src/share/vm/opto/runtime.cpp

Wed, 11 Jun 2014 11:05:10 -0700

author
kvn
date
Wed, 11 Jun 2014 11:05:10 -0700
changeset 7027
b20a35eae442
parent 6680
78bbf4d43a14
child 7152
166d744df0de
permissions
-rw-r--r--

8035968: Leverage CPU Instructions to Improve SHA Performance on SPARC
Summary: Add C2 SHA intrinsics on SPARC
Reviewed-by: kvn, roland
Contributed-by: james.cheng@oracle.com

     1 /*
     2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/compilerOracle.hpp"
    36 #include "compiler/oopMap.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #include "gc_implementation/g1/heapRegion.hpp"
    39 #include "gc_interface/collectedHeap.hpp"
    40 #include "interpreter/bytecode.hpp"
    41 #include "interpreter/interpreter.hpp"
    42 #include "interpreter/linkResolver.hpp"
    43 #include "memory/barrierSet.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/oopFactory.hpp"
    46 #include "oops/objArrayKlass.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "opto/addnode.hpp"
    49 #include "opto/callnode.hpp"
    50 #include "opto/cfgnode.hpp"
    51 #include "opto/connode.hpp"
    52 #include "opto/graphKit.hpp"
    53 #include "opto/machnode.hpp"
    54 #include "opto/matcher.hpp"
    55 #include "opto/memnode.hpp"
    56 #include "opto/mulnode.hpp"
    57 #include "opto/runtime.hpp"
    58 #include "opto/subnode.hpp"
    59 #include "runtime/fprofiler.hpp"
    60 #include "runtime/handles.inline.hpp"
    61 #include "runtime/interfaceSupport.hpp"
    62 #include "runtime/javaCalls.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/vframe.hpp"
    67 #include "runtime/vframeArray.hpp"
    68 #include "runtime/vframe_hp.hpp"
    69 #include "utilities/copy.hpp"
    70 #include "utilities/preserveException.hpp"
    71 #ifdef TARGET_ARCH_MODEL_x86_32
    72 # include "adfiles/ad_x86_32.hpp"
    73 #endif
    74 #ifdef TARGET_ARCH_MODEL_x86_64
    75 # include "adfiles/ad_x86_64.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_MODEL_sparc
    78 # include "adfiles/ad_sparc.hpp"
    79 #endif
    80 #ifdef TARGET_ARCH_MODEL_zero
    81 # include "adfiles/ad_zero.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_MODEL_arm
    84 # include "adfiles/ad_arm.hpp"
    85 #endif
    86 #ifdef TARGET_ARCH_MODEL_ppc_32
    87 # include "adfiles/ad_ppc_32.hpp"
    88 #endif
    89 #ifdef TARGET_ARCH_MODEL_ppc_64
    90 # include "adfiles/ad_ppc_64.hpp"
    91 #endif
    94 // For debugging purposes:
    95 //  To force FullGCALot inside a runtime function, add the following two lines
    96 //
    97 //  Universe::release_fullgc_alot_dummy();
    98 //  MarkSweep::invoke(0, "Debugging");
    99 //
   100 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
   105 // Compiled code entry points
   106 address OptoRuntime::_new_instance_Java                           = NULL;
   107 address OptoRuntime::_new_array_Java                              = NULL;
   108 address OptoRuntime::_new_array_nozero_Java                       = NULL;
   109 address OptoRuntime::_multianewarray2_Java                        = NULL;
   110 address OptoRuntime::_multianewarray3_Java                        = NULL;
   111 address OptoRuntime::_multianewarray4_Java                        = NULL;
   112 address OptoRuntime::_multianewarray5_Java                        = NULL;
   113 address OptoRuntime::_multianewarrayN_Java                        = NULL;
   114 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   115 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   116 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   117 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   118 address OptoRuntime::_rethrow_Java                                = NULL;
   120 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   121 address OptoRuntime::_register_finalizer_Java                     = NULL;
   123 # ifdef ENABLE_ZAP_DEAD_LOCALS
   124 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   125 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   126 # endif
   128 ExceptionBlob* OptoRuntime::_exception_blob;
   130 // This should be called in an assertion at the start of OptoRuntime routines
   131 // which are entered from compiled code (all of them)
   132 #ifdef ASSERT
   133 static bool check_compiled_frame(JavaThread* thread) {
   134   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   135   RegisterMap map(thread, false);
   136   frame caller = thread->last_frame().sender(&map);
   137   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   138   return true;
   139 }
   140 #endif // ASSERT
   143 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   144   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
   145   if (var == NULL) { return false; }
   147 bool OptoRuntime::generate(ciEnv* env) {
   149   generate_exception_blob();
   151   // Note: tls: Means fetching the return oop out of the thread-local storage
   152   //
   153   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   154   // -------------------------------------------------------------------------------------------------------------------------------
   155   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   156   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   157   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
   158   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   159   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   160   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   161   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   162   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
   163   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   164   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   165   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
   166   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   168   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   169   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   171 # ifdef ENABLE_ZAP_DEAD_LOCALS
   172   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   173   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   174 # endif
   175   return true;
   176 }
   178 #undef gen
   181 // Helper method to do generation of RunTimeStub's
   182 address OptoRuntime::generate_stub( ciEnv* env,
   183                                     TypeFunc_generator gen, address C_function,
   184                                     const char *name, int is_fancy_jump,
   185                                     bool pass_tls,
   186                                     bool save_argument_registers,
   187                                     bool return_pc ) {
   188   ResourceMark rm;
   189   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   190   return  C.stub_entry_point();
   191 }
   193 const char* OptoRuntime::stub_name(address entry) {
   194 #ifndef PRODUCT
   195   CodeBlob* cb = CodeCache::find_blob(entry);
   196   RuntimeStub* rs =(RuntimeStub *)cb;
   197   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   198   return rs->name();
   199 #else
   200   // Fast implementation for product mode (maybe it should be inlined too)
   201   return "runtime stub";
   202 #endif
   203 }
   206 //=============================================================================
   207 // Opto compiler runtime routines
   208 //=============================================================================
   211 //=============================allocation======================================
   212 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   213 // and try allocation again.
   215 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   216   // After any safepoint, just before going back to compiled code,
   217   // we inform the GC that we will be doing initializing writes to
   218   // this object in the future without emitting card-marks, so
   219   // GC may take any compensating steps.
   220   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   222   oop new_obj = thread->vm_result();
   223   if (new_obj == NULL)  return;
   225   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   226          "compiler must check this first");
   227   // GC may decide to give back a safer copy of new_obj.
   228   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   229   thread->set_vm_result(new_obj);
   230 }
   232 // object allocation
   233 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
   234   JRT_BLOCK;
   235 #ifndef PRODUCT
   236   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   237 #endif
   238   assert(check_compiled_frame(thread), "incorrect caller");
   240   // These checks are cheap to make and support reflective allocation.
   241   int lh = klass->layout_helper();
   242   if (Klass::layout_helper_needs_slow_path(lh)
   243       || !InstanceKlass::cast(klass)->is_initialized()) {
   244     KlassHandle kh(THREAD, klass);
   245     kh->check_valid_for_instantiation(false, THREAD);
   246     if (!HAS_PENDING_EXCEPTION) {
   247       InstanceKlass::cast(kh())->initialize(THREAD);
   248     }
   249     if (!HAS_PENDING_EXCEPTION) {
   250       klass = kh();
   251     } else {
   252       klass = NULL;
   253     }
   254   }
   256   if (klass != NULL) {
   257     // Scavenge and allocate an instance.
   258     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
   259     thread->set_vm_result(result);
   261     // Pass oops back through thread local storage.  Our apparent type to Java
   262     // is that we return an oop, but we can block on exit from this routine and
   263     // a GC can trash the oop in C's return register.  The generated stub will
   264     // fetch the oop from TLS after any possible GC.
   265   }
   267   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   268   JRT_BLOCK_END;
   270   if (GraphKit::use_ReduceInitialCardMarks()) {
   271     // inform GC that we won't do card marks for initializing writes.
   272     new_store_pre_barrier(thread);
   273   }
   274 JRT_END
   277 // array allocation
   278 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
   279   JRT_BLOCK;
   280 #ifndef PRODUCT
   281   SharedRuntime::_new_array_ctr++;            // new array requires GC
   282 #endif
   283   assert(check_compiled_frame(thread), "incorrect caller");
   285   // Scavenge and allocate an instance.
   286   oop result;
   288   if (array_type->oop_is_typeArray()) {
   289     // The oopFactory likes to work with the element type.
   290     // (We could bypass the oopFactory, since it doesn't add much value.)
   291     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   292     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   293   } else {
   294     // Although the oopFactory likes to work with the elem_type,
   295     // the compiler prefers the array_type, since it must already have
   296     // that latter value in hand for the fast path.
   297     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
   298     result = oopFactory::new_objArray(elem_type, len, THREAD);
   299   }
   301   // Pass oops back through thread local storage.  Our apparent type to Java
   302   // is that we return an oop, but we can block on exit from this routine and
   303   // a GC can trash the oop in C's return register.  The generated stub will
   304   // fetch the oop from TLS after any possible GC.
   305   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   306   thread->set_vm_result(result);
   307   JRT_BLOCK_END;
   309   if (GraphKit::use_ReduceInitialCardMarks()) {
   310     // inform GC that we won't do card marks for initializing writes.
   311     new_store_pre_barrier(thread);
   312   }
   313 JRT_END
   315 // array allocation without zeroing
   316 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
   317   JRT_BLOCK;
   318 #ifndef PRODUCT
   319   SharedRuntime::_new_array_ctr++;            // new array requires GC
   320 #endif
   321   assert(check_compiled_frame(thread), "incorrect caller");
   323   // Scavenge and allocate an instance.
   324   oop result;
   326   assert(array_type->oop_is_typeArray(), "should be called only for type array");
   327   // The oopFactory likes to work with the element type.
   328   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   329   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
   331   // Pass oops back through thread local storage.  Our apparent type to Java
   332   // is that we return an oop, but we can block on exit from this routine and
   333   // a GC can trash the oop in C's return register.  The generated stub will
   334   // fetch the oop from TLS after any possible GC.
   335   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   336   thread->set_vm_result(result);
   337   JRT_BLOCK_END;
   339   if (GraphKit::use_ReduceInitialCardMarks()) {
   340     // inform GC that we won't do card marks for initializing writes.
   341     new_store_pre_barrier(thread);
   342   }
   344   oop result = thread->vm_result();
   345   if ((len > 0) && (result != NULL) &&
   346       is_deoptimized_caller_frame(thread)) {
   347     // Zero array here if the caller is deoptimized.
   348     int size = ((typeArrayOop)result)->object_size();
   349     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   350     const size_t hs = arrayOopDesc::header_size(elem_type);
   351     // Align to next 8 bytes to avoid trashing arrays's length.
   352     const size_t aligned_hs = align_object_offset(hs);
   353     HeapWord* obj = (HeapWord*)result;
   354     if (aligned_hs > hs) {
   355       Copy::zero_to_words(obj+hs, aligned_hs-hs);
   356     }
   357     // Optimized zeroing.
   358     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
   359   }
   361 JRT_END
   363 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   365 // multianewarray for 2 dimensions
   366 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
   367 #ifndef PRODUCT
   368   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   369 #endif
   370   assert(check_compiled_frame(thread), "incorrect caller");
   371   assert(elem_type->is_klass(), "not a class");
   372   jint dims[2];
   373   dims[0] = len1;
   374   dims[1] = len2;
   375   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   376   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   377   thread->set_vm_result(obj);
   378 JRT_END
   380 // multianewarray for 3 dimensions
   381 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
   382 #ifndef PRODUCT
   383   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   384 #endif
   385   assert(check_compiled_frame(thread), "incorrect caller");
   386   assert(elem_type->is_klass(), "not a class");
   387   jint dims[3];
   388   dims[0] = len1;
   389   dims[1] = len2;
   390   dims[2] = len3;
   391   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   392   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   393   thread->set_vm_result(obj);
   394 JRT_END
   396 // multianewarray for 4 dimensions
   397 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   398 #ifndef PRODUCT
   399   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   400 #endif
   401   assert(check_compiled_frame(thread), "incorrect caller");
   402   assert(elem_type->is_klass(), "not a class");
   403   jint dims[4];
   404   dims[0] = len1;
   405   dims[1] = len2;
   406   dims[2] = len3;
   407   dims[3] = len4;
   408   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   409   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   410   thread->set_vm_result(obj);
   411 JRT_END
   413 // multianewarray for 5 dimensions
   414 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   415 #ifndef PRODUCT
   416   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   417 #endif
   418   assert(check_compiled_frame(thread), "incorrect caller");
   419   assert(elem_type->is_klass(), "not a class");
   420   jint dims[5];
   421   dims[0] = len1;
   422   dims[1] = len2;
   423   dims[2] = len3;
   424   dims[3] = len4;
   425   dims[4] = len5;
   426   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   427   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   428   thread->set_vm_result(obj);
   429 JRT_END
   431 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
   432   assert(check_compiled_frame(thread), "incorrect caller");
   433   assert(elem_type->is_klass(), "not a class");
   434   assert(oop(dims)->is_typeArray(), "not an array");
   436   ResourceMark rm;
   437   jint len = dims->length();
   438   assert(len > 0, "Dimensions array should contain data");
   439   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
   440   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
   441   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
   443   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
   444   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   445   thread->set_vm_result(obj);
   446 JRT_END
   449 const TypeFunc *OptoRuntime::new_instance_Type() {
   450   // create input type (domain)
   451   const Type **fields = TypeTuple::fields(1);
   452   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   453   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   455   // create result type (range)
   456   fields = TypeTuple::fields(1);
   457   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   459   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   461   return TypeFunc::make(domain, range);
   462 }
   465 const TypeFunc *OptoRuntime::athrow_Type() {
   466   // create input type (domain)
   467   const Type **fields = TypeTuple::fields(1);
   468   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   469   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   471   // create result type (range)
   472   fields = TypeTuple::fields(0);
   474   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   476   return TypeFunc::make(domain, range);
   477 }
   480 const TypeFunc *OptoRuntime::new_array_Type() {
   481   // create input type (domain)
   482   const Type **fields = TypeTuple::fields(2);
   483   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   484   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   485   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   487   // create result type (range)
   488   fields = TypeTuple::fields(1);
   489   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   491   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   493   return TypeFunc::make(domain, range);
   494 }
   496 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   497   // create input type (domain)
   498   const int nargs = ndim + 1;
   499   const Type **fields = TypeTuple::fields(nargs);
   500   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   501   for( int i = 1; i < nargs; i++ )
   502     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   503   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   505   // create result type (range)
   506   fields = TypeTuple::fields(1);
   507   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   508   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   510   return TypeFunc::make(domain, range);
   511 }
   513 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   514   return multianewarray_Type(2);
   515 }
   517 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   518   return multianewarray_Type(3);
   519 }
   521 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   522   return multianewarray_Type(4);
   523 }
   525 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   526   return multianewarray_Type(5);
   527 }
   529 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
   530   // create input type (domain)
   531   const Type **fields = TypeTuple::fields(2);
   532   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   533   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
   534   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   536   // create result type (range)
   537   fields = TypeTuple::fields(1);
   538   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   539   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   541   return TypeFunc::make(domain, range);
   542 }
   544 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   545   const Type **fields = TypeTuple::fields(2);
   546   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   547   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   548   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   550   // create result type (range)
   551   fields = TypeTuple::fields(0);
   552   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   554   return TypeFunc::make(domain, range);
   555 }
   557 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   559   const Type **fields = TypeTuple::fields(2);
   560   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   561   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   562   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   564   // create result type (range)
   565   fields = TypeTuple::fields(0);
   566   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   568   return TypeFunc::make(domain, range);
   569 }
   571 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   572   // create input type (domain)
   573   const Type **fields = TypeTuple::fields(1);
   574   // Symbol* name of class to be loaded
   575   fields[TypeFunc::Parms+0] = TypeInt::INT;
   576   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   578   // create result type (range)
   579   fields = TypeTuple::fields(0);
   580   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   582   return TypeFunc::make(domain, range);
   583 }
   585 # ifdef ENABLE_ZAP_DEAD_LOCALS
   586 // Type used for stub generation for zap_dead_locals.
   587 // No inputs or outputs
   588 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   589   // create input type (domain)
   590   const Type **fields = TypeTuple::fields(0);
   591   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   593   // create result type (range)
   594   fields = TypeTuple::fields(0);
   595   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   597   return TypeFunc::make(domain,range);
   598 }
   599 # endif
   602 //-----------------------------------------------------------------------------
   603 // Monitor Handling
   604 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   605   // create input type (domain)
   606   const Type **fields = TypeTuple::fields(2);
   607   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   608   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   609   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   611   // create result type (range)
   612   fields = TypeTuple::fields(0);
   614   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   616   return TypeFunc::make(domain,range);
   617 }
   620 //-----------------------------------------------------------------------------
   621 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   622   // create input type (domain)
   623   const Type **fields = TypeTuple::fields(2);
   624   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   625   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   626   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   628   // create result type (range)
   629   fields = TypeTuple::fields(0);
   631   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   633   return TypeFunc::make(domain,range);
   634 }
   636 const TypeFunc* OptoRuntime::flush_windows_Type() {
   637   // create input type (domain)
   638   const Type** fields = TypeTuple::fields(1);
   639   fields[TypeFunc::Parms+0] = NULL; // void
   640   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   642   // create result type
   643   fields = TypeTuple::fields(1);
   644   fields[TypeFunc::Parms+0] = NULL; // void
   645   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   647   return TypeFunc::make(domain, range);
   648 }
   650 const TypeFunc* OptoRuntime::l2f_Type() {
   651   // create input type (domain)
   652   const Type **fields = TypeTuple::fields(2);
   653   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   654   fields[TypeFunc::Parms+1] = Type::HALF;
   655   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   657   // create result type (range)
   658   fields = TypeTuple::fields(1);
   659   fields[TypeFunc::Parms+0] = Type::FLOAT;
   660   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   662   return TypeFunc::make(domain, range);
   663 }
   665 const TypeFunc* OptoRuntime::modf_Type() {
   666   const Type **fields = TypeTuple::fields(2);
   667   fields[TypeFunc::Parms+0] = Type::FLOAT;
   668   fields[TypeFunc::Parms+1] = Type::FLOAT;
   669   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   671   // create result type (range)
   672   fields = TypeTuple::fields(1);
   673   fields[TypeFunc::Parms+0] = Type::FLOAT;
   675   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   677   return TypeFunc::make(domain, range);
   678 }
   680 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   681   // create input type (domain)
   682   const Type **fields = TypeTuple::fields(2);
   683   // Symbol* name of class to be loaded
   684   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   685   fields[TypeFunc::Parms+1] = Type::HALF;
   686   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   688   // create result type (range)
   689   fields = TypeTuple::fields(2);
   690   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   691   fields[TypeFunc::Parms+1] = Type::HALF;
   692   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   694   return TypeFunc::make(domain, range);
   695 }
   697 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   698   const Type **fields = TypeTuple::fields(4);
   699   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   700   fields[TypeFunc::Parms+1] = Type::HALF;
   701   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   702   fields[TypeFunc::Parms+3] = Type::HALF;
   703   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   705   // create result type (range)
   706   fields = TypeTuple::fields(2);
   707   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   708   fields[TypeFunc::Parms+1] = Type::HALF;
   709   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   711   return TypeFunc::make(domain, range);
   712 }
   714 //-------------- currentTimeMillis, currentTimeNanos, etc
   716 const TypeFunc* OptoRuntime::void_long_Type() {
   717   // create input type (domain)
   718   const Type **fields = TypeTuple::fields(0);
   719   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   721   // create result type (range)
   722   fields = TypeTuple::fields(2);
   723   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   724   fields[TypeFunc::Parms+1] = Type::HALF;
   725   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   727   return TypeFunc::make(domain, range);
   728 }
   730 // arraycopy stub variations:
   731 enum ArrayCopyType {
   732   ac_fast,                      // void(ptr, ptr, size_t)
   733   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   734   ac_slow,                      // void(ptr, int, ptr, int, int)
   735   ac_generic                    //  int(ptr, int, ptr, int, int)
   736 };
   738 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   739   // create input type (domain)
   740   int num_args      = (act == ac_fast ? 3 : 5);
   741   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   742   int argcnt = num_args;
   743   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   744   const Type** fields = TypeTuple::fields(argcnt);
   745   int argp = TypeFunc::Parms;
   746   fields[argp++] = TypePtr::NOTNULL;    // src
   747   if (num_size_args == 0) {
   748     fields[argp++] = TypeInt::INT;      // src_pos
   749   }
   750   fields[argp++] = TypePtr::NOTNULL;    // dest
   751   if (num_size_args == 0) {
   752     fields[argp++] = TypeInt::INT;      // dest_pos
   753     fields[argp++] = TypeInt::INT;      // length
   754   }
   755   while (num_size_args-- > 0) {
   756     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   757     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   758   }
   759   if (act == ac_checkcast) {
   760     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   761   }
   762   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   763   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   765   // create result type if needed
   766   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   767   fields = TypeTuple::fields(1);
   768   if (retcnt == 0)
   769     fields[TypeFunc::Parms+0] = NULL; // void
   770   else
   771     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   772   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   773   return TypeFunc::make(domain, range);
   774 }
   776 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   777   // This signature is simple:  Two base pointers and a size_t.
   778   return make_arraycopy_Type(ac_fast);
   779 }
   781 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   782   // An extension of fast_arraycopy_Type which adds type checking.
   783   return make_arraycopy_Type(ac_checkcast);
   784 }
   786 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   787   // This signature is exactly the same as System.arraycopy.
   788   // There are no intptr_t (int/long) arguments.
   789   return make_arraycopy_Type(ac_slow);
   790 }
   792 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   793   // This signature is like System.arraycopy, except that it returns status.
   794   return make_arraycopy_Type(ac_generic);
   795 }
   798 const TypeFunc* OptoRuntime::array_fill_Type() {
   799   const Type** fields;
   800   int argp = TypeFunc::Parms;
   801   if (CCallingConventionRequiresIntsAsLongs) {
   802   // create input type (domain): pointer, int, size_t
   803     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
   804     fields[argp++] = TypePtr::NOTNULL;
   805     fields[argp++] = TypeLong::LONG;
   806     fields[argp++] = Type::HALF;
   807   } else {
   808     // create input type (domain): pointer, int, size_t
   809     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   810     fields[argp++] = TypePtr::NOTNULL;
   811     fields[argp++] = TypeInt::INT;
   812   }
   813   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   814   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   815   const TypeTuple *domain = TypeTuple::make(argp, fields);
   817   // create result type
   818   fields = TypeTuple::fields(1);
   819   fields[TypeFunc::Parms+0] = NULL; // void
   820   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   822   return TypeFunc::make(domain, range);
   823 }
   825 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
   826 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
   827   // create input type (domain)
   828   int num_args      = 3;
   829   if (Matcher::pass_original_key_for_aes()) {
   830     num_args = 4;
   831   }
   832   int argcnt = num_args;
   833   const Type** fields = TypeTuple::fields(argcnt);
   834   int argp = TypeFunc::Parms;
   835   fields[argp++] = TypePtr::NOTNULL;    // src
   836   fields[argp++] = TypePtr::NOTNULL;    // dest
   837   fields[argp++] = TypePtr::NOTNULL;    // k array
   838   if (Matcher::pass_original_key_for_aes()) {
   839     fields[argp++] = TypePtr::NOTNULL;    // original k array
   840   }
   841   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   842   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   844   // no result type needed
   845   fields = TypeTuple::fields(1);
   846   fields[TypeFunc::Parms+0] = NULL; // void
   847   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   848   return TypeFunc::make(domain, range);
   849 }
   851 /**
   852  * int updateBytesCRC32(int crc, byte* b, int len)
   853  */
   854 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
   855   // create input type (domain)
   856   int num_args      = 3;
   857   int argcnt = num_args;
   858   const Type** fields = TypeTuple::fields(argcnt);
   859   int argp = TypeFunc::Parms;
   860   fields[argp++] = TypeInt::INT;        // crc
   861   fields[argp++] = TypePtr::NOTNULL;    // src
   862   fields[argp++] = TypeInt::INT;        // len
   863   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   864   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   866   // result type needed
   867   fields = TypeTuple::fields(1);
   868   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
   869   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   870   return TypeFunc::make(domain, range);
   871 }
   873 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
   874 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
   875   // create input type (domain)
   876   int num_args      = 5;
   877   if (Matcher::pass_original_key_for_aes()) {
   878     num_args = 6;
   879   }
   880   int argcnt = num_args;
   881   const Type** fields = TypeTuple::fields(argcnt);
   882   int argp = TypeFunc::Parms;
   883   fields[argp++] = TypePtr::NOTNULL;    // src
   884   fields[argp++] = TypePtr::NOTNULL;    // dest
   885   fields[argp++] = TypePtr::NOTNULL;    // k array
   886   fields[argp++] = TypePtr::NOTNULL;    // r array
   887   fields[argp++] = TypeInt::INT;        // src len
   888   if (Matcher::pass_original_key_for_aes()) {
   889     fields[argp++] = TypePtr::NOTNULL;    // original k array
   890   }
   891   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   892   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   894   // returning cipher len (int)
   895   fields = TypeTuple::fields(1);
   896   fields[TypeFunc::Parms+0] = TypeInt::INT;
   897   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   898   return TypeFunc::make(domain, range);
   899 }
   901 /*
   902  * void implCompress(byte[] buf, int ofs)
   903  */
   904 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
   905   // create input type (domain)
   906   int num_args = 2;
   907   int argcnt = num_args;
   908   const Type** fields = TypeTuple::fields(argcnt);
   909   int argp = TypeFunc::Parms;
   910   fields[argp++] = TypePtr::NOTNULL; // buf
   911   fields[argp++] = TypePtr::NOTNULL; // state
   912   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   913   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   915   // no result type needed
   916   fields = TypeTuple::fields(1);
   917   fields[TypeFunc::Parms+0] = NULL; // void
   918   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   919   return TypeFunc::make(domain, range);
   920 }
   922 /*
   923  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
   924  */
   925 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
   926   // create input type (domain)
   927   int num_args = 4;
   928   int argcnt = num_args;
   929   const Type** fields = TypeTuple::fields(argcnt);
   930   int argp = TypeFunc::Parms;
   931   fields[argp++] = TypePtr::NOTNULL; // buf
   932   fields[argp++] = TypePtr::NOTNULL; // state
   933   fields[argp++] = TypeInt::INT;     // ofs
   934   fields[argp++] = TypeInt::INT;     // limit
   935   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   936   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   938   // returning ofs (int)
   939   fields = TypeTuple::fields(1);
   940   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
   941   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   942   return TypeFunc::make(domain, range);
   943 }
   945 //------------- Interpreter state access for on stack replacement
   946 const TypeFunc* OptoRuntime::osr_end_Type() {
   947   // create input type (domain)
   948   const Type **fields = TypeTuple::fields(1);
   949   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
   950   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   952   // create result type
   953   fields = TypeTuple::fields(1);
   954   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
   955   fields[TypeFunc::Parms+0] = NULL; // void
   956   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   957   return TypeFunc::make(domain, range);
   958 }
   960 //-------------- methodData update helpers
   962 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
   963   // create input type (domain)
   964   const Type **fields = TypeTuple::fields(2);
   965   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
   966   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
   967   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   969   // create result type
   970   fields = TypeTuple::fields(1);
   971   fields[TypeFunc::Parms+0] = NULL; // void
   972   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   973   return TypeFunc::make(domain,range);
   974 }
   976 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
   977   if (receiver == NULL) return;
   978   Klass* receiver_klass = receiver->klass();
   980   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
   981   int empty_row = -1;           // free row, if any is encountered
   983   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
   984   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
   985     // if (vc->receiver(row) == receiver_klass)
   986     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
   987     intptr_t row_recv = *(mdp + receiver_off);
   988     if (row_recv == (intptr_t) receiver_klass) {
   989       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
   990       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
   991       *(mdp + count_off) += DataLayout::counter_increment;
   992       return;
   993     } else if (row_recv == 0) {
   994       // else if (vc->receiver(row) == NULL)
   995       empty_row = (int) row;
   996     }
   997   }
   999   if (empty_row != -1) {
  1000     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
  1001     // vc->set_receiver(empty_row, receiver_klass);
  1002     *(mdp + receiver_off) = (intptr_t) receiver_klass;
  1003     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
  1004     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
  1005     *(mdp + count_off) = DataLayout::counter_increment;
  1006   } else {
  1007     // Receiver did not match any saved receiver and there is no empty row for it.
  1008     // Increment total counter to indicate polymorphic case.
  1009     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
  1010     *count_p += DataLayout::counter_increment;
  1012 JRT_END
  1014 //-------------------------------------------------------------------------------------
  1015 // register policy
  1017 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
  1018   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
  1019   switch (register_save_policy[reg]) {
  1020     case 'C': return false; //SOC
  1021     case 'E': return true ; //SOE
  1022     case 'N': return false; //NS
  1023     case 'A': return false; //AS
  1025   ShouldNotReachHere();
  1026   return false;
  1029 //-----------------------------------------------------------------------
  1030 // Exceptions
  1031 //
  1033 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
  1035 // The method is an entry that is always called by a C++ method not
  1036 // directly from compiled code. Compiled code will call the C++ method following.
  1037 // We can't allow async exception to be installed during  exception processing.
  1038 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
  1040   // Do not confuse exception_oop with pending_exception. The exception_oop
  1041   // is only used to pass arguments into the method. Not for general
  1042   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
  1043   // the runtime stubs checks this on exit.
  1044   assert(thread->exception_oop() != NULL, "exception oop is found");
  1045   address handler_address = NULL;
  1047   Handle exception(thread, thread->exception_oop());
  1048   address pc = thread->exception_pc();
  1050   // Clear out the exception oop and pc since looking up an
  1051   // exception handler can cause class loading, which might throw an
  1052   // exception and those fields are expected to be clear during
  1053   // normal bytecode execution.
  1054   thread->clear_exception_oop_and_pc();
  1056   if (TraceExceptions) {
  1057     trace_exception(exception(), pc, "");
  1060   // for AbortVMOnException flag
  1061   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
  1063 #ifdef ASSERT
  1064   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1065     // should throw an exception here
  1066     ShouldNotReachHere();
  1068 #endif
  1070   // new exception handling: this method is entered only from adapters
  1071   // exceptions from compiled java methods are handled in compiled code
  1072   // using rethrow node
  1074   nm = CodeCache::find_nmethod(pc);
  1075   assert(nm != NULL, "No NMethod found");
  1076   if (nm->is_native_method()) {
  1077     fatal("Native method should not have path to exception handling");
  1078   } else {
  1079     // we are switching to old paradigm: search for exception handler in caller_frame
  1080     // instead in exception handler of caller_frame.sender()
  1082     if (JvmtiExport::can_post_on_exceptions()) {
  1083       // "Full-speed catching" is not necessary here,
  1084       // since we're notifying the VM on every catch.
  1085       // Force deoptimization and the rest of the lookup
  1086       // will be fine.
  1087       deoptimize_caller_frame(thread);
  1090     // Check the stack guard pages.  If enabled, look for handler in this frame;
  1091     // otherwise, forcibly unwind the frame.
  1092     //
  1093     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
  1094     bool force_unwind = !thread->reguard_stack();
  1095     bool deopting = false;
  1096     if (nm->is_deopt_pc(pc)) {
  1097       deopting = true;
  1098       RegisterMap map(thread, false);
  1099       frame deoptee = thread->last_frame().sender(&map);
  1100       assert(deoptee.is_deoptimized_frame(), "must be deopted");
  1101       // Adjust the pc back to the original throwing pc
  1102       pc = deoptee.pc();
  1105     // If we are forcing an unwind because of stack overflow then deopt is
  1106     // irrelevant since we are throwing the frame away anyway.
  1108     if (deopting && !force_unwind) {
  1109       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1110     } else {
  1112       handler_address =
  1113         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
  1115       if (handler_address == NULL) {
  1116         Handle original_exception(thread, exception());
  1117         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
  1118         assert (handler_address != NULL, "must have compiled handler");
  1119         // Update the exception cache only when the unwind was not forced
  1120         // and there didn't happen another exception during the computation of the
  1121         // compiled exception handler.
  1122         if (!force_unwind && original_exception() == exception()) {
  1123           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
  1125       } else {
  1126         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
  1130     thread->set_exception_pc(pc);
  1131     thread->set_exception_handler_pc(handler_address);
  1133     // Check if the exception PC is a MethodHandle call site.
  1134     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
  1137   // Restore correct return pc.  Was saved above.
  1138   thread->set_exception_oop(exception());
  1139   return handler_address;
  1141 JRT_END
  1143 // We are entering here from exception_blob
  1144 // If there is a compiled exception handler in this method, we will continue there;
  1145 // otherwise we will unwind the stack and continue at the caller of top frame method
  1146 // Note we enter without the usual JRT wrapper. We will call a helper routine that
  1147 // will do the normal VM entry. We do it this way so that we can see if the nmethod
  1148 // we looked up the handler for has been deoptimized in the meantime. If it has been
  1149 // we must not use the handler and instead return the deopt blob.
  1150 address OptoRuntime::handle_exception_C(JavaThread* thread) {
  1151 //
  1152 // We are in Java not VM and in debug mode we have a NoHandleMark
  1153 //
  1154 #ifndef PRODUCT
  1155   SharedRuntime::_find_handler_ctr++;          // find exception handler
  1156 #endif
  1157   debug_only(NoHandleMark __hm;)
  1158   nmethod* nm = NULL;
  1159   address handler_address = NULL;
  1161     // Enter the VM
  1163     ResetNoHandleMark rnhm;
  1164     handler_address = handle_exception_C_helper(thread, nm);
  1167   // Back in java: Use no oops, DON'T safepoint
  1169   // Now check to see if the handler we are returning is in a now
  1170   // deoptimized frame
  1172   if (nm != NULL) {
  1173     RegisterMap map(thread, false);
  1174     frame caller = thread->last_frame().sender(&map);
  1175 #ifdef ASSERT
  1176     assert(caller.is_compiled_frame(), "must be");
  1177 #endif // ASSERT
  1178     if (caller.is_deoptimized_frame()) {
  1179       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1182   return handler_address;
  1185 //------------------------------rethrow----------------------------------------
  1186 // We get here after compiled code has executed a 'RethrowNode'.  The callee
  1187 // is either throwing or rethrowing an exception.  The callee-save registers
  1188 // have been restored, synchronized objects have been unlocked and the callee
  1189 // stack frame has been removed.  The return address was passed in.
  1190 // Exception oop is passed as the 1st argument.  This routine is then called
  1191 // from the stub.  On exit, we know where to jump in the caller's code.
  1192 // After this C code exits, the stub will pop his frame and end in a jump
  1193 // (instead of a return).  We enter the caller's default handler.
  1194 //
  1195 // This must be JRT_LEAF:
  1196 //     - caller will not change its state as we cannot block on exit,
  1197 //       therefore raw_exception_handler_for_return_address is all it takes
  1198 //       to handle deoptimized blobs
  1199 //
  1200 // However, there needs to be a safepoint check in the middle!  So compiled
  1201 // safepoints are completely watertight.
  1202 //
  1203 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1204 //
  1205 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1206 //
  1207 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1208 #ifndef PRODUCT
  1209   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1210 #endif
  1211   assert (exception != NULL, "should have thrown a NULLPointerException");
  1212 #ifdef ASSERT
  1213   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1214     // should throw an exception here
  1215     ShouldNotReachHere();
  1217 #endif
  1219   thread->set_vm_result(exception);
  1220   // Frame not compiled (handles deoptimization blob)
  1221   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1225 const TypeFunc *OptoRuntime::rethrow_Type() {
  1226   // create input type (domain)
  1227   const Type **fields = TypeTuple::fields(1);
  1228   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1229   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1231   // create result type (range)
  1232   fields = TypeTuple::fields(1);
  1233   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1234   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1236   return TypeFunc::make(domain, range);
  1240 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1241   // Deoptimize the caller before continuing, as the compiled
  1242   // exception handler table may not be valid.
  1243   if (!StressCompiledExceptionHandlers && doit) {
  1244     deoptimize_caller_frame(thread);
  1248 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
  1249   // Called from within the owner thread, so no need for safepoint
  1250   RegisterMap reg_map(thread);
  1251   frame stub_frame = thread->last_frame();
  1252   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1253   frame caller_frame = stub_frame.sender(&reg_map);
  1255   // Deoptimize the caller frame.
  1256   Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1260 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
  1261   // Called from within the owner thread, so no need for safepoint
  1262   RegisterMap reg_map(thread);
  1263   frame stub_frame = thread->last_frame();
  1264   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1265   frame caller_frame = stub_frame.sender(&reg_map);
  1266   return caller_frame.is_deoptimized_frame();
  1270 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1271   // create input type (domain)
  1272   const Type **fields = TypeTuple::fields(1);
  1273   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1274   // // The JavaThread* is passed to each routine as the last argument
  1275   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1276   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1278   // create result type (range)
  1279   fields = TypeTuple::fields(0);
  1281   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1283   return TypeFunc::make(domain,range);
  1287 //-----------------------------------------------------------------------------
  1288 // Dtrace support.  entry and exit probes have the same signature
  1289 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1290   // create input type (domain)
  1291   const Type **fields = TypeTuple::fields(2);
  1292   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1293   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
  1294   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1296   // create result type (range)
  1297   fields = TypeTuple::fields(0);
  1299   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1301   return TypeFunc::make(domain,range);
  1304 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1305   // create input type (domain)
  1306   const Type **fields = TypeTuple::fields(2);
  1307   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1308   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1310   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1312   // create result type (range)
  1313   fields = TypeTuple::fields(0);
  1315   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1317   return TypeFunc::make(domain,range);
  1321 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1322   assert(obj->is_oop(), "must be a valid oop");
  1323   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
  1324   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1325 JRT_END
  1327 //-----------------------------------------------------------------------------
  1329 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1331 //
  1332 // dump the collected NamedCounters.
  1333 //
  1334 void OptoRuntime::print_named_counters() {
  1335   int total_lock_count = 0;
  1336   int eliminated_lock_count = 0;
  1338   NamedCounter* c = _named_counters;
  1339   while (c) {
  1340     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1341       int count = c->count();
  1342       if (count > 0) {
  1343         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1344         if (Verbose) {
  1345           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1347         total_lock_count += count;
  1348         if (eliminated) {
  1349           eliminated_lock_count += count;
  1352     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1353       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1354       if (blc->nonzero()) {
  1355         tty->print_cr("%s", c->name());
  1356         blc->print_on(tty);
  1358 #if INCLUDE_RTM_OPT
  1359     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
  1360       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
  1361       if (rlc->nonzero()) {
  1362         tty->print_cr("%s", c->name());
  1363         rlc->print_on(tty);
  1365 #endif
  1367     c = c->next();
  1369   if (total_lock_count > 0) {
  1370     tty->print_cr("dynamic locks: %d", total_lock_count);
  1371     if (eliminated_lock_count) {
  1372       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1373                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1378 //
  1379 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1380 //  name which consists of method@line for the inlining tree.
  1381 //
  1383 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1384   int max_depth = youngest_jvms->depth();
  1386   // Visit scopes from youngest to oldest.
  1387   bool first = true;
  1388   stringStream st;
  1389   for (int depth = max_depth; depth >= 1; depth--) {
  1390     JVMState* jvms = youngest_jvms->of_depth(depth);
  1391     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1392     if (!first) {
  1393       st.print(" ");
  1394     } else {
  1395       first = false;
  1397     int bci = jvms->bci();
  1398     if (bci < 0) bci = 0;
  1399     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1400     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1402   NamedCounter* c;
  1403   if (tag == NamedCounter::BiasedLockingCounter) {
  1404     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1405   } else if (tag == NamedCounter::RTMLockingCounter) {
  1406     c = new RTMLockingNamedCounter(strdup(st.as_string()));
  1407   } else {
  1408     c = new NamedCounter(strdup(st.as_string()), tag);
  1411   // atomically add the new counter to the head of the list.  We only
  1412   // add counters so this is safe.
  1413   NamedCounter* head;
  1414   do {
  1415     c->set_next(NULL);
  1416     head = _named_counters;
  1417     c->set_next(head);
  1418   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1419   return c;
  1422 //-----------------------------------------------------------------------------
  1423 // Non-product code
  1424 #ifndef PRODUCT
  1426 int trace_exception_counter = 0;
  1427 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1428   ttyLocker ttyl;
  1429   trace_exception_counter++;
  1430   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1431   exception_oop->print_value();
  1432   tty->print(" in ");
  1433   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1434   if (blob->is_nmethod()) {
  1435     nmethod* nm = blob->as_nmethod_or_null();
  1436     nm->method()->print_value();
  1437   } else if (blob->is_runtime_stub()) {
  1438     tty->print("<runtime-stub>");
  1439   } else {
  1440     tty->print("<unknown>");
  1442   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
  1443   tty->print_cr("]");
  1446 #endif  // PRODUCT
  1449 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1450 // Called from call sites in compiled code with oop maps (actually safepoints)
  1451 // Zaps dead locals in first java frame.
  1452 // Is entry because may need to lock to generate oop maps
  1453 // Currently, only used for compiler frames, but someday may be used
  1454 // for interpreter frames, too.
  1456 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1458 // avoid pointers to member funcs with these helpers
  1459 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1460 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1463 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1464                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1465   assert(JavaThread::current() == thread, "is this needed?");
  1467   if ( !ZapDeadCompiledLocals )  return;
  1469   bool skip = false;
  1471        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1472   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1473   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1474     warning("starting zapping after skipping");
  1476        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1477   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1478   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1479     warning("about to zap last zap");
  1481   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1483   if ( skip )  return;
  1485   // find java frame and zap it
  1487   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1488     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1489       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1490       return;
  1493   warning("no frame found to zap in zap_dead_Java_locals_C");
  1496 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1497   zap_dead_java_or_native_locals(thread, is_java_frame);
  1498 JRT_END
  1500 // The following does not work because for one thing, the
  1501 // thread state is wrong; it expects java, but it is native.
  1502 // Also, the invariants in a native stub are different and
  1503 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1504 // in there.
  1505 // So for now, we do not zap in native stubs.
  1507 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1508   zap_dead_java_or_native_locals(thread, is_native_frame);
  1509 JRT_END
  1511 # endif

mercurial