src/share/vm/opto/runtime.cpp

Wed, 18 Sep 2013 14:34:56 -0700

author
goetz
date
Wed, 18 Sep 2013 14:34:56 -0700
changeset 6468
cfd05ec74089
parent 6454
6cc7093e1341
child 6472
2b8e28fdf503
permissions
-rw-r--r--

8024342: PPC64 (part 111): Support for C calling conventions that require 64-bit ints.
Summary: Some platforms, as ppc and s390x/zArch require that 32-bit ints are passed as 64-bit values to C functions. This change adds support to adapt the signature and to issue proper casts to c2-compiled stubs. The functions are used in generate_native_wrapper(). Adapt signature used by the compiler as in PhaseIdealLoop::intrinsify_fill().
Reviewed-by: kvn

duke@435 1 /*
drchase@5353 2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/nmethod.hpp"
stefank@2314 31 #include "code/pcDesc.hpp"
stefank@2314 32 #include "code/scopeDesc.hpp"
stefank@2314 33 #include "code/vtableStubs.hpp"
stefank@2314 34 #include "compiler/compileBroker.hpp"
stefank@2314 35 #include "compiler/compilerOracle.hpp"
stefank@2314 36 #include "compiler/oopMap.hpp"
stefank@2314 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
stefank@2314 38 #include "gc_implementation/g1/heapRegion.hpp"
stefank@2314 39 #include "gc_interface/collectedHeap.hpp"
stefank@2314 40 #include "interpreter/bytecode.hpp"
stefank@2314 41 #include "interpreter/interpreter.hpp"
stefank@2314 42 #include "interpreter/linkResolver.hpp"
stefank@2314 43 #include "memory/barrierSet.hpp"
stefank@2314 44 #include "memory/gcLocker.inline.hpp"
stefank@2314 45 #include "memory/oopFactory.hpp"
stefank@2314 46 #include "oops/objArrayKlass.hpp"
stefank@2314 47 #include "oops/oop.inline.hpp"
stefank@2314 48 #include "opto/addnode.hpp"
stefank@2314 49 #include "opto/callnode.hpp"
stefank@2314 50 #include "opto/cfgnode.hpp"
stefank@2314 51 #include "opto/connode.hpp"
stefank@2314 52 #include "opto/graphKit.hpp"
stefank@2314 53 #include "opto/machnode.hpp"
stefank@2314 54 #include "opto/matcher.hpp"
stefank@2314 55 #include "opto/memnode.hpp"
stefank@2314 56 #include "opto/mulnode.hpp"
stefank@2314 57 #include "opto/runtime.hpp"
stefank@2314 58 #include "opto/subnode.hpp"
stefank@2314 59 #include "runtime/fprofiler.hpp"
stefank@2314 60 #include "runtime/handles.inline.hpp"
stefank@2314 61 #include "runtime/interfaceSupport.hpp"
stefank@2314 62 #include "runtime/javaCalls.hpp"
stefank@2314 63 #include "runtime/sharedRuntime.hpp"
stefank@2314 64 #include "runtime/signature.hpp"
stefank@2314 65 #include "runtime/threadCritical.hpp"
stefank@2314 66 #include "runtime/vframe.hpp"
stefank@2314 67 #include "runtime/vframeArray.hpp"
stefank@2314 68 #include "runtime/vframe_hp.hpp"
stefank@2314 69 #include "utilities/copy.hpp"
stefank@2314 70 #include "utilities/preserveException.hpp"
stefank@2314 71 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 72 # include "adfiles/ad_x86_32.hpp"
stefank@2314 73 #endif
stefank@2314 74 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 75 # include "adfiles/ad_x86_64.hpp"
stefank@2314 76 #endif
stefank@2314 77 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 78 # include "adfiles/ad_sparc.hpp"
stefank@2314 79 #endif
stefank@2314 80 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 81 # include "adfiles/ad_zero.hpp"
stefank@2314 82 #endif
bobv@2508 83 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 84 # include "adfiles/ad_arm.hpp"
bobv@2508 85 #endif
goetz@6441 86 #ifdef TARGET_ARCH_MODEL_ppc_32
goetz@6441 87 # include "adfiles/ad_ppc_32.hpp"
goetz@6441 88 #endif
goetz@6441 89 #ifdef TARGET_ARCH_MODEL_ppc_64
goetz@6441 90 # include "adfiles/ad_ppc_64.hpp"
bobv@2508 91 #endif
duke@435 92
duke@435 93
duke@435 94 // For debugging purposes:
duke@435 95 // To force FullGCALot inside a runtime function, add the following two lines
duke@435 96 //
duke@435 97 // Universe::release_fullgc_alot_dummy();
duke@435 98 // MarkSweep::invoke(0, "Debugging");
duke@435 99 //
duke@435 100 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
duke@435 101
duke@435 102
duke@435 103
duke@435 104
duke@435 105 // Compiled code entry points
duke@435 106 address OptoRuntime::_new_instance_Java = NULL;
duke@435 107 address OptoRuntime::_new_array_Java = NULL;
kvn@3157 108 address OptoRuntime::_new_array_nozero_Java = NULL;
duke@435 109 address OptoRuntime::_multianewarray2_Java = NULL;
duke@435 110 address OptoRuntime::_multianewarray3_Java = NULL;
duke@435 111 address OptoRuntime::_multianewarray4_Java = NULL;
duke@435 112 address OptoRuntime::_multianewarray5_Java = NULL;
iveresov@3002 113 address OptoRuntime::_multianewarrayN_Java = NULL;
ysr@777 114 address OptoRuntime::_g1_wb_pre_Java = NULL;
ysr@777 115 address OptoRuntime::_g1_wb_post_Java = NULL;
duke@435 116 address OptoRuntime::_vtable_must_compile_Java = NULL;
duke@435 117 address OptoRuntime::_complete_monitor_locking_Java = NULL;
duke@435 118 address OptoRuntime::_rethrow_Java = NULL;
duke@435 119
duke@435 120 address OptoRuntime::_slow_arraycopy_Java = NULL;
duke@435 121 address OptoRuntime::_register_finalizer_Java = NULL;
duke@435 122
duke@435 123 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 124 address OptoRuntime::_zap_dead_Java_locals_Java = NULL;
duke@435 125 address OptoRuntime::_zap_dead_native_locals_Java = NULL;
duke@435 126 # endif
duke@435 127
never@2950 128 ExceptionBlob* OptoRuntime::_exception_blob;
duke@435 129
duke@435 130 // This should be called in an assertion at the start of OptoRuntime routines
duke@435 131 // which are entered from compiled code (all of them)
roland@5106 132 #ifdef ASSERT
duke@435 133 static bool check_compiled_frame(JavaThread* thread) {
duke@435 134 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
duke@435 135 RegisterMap map(thread, false);
duke@435 136 frame caller = thread->last_frame().sender(&map);
duke@435 137 assert(caller.is_compiled_frame(), "not being called from compiled like code");
duke@435 138 return true;
duke@435 139 }
roland@5106 140 #endif // ASSERT
duke@435 141
duke@435 142
duke@435 143 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
duke@435 144 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
duke@435 145
duke@435 146 void OptoRuntime::generate(ciEnv* env) {
duke@435 147
duke@435 148 generate_exception_blob();
duke@435 149
duke@435 150 // Note: tls: Means fetching the return oop out of the thread-local storage
duke@435 151 //
duke@435 152 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc
duke@435 153 // -------------------------------------------------------------------------------------------------------------------------------
duke@435 154 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false);
duke@435 155 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false);
kvn@3157 156 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false);
duke@435 157 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false);
duke@435 158 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false);
duke@435 159 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false);
duke@435 160 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false);
iveresov@3002 161 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false);
ysr@777 162 gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false);
ysr@777 163 gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false);
duke@435 164 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C , 0 , false, false, false);
duke@435 165 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true );
duke@435 166
duke@435 167 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false);
duke@435 168 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false);
duke@435 169
duke@435 170 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 171 gen(env, _zap_dead_Java_locals_Java , zap_dead_locals_Type , zap_dead_Java_locals_C , 0 , false, true , false );
duke@435 172 gen(env, _zap_dead_native_locals_Java , zap_dead_locals_Type , zap_dead_native_locals_C , 0 , false, true , false );
duke@435 173 # endif
duke@435 174
duke@435 175 }
duke@435 176
duke@435 177 #undef gen
duke@435 178
duke@435 179
duke@435 180 // Helper method to do generation of RunTimeStub's
duke@435 181 address OptoRuntime::generate_stub( ciEnv* env,
duke@435 182 TypeFunc_generator gen, address C_function,
duke@435 183 const char *name, int is_fancy_jump,
duke@435 184 bool pass_tls,
duke@435 185 bool save_argument_registers,
duke@435 186 bool return_pc ) {
duke@435 187 ResourceMark rm;
duke@435 188 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
duke@435 189 return C.stub_entry_point();
duke@435 190 }
duke@435 191
duke@435 192 const char* OptoRuntime::stub_name(address entry) {
duke@435 193 #ifndef PRODUCT
duke@435 194 CodeBlob* cb = CodeCache::find_blob(entry);
duke@435 195 RuntimeStub* rs =(RuntimeStub *)cb;
duke@435 196 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
duke@435 197 return rs->name();
duke@435 198 #else
duke@435 199 // Fast implementation for product mode (maybe it should be inlined too)
duke@435 200 return "runtime stub";
duke@435 201 #endif
duke@435 202 }
duke@435 203
duke@435 204
duke@435 205 //=============================================================================
duke@435 206 // Opto compiler runtime routines
duke@435 207 //=============================================================================
duke@435 208
duke@435 209
duke@435 210 //=============================allocation======================================
duke@435 211 // We failed the fast-path allocation. Now we need to do a scavenge or GC
duke@435 212 // and try allocation again.
duke@435 213
ysr@1601 214 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
duke@435 215 // After any safepoint, just before going back to compiled code,
ysr@1462 216 // we inform the GC that we will be doing initializing writes to
ysr@1462 217 // this object in the future without emitting card-marks, so
ysr@1462 218 // GC may take any compensating steps.
ysr@1462 219 // NOTE: Keep this code consistent with GraphKit::store_barrier.
duke@435 220
duke@435 221 oop new_obj = thread->vm_result();
duke@435 222 if (new_obj == NULL) return;
duke@435 223
duke@435 224 assert(Universe::heap()->can_elide_tlab_store_barriers(),
duke@435 225 "compiler must check this first");
ysr@1462 226 // GC may decide to give back a safer copy of new_obj.
ysr@1601 227 new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
duke@435 228 thread->set_vm_result(new_obj);
duke@435 229 }
duke@435 230
duke@435 231 // object allocation
coleenp@4037 232 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
duke@435 233 JRT_BLOCK;
duke@435 234 #ifndef PRODUCT
duke@435 235 SharedRuntime::_new_instance_ctr++; // new instance requires GC
duke@435 236 #endif
duke@435 237 assert(check_compiled_frame(thread), "incorrect caller");
duke@435 238
duke@435 239 // These checks are cheap to make and support reflective allocation.
hseigel@4278 240 int lh = klass->layout_helper();
duke@435 241 if (Klass::layout_helper_needs_slow_path(lh)
coleenp@4037 242 || !InstanceKlass::cast(klass)->is_initialized()) {
duke@435 243 KlassHandle kh(THREAD, klass);
duke@435 244 kh->check_valid_for_instantiation(false, THREAD);
duke@435 245 if (!HAS_PENDING_EXCEPTION) {
coleenp@4037 246 InstanceKlass::cast(kh())->initialize(THREAD);
duke@435 247 }
duke@435 248 if (!HAS_PENDING_EXCEPTION) {
duke@435 249 klass = kh();
duke@435 250 } else {
duke@435 251 klass = NULL;
duke@435 252 }
duke@435 253 }
duke@435 254
duke@435 255 if (klass != NULL) {
duke@435 256 // Scavenge and allocate an instance.
coleenp@4037 257 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
duke@435 258 thread->set_vm_result(result);
duke@435 259
duke@435 260 // Pass oops back through thread local storage. Our apparent type to Java
duke@435 261 // is that we return an oop, but we can block on exit from this routine and
duke@435 262 // a GC can trash the oop in C's return register. The generated stub will
duke@435 263 // fetch the oop from TLS after any possible GC.
duke@435 264 }
duke@435 265
duke@435 266 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 267 JRT_BLOCK_END;
duke@435 268
duke@435 269 if (GraphKit::use_ReduceInitialCardMarks()) {
ysr@1462 270 // inform GC that we won't do card marks for initializing writes.
ysr@1601 271 new_store_pre_barrier(thread);
duke@435 272 }
duke@435 273 JRT_END
duke@435 274
duke@435 275
duke@435 276 // array allocation
coleenp@4037 277 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
duke@435 278 JRT_BLOCK;
duke@435 279 #ifndef PRODUCT
duke@435 280 SharedRuntime::_new_array_ctr++; // new array requires GC
duke@435 281 #endif
duke@435 282 assert(check_compiled_frame(thread), "incorrect caller");
duke@435 283
duke@435 284 // Scavenge and allocate an instance.
duke@435 285 oop result;
duke@435 286
hseigel@4278 287 if (array_type->oop_is_typeArray()) {
duke@435 288 // The oopFactory likes to work with the element type.
duke@435 289 // (We could bypass the oopFactory, since it doesn't add much value.)
coleenp@4142 290 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
duke@435 291 result = oopFactory::new_typeArray(elem_type, len, THREAD);
duke@435 292 } else {
duke@435 293 // Although the oopFactory likes to work with the elem_type,
duke@435 294 // the compiler prefers the array_type, since it must already have
duke@435 295 // that latter value in hand for the fast path.
coleenp@4142 296 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
duke@435 297 result = oopFactory::new_objArray(elem_type, len, THREAD);
duke@435 298 }
duke@435 299
duke@435 300 // Pass oops back through thread local storage. Our apparent type to Java
duke@435 301 // is that we return an oop, but we can block on exit from this routine and
duke@435 302 // a GC can trash the oop in C's return register. The generated stub will
duke@435 303 // fetch the oop from TLS after any possible GC.
duke@435 304 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 305 thread->set_vm_result(result);
duke@435 306 JRT_BLOCK_END;
duke@435 307
duke@435 308 if (GraphKit::use_ReduceInitialCardMarks()) {
ysr@1462 309 // inform GC that we won't do card marks for initializing writes.
ysr@1601 310 new_store_pre_barrier(thread);
duke@435 311 }
duke@435 312 JRT_END
duke@435 313
kvn@3157 314 // array allocation without zeroing
coleenp@4037 315 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
kvn@3157 316 JRT_BLOCK;
kvn@3157 317 #ifndef PRODUCT
kvn@3157 318 SharedRuntime::_new_array_ctr++; // new array requires GC
kvn@3157 319 #endif
kvn@3157 320 assert(check_compiled_frame(thread), "incorrect caller");
kvn@3157 321
kvn@3157 322 // Scavenge and allocate an instance.
kvn@3157 323 oop result;
kvn@3157 324
hseigel@4278 325 assert(array_type->oop_is_typeArray(), "should be called only for type array");
kvn@3157 326 // The oopFactory likes to work with the element type.
coleenp@4142 327 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
kvn@3157 328 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
kvn@3157 329
kvn@3157 330 // Pass oops back through thread local storage. Our apparent type to Java
kvn@3157 331 // is that we return an oop, but we can block on exit from this routine and
kvn@3157 332 // a GC can trash the oop in C's return register. The generated stub will
kvn@3157 333 // fetch the oop from TLS after any possible GC.
kvn@3157 334 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
kvn@3157 335 thread->set_vm_result(result);
kvn@3157 336 JRT_BLOCK_END;
kvn@3157 337
kvn@3157 338 if (GraphKit::use_ReduceInitialCardMarks()) {
kvn@3157 339 // inform GC that we won't do card marks for initializing writes.
kvn@3157 340 new_store_pre_barrier(thread);
kvn@3157 341 }
kvn@3259 342
kvn@3259 343 oop result = thread->vm_result();
kvn@3259 344 if ((len > 0) && (result != NULL) &&
kvn@3259 345 is_deoptimized_caller_frame(thread)) {
kvn@3259 346 // Zero array here if the caller is deoptimized.
kvn@3259 347 int size = ((typeArrayOop)result)->object_size();
coleenp@4142 348 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
kvn@3259 349 const size_t hs = arrayOopDesc::header_size(elem_type);
kvn@3259 350 // Align to next 8 bytes to avoid trashing arrays's length.
kvn@3259 351 const size_t aligned_hs = align_object_offset(hs);
kvn@3259 352 HeapWord* obj = (HeapWord*)result;
kvn@3259 353 if (aligned_hs > hs) {
kvn@3259 354 Copy::zero_to_words(obj+hs, aligned_hs-hs);
kvn@3259 355 }
kvn@3259 356 // Optimized zeroing.
kvn@3259 357 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
kvn@3259 358 }
kvn@3259 359
kvn@3157 360 JRT_END
kvn@3157 361
duke@435 362 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
duke@435 363
duke@435 364 // multianewarray for 2 dimensions
coleenp@4037 365 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
duke@435 366 #ifndef PRODUCT
duke@435 367 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
duke@435 368 #endif
duke@435 369 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 370 assert(elem_type->is_klass(), "not a class");
duke@435 371 jint dims[2];
duke@435 372 dims[0] = len1;
duke@435 373 dims[1] = len2;
coleenp@4142 374 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
duke@435 375 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 376 thread->set_vm_result(obj);
duke@435 377 JRT_END
duke@435 378
duke@435 379 // multianewarray for 3 dimensions
coleenp@4037 380 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
duke@435 381 #ifndef PRODUCT
duke@435 382 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
duke@435 383 #endif
duke@435 384 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 385 assert(elem_type->is_klass(), "not a class");
duke@435 386 jint dims[3];
duke@435 387 dims[0] = len1;
duke@435 388 dims[1] = len2;
duke@435 389 dims[2] = len3;
coleenp@4142 390 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
duke@435 391 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 392 thread->set_vm_result(obj);
duke@435 393 JRT_END
duke@435 394
duke@435 395 // multianewarray for 4 dimensions
coleenp@4037 396 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
duke@435 397 #ifndef PRODUCT
duke@435 398 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
duke@435 399 #endif
duke@435 400 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 401 assert(elem_type->is_klass(), "not a class");
duke@435 402 jint dims[4];
duke@435 403 dims[0] = len1;
duke@435 404 dims[1] = len2;
duke@435 405 dims[2] = len3;
duke@435 406 dims[3] = len4;
coleenp@4142 407 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
duke@435 408 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 409 thread->set_vm_result(obj);
duke@435 410 JRT_END
duke@435 411
duke@435 412 // multianewarray for 5 dimensions
coleenp@4037 413 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
duke@435 414 #ifndef PRODUCT
duke@435 415 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
duke@435 416 #endif
duke@435 417 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 418 assert(elem_type->is_klass(), "not a class");
duke@435 419 jint dims[5];
duke@435 420 dims[0] = len1;
duke@435 421 dims[1] = len2;
duke@435 422 dims[2] = len3;
duke@435 423 dims[3] = len4;
duke@435 424 dims[4] = len5;
coleenp@4142 425 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
duke@435 426 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 427 thread->set_vm_result(obj);
duke@435 428 JRT_END
duke@435 429
coleenp@4037 430 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
iveresov@3002 431 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 432 assert(elem_type->is_klass(), "not a class");
iveresov@3002 433 assert(oop(dims)->is_typeArray(), "not an array");
iveresov@3002 434
iveresov@3002 435 ResourceMark rm;
iveresov@3002 436 jint len = dims->length();
iveresov@3002 437 assert(len > 0, "Dimensions array should contain data");
iveresov@3002 438 jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
iveresov@3002 439 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
iveresov@3002 440 Copy::conjoint_jints_atomic(j_dims, c_dims, len);
iveresov@3002 441
coleenp@4142 442 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
iveresov@3002 443 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
iveresov@3002 444 thread->set_vm_result(obj);
iveresov@3002 445 JRT_END
iveresov@3002 446
iveresov@3002 447
duke@435 448 const TypeFunc *OptoRuntime::new_instance_Type() {
duke@435 449 // create input type (domain)
duke@435 450 const Type **fields = TypeTuple::fields(1);
duke@435 451 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
duke@435 452 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 453
duke@435 454 // create result type (range)
duke@435 455 fields = TypeTuple::fields(1);
duke@435 456 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 457
duke@435 458 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 459
duke@435 460 return TypeFunc::make(domain, range);
duke@435 461 }
duke@435 462
duke@435 463
duke@435 464 const TypeFunc *OptoRuntime::athrow_Type() {
duke@435 465 // create input type (domain)
duke@435 466 const Type **fields = TypeTuple::fields(1);
duke@435 467 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
duke@435 468 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 469
duke@435 470 // create result type (range)
duke@435 471 fields = TypeTuple::fields(0);
duke@435 472
duke@435 473 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 474
duke@435 475 return TypeFunc::make(domain, range);
duke@435 476 }
duke@435 477
duke@435 478
duke@435 479 const TypeFunc *OptoRuntime::new_array_Type() {
duke@435 480 // create input type (domain)
duke@435 481 const Type **fields = TypeTuple::fields(2);
duke@435 482 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
duke@435 483 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
duke@435 484 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 485
duke@435 486 // create result type (range)
duke@435 487 fields = TypeTuple::fields(1);
duke@435 488 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 489
duke@435 490 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 491
duke@435 492 return TypeFunc::make(domain, range);
duke@435 493 }
duke@435 494
duke@435 495 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
duke@435 496 // create input type (domain)
duke@435 497 const int nargs = ndim + 1;
duke@435 498 const Type **fields = TypeTuple::fields(nargs);
duke@435 499 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
duke@435 500 for( int i = 1; i < nargs; i++ )
duke@435 501 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
duke@435 502 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
duke@435 503
duke@435 504 // create result type (range)
duke@435 505 fields = TypeTuple::fields(1);
duke@435 506 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 507 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 508
duke@435 509 return TypeFunc::make(domain, range);
duke@435 510 }
duke@435 511
duke@435 512 const TypeFunc *OptoRuntime::multianewarray2_Type() {
duke@435 513 return multianewarray_Type(2);
duke@435 514 }
duke@435 515
duke@435 516 const TypeFunc *OptoRuntime::multianewarray3_Type() {
duke@435 517 return multianewarray_Type(3);
duke@435 518 }
duke@435 519
duke@435 520 const TypeFunc *OptoRuntime::multianewarray4_Type() {
duke@435 521 return multianewarray_Type(4);
duke@435 522 }
duke@435 523
duke@435 524 const TypeFunc *OptoRuntime::multianewarray5_Type() {
duke@435 525 return multianewarray_Type(5);
duke@435 526 }
duke@435 527
iveresov@3002 528 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
iveresov@3002 529 // create input type (domain)
iveresov@3002 530 const Type **fields = TypeTuple::fields(2);
iveresov@3002 531 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
iveresov@3002 532 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes
iveresov@3002 533 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
iveresov@3002 534
iveresov@3002 535 // create result type (range)
iveresov@3002 536 fields = TypeTuple::fields(1);
iveresov@3002 537 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
iveresov@3002 538 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
iveresov@3002 539
iveresov@3002 540 return TypeFunc::make(domain, range);
iveresov@3002 541 }
iveresov@3002 542
ysr@777 543 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
ysr@777 544 const Type **fields = TypeTuple::fields(2);
ysr@777 545 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
ysr@777 546 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
ysr@777 547 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
ysr@777 548
ysr@777 549 // create result type (range)
ysr@777 550 fields = TypeTuple::fields(0);
ysr@777 551 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
ysr@777 552
ysr@777 553 return TypeFunc::make(domain, range);
ysr@777 554 }
ysr@777 555
ysr@777 556 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
ysr@777 557
ysr@777 558 const Type **fields = TypeTuple::fields(2);
ysr@777 559 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr
ysr@777 560 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
ysr@777 561 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
ysr@777 562
ysr@777 563 // create result type (range)
ysr@777 564 fields = TypeTuple::fields(0);
ysr@777 565 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
ysr@777 566
ysr@777 567 return TypeFunc::make(domain, range);
ysr@777 568 }
ysr@777 569
duke@435 570 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
duke@435 571 // create input type (domain)
duke@435 572 const Type **fields = TypeTuple::fields(1);
coleenp@2497 573 // Symbol* name of class to be loaded
duke@435 574 fields[TypeFunc::Parms+0] = TypeInt::INT;
duke@435 575 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 576
duke@435 577 // create result type (range)
duke@435 578 fields = TypeTuple::fields(0);
duke@435 579 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 580
duke@435 581 return TypeFunc::make(domain, range);
duke@435 582 }
duke@435 583
duke@435 584 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 585 // Type used for stub generation for zap_dead_locals.
duke@435 586 // No inputs or outputs
duke@435 587 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
duke@435 588 // create input type (domain)
duke@435 589 const Type **fields = TypeTuple::fields(0);
duke@435 590 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
duke@435 591
duke@435 592 // create result type (range)
duke@435 593 fields = TypeTuple::fields(0);
duke@435 594 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
duke@435 595
duke@435 596 return TypeFunc::make(domain,range);
duke@435 597 }
duke@435 598 # endif
duke@435 599
duke@435 600
duke@435 601 //-----------------------------------------------------------------------------
duke@435 602 // Monitor Handling
duke@435 603 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
duke@435 604 // create input type (domain)
duke@435 605 const Type **fields = TypeTuple::fields(2);
duke@435 606 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 607 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 608 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 609
duke@435 610 // create result type (range)
duke@435 611 fields = TypeTuple::fields(0);
duke@435 612
duke@435 613 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 614
duke@435 615 return TypeFunc::make(domain,range);
duke@435 616 }
duke@435 617
duke@435 618
duke@435 619 //-----------------------------------------------------------------------------
duke@435 620 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
duke@435 621 // create input type (domain)
duke@435 622 const Type **fields = TypeTuple::fields(2);
duke@435 623 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 624 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 625 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 626
duke@435 627 // create result type (range)
duke@435 628 fields = TypeTuple::fields(0);
duke@435 629
duke@435 630 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 631
duke@435 632 return TypeFunc::make(domain,range);
duke@435 633 }
duke@435 634
duke@435 635 const TypeFunc* OptoRuntime::flush_windows_Type() {
duke@435 636 // create input type (domain)
duke@435 637 const Type** fields = TypeTuple::fields(1);
duke@435 638 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 639 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 640
duke@435 641 // create result type
duke@435 642 fields = TypeTuple::fields(1);
duke@435 643 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 644 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 645
duke@435 646 return TypeFunc::make(domain, range);
duke@435 647 }
duke@435 648
duke@435 649 const TypeFunc* OptoRuntime::l2f_Type() {
duke@435 650 // create input type (domain)
duke@435 651 const Type **fields = TypeTuple::fields(2);
duke@435 652 fields[TypeFunc::Parms+0] = TypeLong::LONG;
duke@435 653 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 654 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 655
duke@435 656 // create result type (range)
duke@435 657 fields = TypeTuple::fields(1);
duke@435 658 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 659 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 660
duke@435 661 return TypeFunc::make(domain, range);
duke@435 662 }
duke@435 663
duke@435 664 const TypeFunc* OptoRuntime::modf_Type() {
duke@435 665 const Type **fields = TypeTuple::fields(2);
duke@435 666 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 667 fields[TypeFunc::Parms+1] = Type::FLOAT;
duke@435 668 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 669
duke@435 670 // create result type (range)
duke@435 671 fields = TypeTuple::fields(1);
duke@435 672 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 673
duke@435 674 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 675
duke@435 676 return TypeFunc::make(domain, range);
duke@435 677 }
duke@435 678
duke@435 679 const TypeFunc *OptoRuntime::Math_D_D_Type() {
duke@435 680 // create input type (domain)
duke@435 681 const Type **fields = TypeTuple::fields(2);
coleenp@2497 682 // Symbol* name of class to be loaded
duke@435 683 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 684 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 685 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 686
duke@435 687 // create result type (range)
duke@435 688 fields = TypeTuple::fields(2);
duke@435 689 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 690 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 691 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 692
duke@435 693 return TypeFunc::make(domain, range);
duke@435 694 }
duke@435 695
duke@435 696 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
duke@435 697 const Type **fields = TypeTuple::fields(4);
duke@435 698 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 699 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 700 fields[TypeFunc::Parms+2] = Type::DOUBLE;
duke@435 701 fields[TypeFunc::Parms+3] = Type::HALF;
duke@435 702 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
duke@435 703
duke@435 704 // create result type (range)
duke@435 705 fields = TypeTuple::fields(2);
duke@435 706 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 707 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 708 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 709
duke@435 710 return TypeFunc::make(domain, range);
duke@435 711 }
duke@435 712
rbackman@3709 713 //-------------- currentTimeMillis, currentTimeNanos, etc
duke@435 714
rbackman@3709 715 const TypeFunc* OptoRuntime::void_long_Type() {
duke@435 716 // create input type (domain)
duke@435 717 const Type **fields = TypeTuple::fields(0);
duke@435 718 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 719
duke@435 720 // create result type (range)
duke@435 721 fields = TypeTuple::fields(2);
duke@435 722 fields[TypeFunc::Parms+0] = TypeLong::LONG;
duke@435 723 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 724 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 725
duke@435 726 return TypeFunc::make(domain, range);
duke@435 727 }
duke@435 728
duke@435 729 // arraycopy stub variations:
duke@435 730 enum ArrayCopyType {
duke@435 731 ac_fast, // void(ptr, ptr, size_t)
duke@435 732 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
duke@435 733 ac_slow, // void(ptr, int, ptr, int, int)
duke@435 734 ac_generic // int(ptr, int, ptr, int, int)
duke@435 735 };
duke@435 736
duke@435 737 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
duke@435 738 // create input type (domain)
duke@435 739 int num_args = (act == ac_fast ? 3 : 5);
duke@435 740 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
duke@435 741 int argcnt = num_args;
duke@435 742 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
duke@435 743 const Type** fields = TypeTuple::fields(argcnt);
duke@435 744 int argp = TypeFunc::Parms;
duke@435 745 fields[argp++] = TypePtr::NOTNULL; // src
duke@435 746 if (num_size_args == 0) {
duke@435 747 fields[argp++] = TypeInt::INT; // src_pos
duke@435 748 }
duke@435 749 fields[argp++] = TypePtr::NOTNULL; // dest
duke@435 750 if (num_size_args == 0) {
duke@435 751 fields[argp++] = TypeInt::INT; // dest_pos
duke@435 752 fields[argp++] = TypeInt::INT; // length
duke@435 753 }
duke@435 754 while (num_size_args-- > 0) {
duke@435 755 fields[argp++] = TypeX_X; // size in whatevers (size_t)
duke@435 756 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
duke@435 757 }
duke@435 758 if (act == ac_checkcast) {
duke@435 759 fields[argp++] = TypePtr::NOTNULL; // super_klass
duke@435 760 }
duke@435 761 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
duke@435 762 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
duke@435 763
duke@435 764 // create result type if needed
duke@435 765 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
duke@435 766 fields = TypeTuple::fields(1);
duke@435 767 if (retcnt == 0)
duke@435 768 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 769 else
duke@435 770 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
duke@435 771 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
duke@435 772 return TypeFunc::make(domain, range);
duke@435 773 }
duke@435 774
duke@435 775 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
duke@435 776 // This signature is simple: Two base pointers and a size_t.
duke@435 777 return make_arraycopy_Type(ac_fast);
duke@435 778 }
duke@435 779
duke@435 780 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
duke@435 781 // An extension of fast_arraycopy_Type which adds type checking.
duke@435 782 return make_arraycopy_Type(ac_checkcast);
duke@435 783 }
duke@435 784
duke@435 785 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
duke@435 786 // This signature is exactly the same as System.arraycopy.
duke@435 787 // There are no intptr_t (int/long) arguments.
duke@435 788 return make_arraycopy_Type(ac_slow);
duke@435 789 }
duke@435 790
duke@435 791 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
duke@435 792 // This signature is like System.arraycopy, except that it returns status.
duke@435 793 return make_arraycopy_Type(ac_generic);
duke@435 794 }
duke@435 795
duke@435 796
never@2118 797 const TypeFunc* OptoRuntime::array_fill_Type() {
goetz@6468 798 const Type** fields;
goetz@6468 799 int argp = TypeFunc::Parms;
goetz@6468 800 if (CCallingConventionRequiresIntsAsLongs) {
never@2199 801 // create input type (domain): pointer, int, size_t
goetz@6468 802 fields = TypeTuple::fields(3 LP64_ONLY( + 2));
goetz@6468 803 fields[argp++] = TypePtr::NOTNULL;
goetz@6468 804 fields[argp++] = TypeLong::LONG;
goetz@6468 805 fields[argp++] = Type::HALF;
goetz@6468 806 } else {
goetz@6468 807 // create input type (domain): pointer, int, size_t
goetz@6468 808 fields = TypeTuple::fields(3 LP64_ONLY( + 1));
goetz@6468 809 fields[argp++] = TypePtr::NOTNULL;
goetz@6468 810 fields[argp++] = TypeInt::INT;
goetz@6468 811 }
never@2199 812 fields[argp++] = TypeX_X; // size in whatevers (size_t)
never@2199 813 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
never@2199 814 const TypeTuple *domain = TypeTuple::make(argp, fields);
never@2118 815
never@2118 816 // create result type
never@2118 817 fields = TypeTuple::fields(1);
never@2118 818 fields[TypeFunc::Parms+0] = NULL; // void
never@2118 819 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
never@2118 820
never@2118 821 return TypeFunc::make(domain, range);
never@2118 822 }
never@2118 823
kvn@4205 824 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
kvn@4205 825 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
kvn@4205 826 // create input type (domain)
kvn@4205 827 int num_args = 3;
kvn@4205 828 int argcnt = num_args;
kvn@4205 829 const Type** fields = TypeTuple::fields(argcnt);
kvn@4205 830 int argp = TypeFunc::Parms;
kvn@4205 831 fields[argp++] = TypePtr::NOTNULL; // src
kvn@4205 832 fields[argp++] = TypePtr::NOTNULL; // dest
kvn@4205 833 fields[argp++] = TypePtr::NOTNULL; // k array
kvn@4205 834 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@4205 835 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@4205 836
kvn@4205 837 // no result type needed
kvn@4205 838 fields = TypeTuple::fields(1);
kvn@4205 839 fields[TypeFunc::Parms+0] = NULL; // void
kvn@4205 840 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
kvn@4205 841 return TypeFunc::make(domain, range);
kvn@4205 842 }
kvn@4205 843
drchase@5353 844 /**
drchase@5353 845 * int updateBytesCRC32(int crc, byte* b, int len)
drchase@5353 846 */
drchase@5353 847 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
drchase@5353 848 // create input type (domain)
drchase@5353 849 int num_args = 3;
drchase@5353 850 int argcnt = num_args;
drchase@5353 851 const Type** fields = TypeTuple::fields(argcnt);
drchase@5353 852 int argp = TypeFunc::Parms;
drchase@5353 853 fields[argp++] = TypeInt::INT; // crc
drchase@5353 854 fields[argp++] = TypePtr::NOTNULL; // src
drchase@5353 855 fields[argp++] = TypeInt::INT; // len
drchase@5353 856 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
drchase@5353 857 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
drchase@5353 858
drchase@5353 859 // result type needed
drchase@5353 860 fields = TypeTuple::fields(1);
drchase@5353 861 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
drchase@5353 862 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
drchase@5353 863 return TypeFunc::make(domain, range);
drchase@5353 864 }
drchase@5353 865
kvn@4205 866 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning void
kvn@4205 867 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
kvn@4205 868 // create input type (domain)
kvn@4205 869 int num_args = 5;
kvn@4205 870 int argcnt = num_args;
kvn@4205 871 const Type** fields = TypeTuple::fields(argcnt);
kvn@4205 872 int argp = TypeFunc::Parms;
kvn@4205 873 fields[argp++] = TypePtr::NOTNULL; // src
kvn@4205 874 fields[argp++] = TypePtr::NOTNULL; // dest
kvn@4205 875 fields[argp++] = TypePtr::NOTNULL; // k array
kvn@4205 876 fields[argp++] = TypePtr::NOTNULL; // r array
kvn@4205 877 fields[argp++] = TypeInt::INT; // src len
kvn@4205 878 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@4205 879 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@4205 880
kvn@4205 881 // no result type needed
kvn@4205 882 fields = TypeTuple::fields(1);
kvn@4205 883 fields[TypeFunc::Parms+0] = NULL; // void
kvn@4205 884 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
kvn@4205 885 return TypeFunc::make(domain, range);
kvn@4205 886 }
kvn@4205 887
duke@435 888 //------------- Interpreter state access for on stack replacement
duke@435 889 const TypeFunc* OptoRuntime::osr_end_Type() {
duke@435 890 // create input type (domain)
duke@435 891 const Type **fields = TypeTuple::fields(1);
duke@435 892 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
duke@435 893 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 894
duke@435 895 // create result type
duke@435 896 fields = TypeTuple::fields(1);
duke@435 897 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
duke@435 898 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 899 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 900 return TypeFunc::make(domain, range);
duke@435 901 }
duke@435 902
duke@435 903 //-------------- methodData update helpers
duke@435 904
duke@435 905 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
duke@435 906 // create input type (domain)
duke@435 907 const Type **fields = TypeTuple::fields(2);
duke@435 908 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer
duke@435 909 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop
duke@435 910 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 911
duke@435 912 // create result type
duke@435 913 fields = TypeTuple::fields(1);
duke@435 914 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 915 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 916 return TypeFunc::make(domain,range);
duke@435 917 }
duke@435 918
duke@435 919 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
duke@435 920 if (receiver == NULL) return;
coleenp@4037 921 Klass* receiver_klass = receiver->klass();
duke@435 922
duke@435 923 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
duke@435 924 int empty_row = -1; // free row, if any is encountered
duke@435 925
duke@435 926 // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
duke@435 927 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
duke@435 928 // if (vc->receiver(row) == receiver_klass)
duke@435 929 int receiver_off = ReceiverTypeData::receiver_cell_index(row);
duke@435 930 intptr_t row_recv = *(mdp + receiver_off);
duke@435 931 if (row_recv == (intptr_t) receiver_klass) {
duke@435 932 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
duke@435 933 int count_off = ReceiverTypeData::receiver_count_cell_index(row);
duke@435 934 *(mdp + count_off) += DataLayout::counter_increment;
duke@435 935 return;
duke@435 936 } else if (row_recv == 0) {
duke@435 937 // else if (vc->receiver(row) == NULL)
duke@435 938 empty_row = (int) row;
duke@435 939 }
duke@435 940 }
duke@435 941
duke@435 942 if (empty_row != -1) {
duke@435 943 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
duke@435 944 // vc->set_receiver(empty_row, receiver_klass);
duke@435 945 *(mdp + receiver_off) = (intptr_t) receiver_klass;
duke@435 946 // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
duke@435 947 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
duke@435 948 *(mdp + count_off) = DataLayout::counter_increment;
kvn@1641 949 } else {
kvn@1641 950 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 951 // Increment total counter to indicate polymorphic case.
kvn@1641 952 intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
kvn@1641 953 *count_p += DataLayout::counter_increment;
duke@435 954 }
duke@435 955 JRT_END
duke@435 956
duke@435 957 //-------------------------------------------------------------------------------------
duke@435 958 // register policy
duke@435 959
duke@435 960 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
duke@435 961 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
duke@435 962 switch (register_save_policy[reg]) {
duke@435 963 case 'C': return false; //SOC
duke@435 964 case 'E': return true ; //SOE
duke@435 965 case 'N': return false; //NS
duke@435 966 case 'A': return false; //AS
duke@435 967 }
duke@435 968 ShouldNotReachHere();
duke@435 969 return false;
duke@435 970 }
duke@435 971
duke@435 972 //-----------------------------------------------------------------------
duke@435 973 // Exceptions
duke@435 974 //
duke@435 975
duke@435 976 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
duke@435 977
duke@435 978 // The method is an entry that is always called by a C++ method not
duke@435 979 // directly from compiled code. Compiled code will call the C++ method following.
duke@435 980 // We can't allow async exception to be installed during exception processing.
duke@435 981 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
duke@435 982
duke@435 983 // Do not confuse exception_oop with pending_exception. The exception_oop
duke@435 984 // is only used to pass arguments into the method. Not for general
duke@435 985 // exception handling. DO NOT CHANGE IT to use pending_exception, since
duke@435 986 // the runtime stubs checks this on exit.
duke@435 987 assert(thread->exception_oop() != NULL, "exception oop is found");
duke@435 988 address handler_address = NULL;
duke@435 989
duke@435 990 Handle exception(thread, thread->exception_oop());
duke@435 991
duke@435 992 if (TraceExceptions) {
duke@435 993 trace_exception(exception(), thread->exception_pc(), "");
duke@435 994 }
duke@435 995 // for AbortVMOnException flag
duke@435 996 NOT_PRODUCT(Exceptions::debug_check_abort(exception));
duke@435 997
duke@435 998 #ifdef ASSERT
never@1577 999 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
duke@435 1000 // should throw an exception here
duke@435 1001 ShouldNotReachHere();
duke@435 1002 }
duke@435 1003 #endif
duke@435 1004
duke@435 1005
duke@435 1006 // new exception handling: this method is entered only from adapters
duke@435 1007 // exceptions from compiled java methods are handled in compiled code
duke@435 1008 // using rethrow node
duke@435 1009
duke@435 1010 address pc = thread->exception_pc();
duke@435 1011 nm = CodeCache::find_nmethod(pc);
duke@435 1012 assert(nm != NULL, "No NMethod found");
duke@435 1013 if (nm->is_native_method()) {
goetz@6441 1014 fatal("Native method should not have path to exception handling");
duke@435 1015 } else {
duke@435 1016 // we are switching to old paradigm: search for exception handler in caller_frame
duke@435 1017 // instead in exception handler of caller_frame.sender()
duke@435 1018
dcubed@1648 1019 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 1020 // "Full-speed catching" is not necessary here,
duke@435 1021 // since we're notifying the VM on every catch.
duke@435 1022 // Force deoptimization and the rest of the lookup
duke@435 1023 // will be fine.
kvn@4364 1024 deoptimize_caller_frame(thread);
duke@435 1025 }
duke@435 1026
duke@435 1027 // Check the stack guard pages. If enabled, look for handler in this frame;
duke@435 1028 // otherwise, forcibly unwind the frame.
duke@435 1029 //
duke@435 1030 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
duke@435 1031 bool force_unwind = !thread->reguard_stack();
duke@435 1032 bool deopting = false;
duke@435 1033 if (nm->is_deopt_pc(pc)) {
duke@435 1034 deopting = true;
duke@435 1035 RegisterMap map(thread, false);
duke@435 1036 frame deoptee = thread->last_frame().sender(&map);
duke@435 1037 assert(deoptee.is_deoptimized_frame(), "must be deopted");
duke@435 1038 // Adjust the pc back to the original throwing pc
duke@435 1039 pc = deoptee.pc();
duke@435 1040 }
duke@435 1041
duke@435 1042 // If we are forcing an unwind because of stack overflow then deopt is
goetz@6441 1043 // irrelevant since we are throwing the frame away anyway.
duke@435 1044
duke@435 1045 if (deopting && !force_unwind) {
duke@435 1046 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 1047 } else {
duke@435 1048
duke@435 1049 handler_address =
duke@435 1050 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
duke@435 1051
duke@435 1052 if (handler_address == NULL) {
kvn@3194 1053 Handle original_exception(thread, exception());
duke@435 1054 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
duke@435 1055 assert (handler_address != NULL, "must have compiled handler");
kvn@3194 1056 // Update the exception cache only when the unwind was not forced
kvn@3194 1057 // and there didn't happen another exception during the computation of the
kvn@3194 1058 // compiled exception handler.
kvn@3194 1059 if (!force_unwind && original_exception() == exception()) {
duke@435 1060 nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
duke@435 1061 }
duke@435 1062 } else {
duke@435 1063 assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
duke@435 1064 }
duke@435 1065 }
duke@435 1066
duke@435 1067 thread->set_exception_pc(pc);
duke@435 1068 thread->set_exception_handler_pc(handler_address);
twisti@1570 1069
twisti@1730 1070 // Check if the exception PC is a MethodHandle call site.
twisti@1803 1071 thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
duke@435 1072 }
duke@435 1073
duke@435 1074 // Restore correct return pc. Was saved above.
duke@435 1075 thread->set_exception_oop(exception());
duke@435 1076 return handler_address;
duke@435 1077
duke@435 1078 JRT_END
duke@435 1079
duke@435 1080 // We are entering here from exception_blob
duke@435 1081 // If there is a compiled exception handler in this method, we will continue there;
duke@435 1082 // otherwise we will unwind the stack and continue at the caller of top frame method
duke@435 1083 // Note we enter without the usual JRT wrapper. We will call a helper routine that
duke@435 1084 // will do the normal VM entry. We do it this way so that we can see if the nmethod
duke@435 1085 // we looked up the handler for has been deoptimized in the meantime. If it has been
goetz@6441 1086 // we must not use the handler and instead return the deopt blob.
duke@435 1087 address OptoRuntime::handle_exception_C(JavaThread* thread) {
duke@435 1088 //
duke@435 1089 // We are in Java not VM and in debug mode we have a NoHandleMark
duke@435 1090 //
duke@435 1091 #ifndef PRODUCT
duke@435 1092 SharedRuntime::_find_handler_ctr++; // find exception handler
duke@435 1093 #endif
duke@435 1094 debug_only(NoHandleMark __hm;)
duke@435 1095 nmethod* nm = NULL;
duke@435 1096 address handler_address = NULL;
duke@435 1097 {
duke@435 1098 // Enter the VM
duke@435 1099
duke@435 1100 ResetNoHandleMark rnhm;
duke@435 1101 handler_address = handle_exception_C_helper(thread, nm);
duke@435 1102 }
duke@435 1103
duke@435 1104 // Back in java: Use no oops, DON'T safepoint
duke@435 1105
duke@435 1106 // Now check to see if the handler we are returning is in a now
duke@435 1107 // deoptimized frame
duke@435 1108
duke@435 1109 if (nm != NULL) {
duke@435 1110 RegisterMap map(thread, false);
duke@435 1111 frame caller = thread->last_frame().sender(&map);
duke@435 1112 #ifdef ASSERT
duke@435 1113 assert(caller.is_compiled_frame(), "must be");
duke@435 1114 #endif // ASSERT
duke@435 1115 if (caller.is_deoptimized_frame()) {
duke@435 1116 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 1117 }
duke@435 1118 }
duke@435 1119 return handler_address;
duke@435 1120 }
duke@435 1121
duke@435 1122 //------------------------------rethrow----------------------------------------
duke@435 1123 // We get here after compiled code has executed a 'RethrowNode'. The callee
duke@435 1124 // is either throwing or rethrowing an exception. The callee-save registers
duke@435 1125 // have been restored, synchronized objects have been unlocked and the callee
duke@435 1126 // stack frame has been removed. The return address was passed in.
duke@435 1127 // Exception oop is passed as the 1st argument. This routine is then called
duke@435 1128 // from the stub. On exit, we know where to jump in the caller's code.
duke@435 1129 // After this C code exits, the stub will pop his frame and end in a jump
duke@435 1130 // (instead of a return). We enter the caller's default handler.
duke@435 1131 //
duke@435 1132 // This must be JRT_LEAF:
duke@435 1133 // - caller will not change its state as we cannot block on exit,
duke@435 1134 // therefore raw_exception_handler_for_return_address is all it takes
duke@435 1135 // to handle deoptimized blobs
duke@435 1136 //
duke@435 1137 // However, there needs to be a safepoint check in the middle! So compiled
duke@435 1138 // safepoints are completely watertight.
duke@435 1139 //
duke@435 1140 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
duke@435 1141 //
duke@435 1142 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
duke@435 1143 //
duke@435 1144 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
duke@435 1145 #ifndef PRODUCT
duke@435 1146 SharedRuntime::_rethrow_ctr++; // count rethrows
duke@435 1147 #endif
duke@435 1148 assert (exception != NULL, "should have thrown a NULLPointerException");
duke@435 1149 #ifdef ASSERT
never@1577 1150 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
duke@435 1151 // should throw an exception here
duke@435 1152 ShouldNotReachHere();
duke@435 1153 }
duke@435 1154 #endif
duke@435 1155
duke@435 1156 thread->set_vm_result(exception);
duke@435 1157 // Frame not compiled (handles deoptimization blob)
twisti@1730 1158 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
duke@435 1159 }
duke@435 1160
duke@435 1161
duke@435 1162 const TypeFunc *OptoRuntime::rethrow_Type() {
duke@435 1163 // create input type (domain)
duke@435 1164 const Type **fields = TypeTuple::fields(1);
duke@435 1165 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
duke@435 1166 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
duke@435 1167
duke@435 1168 // create result type (range)
duke@435 1169 fields = TypeTuple::fields(1);
duke@435 1170 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
duke@435 1171 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 1172
duke@435 1173 return TypeFunc::make(domain, range);
duke@435 1174 }
duke@435 1175
duke@435 1176
duke@435 1177 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
kvn@4364 1178 // Deoptimize the caller before continuing, as the compiled
kvn@4364 1179 // exception handler table may not be valid.
kvn@4364 1180 if (!StressCompiledExceptionHandlers && doit) {
kvn@4364 1181 deoptimize_caller_frame(thread);
kvn@4364 1182 }
kvn@4364 1183 }
duke@435 1184
kvn@4364 1185 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
kvn@4364 1186 // Called from within the owner thread, so no need for safepoint
kvn@4364 1187 RegisterMap reg_map(thread);
kvn@4364 1188 frame stub_frame = thread->last_frame();
kvn@4364 1189 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
kvn@4364 1190 frame caller_frame = stub_frame.sender(&reg_map);
kvn@4364 1191
kvn@4364 1192 // Deoptimize the caller frame.
kvn@4364 1193 Deoptimization::deoptimize_frame(thread, caller_frame.id());
duke@435 1194 }
duke@435 1195
duke@435 1196
kvn@3259 1197 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
kvn@3259 1198 // Called from within the owner thread, so no need for safepoint
kvn@3259 1199 RegisterMap reg_map(thread);
kvn@3259 1200 frame stub_frame = thread->last_frame();
kvn@3259 1201 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
kvn@3259 1202 frame caller_frame = stub_frame.sender(&reg_map);
kvn@3259 1203 return caller_frame.is_deoptimized_frame();
kvn@3259 1204 }
kvn@3259 1205
kvn@3259 1206
duke@435 1207 const TypeFunc *OptoRuntime::register_finalizer_Type() {
duke@435 1208 // create input type (domain)
duke@435 1209 const Type **fields = TypeTuple::fields(1);
duke@435 1210 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
duke@435 1211 // // The JavaThread* is passed to each routine as the last argument
duke@435 1212 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
duke@435 1213 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
duke@435 1214
duke@435 1215 // create result type (range)
duke@435 1216 fields = TypeTuple::fields(0);
duke@435 1217
duke@435 1218 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1219
duke@435 1220 return TypeFunc::make(domain,range);
duke@435 1221 }
duke@435 1222
duke@435 1223
duke@435 1224 //-----------------------------------------------------------------------------
duke@435 1225 // Dtrace support. entry and exit probes have the same signature
duke@435 1226 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
duke@435 1227 // create input type (domain)
duke@435 1228 const Type **fields = TypeTuple::fields(2);
duke@435 1229 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
roland@4051 1230 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
duke@435 1231 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 1232
duke@435 1233 // create result type (range)
duke@435 1234 fields = TypeTuple::fields(0);
duke@435 1235
duke@435 1236 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1237
duke@435 1238 return TypeFunc::make(domain,range);
duke@435 1239 }
duke@435 1240
duke@435 1241 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
duke@435 1242 // create input type (domain)
duke@435 1243 const Type **fields = TypeTuple::fields(2);
duke@435 1244 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
duke@435 1245 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
duke@435 1246
duke@435 1247 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 1248
duke@435 1249 // create result type (range)
duke@435 1250 fields = TypeTuple::fields(0);
duke@435 1251
duke@435 1252 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1253
duke@435 1254 return TypeFunc::make(domain,range);
duke@435 1255 }
duke@435 1256
duke@435 1257
duke@435 1258 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
duke@435 1259 assert(obj->is_oop(), "must be a valid oop");
coleenp@4037 1260 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
coleenp@4037 1261 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 1262 JRT_END
duke@435 1263
duke@435 1264 //-----------------------------------------------------------------------------
duke@435 1265
duke@435 1266 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
duke@435 1267
duke@435 1268 //
duke@435 1269 // dump the collected NamedCounters.
duke@435 1270 //
duke@435 1271 void OptoRuntime::print_named_counters() {
duke@435 1272 int total_lock_count = 0;
duke@435 1273 int eliminated_lock_count = 0;
duke@435 1274
duke@435 1275 NamedCounter* c = _named_counters;
duke@435 1276 while (c) {
duke@435 1277 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
duke@435 1278 int count = c->count();
duke@435 1279 if (count > 0) {
duke@435 1280 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
duke@435 1281 if (Verbose) {
duke@435 1282 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
duke@435 1283 }
duke@435 1284 total_lock_count += count;
duke@435 1285 if (eliminated) {
duke@435 1286 eliminated_lock_count += count;
duke@435 1287 }
duke@435 1288 }
duke@435 1289 } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
duke@435 1290 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
duke@435 1291 if (blc->nonzero()) {
duke@435 1292 tty->print_cr("%s", c->name());
duke@435 1293 blc->print_on(tty);
duke@435 1294 }
duke@435 1295 }
duke@435 1296 c = c->next();
duke@435 1297 }
duke@435 1298 if (total_lock_count > 0) {
duke@435 1299 tty->print_cr("dynamic locks: %d", total_lock_count);
duke@435 1300 if (eliminated_lock_count) {
duke@435 1301 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
duke@435 1302 (int)(eliminated_lock_count * 100.0 / total_lock_count));
duke@435 1303 }
duke@435 1304 }
duke@435 1305 }
duke@435 1306
duke@435 1307 //
duke@435 1308 // Allocate a new NamedCounter. The JVMState is used to generate the
duke@435 1309 // name which consists of method@line for the inlining tree.
duke@435 1310 //
duke@435 1311
duke@435 1312 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
duke@435 1313 int max_depth = youngest_jvms->depth();
duke@435 1314
duke@435 1315 // Visit scopes from youngest to oldest.
duke@435 1316 bool first = true;
duke@435 1317 stringStream st;
duke@435 1318 for (int depth = max_depth; depth >= 1; depth--) {
duke@435 1319 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 1320 ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
duke@435 1321 if (!first) {
duke@435 1322 st.print(" ");
duke@435 1323 } else {
duke@435 1324 first = false;
duke@435 1325 }
duke@435 1326 int bci = jvms->bci();
duke@435 1327 if (bci < 0) bci = 0;
duke@435 1328 st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
duke@435 1329 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
duke@435 1330 }
duke@435 1331 NamedCounter* c;
duke@435 1332 if (tag == NamedCounter::BiasedLockingCounter) {
duke@435 1333 c = new BiasedLockingNamedCounter(strdup(st.as_string()));
duke@435 1334 } else {
duke@435 1335 c = new NamedCounter(strdup(st.as_string()), tag);
duke@435 1336 }
duke@435 1337
duke@435 1338 // atomically add the new counter to the head of the list. We only
duke@435 1339 // add counters so this is safe.
duke@435 1340 NamedCounter* head;
duke@435 1341 do {
duke@435 1342 head = _named_counters;
duke@435 1343 c->set_next(head);
duke@435 1344 } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
duke@435 1345 return c;
duke@435 1346 }
duke@435 1347
duke@435 1348 //-----------------------------------------------------------------------------
duke@435 1349 // Non-product code
duke@435 1350 #ifndef PRODUCT
duke@435 1351
duke@435 1352 int trace_exception_counter = 0;
duke@435 1353 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
duke@435 1354 ttyLocker ttyl;
duke@435 1355 trace_exception_counter++;
duke@435 1356 tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
duke@435 1357 exception_oop->print_value();
duke@435 1358 tty->print(" in ");
duke@435 1359 CodeBlob* blob = CodeCache::find_blob(exception_pc);
duke@435 1360 if (blob->is_nmethod()) {
duke@435 1361 ((nmethod*)blob)->method()->print_value();
duke@435 1362 } else if (blob->is_runtime_stub()) {
duke@435 1363 tty->print("<runtime-stub>");
duke@435 1364 } else {
duke@435 1365 tty->print("<unknown>");
duke@435 1366 }
duke@435 1367 tty->print(" at " INTPTR_FORMAT, exception_pc);
duke@435 1368 tty->print_cr("]");
duke@435 1369 }
duke@435 1370
duke@435 1371 #endif // PRODUCT
duke@435 1372
duke@435 1373
duke@435 1374 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1375 // Called from call sites in compiled code with oop maps (actually safepoints)
duke@435 1376 // Zaps dead locals in first java frame.
duke@435 1377 // Is entry because may need to lock to generate oop maps
duke@435 1378 // Currently, only used for compiler frames, but someday may be used
duke@435 1379 // for interpreter frames, too.
duke@435 1380
duke@435 1381 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
duke@435 1382
duke@435 1383 // avoid pointers to member funcs with these helpers
duke@435 1384 static bool is_java_frame( frame* f) { return f->is_java_frame(); }
duke@435 1385 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
duke@435 1386
duke@435 1387
duke@435 1388 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
duke@435 1389 bool (*is_this_the_right_frame_to_zap)(frame*)) {
duke@435 1390 assert(JavaThread::current() == thread, "is this needed?");
duke@435 1391
duke@435 1392 if ( !ZapDeadCompiledLocals ) return;
duke@435 1393
duke@435 1394 bool skip = false;
duke@435 1395
duke@435 1396 if ( ZapDeadCompiledLocalsFirst == 0 ) ; // nothing special
duke@435 1397 else if ( ZapDeadCompiledLocalsFirst > ZapDeadCompiledLocals_count ) skip = true;
duke@435 1398 else if ( ZapDeadCompiledLocalsFirst == ZapDeadCompiledLocals_count )
duke@435 1399 warning("starting zapping after skipping");
duke@435 1400
duke@435 1401 if ( ZapDeadCompiledLocalsLast == -1 ) ; // nothing special
duke@435 1402 else if ( ZapDeadCompiledLocalsLast < ZapDeadCompiledLocals_count ) skip = true;
duke@435 1403 else if ( ZapDeadCompiledLocalsLast == ZapDeadCompiledLocals_count )
duke@435 1404 warning("about to zap last zap");
duke@435 1405
duke@435 1406 ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
duke@435 1407
duke@435 1408 if ( skip ) return;
duke@435 1409
duke@435 1410 // find java frame and zap it
duke@435 1411
duke@435 1412 for (StackFrameStream sfs(thread); !sfs.is_done(); sfs.next()) {
duke@435 1413 if (is_this_the_right_frame_to_zap(sfs.current()) ) {
duke@435 1414 sfs.current()->zap_dead_locals(thread, sfs.register_map());
duke@435 1415 return;
duke@435 1416 }
duke@435 1417 }
duke@435 1418 warning("no frame found to zap in zap_dead_Java_locals_C");
duke@435 1419 }
duke@435 1420
duke@435 1421 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
duke@435 1422 zap_dead_java_or_native_locals(thread, is_java_frame);
duke@435 1423 JRT_END
duke@435 1424
duke@435 1425 // The following does not work because for one thing, the
duke@435 1426 // thread state is wrong; it expects java, but it is native.
twisti@1040 1427 // Also, the invariants in a native stub are different and
duke@435 1428 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
duke@435 1429 // in there.
duke@435 1430 // So for now, we do not zap in native stubs.
duke@435 1431
duke@435 1432 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
duke@435 1433 zap_dead_java_or_native_locals(thread, is_native_frame);
duke@435 1434 JRT_END
duke@435 1435
duke@435 1436 # endif

mercurial