src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Wed, 24 Apr 2013 20:13:37 +0200

author
stefank
date
Wed, 24 Apr 2013 20:13:37 +0200
changeset 5018
b06ac540229e
parent 5015
868d87ed63c8
child 5020
2f50bc369470
permissions
-rw-r--r--

8013132: Add a flag to turn off the output of the verbose verification code
Reviewed-by: johnc, brutisso

duke@435 1 /*
never@3499 2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/symbolTable.hpp"
stefank@2314 27 #include "classfile/systemDictionary.hpp"
stefank@2314 28 #include "code/codeCache.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
stefank@2314 30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
stefank@2314 31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
stefank@2314 32 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
stefank@2314 33 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
stefank@2314 34 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
stefank@2314 35 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
stefank@2314 36 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
stefank@2314 37 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
stefank@2314 38 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
stefank@2314 39 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
stefank@2314 40 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
stefank@2314 41 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
stefank@2314 42 #include "gc_implementation/shared/isGCActiveMark.hpp"
stefank@2314 43 #include "gc_interface/gcCause.hpp"
stefank@2314 44 #include "memory/gcLocker.inline.hpp"
stefank@2314 45 #include "memory/referencePolicy.hpp"
stefank@2314 46 #include "memory/referenceProcessor.hpp"
coleenp@4037 47 #include "oops/methodData.hpp"
stefank@2314 48 #include "oops/oop.inline.hpp"
stefank@2314 49 #include "oops/oop.pcgc.inline.hpp"
stefank@2314 50 #include "runtime/fprofiler.hpp"
stefank@2314 51 #include "runtime/safepoint.hpp"
stefank@2314 52 #include "runtime/vmThread.hpp"
stefank@2314 53 #include "services/management.hpp"
stefank@2314 54 #include "services/memoryService.hpp"
zgu@3900 55 #include "services/memTracker.hpp"
stefank@2314 56 #include "utilities/events.hpp"
stefank@2314 57 #include "utilities/stack.inline.hpp"
duke@435 58
duke@435 59 #include <math.h>
duke@435 60
duke@435 61 // All sizes are in HeapWords.
jcoomes@810 62 const size_t ParallelCompactData::Log2RegionSize = 9; // 512 words
jcoomes@810 63 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize;
jcoomes@810 64 const size_t ParallelCompactData::RegionSizeBytes =
jcoomes@810 65 RegionSize << LogHeapWordSize;
jcoomes@810 66 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
jcoomes@810 67 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
jcoomes@810 68 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask;
duke@435 69
jcoomes@810 70 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 71 ParallelCompactData::RegionData::dc_shift = 27;
jcoomes@810 72
jcoomes@810 73 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 74 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
jcoomes@810 75
jcoomes@810 76 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 77 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
jcoomes@810 78
jcoomes@810 79 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 80 ParallelCompactData::RegionData::los_mask = ~dc_mask;
jcoomes@810 81
jcoomes@810 82 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 83 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
jcoomes@810 84
jcoomes@810 85 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 86 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
duke@435 87
duke@435 88 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
duke@435 89 bool PSParallelCompact::_print_phases = false;
duke@435 90
duke@435 91 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
coleenp@4037 92 Klass* PSParallelCompact::_updated_int_array_klass_obj = NULL;
duke@435 93
duke@435 94 double PSParallelCompact::_dwl_mean;
duke@435 95 double PSParallelCompact::_dwl_std_dev;
duke@435 96 double PSParallelCompact::_dwl_first_term;
duke@435 97 double PSParallelCompact::_dwl_adjustment;
duke@435 98 #ifdef ASSERT
duke@435 99 bool PSParallelCompact::_dwl_initialized = false;
duke@435 100 #endif // #ifdef ASSERT
duke@435 101
jcoomes@917 102 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
jcoomes@917 103 HeapWord* destination)
jcoomes@917 104 {
jcoomes@917 105 assert(src_region_idx != 0, "invalid src_region_idx");
jcoomes@917 106 assert(partial_obj_size != 0, "invalid partial_obj_size argument");
jcoomes@917 107 assert(destination != NULL, "invalid destination argument");
jcoomes@917 108
jcoomes@917 109 _src_region_idx = src_region_idx;
jcoomes@917 110 _partial_obj_size = partial_obj_size;
jcoomes@917 111 _destination = destination;
jcoomes@917 112
jcoomes@917 113 // These fields may not be updated below, so make sure they're clear.
jcoomes@917 114 assert(_dest_region_addr == NULL, "should have been cleared");
jcoomes@917 115 assert(_first_src_addr == NULL, "should have been cleared");
jcoomes@917 116
jcoomes@917 117 // Determine the number of destination regions for the partial object.
jcoomes@917 118 HeapWord* const last_word = destination + partial_obj_size - 1;
jcoomes@917 119 const ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@917 120 HeapWord* const beg_region_addr = sd.region_align_down(destination);
jcoomes@917 121 HeapWord* const end_region_addr = sd.region_align_down(last_word);
jcoomes@917 122
jcoomes@917 123 if (beg_region_addr == end_region_addr) {
jcoomes@917 124 // One destination region.
jcoomes@917 125 _destination_count = 1;
jcoomes@917 126 if (end_region_addr == destination) {
jcoomes@917 127 // The destination falls on a region boundary, thus the first word of the
jcoomes@917 128 // partial object will be the first word copied to the destination region.
jcoomes@917 129 _dest_region_addr = end_region_addr;
jcoomes@917 130 _first_src_addr = sd.region_to_addr(src_region_idx);
jcoomes@917 131 }
jcoomes@917 132 } else {
jcoomes@917 133 // Two destination regions. When copied, the partial object will cross a
jcoomes@917 134 // destination region boundary, so a word somewhere within the partial
jcoomes@917 135 // object will be the first word copied to the second destination region.
jcoomes@917 136 _destination_count = 2;
jcoomes@917 137 _dest_region_addr = end_region_addr;
jcoomes@917 138 const size_t ofs = pointer_delta(end_region_addr, destination);
jcoomes@917 139 assert(ofs < _partial_obj_size, "sanity");
jcoomes@917 140 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
jcoomes@917 141 }
jcoomes@917 142 }
jcoomes@917 143
jcoomes@917 144 void SplitInfo::clear()
jcoomes@917 145 {
jcoomes@917 146 _src_region_idx = 0;
jcoomes@917 147 _partial_obj_size = 0;
jcoomes@917 148 _destination = NULL;
jcoomes@917 149 _destination_count = 0;
jcoomes@917 150 _dest_region_addr = NULL;
jcoomes@917 151 _first_src_addr = NULL;
jcoomes@917 152 assert(!is_valid(), "sanity");
jcoomes@917 153 }
jcoomes@917 154
jcoomes@917 155 #ifdef ASSERT
jcoomes@917 156 void SplitInfo::verify_clear()
jcoomes@917 157 {
jcoomes@917 158 assert(_src_region_idx == 0, "not clear");
jcoomes@917 159 assert(_partial_obj_size == 0, "not clear");
jcoomes@917 160 assert(_destination == NULL, "not clear");
jcoomes@917 161 assert(_destination_count == 0, "not clear");
jcoomes@917 162 assert(_dest_region_addr == NULL, "not clear");
jcoomes@917 163 assert(_first_src_addr == NULL, "not clear");
jcoomes@917 164 }
jcoomes@917 165 #endif // #ifdef ASSERT
jcoomes@917 166
jcoomes@917 167
stefank@4904 168 void PSParallelCompact::print_on_error(outputStream* st) {
stefank@4904 169 _mark_bitmap.print_on_error(st);
stefank@4904 170 }
stefank@4904 171
duke@435 172 #ifndef PRODUCT
duke@435 173 const char* PSParallelCompact::space_names[] = {
coleenp@4037 174 "old ", "eden", "from", "to "
duke@435 175 };
duke@435 176
jcoomes@810 177 void PSParallelCompact::print_region_ranges()
duke@435 178 {
duke@435 179 tty->print_cr("space bottom top end new_top");
duke@435 180 tty->print_cr("------ ---------- ---------- ---------- ----------");
duke@435 181
duke@435 182 for (unsigned int id = 0; id < last_space_id; ++id) {
duke@435 183 const MutableSpace* space = _space_info[id].space();
duke@435 184 tty->print_cr("%u %s "
jcoomes@699 185 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
jcoomes@699 186 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
duke@435 187 id, space_names[id],
jcoomes@810 188 summary_data().addr_to_region_idx(space->bottom()),
jcoomes@810 189 summary_data().addr_to_region_idx(space->top()),
jcoomes@810 190 summary_data().addr_to_region_idx(space->end()),
jcoomes@810 191 summary_data().addr_to_region_idx(_space_info[id].new_top()));
duke@435 192 }
duke@435 193 }
duke@435 194
duke@435 195 void
jcoomes@810 196 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
duke@435 197 {
jcoomes@810 198 #define REGION_IDX_FORMAT SIZE_FORMAT_W(7)
jcoomes@810 199 #define REGION_DATA_FORMAT SIZE_FORMAT_W(5)
duke@435 200
duke@435 201 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 202 size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
jcoomes@810 203 tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 204 REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 205 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
jcoomes@810 206 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
duke@435 207 i, c->data_location(), dci, c->destination(),
duke@435 208 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 209 c->data_size(), c->source_region(), c->destination_count());
jcoomes@810 210
jcoomes@810 211 #undef REGION_IDX_FORMAT
jcoomes@810 212 #undef REGION_DATA_FORMAT
duke@435 213 }
duke@435 214
duke@435 215 void
duke@435 216 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 217 HeapWord* const beg_addr,
duke@435 218 HeapWord* const end_addr)
duke@435 219 {
duke@435 220 size_t total_words = 0;
jcoomes@810 221 size_t i = summary_data.addr_to_region_idx(beg_addr);
jcoomes@810 222 const size_t last = summary_data.addr_to_region_idx(end_addr);
duke@435 223 HeapWord* pdest = 0;
duke@435 224
duke@435 225 while (i <= last) {
jcoomes@810 226 ParallelCompactData::RegionData* c = summary_data.region(i);
duke@435 227 if (c->data_size() != 0 || c->destination() != pdest) {
jcoomes@810 228 print_generic_summary_region(i, c);
duke@435 229 total_words += c->data_size();
duke@435 230 pdest = c->destination();
duke@435 231 }
duke@435 232 ++i;
duke@435 233 }
duke@435 234
duke@435 235 tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
duke@435 236 }
duke@435 237
duke@435 238 void
duke@435 239 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 240 SpaceInfo* space_info)
duke@435 241 {
duke@435 242 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
duke@435 243 const MutableSpace* space = space_info[id].space();
duke@435 244 print_generic_summary_data(summary_data, space->bottom(),
duke@435 245 MAX2(space->top(), space_info[id].new_top()));
duke@435 246 }
duke@435 247 }
duke@435 248
duke@435 249 void
jcoomes@810 250 print_initial_summary_region(size_t i,
jcoomes@810 251 const ParallelCompactData::RegionData* c,
jcoomes@810 252 bool newline = true)
duke@435 253 {
jcoomes@699 254 tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
jcoomes@699 255 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
jcoomes@699 256 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
duke@435 257 i, c->destination(),
duke@435 258 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 259 c->data_size(), c->source_region(), c->destination_count());
duke@435 260 if (newline) tty->cr();
duke@435 261 }
duke@435 262
duke@435 263 void
duke@435 264 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 265 const MutableSpace* space) {
duke@435 266 if (space->top() == space->bottom()) {
duke@435 267 return;
duke@435 268 }
duke@435 269
jcoomes@810 270 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 271 typedef ParallelCompactData::RegionData RegionData;
jcoomes@810 272 HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
jcoomes@810 273 const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
jcoomes@810 274 const RegionData* c = summary_data.region(end_region - 1);
duke@435 275 HeapWord* end_addr = c->destination() + c->data_size();
duke@435 276 const size_t live_in_space = pointer_delta(end_addr, space->bottom());
duke@435 277
jcoomes@810 278 // Print (and count) the full regions at the beginning of the space.
jcoomes@810 279 size_t full_region_count = 0;
jcoomes@810 280 size_t i = summary_data.addr_to_region_idx(space->bottom());
jcoomes@810 281 while (i < end_region && summary_data.region(i)->data_size() == region_size) {
jcoomes@810 282 print_initial_summary_region(i, summary_data.region(i));
jcoomes@810 283 ++full_region_count;
duke@435 284 ++i;
duke@435 285 }
duke@435 286
jcoomes@810 287 size_t live_to_right = live_in_space - full_region_count * region_size;
duke@435 288
duke@435 289 double max_reclaimed_ratio = 0.0;
jcoomes@810 290 size_t max_reclaimed_ratio_region = 0;
duke@435 291 size_t max_dead_to_right = 0;
duke@435 292 size_t max_live_to_right = 0;
duke@435 293
jcoomes@810 294 // Print the 'reclaimed ratio' for regions while there is something live in
jcoomes@810 295 // the region or to the right of it. The remaining regions are empty (and
duke@435 296 // uninteresting), and computing the ratio will result in division by 0.
jcoomes@810 297 while (i < end_region && live_to_right > 0) {
jcoomes@810 298 c = summary_data.region(i);
jcoomes@810 299 HeapWord* const region_addr = summary_data.region_to_addr(i);
jcoomes@810 300 const size_t used_to_right = pointer_delta(space->top(), region_addr);
duke@435 301 const size_t dead_to_right = used_to_right - live_to_right;
duke@435 302 const double reclaimed_ratio = double(dead_to_right) / live_to_right;
duke@435 303
duke@435 304 if (reclaimed_ratio > max_reclaimed_ratio) {
duke@435 305 max_reclaimed_ratio = reclaimed_ratio;
jcoomes@810 306 max_reclaimed_ratio_region = i;
duke@435 307 max_dead_to_right = dead_to_right;
duke@435 308 max_live_to_right = live_to_right;
duke@435 309 }
duke@435 310
jcoomes@810 311 print_initial_summary_region(i, c, false);
jcoomes@699 312 tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
duke@435 313 reclaimed_ratio, dead_to_right, live_to_right);
duke@435 314
duke@435 315 live_to_right -= c->data_size();
duke@435 316 ++i;
duke@435 317 }
duke@435 318
jcoomes@810 319 // Any remaining regions are empty. Print one more if there is one.
jcoomes@810 320 if (i < end_region) {
jcoomes@810 321 print_initial_summary_region(i, summary_data.region(i));
duke@435 322 }
duke@435 323
jcoomes@699 324 tty->print_cr("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
jcoomes@699 325 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
jcoomes@810 326 max_reclaimed_ratio_region, max_dead_to_right,
duke@435 327 max_live_to_right, max_reclaimed_ratio);
duke@435 328 }
duke@435 329
duke@435 330 void
duke@435 331 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 332 SpaceInfo* space_info) {
coleenp@4037 333 unsigned int id = PSParallelCompact::old_space_id;
duke@435 334 const MutableSpace* space;
duke@435 335 do {
duke@435 336 space = space_info[id].space();
duke@435 337 print_initial_summary_data(summary_data, space);
duke@435 338 } while (++id < PSParallelCompact::eden_space_id);
duke@435 339
duke@435 340 do {
duke@435 341 space = space_info[id].space();
duke@435 342 print_generic_summary_data(summary_data, space->bottom(), space->top());
duke@435 343 } while (++id < PSParallelCompact::last_space_id);
duke@435 344 }
duke@435 345 #endif // #ifndef PRODUCT
duke@435 346
duke@435 347 #ifdef ASSERT
duke@435 348 size_t add_obj_count;
duke@435 349 size_t add_obj_size;
duke@435 350 size_t mark_bitmap_count;
duke@435 351 size_t mark_bitmap_size;
duke@435 352 #endif // #ifdef ASSERT
duke@435 353
duke@435 354 ParallelCompactData::ParallelCompactData()
duke@435 355 {
duke@435 356 _region_start = 0;
duke@435 357
jcoomes@810 358 _region_vspace = 0;
jcoomes@810 359 _region_data = 0;
jcoomes@810 360 _region_count = 0;
duke@435 361 }
duke@435 362
duke@435 363 bool ParallelCompactData::initialize(MemRegion covered_region)
duke@435 364 {
duke@435 365 _region_start = covered_region.start();
duke@435 366 const size_t region_size = covered_region.word_size();
duke@435 367 DEBUG_ONLY(_region_end = _region_start + region_size;)
duke@435 368
jcoomes@810 369 assert(region_align_down(_region_start) == _region_start,
duke@435 370 "region start not aligned");
jcoomes@810 371 assert((region_size & RegionSizeOffsetMask) == 0,
jcoomes@810 372 "region size not a multiple of RegionSize");
jcoomes@810 373
jcoomes@810 374 bool result = initialize_region_data(region_size);
duke@435 375
duke@435 376 return result;
duke@435 377 }
duke@435 378
duke@435 379 PSVirtualSpace*
duke@435 380 ParallelCompactData::create_vspace(size_t count, size_t element_size)
duke@435 381 {
duke@435 382 const size_t raw_bytes = count * element_size;
duke@435 383 const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
duke@435 384 const size_t granularity = os::vm_allocation_granularity();
duke@435 385 const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
duke@435 386
duke@435 387 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
duke@435 388 MAX2(page_sz, granularity);
jcoomes@514 389 ReservedSpace rs(bytes, rs_align, rs_align > 0);
duke@435 390 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
duke@435 391 rs.size());
zgu@3900 392
zgu@3900 393 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
zgu@3900 394
duke@435 395 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
duke@435 396 if (vspace != 0) {
duke@435 397 if (vspace->expand_by(bytes)) {
duke@435 398 return vspace;
duke@435 399 }
duke@435 400 delete vspace;
coleenp@672 401 // Release memory reserved in the space.
coleenp@672 402 rs.release();
duke@435 403 }
duke@435 404
duke@435 405 return 0;
duke@435 406 }
duke@435 407
jcoomes@810 408 bool ParallelCompactData::initialize_region_data(size_t region_size)
duke@435 409 {
jcoomes@810 410 const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
jcoomes@810 411 _region_vspace = create_vspace(count, sizeof(RegionData));
jcoomes@810 412 if (_region_vspace != 0) {
jcoomes@810 413 _region_data = (RegionData*)_region_vspace->reserved_low_addr();
jcoomes@810 414 _region_count = count;
duke@435 415 return true;
duke@435 416 }
duke@435 417 return false;
duke@435 418 }
duke@435 419
duke@435 420 void ParallelCompactData::clear()
duke@435 421 {
jcoomes@810 422 memset(_region_data, 0, _region_vspace->committed_size());
duke@435 423 }
duke@435 424
jcoomes@810 425 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
jcoomes@810 426 assert(beg_region <= _region_count, "beg_region out of range");
jcoomes@810 427 assert(end_region <= _region_count, "end_region out of range");
jcoomes@810 428
jcoomes@810 429 const size_t region_cnt = end_region - beg_region;
jcoomes@810 430 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
duke@435 431 }
duke@435 432
jcoomes@810 433 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
duke@435 434 {
jcoomes@810 435 const RegionData* cur_cp = region(region_idx);
jcoomes@810 436 const RegionData* const end_cp = region(region_count() - 1);
jcoomes@810 437
jcoomes@810 438 HeapWord* result = region_to_addr(region_idx);
duke@435 439 if (cur_cp < end_cp) {
duke@435 440 do {
duke@435 441 result += cur_cp->partial_obj_size();
jcoomes@810 442 } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
duke@435 443 }
duke@435 444 return result;
duke@435 445 }
duke@435 446
duke@435 447 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
duke@435 448 {
duke@435 449 const size_t obj_ofs = pointer_delta(addr, _region_start);
jcoomes@810 450 const size_t beg_region = obj_ofs >> Log2RegionSize;
jcoomes@810 451 const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
duke@435 452
duke@435 453 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
duke@435 454 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
duke@435 455
jcoomes@810 456 if (beg_region == end_region) {
jcoomes@810 457 // All in one region.
jcoomes@810 458 _region_data[beg_region].add_live_obj(len);
duke@435 459 return;
duke@435 460 }
duke@435 461
jcoomes@810 462 // First region.
jcoomes@810 463 const size_t beg_ofs = region_offset(addr);
jcoomes@810 464 _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
duke@435 465
coleenp@4037 466 Klass* klass = ((oop)addr)->klass();
jcoomes@810 467 // Middle regions--completely spanned by this object.
jcoomes@810 468 for (size_t region = beg_region + 1; region < end_region; ++region) {
jcoomes@810 469 _region_data[region].set_partial_obj_size(RegionSize);
jcoomes@810 470 _region_data[region].set_partial_obj_addr(addr);
duke@435 471 }
duke@435 472
jcoomes@810 473 // Last region.
jcoomes@810 474 const size_t end_ofs = region_offset(addr + len - 1);
jcoomes@810 475 _region_data[end_region].set_partial_obj_size(end_ofs + 1);
jcoomes@810 476 _region_data[end_region].set_partial_obj_addr(addr);
duke@435 477 }
duke@435 478
duke@435 479 void
duke@435 480 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
duke@435 481 {
jcoomes@810 482 assert(region_offset(beg) == 0, "not RegionSize aligned");
jcoomes@810 483 assert(region_offset(end) == 0, "not RegionSize aligned");
jcoomes@810 484
jcoomes@810 485 size_t cur_region = addr_to_region_idx(beg);
jcoomes@810 486 const size_t end_region = addr_to_region_idx(end);
duke@435 487 HeapWord* addr = beg;
jcoomes@810 488 while (cur_region < end_region) {
jcoomes@810 489 _region_data[cur_region].set_destination(addr);
jcoomes@810 490 _region_data[cur_region].set_destination_count(0);
jcoomes@810 491 _region_data[cur_region].set_source_region(cur_region);
jcoomes@810 492 _region_data[cur_region].set_data_location(addr);
jcoomes@810 493
jcoomes@810 494 // Update live_obj_size so the region appears completely full.
jcoomes@810 495 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
jcoomes@810 496 _region_data[cur_region].set_live_obj_size(live_size);
jcoomes@810 497
jcoomes@810 498 ++cur_region;
jcoomes@810 499 addr += RegionSize;
duke@435 500 }
duke@435 501 }
duke@435 502
jcoomes@917 503 // Find the point at which a space can be split and, if necessary, record the
jcoomes@917 504 // split point.
jcoomes@917 505 //
jcoomes@917 506 // If the current src region (which overflowed the destination space) doesn't
jcoomes@917 507 // have a partial object, the split point is at the beginning of the current src
jcoomes@917 508 // region (an "easy" split, no extra bookkeeping required).
jcoomes@917 509 //
jcoomes@917 510 // If the current src region has a partial object, the split point is in the
jcoomes@917 511 // region where that partial object starts (call it the split_region). If
jcoomes@917 512 // split_region has a partial object, then the split point is just after that
jcoomes@917 513 // partial object (a "hard" split where we have to record the split data and
jcoomes@917 514 // zero the partial_obj_size field). With a "hard" split, we know that the
jcoomes@917 515 // partial_obj ends within split_region because the partial object that caused
jcoomes@917 516 // the overflow starts in split_region. If split_region doesn't have a partial
jcoomes@917 517 // obj, then the split is at the beginning of split_region (another "easy"
jcoomes@917 518 // split).
jcoomes@917 519 HeapWord*
jcoomes@917 520 ParallelCompactData::summarize_split_space(size_t src_region,
jcoomes@917 521 SplitInfo& split_info,
jcoomes@917 522 HeapWord* destination,
jcoomes@917 523 HeapWord* target_end,
jcoomes@917 524 HeapWord** target_next)
jcoomes@917 525 {
jcoomes@917 526 assert(destination <= target_end, "sanity");
jcoomes@917 527 assert(destination + _region_data[src_region].data_size() > target_end,
jcoomes@917 528 "region should not fit into target space");
jcoomes@1131 529 assert(is_region_aligned(target_end), "sanity");
jcoomes@917 530
jcoomes@917 531 size_t split_region = src_region;
jcoomes@917 532 HeapWord* split_destination = destination;
jcoomes@917 533 size_t partial_obj_size = _region_data[src_region].partial_obj_size();
jcoomes@917 534
jcoomes@917 535 if (destination + partial_obj_size > target_end) {
jcoomes@917 536 // The split point is just after the partial object (if any) in the
jcoomes@917 537 // src_region that contains the start of the object that overflowed the
jcoomes@917 538 // destination space.
jcoomes@917 539 //
jcoomes@917 540 // Find the start of the "overflow" object and set split_region to the
jcoomes@917 541 // region containing it.
jcoomes@917 542 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
jcoomes@917 543 split_region = addr_to_region_idx(overflow_obj);
jcoomes@917 544
jcoomes@917 545 // Clear the source_region field of all destination regions whose first word
jcoomes@917 546 // came from data after the split point (a non-null source_region field
jcoomes@917 547 // implies a region must be filled).
jcoomes@917 548 //
jcoomes@917 549 // An alternative to the simple loop below: clear during post_compact(),
jcoomes@917 550 // which uses memcpy instead of individual stores, and is easy to
jcoomes@917 551 // parallelize. (The downside is that it clears the entire RegionData
jcoomes@917 552 // object as opposed to just one field.)
jcoomes@917 553 //
jcoomes@917 554 // post_compact() would have to clear the summary data up to the highest
jcoomes@917 555 // address that was written during the summary phase, which would be
jcoomes@917 556 //
jcoomes@917 557 // max(top, max(new_top, clear_top))
jcoomes@917 558 //
jcoomes@917 559 // where clear_top is a new field in SpaceInfo. Would have to set clear_top
jcoomes@1131 560 // to target_end.
jcoomes@917 561 const RegionData* const sr = region(split_region);
jcoomes@917 562 const size_t beg_idx =
jcoomes@917 563 addr_to_region_idx(region_align_up(sr->destination() +
jcoomes@917 564 sr->partial_obj_size()));
jcoomes@1131 565 const size_t end_idx = addr_to_region_idx(target_end);
jcoomes@917 566
jcoomes@917 567 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 568 gclog_or_tty->print_cr("split: clearing source_region field in ["
jcoomes@917 569 SIZE_FORMAT ", " SIZE_FORMAT ")",
jcoomes@917 570 beg_idx, end_idx);
jcoomes@917 571 }
jcoomes@917 572 for (size_t idx = beg_idx; idx < end_idx; ++idx) {
jcoomes@917 573 _region_data[idx].set_source_region(0);
jcoomes@917 574 }
jcoomes@917 575
jcoomes@917 576 // Set split_destination and partial_obj_size to reflect the split region.
jcoomes@917 577 split_destination = sr->destination();
jcoomes@917 578 partial_obj_size = sr->partial_obj_size();
jcoomes@917 579 }
jcoomes@917 580
jcoomes@917 581 // The split is recorded only if a partial object extends onto the region.
jcoomes@917 582 if (partial_obj_size != 0) {
jcoomes@917 583 _region_data[split_region].set_partial_obj_size(0);
jcoomes@917 584 split_info.record(split_region, partial_obj_size, split_destination);
jcoomes@917 585 }
jcoomes@917 586
jcoomes@917 587 // Setup the continuation addresses.
jcoomes@917 588 *target_next = split_destination + partial_obj_size;
jcoomes@917 589 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
jcoomes@917 590
jcoomes@917 591 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 592 const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
jcoomes@917 593 gclog_or_tty->print_cr("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT
jcoomes@917 594 " pos=" SIZE_FORMAT,
jcoomes@917 595 split_type, source_next, split_region,
jcoomes@917 596 partial_obj_size);
jcoomes@917 597 gclog_or_tty->print_cr("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
jcoomes@917 598 " tn=" PTR_FORMAT,
jcoomes@917 599 split_type, split_destination,
jcoomes@917 600 addr_to_region_idx(split_destination),
jcoomes@917 601 *target_next);
jcoomes@917 602
jcoomes@917 603 if (partial_obj_size != 0) {
jcoomes@917 604 HeapWord* const po_beg = split_info.destination();
jcoomes@917 605 HeapWord* const po_end = po_beg + split_info.partial_obj_size();
jcoomes@917 606 gclog_or_tty->print_cr("%s split: "
jcoomes@917 607 "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
jcoomes@917 608 "po_end=" PTR_FORMAT " " SIZE_FORMAT,
jcoomes@917 609 split_type,
jcoomes@917 610 po_beg, addr_to_region_idx(po_beg),
jcoomes@917 611 po_end, addr_to_region_idx(po_end));
jcoomes@917 612 }
jcoomes@917 613 }
jcoomes@917 614
jcoomes@917 615 return source_next;
jcoomes@917 616 }
jcoomes@917 617
jcoomes@917 618 bool ParallelCompactData::summarize(SplitInfo& split_info,
duke@435 619 HeapWord* source_beg, HeapWord* source_end,
jcoomes@917 620 HeapWord** source_next,
jcoomes@917 621 HeapWord* target_beg, HeapWord* target_end,
jcoomes@917 622 HeapWord** target_next)
jcoomes@917 623 {
duke@435 624 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 625 HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
jcoomes@917 626 tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
jcoomes@917 627 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
jcoomes@917 628 source_beg, source_end, source_next_val,
jcoomes@917 629 target_beg, target_end, *target_next);
duke@435 630 }
duke@435 631
jcoomes@810 632 size_t cur_region = addr_to_region_idx(source_beg);
jcoomes@810 633 const size_t end_region = addr_to_region_idx(region_align_up(source_end));
duke@435 634
duke@435 635 HeapWord *dest_addr = target_beg;
jcoomes@810 636 while (cur_region < end_region) {
jcoomes@917 637 // The destination must be set even if the region has no data.
jcoomes@917 638 _region_data[cur_region].set_destination(dest_addr);
jcoomes@917 639
jcoomes@810 640 size_t words = _region_data[cur_region].data_size();
duke@435 641 if (words > 0) {
jcoomes@917 642 // If cur_region does not fit entirely into the target space, find a point
jcoomes@917 643 // at which the source space can be 'split' so that part is copied to the
jcoomes@917 644 // target space and the rest is copied elsewhere.
jcoomes@917 645 if (dest_addr + words > target_end) {
jcoomes@917 646 assert(source_next != NULL, "source_next is NULL when splitting");
jcoomes@917 647 *source_next = summarize_split_space(cur_region, split_info, dest_addr,
jcoomes@917 648 target_end, target_next);
jcoomes@917 649 return false;
jcoomes@917 650 }
jcoomes@917 651
jcoomes@917 652 // Compute the destination_count for cur_region, and if necessary, update
jcoomes@917 653 // source_region for a destination region. The source_region field is
jcoomes@917 654 // updated if cur_region is the first (left-most) region to be copied to a
jcoomes@917 655 // destination region.
jcoomes@917 656 //
jcoomes@917 657 // The destination_count calculation is a bit subtle. A region that has
jcoomes@917 658 // data that compacts into itself does not count itself as a destination.
jcoomes@917 659 // This maintains the invariant that a zero count means the region is
jcoomes@917 660 // available and can be claimed and then filled.
jcoomes@917 661 uint destination_count = 0;
jcoomes@917 662 if (split_info.is_split(cur_region)) {
jcoomes@917 663 // The current region has been split: the partial object will be copied
jcoomes@917 664 // to one destination space and the remaining data will be copied to
jcoomes@917 665 // another destination space. Adjust the initial destination_count and,
jcoomes@917 666 // if necessary, set the source_region field if the partial object will
jcoomes@917 667 // cross a destination region boundary.
jcoomes@917 668 destination_count = split_info.destination_count();
jcoomes@917 669 if (destination_count == 2) {
jcoomes@917 670 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
jcoomes@917 671 _region_data[dest_idx].set_source_region(cur_region);
jcoomes@917 672 }
jcoomes@917 673 }
jcoomes@917 674
duke@435 675 HeapWord* const last_addr = dest_addr + words - 1;
jcoomes@810 676 const size_t dest_region_1 = addr_to_region_idx(dest_addr);
jcoomes@810 677 const size_t dest_region_2 = addr_to_region_idx(last_addr);
jcoomes@917 678
jcoomes@810 679 // Initially assume that the destination regions will be the same and
duke@435 680 // adjust the value below if necessary. Under this assumption, if
jcoomes@810 681 // cur_region == dest_region_2, then cur_region will be compacted
jcoomes@810 682 // completely into itself.
jcoomes@917 683 destination_count += cur_region == dest_region_2 ? 0 : 1;
jcoomes@810 684 if (dest_region_1 != dest_region_2) {
jcoomes@810 685 // Destination regions differ; adjust destination_count.
duke@435 686 destination_count += 1;
jcoomes@810 687 // Data from cur_region will be copied to the start of dest_region_2.
jcoomes@810 688 _region_data[dest_region_2].set_source_region(cur_region);
jcoomes@810 689 } else if (region_offset(dest_addr) == 0) {
jcoomes@810 690 // Data from cur_region will be copied to the start of the destination
jcoomes@810 691 // region.
jcoomes@810 692 _region_data[dest_region_1].set_source_region(cur_region);
duke@435 693 }
duke@435 694
jcoomes@810 695 _region_data[cur_region].set_destination_count(destination_count);
jcoomes@810 696 _region_data[cur_region].set_data_location(region_to_addr(cur_region));
duke@435 697 dest_addr += words;
duke@435 698 }
duke@435 699
jcoomes@810 700 ++cur_region;
duke@435 701 }
duke@435 702
duke@435 703 *target_next = dest_addr;
duke@435 704 return true;
duke@435 705 }
duke@435 706
duke@435 707 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
duke@435 708 assert(addr != NULL, "Should detect NULL oop earlier");
duke@435 709 assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
duke@435 710 #ifdef ASSERT
duke@435 711 if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
duke@435 712 gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
duke@435 713 }
duke@435 714 #endif
duke@435 715 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
duke@435 716
jcoomes@810 717 // Region covering the object.
jcoomes@810 718 size_t region_index = addr_to_region_idx(addr);
jcoomes@810 719 const RegionData* const region_ptr = region(region_index);
jcoomes@810 720 HeapWord* const region_addr = region_align_down(addr);
jcoomes@810 721
jcoomes@810 722 assert(addr < region_addr + RegionSize, "Region does not cover object");
jcoomes@810 723 assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
jcoomes@810 724
jcoomes@810 725 HeapWord* result = region_ptr->destination();
jcoomes@810 726
jcoomes@810 727 // If all the data in the region is live, then the new location of the object
jcoomes@810 728 // can be calculated from the destination of the region plus the offset of the
jcoomes@810 729 // object in the region.
jcoomes@810 730 if (region_ptr->data_size() == RegionSize) {
jcoomes@810 731 result += pointer_delta(addr, region_addr);
kvn@1926 732 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
duke@435 733 return result;
duke@435 734 }
duke@435 735
duke@435 736 // The new location of the object is
jcoomes@810 737 // region destination +
jcoomes@810 738 // size of the partial object extending onto the region +
jcoomes@810 739 // sizes of the live objects in the Region that are to the left of addr
jcoomes@810 740 const size_t partial_obj_size = region_ptr->partial_obj_size();
jcoomes@810 741 HeapWord* const search_start = region_addr + partial_obj_size;
duke@435 742
duke@435 743 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
duke@435 744 size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
duke@435 745
duke@435 746 result += partial_obj_size + live_to_left;
jcoomes@930 747 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
duke@435 748 return result;
duke@435 749 }
duke@435 750
duke@435 751 #ifdef ASSERT
duke@435 752 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
duke@435 753 {
duke@435 754 const size_t* const beg = (const size_t*)vspace->committed_low_addr();
duke@435 755 const size_t* const end = (const size_t*)vspace->committed_high_addr();
duke@435 756 for (const size_t* p = beg; p < end; ++p) {
duke@435 757 assert(*p == 0, "not zero");
duke@435 758 }
duke@435 759 }
duke@435 760
duke@435 761 void ParallelCompactData::verify_clear()
duke@435 762 {
jcoomes@810 763 verify_clear(_region_vspace);
duke@435 764 }
duke@435 765 #endif // #ifdef ASSERT
duke@435 766
duke@435 767 #ifdef NOT_PRODUCT
jcoomes@810 768 ParallelCompactData::RegionData* debug_region(size_t region_index) {
duke@435 769 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 770 return sd.region(region_index);
duke@435 771 }
duke@435 772 #endif
duke@435 773
duke@435 774 elapsedTimer PSParallelCompact::_accumulated_time;
duke@435 775 unsigned int PSParallelCompact::_total_invocations = 0;
duke@435 776 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0;
duke@435 777 jlong PSParallelCompact::_time_of_last_gc = 0;
duke@435 778 CollectorCounters* PSParallelCompact::_counters = NULL;
duke@435 779 ParMarkBitMap PSParallelCompact::_mark_bitmap;
duke@435 780 ParallelCompactData PSParallelCompact::_summary_data;
duke@435 781
duke@435 782 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
coleenp@548 783
coleenp@548 784 void PSParallelCompact::IsAliveClosure::do_object(oop p) { ShouldNotReachHere(); }
coleenp@548 785 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
coleenp@548 786
coleenp@548 787 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 788 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 789
stefank@5011 790 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
coleenp@4037 791 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
duke@435 792
stefank@5011 793 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p); }
stefank@5011 794 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p); }
coleenp@548 795
jcoomes@1746 796 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
coleenp@548 797
coleenp@4037 798 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) {
coleenp@4037 799 mark_and_push(_compaction_manager, p);
coleenp@4037 800 }
coleenp@548 801 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
duke@435 802
coleenp@4037 803 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
coleenp@4037 804 klass->oops_do(_mark_and_push_closure);
coleenp@4037 805 }
coleenp@4037 806 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
stefank@5011 807 klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
coleenp@4037 808 }
coleenp@4037 809
duke@435 810 void PSParallelCompact::post_initialize() {
duke@435 811 ParallelScavengeHeap* heap = gc_heap();
duke@435 812 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 813
duke@435 814 MemRegion mr = heap->reserved_region();
ysr@2651 815 _ref_processor =
ysr@2651 816 new ReferenceProcessor(mr, // span
ysr@2651 817 ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
ysr@2651 818 (int) ParallelGCThreads, // mt processing degree
ysr@2651 819 true, // mt discovery
ysr@2651 820 (int) ParallelGCThreads, // mt discovery degree
ysr@2651 821 true, // atomic_discovery
ysr@2651 822 &_is_alive_closure, // non-header is alive closure
ysr@2651 823 false); // write barrier for next field updates
duke@435 824 _counters = new CollectorCounters("PSParallelCompact", 1);
duke@435 825
duke@435 826 // Initialize static fields in ParCompactionManager.
duke@435 827 ParCompactionManager::initialize(mark_bitmap());
duke@435 828 }
duke@435 829
duke@435 830 bool PSParallelCompact::initialize() {
duke@435 831 ParallelScavengeHeap* heap = gc_heap();
duke@435 832 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 833 MemRegion mr = heap->reserved_region();
duke@435 834
duke@435 835 // Was the old gen get allocated successfully?
duke@435 836 if (!heap->old_gen()->is_allocated()) {
duke@435 837 return false;
duke@435 838 }
duke@435 839
duke@435 840 initialize_space_info();
duke@435 841 initialize_dead_wood_limiter();
duke@435 842
duke@435 843 if (!_mark_bitmap.initialize(mr)) {
duke@435 844 vm_shutdown_during_initialization("Unable to allocate bit map for "
duke@435 845 "parallel garbage collection for the requested heap size.");
duke@435 846 return false;
duke@435 847 }
duke@435 848
duke@435 849 if (!_summary_data.initialize(mr)) {
duke@435 850 vm_shutdown_during_initialization("Unable to allocate tables for "
duke@435 851 "parallel garbage collection for the requested heap size.");
duke@435 852 return false;
duke@435 853 }
duke@435 854
duke@435 855 return true;
duke@435 856 }
duke@435 857
duke@435 858 void PSParallelCompact::initialize_space_info()
duke@435 859 {
duke@435 860 memset(&_space_info, 0, sizeof(_space_info));
duke@435 861
duke@435 862 ParallelScavengeHeap* heap = gc_heap();
duke@435 863 PSYoungGen* young_gen = heap->young_gen();
coleenp@4037 864
duke@435 865 _space_info[old_space_id].set_space(heap->old_gen()->object_space());
duke@435 866 _space_info[eden_space_id].set_space(young_gen->eden_space());
duke@435 867 _space_info[from_space_id].set_space(young_gen->from_space());
duke@435 868 _space_info[to_space_id].set_space(young_gen->to_space());
duke@435 869
duke@435 870 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
duke@435 871 }
duke@435 872
duke@435 873 void PSParallelCompact::initialize_dead_wood_limiter()
duke@435 874 {
duke@435 875 const size_t max = 100;
duke@435 876 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
duke@435 877 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
duke@435 878 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
duke@435 879 DEBUG_ONLY(_dwl_initialized = true;)
duke@435 880 _dwl_adjustment = normal_distribution(1.0);
duke@435 881 }
duke@435 882
duke@435 883 // Simple class for storing info about the heap at the start of GC, to be used
duke@435 884 // after GC for comparison/printing.
duke@435 885 class PreGCValues {
duke@435 886 public:
duke@435 887 PreGCValues() { }
duke@435 888 PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
duke@435 889
duke@435 890 void fill(ParallelScavengeHeap* heap) {
duke@435 891 _heap_used = heap->used();
duke@435 892 _young_gen_used = heap->young_gen()->used_in_bytes();
duke@435 893 _old_gen_used = heap->old_gen()->used_in_bytes();
jmasa@5015 894 _metadata_used = MetaspaceAux::allocated_used_bytes();
duke@435 895 };
duke@435 896
duke@435 897 size_t heap_used() const { return _heap_used; }
duke@435 898 size_t young_gen_used() const { return _young_gen_used; }
duke@435 899 size_t old_gen_used() const { return _old_gen_used; }
coleenp@4037 900 size_t metadata_used() const { return _metadata_used; }
duke@435 901
duke@435 902 private:
duke@435 903 size_t _heap_used;
duke@435 904 size_t _young_gen_used;
duke@435 905 size_t _old_gen_used;
coleenp@4037 906 size_t _metadata_used;
duke@435 907 };
duke@435 908
duke@435 909 void
duke@435 910 PSParallelCompact::clear_data_covering_space(SpaceId id)
duke@435 911 {
duke@435 912 // At this point, top is the value before GC, new_top() is the value that will
duke@435 913 // be set at the end of GC. The marking bitmap is cleared to top; nothing
duke@435 914 // should be marked above top. The summary data is cleared to the larger of
duke@435 915 // top & new_top.
duke@435 916 MutableSpace* const space = _space_info[id].space();
duke@435 917 HeapWord* const bot = space->bottom();
duke@435 918 HeapWord* const top = space->top();
duke@435 919 HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
duke@435 920
duke@435 921 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
duke@435 922 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
duke@435 923 _mark_bitmap.clear_range(beg_bit, end_bit);
duke@435 924
jcoomes@810 925 const size_t beg_region = _summary_data.addr_to_region_idx(bot);
jcoomes@810 926 const size_t end_region =
jcoomes@810 927 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
jcoomes@810 928 _summary_data.clear_range(beg_region, end_region);
jcoomes@917 929
jcoomes@917 930 // Clear the data used to 'split' regions.
jcoomes@917 931 SplitInfo& split_info = _space_info[id].split_info();
jcoomes@917 932 if (split_info.is_valid()) {
jcoomes@917 933 split_info.clear();
jcoomes@917 934 }
jcoomes@917 935 DEBUG_ONLY(split_info.verify_clear();)
duke@435 936 }
duke@435 937
duke@435 938 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
duke@435 939 {
duke@435 940 // Update the from & to space pointers in space_info, since they are swapped
duke@435 941 // at each young gen gc. Do the update unconditionally (even though a
duke@435 942 // promotion failure does not swap spaces) because an unknown number of minor
duke@435 943 // collections will have swapped the spaces an unknown number of times.
duke@435 944 TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
duke@435 945 ParallelScavengeHeap* heap = gc_heap();
duke@435 946 _space_info[from_space_id].set_space(heap->young_gen()->from_space());
duke@435 947 _space_info[to_space_id].set_space(heap->young_gen()->to_space());
duke@435 948
duke@435 949 pre_gc_values->fill(heap);
duke@435 950
duke@435 951 NOT_PRODUCT(_mark_bitmap.reset_counters());
duke@435 952 DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
duke@435 953 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
duke@435 954
duke@435 955 // Increment the invocation count
apetrusenko@574 956 heap->increment_total_collections(true);
duke@435 957
duke@435 958 // We need to track unique mark sweep invocations as well.
duke@435 959 _total_invocations++;
duke@435 960
never@3499 961 heap->print_heap_before_gc();
duke@435 962
duke@435 963 // Fill in TLABs
duke@435 964 heap->accumulate_statistics_all_tlabs();
duke@435 965 heap->ensure_parsability(true); // retire TLABs
duke@435 966
duke@435 967 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 968 HandleMark hm; // Discard invalid handles created during verification
stefank@5018 969 Universe::verify(" VerifyBeforeGC:");
duke@435 970 }
duke@435 971
duke@435 972 // Verify object start arrays
duke@435 973 if (VerifyObjectStartArray &&
duke@435 974 VerifyBeforeGC) {
duke@435 975 heap->old_gen()->verify_object_start_array();
duke@435 976 }
duke@435 977
duke@435 978 DEBUG_ONLY(mark_bitmap()->verify_clear();)
duke@435 979 DEBUG_ONLY(summary_data().verify_clear();)
jcoomes@645 980
jcoomes@645 981 // Have worker threads release resources the next time they run a task.
jcoomes@645 982 gc_task_manager()->release_all_resources();
duke@435 983 }
duke@435 984
duke@435 985 void PSParallelCompact::post_compact()
duke@435 986 {
duke@435 987 TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
duke@435 988
coleenp@4037 989 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
jcoomes@917 990 // Clear the marking bitmap, summary data and split info.
duke@435 991 clear_data_covering_space(SpaceId(id));
jcoomes@917 992 // Update top(). Must be done after clearing the bitmap and summary data.
jcoomes@917 993 _space_info[id].publish_new_top();
duke@435 994 }
duke@435 995
duke@435 996 MutableSpace* const eden_space = _space_info[eden_space_id].space();
duke@435 997 MutableSpace* const from_space = _space_info[from_space_id].space();
duke@435 998 MutableSpace* const to_space = _space_info[to_space_id].space();
duke@435 999
duke@435 1000 ParallelScavengeHeap* heap = gc_heap();
duke@435 1001 bool eden_empty = eden_space->is_empty();
duke@435 1002 if (!eden_empty) {
duke@435 1003 eden_empty = absorb_live_data_from_eden(heap->size_policy(),
duke@435 1004 heap->young_gen(), heap->old_gen());
duke@435 1005 }
duke@435 1006
duke@435 1007 // Update heap occupancy information which is used as input to the soft ref
duke@435 1008 // clearing policy at the next gc.
duke@435 1009 Universe::update_heap_info_at_gc();
duke@435 1010
duke@435 1011 bool young_gen_empty = eden_empty && from_space->is_empty() &&
duke@435 1012 to_space->is_empty();
duke@435 1013
duke@435 1014 BarrierSet* bs = heap->barrier_set();
duke@435 1015 if (bs->is_a(BarrierSet::ModRef)) {
duke@435 1016 ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
duke@435 1017 MemRegion old_mr = heap->old_gen()->reserved();
duke@435 1018
duke@435 1019 if (young_gen_empty) {
coleenp@4037 1020 modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
duke@435 1021 } else {
coleenp@4037 1022 modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
duke@435 1023 }
duke@435 1024 }
duke@435 1025
coleenp@4037 1026 // Delete metaspaces for unloaded class loaders and clean up loader_data graph
coleenp@4037 1027 ClassLoaderDataGraph::purge();
jmasa@5015 1028 MetaspaceAux::verify_metrics();
coleenp@4037 1029
duke@435 1030 Threads::gc_epilogue();
duke@435 1031 CodeCache::gc_epilogue();
kamg@2467 1032 JvmtiExport::gc_epilogue();
duke@435 1033
duke@435 1034 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
duke@435 1035
duke@435 1036 ref_processor()->enqueue_discovered_references(NULL);
duke@435 1037
jmasa@698 1038 if (ZapUnusedHeapArea) {
jmasa@698 1039 heap->gen_mangle_unused_area();
jmasa@698 1040 }
jmasa@698 1041
duke@435 1042 // Update time of last GC
duke@435 1043 reset_millis_since_last_gc();
duke@435 1044 }
duke@435 1045
duke@435 1046 HeapWord*
duke@435 1047 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
duke@435 1048 bool maximum_compaction)
duke@435 1049 {
jcoomes@810 1050 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1051 const ParallelCompactData& sd = summary_data();
duke@435 1052
duke@435 1053 const MutableSpace* const space = _space_info[id].space();
jcoomes@810 1054 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 1055 const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
jcoomes@810 1056 const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1057
jcoomes@810 1058 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1059 // of the dense prefix.
duke@435 1060 size_t full_count = 0;
jcoomes@810 1061 const RegionData* cp;
jcoomes@810 1062 for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
duke@435 1063 ++full_count;
duke@435 1064 }
duke@435 1065
duke@435 1066 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1067 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1068 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
duke@435 1069 if (maximum_compaction || cp == end_cp || interval_ended) {
duke@435 1070 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1071 return sd.region_to_addr(cp);
duke@435 1072 }
duke@435 1073
duke@435 1074 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1075 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1076 const size_t space_used = space->used_in_words();
duke@435 1077 const size_t space_capacity = space->capacity_in_words();
duke@435 1078
duke@435 1079 const double cur_density = double(space_live) / space_capacity;
duke@435 1080 const double deadwood_density =
duke@435 1081 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
duke@435 1082 const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
duke@435 1083
duke@435 1084 if (TraceParallelOldGCDensePrefix) {
duke@435 1085 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
duke@435 1086 cur_density, deadwood_density, deadwood_goal);
duke@435 1087 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1088 "space_cap=" SIZE_FORMAT,
duke@435 1089 space_live, space_used,
duke@435 1090 space_capacity);
duke@435 1091 }
duke@435 1092
duke@435 1093 // XXX - Use binary search?
jcoomes@810 1094 HeapWord* dense_prefix = sd.region_to_addr(cp);
jcoomes@810 1095 const RegionData* full_cp = cp;
jcoomes@810 1096 const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
duke@435 1097 while (cp < end_cp) {
jcoomes@810 1098 HeapWord* region_destination = cp->destination();
jcoomes@810 1099 const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
duke@435 1100 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1101 tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
jcoomes@699 1102 "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
jcoomes@810 1103 sd.region(cp), region_destination,
duke@435 1104 dense_prefix, cur_deadwood);
duke@435 1105 }
duke@435 1106
duke@435 1107 if (cur_deadwood >= deadwood_goal) {
jcoomes@810 1108 // Found the region that has the correct amount of deadwood to the left.
jcoomes@810 1109 // This typically occurs after crossing a fairly sparse set of regions, so
jcoomes@810 1110 // iterate backwards over those sparse regions, looking for the region
jcoomes@810 1111 // that has the lowest density of live objects 'to the right.'
jcoomes@810 1112 size_t space_to_left = sd.region(cp) * region_size;
duke@435 1113 size_t live_to_left = space_to_left - cur_deadwood;
duke@435 1114 size_t space_to_right = space_capacity - space_to_left;
duke@435 1115 size_t live_to_right = space_live - live_to_left;
duke@435 1116 double density_to_right = double(live_to_right) / space_to_right;
duke@435 1117 while (cp > full_cp) {
duke@435 1118 --cp;
jcoomes@810 1119 const size_t prev_region_live_to_right = live_to_right -
jcoomes@810 1120 cp->data_size();
jcoomes@810 1121 const size_t prev_region_space_to_right = space_to_right + region_size;
jcoomes@810 1122 double prev_region_density_to_right =
jcoomes@810 1123 double(prev_region_live_to_right) / prev_region_space_to_right;
jcoomes@810 1124 if (density_to_right <= prev_region_density_to_right) {
duke@435 1125 return dense_prefix;
duke@435 1126 }
duke@435 1127 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1128 tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
jcoomes@810 1129 "pc_d2r=%10.8f", sd.region(cp), density_to_right,
jcoomes@810 1130 prev_region_density_to_right);
duke@435 1131 }
jcoomes@810 1132 dense_prefix -= region_size;
jcoomes@810 1133 live_to_right = prev_region_live_to_right;
jcoomes@810 1134 space_to_right = prev_region_space_to_right;
jcoomes@810 1135 density_to_right = prev_region_density_to_right;
duke@435 1136 }
duke@435 1137 return dense_prefix;
duke@435 1138 }
duke@435 1139
jcoomes@810 1140 dense_prefix += region_size;
duke@435 1141 ++cp;
duke@435 1142 }
duke@435 1143
duke@435 1144 return dense_prefix;
duke@435 1145 }
duke@435 1146
duke@435 1147 #ifndef PRODUCT
duke@435 1148 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
duke@435 1149 const SpaceId id,
duke@435 1150 const bool maximum_compaction,
duke@435 1151 HeapWord* const addr)
duke@435 1152 {
jcoomes@810 1153 const size_t region_idx = summary_data().addr_to_region_idx(addr);
jcoomes@810 1154 RegionData* const cp = summary_data().region(region_idx);
duke@435 1155 const MutableSpace* const space = _space_info[id].space();
duke@435 1156 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1157
duke@435 1158 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1159 const size_t dead_to_left = pointer_delta(addr, cp->destination());
duke@435 1160 const size_t space_cap = space->capacity_in_words();
duke@435 1161 const double dead_to_left_pct = double(dead_to_left) / space_cap;
duke@435 1162 const size_t live_to_right = new_top - cp->destination();
duke@435 1163 const size_t dead_to_right = space->top() - addr - live_to_right;
duke@435 1164
jcoomes@699 1165 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
duke@435 1166 "spl=" SIZE_FORMAT " "
duke@435 1167 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
duke@435 1168 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
duke@435 1169 " ratio=%10.8f",
jcoomes@810 1170 algorithm, addr, region_idx,
duke@435 1171 space_live,
duke@435 1172 dead_to_left, dead_to_left_pct,
duke@435 1173 dead_to_right, live_to_right,
duke@435 1174 double(dead_to_right) / live_to_right);
duke@435 1175 }
duke@435 1176 #endif // #ifndef PRODUCT
duke@435 1177
duke@435 1178 // Return a fraction indicating how much of the generation can be treated as
duke@435 1179 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution
duke@435 1180 // based on the density of live objects in the generation to determine a limit,
duke@435 1181 // which is then adjusted so the return value is min_percent when the density is
duke@435 1182 // 1.
duke@435 1183 //
duke@435 1184 // The following table shows some return values for a different values of the
duke@435 1185 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
duke@435 1186 // min_percent is 1.
duke@435 1187 //
duke@435 1188 // fraction allowed as dead wood
duke@435 1189 // -----------------------------------------------------------------
duke@435 1190 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
duke@435 1191 // ------- ---------- ---------- ---------- ---------- ---------- ----------
duke@435 1192 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1193 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1194 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1195 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1196 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1197 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1198 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1199 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1200 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1201 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1202 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
duke@435 1203 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1204 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1205 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1206 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1207 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1208 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1209 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1210 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1211 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1212 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1213
duke@435 1214 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
duke@435 1215 {
duke@435 1216 assert(_dwl_initialized, "uninitialized");
duke@435 1217
duke@435 1218 // The raw limit is the value of the normal distribution at x = density.
duke@435 1219 const double raw_limit = normal_distribution(density);
duke@435 1220
duke@435 1221 // Adjust the raw limit so it becomes the minimum when the density is 1.
duke@435 1222 //
duke@435 1223 // First subtract the adjustment value (which is simply the precomputed value
duke@435 1224 // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
duke@435 1225 // Then add the minimum value, so the minimum is returned when the density is
duke@435 1226 // 1. Finally, prevent negative values, which occur when the mean is not 0.5.
duke@435 1227 const double min = double(min_percent) / 100.0;
duke@435 1228 const double limit = raw_limit - _dwl_adjustment + min;
duke@435 1229 return MAX2(limit, 0.0);
duke@435 1230 }
duke@435 1231
jcoomes@810 1232 ParallelCompactData::RegionData*
jcoomes@810 1233 PSParallelCompact::first_dead_space_region(const RegionData* beg,
jcoomes@810 1234 const RegionData* end)
duke@435 1235 {
jcoomes@810 1236 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1237 ParallelCompactData& sd = summary_data();
jcoomes@810 1238 size_t left = sd.region(beg);
jcoomes@810 1239 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1240
duke@435 1241 // Binary search.
duke@435 1242 while (left < right) {
duke@435 1243 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1244 const size_t middle = left + (right - left) / 2;
jcoomes@810 1245 RegionData* const middle_ptr = sd.region(middle);
duke@435 1246 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1247 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1248 assert(dest != NULL, "sanity");
duke@435 1249 assert(dest <= addr, "must move left");
duke@435 1250
duke@435 1251 if (middle > left && dest < addr) {
duke@435 1252 right = middle - 1;
jcoomes@810 1253 } else if (middle < right && middle_ptr->data_size() == region_size) {
duke@435 1254 left = middle + 1;
duke@435 1255 } else {
duke@435 1256 return middle_ptr;
duke@435 1257 }
duke@435 1258 }
jcoomes@810 1259 return sd.region(left);
duke@435 1260 }
duke@435 1261
jcoomes@810 1262 ParallelCompactData::RegionData*
jcoomes@810 1263 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
jcoomes@810 1264 const RegionData* end,
jcoomes@810 1265 size_t dead_words)
duke@435 1266 {
duke@435 1267 ParallelCompactData& sd = summary_data();
jcoomes@810 1268 size_t left = sd.region(beg);
jcoomes@810 1269 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1270
duke@435 1271 // Binary search.
duke@435 1272 while (left < right) {
duke@435 1273 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1274 const size_t middle = left + (right - left) / 2;
jcoomes@810 1275 RegionData* const middle_ptr = sd.region(middle);
duke@435 1276 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1277 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1278 assert(dest != NULL, "sanity");
duke@435 1279 assert(dest <= addr, "must move left");
duke@435 1280
duke@435 1281 const size_t dead_to_left = pointer_delta(addr, dest);
duke@435 1282 if (middle > left && dead_to_left > dead_words) {
duke@435 1283 right = middle - 1;
duke@435 1284 } else if (middle < right && dead_to_left < dead_words) {
duke@435 1285 left = middle + 1;
duke@435 1286 } else {
duke@435 1287 return middle_ptr;
duke@435 1288 }
duke@435 1289 }
jcoomes@810 1290 return sd.region(left);
duke@435 1291 }
duke@435 1292
duke@435 1293 // The result is valid during the summary phase, after the initial summarization
duke@435 1294 // of each space into itself, and before final summarization.
duke@435 1295 inline double
jcoomes@810 1296 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
duke@435 1297 HeapWord* const bottom,
duke@435 1298 HeapWord* const top,
duke@435 1299 HeapWord* const new_top)
duke@435 1300 {
duke@435 1301 ParallelCompactData& sd = summary_data();
duke@435 1302
duke@435 1303 assert(cp != NULL, "sanity");
duke@435 1304 assert(bottom != NULL, "sanity");
duke@435 1305 assert(top != NULL, "sanity");
duke@435 1306 assert(new_top != NULL, "sanity");
duke@435 1307 assert(top >= new_top, "summary data problem?");
duke@435 1308 assert(new_top > bottom, "space is empty; should not be here");
duke@435 1309 assert(new_top >= cp->destination(), "sanity");
jcoomes@810 1310 assert(top >= sd.region_to_addr(cp), "sanity");
duke@435 1311
duke@435 1312 HeapWord* const destination = cp->destination();
duke@435 1313 const size_t dense_prefix_live = pointer_delta(destination, bottom);
duke@435 1314 const size_t compacted_region_live = pointer_delta(new_top, destination);
jcoomes@810 1315 const size_t compacted_region_used = pointer_delta(top,
jcoomes@810 1316 sd.region_to_addr(cp));
duke@435 1317 const size_t reclaimable = compacted_region_used - compacted_region_live;
duke@435 1318
duke@435 1319 const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
duke@435 1320 return double(reclaimable) / divisor;
duke@435 1321 }
duke@435 1322
duke@435 1323 // Return the address of the end of the dense prefix, a.k.a. the start of the
jcoomes@810 1324 // compacted region. The address is always on a region boundary.
duke@435 1325 //
jcoomes@810 1326 // Completely full regions at the left are skipped, since no compaction can
jcoomes@810 1327 // occur in those regions. Then the maximum amount of dead wood to allow is
jcoomes@810 1328 // computed, based on the density (amount live / capacity) of the generation;
jcoomes@810 1329 // the region with approximately that amount of dead space to the left is
jcoomes@810 1330 // identified as the limit region. Regions between the last completely full
jcoomes@810 1331 // region and the limit region are scanned and the one that has the best
jcoomes@810 1332 // (maximum) reclaimed_ratio() is selected.
duke@435 1333 HeapWord*
duke@435 1334 PSParallelCompact::compute_dense_prefix(const SpaceId id,
duke@435 1335 bool maximum_compaction)
duke@435 1336 {
jcoomes@918 1337 if (ParallelOldGCSplitALot) {
jcoomes@918 1338 if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
jcoomes@918 1339 // The value was chosen to provoke splitting a young gen space; use it.
jcoomes@918 1340 return _space_info[id].dense_prefix();
jcoomes@918 1341 }
jcoomes@918 1342 }
jcoomes@918 1343
jcoomes@810 1344 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1345 const ParallelCompactData& sd = summary_data();
duke@435 1346
duke@435 1347 const MutableSpace* const space = _space_info[id].space();
duke@435 1348 HeapWord* const top = space->top();
jcoomes@810 1349 HeapWord* const top_aligned_up = sd.region_align_up(top);
duke@435 1350 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1351 HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
duke@435 1352 HeapWord* const bottom = space->bottom();
jcoomes@810 1353 const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
jcoomes@810 1354 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1355 const RegionData* const new_top_cp =
jcoomes@810 1356 sd.addr_to_region_ptr(new_top_aligned_up);
jcoomes@810 1357
jcoomes@810 1358 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1359 // of the dense prefix.
jcoomes@810 1360 const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
jcoomes@810 1361 assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
duke@435 1362 space->is_empty(), "no dead space allowed to the left");
jcoomes@810 1363 assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
jcoomes@810 1364 "region must have dead space");
duke@435 1365
duke@435 1366 // The gc number is saved whenever a maximum compaction is done, and used to
duke@435 1367 // determine when the maximum compaction interval has expired. This avoids
duke@435 1368 // successive max compactions for different reasons.
duke@435 1369 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1370 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1371 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
duke@435 1372 total_invocations() == HeapFirstMaximumCompactionCount;
duke@435 1373 if (maximum_compaction || full_cp == top_cp || interval_ended) {
duke@435 1374 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1375 return sd.region_to_addr(full_cp);
duke@435 1376 }
duke@435 1377
duke@435 1378 const size_t space_live = pointer_delta(new_top, bottom);
duke@435 1379 const size_t space_used = space->used_in_words();
duke@435 1380 const size_t space_capacity = space->capacity_in_words();
duke@435 1381
duke@435 1382 const double density = double(space_live) / double(space_capacity);
coleenp@4037 1383 const size_t min_percent_free = MarkSweepDeadRatio;
duke@435 1384 const double limiter = dead_wood_limiter(density, min_percent_free);
duke@435 1385 const size_t dead_wood_max = space_used - space_live;
duke@435 1386 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
duke@435 1387 dead_wood_max);
duke@435 1388
duke@435 1389 if (TraceParallelOldGCDensePrefix) {
duke@435 1390 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1391 "space_cap=" SIZE_FORMAT,
duke@435 1392 space_live, space_used,
duke@435 1393 space_capacity);
duke@435 1394 tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
duke@435 1395 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
duke@435 1396 density, min_percent_free, limiter,
duke@435 1397 dead_wood_max, dead_wood_limit);
duke@435 1398 }
duke@435 1399
jcoomes@810 1400 // Locate the region with the desired amount of dead space to the left.
jcoomes@810 1401 const RegionData* const limit_cp =
jcoomes@810 1402 dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
jcoomes@810 1403
jcoomes@810 1404 // Scan from the first region with dead space to the limit region and find the
duke@435 1405 // one with the best (largest) reclaimed ratio.
duke@435 1406 double best_ratio = 0.0;
jcoomes@810 1407 const RegionData* best_cp = full_cp;
jcoomes@810 1408 for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
duke@435 1409 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
duke@435 1410 if (tmp_ratio > best_ratio) {
duke@435 1411 best_cp = cp;
duke@435 1412 best_ratio = tmp_ratio;
duke@435 1413 }
duke@435 1414 }
duke@435 1415
duke@435 1416 #if 0
jcoomes@810 1417 // Something to consider: if the region with the best ratio is 'close to' the
jcoomes@810 1418 // first region w/free space, choose the first region with free space
jcoomes@810 1419 // ("first-free"). The first-free region is usually near the start of the
duke@435 1420 // heap, which means we are copying most of the heap already, so copy a bit
duke@435 1421 // more to get complete compaction.
jcoomes@810 1422 if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
duke@435 1423 _maximum_compaction_gc_num = total_invocations();
duke@435 1424 best_cp = full_cp;
duke@435 1425 }
duke@435 1426 #endif // #if 0
duke@435 1427
jcoomes@810 1428 return sd.region_to_addr(best_cp);
duke@435 1429 }
duke@435 1430
jcoomes@918 1431 #ifndef PRODUCT
jcoomes@918 1432 void
jcoomes@918 1433 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
jcoomes@918 1434 size_t words)
jcoomes@918 1435 {
jcoomes@918 1436 if (TraceParallelOldGCSummaryPhase) {
jcoomes@918 1437 tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
jcoomes@918 1438 SIZE_FORMAT, start, start + words, words);
jcoomes@918 1439 }
jcoomes@918 1440
jcoomes@918 1441 ObjectStartArray* const start_array = _space_info[id].start_array();
jcoomes@918 1442 CollectedHeap::fill_with_objects(start, words);
jcoomes@918 1443 for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
jcoomes@918 1444 _mark_bitmap.mark_obj(p, words);
jcoomes@918 1445 _summary_data.add_obj(p, words);
jcoomes@918 1446 start_array->allocate_block(p);
jcoomes@918 1447 }
jcoomes@918 1448 }
jcoomes@918 1449
jcoomes@918 1450 void
jcoomes@918 1451 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
jcoomes@918 1452 {
jcoomes@918 1453 ParallelCompactData& sd = summary_data();
jcoomes@918 1454 MutableSpace* space = _space_info[id].space();
jcoomes@918 1455
jcoomes@918 1456 // Find the source and destination start addresses.
jcoomes@918 1457 HeapWord* const src_addr = sd.region_align_down(start);
jcoomes@918 1458 HeapWord* dst_addr;
jcoomes@918 1459 if (src_addr < start) {
jcoomes@918 1460 dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
jcoomes@918 1461 } else if (src_addr > space->bottom()) {
jcoomes@918 1462 // The start (the original top() value) is aligned to a region boundary so
jcoomes@918 1463 // the associated region does not have a destination. Compute the
jcoomes@918 1464 // destination from the previous region.
jcoomes@918 1465 RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
jcoomes@918 1466 dst_addr = cp->destination() + cp->data_size();
jcoomes@918 1467 } else {
jcoomes@918 1468 // Filling the entire space.
jcoomes@918 1469 dst_addr = space->bottom();
jcoomes@918 1470 }
jcoomes@918 1471 assert(dst_addr != NULL, "sanity");
jcoomes@918 1472
jcoomes@918 1473 // Update the summary data.
jcoomes@918 1474 bool result = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@918 1475 src_addr, space->top(), NULL,
jcoomes@918 1476 dst_addr, space->end(),
jcoomes@918 1477 _space_info[id].new_top_addr());
jcoomes@918 1478 assert(result, "should not fail: bad filler object size");
jcoomes@918 1479 }
jcoomes@918 1480
jcoomes@918 1481 void
jcoomes@931 1482 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
jcoomes@931 1483 {
jcoomes@931 1484 if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
jcoomes@931 1485 return;
jcoomes@931 1486 }
jcoomes@931 1487
jcoomes@931 1488 MutableSpace* const space = _space_info[id].space();
jcoomes@931 1489 if (space->is_empty()) {
jcoomes@931 1490 HeapWord* b = space->bottom();
jcoomes@931 1491 HeapWord* t = b + space->capacity_in_words() / 2;
jcoomes@931 1492 space->set_top(t);
jcoomes@931 1493 if (ZapUnusedHeapArea) {
jcoomes@931 1494 space->set_top_for_allocations();
jcoomes@931 1495 }
jcoomes@931 1496
kvn@1926 1497 size_t min_size = CollectedHeap::min_fill_size();
kvn@1926 1498 size_t obj_len = min_size;
jcoomes@931 1499 while (b + obj_len <= t) {
jcoomes@931 1500 CollectedHeap::fill_with_object(b, obj_len);
jcoomes@931 1501 mark_bitmap()->mark_obj(b, obj_len);
jcoomes@931 1502 summary_data().add_obj(b, obj_len);
jcoomes@931 1503 b += obj_len;
kvn@1926 1504 obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
jcoomes@931 1505 }
jcoomes@931 1506 if (b < t) {
jcoomes@931 1507 // The loop didn't completely fill to t (top); adjust top downward.
jcoomes@931 1508 space->set_top(b);
jcoomes@931 1509 if (ZapUnusedHeapArea) {
jcoomes@931 1510 space->set_top_for_allocations();
jcoomes@931 1511 }
jcoomes@931 1512 }
jcoomes@931 1513
jcoomes@931 1514 HeapWord** nta = _space_info[id].new_top_addr();
jcoomes@931 1515 bool result = summary_data().summarize(_space_info[id].split_info(),
jcoomes@931 1516 space->bottom(), space->top(), NULL,
jcoomes@931 1517 space->bottom(), space->end(), nta);
jcoomes@931 1518 assert(result, "space must fit into itself");
jcoomes@931 1519 }
jcoomes@931 1520 }
jcoomes@931 1521
jcoomes@931 1522 void
jcoomes@918 1523 PSParallelCompact::provoke_split(bool & max_compaction)
jcoomes@918 1524 {
jcoomes@931 1525 if (total_invocations() % ParallelOldGCSplitInterval != 0) {
jcoomes@931 1526 return;
jcoomes@931 1527 }
jcoomes@931 1528
jcoomes@918 1529 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@918 1530 ParallelCompactData& sd = summary_data();
jcoomes@918 1531
jcoomes@918 1532 MutableSpace* const eden_space = _space_info[eden_space_id].space();
jcoomes@918 1533 MutableSpace* const from_space = _space_info[from_space_id].space();
jcoomes@918 1534 const size_t eden_live = pointer_delta(eden_space->top(),
jcoomes@918 1535 _space_info[eden_space_id].new_top());
jcoomes@918 1536 const size_t from_live = pointer_delta(from_space->top(),
jcoomes@918 1537 _space_info[from_space_id].new_top());
jcoomes@918 1538
jcoomes@918 1539 const size_t min_fill_size = CollectedHeap::min_fill_size();
jcoomes@918 1540 const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
jcoomes@918 1541 const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
jcoomes@918 1542 const size_t from_free = pointer_delta(from_space->end(), from_space->top());
jcoomes@918 1543 const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
jcoomes@918 1544
jcoomes@918 1545 // Choose the space to split; need at least 2 regions live (or fillable).
jcoomes@918 1546 SpaceId id;
jcoomes@918 1547 MutableSpace* space;
jcoomes@918 1548 size_t live_words;
jcoomes@918 1549 size_t fill_words;
jcoomes@918 1550 if (eden_live + eden_fillable >= region_size * 2) {
jcoomes@918 1551 id = eden_space_id;
jcoomes@918 1552 space = eden_space;
jcoomes@918 1553 live_words = eden_live;
jcoomes@918 1554 fill_words = eden_fillable;
jcoomes@918 1555 } else if (from_live + from_fillable >= region_size * 2) {
jcoomes@918 1556 id = from_space_id;
jcoomes@918 1557 space = from_space;
jcoomes@918 1558 live_words = from_live;
jcoomes@918 1559 fill_words = from_fillable;
jcoomes@918 1560 } else {
jcoomes@918 1561 return; // Give up.
jcoomes@918 1562 }
jcoomes@918 1563 assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
jcoomes@918 1564
jcoomes@918 1565 if (live_words < region_size * 2) {
jcoomes@918 1566 // Fill from top() to end() w/live objects of mixed sizes.
jcoomes@918 1567 HeapWord* const fill_start = space->top();
jcoomes@918 1568 live_words += fill_words;
jcoomes@918 1569
jcoomes@918 1570 space->set_top(fill_start + fill_words);
jcoomes@918 1571 if (ZapUnusedHeapArea) {
jcoomes@918 1572 space->set_top_for_allocations();
jcoomes@918 1573 }
jcoomes@918 1574
jcoomes@918 1575 HeapWord* cur_addr = fill_start;
jcoomes@918 1576 while (fill_words > 0) {
jcoomes@918 1577 const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
jcoomes@918 1578 size_t cur_size = MIN2(align_object_size_(r), fill_words);
jcoomes@918 1579 if (fill_words - cur_size < min_fill_size) {
jcoomes@918 1580 cur_size = fill_words; // Avoid leaving a fragment too small to fill.
jcoomes@918 1581 }
jcoomes@918 1582
jcoomes@918 1583 CollectedHeap::fill_with_object(cur_addr, cur_size);
jcoomes@918 1584 mark_bitmap()->mark_obj(cur_addr, cur_size);
jcoomes@918 1585 sd.add_obj(cur_addr, cur_size);
jcoomes@918 1586
jcoomes@918 1587 cur_addr += cur_size;
jcoomes@918 1588 fill_words -= cur_size;
jcoomes@918 1589 }
jcoomes@918 1590
jcoomes@918 1591 summarize_new_objects(id, fill_start);
jcoomes@918 1592 }
jcoomes@918 1593
jcoomes@918 1594 max_compaction = false;
jcoomes@918 1595
jcoomes@918 1596 // Manipulate the old gen so that it has room for about half of the live data
jcoomes@918 1597 // in the target young gen space (live_words / 2).
jcoomes@918 1598 id = old_space_id;
jcoomes@918 1599 space = _space_info[id].space();
jcoomes@918 1600 const size_t free_at_end = space->free_in_words();
jcoomes@918 1601 const size_t free_target = align_object_size(live_words / 2);
jcoomes@918 1602 const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
jcoomes@918 1603
jcoomes@918 1604 if (free_at_end >= free_target + min_fill_size) {
jcoomes@918 1605 // Fill space above top() and set the dense prefix so everything survives.
jcoomes@918 1606 HeapWord* const fill_start = space->top();
jcoomes@918 1607 const size_t fill_size = free_at_end - free_target;
jcoomes@918 1608 space->set_top(space->top() + fill_size);
jcoomes@918 1609 if (ZapUnusedHeapArea) {
jcoomes@918 1610 space->set_top_for_allocations();
jcoomes@918 1611 }
jcoomes@918 1612 fill_with_live_objects(id, fill_start, fill_size);
jcoomes@918 1613 summarize_new_objects(id, fill_start);
jcoomes@918 1614 _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
jcoomes@918 1615 } else if (dead + free_at_end > free_target) {
jcoomes@918 1616 // Find a dense prefix that makes the right amount of space available.
jcoomes@918 1617 HeapWord* cur = sd.region_align_down(space->top());
jcoomes@918 1618 HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
jcoomes@918 1619 size_t dead_to_right = pointer_delta(space->end(), cur_destination);
jcoomes@918 1620 while (dead_to_right < free_target) {
jcoomes@918 1621 cur -= region_size;
jcoomes@918 1622 cur_destination = sd.addr_to_region_ptr(cur)->destination();
jcoomes@918 1623 dead_to_right = pointer_delta(space->end(), cur_destination);
jcoomes@918 1624 }
jcoomes@918 1625 _space_info[id].set_dense_prefix(cur);
jcoomes@918 1626 }
jcoomes@918 1627 }
jcoomes@918 1628 #endif // #ifndef PRODUCT
jcoomes@918 1629
duke@435 1630 void PSParallelCompact::summarize_spaces_quick()
duke@435 1631 {
duke@435 1632 for (unsigned int i = 0; i < last_space_id; ++i) {
duke@435 1633 const MutableSpace* space = _space_info[i].space();
jcoomes@917 1634 HeapWord** nta = _space_info[i].new_top_addr();
jcoomes@917 1635 bool result = _summary_data.summarize(_space_info[i].split_info(),
jcoomes@917 1636 space->bottom(), space->top(), NULL,
jcoomes@917 1637 space->bottom(), space->end(), nta);
jcoomes@917 1638 assert(result, "space must fit into itself");
duke@435 1639 _space_info[i].set_dense_prefix(space->bottom());
duke@435 1640 }
jcoomes@931 1641
jcoomes@931 1642 #ifndef PRODUCT
jcoomes@931 1643 if (ParallelOldGCSplitALot) {
jcoomes@931 1644 provoke_split_fill_survivor(to_space_id);
jcoomes@931 1645 }
jcoomes@931 1646 #endif // #ifndef PRODUCT
duke@435 1647 }
duke@435 1648
duke@435 1649 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
duke@435 1650 {
duke@435 1651 HeapWord* const dense_prefix_end = dense_prefix(id);
jcoomes@810 1652 const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
duke@435 1653 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
jcoomes@810 1654 if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
duke@435 1655 // Only enough dead space is filled so that any remaining dead space to the
duke@435 1656 // left is larger than the minimum filler object. (The remainder is filled
duke@435 1657 // during the copy/update phase.)
duke@435 1658 //
duke@435 1659 // The size of the dead space to the right of the boundary is not a
duke@435 1660 // concern, since compaction will be able to use whatever space is
duke@435 1661 // available.
duke@435 1662 //
duke@435 1663 // Here '||' is the boundary, 'x' represents a don't care bit and a box
duke@435 1664 // surrounds the space to be filled with an object.
duke@435 1665 //
duke@435 1666 // In the 32-bit VM, each bit represents two 32-bit words:
duke@435 1667 // +---+
duke@435 1668 // a) beg_bits: ... x x x | 0 | || 0 x x ...
duke@435 1669 // end_bits: ... x x x | 0 | || 0 x x ...
duke@435 1670 // +---+
duke@435 1671 //
duke@435 1672 // In the 64-bit VM, each bit represents one 64-bit word:
duke@435 1673 // +------------+
duke@435 1674 // b) beg_bits: ... x x x | 0 || 0 | x x ...
duke@435 1675 // end_bits: ... x x 1 | 0 || 0 | x x ...
duke@435 1676 // +------------+
duke@435 1677 // +-------+
duke@435 1678 // c) beg_bits: ... x x | 0 0 | || 0 x x ...
duke@435 1679 // end_bits: ... x 1 | 0 0 | || 0 x x ...
duke@435 1680 // +-------+
duke@435 1681 // +-----------+
duke@435 1682 // d) beg_bits: ... x | 0 0 0 | || 0 x x ...
duke@435 1683 // end_bits: ... 1 | 0 0 0 | || 0 x x ...
duke@435 1684 // +-----------+
duke@435 1685 // +-------+
duke@435 1686 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1687 // end_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1688 // +-------+
duke@435 1689
duke@435 1690 // Initially assume case a, c or e will apply.
kvn@1926 1691 size_t obj_len = CollectedHeap::min_fill_size();
duke@435 1692 HeapWord* obj_beg = dense_prefix_end - obj_len;
duke@435 1693
duke@435 1694 #ifdef _LP64
kvn@1926 1695 if (MinObjAlignment > 1) { // object alignment > heap word size
kvn@1926 1696 // Cases a, c or e.
kvn@1926 1697 } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
duke@435 1698 // Case b above.
duke@435 1699 obj_beg = dense_prefix_end - 1;
duke@435 1700 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
duke@435 1701 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
duke@435 1702 // Case d above.
duke@435 1703 obj_beg = dense_prefix_end - 3;
duke@435 1704 obj_len = 3;
duke@435 1705 }
duke@435 1706 #endif // #ifdef _LP64
duke@435 1707
jcoomes@917 1708 CollectedHeap::fill_with_object(obj_beg, obj_len);
duke@435 1709 _mark_bitmap.mark_obj(obj_beg, obj_len);
duke@435 1710 _summary_data.add_obj(obj_beg, obj_len);
duke@435 1711 assert(start_array(id) != NULL, "sanity");
duke@435 1712 start_array(id)->allocate_block(obj_beg);
duke@435 1713 }
duke@435 1714 }
duke@435 1715
duke@435 1716 void
jcoomes@917 1717 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
jcoomes@917 1718 {
jcoomes@917 1719 RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
jcoomes@917 1720 HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
jcoomes@917 1721 RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
jcoomes@917 1722 for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
jcoomes@917 1723 cur->set_source_region(0);
jcoomes@917 1724 }
jcoomes@917 1725 }
jcoomes@917 1726
jcoomes@917 1727 void
duke@435 1728 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
duke@435 1729 {
duke@435 1730 assert(id < last_space_id, "id out of range");
jcoomes@918 1731 assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
jcoomes@918 1732 ParallelOldGCSplitALot && id == old_space_id,
jcoomes@918 1733 "should have been reset in summarize_spaces_quick()");
duke@435 1734
duke@435 1735 const MutableSpace* space = _space_info[id].space();
jcoomes@700 1736 if (_space_info[id].new_top() != space->bottom()) {
jcoomes@700 1737 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
jcoomes@700 1738 _space_info[id].set_dense_prefix(dense_prefix_end);
duke@435 1739
duke@435 1740 #ifndef PRODUCT
jcoomes@700 1741 if (TraceParallelOldGCDensePrefix) {
jcoomes@700 1742 print_dense_prefix_stats("ratio", id, maximum_compaction,
jcoomes@700 1743 dense_prefix_end);
jcoomes@700 1744 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
jcoomes@700 1745 print_dense_prefix_stats("density", id, maximum_compaction, addr);
jcoomes@700 1746 }
jcoomes@700 1747 #endif // #ifndef PRODUCT
jcoomes@700 1748
jcoomes@918 1749 // Recompute the summary data, taking into account the dense prefix. If
jcoomes@918 1750 // every last byte will be reclaimed, then the existing summary data which
jcoomes@918 1751 // compacts everything can be left in place.
jcoomes@700 1752 if (!maximum_compaction && dense_prefix_end != space->bottom()) {
jcoomes@917 1753 // If dead space crosses the dense prefix boundary, it is (at least
jcoomes@917 1754 // partially) filled with a dummy object, marked live and added to the
jcoomes@917 1755 // summary data. This simplifies the copy/update phase and must be done
jcoomes@918 1756 // before the final locations of objects are determined, to prevent
jcoomes@918 1757 // leaving a fragment of dead space that is too small to fill.
jcoomes@700 1758 fill_dense_prefix_end(id);
jcoomes@917 1759
jcoomes@917 1760 // Compute the destination of each Region, and thus each object.
jcoomes@917 1761 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
jcoomes@917 1762 _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1763 dense_prefix_end, space->top(), NULL,
jcoomes@917 1764 dense_prefix_end, space->end(),
jcoomes@917 1765 _space_info[id].new_top_addr());
jcoomes@700 1766 }
duke@435 1767 }
duke@435 1768
duke@435 1769 if (TraceParallelOldGCSummaryPhase) {
jcoomes@810 1770 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@700 1771 HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
jcoomes@810 1772 const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
duke@435 1773 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
jcoomes@700 1774 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1775 const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
duke@435 1776 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
duke@435 1777 tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
jcoomes@810 1778 "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
duke@435 1779 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
duke@435 1780 id, space->capacity_in_words(), dense_prefix_end,
jcoomes@810 1781 dp_region, dp_words / region_size,
jcoomes@810 1782 cr_words / region_size, new_top);
duke@435 1783 }
duke@435 1784 }
duke@435 1785
jcoomes@917 1786 #ifndef PRODUCT
jcoomes@917 1787 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
jcoomes@917 1788 HeapWord* dst_beg, HeapWord* dst_end,
jcoomes@917 1789 SpaceId src_space_id,
jcoomes@917 1790 HeapWord* src_beg, HeapWord* src_end)
jcoomes@917 1791 {
jcoomes@917 1792 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 1793 tty->print_cr("summarizing %d [%s] into %d [%s]: "
jcoomes@917 1794 "src=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1795 SIZE_FORMAT "-" SIZE_FORMAT " "
jcoomes@917 1796 "dst=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1797 SIZE_FORMAT "-" SIZE_FORMAT,
jcoomes@917 1798 src_space_id, space_names[src_space_id],
jcoomes@917 1799 dst_space_id, space_names[dst_space_id],
jcoomes@917 1800 src_beg, src_end,
jcoomes@917 1801 _summary_data.addr_to_region_idx(src_beg),
jcoomes@917 1802 _summary_data.addr_to_region_idx(src_end),
jcoomes@917 1803 dst_beg, dst_end,
jcoomes@917 1804 _summary_data.addr_to_region_idx(dst_beg),
jcoomes@917 1805 _summary_data.addr_to_region_idx(dst_end));
jcoomes@917 1806 }
jcoomes@917 1807 }
jcoomes@917 1808 #endif // #ifndef PRODUCT
jcoomes@917 1809
duke@435 1810 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
duke@435 1811 bool maximum_compaction)
duke@435 1812 {
duke@435 1813 TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
duke@435 1814 // trace("2");
duke@435 1815
duke@435 1816 #ifdef ASSERT
duke@435 1817 if (TraceParallelOldGCMarkingPhase) {
duke@435 1818 tty->print_cr("add_obj_count=" SIZE_FORMAT " "
duke@435 1819 "add_obj_bytes=" SIZE_FORMAT,
duke@435 1820 add_obj_count, add_obj_size * HeapWordSize);
duke@435 1821 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
duke@435 1822 "mark_bitmap_bytes=" SIZE_FORMAT,
duke@435 1823 mark_bitmap_count, mark_bitmap_size * HeapWordSize);
duke@435 1824 }
duke@435 1825 #endif // #ifdef ASSERT
duke@435 1826
duke@435 1827 // Quick summarization of each space into itself, to see how much is live.
duke@435 1828 summarize_spaces_quick();
duke@435 1829
duke@435 1830 if (TraceParallelOldGCSummaryPhase) {
duke@435 1831 tty->print_cr("summary_phase: after summarizing each space to self");
duke@435 1832 Universe::print();
jcoomes@810 1833 NOT_PRODUCT(print_region_ranges());
duke@435 1834 if (Verbose) {
duke@435 1835 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
duke@435 1836 }
duke@435 1837 }
duke@435 1838
duke@435 1839 // The amount of live data that will end up in old space (assuming it fits).
duke@435 1840 size_t old_space_total_live = 0;
jcoomes@917 1841 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 1842 old_space_total_live += pointer_delta(_space_info[id].new_top(),
duke@435 1843 _space_info[id].space()->bottom());
duke@435 1844 }
duke@435 1845
jcoomes@917 1846 MutableSpace* const old_space = _space_info[old_space_id].space();
jcoomes@918 1847 const size_t old_capacity = old_space->capacity_in_words();
jcoomes@918 1848 if (old_space_total_live > old_capacity) {
duke@435 1849 // XXX - should also try to expand
duke@435 1850 maximum_compaction = true;
duke@435 1851 }
jcoomes@918 1852 #ifndef PRODUCT
jcoomes@918 1853 if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
jcoomes@931 1854 provoke_split(maximum_compaction);
jcoomes@918 1855 }
jcoomes@918 1856 #endif // #ifndef PRODUCT
duke@435 1857
coleenp@4037 1858 // Old generations.
duke@435 1859 summarize_space(old_space_id, maximum_compaction);
duke@435 1860
jcoomes@917 1861 // Summarize the remaining spaces in the young gen. The initial target space
jcoomes@917 1862 // is the old gen. If a space does not fit entirely into the target, then the
jcoomes@917 1863 // remainder is compacted into the space itself and that space becomes the new
jcoomes@917 1864 // target.
jcoomes@917 1865 SpaceId dst_space_id = old_space_id;
jcoomes@917 1866 HeapWord* dst_space_end = old_space->end();
jcoomes@917 1867 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
jcoomes@917 1868 for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
duke@435 1869 const MutableSpace* space = _space_info[id].space();
duke@435 1870 const size_t live = pointer_delta(_space_info[id].new_top(),
duke@435 1871 space->bottom());
jcoomes@917 1872 const size_t available = pointer_delta(dst_space_end, *new_top_addr);
jcoomes@917 1873
jcoomes@917 1874 NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
jcoomes@917 1875 SpaceId(id), space->bottom(), space->top());)
jcoomes@701 1876 if (live > 0 && live <= available) {
duke@435 1877 // All the live data will fit.
jcoomes@917 1878 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1879 space->bottom(), space->top(),
jcoomes@917 1880 NULL,
jcoomes@917 1881 *new_top_addr, dst_space_end,
jcoomes@917 1882 new_top_addr);
jcoomes@917 1883 assert(done, "space must fit into old gen");
jcoomes@917 1884
jcoomes@701 1885 // Reset the new_top value for the space.
jcoomes@701 1886 _space_info[id].set_new_top(space->bottom());
jcoomes@917 1887 } else if (live > 0) {
jcoomes@917 1888 // Attempt to fit part of the source space into the target space.
jcoomes@917 1889 HeapWord* next_src_addr = NULL;
jcoomes@917 1890 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1891 space->bottom(), space->top(),
jcoomes@917 1892 &next_src_addr,
jcoomes@917 1893 *new_top_addr, dst_space_end,
jcoomes@917 1894 new_top_addr);
jcoomes@917 1895 assert(!done, "space should not fit into old gen");
jcoomes@917 1896 assert(next_src_addr != NULL, "sanity");
jcoomes@917 1897
jcoomes@917 1898 // The source space becomes the new target, so the remainder is compacted
jcoomes@917 1899 // within the space itself.
jcoomes@917 1900 dst_space_id = SpaceId(id);
jcoomes@917 1901 dst_space_end = space->end();
jcoomes@917 1902 new_top_addr = _space_info[id].new_top_addr();
jcoomes@917 1903 NOT_PRODUCT(summary_phase_msg(dst_space_id,
jcoomes@917 1904 space->bottom(), dst_space_end,
jcoomes@917 1905 SpaceId(id), next_src_addr, space->top());)
jcoomes@917 1906 done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1907 next_src_addr, space->top(),
jcoomes@917 1908 NULL,
jcoomes@917 1909 space->bottom(), dst_space_end,
jcoomes@917 1910 new_top_addr);
jcoomes@917 1911 assert(done, "space must fit when compacted into itself");
jcoomes@917 1912 assert(*new_top_addr <= space->top(), "usage should not grow");
duke@435 1913 }
duke@435 1914 }
duke@435 1915
duke@435 1916 if (TraceParallelOldGCSummaryPhase) {
duke@435 1917 tty->print_cr("summary_phase: after final summarization");
duke@435 1918 Universe::print();
jcoomes@810 1919 NOT_PRODUCT(print_region_ranges());
duke@435 1920 if (Verbose) {
duke@435 1921 NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
duke@435 1922 }
duke@435 1923 }
duke@435 1924 }
duke@435 1925
duke@435 1926 // This method should contain all heap-specific policy for invoking a full
duke@435 1927 // collection. invoke_no_policy() will only attempt to compact the heap; it
duke@435 1928 // will do nothing further. If we need to bail out for policy reasons, scavenge
duke@435 1929 // before full gc, or any other specialized behavior, it needs to be added here.
duke@435 1930 //
duke@435 1931 // Note that this method should only be called from the vm_thread while at a
duke@435 1932 // safepoint.
jmasa@1822 1933 //
jmasa@1822 1934 // Note that the all_soft_refs_clear flag in the collector policy
jmasa@1822 1935 // may be true because this method can be called without intervening
jmasa@1822 1936 // activity. For example when the heap space is tight and full measure
jmasa@1822 1937 // are being taken to free space.
duke@435 1938 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
duke@435 1939 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 1940 assert(Thread::current() == (Thread*)VMThread::vm_thread(),
duke@435 1941 "should be in vm thread");
jmasa@1822 1942
duke@435 1943 ParallelScavengeHeap* heap = gc_heap();
duke@435 1944 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1945 assert(!heap->is_gc_active(), "not reentrant");
duke@435 1946
duke@435 1947 PSAdaptiveSizePolicy* policy = heap->size_policy();
jmasa@1822 1948 IsGCActiveMark mark;
jmasa@1822 1949
jmasa@1822 1950 if (ScavengeBeforeFullGC) {
jmasa@1822 1951 PSScavenge::invoke_no_policy();
duke@435 1952 }
jmasa@1822 1953
jmasa@1822 1954 const bool clear_all_soft_refs =
jmasa@1822 1955 heap->collector_policy()->should_clear_all_soft_refs();
jmasa@1822 1956
jmasa@1822 1957 PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
jmasa@1822 1958 maximum_heap_compaction);
duke@435 1959 }
duke@435 1960
jcoomes@810 1961 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
jcoomes@810 1962 size_t addr_region_index = addr_to_region_idx(addr);
jcoomes@810 1963 return region_index == addr_region_index;
duke@435 1964 }
duke@435 1965
duke@435 1966 // This method contains no policy. You should probably
duke@435 1967 // be calling invoke() instead.
jcoomes@3540 1968 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
duke@435 1969 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
duke@435 1970 assert(ref_processor() != NULL, "Sanity");
duke@435 1971
apetrusenko@574 1972 if (GC_locker::check_active_before_gc()) {
jcoomes@3540 1973 return false;
duke@435 1974 }
duke@435 1975
duke@435 1976 TimeStamp marking_start;
duke@435 1977 TimeStamp compaction_start;
duke@435 1978 TimeStamp collection_exit;
duke@435 1979
duke@435 1980 ParallelScavengeHeap* heap = gc_heap();
duke@435 1981 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1982 PSYoungGen* young_gen = heap->young_gen();
duke@435 1983 PSOldGen* old_gen = heap->old_gen();
duke@435 1984 PSAdaptiveSizePolicy* size_policy = heap->size_policy();
duke@435 1985
jmasa@1822 1986 // The scope of casr should end after code that can change
jmasa@1822 1987 // CollectorPolicy::_should_clear_all_soft_refs.
jmasa@1822 1988 ClearedAllSoftRefs casr(maximum_heap_compaction,
jmasa@1822 1989 heap->collector_policy());
jmasa@1822 1990
jmasa@698 1991 if (ZapUnusedHeapArea) {
jmasa@698 1992 // Save information needed to minimize mangling
jmasa@698 1993 heap->record_gen_tops_before_GC();
jmasa@698 1994 }
jmasa@698 1995
ysr@1050 1996 heap->pre_full_gc_dump();
ysr@1050 1997
duke@435 1998 _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
duke@435 1999
duke@435 2000 // Make sure data structures are sane, make the heap parsable, and do other
duke@435 2001 // miscellaneous bookkeeping.
duke@435 2002 PreGCValues pre_gc_values;
duke@435 2003 pre_compact(&pre_gc_values);
duke@435 2004
jcoomes@645 2005 // Get the compaction manager reserved for the VM thread.
jcoomes@645 2006 ParCompactionManager* const vmthread_cm =
jcoomes@645 2007 ParCompactionManager::manager_array(gc_task_manager()->workers());
jcoomes@645 2008
duke@435 2009 // Place after pre_compact() where the number of invocations is incremented.
duke@435 2010 AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
duke@435 2011
duke@435 2012 {
duke@435 2013 ResourceMark rm;
duke@435 2014 HandleMark hm;
duke@435 2015
jmasa@3294 2016 // Set the number of GC threads to be used in this collection
jmasa@3294 2017 gc_task_manager()->set_active_gang();
jmasa@3294 2018 gc_task_manager()->task_idle_workers();
jmasa@3294 2019 heap->set_par_threads(gc_task_manager()->active_workers());
jmasa@3294 2020
duke@435 2021 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
duke@435 2022 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
brutisso@3767 2023 TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
duke@435 2024 TraceCollectorStats tcs(counters());
fparain@2888 2025 TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
duke@435 2026
duke@435 2027 if (TraceGen1Time) accumulated_time()->start();
duke@435 2028
duke@435 2029 // Let the size policy know we're starting
duke@435 2030 size_policy->major_collection_begin();
duke@435 2031
duke@435 2032 CodeCache::gc_prologue();
duke@435 2033 Threads::gc_prologue();
duke@435 2034
duke@435 2035 COMPILER2_PRESENT(DerivedPointerTable::clear());
duke@435 2036
johnc@3175 2037 ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
ysr@892 2038 ref_processor()->setup_policy(maximum_heap_compaction);
duke@435 2039
duke@435 2040 bool marked_for_unloading = false;
duke@435 2041
duke@435 2042 marking_start.update();
jcoomes@645 2043 marking_phase(vmthread_cm, maximum_heap_compaction);
duke@435 2044
duke@435 2045 #ifndef PRODUCT
duke@435 2046 if (TraceParallelOldGCMarkingPhase) {
duke@435 2047 gclog_or_tty->print_cr("marking_phase: cas_tries %d cas_retries %d "
duke@435 2048 "cas_by_another %d",
duke@435 2049 mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
duke@435 2050 mark_bitmap()->cas_by_another());
duke@435 2051 }
duke@435 2052 #endif // #ifndef PRODUCT
duke@435 2053
brutisso@3767 2054 bool max_on_system_gc = UseMaximumCompactionOnSystemGC
brutisso@3767 2055 && gc_cause == GCCause::_java_lang_system_gc;
jcoomes@645 2056 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
duke@435 2057
duke@435 2058 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
duke@435 2059 COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
duke@435 2060
duke@435 2061 // adjust_roots() updates Universe::_intArrayKlassObj which is
duke@435 2062 // needed by the compaction for filling holes in the dense prefix.
duke@435 2063 adjust_roots();
duke@435 2064
duke@435 2065 compaction_start.update();
jcoomes@2783 2066 compact();
duke@435 2067
duke@435 2068 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be
duke@435 2069 // done before resizing.
duke@435 2070 post_compact();
duke@435 2071
duke@435 2072 // Let the size policy know we're done
duke@435 2073 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
duke@435 2074
duke@435 2075 if (UseAdaptiveSizePolicy) {
duke@435 2076 if (PrintAdaptiveSizePolicy) {
duke@435 2077 gclog_or_tty->print("AdaptiveSizeStart: ");
duke@435 2078 gclog_or_tty->stamp();
duke@435 2079 gclog_or_tty->print_cr(" collection: %d ",
duke@435 2080 heap->total_collections());
duke@435 2081 if (Verbose) {
coleenp@4037 2082 gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
coleenp@4037 2083 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
duke@435 2084 }
duke@435 2085 }
duke@435 2086
duke@435 2087 // Don't check if the size_policy is ready here. Let
duke@435 2088 // the size_policy check that internally.
duke@435 2089 if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
duke@435 2090 ((gc_cause != GCCause::_java_lang_system_gc) ||
duke@435 2091 UseAdaptiveSizePolicyWithSystemGC)) {
duke@435 2092 // Calculate optimal free space amounts
duke@435 2093 assert(young_gen->max_size() >
duke@435 2094 young_gen->from_space()->capacity_in_bytes() +
duke@435 2095 young_gen->to_space()->capacity_in_bytes(),
duke@435 2096 "Sizes of space in young gen are out-of-bounds");
duke@435 2097 size_t max_eden_size = young_gen->max_size() -
duke@435 2098 young_gen->from_space()->capacity_in_bytes() -
duke@435 2099 young_gen->to_space()->capacity_in_bytes();
jmasa@698 2100 size_policy->compute_generation_free_space(
jmasa@698 2101 young_gen->used_in_bytes(),
jmasa@698 2102 young_gen->eden_space()->used_in_bytes(),
jmasa@698 2103 old_gen->used_in_bytes(),
jmasa@698 2104 young_gen->eden_space()->capacity_in_bytes(),
jmasa@698 2105 old_gen->max_gen_size(),
jmasa@698 2106 max_eden_size,
jmasa@698 2107 true /* full gc*/,
jmasa@1822 2108 gc_cause,
jmasa@1822 2109 heap->collector_policy());
jmasa@698 2110
jmasa@698 2111 heap->resize_old_gen(
jmasa@698 2112 size_policy->calculated_old_free_size_in_bytes());
duke@435 2113
duke@435 2114 // Don't resize the young generation at an major collection. A
duke@435 2115 // desired young generation size may have been calculated but
duke@435 2116 // resizing the young generation complicates the code because the
duke@435 2117 // resizing of the old generation may have moved the boundary
duke@435 2118 // between the young generation and the old generation. Let the
duke@435 2119 // young generation resizing happen at the minor collections.
duke@435 2120 }
duke@435 2121 if (PrintAdaptiveSizePolicy) {
duke@435 2122 gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
duke@435 2123 heap->total_collections());
duke@435 2124 }
duke@435 2125 }
duke@435 2126
duke@435 2127 if (UsePerfData) {
duke@435 2128 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
duke@435 2129 counters->update_counters();
duke@435 2130 counters->update_old_capacity(old_gen->capacity_in_bytes());
duke@435 2131 counters->update_young_capacity(young_gen->capacity_in_bytes());
duke@435 2132 }
duke@435 2133
duke@435 2134 heap->resize_all_tlabs();
duke@435 2135
coleenp@4037 2136 // Resize the metaspace capactiy after a collection
coleenp@4037 2137 MetaspaceGC::compute_new_size();
duke@435 2138
duke@435 2139 if (TraceGen1Time) accumulated_time()->stop();
duke@435 2140
duke@435 2141 if (PrintGC) {
duke@435 2142 if (PrintGCDetails) {
duke@435 2143 // No GC timestamp here. This is after GC so it would be confusing.
duke@435 2144 young_gen->print_used_change(pre_gc_values.young_gen_used());
duke@435 2145 old_gen->print_used_change(pre_gc_values.old_gen_used());
duke@435 2146 heap->print_heap_change(pre_gc_values.heap_used());
coleenp@4037 2147 MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
duke@435 2148 } else {
duke@435 2149 heap->print_heap_change(pre_gc_values.heap_used());
duke@435 2150 }
duke@435 2151 }
duke@435 2152
duke@435 2153 // Track memory usage and detect low memory
duke@435 2154 MemoryService::track_memory_usage();
duke@435 2155 heap->update_counters();
jmasa@3294 2156 gc_task_manager()->release_idle_workers();
duke@435 2157 }
duke@435 2158
jcoomes@2191 2159 #ifdef ASSERT
jcoomes@2191 2160 for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
jcoomes@2191 2161 ParCompactionManager* const cm =
jcoomes@2191 2162 ParCompactionManager::manager_array(int(i));
jcoomes@2191 2163 assert(cm->marking_stack()->is_empty(), "should be empty");
jmasa@3294 2164 assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
jcoomes@2191 2165 }
jcoomes@2191 2166 #endif // ASSERT
jcoomes@2191 2167
duke@435 2168 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 2169 HandleMark hm; // Discard invalid handles created during verification
stefank@5018 2170 Universe::verify(" VerifyAfterGC:");
duke@435 2171 }
duke@435 2172
duke@435 2173 // Re-verify object start arrays
duke@435 2174 if (VerifyObjectStartArray &&
duke@435 2175 VerifyAfterGC) {
duke@435 2176 old_gen->verify_object_start_array();
duke@435 2177 }
duke@435 2178
jmasa@698 2179 if (ZapUnusedHeapArea) {
jmasa@698 2180 old_gen->object_space()->check_mangled_unused_area_complete();
jmasa@698 2181 }
jmasa@698 2182
duke@435 2183 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
duke@435 2184
duke@435 2185 collection_exit.update();
duke@435 2186
never@3499 2187 heap->print_heap_after_gc();
duke@435 2188 if (PrintGCTaskTimeStamps) {
duke@435 2189 gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
duke@435 2190 INT64_FORMAT,
duke@435 2191 marking_start.ticks(), compaction_start.ticks(),
duke@435 2192 collection_exit.ticks());
duke@435 2193 gc_task_manager()->print_task_time_stamps();
duke@435 2194 }
jmasa@981 2195
ysr@1050 2196 heap->post_full_gc_dump();
ysr@1050 2197
jmasa@981 2198 #ifdef TRACESPINNING
jmasa@981 2199 ParallelTaskTerminator::print_termination_counts();
jmasa@981 2200 #endif
jcoomes@3540 2201
jcoomes@3540 2202 return true;
duke@435 2203 }
duke@435 2204
duke@435 2205 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
duke@435 2206 PSYoungGen* young_gen,
duke@435 2207 PSOldGen* old_gen) {
duke@435 2208 MutableSpace* const eden_space = young_gen->eden_space();
duke@435 2209 assert(!eden_space->is_empty(), "eden must be non-empty");
duke@435 2210 assert(young_gen->virtual_space()->alignment() ==
duke@435 2211 old_gen->virtual_space()->alignment(), "alignments do not match");
duke@435 2212
duke@435 2213 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
duke@435 2214 return false;
duke@435 2215 }
duke@435 2216
duke@435 2217 // Both generations must be completely committed.
duke@435 2218 if (young_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2219 return false;
duke@435 2220 }
duke@435 2221 if (old_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2222 return false;
duke@435 2223 }
duke@435 2224
duke@435 2225 // Figure out how much to take from eden. Include the average amount promoted
duke@435 2226 // in the total; otherwise the next young gen GC will simply bail out to a
duke@435 2227 // full GC.
duke@435 2228 const size_t alignment = old_gen->virtual_space()->alignment();
duke@435 2229 const size_t eden_used = eden_space->used_in_bytes();
duke@435 2230 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
duke@435 2231 const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
duke@435 2232 const size_t eden_capacity = eden_space->capacity_in_bytes();
duke@435 2233
duke@435 2234 if (absorb_size >= eden_capacity) {
duke@435 2235 return false; // Must leave some space in eden.
duke@435 2236 }
duke@435 2237
duke@435 2238 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
duke@435 2239 if (new_young_size < young_gen->min_gen_size()) {
duke@435 2240 return false; // Respect young gen minimum size.
duke@435 2241 }
duke@435 2242
duke@435 2243 if (TraceAdaptiveGCBoundary && Verbose) {
duke@435 2244 gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: "
duke@435 2245 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
duke@435 2246 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
duke@435 2247 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
duke@435 2248 absorb_size / K,
duke@435 2249 eden_capacity / K, (eden_capacity - absorb_size) / K,
duke@435 2250 young_gen->from_space()->used_in_bytes() / K,
duke@435 2251 young_gen->to_space()->used_in_bytes() / K,
duke@435 2252 young_gen->capacity_in_bytes() / K, new_young_size / K);
duke@435 2253 }
duke@435 2254
duke@435 2255 // Fill the unused part of the old gen.
duke@435 2256 MutableSpace* const old_space = old_gen->object_space();
jcoomes@916 2257 HeapWord* const unused_start = old_space->top();
jcoomes@916 2258 size_t const unused_words = pointer_delta(old_space->end(), unused_start);
jcoomes@916 2259
jcoomes@916 2260 if (unused_words > 0) {
jcoomes@916 2261 if (unused_words < CollectedHeap::min_fill_size()) {
jcoomes@916 2262 return false; // If the old gen cannot be filled, must give up.
jcoomes@916 2263 }
jcoomes@916 2264 CollectedHeap::fill_with_objects(unused_start, unused_words);
duke@435 2265 }
duke@435 2266
duke@435 2267 // Take the live data from eden and set both top and end in the old gen to
duke@435 2268 // eden top. (Need to set end because reset_after_change() mangles the region
duke@435 2269 // from end to virtual_space->high() in debug builds).
duke@435 2270 HeapWord* const new_top = eden_space->top();
duke@435 2271 old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
duke@435 2272 absorb_size);
duke@435 2273 young_gen->reset_after_change();
duke@435 2274 old_space->set_top(new_top);
duke@435 2275 old_space->set_end(new_top);
duke@435 2276 old_gen->reset_after_change();
duke@435 2277
duke@435 2278 // Update the object start array for the filler object and the data from eden.
duke@435 2279 ObjectStartArray* const start_array = old_gen->start_array();
jcoomes@916 2280 for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
jcoomes@916 2281 start_array->allocate_block(p);
duke@435 2282 }
duke@435 2283
duke@435 2284 // Could update the promoted average here, but it is not typically updated at
duke@435 2285 // full GCs and the value to use is unclear. Something like
duke@435 2286 //
duke@435 2287 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
duke@435 2288
duke@435 2289 size_policy->set_bytes_absorbed_from_eden(absorb_size);
duke@435 2290 return true;
duke@435 2291 }
duke@435 2292
duke@435 2293 GCTaskManager* const PSParallelCompact::gc_task_manager() {
duke@435 2294 assert(ParallelScavengeHeap::gc_task_manager() != NULL,
duke@435 2295 "shouldn't return NULL");
duke@435 2296 return ParallelScavengeHeap::gc_task_manager();
duke@435 2297 }
duke@435 2298
duke@435 2299 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
duke@435 2300 bool maximum_heap_compaction) {
duke@435 2301 // Recursively traverse all live objects and mark them
duke@435 2302 TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
duke@435 2303
duke@435 2304 ParallelScavengeHeap* heap = gc_heap();
duke@435 2305 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jmasa@3294 2306 uint active_gc_threads = heap->gc_task_manager()->active_workers();
jcoomes@810 2307 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
jmasa@3294 2308 ParallelTaskTerminator terminator(active_gc_threads, qset);
duke@435 2309
duke@435 2310 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
duke@435 2311 PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
duke@435 2312
coleenp@4037 2313 // Need new claim bits before marking starts.
coleenp@4037 2314 ClassLoaderDataGraph::clear_claimed_marks();
coleenp@4037 2315
duke@435 2316 {
duke@435 2317 TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
jrose@1424 2318 ParallelScavengeHeap::ParStrongRootsScope psrs;
duke@435 2319
duke@435 2320 GCTaskQueue* q = GCTaskQueue::create();
duke@435 2321
duke@435 2322 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
duke@435 2323 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
duke@435 2324 // We scan the thread roots in parallel
duke@435 2325 Threads::create_thread_roots_marking_tasks(q);
duke@435 2326 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
duke@435 2327 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
duke@435 2328 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
duke@435 2329 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
duke@435 2330 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
jrose@1424 2331 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
duke@435 2332
jmasa@3294 2333 if (active_gc_threads > 1) {
jmasa@3294 2334 for (uint j = 0; j < active_gc_threads; j++) {
duke@435 2335 q->enqueue(new StealMarkingTask(&terminator));
duke@435 2336 }
duke@435 2337 }
duke@435 2338
jmasa@3294 2339 gc_task_manager()->execute_and_wait(q);
duke@435 2340 }
duke@435 2341
duke@435 2342 // Process reference objects found during marking
duke@435 2343 {
duke@435 2344 TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
duke@435 2345 if (ref_processor()->processing_is_mt()) {
duke@435 2346 RefProcTaskExecutor task_executor;
duke@435 2347 ref_processor()->process_discovered_references(
ysr@888 2348 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
ysr@888 2349 &task_executor);
duke@435 2350 } else {
duke@435 2351 ref_processor()->process_discovered_references(
ysr@888 2352 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
duke@435 2353 }
duke@435 2354 }
duke@435 2355
duke@435 2356 TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
duke@435 2357 // Follow system dictionary roots and unload classes.
duke@435 2358 bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
duke@435 2359
duke@435 2360 // Follow code cache roots.
brutisso@4098 2361 CodeCache::do_unloading(is_alive_closure(), purged_class);
jcoomes@1746 2362 cm->follow_marking_stacks(); // Flush marking stack.
duke@435 2363
duke@435 2364 // Update subklass/sibling/implementor links of live klasses
coleenp@4037 2365 Klass::clean_weak_klass_links(is_alive_closure());
duke@435 2366
coleenp@2497 2367 // Visit interned string tables and delete unmarked oops
duke@435 2368 StringTable::unlink(is_alive_closure());
coleenp@2497 2369 // Clean up unreferenced symbols in symbol table.
coleenp@2497 2370 SymbolTable::unlink();
duke@435 2371
jcoomes@1746 2372 assert(cm->marking_stacks_empty(), "marking stacks should be empty");
duke@435 2373 }
duke@435 2374
coleenp@4037 2375 void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
coleenp@4037 2376 ClassLoaderData* cld = klass->class_loader_data();
coleenp@4037 2377 // The actual processing of the klass is done when we
coleenp@4037 2378 // traverse the list of Klasses in the class loader data.
coleenp@4037 2379 PSParallelCompact::follow_class_loader(cm, cld);
coleenp@4037 2380 }
coleenp@4037 2381
coleenp@4037 2382 void PSParallelCompact::adjust_klass(ParCompactionManager* cm, Klass* klass) {
coleenp@4037 2383 ClassLoaderData* cld = klass->class_loader_data();
coleenp@4037 2384 // The actual processing of the klass is done when we
coleenp@4037 2385 // traverse the list of Klasses in the class loader data.
coleenp@4037 2386 PSParallelCompact::adjust_class_loader(cm, cld);
coleenp@4037 2387 }
coleenp@4037 2388
coleenp@4037 2389 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
coleenp@4037 2390 ClassLoaderData* cld) {
coleenp@4037 2391 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
coleenp@4037 2392 PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);
coleenp@4037 2393
coleenp@4037 2394 cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
coleenp@4037 2395 }
coleenp@4037 2396
coleenp@4037 2397 void PSParallelCompact::adjust_class_loader(ParCompactionManager* cm,
coleenp@4037 2398 ClassLoaderData* cld) {
stefank@5011 2399 cld->oops_do(PSParallelCompact::adjust_pointer_closure(),
coleenp@4037 2400 PSParallelCompact::adjust_klass_closure(),
coleenp@4037 2401 true);
coleenp@4037 2402 }
coleenp@4037 2403
duke@435 2404 // This should be moved to the shared markSweep code!
duke@435 2405 class PSAlwaysTrueClosure: public BoolObjectClosure {
duke@435 2406 public:
duke@435 2407 void do_object(oop p) { ShouldNotReachHere(); }
duke@435 2408 bool do_object_b(oop p) { return true; }
duke@435 2409 };
duke@435 2410 static PSAlwaysTrueClosure always_true;
duke@435 2411
duke@435 2412 void PSParallelCompact::adjust_roots() {
duke@435 2413 // Adjust the pointers to reflect the new locations
duke@435 2414 TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
duke@435 2415
coleenp@4037 2416 // Need new claim bits when tracing through and adjusting pointers.
coleenp@4037 2417 ClassLoaderDataGraph::clear_claimed_marks();
coleenp@4037 2418
duke@435 2419 // General strong roots.
stefank@5011 2420 Universe::oops_do(adjust_pointer_closure());
stefank@5011 2421 JNIHandles::oops_do(adjust_pointer_closure()); // Global (strong) JNI handles
stefank@5011 2422 CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
stefank@5011 2423 Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
stefank@5011 2424 ObjectSynchronizer::oops_do(adjust_pointer_closure());
stefank@5011 2425 FlatProfiler::oops_do(adjust_pointer_closure());
stefank@5011 2426 Management::oops_do(adjust_pointer_closure());
stefank@5011 2427 JvmtiExport::oops_do(adjust_pointer_closure());
duke@435 2428 // SO_AllClasses
stefank@5011 2429 SystemDictionary::oops_do(adjust_pointer_closure());
stefank@5011 2430 ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
duke@435 2431
duke@435 2432 // Now adjust pointers in remaining weak roots. (All of which should
duke@435 2433 // have been cleared if they pointed to non-surviving objects.)
duke@435 2434 // Global (weak) JNI handles
stefank@5011 2435 JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
duke@435 2436
duke@435 2437 CodeCache::oops_do(adjust_pointer_closure());
stefank@5011 2438 StringTable::oops_do(adjust_pointer_closure());
stefank@5011 2439 ref_processor()->weak_oops_do(adjust_pointer_closure());
duke@435 2440 // Roots were visited so references into the young gen in roots
duke@435 2441 // may have been scanned. Process them also.
duke@435 2442 // Should the reference processor have a span that excludes
duke@435 2443 // young gen objects?
stefank@5011 2444 PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
duke@435 2445 }
duke@435 2446
jcoomes@810 2447 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
jcoomes@810 2448 uint parallel_gc_threads)
jcoomes@810 2449 {
duke@435 2450 TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
duke@435 2451
jmasa@3294 2452 // Find the threads that are active
jmasa@3294 2453 unsigned int which = 0;
jmasa@3294 2454
jmasa@3294 2455 const uint task_count = MAX2(parallel_gc_threads, 1U);
jmasa@3294 2456 for (uint j = 0; j < task_count; j++) {
jmasa@2188 2457 q->enqueue(new DrainStacksCompactionTask(j));
jmasa@3294 2458 ParCompactionManager::verify_region_list_empty(j);
jmasa@3294 2459 // Set the region stacks variables to "no" region stack values
jmasa@3294 2460 // so that they will be recognized and needing a region stack
jmasa@3294 2461 // in the stealing tasks if they do not get one by executing
jmasa@3294 2462 // a draining stack.
jmasa@3294 2463 ParCompactionManager* cm = ParCompactionManager::manager_array(j);
jmasa@3294 2464 cm->set_region_stack(NULL);
jmasa@3294 2465 cm->set_region_stack_index((uint)max_uintx);
duke@435 2466 }
jmasa@3294 2467 ParCompactionManager::reset_recycled_stack_index();
duke@435 2468
jcoomes@810 2469 // Find all regions that are available (can be filled immediately) and
duke@435 2470 // distribute them to the thread stacks. The iteration is done in reverse
jcoomes@810 2471 // order (high to low) so the regions will be removed in ascending order.
duke@435 2472
duke@435 2473 const ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2474
jcoomes@810 2475 size_t fillable_regions = 0; // A count for diagnostic purposes.
jmasa@3294 2476 // A region index which corresponds to the tasks created above.
jmasa@3294 2477 // "which" must be 0 <= which < task_count
jmasa@3294 2478
jmasa@3294 2479 which = 0;
coleenp@4037 2480 // id + 1 is used to test termination so unsigned can
coleenp@4037 2481 // be used with an old_space_id == 0.
coleenp@4037 2482 for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
duke@435 2483 SpaceInfo* const space_info = _space_info + id;
duke@435 2484 MutableSpace* const space = space_info->space();
duke@435 2485 HeapWord* const new_top = space_info->new_top();
duke@435 2486
jcoomes@810 2487 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
jcoomes@810 2488 const size_t end_region =
jcoomes@810 2489 sd.addr_to_region_idx(sd.region_align_up(new_top));
coleenp@4037 2490
coleenp@4037 2491 for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
jcoomes@810 2492 if (sd.region(cur)->claim_unsafe()) {
jmasa@3294 2493 ParCompactionManager::region_list_push(which, cur);
duke@435 2494
duke@435 2495 if (TraceParallelOldGCCompactionPhase && Verbose) {
jcoomes@810 2496 const size_t count_mod_8 = fillable_regions & 7;
duke@435 2497 if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
jcoomes@699 2498 gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
duke@435 2499 if (count_mod_8 == 7) gclog_or_tty->cr();
duke@435 2500 }
duke@435 2501
jcoomes@810 2502 NOT_PRODUCT(++fillable_regions;)
jcoomes@810 2503
jmasa@3294 2504 // Assign regions to tasks in round-robin fashion.
duke@435 2505 if (++which == task_count) {
jmasa@3294 2506 assert(which <= parallel_gc_threads,
jmasa@3294 2507 "Inconsistent number of workers");
duke@435 2508 which = 0;
duke@435 2509 }
duke@435 2510 }
duke@435 2511 }
duke@435 2512 }
duke@435 2513
duke@435 2514 if (TraceParallelOldGCCompactionPhase) {
jcoomes@810 2515 if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
jcoomes@810 2516 gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
duke@435 2517 }
duke@435 2518 }
duke@435 2519
duke@435 2520 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
duke@435 2521
duke@435 2522 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
duke@435 2523 uint parallel_gc_threads) {
duke@435 2524 TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
duke@435 2525
duke@435 2526 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2527
duke@435 2528 // Iterate over all the spaces adding tasks for updating
jcoomes@810 2529 // regions in the dense prefix. Assume that 1 gc thread
duke@435 2530 // will work on opening the gaps and the remaining gc threads
duke@435 2531 // will work on the dense prefix.
jcoomes@917 2532 unsigned int space_id;
jcoomes@917 2533 for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
duke@435 2534 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
duke@435 2535 const MutableSpace* const space = _space_info[space_id].space();
duke@435 2536
duke@435 2537 if (dense_prefix_end == space->bottom()) {
duke@435 2538 // There is no dense prefix for this space.
duke@435 2539 continue;
duke@435 2540 }
duke@435 2541
jcoomes@810 2542 // The dense prefix is before this region.
jcoomes@810 2543 size_t region_index_end_dense_prefix =
jcoomes@810 2544 sd.addr_to_region_idx(dense_prefix_end);
jcoomes@810 2545 RegionData* const dense_prefix_cp =
jcoomes@810 2546 sd.region(region_index_end_dense_prefix);
duke@435 2547 assert(dense_prefix_end == space->end() ||
duke@435 2548 dense_prefix_cp->available() ||
duke@435 2549 dense_prefix_cp->claimed(),
jcoomes@810 2550 "The region after the dense prefix should always be ready to fill");
jcoomes@810 2551
jcoomes@810 2552 size_t region_index_start = sd.addr_to_region_idx(space->bottom());
duke@435 2553
duke@435 2554 // Is there dense prefix work?
jcoomes@810 2555 size_t total_dense_prefix_regions =
jcoomes@810 2556 region_index_end_dense_prefix - region_index_start;
jcoomes@810 2557 // How many regions of the dense prefix should be given to
duke@435 2558 // each thread?
jcoomes@810 2559 if (total_dense_prefix_regions > 0) {
duke@435 2560 uint tasks_for_dense_prefix = 1;
jcoomes@2783 2561 if (total_dense_prefix_regions <=
jcoomes@2783 2562 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
jcoomes@2783 2563 // Don't over partition. This assumes that
jcoomes@2783 2564 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
jcoomes@2783 2565 // so there are not many regions to process.
jcoomes@2783 2566 tasks_for_dense_prefix = parallel_gc_threads;
jcoomes@2783 2567 } else {
jcoomes@2783 2568 // Over partition
jcoomes@2783 2569 tasks_for_dense_prefix = parallel_gc_threads *
jcoomes@2783 2570 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
duke@435 2571 }
jcoomes@810 2572 size_t regions_per_thread = total_dense_prefix_regions /
duke@435 2573 tasks_for_dense_prefix;
jcoomes@810 2574 // Give each thread at least 1 region.
jcoomes@810 2575 if (regions_per_thread == 0) {
jcoomes@810 2576 regions_per_thread = 1;
duke@435 2577 }
duke@435 2578
duke@435 2579 for (uint k = 0; k < tasks_for_dense_prefix; k++) {
jcoomes@810 2580 if (region_index_start >= region_index_end_dense_prefix) {
duke@435 2581 break;
duke@435 2582 }
jcoomes@810 2583 // region_index_end is not processed
jcoomes@810 2584 size_t region_index_end = MIN2(region_index_start + regions_per_thread,
jcoomes@810 2585 region_index_end_dense_prefix);
jcoomes@917 2586 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2587 region_index_start,
jcoomes@917 2588 region_index_end));
jcoomes@810 2589 region_index_start = region_index_end;
duke@435 2590 }
duke@435 2591 }
duke@435 2592 // This gets any part of the dense prefix that did not
duke@435 2593 // fit evenly.
jcoomes@810 2594 if (region_index_start < region_index_end_dense_prefix) {
jcoomes@917 2595 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2596 region_index_start,
jcoomes@917 2597 region_index_end_dense_prefix));
duke@435 2598 }
jcoomes@917 2599 }
duke@435 2600 }
duke@435 2601
jcoomes@810 2602 void PSParallelCompact::enqueue_region_stealing_tasks(
duke@435 2603 GCTaskQueue* q,
duke@435 2604 ParallelTaskTerminator* terminator_ptr,
duke@435 2605 uint parallel_gc_threads) {
duke@435 2606 TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
duke@435 2607
jcoomes@810 2608 // Once a thread has drained it's stack, it should try to steal regions from
duke@435 2609 // other threads.
duke@435 2610 if (parallel_gc_threads > 1) {
duke@435 2611 for (uint j = 0; j < parallel_gc_threads; j++) {
jcoomes@810 2612 q->enqueue(new StealRegionCompactionTask(terminator_ptr));
duke@435 2613 }
duke@435 2614 }
duke@435 2615 }
duke@435 2616
duke@435 2617 void PSParallelCompact::compact() {
duke@435 2618 // trace("5");
duke@435 2619 TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
duke@435 2620
duke@435 2621 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 2622 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 2623 PSOldGen* old_gen = heap->old_gen();
duke@435 2624 old_gen->start_array()->reset();
duke@435 2625 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jmasa@3294 2626 uint active_gc_threads = heap->gc_task_manager()->active_workers();
jcoomes@810 2627 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
jmasa@3294 2628 ParallelTaskTerminator terminator(active_gc_threads, qset);
duke@435 2629
duke@435 2630 GCTaskQueue* q = GCTaskQueue::create();
jmasa@3294 2631 enqueue_region_draining_tasks(q, active_gc_threads);
jmasa@3294 2632 enqueue_dense_prefix_tasks(q, active_gc_threads);
jmasa@3294 2633 enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
duke@435 2634
duke@435 2635 {
duke@435 2636 TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
duke@435 2637
jmasa@3294 2638 gc_task_manager()->execute_and_wait(q);
duke@435 2639
duke@435 2640 #ifdef ASSERT
jcoomes@810 2641 // Verify that all regions have been processed before the deferred updates.
duke@435 2642 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2643 verify_complete(SpaceId(id));
duke@435 2644 }
duke@435 2645 #endif
duke@435 2646 }
duke@435 2647
duke@435 2648 {
duke@435 2649 // Update the deferred objects, if any. Any compaction manager can be used.
duke@435 2650 TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
duke@435 2651 ParCompactionManager* cm = ParCompactionManager::manager_array(0);
duke@435 2652 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2653 update_deferred_objects(cm, SpaceId(id));
duke@435 2654 }
duke@435 2655 }
duke@435 2656 }
duke@435 2657
duke@435 2658 #ifdef ASSERT
duke@435 2659 void PSParallelCompact::verify_complete(SpaceId space_id) {
jcoomes@810 2660 // All Regions between space bottom() to new_top() should be marked as filled
jcoomes@810 2661 // and all Regions between new_top() and top() should be available (i.e.,
duke@435 2662 // should have been emptied).
duke@435 2663 ParallelCompactData& sd = summary_data();
duke@435 2664 SpaceInfo si = _space_info[space_id];
jcoomes@810 2665 HeapWord* new_top_addr = sd.region_align_up(si.new_top());
jcoomes@810 2666 HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
jcoomes@810 2667 const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
jcoomes@810 2668 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
jcoomes@810 2669 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
duke@435 2670
duke@435 2671 bool issued_a_warning = false;
duke@435 2672
jcoomes@810 2673 size_t cur_region;
jcoomes@810 2674 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
jcoomes@810 2675 const RegionData* const c = sd.region(cur_region);
duke@435 2676 if (!c->completed()) {
jcoomes@810 2677 warning("region " SIZE_FORMAT " not filled: "
duke@435 2678 "destination_count=" SIZE_FORMAT,
jcoomes@810 2679 cur_region, c->destination_count());
duke@435 2680 issued_a_warning = true;
duke@435 2681 }
duke@435 2682 }
duke@435 2683
jcoomes@810 2684 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
jcoomes@810 2685 const RegionData* const c = sd.region(cur_region);
duke@435 2686 if (!c->available()) {
jcoomes@810 2687 warning("region " SIZE_FORMAT " not empty: "
duke@435 2688 "destination_count=" SIZE_FORMAT,
jcoomes@810 2689 cur_region, c->destination_count());
duke@435 2690 issued_a_warning = true;
duke@435 2691 }
duke@435 2692 }
duke@435 2693
duke@435 2694 if (issued_a_warning) {
jcoomes@810 2695 print_region_ranges();
duke@435 2696 }
duke@435 2697 }
duke@435 2698 #endif // #ifdef ASSERT
duke@435 2699
jcoomes@810 2700 // Update interior oops in the ranges of regions [beg_region, end_region).
duke@435 2701 void
duke@435 2702 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
duke@435 2703 SpaceId space_id,
jcoomes@810 2704 size_t beg_region,
jcoomes@810 2705 size_t end_region) {
duke@435 2706 ParallelCompactData& sd = summary_data();
duke@435 2707 ParMarkBitMap* const mbm = mark_bitmap();
duke@435 2708
jcoomes@810 2709 HeapWord* beg_addr = sd.region_to_addr(beg_region);
jcoomes@810 2710 HeapWord* const end_addr = sd.region_to_addr(end_region);
jcoomes@810 2711 assert(beg_region <= end_region, "bad region range");
duke@435 2712 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
duke@435 2713
duke@435 2714 #ifdef ASSERT
jcoomes@810 2715 // Claim the regions to avoid triggering an assert when they are marked as
duke@435 2716 // filled.
jcoomes@810 2717 for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
jcoomes@810 2718 assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
duke@435 2719 }
duke@435 2720 #endif // #ifdef ASSERT
duke@435 2721
duke@435 2722 if (beg_addr != space(space_id)->bottom()) {
duke@435 2723 // Find the first live object or block of dead space that *starts* in this
jcoomes@810 2724 // range of regions. If a partial object crosses onto the region, skip it;
jcoomes@810 2725 // it will be marked for 'deferred update' when the object head is
jcoomes@810 2726 // processed. If dead space crosses onto the region, it is also skipped; it
jcoomes@810 2727 // will be filled when the prior region is processed. If neither of those
jcoomes@810 2728 // apply, the first word in the region is the start of a live object or dead
jcoomes@810 2729 // space.
duke@435 2730 assert(beg_addr > space(space_id)->bottom(), "sanity");
jcoomes@810 2731 const RegionData* const cp = sd.region(beg_region);
duke@435 2732 if (cp->partial_obj_size() != 0) {
jcoomes@810 2733 beg_addr = sd.partial_obj_end(beg_region);
duke@435 2734 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
duke@435 2735 beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
duke@435 2736 }
duke@435 2737 }
duke@435 2738
duke@435 2739 if (beg_addr < end_addr) {
jcoomes@810 2740 // A live object or block of dead space starts in this range of Regions.
duke@435 2741 HeapWord* const dense_prefix_end = dense_prefix(space_id);
duke@435 2742
duke@435 2743 // Create closures and iterate.
duke@435 2744 UpdateOnlyClosure update_closure(mbm, cm, space_id);
duke@435 2745 FillClosure fill_closure(cm, space_id);
duke@435 2746 ParMarkBitMap::IterationStatus status;
duke@435 2747 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
duke@435 2748 dense_prefix_end);
duke@435 2749 if (status == ParMarkBitMap::incomplete) {
duke@435 2750 update_closure.do_addr(update_closure.source());
duke@435 2751 }
duke@435 2752 }
duke@435 2753
jcoomes@810 2754 // Mark the regions as filled.
jcoomes@810 2755 RegionData* const beg_cp = sd.region(beg_region);
jcoomes@810 2756 RegionData* const end_cp = sd.region(end_region);
jcoomes@810 2757 for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
duke@435 2758 cp->set_completed();
duke@435 2759 }
duke@435 2760 }
duke@435 2761
duke@435 2762 // Return the SpaceId for the space containing addr. If addr is not in the
duke@435 2763 // heap, last_space_id is returned. In debug mode it expects the address to be
duke@435 2764 // in the heap and asserts such.
duke@435 2765 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
duke@435 2766 assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
duke@435 2767
coleenp@4037 2768 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2769 if (_space_info[id].space()->contains(addr)) {
duke@435 2770 return SpaceId(id);
duke@435 2771 }
duke@435 2772 }
duke@435 2773
duke@435 2774 assert(false, "no space contains the addr");
duke@435 2775 return last_space_id;
duke@435 2776 }
duke@435 2777
duke@435 2778 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
duke@435 2779 SpaceId id) {
duke@435 2780 assert(id < last_space_id, "bad space id");
duke@435 2781
duke@435 2782 ParallelCompactData& sd = summary_data();
duke@435 2783 const SpaceInfo* const space_info = _space_info + id;
duke@435 2784 ObjectStartArray* const start_array = space_info->start_array();
duke@435 2785
duke@435 2786 const MutableSpace* const space = space_info->space();
duke@435 2787 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
duke@435 2788 HeapWord* const beg_addr = space_info->dense_prefix();
jcoomes@810 2789 HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
jcoomes@810 2790
jcoomes@810 2791 const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
jcoomes@810 2792 const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
jcoomes@810 2793 const RegionData* cur_region;
jcoomes@810 2794 for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
jcoomes@810 2795 HeapWord* const addr = cur_region->deferred_obj_addr();
duke@435 2796 if (addr != NULL) {
duke@435 2797 if (start_array != NULL) {
duke@435 2798 start_array->allocate_block(addr);
duke@435 2799 }
duke@435 2800 oop(addr)->update_contents(cm);
duke@435 2801 assert(oop(addr)->is_oop_or_null(), "should be an oop now");
duke@435 2802 }
duke@435 2803 }
duke@435 2804 }
duke@435 2805
duke@435 2806 // Skip over count live words starting from beg, and return the address of the
duke@435 2807 // next live word. Unless marked, the word corresponding to beg is assumed to
duke@435 2808 // be dead. Callers must either ensure beg does not correspond to the middle of
duke@435 2809 // an object, or account for those live words in some other way. Callers must
duke@435 2810 // also ensure that there are enough live words in the range [beg, end) to skip.
duke@435 2811 HeapWord*
duke@435 2812 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
duke@435 2813 {
duke@435 2814 assert(count > 0, "sanity");
duke@435 2815
duke@435 2816 ParMarkBitMap* m = mark_bitmap();
duke@435 2817 idx_t bits_to_skip = m->words_to_bits(count);
duke@435 2818 idx_t cur_beg = m->addr_to_bit(beg);
duke@435 2819 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
duke@435 2820
duke@435 2821 do {
duke@435 2822 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 2823 idx_t cur_end = m->find_obj_end(cur_beg, search_end);
duke@435 2824 const size_t obj_bits = cur_end - cur_beg + 1;
duke@435 2825 if (obj_bits > bits_to_skip) {
duke@435 2826 return m->bit_to_addr(cur_beg + bits_to_skip);
duke@435 2827 }
duke@435 2828 bits_to_skip -= obj_bits;
duke@435 2829 cur_beg = cur_end + 1;
duke@435 2830 } while (bits_to_skip > 0);
duke@435 2831
duke@435 2832 // Skipping the desired number of words landed just past the end of an object.
duke@435 2833 // Find the start of the next object.
duke@435 2834 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 2835 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
duke@435 2836 return m->bit_to_addr(cur_beg);
duke@435 2837 }
duke@435 2838
jcoomes@917 2839 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
jcoomes@917 2840 SpaceId src_space_id,
jcoomes@917 2841 size_t src_region_idx)
duke@435 2842 {
jcoomes@917 2843 assert(summary_data().is_region_aligned(dest_addr), "not aligned");
jcoomes@917 2844
jcoomes@917 2845 const SplitInfo& split_info = _space_info[src_space_id].split_info();
jcoomes@917 2846 if (split_info.dest_region_addr() == dest_addr) {
jcoomes@917 2847 // The partial object ending at the split point contains the first word to
jcoomes@917 2848 // be copied to dest_addr.
jcoomes@917 2849 return split_info.first_src_addr();
jcoomes@917 2850 }
jcoomes@917 2851
jcoomes@917 2852 const ParallelCompactData& sd = summary_data();
duke@435 2853 ParMarkBitMap* const bitmap = mark_bitmap();
jcoomes@810 2854 const size_t RegionSize = ParallelCompactData::RegionSize;
jcoomes@810 2855
jcoomes@810 2856 assert(sd.is_region_aligned(dest_addr), "not aligned");
jcoomes@810 2857 const RegionData* const src_region_ptr = sd.region(src_region_idx);
jcoomes@810 2858 const size_t partial_obj_size = src_region_ptr->partial_obj_size();
jcoomes@810 2859 HeapWord* const src_region_destination = src_region_ptr->destination();
jcoomes@810 2860
jcoomes@810 2861 assert(dest_addr >= src_region_destination, "wrong src region");
jcoomes@810 2862 assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
jcoomes@810 2863
jcoomes@810 2864 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
jcoomes@810 2865 HeapWord* const src_region_end = src_region_beg + RegionSize;
jcoomes@810 2866
jcoomes@810 2867 HeapWord* addr = src_region_beg;
jcoomes@810 2868 if (dest_addr == src_region_destination) {
jcoomes@810 2869 // Return the first live word in the source region.
duke@435 2870 if (partial_obj_size == 0) {
jcoomes@810 2871 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 2872 assert(addr < src_region_end, "no objects start in src region");
duke@435 2873 }
duke@435 2874 return addr;
duke@435 2875 }
duke@435 2876
duke@435 2877 // Must skip some live data.
jcoomes@810 2878 size_t words_to_skip = dest_addr - src_region_destination;
jcoomes@810 2879 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
duke@435 2880
duke@435 2881 if (partial_obj_size >= words_to_skip) {
duke@435 2882 // All the live words to skip are part of the partial object.
duke@435 2883 addr += words_to_skip;
duke@435 2884 if (partial_obj_size == words_to_skip) {
duke@435 2885 // Find the first live word past the partial object.
jcoomes@810 2886 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 2887 assert(addr < src_region_end, "wrong src region");
duke@435 2888 }
duke@435 2889 return addr;
duke@435 2890 }
duke@435 2891
duke@435 2892 // Skip over the partial object (if any).
duke@435 2893 if (partial_obj_size != 0) {
duke@435 2894 words_to_skip -= partial_obj_size;
duke@435 2895 addr += partial_obj_size;
duke@435 2896 }
duke@435 2897
jcoomes@810 2898 // Skip over live words due to objects that start in the region.
jcoomes@810 2899 addr = skip_live_words(addr, src_region_end, words_to_skip);
jcoomes@810 2900 assert(addr < src_region_end, "wrong src region");
duke@435 2901 return addr;
duke@435 2902 }
duke@435 2903
duke@435 2904 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
jcoomes@930 2905 SpaceId src_space_id,
jcoomes@810 2906 size_t beg_region,
duke@435 2907 HeapWord* end_addr)
duke@435 2908 {
duke@435 2909 ParallelCompactData& sd = summary_data();
jcoomes@930 2910
jcoomes@930 2911 #ifdef ASSERT
jcoomes@930 2912 MutableSpace* const src_space = _space_info[src_space_id].space();
jcoomes@930 2913 HeapWord* const beg_addr = sd.region_to_addr(beg_region);
jcoomes@930 2914 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
jcoomes@930 2915 "src_space_id does not match beg_addr");
jcoomes@930 2916 assert(src_space->contains(end_addr) || end_addr == src_space->end(),
jcoomes@930 2917 "src_space_id does not match end_addr");
jcoomes@930 2918 #endif // #ifdef ASSERT
jcoomes@930 2919
jcoomes@810 2920 RegionData* const beg = sd.region(beg_region);
jcoomes@930 2921 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
jcoomes@930 2922
jcoomes@930 2923 // Regions up to new_top() are enqueued if they become available.
jcoomes@930 2924 HeapWord* const new_top = _space_info[src_space_id].new_top();
jcoomes@930 2925 RegionData* const enqueue_end =
jcoomes@930 2926 sd.addr_to_region_ptr(sd.region_align_up(new_top));
jcoomes@930 2927
jcoomes@930 2928 for (RegionData* cur = beg; cur < end; ++cur) {
jcoomes@810 2929 assert(cur->data_size() > 0, "region must have live data");
duke@435 2930 cur->decrement_destination_count();
jcoomes@930 2931 if (cur < enqueue_end && cur->available() && cur->claim()) {
jcoomes@1993 2932 cm->push_region(sd.region(cur));
duke@435 2933 }
duke@435 2934 }
duke@435 2935 }
duke@435 2936
jcoomes@810 2937 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
jcoomes@810 2938 SpaceId& src_space_id,
jcoomes@810 2939 HeapWord*& src_space_top,
jcoomes@810 2940 HeapWord* end_addr)
duke@435 2941 {
jcoomes@810 2942 typedef ParallelCompactData::RegionData RegionData;
duke@435 2943
duke@435 2944 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 2945 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 2946
jcoomes@810 2947 size_t src_region_idx = 0;
jcoomes@810 2948
jcoomes@810 2949 // Skip empty regions (if any) up to the top of the space.
jcoomes@810 2950 HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
jcoomes@810 2951 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
jcoomes@810 2952 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
jcoomes@810 2953 const RegionData* const top_region_ptr =
jcoomes@810 2954 sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 2955 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
jcoomes@810 2956 ++src_region_ptr;
duke@435 2957 }
duke@435 2958
jcoomes@810 2959 if (src_region_ptr < top_region_ptr) {
jcoomes@810 2960 // The next source region is in the current space. Update src_region_idx
jcoomes@810 2961 // and the source address to match src_region_ptr.
jcoomes@810 2962 src_region_idx = sd.region(src_region_ptr);
jcoomes@810 2963 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
jcoomes@810 2964 if (src_region_addr > closure.source()) {
jcoomes@810 2965 closure.set_source(src_region_addr);
duke@435 2966 }
jcoomes@810 2967 return src_region_idx;
duke@435 2968 }
duke@435 2969
jcoomes@810 2970 // Switch to a new source space and find the first non-empty region.
duke@435 2971 unsigned int space_id = src_space_id + 1;
duke@435 2972 assert(space_id < last_space_id, "not enough spaces");
duke@435 2973
duke@435 2974 HeapWord* const destination = closure.destination();
duke@435 2975
duke@435 2976 do {
duke@435 2977 MutableSpace* space = _space_info[space_id].space();
duke@435 2978 HeapWord* const bottom = space->bottom();
jcoomes@810 2979 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
duke@435 2980
duke@435 2981 // Iterate over the spaces that do not compact into themselves.
duke@435 2982 if (bottom_cp->destination() != bottom) {
jcoomes@810 2983 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 2984 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 2985
jcoomes@810 2986 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
duke@435 2987 if (src_cp->live_obj_size() > 0) {
duke@435 2988 // Found it.
duke@435 2989 assert(src_cp->destination() == destination,
duke@435 2990 "first live obj in the space must match the destination");
duke@435 2991 assert(src_cp->partial_obj_size() == 0,
duke@435 2992 "a space cannot begin with a partial obj");
duke@435 2993
duke@435 2994 src_space_id = SpaceId(space_id);
duke@435 2995 src_space_top = space->top();
jcoomes@810 2996 const size_t src_region_idx = sd.region(src_cp);
jcoomes@810 2997 closure.set_source(sd.region_to_addr(src_region_idx));
jcoomes@810 2998 return src_region_idx;
duke@435 2999 } else {
duke@435 3000 assert(src_cp->data_size() == 0, "sanity");
duke@435 3001 }
duke@435 3002 }
duke@435 3003 }
duke@435 3004 } while (++space_id < last_space_id);
duke@435 3005
jcoomes@810 3006 assert(false, "no source region was found");
duke@435 3007 return 0;
duke@435 3008 }
duke@435 3009
jcoomes@810 3010 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
duke@435 3011 {
duke@435 3012 typedef ParMarkBitMap::IterationStatus IterationStatus;
jcoomes@810 3013 const size_t RegionSize = ParallelCompactData::RegionSize;
duke@435 3014 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3015 ParallelCompactData& sd = summary_data();
jcoomes@810 3016 RegionData* const region_ptr = sd.region(region_idx);
duke@435 3017
duke@435 3018 // Get the items needed to construct the closure.
jcoomes@810 3019 HeapWord* dest_addr = sd.region_to_addr(region_idx);
duke@435 3020 SpaceId dest_space_id = space_id(dest_addr);
duke@435 3021 ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
duke@435 3022 HeapWord* new_top = _space_info[dest_space_id].new_top();
duke@435 3023 assert(dest_addr < new_top, "sanity");
jcoomes@810 3024 const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
jcoomes@810 3025
jcoomes@810 3026 // Get the source region and related info.
jcoomes@810 3027 size_t src_region_idx = region_ptr->source_region();
jcoomes@810 3028 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
duke@435 3029 HeapWord* src_space_top = _space_info[src_space_id].space()->top();
duke@435 3030
duke@435 3031 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
jcoomes@917 3032 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
jcoomes@810 3033
jcoomes@810 3034 // Adjust src_region_idx to prepare for decrementing destination counts (the
jcoomes@810 3035 // destination count is not decremented when a region is copied to itself).
jcoomes@810 3036 if (src_region_idx == region_idx) {
jcoomes@810 3037 src_region_idx += 1;
duke@435 3038 }
duke@435 3039
duke@435 3040 if (bitmap->is_unmarked(closure.source())) {
duke@435 3041 // The first source word is in the middle of an object; copy the remainder
duke@435 3042 // of the object or as much as will fit. The fact that pointer updates were
duke@435 3043 // deferred will be noted when the object header is processed.
duke@435 3044 HeapWord* const old_src_addr = closure.source();
duke@435 3045 closure.copy_partial_obj();
duke@435 3046 if (closure.is_full()) {
jcoomes@930 3047 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3048 closure.source());
jcoomes@810 3049 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3050 region_ptr->set_completed();
duke@435 3051 return;
duke@435 3052 }
duke@435 3053
jcoomes@810 3054 HeapWord* const end_addr = sd.region_align_down(closure.source());
jcoomes@810 3055 if (sd.region_align_down(old_src_addr) != end_addr) {
jcoomes@810 3056 // The partial object was copied from more than one source region.
jcoomes@930 3057 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
jcoomes@810 3058
jcoomes@810 3059 // Move to the next source region, possibly switching spaces as well. All
duke@435 3060 // args except end_addr may be modified.
jcoomes@810 3061 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3062 end_addr);
duke@435 3063 }
duke@435 3064 }
duke@435 3065
duke@435 3066 do {
duke@435 3067 HeapWord* const cur_addr = closure.source();
jcoomes@810 3068 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
duke@435 3069 src_space_top);
duke@435 3070 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
duke@435 3071
duke@435 3072 if (status == ParMarkBitMap::incomplete) {
jcoomes@810 3073 // The last obj that starts in the source region does not end in the
jcoomes@810 3074 // region.
jcoomes@1844 3075 assert(closure.source() < end_addr, "sanity");
duke@435 3076 HeapWord* const obj_beg = closure.source();
duke@435 3077 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
duke@435 3078 src_space_top);
duke@435 3079 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
duke@435 3080 if (obj_end < range_end) {
duke@435 3081 // The end was found; the entire object will fit.
duke@435 3082 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
duke@435 3083 assert(status != ParMarkBitMap::would_overflow, "sanity");
duke@435 3084 } else {
duke@435 3085 // The end was not found; the object will not fit.
duke@435 3086 assert(range_end < src_space_top, "obj cannot cross space boundary");
duke@435 3087 status = ParMarkBitMap::would_overflow;
duke@435 3088 }
duke@435 3089 }
duke@435 3090
duke@435 3091 if (status == ParMarkBitMap::would_overflow) {
duke@435 3092 // The last object did not fit. Note that interior oop updates were
jcoomes@810 3093 // deferred, then copy enough of the object to fill the region.
jcoomes@810 3094 region_ptr->set_deferred_obj_addr(closure.destination());
duke@435 3095 status = closure.copy_until_full(); // copies from closure.source()
duke@435 3096
jcoomes@930 3097 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3098 closure.source());
jcoomes@810 3099 region_ptr->set_completed();
duke@435 3100 return;
duke@435 3101 }
duke@435 3102
duke@435 3103 if (status == ParMarkBitMap::full) {
jcoomes@930 3104 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3105 closure.source());
jcoomes@810 3106 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3107 region_ptr->set_completed();
duke@435 3108 return;
duke@435 3109 }
duke@435 3110
jcoomes@930 3111 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
jcoomes@810 3112
jcoomes@810 3113 // Move to the next source region, possibly switching spaces as well. All
duke@435 3114 // args except end_addr may be modified.
jcoomes@810 3115 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3116 end_addr);
duke@435 3117 } while (true);
duke@435 3118 }
duke@435 3119
duke@435 3120 void
duke@435 3121 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
duke@435 3122 const MutableSpace* sp = space(space_id);
duke@435 3123 if (sp->is_empty()) {
duke@435 3124 return;
duke@435 3125 }
duke@435 3126
duke@435 3127 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 3128 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3129 HeapWord* const dp_addr = dense_prefix(space_id);
duke@435 3130 HeapWord* beg_addr = sp->bottom();
duke@435 3131 HeapWord* end_addr = sp->top();
duke@435 3132
duke@435 3133 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
duke@435 3134
jcoomes@810 3135 const size_t beg_region = sd.addr_to_region_idx(beg_addr);
jcoomes@810 3136 const size_t dp_region = sd.addr_to_region_idx(dp_addr);
jcoomes@810 3137 if (beg_region < dp_region) {
jcoomes@810 3138 update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
duke@435 3139 }
duke@435 3140
jcoomes@810 3141 // The destination of the first live object that starts in the region is one
jcoomes@810 3142 // past the end of the partial object entering the region (if any).
jcoomes@810 3143 HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
duke@435 3144 HeapWord* const new_top = _space_info[space_id].new_top();
duke@435 3145 assert(new_top >= dest_addr, "bad new_top value");
duke@435 3146 const size_t words = pointer_delta(new_top, dest_addr);
duke@435 3147
duke@435 3148 if (words > 0) {
duke@435 3149 ObjectStartArray* start_array = _space_info[space_id].start_array();
duke@435 3150 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
duke@435 3151
duke@435 3152 ParMarkBitMap::IterationStatus status;
duke@435 3153 status = bitmap->iterate(&closure, dest_addr, end_addr);
duke@435 3154 assert(status == ParMarkBitMap::full, "iteration not complete");
duke@435 3155 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
duke@435 3156 "live objects skipped because closure is full");
duke@435 3157 }
duke@435 3158 }
duke@435 3159
duke@435 3160 jlong PSParallelCompact::millis_since_last_gc() {
johnc@3339 3161 // We need a monotonically non-deccreasing time in ms but
johnc@3339 3162 // os::javaTimeMillis() does not guarantee monotonicity.
johnc@3339 3163 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
johnc@3339 3164 jlong ret_val = now - _time_of_last_gc;
duke@435 3165 // XXX See note in genCollectedHeap::millis_since_last_gc().
duke@435 3166 if (ret_val < 0) {
johnc@3339 3167 NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
duke@435 3168 return 0;
duke@435 3169 }
duke@435 3170 return ret_val;
duke@435 3171 }
duke@435 3172
duke@435 3173 void PSParallelCompact::reset_millis_since_last_gc() {
johnc@3339 3174 // We need a monotonically non-deccreasing time in ms but
johnc@3339 3175 // os::javaTimeMillis() does not guarantee monotonicity.
johnc@3339 3176 _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
duke@435 3177 }
duke@435 3178
duke@435 3179 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
duke@435 3180 {
duke@435 3181 if (source() != destination()) {
jcoomes@930 3182 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3183 Copy::aligned_conjoint_words(source(), destination(), words_remaining());
duke@435 3184 }
duke@435 3185 update_state(words_remaining());
duke@435 3186 assert(is_full(), "sanity");
duke@435 3187 return ParMarkBitMap::full;
duke@435 3188 }
duke@435 3189
duke@435 3190 void MoveAndUpdateClosure::copy_partial_obj()
duke@435 3191 {
duke@435 3192 size_t words = words_remaining();
duke@435 3193
duke@435 3194 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
duke@435 3195 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
duke@435 3196 if (end_addr < range_end) {
duke@435 3197 words = bitmap()->obj_size(source(), end_addr);
duke@435 3198 }
duke@435 3199
duke@435 3200 // This test is necessary; if omitted, the pointer updates to a partial object
duke@435 3201 // that crosses the dense prefix boundary could be overwritten.
duke@435 3202 if (source() != destination()) {
jcoomes@930 3203 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3204 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3205 }
duke@435 3206 update_state(words);
duke@435 3207 }
duke@435 3208
duke@435 3209 ParMarkBitMapClosure::IterationStatus
duke@435 3210 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3211 assert(destination() != NULL, "sanity");
duke@435 3212 assert(bitmap()->obj_size(addr) == words, "bad size");
duke@435 3213
duke@435 3214 _source = addr;
duke@435 3215 assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
duke@435 3216 destination(), "wrong destination");
duke@435 3217
duke@435 3218 if (words > words_remaining()) {
duke@435 3219 return ParMarkBitMap::would_overflow;
duke@435 3220 }
duke@435 3221
duke@435 3222 // The start_array must be updated even if the object is not moving.
duke@435 3223 if (_start_array != NULL) {
duke@435 3224 _start_array->allocate_block(destination());
duke@435 3225 }
duke@435 3226
duke@435 3227 if (destination() != source()) {
jcoomes@930 3228 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3229 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3230 }
duke@435 3231
duke@435 3232 oop moved_oop = (oop) destination();
duke@435 3233 moved_oop->update_contents(compaction_manager());
duke@435 3234 assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
duke@435 3235
duke@435 3236 update_state(words);
duke@435 3237 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
duke@435 3238 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
duke@435 3239 }
duke@435 3240
duke@435 3241 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
duke@435 3242 ParCompactionManager* cm,
duke@435 3243 PSParallelCompact::SpaceId space_id) :
duke@435 3244 ParMarkBitMapClosure(mbm, cm),
duke@435 3245 _space_id(space_id),
duke@435 3246 _start_array(PSParallelCompact::start_array(space_id))
duke@435 3247 {
duke@435 3248 }
duke@435 3249
duke@435 3250 // Updates the references in the object to their new values.
duke@435 3251 ParMarkBitMapClosure::IterationStatus
duke@435 3252 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3253 do_addr(addr);
duke@435 3254 return ParMarkBitMap::incomplete;
duke@435 3255 }

mercurial