exit from this routine and
kvn@3157 331 // a GC can trash the oop in C's return register. The generated stub will
kvn@3157 332 // fetch the oop from TLS after any possible GC.
kvn@3157 333 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
kvn@3157 334 thread->set_vm_result(result);
kvn@3157 335 JRT_BLOCK_END;
kvn@3157 336
kvn@3157 337 if (GraphKit::use_ReduceInitialCardMarks()) {
kvn@3157 338 // inform GC that we won't do card marks for initializing writes.
kvn@3157 339 new_store_pre_barrier(thread);
kvn@3157 340 }
kvn@3259 341
kvn@3259 342 oop result = thread->vm_result();
kvn@3259 343 if ((len > 0) && (result != NULL) &&
kvn@3259 344 is_deoptimized_caller_frame(thread)) {
kvn@3259 345 // Zero array here if the caller is deoptimized.
kvn@3259 346 int size = ((typeArrayOop)result)->object_size();
coleenp@4142 347 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
kvn@3259 348 const size_t hs = arrayOopDesc::header_size(elem_type);
kvn@3259 349 // Align to next 8 bytes to avoid trashing arrays's length.
kvn@3259 350 const size_t aligned_hs = align_object_offset(hs);
kvn@3259 351 HeapWord* obj = (HeapWord*)result;
kvn@3259 352 if (aligned_hs > hs) {
kvn@3259 353 Copy::zero_to_words(obj+hs, aligned_hs-hs);
kvn@3259 354 }
kvn@3259 355 // Optimized zeroing.
kvn@3259 356 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
kvn@3259 357 }
kvn@3259 358
kvn@3157 359 JRT_END
kvn@3157 360
duke@435 361 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
duke@435 362
duke@435 363 // multianewarray for 2 dimensions
coleenp@4037 364 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
duke@435 365 #ifndef PRODUCT
duke@435 366 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
duke@435 367 #endif
duke@435 368 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 369 assert(elem_type->is_klass(), "not a class");
duke@435 370 jint dims[2];
duke@435 371 dims[0] = len1;
duke@435 372 dims[1] = len2;
coleenp@4142 373 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
duke@435 374 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 375 thread->set_vm_result(obj);
duke@435 376 JRT_END
duke@435 377
duke@435 378 // multianewarray for 3 dimensions
coleenp@4037 379 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
duke@435 380 #ifndef PRODUCT
duke@435 381 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
duke@435 382 #endif
duke@435 383 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 384 assert(elem_type->is_klass(), "not a class");
duke@435 385 jint dims[3];
duke@435 386 dims[0] = len1;
duke@435 387 dims[1] = len2;
duke@435 388 dims[2] = len3;
coleenp@4142 389 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
duke@435 390 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 391 thread->set_vm_result(obj);
duke@435 392 JRT_END
duke@435 393
duke@435 394 // multianewarray for 4 dimensions
coleenp@4037 395 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
duke@435 396 #ifndef PRODUCT
duke@435 397 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
duke@435 398 #endif
duke@435 399 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 400 assert(elem_type->is_klass(), "not a class");
duke@435 401 jint dims[4];
duke@435 402 dims[0] = len1;
duke@435 403 dims[1] = len2;
duke@435 404 dims[2] = len3;
duke@435 405 dims[3] = len4;
coleenp@4142 406 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
duke@435 407 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 408 thread->set_vm_result(obj);
duke@435 409 JRT_END
duke@435 410
duke@435 411 // multianewarray for 5 dimensions
coleenp@4037 412 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
duke@435 413 #ifndef PRODUCT
duke@435 414 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
duke@435 415 #endif
duke@435 416 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 417 assert(elem_type->is_klass(), "not a class");
duke@435 418 jint dims[5];
duke@435 419 dims[0] = len1;
duke@435 420 dims[1] = len2;
duke@435 421 dims[2] = len3;
duke@435 422 dims[3] = len4;
duke@435 423 dims[4] = len5;
coleenp@4142 424 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
duke@435 425 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 426 thread->set_vm_result(obj);
duke@435 427 JRT_END
duke@435 428
coleenp@4037 429 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
iveresov@3002 430 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 431 assert(elem_type->is_klass(), "not a class");
iveresov@3002 432 assert(oop(dims)->is_typeArray(), "not an array");
iveresov@3002 433
iveresov@3002 434 ResourceMark rm;
iveresov@3002 435 jint len = dims->length();
iveresov@3002 436 assert(len > 0, "Dimensions array should contain data");
iveresov@3002 437 jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
iveresov@3002 438 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
iveresov@3002 439 Copy::conjoint_jints_atomic(j_dims, c_dims, len);
iveresov@3002 440
coleenp@4142 441 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
iveresov@3002 442 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
iveresov@3002 443 thread->set_vm_result(obj);
iveresov@3002 444 JRT_END
iveresov@3002 445
iveresov@3002 446
duke@435 447 const TypeFunc *OptoRuntime::new_instance_Type() {
duke@435 448 // create input type (domain)
duke@435 449 const Type **fields = TypeTuple::fields(1);
duke@435 450 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
duke@435 451 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 452
duke@435 453 // create result type (range)
duke@435 454 fields = TypeTuple::fields(1);
duke@435 455 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 456
duke@435 457 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 458
duke@435 459 return TypeFunc::make(domain, range);
duke@435 460 }
duke@435 461
duke@435 462
duke@435 463 const TypeFunc *OptoRuntime::athrow_Type() {
duke@435 464 // create input type (domain)
duke@435 465 const Type **fields = TypeTuple::fields(1);
duke@435 466 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
duke@435 467 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 468
duke@435 469 // create result type (range)
duke@435 470 fields = TypeTuple::fields(0);
duke@435 471
duke@435 472 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 473
duke@435 474 return TypeFunc::make(domain, range);
duke@435 475 }
duke@435 476
duke@435 477
duke@435 478 const TypeFunc *OptoRuntime::new_array_Type() {
duke@435 479 // create input type (domain)
duke@435 480 const Type **fields = TypeTuple::fields(2);
duke@435 481 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
duke@435 482 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
duke@435 483 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 484
duke@435 485 // create result type (range)
duke@435 486 fields = TypeTuple::fields(1);
duke@435 487 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 488
duke@435 489 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 490
duke@435 491 return TypeFunc::make(domain, range);
duke@435 492 }
duke@435 493
duke@435 494 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
duke@435 495 // create input type (domain)
duke@435 496 const int nargs = ndim + 1;
duke@435 497 const Type **fields = TypeTuple::fields(nargs);
duke@435 498 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
duke@435 499 for( int i = 1; i < nargs; i++ )
duke@435 500 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
duke@435 501 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
duke@435 502
duke@435 503 // create result type (range)
duke@435 504 fields = TypeTuple::fields(1);
duke@435 505 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 506 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 507
duke@435 508 return TypeFunc::make(domain, range);
duke@435 509 }
duke@435 510
duke@435 511 const TypeFunc *OptoRuntime::multianewarray2_Type() {
duke@435 512 return multianewarray_Type(2);
duke@435 513 }
duke@435 514
duke@435 515 const TypeFunc *OptoRuntime::multianewarray3_Type() {
duke@435 516 return multianewarray_Type(3);
duke@435 517 }
duke@435 518
duke@435 519 const TypeFunc *OptoRuntime::multianewarray4_Type() {
duke@435 520 return multianewarray_Type(4);
duke@435 521 }
duke@435 522
duke@435 523 const TypeFunc *OptoRuntime::multianewarray5_Type() {
duke@435 524 return multianewarray_Type(5);
duke@435 525 }
duke@435 526
iveresov@3002 527 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
iveresov@3002 528 // create input type (domain)
iveresov@3002 529 const Type **fields = TypeTuple::fields(2);
iveresov@3002 530 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
iveresov@3002 531 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes
iveresov@3002 532 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
iveresov@3002 533
iveresov@3002 534 // create result type (range)
iveresov@3002 535 fields = TypeTuple::fields(1);
iveresov@3002 536 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
iveresov@3002 537 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
iveresov@3002 538
iveresov@3002 539 return TypeFunc::make(domain, range);
iveresov@3002 540 }
iveresov@3002 541
ysr@777 542 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
ysr@777 543 const Type **fields = TypeTuple::fields(2);
ysr@777 544 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
ysr@777 545 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
ysr@777 546 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
ysr@777 547
ysr@777 548 // create result type (range)
ysr@777 549 fields = TypeTuple::fields(0);
ysr@777 550 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
ysr@777 551
ysr@777 552 return TypeFunc::make(domain, range);
ysr@777 553 }
ysr@777 554
ysr@777 555 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
ysr@777 556
ysr@777 557 const Type **fields = TypeTuple::fields(2);
ysr@777 558 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr
ysr@777 559 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
ysr@777 560 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
ysr@777 561
ysr@777 562 // create result type (range)
ysr@777 563 fields = TypeTuple::fields(0);
ysr@777 564 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
ysr@777 565
ysr@777 566 return TypeFunc::make(domain, range);
ysr@777 567 }
ysr@777 568
duke@435 569 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
duke@435 570 // create input type (domain)
duke@435 571 const Type **fields = TypeTuple::fields(1);
coleenp@2497 572 // Symbol* name of class to be loaded
duke@435 573 fields[TypeFunc::Parms+0] = TypeInt::INT;
duke@435 574 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 575
duke@435 576 // create result type (range)
duke@435 577 fields = TypeTuple::fields(0);
duke@435 578 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 579
duke@435 580 return TypeFunc::make(domain, range);
duke@435 581 }
duke@435 582
duke@435 583 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 584 // Type used for stub generation for zap_dead_locals.
duke@435 585 // No inputs or outputs
duke@435 586 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
duke@435 587 // create input type (domain)
duke@435 588 const Type **fields = TypeTuple::fields(0);
duke@435 589 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
duke@435 590
duke@435 591 // create result type (range)
duke@435 592 fields = TypeTuple::fields(0);
duke@435 593 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
duke@435 594
duke@435 595 return TypeFunc::make(domain,range);
duke@435 596 }
duke@435 597 # endif
duke@435 598
duke@435 599
duke@435 600 //-----------------------------------------------------------------------------
duke@435 601 // Monitor Handling
duke@435 602 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
duke@435 603 // create input type (domain)
duke@435 604 const Type **fields = TypeTuple::fields(2);
duke@435 605 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 606 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 607 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 608
duke@435 609 // create result type (range)
duke@435 610 fields = TypeTuple::fields(0);
duke@435 611
duke@435 612 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 613
duke@435 614 return TypeFunc::make(domain,range);
duke@435 615 }
duke@435 616
duke@435 617
duke@435 618 //-----------------------------------------------------------------------------
duke@435 619 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
duke@435 620 // create input type (domain)
duke@435 621 const Type **fields = TypeTuple::fields(2);
duke@435 622 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 623 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 624 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 625
duke@435 626 // create result type (range)
duke@435 627 fields = TypeTuple::fields(0);
duke@435 628
duke@435 629 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 630
duke@435 631 return TypeFunc::make(domain,range);
duke@435 632 }
duke@435 633
duke@435 634 const TypeFunc* OptoRuntime::flush_windows_Type() {
duke@435 635 // create input type (domain)
duke@435 636 const Type** fields = TypeTuple::fields(1);
duke@435 637 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 638 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 639
duke@435 640 // create result type
duke@435 641 fields = TypeTuple::fields(1);
duke@435 642 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 643 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 644
duke@435 645 return TypeFunc::make(domain, range);
duke@435 646 }
duke@435 647
duke@435 648 const TypeFunc* OptoRuntime::l2f_Type() {
duke@435 649 // create input type (domain)
duke@435 650 const Type **fields = TypeTuple::fields(2);
duke@435 651 fields[TypeFunc::Parms+0] = TypeLong::LONG;
duke@435 652 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 653 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 654
duke@435 655 // create result type (range)
duke@435 656 fields = TypeTuple::fields(1);
duke@435 657 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 658 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 659
duke@435 660 return TypeFunc::make(domain, range);
duke@435 661 }
duke@435 662
duke@435 663 const TypeFunc* OptoRuntime::modf_Type() {
duke@435 664 const Type **fields = TypeTuple::fields(2);
duke@435 665 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 666 fields[TypeFunc::Parms+1] = Type::FLOAT;
duke@435 667 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 668
duke@435 669 // create result type (range)
duke@435 670 fields = TypeTuple::fields(1);
duke@435 671 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 672
duke@435 673 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 674
duke@435 675 return TypeFunc::make(domain, range);
duke@435 676 }
duke@435 677
duke@435 678 const TypeFunc *OptoRuntime::Math_D_D_Type() {
duke@435 679 // create input type (domain)
duke@435 680 const Type **fields = TypeTuple::fields(2);
coleenp@2497 681 // Symbol* name of class to be loaded
duke@435 682 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 683 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 684 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 685
duke@435 686 // create result type (range)
duke@435 687 fields = TypeTuple::fields(2);
duke@435 688 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 689 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 690 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 691
duke@435 692 return TypeFunc::make(domain, range);
duke@435 693 }
duke@435 694
duke@435 695 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
duke@435 696 const Type **fields = TypeTuple::fields(4);
duke@435 697 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 698 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 699 fields[TypeFunc::Parms+2] = Type::DOUBLE;
duke@435 700 fields[TypeFunc::Parms+3] = Type::HALF;
duke@435 701 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
duke@435 702
duke@435 703 // create result type (range)
duke@435 704 fields = TypeTuple::fields(2);
duke@435 705 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 706 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 707 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 708
duke@435 709 return TypeFunc::make(domain, range);
duke@435 710 }
duke@435 711
rbackman@3709 712 //-------------- currentTimeMillis, currentTimeNanos, etc
duke@435 713
rbackman@3709 714 const TypeFunc* OptoRuntime::void_long_Type() {
duke@435 715 // create input type (domain)
duke@435 716 const Type **fields = TypeTuple::fields(0);
duke@435 717 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 718
duke@435 719 // create result type (range)
duke@435 720 fields = TypeTuple::fields(2);
duke@435 721 fields[TypeFunc::Parms+0] = TypeLong::LONG;
duke@435 722 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 723 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 724
duke@435 725 return TypeFunc::make(domain, range);
duke@435 726 }
duke@435 727
duke@435 728 // arraycopy stub variations:
duke@435 729 enum ArrayCopyType {
duke@435 730 ac_fast, // void(ptr, ptr, size_t)
duke@435 731 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
duke@435 732 ac_slow, // void(ptr, int, ptr, int, int)
duke@435 733 ac_generic // int(ptr, int, ptr, int, int)
duke@435 734 };
duke@435 735
duke@435 736 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
duke@435 737 // create input type (domain)
duke@435 738 int num_args = (act == ac_fast ? 3 : 5);
duke@435 739 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
duke@435 740 int argcnt = num_args;
duke@435 741 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
duke@435 742 const Type** fields = TypeTuple::fields(argcnt);
duke@435 743 int argp = TypeFunc::Parms;
duke@435 744 fields[argp++] = TypePtr::NOTNULL; // src
duke@435 745 if (num_size_args == 0) {
duke@435 746 fields[argp++] = TypeInt::INT; // src_pos
duke@435 747 }
duke@435 748 fields[argp++] = TypePtr::NOTNULL; // dest
duke@435 749 if (num_size_args == 0) {
duke@435 750 fields[argp++] = TypeInt::INT; // dest_pos
duke@435 751 fields[argp++] = TypeInt::INT; // length
duke@435 752 }
duke@435 753 while (num_size_args-- > 0) {
duke@435 754 fields[argp++] = TypeX_X; // size in whatevers (size_t)
duke@435 755 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
duke@435 756 }
duke@435 757 if (act == ac_checkcast) {
duke@435 758 fields[argp++] = TypePtr::NOTNULL; // super_klass
duke@435 759 }
duke@435 760 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
duke@435 761 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
duke@435 762
duke@435 763 // create result type if needed
duke@435 764 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
duke@435 765 fields = TypeTuple::fields(1);
duke@435 766 if (retcnt == 0)
duke@435 767 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 768 else
duke@435 769 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
duke@435 770 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
duke@435 771 return TypeFunc::make(domain, range);
duke@435 772 }
duke@435 773
duke@435 774 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
duke@435 775 // This signature is simple: Two base pointers and a size_t.
duke@435 776 return make_arraycopy_Type(ac_fast);
duke@435 777 }
duke@435 778
duke@435 779 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
duke@435 780 // An extension of fast_arraycopy_Type which adds type checking.
duke@435 781 return make_arraycopy_Type(ac_checkcast);
duke@435 782 }
duke@435 783
duke@435 784 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
duke@435 785 // This signature is exactly the same as System.arraycopy.
duke@435 786 // There are no intptr_t (int/long) arguments.
duke@435 787 return make_arraycopy_Type(ac_slow);
duke@435 788 }
duke@435 789
duke@435 790 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
duke@435 791 // This signature is like System.arraycopy, except that it returns status.
duke@435 792 return make_arraycopy_Type(ac_generic);
duke@435 793 }
duke@435 794
duke@435 795
never@2118 796 const TypeFunc* OptoRuntime::array_fill_Type() {
never@2199 797 // create input type (domain): pointer, int, size_t
never@2199 798 const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
never@2199 799 int argp = TypeFunc::Parms;
never@2199 800 fields[argp++] = TypePtr::NOTNULL;
never@2199 801 fields[argp++] = TypeInt::INT;
never@2199 802 fields[argp++] = TypeX_X; // size in whatevers (size_t)
never@2199 803 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
never@2199 804 const TypeTuple *domain = TypeTuple::make(argp, fields);
never@2118 805
never@2118 806 // create result type
never@2118 807 fields = TypeTuple::fields(1);
never@2118 808 fields[TypeFunc::Parms+0] = NULL; // void
never@2118 809 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
never@2118 810
never@2118 811 return TypeFunc::make(domain, range);
never@2118 812 }
never@2118 813
kvn@4205 814 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
kvn@4205 815 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
kvn@4205 816 // create input type (domain)
kvn@4205 817 int num_args = 3;
kvn@4205 818 int argcnt = num_args;
kvn@4205 819 const Type** fields = TypeTuple::fields(argcnt);
kvn@4205 820 int argp = TypeFunc::Parms;
kvn@4205 821 fields[argp++] = TypePtr::NOTNULL; // src
kvn@4205 822 fields[argp++] = TypePtr::NOTNULL; // dest
kvn@4205 823 fields[argp++] = TypePtr::NOTNULL; // k array
kvn@4205 824 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@4205 825 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@4205 826
kvn@4205 827 // no result type needed
kvn@4205 828 fields = TypeTuple::fields(1);
kvn@4205 829 fields[TypeFunc::Parms+0] = NULL; // void
kvn@4205 830 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
kvn@4205 831 return TypeFunc::make(domain, range);
kvn@4205 832 }
kvn@4205 833
kvn@4205 834 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning void
kvn@4205 835 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
kvn@4205 836 // create input type (domain)
kvn@4205 837 int num_args = 5;
kvn@4205 838 int argcnt = num_args;
kvn@4205 839 const Type** fields = TypeTuple::fields(argcnt);
kvn@4205 840 int argp = TypeFunc::Parms;
kvn@4205 841 fields[argp++] = TypePtr::NOTNULL; // src
kvn@4205 842 fields[argp++] = TypePtr::NOTNULL; // dest
kvn@4205 843 fields[argp++] = TypePtr::NOTNULL; // k array
kvn@4205 844 fields[argp++] = TypePtr::NOTNULL; // r array
kvn@4205 845 fields[argp++] = TypeInt::INT; // src len
kvn@4205 846 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@4205 847 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@4205 848
kvn@4205 849 // no result type needed
kvn@4205 850 fields = TypeTuple::fields(1);
kvn@4205 851 fields[TypeFunc::Parms+0] = NULL; // void
kvn@4205 852 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
kvn@4205 853 return TypeFunc::make(domain, range);
kvn@4205 854 }
kvn@4205 855
duke@435 856 //------------- Interpreter state access for on stack replacement
duke@435 857 const TypeFunc* OptoRuntime::osr_end_Type() {
duke@435 858 // create input type (domain)
duke@435 859 const Type **fields = TypeTuple::fields(1);
duke@435 860 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
duke@435 861 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 862
duke@435 863 // create result type
duke@435 864 fields = TypeTuple::fields(1);
duke@435 865 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
duke@435 866 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 867 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 868 return TypeFunc::make(domain, range);
duke@435 869 }
duke@435 870
duke@435 871 //-------------- methodData update helpers
duke@435 872
duke@435 873 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
duke@435 874 // create input type (domain)
duke@435 875 const Type **fields = TypeTuple::fields(2);
duke@435 876 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer
duke@435 877 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop
duke@435 878 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 879
duke@435 880 // create result type
duke@435 881 fields = TypeTuple::fields(1);
duke@435 882 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 883 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 884 return TypeFunc::make(domain,range);
duke@435 885 }
duke@435 886
duke@435 887 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
duke@435 888 if (receiver == NULL) return;
coleenp@4037 889 Klass* receiver_klass = receiver->klass();
duke@435 890
duke@435 891 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
duke@435 892 int empty_row = -1; // free row, if any is encountered
duke@435 893
duke@435 894 // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
duke@435 895 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
duke@435 896 // if (vc->receiver(row) == receiver_klass)
duke@435 897 int receiver_off = ReceiverTypeData::receiver_cell_index(row);
duke@435 898 intptr_t row_recv = *(mdp + receiver_off);
duke@435 899 if (row_recv == (intptr_t) receiver_klass) {
duke@435 900 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
duke@435 901 int count_off = ReceiverTypeData::receiver_count_cell_index(row);
duke@435 902 *(mdp + count_off) += DataLayout::counter_increment;
duke@435 903 return;
duke@435 904 } else if (row_recv == 0) {
duke@435 905 // else if (vc->receiver(row) == NULL)
duke@435 906 empty_row = (int) row;
duke@435 907 }
duke@435 908 }
duke@435 909
duke@435 910 if (empty_row != -1) {
duke@435 911 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
duke@435 912 // vc->set_receiver(empty_row, receiver_klass);
duke@435 913 *(mdp + receiver_off) = (intptr_t) receiver_klass;
duke@435 914 // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
duke@435 915 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
duke@435 916 *(mdp + count_off) = DataLayout::counter_increment;
kvn@1641 917 } else {
kvn@1641 918 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 919 // Increment total counter to indicate polymorphic case.
kvn@1641 920 intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
kvn@1641 921 *count_p += DataLayout::counter_increment;
duke@435 922 }
duke@435 923 JRT_END
duke@435 924
duke@435 925 //-------------------------------------------------------------------------------------
duke@435 926 // register policy
duke@435 927
duke@435 928 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
duke@435 929 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
duke@435 930 switch (register_save_policy[reg]) {
duke@435 931 case 'C': return false; //SOC
duke@435 932 case 'E': return true ; //SOE
duke@435 933 case 'N': return false; //NS
duke@435 934 case 'A': return false; //AS
duke@435 935 }
duke@435 936 ShouldNotReachHere();
duke@435 937 return false;
duke@435 938 }
duke@435 939
duke@435 940 //-----------------------------------------------------------------------
duke@435 941 // Exceptions
duke@435 942 //
duke@435 943
duke@435 944 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
duke@435 945
duke@435 946 // The method is an entry that is always called by a C++ method not
duke@435 947 // directly from compiled code. Compiled code will call the C++ method following.
duke@435 948 // We can't allow async exception to be installed during exception processing.
duke@435 949 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
duke@435 950
duke@435 951 // Do not confuse exception_oop with pending_exception. The exception_oop
duke@435 952 // is only used to pass arguments into the method. Not for general
duke@435 953 // exception handling. DO NOT CHANGE IT to use pending_exception, since
duke@435 954 // the runtime stubs checks this on exit.
duke@435 955 assert(thread->exception_oop() != NULL, "exception oop is found");
duke@435 956 address handler_address = NULL;
duke@435 957
duke@435 958 Handle exception(thread, thread->exception_oop());
duke@435 959
duke@435 960 if (TraceExceptions) {
duke@435 961 trace_exception(exception(), thread->exception_pc(), "");
duke@435 962 }
duke@435 963 // for AbortVMOnException flag
duke@435 964 NOT_PRODUCT(Exceptions::debug_check_abort(exception));
duke@435 965
duke@435 966 #ifdef ASSERT
never@1577 967 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
duke@435 968 // should throw an exception here
duke@435 969 ShouldNotReachHere();
duke@435 970 }
duke@435 971 #endif
duke@435 972
duke@435 973
duke@435 974 // new exception handling: this method is entered only from adapters
duke@435 975 // exceptions from compiled java methods are handled in compiled code
duke@435 976 // using rethrow node
duke@435 977
duke@435 978 address pc = thread->exception_pc();
duke@435 979 nm = CodeCache::find_nmethod(pc);
duke@435 980 assert(nm != NULL, "No NMethod found");
duke@435 981 if (nm->is_native_method()) {
duke@435 982 fatal("Native mathod should not have path to exception handling");
duke@435 983 } else {
duke@435 984 // we are switching to old paradigm: search for exception handler in caller_frame
duke@435 985 // instead in exception handler of caller_frame.sender()
duke@435 986
dcubed@1648 987 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 988 // "Full-speed catching" is not necessary here,
duke@435 989 // since we're notifying the VM on every catch.
duke@435 990 // Force deoptimization and the rest of the lookup
duke@435 991 // will be fine.
duke@435 992 deoptimize_caller_frame(thread, true);
duke@435 993 }
duke@435 994
duke@435 995 // Check the stack guard pages. If enabled, look for handler in this frame;
duke@435 996 // otherwise, forcibly unwind the frame.
duke@435 997 //
duke@435 998 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
duke@435 999 bool force_unwind = !thread->reguard_stack();
duke@435 1000 bool deopting = false;
duke@435 1001 if (nm->is_deopt_pc(pc)) {
duke@435 1002 deopting = true;
duke@435 1003 RegisterMap map(thread, false);
duke@435 1004 frame deoptee = thread->last_frame().sender(&map);
duke@435 1005 assert(deoptee.is_deoptimized_frame(), "must be deopted");
duke@435 1006 // Adjust the pc back to the original throwing pc
duke@435 1007 pc = deoptee.pc();
duke@435 1008 }
duke@435 1009
duke@435 1010 // If we are forcing an unwind because of stack overflow then deopt is
duke@435 1011 // irrelevant sice we are throwing the frame away anyway.
duke@435 1012
duke@435 1013 if (deopting && !force_unwind) {
duke@435 1014 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 1015 } else {
duke@435 1016
duke@435 1017 handler_address =
duke@435 1018 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
duke@435 1019
duke@435 1020 if (handler_address == NULL) {
kvn@3194 1021 Handle original_exception(thread, exception());
duke@435 1022 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
duke@435 1023 assert (handler_address != NULL, "must have compiled handler");
kvn@3194 1024 // Update the exception cache only when the unwind was not forced
kvn@3194 1025 // and there didn't happen another exception during the computation of the
kvn@3194 1026 // compiled exception handler.
kvn@3194 1027 if (!force_unwind && original_exception() == exception()) {
duke@435 1028 nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
duke@435 1029 }
duke@435 1030 } else {
duke@435 1031 assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
duke@435 1032 }
duke@435 1033 }
duke@435 1034
duke@435 1035 thread->set_exception_pc(pc);
duke@435 1036 thread->set_exception_handler_pc(handler_address);
twisti@1570 1037
twisti@1730 1038 // Check if the exception PC is a MethodHandle call site.
twisti@1803 1039 thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
duke@435 1040 }
duke@435 1041
duke@435 1042 // Restore correct return pc. Was saved above.
duke@435 1043 thread->set_exception_oop(exception());
duke@435 1044 return handler_address;
duke@435 1045
duke@435 1046 JRT_END
duke@435 1047
duke@435 1048 // We are entering here from exception_blob
duke@435 1049 // If there is a compiled exception handler in this method, we will continue there;
duke@435 1050 // otherwise we will unwind the stack and continue at the caller of top frame method
duke@435 1051 // Note we enter without the usual JRT wrapper. We will call a helper routine that
duke@435 1052 // will do the normal VM entry. We do it this way so that we can see if the nmethod
duke@435 1053 // we looked up the handler for has been deoptimized in the meantime. If it has been
duke@435 1054 // we must not use the handler and instread return the deopt blob.
duke@435 1055 address OptoRuntime::handle_exception_C(JavaThread* thread) {
duke@435 1056 //
duke@435 1057 // We are in Java not VM and in debug mode we have a NoHandleMark
duke@435 1058 //
duke@435 1059 #ifndef PRODUCT
duke@435 1060 SharedRuntime::_find_handler_ctr++; // find exception handler
duke@435 1061 #endif
duke@435 1062 debug_only(NoHandleMark __hm;)
duke@435 1063 nmethod* nm = NULL;
duke@435 1064 address handler_address = NULL;
duke@435 1065 {
duke@435 1066 // Enter the VM
duke@435 1067
duke@435 1068 ResetNoHandleMark rnhm;
duke@435 1069 handler_address = handle_exception_C_helper(thread, nm);
duke@435 1070 }
duke@435 1071
duke@435 1072 // Back in java: Use no oops, DON'T safepoint
duke@435 1073
duke@435 1074 // Now check to see if the handler we are returning is in a now
duke@435 1075 // deoptimized frame
duke@435 1076
duke@435 1077 if (nm != NULL) {
duke@435 1078 RegisterMap map(thread, false);
duke@435 1079 frame caller = thread->last_frame().sender(&map);
duke@435 1080 #ifdef ASSERT
duke@435 1081 assert(caller.is_compiled_frame(), "must be");
duke@435 1082 #endif // ASSERT
duke@435 1083 if (caller.is_deoptimized_frame()) {
duke@435 1084 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 1085 }
duke@435 1086 }
duke@435 1087 return handler_address;
duke@435 1088 }
duke@435 1089
duke@435 1090 //------------------------------rethrow----------------------------------------
duke@435 1091 // We get here after compiled code has executed a 'RethrowNode'. The callee
duke@435 1092 // is either throwing or rethrowing an exception. The callee-save registers
duke@435 1093 // have been restored, synchronized objects have been unlocked and the callee
duke@435 1094 // stack frame has been removed. The return address was passed in.
duke@435 1095 // Exception oop is passed as the 1st argument. This routine is then called
duke@435 1096 // from the stub. On exit, we know where to jump in the caller's code.
duke@435 1097 // After this C code exits, the stub will pop his frame and end in a jump
duke@435 1098 // (instead of a return). We enter the caller's default handler.
duke@435 1099 //
duke@435 1100 // This must be JRT_LEAF:
duke@435 1101 // - caller will not change its state as we cannot block on exit,
duke@435 1102 // therefore raw_exception_handler_for_return_address is all it takes
duke@435 1103 // to handle deoptimized blobs
duke@435 1104 //
duke@435 1105 // However, there needs to be a safepoint check in the middle! So compiled
duke@435 1106 // safepoints are completely watertight.
duke@435 1107 //
duke@435 1108 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
duke@435 1109 //
duke@435 1110 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
duke@435 1111 //
duke@435 1112 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
duke@435 1113 #ifndef PRODUCT
duke@435 1114 SharedRuntime::_rethrow_ctr++; // count rethrows
duke@435 1115 #endif
duke@435 1116 assert (exception != NULL, "should have thrown a NULLPointerException");
duke@435 1117 #ifdef ASSERT
never@1577 1118 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
duke@435 1119 // should throw an exception here
duke@435 1120 ShouldNotReachHere();
duke@435 1121 }
duke@435 1122 #endif
duke@435 1123
duke@435 1124 thread->set_vm_result(exception);
duke@435 1125 // Frame not compiled (handles deoptimization blob)
twisti@1730 1126 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
duke@435 1127 }
duke@435 1128
duke@435 1129
duke@435 1130 const TypeFunc *OptoRuntime::rethrow_Type() {
duke@435 1131 // create input type (domain)
duke@435 1132 const Type **fields = TypeTuple::fields(1);
duke@435 1133 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
duke@435 1134 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
duke@435 1135
duke@435 1136 // create result type (range)
duke@435 1137 fields = TypeTuple::fields(1);
duke@435 1138 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
duke@435 1139 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 1140
duke@435 1141 return TypeFunc::make(domain, range);
duke@435 1142 }
duke@435 1143
duke@435 1144
duke@435 1145 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
duke@435 1146 // Deoptimize frame
duke@435 1147 if (doit) {
duke@435 1148 // Called from within the owner thread, so no need for safepoint
duke@435 1149 RegisterMap reg_map(thread);
duke@435 1150 frame stub_frame = thread->last_frame();
duke@435 1151 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
duke@435 1152 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1153
twisti@3244 1154 // Deoptimize the caller frame.
dcubed@1648 1155 Deoptimization::deoptimize_frame(thread, caller_frame.id());
duke@435 1156 }
duke@435 1157 }
duke@435 1158
duke@435 1159
kvn@3259 1160 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
kvn@3259 1161 // Called from within the owner thread, so no need for safepoint
kvn@3259 1162 RegisterMap reg_map(thread);
kvn@3259 1163 frame stub_frame = thread->last_frame();
kvn@3259 1164 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
kvn@3259 1165 frame caller_frame = stub_frame.sender(&reg_map);
kvn@3259 1166 return caller_frame.is_deoptimized_frame();
kvn@3259 1167 }
kvn@3259 1168
kvn@3259 1169
duke@435 1170 const TypeFunc *OptoRuntime::register_finalizer_Type() {
duke@435 1171 // create input type (domain)
duke@435 1172 const Type **fields = TypeTuple::fields(1);
duke@435 1173 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
duke@435 1174 // // The JavaThread* is passed to each routine as the last argument
duke@435 1175 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
duke@435 1176 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
duke@435 1177
duke@435 1178 // create result type (range)
duke@435 1179 fields = TypeTuple::fields(0);
duke@435 1180
duke@435 1181 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1182
duke@435 1183 return TypeFunc::make(domain,range);
duke@435 1184 }
duke@435 1185
duke@435 1186
duke@435 1187 //-----------------------------------------------------------------------------
duke@435 1188 // Dtrace support. entry and exit probes have the same signature
duke@435 1189 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
duke@435 1190 // create input type (domain)
duke@435 1191 const Type **fields = TypeTuple::fields(2);
duke@435 1192 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
roland@4051 1193 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
duke@435 1194 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 1195
duke@435 1196 // create result type (range)
duke@435 1197 fields = TypeTuple::fields(0);
duke@435 1198
duke@435 1199 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1200
duke@435 1201 return TypeFunc::make(domain,range);
duke@435 1202 }
duke@435 1203
duke@435 1204 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
duke@435 1205 // create input type (domain)
duke@435 1206 const Type **fields = TypeTuple::fields(2);
duke@435 1207 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
duke@435 1208 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
duke@435 1209
duke@435 1210 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 1211
duke@435 1212 // create result type (range)
duke@435 1213 fields = TypeTuple::fields(0);
duke@435 1214
duke@435 1215 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1216
duke@435 1217 return TypeFunc::make(domain,range);
duke@435 1218 }
duke@435 1219
duke@435 1220
duke@435 1221 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
duke@435 1222 assert(obj->is_oop(), "must be a valid oop");
coleenp@4037 1223 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
coleenp@4037 1224 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 1225 JRT_END
duke@435 1226
duke@435 1227 //-----------------------------------------------------------------------------
duke@435 1228
duke@435 1229 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
duke@435 1230
duke@435 1231 //
duke@435 1232 // dump the collected NamedCounters.
duke@435 1233 //
duke@435 1234 void OptoRuntime::print_named_counters() {
duke@435 1235 int total_lock_count = 0;
duke@435 1236 int eliminated_lock_count = 0;
duke@435 1237
duke@435 1238 NamedCounter* c = _named_counters;
duke@435 1239 while (c) {
duke@435 1240 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
duke@435 1241 int count = c->count();
duke@435 1242 if (count > 0) {
duke@435 1243 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
duke@435 1244 if (Verbose) {
duke@435 1245 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
duke@435 1246 }
duke@435 1247 total_lock_count += count;
duke@435 1248 if (eliminated) {
duke@435 1249 eliminated_lock_count += count;
duke@435 1250 }
duke@435 1251 }
duke@435 1252 } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
duke@435 1253 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
duke@435 1254 if (blc->nonzero()) {
duke@435 1255 tty->print_cr("%s", c->name());
duke@435 1256 blc->print_on(tty);
duke@435 1257 }
duke@435 1258 }
duke@435 1259 c = c->next();
duke@435 1260 }
duke@435 1261 if (total_lock_count > 0) {
duke@435 1262 tty->print_cr("dynamic locks: %d", total_lock_count);
duke@435 1263 if (eliminated_lock_count) {
duke@435 1264 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
duke@435 1265 (int)(eliminated_lock_count * 100.0 / total_lock_count));
duke@435 1266 }
duke@435 1267 }
duke@435 1268 }
duke@435 1269
duke@435 1270 //
duke@435 1271 // Allocate a new NamedCounter. The JVMState is used to generate the
duke@435 1272 // name which consists of method@line for the inlining tree.
duke@435 1273 //
duke@435 1274
duke@435 1275 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
duke@435 1276 int max_depth = youngest_jvms->depth();
duke@435 1277
duke@435 1278 // Visit scopes from youngest to oldest.
duke@435 1279 bool first = true;
duke@435 1280 stringStream st;
duke@435 1281 for (int depth = max_depth; depth >= 1; depth--) {
duke@435 1282 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 1283 ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
duke@435 1284 if (!first) {
duke@435 1285 st.print(" ");
duke@435 1286 } else {
duke@435 1287 first = false;
duke@435 1288 }
duke@435 1289 int bci = jvms->bci();
duke@435 1290 if (bci < 0) bci = 0;
duke@435 1291 st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
duke@435 1292 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
duke@435 1293 }
duke@435 1294 NamedCounter* c;
duke@435 1295 if (tag == NamedCounter::BiasedLockingCounter) {
duke@435 1296 c = new BiasedLockingNamedCounter(strdup(st.as_string()));
duke@435 1297 } else {
duke@435 1298 c = new NamedCounter(strdup(st.as_string()), tag);
duke@435 1299 }
duke@435 1300
duke@435 1301 // atomically add the new counter to the head of the list. We only
duke@435 1302 // add counters so this is safe.
duke@435 1303 NamedCounter* head;
duke@435 1304 do {
duke@435 1305 head = _named_counters;
duke@435 1306 c->set_next(head);
duke@435 1307 } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
duke@435 1308 return c;
duke@435 1309 }
duke@435 1310
duke@435 1311 //-----------------------------------------------------------------------------
duke@435 1312 // Non-product code
duke@435 1313 #ifndef PRODUCT
duke@435 1314
duke@435 1315 int trace_exception_counter = 0;
duke@435 1316 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
duke@435 1317 ttyLocker ttyl;
duke@435 1318 trace_exception_counter++;
duke@435 1319 tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
duke@435 1320 exception_oop->print_value();
duke@435 1321 tty->print(" in ");
duke@435 1322 CodeBlob* blob = CodeCache::find_blob(exception_pc);
duke@435 1323 if (blob->is_nmethod()) {
duke@435 1324 ((nmethod*)blob)->method()->print_value();
duke@435 1325 } else if (blob->is_runtime_stub()) {
duke@435 1326 tty->print("<runtime-stub>");
duke@435 1327 } else {
duke@435 1328 tty->print("<unknown>");
duke@435 1329 }
duke@435 1330 tty->print(" at " INTPTR_FORMAT, exception_pc);
duke@435 1331 tty->print_cr("]");
duke@435 1332 }
duke@435 1333
duke@435 1334 #endif // PRODUCT
duke@435 1335
duke@435 1336
duke@435 1337 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1338 // Called from call sites in compiled code with oop maps (actually safepoints)
duke@435 1339 // Zaps dead locals in first java frame.
duke@435 1340 // Is entry because may need to lock to generate oop maps
duke@435 1341 // Currently, only used for compiler frames, but someday may be used
duke@435 1342 // for interpreter frames, too.
duke@435 1343
duke@435 1344 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
duke@435 1345
duke@435 1346 // avoid pointers to member funcs with these helpers
duke@435 1347 static bool is_java_frame( frame* f) { return f->is_java_frame(); }
duke@435 1348 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
duke@435 1349
duke@435 1350
duke@435 1351 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
duke@435 1352 bool (*is_this_the_right_frame_to_zap)(frame*)) {
duke@435 1353 assert(JavaThread::current() == thread, "is this needed?");
duke@435 1354
duke@435 1355 if ( !ZapDeadCompiledLocals ) return;
duke@435 1356
duke@435 1357 bool skip = false;
duke@435 1358
duke@435 1359 if ( ZapDeadCompiledLocalsFirst == 0 ) ; // nothing special
duke@435 1360 else if ( ZapDeadCompiledLocalsFirst > ZapDeadCompiledLocals_count ) skip = true;
duke@435 1361 else if ( ZapDeadCompiledLocalsFirst == ZapDeadCompiledLocals_count )
duke@435 1362 warning("starting zapping after skipping");
duke@435 1363
duke@435 1364 if ( ZapDeadCompiledLocalsLast == -1 ) ; // nothing special
duke@435 1365 else if ( ZapDeadCompiledLocalsLast < ZapDeadCompiledLocals_count ) skip = true;
duke@435 1366 else if ( ZapDeadCompiledLocalsLast == ZapDeadCompiledLocals_count )
duke@435 1367 warning("about to zap last zap");
duke@435 1368
duke@435 1369 ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
duke@435 1370
duke@435 1371 if ( skip ) return;
duke@435 1372
duke@435 1373 // find java frame and zap it
duke@435 1374
duke@435 1375 for (StackFrameStream sfs(thread); !sfs.is_done(); sfs.next()) {
duke@435 1376 if (is_this_the_right_frame_to_zap(sfs.current()) ) {
duke@435 1377 sfs.current()->zap_dead_locals(thread, sfs.register_map());
duke@435 1378 return;
duke@435 1379 }
duke@435 1380 }
duke@435 1381 warning("no frame found to zap in zap_dead_Java_locals_C");
duke@435 1382 }
duke@435 1383
duke@435 1384 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
duke@435 1385 zap_dead_java_or_native_locals(thread, is_java_frame);
duke@435 1386 JRT_END
duke@435 1387
duke@435 1388 // The following does not work because for one thing, the
duke@435 1389 // thread state is wrong; it expects java, but it is native.
twisti@1040 1390 // Also, the invariants in a native stub are different and
duke@435 1391 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
duke@435 1392 // in there.
duke@435 1393 // So for now, we do not zap in native stubs.
duke@435 1394
duke@435 1395 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
duke@435 1396 zap_dead_java_or_native_locals(thread, is_native_frame);
duke@435 1397 JRT_END
duke@435 1398
duke@435 1399 # endif

mercurial