src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Thu, 18 Dec 2008 10:54:01 -0800

author
jcoomes
date
Thu, 18 Dec 2008 10:54:01 -0800
changeset 931
b27c885f75f9
parent 930
234c22e54b98
child 981
05c6d52fa7a9
permissions
-rw-r--r--

6786188: par compact - "SplitALot" stress mode should fill to_space
Reviewed-by: jmasa, tonyp

duke@435 1 /*
xdono@631 2 * Copyright 2005-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_psParallelCompact.cpp.incl"
duke@435 27
duke@435 28 #include <math.h>
duke@435 29
duke@435 30 // All sizes are in HeapWords.
jcoomes@810 31 const size_t ParallelCompactData::Log2RegionSize = 9; // 512 words
jcoomes@810 32 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize;
jcoomes@810 33 const size_t ParallelCompactData::RegionSizeBytes =
jcoomes@810 34 RegionSize << LogHeapWordSize;
jcoomes@810 35 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
jcoomes@810 36 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
jcoomes@810 37 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask;
duke@435 38
jcoomes@810 39 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 40 ParallelCompactData::RegionData::dc_shift = 27;
jcoomes@810 41
jcoomes@810 42 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 43 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
jcoomes@810 44
jcoomes@810 45 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 46 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
jcoomes@810 47
jcoomes@810 48 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 49 ParallelCompactData::RegionData::los_mask = ~dc_mask;
jcoomes@810 50
jcoomes@810 51 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 52 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
jcoomes@810 53
jcoomes@810 54 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 55 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
duke@435 56
duke@435 57 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
duke@435 58 bool PSParallelCompact::_print_phases = false;
duke@435 59
duke@435 60 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
duke@435 61 klassOop PSParallelCompact::_updated_int_array_klass_obj = NULL;
duke@435 62
duke@435 63 double PSParallelCompact::_dwl_mean;
duke@435 64 double PSParallelCompact::_dwl_std_dev;
duke@435 65 double PSParallelCompact::_dwl_first_term;
duke@435 66 double PSParallelCompact::_dwl_adjustment;
duke@435 67 #ifdef ASSERT
duke@435 68 bool PSParallelCompact::_dwl_initialized = false;
duke@435 69 #endif // #ifdef ASSERT
duke@435 70
duke@435 71 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 72 GrowableArray<void*>* PSParallelCompact::_root_refs_stack = NULL;
duke@435 73 GrowableArray<oop> * PSParallelCompact::_live_oops = NULL;
duke@435 74 GrowableArray<oop> * PSParallelCompact::_live_oops_moved_to = NULL;
duke@435 75 GrowableArray<size_t>* PSParallelCompact::_live_oops_size = NULL;
duke@435 76 size_t PSParallelCompact::_live_oops_index = 0;
duke@435 77 size_t PSParallelCompact::_live_oops_index_at_perm = 0;
coleenp@548 78 GrowableArray<void*>* PSParallelCompact::_other_refs_stack = NULL;
coleenp@548 79 GrowableArray<void*>* PSParallelCompact::_adjusted_pointers = NULL;
duke@435 80 bool PSParallelCompact::_pointer_tracking = false;
duke@435 81 bool PSParallelCompact::_root_tracking = true;
duke@435 82
duke@435 83 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
duke@435 84 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
duke@435 85 GrowableArray<size_t> * PSParallelCompact::_cur_gc_live_oops_size = NULL;
duke@435 86 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
duke@435 87 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
duke@435 88 GrowableArray<size_t> * PSParallelCompact::_last_gc_live_oops_size = NULL;
duke@435 89 #endif
duke@435 90
jcoomes@917 91 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
jcoomes@917 92 HeapWord* destination)
jcoomes@917 93 {
jcoomes@917 94 assert(src_region_idx != 0, "invalid src_region_idx");
jcoomes@917 95 assert(partial_obj_size != 0, "invalid partial_obj_size argument");
jcoomes@917 96 assert(destination != NULL, "invalid destination argument");
jcoomes@917 97
jcoomes@917 98 _src_region_idx = src_region_idx;
jcoomes@917 99 _partial_obj_size = partial_obj_size;
jcoomes@917 100 _destination = destination;
jcoomes@917 101
jcoomes@917 102 // These fields may not be updated below, so make sure they're clear.
jcoomes@917 103 assert(_dest_region_addr == NULL, "should have been cleared");
jcoomes@917 104 assert(_first_src_addr == NULL, "should have been cleared");
jcoomes@917 105
jcoomes@917 106 // Determine the number of destination regions for the partial object.
jcoomes@917 107 HeapWord* const last_word = destination + partial_obj_size - 1;
jcoomes@917 108 const ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@917 109 HeapWord* const beg_region_addr = sd.region_align_down(destination);
jcoomes@917 110 HeapWord* const end_region_addr = sd.region_align_down(last_word);
jcoomes@917 111
jcoomes@917 112 if (beg_region_addr == end_region_addr) {
jcoomes@917 113 // One destination region.
jcoomes@917 114 _destination_count = 1;
jcoomes@917 115 if (end_region_addr == destination) {
jcoomes@917 116 // The destination falls on a region boundary, thus the first word of the
jcoomes@917 117 // partial object will be the first word copied to the destination region.
jcoomes@917 118 _dest_region_addr = end_region_addr;
jcoomes@917 119 _first_src_addr = sd.region_to_addr(src_region_idx);
jcoomes@917 120 }
jcoomes@917 121 } else {
jcoomes@917 122 // Two destination regions. When copied, the partial object will cross a
jcoomes@917 123 // destination region boundary, so a word somewhere within the partial
jcoomes@917 124 // object will be the first word copied to the second destination region.
jcoomes@917 125 _destination_count = 2;
jcoomes@917 126 _dest_region_addr = end_region_addr;
jcoomes@917 127 const size_t ofs = pointer_delta(end_region_addr, destination);
jcoomes@917 128 assert(ofs < _partial_obj_size, "sanity");
jcoomes@917 129 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
jcoomes@917 130 }
jcoomes@917 131 }
jcoomes@917 132
jcoomes@917 133 void SplitInfo::clear()
jcoomes@917 134 {
jcoomes@917 135 _src_region_idx = 0;
jcoomes@917 136 _partial_obj_size = 0;
jcoomes@917 137 _destination = NULL;
jcoomes@917 138 _destination_count = 0;
jcoomes@917 139 _dest_region_addr = NULL;
jcoomes@917 140 _first_src_addr = NULL;
jcoomes@917 141 assert(!is_valid(), "sanity");
jcoomes@917 142 }
jcoomes@917 143
jcoomes@917 144 #ifdef ASSERT
jcoomes@917 145 void SplitInfo::verify_clear()
jcoomes@917 146 {
jcoomes@917 147 assert(_src_region_idx == 0, "not clear");
jcoomes@917 148 assert(_partial_obj_size == 0, "not clear");
jcoomes@917 149 assert(_destination == NULL, "not clear");
jcoomes@917 150 assert(_destination_count == 0, "not clear");
jcoomes@917 151 assert(_dest_region_addr == NULL, "not clear");
jcoomes@917 152 assert(_first_src_addr == NULL, "not clear");
jcoomes@917 153 }
jcoomes@917 154 #endif // #ifdef ASSERT
jcoomes@917 155
jcoomes@917 156
duke@435 157 #ifndef PRODUCT
duke@435 158 const char* PSParallelCompact::space_names[] = {
duke@435 159 "perm", "old ", "eden", "from", "to "
duke@435 160 };
duke@435 161
jcoomes@810 162 void PSParallelCompact::print_region_ranges()
duke@435 163 {
duke@435 164 tty->print_cr("space bottom top end new_top");
duke@435 165 tty->print_cr("------ ---------- ---------- ---------- ----------");
duke@435 166
duke@435 167 for (unsigned int id = 0; id < last_space_id; ++id) {
duke@435 168 const MutableSpace* space = _space_info[id].space();
duke@435 169 tty->print_cr("%u %s "
jcoomes@699 170 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
jcoomes@699 171 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
duke@435 172 id, space_names[id],
jcoomes@810 173 summary_data().addr_to_region_idx(space->bottom()),
jcoomes@810 174 summary_data().addr_to_region_idx(space->top()),
jcoomes@810 175 summary_data().addr_to_region_idx(space->end()),
jcoomes@810 176 summary_data().addr_to_region_idx(_space_info[id].new_top()));
duke@435 177 }
duke@435 178 }
duke@435 179
duke@435 180 void
jcoomes@810 181 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
duke@435 182 {
jcoomes@810 183 #define REGION_IDX_FORMAT SIZE_FORMAT_W(7)
jcoomes@810 184 #define REGION_DATA_FORMAT SIZE_FORMAT_W(5)
duke@435 185
duke@435 186 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 187 size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
jcoomes@810 188 tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 189 REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 190 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
jcoomes@810 191 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
duke@435 192 i, c->data_location(), dci, c->destination(),
duke@435 193 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 194 c->data_size(), c->source_region(), c->destination_count());
jcoomes@810 195
jcoomes@810 196 #undef REGION_IDX_FORMAT
jcoomes@810 197 #undef REGION_DATA_FORMAT
duke@435 198 }
duke@435 199
duke@435 200 void
duke@435 201 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 202 HeapWord* const beg_addr,
duke@435 203 HeapWord* const end_addr)
duke@435 204 {
duke@435 205 size_t total_words = 0;
jcoomes@810 206 size_t i = summary_data.addr_to_region_idx(beg_addr);
jcoomes@810 207 const size_t last = summary_data.addr_to_region_idx(end_addr);
duke@435 208 HeapWord* pdest = 0;
duke@435 209
duke@435 210 while (i <= last) {
jcoomes@810 211 ParallelCompactData::RegionData* c = summary_data.region(i);
duke@435 212 if (c->data_size() != 0 || c->destination() != pdest) {
jcoomes@810 213 print_generic_summary_region(i, c);
duke@435 214 total_words += c->data_size();
duke@435 215 pdest = c->destination();
duke@435 216 }
duke@435 217 ++i;
duke@435 218 }
duke@435 219
duke@435 220 tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
duke@435 221 }
duke@435 222
duke@435 223 void
duke@435 224 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 225 SpaceInfo* space_info)
duke@435 226 {
duke@435 227 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
duke@435 228 const MutableSpace* space = space_info[id].space();
duke@435 229 print_generic_summary_data(summary_data, space->bottom(),
duke@435 230 MAX2(space->top(), space_info[id].new_top()));
duke@435 231 }
duke@435 232 }
duke@435 233
duke@435 234 void
jcoomes@810 235 print_initial_summary_region(size_t i,
jcoomes@810 236 const ParallelCompactData::RegionData* c,
jcoomes@810 237 bool newline = true)
duke@435 238 {
jcoomes@699 239 tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
jcoomes@699 240 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
jcoomes@699 241 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
duke@435 242 i, c->destination(),
duke@435 243 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 244 c->data_size(), c->source_region(), c->destination_count());
duke@435 245 if (newline) tty->cr();
duke@435 246 }
duke@435 247
duke@435 248 void
duke@435 249 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 250 const MutableSpace* space) {
duke@435 251 if (space->top() == space->bottom()) {
duke@435 252 return;
duke@435 253 }
duke@435 254
jcoomes@810 255 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 256 typedef ParallelCompactData::RegionData RegionData;
jcoomes@810 257 HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
jcoomes@810 258 const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
jcoomes@810 259 const RegionData* c = summary_data.region(end_region - 1);
duke@435 260 HeapWord* end_addr = c->destination() + c->data_size();
duke@435 261 const size_t live_in_space = pointer_delta(end_addr, space->bottom());
duke@435 262
jcoomes@810 263 // Print (and count) the full regions at the beginning of the space.
jcoomes@810 264 size_t full_region_count = 0;
jcoomes@810 265 size_t i = summary_data.addr_to_region_idx(space->bottom());
jcoomes@810 266 while (i < end_region && summary_data.region(i)->data_size() == region_size) {
jcoomes@810 267 print_initial_summary_region(i, summary_data.region(i));
jcoomes@810 268 ++full_region_count;
duke@435 269 ++i;
duke@435 270 }
duke@435 271
jcoomes@810 272 size_t live_to_right = live_in_space - full_region_count * region_size;
duke@435 273
duke@435 274 double max_reclaimed_ratio = 0.0;
jcoomes@810 275 size_t max_reclaimed_ratio_region = 0;
duke@435 276 size_t max_dead_to_right = 0;
duke@435 277 size_t max_live_to_right = 0;
duke@435 278
jcoomes@810 279 // Print the 'reclaimed ratio' for regions while there is something live in
jcoomes@810 280 // the region or to the right of it. The remaining regions are empty (and
duke@435 281 // uninteresting), and computing the ratio will result in division by 0.
jcoomes@810 282 while (i < end_region && live_to_right > 0) {
jcoomes@810 283 c = summary_data.region(i);
jcoomes@810 284 HeapWord* const region_addr = summary_data.region_to_addr(i);
jcoomes@810 285 const size_t used_to_right = pointer_delta(space->top(), region_addr);
duke@435 286 const size_t dead_to_right = used_to_right - live_to_right;
duke@435 287 const double reclaimed_ratio = double(dead_to_right) / live_to_right;
duke@435 288
duke@435 289 if (reclaimed_ratio > max_reclaimed_ratio) {
duke@435 290 max_reclaimed_ratio = reclaimed_ratio;
jcoomes@810 291 max_reclaimed_ratio_region = i;
duke@435 292 max_dead_to_right = dead_to_right;
duke@435 293 max_live_to_right = live_to_right;
duke@435 294 }
duke@435 295
jcoomes@810 296 print_initial_summary_region(i, c, false);
jcoomes@699 297 tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
duke@435 298 reclaimed_ratio, dead_to_right, live_to_right);
duke@435 299
duke@435 300 live_to_right -= c->data_size();
duke@435 301 ++i;
duke@435 302 }
duke@435 303
jcoomes@810 304 // Any remaining regions are empty. Print one more if there is one.
jcoomes@810 305 if (i < end_region) {
jcoomes@810 306 print_initial_summary_region(i, summary_data.region(i));
duke@435 307 }
duke@435 308
jcoomes@699 309 tty->print_cr("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
jcoomes@699 310 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
jcoomes@810 311 max_reclaimed_ratio_region, max_dead_to_right,
duke@435 312 max_live_to_right, max_reclaimed_ratio);
duke@435 313 }
duke@435 314
duke@435 315 void
duke@435 316 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 317 SpaceInfo* space_info) {
duke@435 318 unsigned int id = PSParallelCompact::perm_space_id;
duke@435 319 const MutableSpace* space;
duke@435 320 do {
duke@435 321 space = space_info[id].space();
duke@435 322 print_initial_summary_data(summary_data, space);
duke@435 323 } while (++id < PSParallelCompact::eden_space_id);
duke@435 324
duke@435 325 do {
duke@435 326 space = space_info[id].space();
duke@435 327 print_generic_summary_data(summary_data, space->bottom(), space->top());
duke@435 328 } while (++id < PSParallelCompact::last_space_id);
duke@435 329 }
duke@435 330 #endif // #ifndef PRODUCT
duke@435 331
duke@435 332 #ifdef ASSERT
duke@435 333 size_t add_obj_count;
duke@435 334 size_t add_obj_size;
duke@435 335 size_t mark_bitmap_count;
duke@435 336 size_t mark_bitmap_size;
duke@435 337 #endif // #ifdef ASSERT
duke@435 338
duke@435 339 ParallelCompactData::ParallelCompactData()
duke@435 340 {
duke@435 341 _region_start = 0;
duke@435 342
jcoomes@810 343 _region_vspace = 0;
jcoomes@810 344 _region_data = 0;
jcoomes@810 345 _region_count = 0;
duke@435 346 }
duke@435 347
duke@435 348 bool ParallelCompactData::initialize(MemRegion covered_region)
duke@435 349 {
duke@435 350 _region_start = covered_region.start();
duke@435 351 const size_t region_size = covered_region.word_size();
duke@435 352 DEBUG_ONLY(_region_end = _region_start + region_size;)
duke@435 353
jcoomes@810 354 assert(region_align_down(_region_start) == _region_start,
duke@435 355 "region start not aligned");
jcoomes@810 356 assert((region_size & RegionSizeOffsetMask) == 0,
jcoomes@810 357 "region size not a multiple of RegionSize");
jcoomes@810 358
jcoomes@810 359 bool result = initialize_region_data(region_size);
duke@435 360
duke@435 361 return result;
duke@435 362 }
duke@435 363
duke@435 364 PSVirtualSpace*
duke@435 365 ParallelCompactData::create_vspace(size_t count, size_t element_size)
duke@435 366 {
duke@435 367 const size_t raw_bytes = count * element_size;
duke@435 368 const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
duke@435 369 const size_t granularity = os::vm_allocation_granularity();
duke@435 370 const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
duke@435 371
duke@435 372 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
duke@435 373 MAX2(page_sz, granularity);
jcoomes@514 374 ReservedSpace rs(bytes, rs_align, rs_align > 0);
duke@435 375 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
duke@435 376 rs.size());
duke@435 377 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
duke@435 378 if (vspace != 0) {
duke@435 379 if (vspace->expand_by(bytes)) {
duke@435 380 return vspace;
duke@435 381 }
duke@435 382 delete vspace;
coleenp@672 383 // Release memory reserved in the space.
coleenp@672 384 rs.release();
duke@435 385 }
duke@435 386
duke@435 387 return 0;
duke@435 388 }
duke@435 389
jcoomes@810 390 bool ParallelCompactData::initialize_region_data(size_t region_size)
duke@435 391 {
jcoomes@810 392 const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
jcoomes@810 393 _region_vspace = create_vspace(count, sizeof(RegionData));
jcoomes@810 394 if (_region_vspace != 0) {
jcoomes@810 395 _region_data = (RegionData*)_region_vspace->reserved_low_addr();
jcoomes@810 396 _region_count = count;
duke@435 397 return true;
duke@435 398 }
duke@435 399 return false;
duke@435 400 }
duke@435 401
duke@435 402 void ParallelCompactData::clear()
duke@435 403 {
jcoomes@810 404 memset(_region_data, 0, _region_vspace->committed_size());
duke@435 405 }
duke@435 406
jcoomes@810 407 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
jcoomes@810 408 assert(beg_region <= _region_count, "beg_region out of range");
jcoomes@810 409 assert(end_region <= _region_count, "end_region out of range");
jcoomes@810 410
jcoomes@810 411 const size_t region_cnt = end_region - beg_region;
jcoomes@810 412 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
duke@435 413 }
duke@435 414
jcoomes@810 415 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
duke@435 416 {
jcoomes@810 417 const RegionData* cur_cp = region(region_idx);
jcoomes@810 418 const RegionData* const end_cp = region(region_count() - 1);
jcoomes@810 419
jcoomes@810 420 HeapWord* result = region_to_addr(region_idx);
duke@435 421 if (cur_cp < end_cp) {
duke@435 422 do {
duke@435 423 result += cur_cp->partial_obj_size();
jcoomes@810 424 } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
duke@435 425 }
duke@435 426 return result;
duke@435 427 }
duke@435 428
duke@435 429 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
duke@435 430 {
duke@435 431 const size_t obj_ofs = pointer_delta(addr, _region_start);
jcoomes@810 432 const size_t beg_region = obj_ofs >> Log2RegionSize;
jcoomes@810 433 const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
duke@435 434
duke@435 435 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
duke@435 436 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
duke@435 437
jcoomes@810 438 if (beg_region == end_region) {
jcoomes@810 439 // All in one region.
jcoomes@810 440 _region_data[beg_region].add_live_obj(len);
duke@435 441 return;
duke@435 442 }
duke@435 443
jcoomes@810 444 // First region.
jcoomes@810 445 const size_t beg_ofs = region_offset(addr);
jcoomes@810 446 _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
duke@435 447
duke@435 448 klassOop klass = ((oop)addr)->klass();
jcoomes@810 449 // Middle regions--completely spanned by this object.
jcoomes@810 450 for (size_t region = beg_region + 1; region < end_region; ++region) {
jcoomes@810 451 _region_data[region].set_partial_obj_size(RegionSize);
jcoomes@810 452 _region_data[region].set_partial_obj_addr(addr);
duke@435 453 }
duke@435 454
jcoomes@810 455 // Last region.
jcoomes@810 456 const size_t end_ofs = region_offset(addr + len - 1);
jcoomes@810 457 _region_data[end_region].set_partial_obj_size(end_ofs + 1);
jcoomes@810 458 _region_data[end_region].set_partial_obj_addr(addr);
duke@435 459 }
duke@435 460
duke@435 461 void
duke@435 462 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
duke@435 463 {
jcoomes@810 464 assert(region_offset(beg) == 0, "not RegionSize aligned");
jcoomes@810 465 assert(region_offset(end) == 0, "not RegionSize aligned");
jcoomes@810 466
jcoomes@810 467 size_t cur_region = addr_to_region_idx(beg);
jcoomes@810 468 const size_t end_region = addr_to_region_idx(end);
duke@435 469 HeapWord* addr = beg;
jcoomes@810 470 while (cur_region < end_region) {
jcoomes@810 471 _region_data[cur_region].set_destination(addr);
jcoomes@810 472 _region_data[cur_region].set_destination_count(0);
jcoomes@810 473 _region_data[cur_region].set_source_region(cur_region);
jcoomes@810 474 _region_data[cur_region].set_data_location(addr);
jcoomes@810 475
jcoomes@810 476 // Update live_obj_size so the region appears completely full.
jcoomes@810 477 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
jcoomes@810 478 _region_data[cur_region].set_live_obj_size(live_size);
jcoomes@810 479
jcoomes@810 480 ++cur_region;
jcoomes@810 481 addr += RegionSize;
duke@435 482 }
duke@435 483 }
duke@435 484
jcoomes@917 485 // Find the point at which a space can be split and, if necessary, record the
jcoomes@917 486 // split point.
jcoomes@917 487 //
jcoomes@917 488 // If the current src region (which overflowed the destination space) doesn't
jcoomes@917 489 // have a partial object, the split point is at the beginning of the current src
jcoomes@917 490 // region (an "easy" split, no extra bookkeeping required).
jcoomes@917 491 //
jcoomes@917 492 // If the current src region has a partial object, the split point is in the
jcoomes@917 493 // region where that partial object starts (call it the split_region). If
jcoomes@917 494 // split_region has a partial object, then the split point is just after that
jcoomes@917 495 // partial object (a "hard" split where we have to record the split data and
jcoomes@917 496 // zero the partial_obj_size field). With a "hard" split, we know that the
jcoomes@917 497 // partial_obj ends within split_region because the partial object that caused
jcoomes@917 498 // the overflow starts in split_region. If split_region doesn't have a partial
jcoomes@917 499 // obj, then the split is at the beginning of split_region (another "easy"
jcoomes@917 500 // split).
jcoomes@917 501 HeapWord*
jcoomes@917 502 ParallelCompactData::summarize_split_space(size_t src_region,
jcoomes@917 503 SplitInfo& split_info,
jcoomes@917 504 HeapWord* destination,
jcoomes@917 505 HeapWord* target_end,
jcoomes@917 506 HeapWord** target_next)
jcoomes@917 507 {
jcoomes@917 508 assert(destination <= target_end, "sanity");
jcoomes@917 509 assert(destination + _region_data[src_region].data_size() > target_end,
jcoomes@917 510 "region should not fit into target space");
jcoomes@917 511
jcoomes@917 512 size_t split_region = src_region;
jcoomes@917 513 HeapWord* split_destination = destination;
jcoomes@917 514 size_t partial_obj_size = _region_data[src_region].partial_obj_size();
jcoomes@917 515
jcoomes@917 516 if (destination + partial_obj_size > target_end) {
jcoomes@917 517 // The split point is just after the partial object (if any) in the
jcoomes@917 518 // src_region that contains the start of the object that overflowed the
jcoomes@917 519 // destination space.
jcoomes@917 520 //
jcoomes@917 521 // Find the start of the "overflow" object and set split_region to the
jcoomes@917 522 // region containing it.
jcoomes@917 523 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
jcoomes@917 524 split_region = addr_to_region_idx(overflow_obj);
jcoomes@917 525
jcoomes@917 526 // Clear the source_region field of all destination regions whose first word
jcoomes@917 527 // came from data after the split point (a non-null source_region field
jcoomes@917 528 // implies a region must be filled).
jcoomes@917 529 //
jcoomes@917 530 // An alternative to the simple loop below: clear during post_compact(),
jcoomes@917 531 // which uses memcpy instead of individual stores, and is easy to
jcoomes@917 532 // parallelize. (The downside is that it clears the entire RegionData
jcoomes@917 533 // object as opposed to just one field.)
jcoomes@917 534 //
jcoomes@917 535 // post_compact() would have to clear the summary data up to the highest
jcoomes@917 536 // address that was written during the summary phase, which would be
jcoomes@917 537 //
jcoomes@917 538 // max(top, max(new_top, clear_top))
jcoomes@917 539 //
jcoomes@917 540 // where clear_top is a new field in SpaceInfo. Would have to set clear_top
jcoomes@917 541 // to destination + partial_obj_size, where both have the values passed to
jcoomes@917 542 // this routine.
jcoomes@917 543 const RegionData* const sr = region(split_region);
jcoomes@917 544 const size_t beg_idx =
jcoomes@917 545 addr_to_region_idx(region_align_up(sr->destination() +
jcoomes@917 546 sr->partial_obj_size()));
jcoomes@917 547 const size_t end_idx =
jcoomes@917 548 addr_to_region_idx(region_align_up(destination + partial_obj_size));
jcoomes@917 549
jcoomes@917 550 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 551 gclog_or_tty->print_cr("split: clearing source_region field in ["
jcoomes@917 552 SIZE_FORMAT ", " SIZE_FORMAT ")",
jcoomes@917 553 beg_idx, end_idx);
jcoomes@917 554 }
jcoomes@917 555 for (size_t idx = beg_idx; idx < end_idx; ++idx) {
jcoomes@917 556 _region_data[idx].set_source_region(0);
jcoomes@917 557 }
jcoomes@917 558
jcoomes@917 559 // Set split_destination and partial_obj_size to reflect the split region.
jcoomes@917 560 split_destination = sr->destination();
jcoomes@917 561 partial_obj_size = sr->partial_obj_size();
jcoomes@917 562 }
jcoomes@917 563
jcoomes@917 564 // The split is recorded only if a partial object extends onto the region.
jcoomes@917 565 if (partial_obj_size != 0) {
jcoomes@917 566 _region_data[split_region].set_partial_obj_size(0);
jcoomes@917 567 split_info.record(split_region, partial_obj_size, split_destination);
jcoomes@917 568 }
jcoomes@917 569
jcoomes@917 570 // Setup the continuation addresses.
jcoomes@917 571 *target_next = split_destination + partial_obj_size;
jcoomes@917 572 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
jcoomes@917 573
jcoomes@917 574 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 575 const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
jcoomes@917 576 gclog_or_tty->print_cr("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT
jcoomes@917 577 " pos=" SIZE_FORMAT,
jcoomes@917 578 split_type, source_next, split_region,
jcoomes@917 579 partial_obj_size);
jcoomes@917 580 gclog_or_tty->print_cr("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
jcoomes@917 581 " tn=" PTR_FORMAT,
jcoomes@917 582 split_type, split_destination,
jcoomes@917 583 addr_to_region_idx(split_destination),
jcoomes@917 584 *target_next);
jcoomes@917 585
jcoomes@917 586 if (partial_obj_size != 0) {
jcoomes@917 587 HeapWord* const po_beg = split_info.destination();
jcoomes@917 588 HeapWord* const po_end = po_beg + split_info.partial_obj_size();
jcoomes@917 589 gclog_or_tty->print_cr("%s split: "
jcoomes@917 590 "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
jcoomes@917 591 "po_end=" PTR_FORMAT " " SIZE_FORMAT,
jcoomes@917 592 split_type,
jcoomes@917 593 po_beg, addr_to_region_idx(po_beg),
jcoomes@917 594 po_end, addr_to_region_idx(po_end));
jcoomes@917 595 }
jcoomes@917 596 }
jcoomes@917 597
jcoomes@917 598 return source_next;
jcoomes@917 599 }
jcoomes@917 600
jcoomes@917 601 bool ParallelCompactData::summarize(SplitInfo& split_info,
duke@435 602 HeapWord* source_beg, HeapWord* source_end,
jcoomes@917 603 HeapWord** source_next,
jcoomes@917 604 HeapWord* target_beg, HeapWord* target_end,
jcoomes@917 605 HeapWord** target_next)
jcoomes@917 606 {
duke@435 607 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 608 HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
jcoomes@917 609 tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
jcoomes@917 610 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
jcoomes@917 611 source_beg, source_end, source_next_val,
jcoomes@917 612 target_beg, target_end, *target_next);
duke@435 613 }
duke@435 614
jcoomes@810 615 size_t cur_region = addr_to_region_idx(source_beg);
jcoomes@810 616 const size_t end_region = addr_to_region_idx(region_align_up(source_end));
duke@435 617
duke@435 618 HeapWord *dest_addr = target_beg;
jcoomes@810 619 while (cur_region < end_region) {
jcoomes@917 620 // The destination must be set even if the region has no data.
jcoomes@917 621 _region_data[cur_region].set_destination(dest_addr);
jcoomes@917 622
jcoomes@810 623 size_t words = _region_data[cur_region].data_size();
duke@435 624 if (words > 0) {
jcoomes@917 625 // If cur_region does not fit entirely into the target space, find a point
jcoomes@917 626 // at which the source space can be 'split' so that part is copied to the
jcoomes@917 627 // target space and the rest is copied elsewhere.
jcoomes@917 628 if (dest_addr + words > target_end) {
jcoomes@917 629 assert(source_next != NULL, "source_next is NULL when splitting");
jcoomes@917 630 *source_next = summarize_split_space(cur_region, split_info, dest_addr,
jcoomes@917 631 target_end, target_next);
jcoomes@917 632 return false;
jcoomes@917 633 }
jcoomes@917 634
jcoomes@917 635 // Compute the destination_count for cur_region, and if necessary, update
jcoomes@917 636 // source_region for a destination region. The source_region field is
jcoomes@917 637 // updated if cur_region is the first (left-most) region to be copied to a
jcoomes@917 638 // destination region.
jcoomes@917 639 //
jcoomes@917 640 // The destination_count calculation is a bit subtle. A region that has
jcoomes@917 641 // data that compacts into itself does not count itself as a destination.
jcoomes@917 642 // This maintains the invariant that a zero count means the region is
jcoomes@917 643 // available and can be claimed and then filled.
jcoomes@917 644 uint destination_count = 0;
jcoomes@917 645 if (split_info.is_split(cur_region)) {
jcoomes@917 646 // The current region has been split: the partial object will be copied
jcoomes@917 647 // to one destination space and the remaining data will be copied to
jcoomes@917 648 // another destination space. Adjust the initial destination_count and,
jcoomes@917 649 // if necessary, set the source_region field if the partial object will
jcoomes@917 650 // cross a destination region boundary.
jcoomes@917 651 destination_count = split_info.destination_count();
jcoomes@917 652 if (destination_count == 2) {
jcoomes@917 653 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
jcoomes@917 654 _region_data[dest_idx].set_source_region(cur_region);
jcoomes@917 655 }
jcoomes@917 656 }
jcoomes@917 657
duke@435 658 HeapWord* const last_addr = dest_addr + words - 1;
jcoomes@810 659 const size_t dest_region_1 = addr_to_region_idx(dest_addr);
jcoomes@810 660 const size_t dest_region_2 = addr_to_region_idx(last_addr);
jcoomes@917 661
jcoomes@810 662 // Initially assume that the destination regions will be the same and
duke@435 663 // adjust the value below if necessary. Under this assumption, if
jcoomes@810 664 // cur_region == dest_region_2, then cur_region will be compacted
jcoomes@810 665 // completely into itself.
jcoomes@917 666 destination_count += cur_region == dest_region_2 ? 0 : 1;
jcoomes@810 667 if (dest_region_1 != dest_region_2) {
jcoomes@810 668 // Destination regions differ; adjust destination_count.
duke@435 669 destination_count += 1;
jcoomes@810 670 // Data from cur_region will be copied to the start of dest_region_2.
jcoomes@810 671 _region_data[dest_region_2].set_source_region(cur_region);
jcoomes@810 672 } else if (region_offset(dest_addr) == 0) {
jcoomes@810 673 // Data from cur_region will be copied to the start of the destination
jcoomes@810 674 // region.
jcoomes@810 675 _region_data[dest_region_1].set_source_region(cur_region);
duke@435 676 }
duke@435 677
jcoomes@810 678 _region_data[cur_region].set_destination_count(destination_count);
jcoomes@810 679 _region_data[cur_region].set_data_location(region_to_addr(cur_region));
duke@435 680 dest_addr += words;
duke@435 681 }
duke@435 682
jcoomes@810 683 ++cur_region;
duke@435 684 }
duke@435 685
duke@435 686 *target_next = dest_addr;
duke@435 687 return true;
duke@435 688 }
duke@435 689
duke@435 690 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
duke@435 691 assert(addr != NULL, "Should detect NULL oop earlier");
duke@435 692 assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
duke@435 693 #ifdef ASSERT
duke@435 694 if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
duke@435 695 gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
duke@435 696 }
duke@435 697 #endif
duke@435 698 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
duke@435 699
jcoomes@810 700 // Region covering the object.
jcoomes@810 701 size_t region_index = addr_to_region_idx(addr);
jcoomes@810 702 const RegionData* const region_ptr = region(region_index);
jcoomes@810 703 HeapWord* const region_addr = region_align_down(addr);
jcoomes@810 704
jcoomes@810 705 assert(addr < region_addr + RegionSize, "Region does not cover object");
jcoomes@810 706 assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
jcoomes@810 707
jcoomes@810 708 HeapWord* result = region_ptr->destination();
jcoomes@810 709
jcoomes@810 710 // If all the data in the region is live, then the new location of the object
jcoomes@810 711 // can be calculated from the destination of the region plus the offset of the
jcoomes@810 712 // object in the region.
jcoomes@810 713 if (region_ptr->data_size() == RegionSize) {
jcoomes@810 714 result += pointer_delta(addr, region_addr);
duke@435 715 return result;
duke@435 716 }
duke@435 717
duke@435 718 // The new location of the object is
jcoomes@810 719 // region destination +
jcoomes@810 720 // size of the partial object extending onto the region +
jcoomes@810 721 // sizes of the live objects in the Region that are to the left of addr
jcoomes@810 722 const size_t partial_obj_size = region_ptr->partial_obj_size();
jcoomes@810 723 HeapWord* const search_start = region_addr + partial_obj_size;
duke@435 724
duke@435 725 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
duke@435 726 size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
duke@435 727
duke@435 728 result += partial_obj_size + live_to_left;
jcoomes@930 729 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
duke@435 730 return result;
duke@435 731 }
duke@435 732
duke@435 733 klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
duke@435 734 klassOop updated_klass;
duke@435 735 if (PSParallelCompact::should_update_klass(old_klass)) {
duke@435 736 updated_klass = (klassOop) calc_new_pointer(old_klass);
duke@435 737 } else {
duke@435 738 updated_klass = old_klass;
duke@435 739 }
duke@435 740
duke@435 741 return updated_klass;
duke@435 742 }
duke@435 743
duke@435 744 #ifdef ASSERT
duke@435 745 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
duke@435 746 {
duke@435 747 const size_t* const beg = (const size_t*)vspace->committed_low_addr();
duke@435 748 const size_t* const end = (const size_t*)vspace->committed_high_addr();
duke@435 749 for (const size_t* p = beg; p < end; ++p) {
duke@435 750 assert(*p == 0, "not zero");
duke@435 751 }
duke@435 752 }
duke@435 753
duke@435 754 void ParallelCompactData::verify_clear()
duke@435 755 {
jcoomes@810 756 verify_clear(_region_vspace);
duke@435 757 }
duke@435 758 #endif // #ifdef ASSERT
duke@435 759
duke@435 760 #ifdef NOT_PRODUCT
jcoomes@810 761 ParallelCompactData::RegionData* debug_region(size_t region_index) {
duke@435 762 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 763 return sd.region(region_index);
duke@435 764 }
duke@435 765 #endif
duke@435 766
duke@435 767 elapsedTimer PSParallelCompact::_accumulated_time;
duke@435 768 unsigned int PSParallelCompact::_total_invocations = 0;
duke@435 769 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0;
duke@435 770 jlong PSParallelCompact::_time_of_last_gc = 0;
duke@435 771 CollectorCounters* PSParallelCompact::_counters = NULL;
duke@435 772 ParMarkBitMap PSParallelCompact::_mark_bitmap;
duke@435 773 ParallelCompactData PSParallelCompact::_summary_data;
duke@435 774
duke@435 775 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
coleenp@548 776
coleenp@548 777 void PSParallelCompact::IsAliveClosure::do_object(oop p) { ShouldNotReachHere(); }
coleenp@548 778 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
coleenp@548 779
coleenp@548 780 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 781 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 782
duke@435 783 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
duke@435 784 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
duke@435 785
coleenp@548 786 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p, _is_root); }
coleenp@548 787 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
coleenp@548 788
coleenp@548 789 void PSParallelCompact::FollowStackClosure::do_void() { follow_stack(_compaction_manager); }
coleenp@548 790
coleenp@548 791 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) { mark_and_push(_compaction_manager, p); }
coleenp@548 792 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
duke@435 793
duke@435 794 void PSParallelCompact::post_initialize() {
duke@435 795 ParallelScavengeHeap* heap = gc_heap();
duke@435 796 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 797
duke@435 798 MemRegion mr = heap->reserved_region();
duke@435 799 _ref_processor = ReferenceProcessor::create_ref_processor(
duke@435 800 mr, // span
duke@435 801 true, // atomic_discovery
duke@435 802 true, // mt_discovery
duke@435 803 &_is_alive_closure,
duke@435 804 ParallelGCThreads,
duke@435 805 ParallelRefProcEnabled);
duke@435 806 _counters = new CollectorCounters("PSParallelCompact", 1);
duke@435 807
duke@435 808 // Initialize static fields in ParCompactionManager.
duke@435 809 ParCompactionManager::initialize(mark_bitmap());
duke@435 810 }
duke@435 811
duke@435 812 bool PSParallelCompact::initialize() {
duke@435 813 ParallelScavengeHeap* heap = gc_heap();
duke@435 814 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 815 MemRegion mr = heap->reserved_region();
duke@435 816
duke@435 817 // Was the old gen get allocated successfully?
duke@435 818 if (!heap->old_gen()->is_allocated()) {
duke@435 819 return false;
duke@435 820 }
duke@435 821
duke@435 822 initialize_space_info();
duke@435 823 initialize_dead_wood_limiter();
duke@435 824
duke@435 825 if (!_mark_bitmap.initialize(mr)) {
duke@435 826 vm_shutdown_during_initialization("Unable to allocate bit map for "
duke@435 827 "parallel garbage collection for the requested heap size.");
duke@435 828 return false;
duke@435 829 }
duke@435 830
duke@435 831 if (!_summary_data.initialize(mr)) {
duke@435 832 vm_shutdown_during_initialization("Unable to allocate tables for "
duke@435 833 "parallel garbage collection for the requested heap size.");
duke@435 834 return false;
duke@435 835 }
duke@435 836
duke@435 837 return true;
duke@435 838 }
duke@435 839
duke@435 840 void PSParallelCompact::initialize_space_info()
duke@435 841 {
duke@435 842 memset(&_space_info, 0, sizeof(_space_info));
duke@435 843
duke@435 844 ParallelScavengeHeap* heap = gc_heap();
duke@435 845 PSYoungGen* young_gen = heap->young_gen();
duke@435 846 MutableSpace* perm_space = heap->perm_gen()->object_space();
duke@435 847
duke@435 848 _space_info[perm_space_id].set_space(perm_space);
duke@435 849 _space_info[old_space_id].set_space(heap->old_gen()->object_space());
duke@435 850 _space_info[eden_space_id].set_space(young_gen->eden_space());
duke@435 851 _space_info[from_space_id].set_space(young_gen->from_space());
duke@435 852 _space_info[to_space_id].set_space(young_gen->to_space());
duke@435 853
duke@435 854 _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
duke@435 855 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
duke@435 856
duke@435 857 _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
duke@435 858 if (TraceParallelOldGCDensePrefix) {
duke@435 859 tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
duke@435 860 _space_info[perm_space_id].min_dense_prefix());
duke@435 861 }
duke@435 862 }
duke@435 863
duke@435 864 void PSParallelCompact::initialize_dead_wood_limiter()
duke@435 865 {
duke@435 866 const size_t max = 100;
duke@435 867 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
duke@435 868 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
duke@435 869 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
duke@435 870 DEBUG_ONLY(_dwl_initialized = true;)
duke@435 871 _dwl_adjustment = normal_distribution(1.0);
duke@435 872 }
duke@435 873
duke@435 874 // Simple class for storing info about the heap at the start of GC, to be used
duke@435 875 // after GC for comparison/printing.
duke@435 876 class PreGCValues {
duke@435 877 public:
duke@435 878 PreGCValues() { }
duke@435 879 PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
duke@435 880
duke@435 881 void fill(ParallelScavengeHeap* heap) {
duke@435 882 _heap_used = heap->used();
duke@435 883 _young_gen_used = heap->young_gen()->used_in_bytes();
duke@435 884 _old_gen_used = heap->old_gen()->used_in_bytes();
duke@435 885 _perm_gen_used = heap->perm_gen()->used_in_bytes();
duke@435 886 };
duke@435 887
duke@435 888 size_t heap_used() const { return _heap_used; }
duke@435 889 size_t young_gen_used() const { return _young_gen_used; }
duke@435 890 size_t old_gen_used() const { return _old_gen_used; }
duke@435 891 size_t perm_gen_used() const { return _perm_gen_used; }
duke@435 892
duke@435 893 private:
duke@435 894 size_t _heap_used;
duke@435 895 size_t _young_gen_used;
duke@435 896 size_t _old_gen_used;
duke@435 897 size_t _perm_gen_used;
duke@435 898 };
duke@435 899
duke@435 900 void
duke@435 901 PSParallelCompact::clear_data_covering_space(SpaceId id)
duke@435 902 {
duke@435 903 // At this point, top is the value before GC, new_top() is the value that will
duke@435 904 // be set at the end of GC. The marking bitmap is cleared to top; nothing
duke@435 905 // should be marked above top. The summary data is cleared to the larger of
duke@435 906 // top & new_top.
duke@435 907 MutableSpace* const space = _space_info[id].space();
duke@435 908 HeapWord* const bot = space->bottom();
duke@435 909 HeapWord* const top = space->top();
duke@435 910 HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
duke@435 911
duke@435 912 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
duke@435 913 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
duke@435 914 _mark_bitmap.clear_range(beg_bit, end_bit);
duke@435 915
jcoomes@810 916 const size_t beg_region = _summary_data.addr_to_region_idx(bot);
jcoomes@810 917 const size_t end_region =
jcoomes@810 918 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
jcoomes@810 919 _summary_data.clear_range(beg_region, end_region);
jcoomes@917 920
jcoomes@917 921 // Clear the data used to 'split' regions.
jcoomes@917 922 SplitInfo& split_info = _space_info[id].split_info();
jcoomes@917 923 if (split_info.is_valid()) {
jcoomes@917 924 split_info.clear();
jcoomes@917 925 }
jcoomes@917 926 DEBUG_ONLY(split_info.verify_clear();)
duke@435 927 }
duke@435 928
duke@435 929 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
duke@435 930 {
duke@435 931 // Update the from & to space pointers in space_info, since they are swapped
duke@435 932 // at each young gen gc. Do the update unconditionally (even though a
duke@435 933 // promotion failure does not swap spaces) because an unknown number of minor
duke@435 934 // collections will have swapped the spaces an unknown number of times.
duke@435 935 TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
duke@435 936 ParallelScavengeHeap* heap = gc_heap();
duke@435 937 _space_info[from_space_id].set_space(heap->young_gen()->from_space());
duke@435 938 _space_info[to_space_id].set_space(heap->young_gen()->to_space());
duke@435 939
duke@435 940 pre_gc_values->fill(heap);
duke@435 941
duke@435 942 ParCompactionManager::reset();
duke@435 943 NOT_PRODUCT(_mark_bitmap.reset_counters());
duke@435 944 DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
duke@435 945 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
duke@435 946
duke@435 947 // Increment the invocation count
apetrusenko@574 948 heap->increment_total_collections(true);
duke@435 949
duke@435 950 // We need to track unique mark sweep invocations as well.
duke@435 951 _total_invocations++;
duke@435 952
duke@435 953 if (PrintHeapAtGC) {
duke@435 954 Universe::print_heap_before_gc();
duke@435 955 }
duke@435 956
duke@435 957 // Fill in TLABs
duke@435 958 heap->accumulate_statistics_all_tlabs();
duke@435 959 heap->ensure_parsability(true); // retire TLABs
duke@435 960
duke@435 961 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 962 HandleMark hm; // Discard invalid handles created during verification
duke@435 963 gclog_or_tty->print(" VerifyBeforeGC:");
duke@435 964 Universe::verify(true);
duke@435 965 }
duke@435 966
duke@435 967 // Verify object start arrays
duke@435 968 if (VerifyObjectStartArray &&
duke@435 969 VerifyBeforeGC) {
duke@435 970 heap->old_gen()->verify_object_start_array();
duke@435 971 heap->perm_gen()->verify_object_start_array();
duke@435 972 }
duke@435 973
duke@435 974 DEBUG_ONLY(mark_bitmap()->verify_clear();)
duke@435 975 DEBUG_ONLY(summary_data().verify_clear();)
jcoomes@645 976
jcoomes@645 977 // Have worker threads release resources the next time they run a task.
jcoomes@645 978 gc_task_manager()->release_all_resources();
duke@435 979 }
duke@435 980
duke@435 981 void PSParallelCompact::post_compact()
duke@435 982 {
duke@435 983 TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
duke@435 984
duke@435 985 for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
jcoomes@917 986 // Clear the marking bitmap, summary data and split info.
duke@435 987 clear_data_covering_space(SpaceId(id));
jcoomes@917 988 // Update top(). Must be done after clearing the bitmap and summary data.
jcoomes@917 989 _space_info[id].publish_new_top();
duke@435 990 }
duke@435 991
duke@435 992 MutableSpace* const eden_space = _space_info[eden_space_id].space();
duke@435 993 MutableSpace* const from_space = _space_info[from_space_id].space();
duke@435 994 MutableSpace* const to_space = _space_info[to_space_id].space();
duke@435 995
duke@435 996 ParallelScavengeHeap* heap = gc_heap();
duke@435 997 bool eden_empty = eden_space->is_empty();
duke@435 998 if (!eden_empty) {
duke@435 999 eden_empty = absorb_live_data_from_eden(heap->size_policy(),
duke@435 1000 heap->young_gen(), heap->old_gen());
duke@435 1001 }
duke@435 1002
duke@435 1003 // Update heap occupancy information which is used as input to the soft ref
duke@435 1004 // clearing policy at the next gc.
duke@435 1005 Universe::update_heap_info_at_gc();
duke@435 1006
duke@435 1007 bool young_gen_empty = eden_empty && from_space->is_empty() &&
duke@435 1008 to_space->is_empty();
duke@435 1009
duke@435 1010 BarrierSet* bs = heap->barrier_set();
duke@435 1011 if (bs->is_a(BarrierSet::ModRef)) {
duke@435 1012 ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
duke@435 1013 MemRegion old_mr = heap->old_gen()->reserved();
duke@435 1014 MemRegion perm_mr = heap->perm_gen()->reserved();
duke@435 1015 assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
duke@435 1016
duke@435 1017 if (young_gen_empty) {
duke@435 1018 modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
duke@435 1019 } else {
duke@435 1020 modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
duke@435 1021 }
duke@435 1022 }
duke@435 1023
duke@435 1024 Threads::gc_epilogue();
duke@435 1025 CodeCache::gc_epilogue();
duke@435 1026
duke@435 1027 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
duke@435 1028
duke@435 1029 ref_processor()->enqueue_discovered_references(NULL);
duke@435 1030
jmasa@698 1031 if (ZapUnusedHeapArea) {
jmasa@698 1032 heap->gen_mangle_unused_area();
jmasa@698 1033 }
jmasa@698 1034
duke@435 1035 // Update time of last GC
duke@435 1036 reset_millis_since_last_gc();
duke@435 1037 }
duke@435 1038
duke@435 1039 HeapWord*
duke@435 1040 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
duke@435 1041 bool maximum_compaction)
duke@435 1042 {
jcoomes@810 1043 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1044 const ParallelCompactData& sd = summary_data();
duke@435 1045
duke@435 1046 const MutableSpace* const space = _space_info[id].space();
jcoomes@810 1047 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 1048 const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
jcoomes@810 1049 const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1050
jcoomes@810 1051 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1052 // of the dense prefix.
duke@435 1053 size_t full_count = 0;
jcoomes@810 1054 const RegionData* cp;
jcoomes@810 1055 for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
duke@435 1056 ++full_count;
duke@435 1057 }
duke@435 1058
duke@435 1059 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1060 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1061 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
duke@435 1062 if (maximum_compaction || cp == end_cp || interval_ended) {
duke@435 1063 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1064 return sd.region_to_addr(cp);
duke@435 1065 }
duke@435 1066
duke@435 1067 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1068 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1069 const size_t space_used = space->used_in_words();
duke@435 1070 const size_t space_capacity = space->capacity_in_words();
duke@435 1071
duke@435 1072 const double cur_density = double(space_live) / space_capacity;
duke@435 1073 const double deadwood_density =
duke@435 1074 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
duke@435 1075 const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
duke@435 1076
duke@435 1077 if (TraceParallelOldGCDensePrefix) {
duke@435 1078 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
duke@435 1079 cur_density, deadwood_density, deadwood_goal);
duke@435 1080 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1081 "space_cap=" SIZE_FORMAT,
duke@435 1082 space_live, space_used,
duke@435 1083 space_capacity);
duke@435 1084 }
duke@435 1085
duke@435 1086 // XXX - Use binary search?
jcoomes@810 1087 HeapWord* dense_prefix = sd.region_to_addr(cp);
jcoomes@810 1088 const RegionData* full_cp = cp;
jcoomes@810 1089 const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
duke@435 1090 while (cp < end_cp) {
jcoomes@810 1091 HeapWord* region_destination = cp->destination();
jcoomes@810 1092 const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
duke@435 1093 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1094 tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
jcoomes@699 1095 "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
jcoomes@810 1096 sd.region(cp), region_destination,
duke@435 1097 dense_prefix, cur_deadwood);
duke@435 1098 }
duke@435 1099
duke@435 1100 if (cur_deadwood >= deadwood_goal) {
jcoomes@810 1101 // Found the region that has the correct amount of deadwood to the left.
jcoomes@810 1102 // This typically occurs after crossing a fairly sparse set of regions, so
jcoomes@810 1103 // iterate backwards over those sparse regions, looking for the region
jcoomes@810 1104 // that has the lowest density of live objects 'to the right.'
jcoomes@810 1105 size_t space_to_left = sd.region(cp) * region_size;
duke@435 1106 size_t live_to_left = space_to_left - cur_deadwood;
duke@435 1107 size_t space_to_right = space_capacity - space_to_left;
duke@435 1108 size_t live_to_right = space_live - live_to_left;
duke@435 1109 double density_to_right = double(live_to_right) / space_to_right;
duke@435 1110 while (cp > full_cp) {
duke@435 1111 --cp;
jcoomes@810 1112 const size_t prev_region_live_to_right = live_to_right -
jcoomes@810 1113 cp->data_size();
jcoomes@810 1114 const size_t prev_region_space_to_right = space_to_right + region_size;
jcoomes@810 1115 double prev_region_density_to_right =
jcoomes@810 1116 double(prev_region_live_to_right) / prev_region_space_to_right;
jcoomes@810 1117 if (density_to_right <= prev_region_density_to_right) {
duke@435 1118 return dense_prefix;
duke@435 1119 }
duke@435 1120 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1121 tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
jcoomes@810 1122 "pc_d2r=%10.8f", sd.region(cp), density_to_right,
jcoomes@810 1123 prev_region_density_to_right);
duke@435 1124 }
jcoomes@810 1125 dense_prefix -= region_size;
jcoomes@810 1126 live_to_right = prev_region_live_to_right;
jcoomes@810 1127 space_to_right = prev_region_space_to_right;
jcoomes@810 1128 density_to_right = prev_region_density_to_right;
duke@435 1129 }
duke@435 1130 return dense_prefix;
duke@435 1131 }
duke@435 1132
jcoomes@810 1133 dense_prefix += region_size;
duke@435 1134 ++cp;
duke@435 1135 }
duke@435 1136
duke@435 1137 return dense_prefix;
duke@435 1138 }
duke@435 1139
duke@435 1140 #ifndef PRODUCT
duke@435 1141 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
duke@435 1142 const SpaceId id,
duke@435 1143 const bool maximum_compaction,
duke@435 1144 HeapWord* const addr)
duke@435 1145 {
jcoomes@810 1146 const size_t region_idx = summary_data().addr_to_region_idx(addr);
jcoomes@810 1147 RegionData* const cp = summary_data().region(region_idx);
duke@435 1148 const MutableSpace* const space = _space_info[id].space();
duke@435 1149 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1150
duke@435 1151 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1152 const size_t dead_to_left = pointer_delta(addr, cp->destination());
duke@435 1153 const size_t space_cap = space->capacity_in_words();
duke@435 1154 const double dead_to_left_pct = double(dead_to_left) / space_cap;
duke@435 1155 const size_t live_to_right = new_top - cp->destination();
duke@435 1156 const size_t dead_to_right = space->top() - addr - live_to_right;
duke@435 1157
jcoomes@699 1158 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
duke@435 1159 "spl=" SIZE_FORMAT " "
duke@435 1160 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
duke@435 1161 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
duke@435 1162 " ratio=%10.8f",
jcoomes@810 1163 algorithm, addr, region_idx,
duke@435 1164 space_live,
duke@435 1165 dead_to_left, dead_to_left_pct,
duke@435 1166 dead_to_right, live_to_right,
duke@435 1167 double(dead_to_right) / live_to_right);
duke@435 1168 }
duke@435 1169 #endif // #ifndef PRODUCT
duke@435 1170
duke@435 1171 // Return a fraction indicating how much of the generation can be treated as
duke@435 1172 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution
duke@435 1173 // based on the density of live objects in the generation to determine a limit,
duke@435 1174 // which is then adjusted so the return value is min_percent when the density is
duke@435 1175 // 1.
duke@435 1176 //
duke@435 1177 // The following table shows some return values for a different values of the
duke@435 1178 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
duke@435 1179 // min_percent is 1.
duke@435 1180 //
duke@435 1181 // fraction allowed as dead wood
duke@435 1182 // -----------------------------------------------------------------
duke@435 1183 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
duke@435 1184 // ------- ---------- ---------- ---------- ---------- ---------- ----------
duke@435 1185 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1186 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1187 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1188 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1189 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1190 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1191 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1192 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1193 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1194 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1195 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
duke@435 1196 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1197 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1198 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1199 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1200 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1201 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1202 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1203 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1204 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1205 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1206
duke@435 1207 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
duke@435 1208 {
duke@435 1209 assert(_dwl_initialized, "uninitialized");
duke@435 1210
duke@435 1211 // The raw limit is the value of the normal distribution at x = density.
duke@435 1212 const double raw_limit = normal_distribution(density);
duke@435 1213
duke@435 1214 // Adjust the raw limit so it becomes the minimum when the density is 1.
duke@435 1215 //
duke@435 1216 // First subtract the adjustment value (which is simply the precomputed value
duke@435 1217 // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
duke@435 1218 // Then add the minimum value, so the minimum is returned when the density is
duke@435 1219 // 1. Finally, prevent negative values, which occur when the mean is not 0.5.
duke@435 1220 const double min = double(min_percent) / 100.0;
duke@435 1221 const double limit = raw_limit - _dwl_adjustment + min;
duke@435 1222 return MAX2(limit, 0.0);
duke@435 1223 }
duke@435 1224
jcoomes@810 1225 ParallelCompactData::RegionData*
jcoomes@810 1226 PSParallelCompact::first_dead_space_region(const RegionData* beg,
jcoomes@810 1227 const RegionData* end)
duke@435 1228 {
jcoomes@810 1229 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1230 ParallelCompactData& sd = summary_data();
jcoomes@810 1231 size_t left = sd.region(beg);
jcoomes@810 1232 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1233
duke@435 1234 // Binary search.
duke@435 1235 while (left < right) {
duke@435 1236 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1237 const size_t middle = left + (right - left) / 2;
jcoomes@810 1238 RegionData* const middle_ptr = sd.region(middle);
duke@435 1239 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1240 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1241 assert(dest != NULL, "sanity");
duke@435 1242 assert(dest <= addr, "must move left");
duke@435 1243
duke@435 1244 if (middle > left && dest < addr) {
duke@435 1245 right = middle - 1;
jcoomes@810 1246 } else if (middle < right && middle_ptr->data_size() == region_size) {
duke@435 1247 left = middle + 1;
duke@435 1248 } else {
duke@435 1249 return middle_ptr;
duke@435 1250 }
duke@435 1251 }
jcoomes@810 1252 return sd.region(left);
duke@435 1253 }
duke@435 1254
jcoomes@810 1255 ParallelCompactData::RegionData*
jcoomes@810 1256 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
jcoomes@810 1257 const RegionData* end,
jcoomes@810 1258 size_t dead_words)
duke@435 1259 {
duke@435 1260 ParallelCompactData& sd = summary_data();
jcoomes@810 1261 size_t left = sd.region(beg);
jcoomes@810 1262 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1263
duke@435 1264 // Binary search.
duke@435 1265 while (left < right) {
duke@435 1266 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1267 const size_t middle = left + (right - left) / 2;
jcoomes@810 1268 RegionData* const middle_ptr = sd.region(middle);
duke@435 1269 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1270 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1271 assert(dest != NULL, "sanity");
duke@435 1272 assert(dest <= addr, "must move left");
duke@435 1273
duke@435 1274 const size_t dead_to_left = pointer_delta(addr, dest);
duke@435 1275 if (middle > left && dead_to_left > dead_words) {
duke@435 1276 right = middle - 1;
duke@435 1277 } else if (middle < right && dead_to_left < dead_words) {
duke@435 1278 left = middle + 1;
duke@435 1279 } else {
duke@435 1280 return middle_ptr;
duke@435 1281 }
duke@435 1282 }
jcoomes@810 1283 return sd.region(left);
duke@435 1284 }
duke@435 1285
duke@435 1286 // The result is valid during the summary phase, after the initial summarization
duke@435 1287 // of each space into itself, and before final summarization.
duke@435 1288 inline double
jcoomes@810 1289 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
duke@435 1290 HeapWord* const bottom,
duke@435 1291 HeapWord* const top,
duke@435 1292 HeapWord* const new_top)
duke@435 1293 {
duke@435 1294 ParallelCompactData& sd = summary_data();
duke@435 1295
duke@435 1296 assert(cp != NULL, "sanity");
duke@435 1297 assert(bottom != NULL, "sanity");
duke@435 1298 assert(top != NULL, "sanity");
duke@435 1299 assert(new_top != NULL, "sanity");
duke@435 1300 assert(top >= new_top, "summary data problem?");
duke@435 1301 assert(new_top > bottom, "space is empty; should not be here");
duke@435 1302 assert(new_top >= cp->destination(), "sanity");
jcoomes@810 1303 assert(top >= sd.region_to_addr(cp), "sanity");
duke@435 1304
duke@435 1305 HeapWord* const destination = cp->destination();
duke@435 1306 const size_t dense_prefix_live = pointer_delta(destination, bottom);
duke@435 1307 const size_t compacted_region_live = pointer_delta(new_top, destination);
jcoomes@810 1308 const size_t compacted_region_used = pointer_delta(top,
jcoomes@810 1309 sd.region_to_addr(cp));
duke@435 1310 const size_t reclaimable = compacted_region_used - compacted_region_live;
duke@435 1311
duke@435 1312 const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
duke@435 1313 return double(reclaimable) / divisor;
duke@435 1314 }
duke@435 1315
duke@435 1316 // Return the address of the end of the dense prefix, a.k.a. the start of the
jcoomes@810 1317 // compacted region. The address is always on a region boundary.
duke@435 1318 //
jcoomes@810 1319 // Completely full regions at the left are skipped, since no compaction can
jcoomes@810 1320 // occur in those regions. Then the maximum amount of dead wood to allow is
jcoomes@810 1321 // computed, based on the density (amount live / capacity) of the generation;
jcoomes@810 1322 // the region with approximately that amount of dead space to the left is
jcoomes@810 1323 // identified as the limit region. Regions between the last completely full
jcoomes@810 1324 // region and the limit region are scanned and the one that has the best
jcoomes@810 1325 // (maximum) reclaimed_ratio() is selected.
duke@435 1326 HeapWord*
duke@435 1327 PSParallelCompact::compute_dense_prefix(const SpaceId id,
duke@435 1328 bool maximum_compaction)
duke@435 1329 {
jcoomes@918 1330 if (ParallelOldGCSplitALot) {
jcoomes@918 1331 if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
jcoomes@918 1332 // The value was chosen to provoke splitting a young gen space; use it.
jcoomes@918 1333 return _space_info[id].dense_prefix();
jcoomes@918 1334 }
jcoomes@918 1335 }
jcoomes@918 1336
jcoomes@810 1337 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1338 const ParallelCompactData& sd = summary_data();
duke@435 1339
duke@435 1340 const MutableSpace* const space = _space_info[id].space();
duke@435 1341 HeapWord* const top = space->top();
jcoomes@810 1342 HeapWord* const top_aligned_up = sd.region_align_up(top);
duke@435 1343 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1344 HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
duke@435 1345 HeapWord* const bottom = space->bottom();
jcoomes@810 1346 const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
jcoomes@810 1347 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1348 const RegionData* const new_top_cp =
jcoomes@810 1349 sd.addr_to_region_ptr(new_top_aligned_up);
jcoomes@810 1350
jcoomes@810 1351 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1352 // of the dense prefix.
jcoomes@810 1353 const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
jcoomes@810 1354 assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
duke@435 1355 space->is_empty(), "no dead space allowed to the left");
jcoomes@810 1356 assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
jcoomes@810 1357 "region must have dead space");
duke@435 1358
duke@435 1359 // The gc number is saved whenever a maximum compaction is done, and used to
duke@435 1360 // determine when the maximum compaction interval has expired. This avoids
duke@435 1361 // successive max compactions for different reasons.
duke@435 1362 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1363 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1364 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
duke@435 1365 total_invocations() == HeapFirstMaximumCompactionCount;
duke@435 1366 if (maximum_compaction || full_cp == top_cp || interval_ended) {
duke@435 1367 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1368 return sd.region_to_addr(full_cp);
duke@435 1369 }
duke@435 1370
duke@435 1371 const size_t space_live = pointer_delta(new_top, bottom);
duke@435 1372 const size_t space_used = space->used_in_words();
duke@435 1373 const size_t space_capacity = space->capacity_in_words();
duke@435 1374
duke@435 1375 const double density = double(space_live) / double(space_capacity);
duke@435 1376 const size_t min_percent_free =
duke@435 1377 id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
duke@435 1378 const double limiter = dead_wood_limiter(density, min_percent_free);
duke@435 1379 const size_t dead_wood_max = space_used - space_live;
duke@435 1380 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
duke@435 1381 dead_wood_max);
duke@435 1382
duke@435 1383 if (TraceParallelOldGCDensePrefix) {
duke@435 1384 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1385 "space_cap=" SIZE_FORMAT,
duke@435 1386 space_live, space_used,
duke@435 1387 space_capacity);
duke@435 1388 tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
duke@435 1389 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
duke@435 1390 density, min_percent_free, limiter,
duke@435 1391 dead_wood_max, dead_wood_limit);
duke@435 1392 }
duke@435 1393
jcoomes@810 1394 // Locate the region with the desired amount of dead space to the left.
jcoomes@810 1395 const RegionData* const limit_cp =
jcoomes@810 1396 dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
jcoomes@810 1397
jcoomes@810 1398 // Scan from the first region with dead space to the limit region and find the
duke@435 1399 // one with the best (largest) reclaimed ratio.
duke@435 1400 double best_ratio = 0.0;
jcoomes@810 1401 const RegionData* best_cp = full_cp;
jcoomes@810 1402 for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
duke@435 1403 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
duke@435 1404 if (tmp_ratio > best_ratio) {
duke@435 1405 best_cp = cp;
duke@435 1406 best_ratio = tmp_ratio;
duke@435 1407 }
duke@435 1408 }
duke@435 1409
duke@435 1410 #if 0
jcoomes@810 1411 // Something to consider: if the region with the best ratio is 'close to' the
jcoomes@810 1412 // first region w/free space, choose the first region with free space
jcoomes@810 1413 // ("first-free"). The first-free region is usually near the start of the
duke@435 1414 // heap, which means we are copying most of the heap already, so copy a bit
duke@435 1415 // more to get complete compaction.
jcoomes@810 1416 if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
duke@435 1417 _maximum_compaction_gc_num = total_invocations();
duke@435 1418 best_cp = full_cp;
duke@435 1419 }
duke@435 1420 #endif // #if 0
duke@435 1421
jcoomes@810 1422 return sd.region_to_addr(best_cp);
duke@435 1423 }
duke@435 1424
jcoomes@918 1425 #ifndef PRODUCT
jcoomes@918 1426 void
jcoomes@918 1427 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
jcoomes@918 1428 size_t words)
jcoomes@918 1429 {
jcoomes@918 1430 if (TraceParallelOldGCSummaryPhase) {
jcoomes@918 1431 tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
jcoomes@918 1432 SIZE_FORMAT, start, start + words, words);
jcoomes@918 1433 }
jcoomes@918 1434
jcoomes@918 1435 ObjectStartArray* const start_array = _space_info[id].start_array();
jcoomes@918 1436 CollectedHeap::fill_with_objects(start, words);
jcoomes@918 1437 for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
jcoomes@918 1438 _mark_bitmap.mark_obj(p, words);
jcoomes@918 1439 _summary_data.add_obj(p, words);
jcoomes@918 1440 start_array->allocate_block(p);
jcoomes@918 1441 }
jcoomes@918 1442 }
jcoomes@918 1443
jcoomes@918 1444 void
jcoomes@918 1445 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
jcoomes@918 1446 {
jcoomes@918 1447 ParallelCompactData& sd = summary_data();
jcoomes@918 1448 MutableSpace* space = _space_info[id].space();
jcoomes@918 1449
jcoomes@918 1450 // Find the source and destination start addresses.
jcoomes@918 1451 HeapWord* const src_addr = sd.region_align_down(start);
jcoomes@918 1452 HeapWord* dst_addr;
jcoomes@918 1453 if (src_addr < start) {
jcoomes@918 1454 dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
jcoomes@918 1455 } else if (src_addr > space->bottom()) {
jcoomes@918 1456 // The start (the original top() value) is aligned to a region boundary so
jcoomes@918 1457 // the associated region does not have a destination. Compute the
jcoomes@918 1458 // destination from the previous region.
jcoomes@918 1459 RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
jcoomes@918 1460 dst_addr = cp->destination() + cp->data_size();
jcoomes@918 1461 } else {
jcoomes@918 1462 // Filling the entire space.
jcoomes@918 1463 dst_addr = space->bottom();
jcoomes@918 1464 }
jcoomes@918 1465 assert(dst_addr != NULL, "sanity");
jcoomes@918 1466
jcoomes@918 1467 // Update the summary data.
jcoomes@918 1468 bool result = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@918 1469 src_addr, space->top(), NULL,
jcoomes@918 1470 dst_addr, space->end(),
jcoomes@918 1471 _space_info[id].new_top_addr());
jcoomes@918 1472 assert(result, "should not fail: bad filler object size");
jcoomes@918 1473 }
jcoomes@918 1474
jcoomes@918 1475 void
jcoomes@931 1476 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
jcoomes@931 1477 {
jcoomes@931 1478 if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
jcoomes@931 1479 return;
jcoomes@931 1480 }
jcoomes@931 1481
jcoomes@931 1482 MutableSpace* const space = _space_info[id].space();
jcoomes@931 1483 if (space->is_empty()) {
jcoomes@931 1484 HeapWord* b = space->bottom();
jcoomes@931 1485 HeapWord* t = b + space->capacity_in_words() / 2;
jcoomes@931 1486 space->set_top(t);
jcoomes@931 1487 if (ZapUnusedHeapArea) {
jcoomes@931 1488 space->set_top_for_allocations();
jcoomes@931 1489 }
jcoomes@931 1490
jcoomes@931 1491 size_t obj_len = 8;
jcoomes@931 1492 while (b + obj_len <= t) {
jcoomes@931 1493 CollectedHeap::fill_with_object(b, obj_len);
jcoomes@931 1494 mark_bitmap()->mark_obj(b, obj_len);
jcoomes@931 1495 summary_data().add_obj(b, obj_len);
jcoomes@931 1496 b += obj_len;
jcoomes@931 1497 obj_len = (obj_len & 0x18) + 8; // 8 16 24 32 8 16 24 32 ...
jcoomes@931 1498 }
jcoomes@931 1499 if (b < t) {
jcoomes@931 1500 // The loop didn't completely fill to t (top); adjust top downward.
jcoomes@931 1501 space->set_top(b);
jcoomes@931 1502 if (ZapUnusedHeapArea) {
jcoomes@931 1503 space->set_top_for_allocations();
jcoomes@931 1504 }
jcoomes@931 1505 }
jcoomes@931 1506
jcoomes@931 1507 HeapWord** nta = _space_info[id].new_top_addr();
jcoomes@931 1508 bool result = summary_data().summarize(_space_info[id].split_info(),
jcoomes@931 1509 space->bottom(), space->top(), NULL,
jcoomes@931 1510 space->bottom(), space->end(), nta);
jcoomes@931 1511 assert(result, "space must fit into itself");
jcoomes@931 1512 }
jcoomes@931 1513 }
jcoomes@931 1514
jcoomes@931 1515 void
jcoomes@918 1516 PSParallelCompact::provoke_split(bool & max_compaction)
jcoomes@918 1517 {
jcoomes@931 1518 if (total_invocations() % ParallelOldGCSplitInterval != 0) {
jcoomes@931 1519 return;
jcoomes@931 1520 }
jcoomes@931 1521
jcoomes@918 1522 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@918 1523 ParallelCompactData& sd = summary_data();
jcoomes@918 1524
jcoomes@918 1525 MutableSpace* const eden_space = _space_info[eden_space_id].space();
jcoomes@918 1526 MutableSpace* const from_space = _space_info[from_space_id].space();
jcoomes@918 1527 const size_t eden_live = pointer_delta(eden_space->top(),
jcoomes@918 1528 _space_info[eden_space_id].new_top());
jcoomes@918 1529 const size_t from_live = pointer_delta(from_space->top(),
jcoomes@918 1530 _space_info[from_space_id].new_top());
jcoomes@918 1531
jcoomes@918 1532 const size_t min_fill_size = CollectedHeap::min_fill_size();
jcoomes@918 1533 const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
jcoomes@918 1534 const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
jcoomes@918 1535 const size_t from_free = pointer_delta(from_space->end(), from_space->top());
jcoomes@918 1536 const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
jcoomes@918 1537
jcoomes@918 1538 // Choose the space to split; need at least 2 regions live (or fillable).
jcoomes@918 1539 SpaceId id;
jcoomes@918 1540 MutableSpace* space;
jcoomes@918 1541 size_t live_words;
jcoomes@918 1542 size_t fill_words;
jcoomes@918 1543 if (eden_live + eden_fillable >= region_size * 2) {
jcoomes@918 1544 id = eden_space_id;
jcoomes@918 1545 space = eden_space;
jcoomes@918 1546 live_words = eden_live;
jcoomes@918 1547 fill_words = eden_fillable;
jcoomes@918 1548 } else if (from_live + from_fillable >= region_size * 2) {
jcoomes@918 1549 id = from_space_id;
jcoomes@918 1550 space = from_space;
jcoomes@918 1551 live_words = from_live;
jcoomes@918 1552 fill_words = from_fillable;
jcoomes@918 1553 } else {
jcoomes@918 1554 return; // Give up.
jcoomes@918 1555 }
jcoomes@918 1556 assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
jcoomes@918 1557
jcoomes@918 1558 if (live_words < region_size * 2) {
jcoomes@918 1559 // Fill from top() to end() w/live objects of mixed sizes.
jcoomes@918 1560 HeapWord* const fill_start = space->top();
jcoomes@918 1561 live_words += fill_words;
jcoomes@918 1562
jcoomes@918 1563 space->set_top(fill_start + fill_words);
jcoomes@918 1564 if (ZapUnusedHeapArea) {
jcoomes@918 1565 space->set_top_for_allocations();
jcoomes@918 1566 }
jcoomes@918 1567
jcoomes@918 1568 HeapWord* cur_addr = fill_start;
jcoomes@918 1569 while (fill_words > 0) {
jcoomes@918 1570 const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
jcoomes@918 1571 size_t cur_size = MIN2(align_object_size_(r), fill_words);
jcoomes@918 1572 if (fill_words - cur_size < min_fill_size) {
jcoomes@918 1573 cur_size = fill_words; // Avoid leaving a fragment too small to fill.
jcoomes@918 1574 }
jcoomes@918 1575
jcoomes@918 1576 CollectedHeap::fill_with_object(cur_addr, cur_size);
jcoomes@918 1577 mark_bitmap()->mark_obj(cur_addr, cur_size);
jcoomes@918 1578 sd.add_obj(cur_addr, cur_size);
jcoomes@918 1579
jcoomes@918 1580 cur_addr += cur_size;
jcoomes@918 1581 fill_words -= cur_size;
jcoomes@918 1582 }
jcoomes@918 1583
jcoomes@918 1584 summarize_new_objects(id, fill_start);
jcoomes@918 1585 }
jcoomes@918 1586
jcoomes@918 1587 max_compaction = false;
jcoomes@918 1588
jcoomes@918 1589 // Manipulate the old gen so that it has room for about half of the live data
jcoomes@918 1590 // in the target young gen space (live_words / 2).
jcoomes@918 1591 id = old_space_id;
jcoomes@918 1592 space = _space_info[id].space();
jcoomes@918 1593 const size_t free_at_end = space->free_in_words();
jcoomes@918 1594 const size_t free_target = align_object_size(live_words / 2);
jcoomes@918 1595 const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
jcoomes@918 1596
jcoomes@918 1597 if (free_at_end >= free_target + min_fill_size) {
jcoomes@918 1598 // Fill space above top() and set the dense prefix so everything survives.
jcoomes@918 1599 HeapWord* const fill_start = space->top();
jcoomes@918 1600 const size_t fill_size = free_at_end - free_target;
jcoomes@918 1601 space->set_top(space->top() + fill_size);
jcoomes@918 1602 if (ZapUnusedHeapArea) {
jcoomes@918 1603 space->set_top_for_allocations();
jcoomes@918 1604 }
jcoomes@918 1605 fill_with_live_objects(id, fill_start, fill_size);
jcoomes@918 1606 summarize_new_objects(id, fill_start);
jcoomes@918 1607 _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
jcoomes@918 1608 } else if (dead + free_at_end > free_target) {
jcoomes@918 1609 // Find a dense prefix that makes the right amount of space available.
jcoomes@918 1610 HeapWord* cur = sd.region_align_down(space->top());
jcoomes@918 1611 HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
jcoomes@918 1612 size_t dead_to_right = pointer_delta(space->end(), cur_destination);
jcoomes@918 1613 while (dead_to_right < free_target) {
jcoomes@918 1614 cur -= region_size;
jcoomes@918 1615 cur_destination = sd.addr_to_region_ptr(cur)->destination();
jcoomes@918 1616 dead_to_right = pointer_delta(space->end(), cur_destination);
jcoomes@918 1617 }
jcoomes@918 1618 _space_info[id].set_dense_prefix(cur);
jcoomes@918 1619 }
jcoomes@918 1620 }
jcoomes@918 1621 #endif // #ifndef PRODUCT
jcoomes@918 1622
duke@435 1623 void PSParallelCompact::summarize_spaces_quick()
duke@435 1624 {
duke@435 1625 for (unsigned int i = 0; i < last_space_id; ++i) {
duke@435 1626 const MutableSpace* space = _space_info[i].space();
jcoomes@917 1627 HeapWord** nta = _space_info[i].new_top_addr();
jcoomes@917 1628 bool result = _summary_data.summarize(_space_info[i].split_info(),
jcoomes@917 1629 space->bottom(), space->top(), NULL,
jcoomes@917 1630 space->bottom(), space->end(), nta);
jcoomes@917 1631 assert(result, "space must fit into itself");
duke@435 1632 _space_info[i].set_dense_prefix(space->bottom());
duke@435 1633 }
jcoomes@931 1634
jcoomes@931 1635 #ifndef PRODUCT
jcoomes@931 1636 if (ParallelOldGCSplitALot) {
jcoomes@931 1637 provoke_split_fill_survivor(to_space_id);
jcoomes@931 1638 }
jcoomes@931 1639 #endif // #ifndef PRODUCT
duke@435 1640 }
duke@435 1641
duke@435 1642 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
duke@435 1643 {
duke@435 1644 HeapWord* const dense_prefix_end = dense_prefix(id);
jcoomes@810 1645 const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
duke@435 1646 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
jcoomes@810 1647 if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
duke@435 1648 // Only enough dead space is filled so that any remaining dead space to the
duke@435 1649 // left is larger than the minimum filler object. (The remainder is filled
duke@435 1650 // during the copy/update phase.)
duke@435 1651 //
duke@435 1652 // The size of the dead space to the right of the boundary is not a
duke@435 1653 // concern, since compaction will be able to use whatever space is
duke@435 1654 // available.
duke@435 1655 //
duke@435 1656 // Here '||' is the boundary, 'x' represents a don't care bit and a box
duke@435 1657 // surrounds the space to be filled with an object.
duke@435 1658 //
duke@435 1659 // In the 32-bit VM, each bit represents two 32-bit words:
duke@435 1660 // +---+
duke@435 1661 // a) beg_bits: ... x x x | 0 | || 0 x x ...
duke@435 1662 // end_bits: ... x x x | 0 | || 0 x x ...
duke@435 1663 // +---+
duke@435 1664 //
duke@435 1665 // In the 64-bit VM, each bit represents one 64-bit word:
duke@435 1666 // +------------+
duke@435 1667 // b) beg_bits: ... x x x | 0 || 0 | x x ...
duke@435 1668 // end_bits: ... x x 1 | 0 || 0 | x x ...
duke@435 1669 // +------------+
duke@435 1670 // +-------+
duke@435 1671 // c) beg_bits: ... x x | 0 0 | || 0 x x ...
duke@435 1672 // end_bits: ... x 1 | 0 0 | || 0 x x ...
duke@435 1673 // +-------+
duke@435 1674 // +-----------+
duke@435 1675 // d) beg_bits: ... x | 0 0 0 | || 0 x x ...
duke@435 1676 // end_bits: ... 1 | 0 0 0 | || 0 x x ...
duke@435 1677 // +-----------+
duke@435 1678 // +-------+
duke@435 1679 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1680 // end_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1681 // +-------+
duke@435 1682
duke@435 1683 // Initially assume case a, c or e will apply.
duke@435 1684 size_t obj_len = (size_t)oopDesc::header_size();
duke@435 1685 HeapWord* obj_beg = dense_prefix_end - obj_len;
duke@435 1686
duke@435 1687 #ifdef _LP64
duke@435 1688 if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
duke@435 1689 // Case b above.
duke@435 1690 obj_beg = dense_prefix_end - 1;
duke@435 1691 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
duke@435 1692 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
duke@435 1693 // Case d above.
duke@435 1694 obj_beg = dense_prefix_end - 3;
duke@435 1695 obj_len = 3;
duke@435 1696 }
duke@435 1697 #endif // #ifdef _LP64
duke@435 1698
jcoomes@917 1699 CollectedHeap::fill_with_object(obj_beg, obj_len);
duke@435 1700 _mark_bitmap.mark_obj(obj_beg, obj_len);
duke@435 1701 _summary_data.add_obj(obj_beg, obj_len);
duke@435 1702 assert(start_array(id) != NULL, "sanity");
duke@435 1703 start_array(id)->allocate_block(obj_beg);
duke@435 1704 }
duke@435 1705 }
duke@435 1706
duke@435 1707 void
jcoomes@917 1708 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
jcoomes@917 1709 {
jcoomes@917 1710 RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
jcoomes@917 1711 HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
jcoomes@917 1712 RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
jcoomes@917 1713 for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
jcoomes@917 1714 cur->set_source_region(0);
jcoomes@917 1715 }
jcoomes@917 1716 }
jcoomes@917 1717
jcoomes@917 1718 void
duke@435 1719 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
duke@435 1720 {
duke@435 1721 assert(id < last_space_id, "id out of range");
jcoomes@918 1722 assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
jcoomes@918 1723 ParallelOldGCSplitALot && id == old_space_id,
jcoomes@918 1724 "should have been reset in summarize_spaces_quick()");
duke@435 1725
duke@435 1726 const MutableSpace* space = _space_info[id].space();
jcoomes@700 1727 if (_space_info[id].new_top() != space->bottom()) {
jcoomes@700 1728 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
jcoomes@700 1729 _space_info[id].set_dense_prefix(dense_prefix_end);
duke@435 1730
duke@435 1731 #ifndef PRODUCT
jcoomes@700 1732 if (TraceParallelOldGCDensePrefix) {
jcoomes@700 1733 print_dense_prefix_stats("ratio", id, maximum_compaction,
jcoomes@700 1734 dense_prefix_end);
jcoomes@700 1735 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
jcoomes@700 1736 print_dense_prefix_stats("density", id, maximum_compaction, addr);
jcoomes@700 1737 }
jcoomes@700 1738 #endif // #ifndef PRODUCT
jcoomes@700 1739
jcoomes@918 1740 // Recompute the summary data, taking into account the dense prefix. If
jcoomes@918 1741 // every last byte will be reclaimed, then the existing summary data which
jcoomes@918 1742 // compacts everything can be left in place.
jcoomes@700 1743 if (!maximum_compaction && dense_prefix_end != space->bottom()) {
jcoomes@917 1744 // If dead space crosses the dense prefix boundary, it is (at least
jcoomes@917 1745 // partially) filled with a dummy object, marked live and added to the
jcoomes@917 1746 // summary data. This simplifies the copy/update phase and must be done
jcoomes@918 1747 // before the final locations of objects are determined, to prevent
jcoomes@918 1748 // leaving a fragment of dead space that is too small to fill.
jcoomes@700 1749 fill_dense_prefix_end(id);
jcoomes@917 1750
jcoomes@917 1751 // Compute the destination of each Region, and thus each object.
jcoomes@917 1752 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
jcoomes@917 1753 _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1754 dense_prefix_end, space->top(), NULL,
jcoomes@917 1755 dense_prefix_end, space->end(),
jcoomes@917 1756 _space_info[id].new_top_addr());
jcoomes@700 1757 }
duke@435 1758 }
duke@435 1759
duke@435 1760 if (TraceParallelOldGCSummaryPhase) {
jcoomes@810 1761 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@700 1762 HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
jcoomes@810 1763 const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
duke@435 1764 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
jcoomes@700 1765 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1766 const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
duke@435 1767 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
duke@435 1768 tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
jcoomes@810 1769 "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
duke@435 1770 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
duke@435 1771 id, space->capacity_in_words(), dense_prefix_end,
jcoomes@810 1772 dp_region, dp_words / region_size,
jcoomes@810 1773 cr_words / region_size, new_top);
duke@435 1774 }
duke@435 1775 }
duke@435 1776
jcoomes@917 1777 #ifndef PRODUCT
jcoomes@917 1778 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
jcoomes@917 1779 HeapWord* dst_beg, HeapWord* dst_end,
jcoomes@917 1780 SpaceId src_space_id,
jcoomes@917 1781 HeapWord* src_beg, HeapWord* src_end)
jcoomes@917 1782 {
jcoomes@917 1783 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 1784 tty->print_cr("summarizing %d [%s] into %d [%s]: "
jcoomes@917 1785 "src=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1786 SIZE_FORMAT "-" SIZE_FORMAT " "
jcoomes@917 1787 "dst=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1788 SIZE_FORMAT "-" SIZE_FORMAT,
jcoomes@917 1789 src_space_id, space_names[src_space_id],
jcoomes@917 1790 dst_space_id, space_names[dst_space_id],
jcoomes@917 1791 src_beg, src_end,
jcoomes@917 1792 _summary_data.addr_to_region_idx(src_beg),
jcoomes@917 1793 _summary_data.addr_to_region_idx(src_end),
jcoomes@917 1794 dst_beg, dst_end,
jcoomes@917 1795 _summary_data.addr_to_region_idx(dst_beg),
jcoomes@917 1796 _summary_data.addr_to_region_idx(dst_end));
jcoomes@917 1797 }
jcoomes@917 1798 }
jcoomes@917 1799 #endif // #ifndef PRODUCT
jcoomes@917 1800
duke@435 1801 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
duke@435 1802 bool maximum_compaction)
duke@435 1803 {
duke@435 1804 EventMark m("2 summarize");
duke@435 1805 TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
duke@435 1806 // trace("2");
duke@435 1807
duke@435 1808 #ifdef ASSERT
duke@435 1809 if (TraceParallelOldGCMarkingPhase) {
duke@435 1810 tty->print_cr("add_obj_count=" SIZE_FORMAT " "
duke@435 1811 "add_obj_bytes=" SIZE_FORMAT,
duke@435 1812 add_obj_count, add_obj_size * HeapWordSize);
duke@435 1813 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
duke@435 1814 "mark_bitmap_bytes=" SIZE_FORMAT,
duke@435 1815 mark_bitmap_count, mark_bitmap_size * HeapWordSize);
duke@435 1816 }
duke@435 1817 #endif // #ifdef ASSERT
duke@435 1818
duke@435 1819 // Quick summarization of each space into itself, to see how much is live.
duke@435 1820 summarize_spaces_quick();
duke@435 1821
duke@435 1822 if (TraceParallelOldGCSummaryPhase) {
duke@435 1823 tty->print_cr("summary_phase: after summarizing each space to self");
duke@435 1824 Universe::print();
jcoomes@810 1825 NOT_PRODUCT(print_region_ranges());
duke@435 1826 if (Verbose) {
duke@435 1827 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
duke@435 1828 }
duke@435 1829 }
duke@435 1830
duke@435 1831 // The amount of live data that will end up in old space (assuming it fits).
duke@435 1832 size_t old_space_total_live = 0;
jcoomes@917 1833 assert(perm_space_id < old_space_id, "should not count perm data here");
jcoomes@917 1834 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 1835 old_space_total_live += pointer_delta(_space_info[id].new_top(),
duke@435 1836 _space_info[id].space()->bottom());
duke@435 1837 }
duke@435 1838
jcoomes@917 1839 MutableSpace* const old_space = _space_info[old_space_id].space();
jcoomes@918 1840 const size_t old_capacity = old_space->capacity_in_words();
jcoomes@918 1841 if (old_space_total_live > old_capacity) {
duke@435 1842 // XXX - should also try to expand
duke@435 1843 maximum_compaction = true;
duke@435 1844 }
jcoomes@918 1845 #ifndef PRODUCT
jcoomes@918 1846 if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
jcoomes@931 1847 provoke_split(maximum_compaction);
jcoomes@918 1848 }
jcoomes@918 1849 #endif // #ifndef PRODUCT
duke@435 1850
duke@435 1851 // Permanent and Old generations.
duke@435 1852 summarize_space(perm_space_id, maximum_compaction);
duke@435 1853 summarize_space(old_space_id, maximum_compaction);
duke@435 1854
jcoomes@917 1855 // Summarize the remaining spaces in the young gen. The initial target space
jcoomes@917 1856 // is the old gen. If a space does not fit entirely into the target, then the
jcoomes@917 1857 // remainder is compacted into the space itself and that space becomes the new
jcoomes@917 1858 // target.
jcoomes@917 1859 SpaceId dst_space_id = old_space_id;
jcoomes@917 1860 HeapWord* dst_space_end = old_space->end();
jcoomes@917 1861 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
jcoomes@917 1862 for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
duke@435 1863 const MutableSpace* space = _space_info[id].space();
duke@435 1864 const size_t live = pointer_delta(_space_info[id].new_top(),
duke@435 1865 space->bottom());
jcoomes@917 1866 const size_t available = pointer_delta(dst_space_end, *new_top_addr);
jcoomes@917 1867
jcoomes@917 1868 NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
jcoomes@917 1869 SpaceId(id), space->bottom(), space->top());)
jcoomes@701 1870 if (live > 0 && live <= available) {
duke@435 1871 // All the live data will fit.
jcoomes@917 1872 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1873 space->bottom(), space->top(),
jcoomes@917 1874 NULL,
jcoomes@917 1875 *new_top_addr, dst_space_end,
jcoomes@917 1876 new_top_addr);
jcoomes@917 1877 assert(done, "space must fit into old gen");
jcoomes@917 1878
jcoomes@701 1879 // Reset the new_top value for the space.
jcoomes@701 1880 _space_info[id].set_new_top(space->bottom());
jcoomes@917 1881 } else if (live > 0) {
jcoomes@917 1882 // Attempt to fit part of the source space into the target space.
jcoomes@917 1883 HeapWord* next_src_addr = NULL;
jcoomes@917 1884 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1885 space->bottom(), space->top(),
jcoomes@917 1886 &next_src_addr,
jcoomes@917 1887 *new_top_addr, dst_space_end,
jcoomes@917 1888 new_top_addr);
jcoomes@917 1889 assert(!done, "space should not fit into old gen");
jcoomes@917 1890 assert(next_src_addr != NULL, "sanity");
jcoomes@917 1891
jcoomes@917 1892 // The source space becomes the new target, so the remainder is compacted
jcoomes@917 1893 // within the space itself.
jcoomes@917 1894 dst_space_id = SpaceId(id);
jcoomes@917 1895 dst_space_end = space->end();
jcoomes@917 1896 new_top_addr = _space_info[id].new_top_addr();
jcoomes@917 1897 NOT_PRODUCT(summary_phase_msg(dst_space_id,
jcoomes@917 1898 space->bottom(), dst_space_end,
jcoomes@917 1899 SpaceId(id), next_src_addr, space->top());)
jcoomes@917 1900 done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1901 next_src_addr, space->top(),
jcoomes@917 1902 NULL,
jcoomes@917 1903 space->bottom(), dst_space_end,
jcoomes@917 1904 new_top_addr);
jcoomes@917 1905 assert(done, "space must fit when compacted into itself");
jcoomes@917 1906 assert(*new_top_addr <= space->top(), "usage should not grow");
duke@435 1907 }
duke@435 1908 }
duke@435 1909
duke@435 1910 if (TraceParallelOldGCSummaryPhase) {
duke@435 1911 tty->print_cr("summary_phase: after final summarization");
duke@435 1912 Universe::print();
jcoomes@810 1913 NOT_PRODUCT(print_region_ranges());
duke@435 1914 if (Verbose) {
duke@435 1915 NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
duke@435 1916 }
duke@435 1917 }
duke@435 1918 }
duke@435 1919
duke@435 1920 // This method should contain all heap-specific policy for invoking a full
duke@435 1921 // collection. invoke_no_policy() will only attempt to compact the heap; it
duke@435 1922 // will do nothing further. If we need to bail out for policy reasons, scavenge
duke@435 1923 // before full gc, or any other specialized behavior, it needs to be added here.
duke@435 1924 //
duke@435 1925 // Note that this method should only be called from the vm_thread while at a
duke@435 1926 // safepoint.
duke@435 1927 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
duke@435 1928 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 1929 assert(Thread::current() == (Thread*)VMThread::vm_thread(),
duke@435 1930 "should be in vm thread");
duke@435 1931 ParallelScavengeHeap* heap = gc_heap();
duke@435 1932 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1933 assert(!heap->is_gc_active(), "not reentrant");
duke@435 1934
duke@435 1935 PSAdaptiveSizePolicy* policy = heap->size_policy();
duke@435 1936
duke@435 1937 // Before each allocation/collection attempt, find out from the
duke@435 1938 // policy object if GCs are, on the whole, taking too long. If so,
duke@435 1939 // bail out without attempting a collection. The exceptions are
duke@435 1940 // for explicitly requested GC's.
duke@435 1941 if (!policy->gc_time_limit_exceeded() ||
duke@435 1942 GCCause::is_user_requested_gc(gc_cause) ||
duke@435 1943 GCCause::is_serviceability_requested_gc(gc_cause)) {
duke@435 1944 IsGCActiveMark mark;
duke@435 1945
duke@435 1946 if (ScavengeBeforeFullGC) {
duke@435 1947 PSScavenge::invoke_no_policy();
duke@435 1948 }
duke@435 1949
duke@435 1950 PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
duke@435 1951 }
duke@435 1952 }
duke@435 1953
jcoomes@810 1954 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
jcoomes@810 1955 size_t addr_region_index = addr_to_region_idx(addr);
jcoomes@810 1956 return region_index == addr_region_index;
duke@435 1957 }
duke@435 1958
duke@435 1959 // This method contains no policy. You should probably
duke@435 1960 // be calling invoke() instead.
duke@435 1961 void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
duke@435 1962 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
duke@435 1963 assert(ref_processor() != NULL, "Sanity");
duke@435 1964
apetrusenko@574 1965 if (GC_locker::check_active_before_gc()) {
duke@435 1966 return;
duke@435 1967 }
duke@435 1968
duke@435 1969 TimeStamp marking_start;
duke@435 1970 TimeStamp compaction_start;
duke@435 1971 TimeStamp collection_exit;
duke@435 1972
duke@435 1973 ParallelScavengeHeap* heap = gc_heap();
duke@435 1974 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1975 PSYoungGen* young_gen = heap->young_gen();
duke@435 1976 PSOldGen* old_gen = heap->old_gen();
duke@435 1977 PSPermGen* perm_gen = heap->perm_gen();
duke@435 1978 PSAdaptiveSizePolicy* size_policy = heap->size_policy();
duke@435 1979
jmasa@698 1980 if (ZapUnusedHeapArea) {
jmasa@698 1981 // Save information needed to minimize mangling
jmasa@698 1982 heap->record_gen_tops_before_GC();
jmasa@698 1983 }
jmasa@698 1984
duke@435 1985 _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
duke@435 1986
duke@435 1987 // Make sure data structures are sane, make the heap parsable, and do other
duke@435 1988 // miscellaneous bookkeeping.
duke@435 1989 PreGCValues pre_gc_values;
duke@435 1990 pre_compact(&pre_gc_values);
duke@435 1991
jcoomes@645 1992 // Get the compaction manager reserved for the VM thread.
jcoomes@645 1993 ParCompactionManager* const vmthread_cm =
jcoomes@645 1994 ParCompactionManager::manager_array(gc_task_manager()->workers());
jcoomes@645 1995
duke@435 1996 // Place after pre_compact() where the number of invocations is incremented.
duke@435 1997 AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
duke@435 1998
duke@435 1999 {
duke@435 2000 ResourceMark rm;
duke@435 2001 HandleMark hm;
duke@435 2002
duke@435 2003 const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
duke@435 2004
duke@435 2005 // This is useful for debugging but don't change the output the
duke@435 2006 // the customer sees.
duke@435 2007 const char* gc_cause_str = "Full GC";
duke@435 2008 if (is_system_gc && PrintGCDetails) {
duke@435 2009 gc_cause_str = "Full GC (System)";
duke@435 2010 }
duke@435 2011 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
duke@435 2012 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
duke@435 2013 TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
duke@435 2014 TraceCollectorStats tcs(counters());
duke@435 2015 TraceMemoryManagerStats tms(true /* Full GC */);
duke@435 2016
duke@435 2017 if (TraceGen1Time) accumulated_time()->start();
duke@435 2018
duke@435 2019 // Let the size policy know we're starting
duke@435 2020 size_policy->major_collection_begin();
duke@435 2021
duke@435 2022 // When collecting the permanent generation methodOops may be moving,
duke@435 2023 // so we either have to flush all bcp data or convert it into bci.
duke@435 2024 CodeCache::gc_prologue();
duke@435 2025 Threads::gc_prologue();
duke@435 2026
duke@435 2027 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
duke@435 2028 COMPILER2_PRESENT(DerivedPointerTable::clear());
duke@435 2029
duke@435 2030 ref_processor()->enable_discovery();
ysr@892 2031 ref_processor()->setup_policy(maximum_heap_compaction);
duke@435 2032
duke@435 2033 bool marked_for_unloading = false;
duke@435 2034
duke@435 2035 marking_start.update();
jcoomes@645 2036 marking_phase(vmthread_cm, maximum_heap_compaction);
duke@435 2037
duke@435 2038 #ifndef PRODUCT
duke@435 2039 if (TraceParallelOldGCMarkingPhase) {
duke@435 2040 gclog_or_tty->print_cr("marking_phase: cas_tries %d cas_retries %d "
duke@435 2041 "cas_by_another %d",
duke@435 2042 mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
duke@435 2043 mark_bitmap()->cas_by_another());
duke@435 2044 }
duke@435 2045 #endif // #ifndef PRODUCT
duke@435 2046
duke@435 2047 bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
jcoomes@645 2048 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
duke@435 2049
duke@435 2050 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
duke@435 2051 COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
duke@435 2052
duke@435 2053 // adjust_roots() updates Universe::_intArrayKlassObj which is
duke@435 2054 // needed by the compaction for filling holes in the dense prefix.
duke@435 2055 adjust_roots();
duke@435 2056
duke@435 2057 compaction_start.update();
duke@435 2058 // Does the perm gen always have to be done serially because
duke@435 2059 // klasses are used in the update of an object?
jcoomes@645 2060 compact_perm(vmthread_cm);
duke@435 2061
duke@435 2062 if (UseParallelOldGCCompacting) {
duke@435 2063 compact();
duke@435 2064 } else {
jcoomes@645 2065 compact_serial(vmthread_cm);
duke@435 2066 }
duke@435 2067
duke@435 2068 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be
duke@435 2069 // done before resizing.
duke@435 2070 post_compact();
duke@435 2071
duke@435 2072 // Let the size policy know we're done
duke@435 2073 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
duke@435 2074
duke@435 2075 if (UseAdaptiveSizePolicy) {
duke@435 2076 if (PrintAdaptiveSizePolicy) {
duke@435 2077 gclog_or_tty->print("AdaptiveSizeStart: ");
duke@435 2078 gclog_or_tty->stamp();
duke@435 2079 gclog_or_tty->print_cr(" collection: %d ",
duke@435 2080 heap->total_collections());
duke@435 2081 if (Verbose) {
duke@435 2082 gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
duke@435 2083 " perm_gen_capacity: %d ",
duke@435 2084 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
duke@435 2085 perm_gen->capacity_in_bytes());
duke@435 2086 }
duke@435 2087 }
duke@435 2088
duke@435 2089 // Don't check if the size_policy is ready here. Let
duke@435 2090 // the size_policy check that internally.
duke@435 2091 if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
duke@435 2092 ((gc_cause != GCCause::_java_lang_system_gc) ||
duke@435 2093 UseAdaptiveSizePolicyWithSystemGC)) {
duke@435 2094 // Calculate optimal free space amounts
duke@435 2095 assert(young_gen->max_size() >
duke@435 2096 young_gen->from_space()->capacity_in_bytes() +
duke@435 2097 young_gen->to_space()->capacity_in_bytes(),
duke@435 2098 "Sizes of space in young gen are out-of-bounds");
duke@435 2099 size_t max_eden_size = young_gen->max_size() -
duke@435 2100 young_gen->from_space()->capacity_in_bytes() -
duke@435 2101 young_gen->to_space()->capacity_in_bytes();
jmasa@698 2102 size_policy->compute_generation_free_space(
jmasa@698 2103 young_gen->used_in_bytes(),
jmasa@698 2104 young_gen->eden_space()->used_in_bytes(),
jmasa@698 2105 old_gen->used_in_bytes(),
jmasa@698 2106 perm_gen->used_in_bytes(),
jmasa@698 2107 young_gen->eden_space()->capacity_in_bytes(),
jmasa@698 2108 old_gen->max_gen_size(),
jmasa@698 2109 max_eden_size,
jmasa@698 2110 true /* full gc*/,
jmasa@698 2111 gc_cause);
jmasa@698 2112
jmasa@698 2113 heap->resize_old_gen(
jmasa@698 2114 size_policy->calculated_old_free_size_in_bytes());
duke@435 2115
duke@435 2116 // Don't resize the young generation at an major collection. A
duke@435 2117 // desired young generation size may have been calculated but
duke@435 2118 // resizing the young generation complicates the code because the
duke@435 2119 // resizing of the old generation may have moved the boundary
duke@435 2120 // between the young generation and the old generation. Let the
duke@435 2121 // young generation resizing happen at the minor collections.
duke@435 2122 }
duke@435 2123 if (PrintAdaptiveSizePolicy) {
duke@435 2124 gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
duke@435 2125 heap->total_collections());
duke@435 2126 }
duke@435 2127 }
duke@435 2128
duke@435 2129 if (UsePerfData) {
duke@435 2130 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
duke@435 2131 counters->update_counters();
duke@435 2132 counters->update_old_capacity(old_gen->capacity_in_bytes());
duke@435 2133 counters->update_young_capacity(young_gen->capacity_in_bytes());
duke@435 2134 }
duke@435 2135
duke@435 2136 heap->resize_all_tlabs();
duke@435 2137
duke@435 2138 // We collected the perm gen, so we'll resize it here.
duke@435 2139 perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
duke@435 2140
duke@435 2141 if (TraceGen1Time) accumulated_time()->stop();
duke@435 2142
duke@435 2143 if (PrintGC) {
duke@435 2144 if (PrintGCDetails) {
duke@435 2145 // No GC timestamp here. This is after GC so it would be confusing.
duke@435 2146 young_gen->print_used_change(pre_gc_values.young_gen_used());
duke@435 2147 old_gen->print_used_change(pre_gc_values.old_gen_used());
duke@435 2148 heap->print_heap_change(pre_gc_values.heap_used());
duke@435 2149 // Print perm gen last (print_heap_change() excludes the perm gen).
duke@435 2150 perm_gen->print_used_change(pre_gc_values.perm_gen_used());
duke@435 2151 } else {
duke@435 2152 heap->print_heap_change(pre_gc_values.heap_used());
duke@435 2153 }
duke@435 2154 }
duke@435 2155
duke@435 2156 // Track memory usage and detect low memory
duke@435 2157 MemoryService::track_memory_usage();
duke@435 2158 heap->update_counters();
duke@435 2159
duke@435 2160 if (PrintGCDetails) {
duke@435 2161 if (size_policy->print_gc_time_limit_would_be_exceeded()) {
duke@435 2162 if (size_policy->gc_time_limit_exceeded()) {
duke@435 2163 gclog_or_tty->print_cr(" GC time is exceeding GCTimeLimit "
duke@435 2164 "of %d%%", GCTimeLimit);
duke@435 2165 } else {
duke@435 2166 gclog_or_tty->print_cr(" GC time would exceed GCTimeLimit "
duke@435 2167 "of %d%%", GCTimeLimit);
duke@435 2168 }
duke@435 2169 }
duke@435 2170 size_policy->set_print_gc_time_limit_would_be_exceeded(false);
duke@435 2171 }
duke@435 2172 }
duke@435 2173
duke@435 2174 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 2175 HandleMark hm; // Discard invalid handles created during verification
duke@435 2176 gclog_or_tty->print(" VerifyAfterGC:");
duke@435 2177 Universe::verify(false);
duke@435 2178 }
duke@435 2179
duke@435 2180 // Re-verify object start arrays
duke@435 2181 if (VerifyObjectStartArray &&
duke@435 2182 VerifyAfterGC) {
duke@435 2183 old_gen->verify_object_start_array();
duke@435 2184 perm_gen->verify_object_start_array();
duke@435 2185 }
duke@435 2186
jmasa@698 2187 if (ZapUnusedHeapArea) {
jmasa@698 2188 old_gen->object_space()->check_mangled_unused_area_complete();
jmasa@698 2189 perm_gen->object_space()->check_mangled_unused_area_complete();
jmasa@698 2190 }
jmasa@698 2191
duke@435 2192 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
duke@435 2193
duke@435 2194 collection_exit.update();
duke@435 2195
duke@435 2196 if (PrintHeapAtGC) {
duke@435 2197 Universe::print_heap_after_gc();
duke@435 2198 }
duke@435 2199 if (PrintGCTaskTimeStamps) {
duke@435 2200 gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
duke@435 2201 INT64_FORMAT,
duke@435 2202 marking_start.ticks(), compaction_start.ticks(),
duke@435 2203 collection_exit.ticks());
duke@435 2204 gc_task_manager()->print_task_time_stamps();
duke@435 2205 }
duke@435 2206 }
duke@435 2207
duke@435 2208 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
duke@435 2209 PSYoungGen* young_gen,
duke@435 2210 PSOldGen* old_gen) {
duke@435 2211 MutableSpace* const eden_space = young_gen->eden_space();
duke@435 2212 assert(!eden_space->is_empty(), "eden must be non-empty");
duke@435 2213 assert(young_gen->virtual_space()->alignment() ==
duke@435 2214 old_gen->virtual_space()->alignment(), "alignments do not match");
duke@435 2215
duke@435 2216 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
duke@435 2217 return false;
duke@435 2218 }
duke@435 2219
duke@435 2220 // Both generations must be completely committed.
duke@435 2221 if (young_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2222 return false;
duke@435 2223 }
duke@435 2224 if (old_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2225 return false;
duke@435 2226 }
duke@435 2227
duke@435 2228 // Figure out how much to take from eden. Include the average amount promoted
duke@435 2229 // in the total; otherwise the next young gen GC will simply bail out to a
duke@435 2230 // full GC.
duke@435 2231 const size_t alignment = old_gen->virtual_space()->alignment();
duke@435 2232 const size_t eden_used = eden_space->used_in_bytes();
duke@435 2233 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
duke@435 2234 const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
duke@435 2235 const size_t eden_capacity = eden_space->capacity_in_bytes();
duke@435 2236
duke@435 2237 if (absorb_size >= eden_capacity) {
duke@435 2238 return false; // Must leave some space in eden.
duke@435 2239 }
duke@435 2240
duke@435 2241 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
duke@435 2242 if (new_young_size < young_gen->min_gen_size()) {
duke@435 2243 return false; // Respect young gen minimum size.
duke@435 2244 }
duke@435 2245
duke@435 2246 if (TraceAdaptiveGCBoundary && Verbose) {
duke@435 2247 gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: "
duke@435 2248 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
duke@435 2249 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
duke@435 2250 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
duke@435 2251 absorb_size / K,
duke@435 2252 eden_capacity / K, (eden_capacity - absorb_size) / K,
duke@435 2253 young_gen->from_space()->used_in_bytes() / K,
duke@435 2254 young_gen->to_space()->used_in_bytes() / K,
duke@435 2255 young_gen->capacity_in_bytes() / K, new_young_size / K);
duke@435 2256 }
duke@435 2257
duke@435 2258 // Fill the unused part of the old gen.
duke@435 2259 MutableSpace* const old_space = old_gen->object_space();
jcoomes@916 2260 HeapWord* const unused_start = old_space->top();
jcoomes@916 2261 size_t const unused_words = pointer_delta(old_space->end(), unused_start);
jcoomes@916 2262
jcoomes@916 2263 if (unused_words > 0) {
jcoomes@916 2264 if (unused_words < CollectedHeap::min_fill_size()) {
jcoomes@916 2265 return false; // If the old gen cannot be filled, must give up.
jcoomes@916 2266 }
jcoomes@916 2267 CollectedHeap::fill_with_objects(unused_start, unused_words);
duke@435 2268 }
duke@435 2269
duke@435 2270 // Take the live data from eden and set both top and end in the old gen to
duke@435 2271 // eden top. (Need to set end because reset_after_change() mangles the region
duke@435 2272 // from end to virtual_space->high() in debug builds).
duke@435 2273 HeapWord* const new_top = eden_space->top();
duke@435 2274 old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
duke@435 2275 absorb_size);
duke@435 2276 young_gen->reset_after_change();
duke@435 2277 old_space->set_top(new_top);
duke@435 2278 old_space->set_end(new_top);
duke@435 2279 old_gen->reset_after_change();
duke@435 2280
duke@435 2281 // Update the object start array for the filler object and the data from eden.
duke@435 2282 ObjectStartArray* const start_array = old_gen->start_array();
jcoomes@916 2283 for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
jcoomes@916 2284 start_array->allocate_block(p);
duke@435 2285 }
duke@435 2286
duke@435 2287 // Could update the promoted average here, but it is not typically updated at
duke@435 2288 // full GCs and the value to use is unclear. Something like
duke@435 2289 //
duke@435 2290 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
duke@435 2291
duke@435 2292 size_policy->set_bytes_absorbed_from_eden(absorb_size);
duke@435 2293 return true;
duke@435 2294 }
duke@435 2295
duke@435 2296 GCTaskManager* const PSParallelCompact::gc_task_manager() {
duke@435 2297 assert(ParallelScavengeHeap::gc_task_manager() != NULL,
duke@435 2298 "shouldn't return NULL");
duke@435 2299 return ParallelScavengeHeap::gc_task_manager();
duke@435 2300 }
duke@435 2301
duke@435 2302 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
duke@435 2303 bool maximum_heap_compaction) {
duke@435 2304 // Recursively traverse all live objects and mark them
duke@435 2305 EventMark m("1 mark object");
duke@435 2306 TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
duke@435 2307
duke@435 2308 ParallelScavengeHeap* heap = gc_heap();
duke@435 2309 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jcoomes@810 2310 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
duke@435 2311 ParallelTaskTerminator terminator(parallel_gc_threads, qset);
duke@435 2312
duke@435 2313 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
duke@435 2314 PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
duke@435 2315
duke@435 2316 {
duke@435 2317 TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
duke@435 2318
duke@435 2319 GCTaskQueue* q = GCTaskQueue::create();
duke@435 2320
duke@435 2321 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
duke@435 2322 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
duke@435 2323 // We scan the thread roots in parallel
duke@435 2324 Threads::create_thread_roots_marking_tasks(q);
duke@435 2325 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
duke@435 2326 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
duke@435 2327 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
duke@435 2328 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
duke@435 2329 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
duke@435 2330 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));
duke@435 2331
duke@435 2332 if (parallel_gc_threads > 1) {
duke@435 2333 for (uint j = 0; j < parallel_gc_threads; j++) {
duke@435 2334 q->enqueue(new StealMarkingTask(&terminator));
duke@435 2335 }
duke@435 2336 }
duke@435 2337
duke@435 2338 WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
duke@435 2339 q->enqueue(fin);
duke@435 2340
duke@435 2341 gc_task_manager()->add_list(q);
duke@435 2342
duke@435 2343 fin->wait_for();
duke@435 2344
duke@435 2345 // We have to release the barrier tasks!
duke@435 2346 WaitForBarrierGCTask::destroy(fin);
duke@435 2347 }
duke@435 2348
duke@435 2349 // Process reference objects found during marking
duke@435 2350 {
duke@435 2351 TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
duke@435 2352 if (ref_processor()->processing_is_mt()) {
duke@435 2353 RefProcTaskExecutor task_executor;
duke@435 2354 ref_processor()->process_discovered_references(
ysr@888 2355 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
ysr@888 2356 &task_executor);
duke@435 2357 } else {
duke@435 2358 ref_processor()->process_discovered_references(
ysr@888 2359 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
duke@435 2360 }
duke@435 2361 }
duke@435 2362
duke@435 2363 TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
duke@435 2364 // Follow system dictionary roots and unload classes.
duke@435 2365 bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
duke@435 2366
duke@435 2367 // Follow code cache roots.
duke@435 2368 CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
duke@435 2369 purged_class);
duke@435 2370 follow_stack(cm); // Flush marking stack.
duke@435 2371
duke@435 2372 // Update subklass/sibling/implementor links of live klasses
duke@435 2373 // revisit_klass_stack is used in follow_weak_klass_links().
duke@435 2374 follow_weak_klass_links(cm);
duke@435 2375
duke@435 2376 // Visit symbol and interned string tables and delete unmarked oops
duke@435 2377 SymbolTable::unlink(is_alive_closure());
duke@435 2378 StringTable::unlink(is_alive_closure());
duke@435 2379
duke@435 2380 assert(cm->marking_stack()->size() == 0, "stack should be empty by now");
duke@435 2381 assert(cm->overflow_stack()->is_empty(), "stack should be empty by now");
duke@435 2382 }
duke@435 2383
duke@435 2384 // This should be moved to the shared markSweep code!
duke@435 2385 class PSAlwaysTrueClosure: public BoolObjectClosure {
duke@435 2386 public:
duke@435 2387 void do_object(oop p) { ShouldNotReachHere(); }
duke@435 2388 bool do_object_b(oop p) { return true; }
duke@435 2389 };
duke@435 2390 static PSAlwaysTrueClosure always_true;
duke@435 2391
duke@435 2392 void PSParallelCompact::adjust_roots() {
duke@435 2393 // Adjust the pointers to reflect the new locations
duke@435 2394 EventMark m("3 adjust roots");
duke@435 2395 TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
duke@435 2396
duke@435 2397 // General strong roots.
duke@435 2398 Universe::oops_do(adjust_root_pointer_closure());
duke@435 2399 ReferenceProcessor::oops_do(adjust_root_pointer_closure());
duke@435 2400 JNIHandles::oops_do(adjust_root_pointer_closure()); // Global (strong) JNI handles
duke@435 2401 Threads::oops_do(adjust_root_pointer_closure());
duke@435 2402 ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
duke@435 2403 FlatProfiler::oops_do(adjust_root_pointer_closure());
duke@435 2404 Management::oops_do(adjust_root_pointer_closure());
duke@435 2405 JvmtiExport::oops_do(adjust_root_pointer_closure());
duke@435 2406 // SO_AllClasses
duke@435 2407 SystemDictionary::oops_do(adjust_root_pointer_closure());
duke@435 2408 vmSymbols::oops_do(adjust_root_pointer_closure());
duke@435 2409
duke@435 2410 // Now adjust pointers in remaining weak roots. (All of which should
duke@435 2411 // have been cleared if they pointed to non-surviving objects.)
duke@435 2412 // Global (weak) JNI handles
duke@435 2413 JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
duke@435 2414
duke@435 2415 CodeCache::oops_do(adjust_pointer_closure());
duke@435 2416 SymbolTable::oops_do(adjust_root_pointer_closure());
duke@435 2417 StringTable::oops_do(adjust_root_pointer_closure());
duke@435 2418 ref_processor()->weak_oops_do(adjust_root_pointer_closure());
duke@435 2419 // Roots were visited so references into the young gen in roots
duke@435 2420 // may have been scanned. Process them also.
duke@435 2421 // Should the reference processor have a span that excludes
duke@435 2422 // young gen objects?
duke@435 2423 PSScavenge::reference_processor()->weak_oops_do(
duke@435 2424 adjust_root_pointer_closure());
duke@435 2425 }
duke@435 2426
duke@435 2427 void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
duke@435 2428 EventMark m("4 compact perm");
duke@435 2429 TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
duke@435 2430 // trace("4");
duke@435 2431
duke@435 2432 gc_heap()->perm_gen()->start_array()->reset();
duke@435 2433 move_and_update(cm, perm_space_id);
duke@435 2434 }
duke@435 2435
jcoomes@810 2436 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
jcoomes@810 2437 uint parallel_gc_threads)
jcoomes@810 2438 {
duke@435 2439 TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
duke@435 2440
duke@435 2441 const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
duke@435 2442 for (unsigned int j = 0; j < task_count; j++) {
duke@435 2443 q->enqueue(new DrainStacksCompactionTask());
duke@435 2444 }
duke@435 2445
jcoomes@810 2446 // Find all regions that are available (can be filled immediately) and
duke@435 2447 // distribute them to the thread stacks. The iteration is done in reverse
jcoomes@810 2448 // order (high to low) so the regions will be removed in ascending order.
duke@435 2449
duke@435 2450 const ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2451
jcoomes@810 2452 size_t fillable_regions = 0; // A count for diagnostic purposes.
duke@435 2453 unsigned int which = 0; // The worker thread number.
duke@435 2454
duke@435 2455 for (unsigned int id = to_space_id; id > perm_space_id; --id) {
duke@435 2456 SpaceInfo* const space_info = _space_info + id;
duke@435 2457 MutableSpace* const space = space_info->space();
duke@435 2458 HeapWord* const new_top = space_info->new_top();
duke@435 2459
jcoomes@810 2460 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
jcoomes@810 2461 const size_t end_region =
jcoomes@810 2462 sd.addr_to_region_idx(sd.region_align_up(new_top));
jcoomes@810 2463 assert(end_region > 0, "perm gen cannot be empty");
jcoomes@810 2464
jcoomes@810 2465 for (size_t cur = end_region - 1; cur >= beg_region; --cur) {
jcoomes@810 2466 if (sd.region(cur)->claim_unsafe()) {
duke@435 2467 ParCompactionManager* cm = ParCompactionManager::manager_array(which);
duke@435 2468 cm->save_for_processing(cur);
duke@435 2469
duke@435 2470 if (TraceParallelOldGCCompactionPhase && Verbose) {
jcoomes@810 2471 const size_t count_mod_8 = fillable_regions & 7;
duke@435 2472 if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
jcoomes@699 2473 gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
duke@435 2474 if (count_mod_8 == 7) gclog_or_tty->cr();
duke@435 2475 }
duke@435 2476
jcoomes@810 2477 NOT_PRODUCT(++fillable_regions;)
jcoomes@810 2478
jcoomes@810 2479 // Assign regions to threads in round-robin fashion.
duke@435 2480 if (++which == task_count) {
duke@435 2481 which = 0;
duke@435 2482 }
duke@435 2483 }
duke@435 2484 }
duke@435 2485 }
duke@435 2486
duke@435 2487 if (TraceParallelOldGCCompactionPhase) {
jcoomes@810 2488 if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
jcoomes@810 2489 gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
duke@435 2490 }
duke@435 2491 }
duke@435 2492
duke@435 2493 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
duke@435 2494
duke@435 2495 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
duke@435 2496 uint parallel_gc_threads) {
duke@435 2497 TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
duke@435 2498
duke@435 2499 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2500
duke@435 2501 // Iterate over all the spaces adding tasks for updating
jcoomes@810 2502 // regions in the dense prefix. Assume that 1 gc thread
duke@435 2503 // will work on opening the gaps and the remaining gc threads
duke@435 2504 // will work on the dense prefix.
jcoomes@917 2505 unsigned int space_id;
jcoomes@917 2506 for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
duke@435 2507 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
duke@435 2508 const MutableSpace* const space = _space_info[space_id].space();
duke@435 2509
duke@435 2510 if (dense_prefix_end == space->bottom()) {
duke@435 2511 // There is no dense prefix for this space.
duke@435 2512 continue;
duke@435 2513 }
duke@435 2514
jcoomes@810 2515 // The dense prefix is before this region.
jcoomes@810 2516 size_t region_index_end_dense_prefix =
jcoomes@810 2517 sd.addr_to_region_idx(dense_prefix_end);
jcoomes@810 2518 RegionData* const dense_prefix_cp =
jcoomes@810 2519 sd.region(region_index_end_dense_prefix);
duke@435 2520 assert(dense_prefix_end == space->end() ||
duke@435 2521 dense_prefix_cp->available() ||
duke@435 2522 dense_prefix_cp->claimed(),
jcoomes@810 2523 "The region after the dense prefix should always be ready to fill");
jcoomes@810 2524
jcoomes@810 2525 size_t region_index_start = sd.addr_to_region_idx(space->bottom());
duke@435 2526
duke@435 2527 // Is there dense prefix work?
jcoomes@810 2528 size_t total_dense_prefix_regions =
jcoomes@810 2529 region_index_end_dense_prefix - region_index_start;
jcoomes@810 2530 // How many regions of the dense prefix should be given to
duke@435 2531 // each thread?
jcoomes@810 2532 if (total_dense_prefix_regions > 0) {
duke@435 2533 uint tasks_for_dense_prefix = 1;
duke@435 2534 if (UseParallelDensePrefixUpdate) {
jcoomes@810 2535 if (total_dense_prefix_regions <=
duke@435 2536 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
duke@435 2537 // Don't over partition. This assumes that
duke@435 2538 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
jcoomes@810 2539 // so there are not many regions to process.
duke@435 2540 tasks_for_dense_prefix = parallel_gc_threads;
duke@435 2541 } else {
duke@435 2542 // Over partition
duke@435 2543 tasks_for_dense_prefix = parallel_gc_threads *
duke@435 2544 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
duke@435 2545 }
duke@435 2546 }
jcoomes@810 2547 size_t regions_per_thread = total_dense_prefix_regions /
duke@435 2548 tasks_for_dense_prefix;
jcoomes@810 2549 // Give each thread at least 1 region.
jcoomes@810 2550 if (regions_per_thread == 0) {
jcoomes@810 2551 regions_per_thread = 1;
duke@435 2552 }
duke@435 2553
duke@435 2554 for (uint k = 0; k < tasks_for_dense_prefix; k++) {
jcoomes@810 2555 if (region_index_start >= region_index_end_dense_prefix) {
duke@435 2556 break;
duke@435 2557 }
jcoomes@810 2558 // region_index_end is not processed
jcoomes@810 2559 size_t region_index_end = MIN2(region_index_start + regions_per_thread,
jcoomes@810 2560 region_index_end_dense_prefix);
jcoomes@917 2561 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2562 region_index_start,
jcoomes@917 2563 region_index_end));
jcoomes@810 2564 region_index_start = region_index_end;
duke@435 2565 }
duke@435 2566 }
duke@435 2567 // This gets any part of the dense prefix that did not
duke@435 2568 // fit evenly.
jcoomes@810 2569 if (region_index_start < region_index_end_dense_prefix) {
jcoomes@917 2570 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2571 region_index_start,
jcoomes@917 2572 region_index_end_dense_prefix));
duke@435 2573 }
jcoomes@917 2574 }
duke@435 2575 }
duke@435 2576
jcoomes@810 2577 void PSParallelCompact::enqueue_region_stealing_tasks(
duke@435 2578 GCTaskQueue* q,
duke@435 2579 ParallelTaskTerminator* terminator_ptr,
duke@435 2580 uint parallel_gc_threads) {
duke@435 2581 TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
duke@435 2582
jcoomes@810 2583 // Once a thread has drained it's stack, it should try to steal regions from
duke@435 2584 // other threads.
duke@435 2585 if (parallel_gc_threads > 1) {
duke@435 2586 for (uint j = 0; j < parallel_gc_threads; j++) {
jcoomes@810 2587 q->enqueue(new StealRegionCompactionTask(terminator_ptr));
duke@435 2588 }
duke@435 2589 }
duke@435 2590 }
duke@435 2591
duke@435 2592 void PSParallelCompact::compact() {
duke@435 2593 EventMark m("5 compact");
duke@435 2594 // trace("5");
duke@435 2595 TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
duke@435 2596
duke@435 2597 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 2598 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 2599 PSOldGen* old_gen = heap->old_gen();
duke@435 2600 old_gen->start_array()->reset();
duke@435 2601 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jcoomes@810 2602 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
duke@435 2603 ParallelTaskTerminator terminator(parallel_gc_threads, qset);
duke@435 2604
duke@435 2605 GCTaskQueue* q = GCTaskQueue::create();
jcoomes@810 2606 enqueue_region_draining_tasks(q, parallel_gc_threads);
duke@435 2607 enqueue_dense_prefix_tasks(q, parallel_gc_threads);
jcoomes@810 2608 enqueue_region_stealing_tasks(q, &terminator, parallel_gc_threads);
duke@435 2609
duke@435 2610 {
duke@435 2611 TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
duke@435 2612
duke@435 2613 WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
duke@435 2614 q->enqueue(fin);
duke@435 2615
duke@435 2616 gc_task_manager()->add_list(q);
duke@435 2617
duke@435 2618 fin->wait_for();
duke@435 2619
duke@435 2620 // We have to release the barrier tasks!
duke@435 2621 WaitForBarrierGCTask::destroy(fin);
duke@435 2622
duke@435 2623 #ifdef ASSERT
jcoomes@810 2624 // Verify that all regions have been processed before the deferred updates.
duke@435 2625 // Note that perm_space_id is skipped; this type of verification is not
jcoomes@810 2626 // valid until the perm gen is compacted by regions.
duke@435 2627 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2628 verify_complete(SpaceId(id));
duke@435 2629 }
duke@435 2630 #endif
duke@435 2631 }
duke@435 2632
duke@435 2633 {
duke@435 2634 // Update the deferred objects, if any. Any compaction manager can be used.
duke@435 2635 TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
duke@435 2636 ParCompactionManager* cm = ParCompactionManager::manager_array(0);
duke@435 2637 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2638 update_deferred_objects(cm, SpaceId(id));
duke@435 2639 }
duke@435 2640 }
duke@435 2641 }
duke@435 2642
duke@435 2643 #ifdef ASSERT
duke@435 2644 void PSParallelCompact::verify_complete(SpaceId space_id) {
jcoomes@810 2645 // All Regions between space bottom() to new_top() should be marked as filled
jcoomes@810 2646 // and all Regions between new_top() and top() should be available (i.e.,
duke@435 2647 // should have been emptied).
duke@435 2648 ParallelCompactData& sd = summary_data();
duke@435 2649 SpaceInfo si = _space_info[space_id];
jcoomes@810 2650 HeapWord* new_top_addr = sd.region_align_up(si.new_top());
jcoomes@810 2651 HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
jcoomes@810 2652 const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
jcoomes@810 2653 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
jcoomes@810 2654 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
duke@435 2655
duke@435 2656 bool issued_a_warning = false;
duke@435 2657
jcoomes@810 2658 size_t cur_region;
jcoomes@810 2659 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
jcoomes@810 2660 const RegionData* const c = sd.region(cur_region);
duke@435 2661 if (!c->completed()) {
jcoomes@810 2662 warning("region " SIZE_FORMAT " not filled: "
duke@435 2663 "destination_count=" SIZE_FORMAT,
jcoomes@810 2664 cur_region, c->destination_count());
duke@435 2665 issued_a_warning = true;
duke@435 2666 }
duke@435 2667 }
duke@435 2668
jcoomes@810 2669 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
jcoomes@810 2670 const RegionData* const c = sd.region(cur_region);
duke@435 2671 if (!c->available()) {
jcoomes@810 2672 warning("region " SIZE_FORMAT " not empty: "
duke@435 2673 "destination_count=" SIZE_FORMAT,
jcoomes@810 2674 cur_region, c->destination_count());
duke@435 2675 issued_a_warning = true;
duke@435 2676 }
duke@435 2677 }
duke@435 2678
duke@435 2679 if (issued_a_warning) {
jcoomes@810 2680 print_region_ranges();
duke@435 2681 }
duke@435 2682 }
duke@435 2683 #endif // #ifdef ASSERT
duke@435 2684
duke@435 2685 void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
duke@435 2686 EventMark m("5 compact serial");
duke@435 2687 TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);
duke@435 2688
duke@435 2689 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 2690 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 2691
duke@435 2692 PSYoungGen* young_gen = heap->young_gen();
duke@435 2693 PSOldGen* old_gen = heap->old_gen();
duke@435 2694
duke@435 2695 old_gen->start_array()->reset();
duke@435 2696 old_gen->move_and_update(cm);
duke@435 2697 young_gen->move_and_update(cm);
duke@435 2698 }
duke@435 2699
duke@435 2700
duke@435 2701 void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
duke@435 2702 while(!cm->overflow_stack()->is_empty()) {
duke@435 2703 oop obj = cm->overflow_stack()->pop();
duke@435 2704 obj->follow_contents(cm);
duke@435 2705 }
duke@435 2706
duke@435 2707 oop obj;
duke@435 2708 // obj is a reference!!!
duke@435 2709 while (cm->marking_stack()->pop_local(obj)) {
duke@435 2710 // It would be nice to assert about the type of objects we might
duke@435 2711 // pop, but they can come from anywhere, unfortunately.
duke@435 2712 obj->follow_contents(cm);
duke@435 2713 }
duke@435 2714 }
duke@435 2715
duke@435 2716 void
duke@435 2717 PSParallelCompact::follow_weak_klass_links(ParCompactionManager* serial_cm) {
duke@435 2718 // All klasses on the revisit stack are marked at this point.
duke@435 2719 // Update and follow all subklass, sibling and implementor links.
duke@435 2720 for (uint i = 0; i < ParallelGCThreads+1; i++) {
duke@435 2721 ParCompactionManager* cm = ParCompactionManager::manager_array(i);
duke@435 2722 KeepAliveClosure keep_alive_closure(cm);
duke@435 2723 for (int i = 0; i < cm->revisit_klass_stack()->length(); i++) {
duke@435 2724 cm->revisit_klass_stack()->at(i)->follow_weak_klass_links(
duke@435 2725 is_alive_closure(),
duke@435 2726 &keep_alive_closure);
duke@435 2727 }
duke@435 2728 follow_stack(cm);
duke@435 2729 }
duke@435 2730 }
duke@435 2731
duke@435 2732 void
duke@435 2733 PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
duke@435 2734 cm->revisit_klass_stack()->push(k);
duke@435 2735 }
duke@435 2736
duke@435 2737 #ifdef VALIDATE_MARK_SWEEP
duke@435 2738
coleenp@548 2739 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
duke@435 2740 if (!ValidateMarkSweep)
duke@435 2741 return;
duke@435 2742
duke@435 2743 if (!isroot) {
duke@435 2744 if (_pointer_tracking) {
duke@435 2745 guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
duke@435 2746 _adjusted_pointers->remove(p);
duke@435 2747 }
duke@435 2748 } else {
duke@435 2749 ptrdiff_t index = _root_refs_stack->find(p);
duke@435 2750 if (index != -1) {
duke@435 2751 int l = _root_refs_stack->length();
duke@435 2752 if (l > 0 && l - 1 != index) {
coleenp@548 2753 void* last = _root_refs_stack->pop();
duke@435 2754 assert(last != p, "should be different");
duke@435 2755 _root_refs_stack->at_put(index, last);
duke@435 2756 } else {
duke@435 2757 _root_refs_stack->remove(p);
duke@435 2758 }
duke@435 2759 }
duke@435 2760 }
duke@435 2761 }
duke@435 2762
duke@435 2763
coleenp@548 2764 void PSParallelCompact::check_adjust_pointer(void* p) {
duke@435 2765 _adjusted_pointers->push(p);
duke@435 2766 }
duke@435 2767
duke@435 2768
duke@435 2769 class AdjusterTracker: public OopClosure {
duke@435 2770 public:
duke@435 2771 AdjusterTracker() {};
coleenp@548 2772 void do_oop(oop* o) { PSParallelCompact::check_adjust_pointer(o); }
coleenp@548 2773 void do_oop(narrowOop* o) { PSParallelCompact::check_adjust_pointer(o); }
duke@435 2774 };
duke@435 2775
duke@435 2776
duke@435 2777 void PSParallelCompact::track_interior_pointers(oop obj) {
duke@435 2778 if (ValidateMarkSweep) {
duke@435 2779 _adjusted_pointers->clear();
duke@435 2780 _pointer_tracking = true;
duke@435 2781
duke@435 2782 AdjusterTracker checker;
duke@435 2783 obj->oop_iterate(&checker);
duke@435 2784 }
duke@435 2785 }
duke@435 2786
duke@435 2787
duke@435 2788 void PSParallelCompact::check_interior_pointers() {
duke@435 2789 if (ValidateMarkSweep) {
duke@435 2790 _pointer_tracking = false;
duke@435 2791 guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
duke@435 2792 }
duke@435 2793 }
duke@435 2794
duke@435 2795
duke@435 2796 void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
duke@435 2797 if (ValidateMarkSweep) {
duke@435 2798 guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
duke@435 2799 _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
duke@435 2800 }
duke@435 2801 }
duke@435 2802
duke@435 2803
duke@435 2804 void PSParallelCompact::register_live_oop(oop p, size_t size) {
duke@435 2805 if (ValidateMarkSweep) {
duke@435 2806 _live_oops->push(p);
duke@435 2807 _live_oops_size->push(size);
duke@435 2808 _live_oops_index++;
duke@435 2809 }
duke@435 2810 }
duke@435 2811
duke@435 2812 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
duke@435 2813 if (ValidateMarkSweep) {
duke@435 2814 oop obj = _live_oops->at((int)_live_oops_index);
duke@435 2815 guarantee(obj == p, "should be the same object");
duke@435 2816 guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
duke@435 2817 _live_oops_index++;
duke@435 2818 }
duke@435 2819 }
duke@435 2820
duke@435 2821 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
duke@435 2822 HeapWord* compaction_top) {
duke@435 2823 assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
duke@435 2824 "should be moved to forwarded location");
duke@435 2825 if (ValidateMarkSweep) {
duke@435 2826 PSParallelCompact::validate_live_oop(oop(q), size);
duke@435 2827 _live_oops_moved_to->push(oop(compaction_top));
duke@435 2828 }
duke@435 2829 if (RecordMarkSweepCompaction) {
duke@435 2830 _cur_gc_live_oops->push(q);
duke@435 2831 _cur_gc_live_oops_moved_to->push(compaction_top);
duke@435 2832 _cur_gc_live_oops_size->push(size);
duke@435 2833 }
duke@435 2834 }
duke@435 2835
duke@435 2836
duke@435 2837 void PSParallelCompact::compaction_complete() {
duke@435 2838 if (RecordMarkSweepCompaction) {
duke@435 2839 GrowableArray<HeapWord*>* _tmp_live_oops = _cur_gc_live_oops;
duke@435 2840 GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
duke@435 2841 GrowableArray<size_t> * _tmp_live_oops_size = _cur_gc_live_oops_size;
duke@435 2842
duke@435 2843 _cur_gc_live_oops = _last_gc_live_oops;
duke@435 2844 _cur_gc_live_oops_moved_to = _last_gc_live_oops_moved_to;
duke@435 2845 _cur_gc_live_oops_size = _last_gc_live_oops_size;
duke@435 2846 _last_gc_live_oops = _tmp_live_oops;
duke@435 2847 _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
duke@435 2848 _last_gc_live_oops_size = _tmp_live_oops_size;
duke@435 2849 }
duke@435 2850 }
duke@435 2851
duke@435 2852
duke@435 2853 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
duke@435 2854 if (!RecordMarkSweepCompaction) {
duke@435 2855 tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
duke@435 2856 return;
duke@435 2857 }
duke@435 2858
duke@435 2859 if (_last_gc_live_oops == NULL) {
duke@435 2860 tty->print_cr("No compaction information gathered yet");
duke@435 2861 return;
duke@435 2862 }
duke@435 2863
duke@435 2864 for (int i = 0; i < _last_gc_live_oops->length(); i++) {
duke@435 2865 HeapWord* old_oop = _last_gc_live_oops->at(i);
duke@435 2866 size_t sz = _last_gc_live_oops_size->at(i);
duke@435 2867 if (old_oop <= q && q < (old_oop + sz)) {
duke@435 2868 HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
duke@435 2869 size_t offset = (q - old_oop);
duke@435 2870 tty->print_cr("Address " PTR_FORMAT, q);
duke@435 2871 tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
duke@435 2872 tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
duke@435 2873 return;
duke@435 2874 }
duke@435 2875 }
duke@435 2876
duke@435 2877 tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
duke@435 2878 }
duke@435 2879 #endif //VALIDATE_MARK_SWEEP
duke@435 2880
jcoomes@810 2881 // Update interior oops in the ranges of regions [beg_region, end_region).
duke@435 2882 void
duke@435 2883 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
duke@435 2884 SpaceId space_id,
jcoomes@810 2885 size_t beg_region,
jcoomes@810 2886 size_t end_region) {
duke@435 2887 ParallelCompactData& sd = summary_data();
duke@435 2888 ParMarkBitMap* const mbm = mark_bitmap();
duke@435 2889
jcoomes@810 2890 HeapWord* beg_addr = sd.region_to_addr(beg_region);
jcoomes@810 2891 HeapWord* const end_addr = sd.region_to_addr(end_region);
jcoomes@810 2892 assert(beg_region <= end_region, "bad region range");
duke@435 2893 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
duke@435 2894
duke@435 2895 #ifdef ASSERT
jcoomes@810 2896 // Claim the regions to avoid triggering an assert when they are marked as
duke@435 2897 // filled.
jcoomes@810 2898 for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
jcoomes@810 2899 assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
duke@435 2900 }
duke@435 2901 #endif // #ifdef ASSERT
duke@435 2902
duke@435 2903 if (beg_addr != space(space_id)->bottom()) {
duke@435 2904 // Find the first live object or block of dead space that *starts* in this
jcoomes@810 2905 // range of regions. If a partial object crosses onto the region, skip it;
jcoomes@810 2906 // it will be marked for 'deferred update' when the object head is
jcoomes@810 2907 // processed. If dead space crosses onto the region, it is also skipped; it
jcoomes@810 2908 // will be filled when the prior region is processed. If neither of those
jcoomes@810 2909 // apply, the first word in the region is the start of a live object or dead
jcoomes@810 2910 // space.
duke@435 2911 assert(beg_addr > space(space_id)->bottom(), "sanity");
jcoomes@810 2912 const RegionData* const cp = sd.region(beg_region);
duke@435 2913 if (cp->partial_obj_size() != 0) {
jcoomes@810 2914 beg_addr = sd.partial_obj_end(beg_region);
duke@435 2915 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
duke@435 2916 beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
duke@435 2917 }
duke@435 2918 }
duke@435 2919
duke@435 2920 if (beg_addr < end_addr) {
jcoomes@810 2921 // A live object or block of dead space starts in this range of Regions.
duke@435 2922 HeapWord* const dense_prefix_end = dense_prefix(space_id);
duke@435 2923
duke@435 2924 // Create closures and iterate.
duke@435 2925 UpdateOnlyClosure update_closure(mbm, cm, space_id);
duke@435 2926 FillClosure fill_closure(cm, space_id);
duke@435 2927 ParMarkBitMap::IterationStatus status;
duke@435 2928 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
duke@435 2929 dense_prefix_end);
duke@435 2930 if (status == ParMarkBitMap::incomplete) {
duke@435 2931 update_closure.do_addr(update_closure.source());
duke@435 2932 }
duke@435 2933 }
duke@435 2934
jcoomes@810 2935 // Mark the regions as filled.
jcoomes@810 2936 RegionData* const beg_cp = sd.region(beg_region);
jcoomes@810 2937 RegionData* const end_cp = sd.region(end_region);
jcoomes@810 2938 for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
duke@435 2939 cp->set_completed();
duke@435 2940 }
duke@435 2941 }
duke@435 2942
duke@435 2943 // Return the SpaceId for the space containing addr. If addr is not in the
duke@435 2944 // heap, last_space_id is returned. In debug mode it expects the address to be
duke@435 2945 // in the heap and asserts such.
duke@435 2946 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
duke@435 2947 assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
duke@435 2948
duke@435 2949 for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
duke@435 2950 if (_space_info[id].space()->contains(addr)) {
duke@435 2951 return SpaceId(id);
duke@435 2952 }
duke@435 2953 }
duke@435 2954
duke@435 2955 assert(false, "no space contains the addr");
duke@435 2956 return last_space_id;
duke@435 2957 }
duke@435 2958
duke@435 2959 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
duke@435 2960 SpaceId id) {
duke@435 2961 assert(id < last_space_id, "bad space id");
duke@435 2962
duke@435 2963 ParallelCompactData& sd = summary_data();
duke@435 2964 const SpaceInfo* const space_info = _space_info + id;
duke@435 2965 ObjectStartArray* const start_array = space_info->start_array();
duke@435 2966
duke@435 2967 const MutableSpace* const space = space_info->space();
duke@435 2968 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
duke@435 2969 HeapWord* const beg_addr = space_info->dense_prefix();
jcoomes@810 2970 HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
jcoomes@810 2971
jcoomes@810 2972 const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
jcoomes@810 2973 const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
jcoomes@810 2974 const RegionData* cur_region;
jcoomes@810 2975 for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
jcoomes@810 2976 HeapWord* const addr = cur_region->deferred_obj_addr();
duke@435 2977 if (addr != NULL) {
duke@435 2978 if (start_array != NULL) {
duke@435 2979 start_array->allocate_block(addr);
duke@435 2980 }
duke@435 2981 oop(addr)->update_contents(cm);
duke@435 2982 assert(oop(addr)->is_oop_or_null(), "should be an oop now");
duke@435 2983 }
duke@435 2984 }
duke@435 2985 }
duke@435 2986
duke@435 2987 // Skip over count live words starting from beg, and return the address of the
duke@435 2988 // next live word. Unless marked, the word corresponding to beg is assumed to
duke@435 2989 // be dead. Callers must either ensure beg does not correspond to the middle of
duke@435 2990 // an object, or account for those live words in some other way. Callers must
duke@435 2991 // also ensure that there are enough live words in the range [beg, end) to skip.
duke@435 2992 HeapWord*
duke@435 2993 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
duke@435 2994 {
duke@435 2995 assert(count > 0, "sanity");
duke@435 2996
duke@435 2997 ParMarkBitMap* m = mark_bitmap();
duke@435 2998 idx_t bits_to_skip = m->words_to_bits(count);
duke@435 2999 idx_t cur_beg = m->addr_to_bit(beg);
duke@435 3000 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
duke@435 3001
duke@435 3002 do {
duke@435 3003 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 3004 idx_t cur_end = m->find_obj_end(cur_beg, search_end);
duke@435 3005 const size_t obj_bits = cur_end - cur_beg + 1;
duke@435 3006 if (obj_bits > bits_to_skip) {
duke@435 3007 return m->bit_to_addr(cur_beg + bits_to_skip);
duke@435 3008 }
duke@435 3009 bits_to_skip -= obj_bits;
duke@435 3010 cur_beg = cur_end + 1;
duke@435 3011 } while (bits_to_skip > 0);
duke@435 3012
duke@435 3013 // Skipping the desired number of words landed just past the end of an object.
duke@435 3014 // Find the start of the next object.
duke@435 3015 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 3016 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
duke@435 3017 return m->bit_to_addr(cur_beg);
duke@435 3018 }
duke@435 3019
jcoomes@917 3020 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
jcoomes@917 3021 SpaceId src_space_id,
jcoomes@917 3022 size_t src_region_idx)
duke@435 3023 {
jcoomes@917 3024 assert(summary_data().is_region_aligned(dest_addr), "not aligned");
jcoomes@917 3025
jcoomes@917 3026 const SplitInfo& split_info = _space_info[src_space_id].split_info();
jcoomes@917 3027 if (split_info.dest_region_addr() == dest_addr) {
jcoomes@917 3028 // The partial object ending at the split point contains the first word to
jcoomes@917 3029 // be copied to dest_addr.
jcoomes@917 3030 return split_info.first_src_addr();
jcoomes@917 3031 }
jcoomes@917 3032
jcoomes@917 3033 const ParallelCompactData& sd = summary_data();
duke@435 3034 ParMarkBitMap* const bitmap = mark_bitmap();
jcoomes@810 3035 const size_t RegionSize = ParallelCompactData::RegionSize;
jcoomes@810 3036
jcoomes@810 3037 assert(sd.is_region_aligned(dest_addr), "not aligned");
jcoomes@810 3038 const RegionData* const src_region_ptr = sd.region(src_region_idx);
jcoomes@810 3039 const size_t partial_obj_size = src_region_ptr->partial_obj_size();
jcoomes@810 3040 HeapWord* const src_region_destination = src_region_ptr->destination();
jcoomes@810 3041
jcoomes@810 3042 assert(dest_addr >= src_region_destination, "wrong src region");
jcoomes@810 3043 assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
jcoomes@810 3044
jcoomes@810 3045 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
jcoomes@810 3046 HeapWord* const src_region_end = src_region_beg + RegionSize;
jcoomes@810 3047
jcoomes@810 3048 HeapWord* addr = src_region_beg;
jcoomes@810 3049 if (dest_addr == src_region_destination) {
jcoomes@810 3050 // Return the first live word in the source region.
duke@435 3051 if (partial_obj_size == 0) {
jcoomes@810 3052 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 3053 assert(addr < src_region_end, "no objects start in src region");
duke@435 3054 }
duke@435 3055 return addr;
duke@435 3056 }
duke@435 3057
duke@435 3058 // Must skip some live data.
jcoomes@810 3059 size_t words_to_skip = dest_addr - src_region_destination;
jcoomes@810 3060 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
duke@435 3061
duke@435 3062 if (partial_obj_size >= words_to_skip) {
duke@435 3063 // All the live words to skip are part of the partial object.
duke@435 3064 addr += words_to_skip;
duke@435 3065 if (partial_obj_size == words_to_skip) {
duke@435 3066 // Find the first live word past the partial object.
jcoomes@810 3067 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 3068 assert(addr < src_region_end, "wrong src region");
duke@435 3069 }
duke@435 3070 return addr;
duke@435 3071 }
duke@435 3072
duke@435 3073 // Skip over the partial object (if any).
duke@435 3074 if (partial_obj_size != 0) {
duke@435 3075 words_to_skip -= partial_obj_size;
duke@435 3076 addr += partial_obj_size;
duke@435 3077 }
duke@435 3078
jcoomes@810 3079 // Skip over live words due to objects that start in the region.
jcoomes@810 3080 addr = skip_live_words(addr, src_region_end, words_to_skip);
jcoomes@810 3081 assert(addr < src_region_end, "wrong src region");
duke@435 3082 return addr;
duke@435 3083 }
duke@435 3084
duke@435 3085 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
jcoomes@930 3086 SpaceId src_space_id,
jcoomes@810 3087 size_t beg_region,
duke@435 3088 HeapWord* end_addr)
duke@435 3089 {
duke@435 3090 ParallelCompactData& sd = summary_data();
jcoomes@930 3091
jcoomes@930 3092 #ifdef ASSERT
jcoomes@930 3093 MutableSpace* const src_space = _space_info[src_space_id].space();
jcoomes@930 3094 HeapWord* const beg_addr = sd.region_to_addr(beg_region);
jcoomes@930 3095 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
jcoomes@930 3096 "src_space_id does not match beg_addr");
jcoomes@930 3097 assert(src_space->contains(end_addr) || end_addr == src_space->end(),
jcoomes@930 3098 "src_space_id does not match end_addr");
jcoomes@930 3099 #endif // #ifdef ASSERT
jcoomes@930 3100
jcoomes@810 3101 RegionData* const beg = sd.region(beg_region);
jcoomes@930 3102 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
jcoomes@930 3103
jcoomes@930 3104 // Regions up to new_top() are enqueued if they become available.
jcoomes@930 3105 HeapWord* const new_top = _space_info[src_space_id].new_top();
jcoomes@930 3106 RegionData* const enqueue_end =
jcoomes@930 3107 sd.addr_to_region_ptr(sd.region_align_up(new_top));
jcoomes@930 3108
jcoomes@930 3109 for (RegionData* cur = beg; cur < end; ++cur) {
jcoomes@810 3110 assert(cur->data_size() > 0, "region must have live data");
duke@435 3111 cur->decrement_destination_count();
jcoomes@930 3112 if (cur < enqueue_end && cur->available() && cur->claim()) {
jcoomes@930 3113 cm->save_for_processing(sd.region(cur));
duke@435 3114 }
duke@435 3115 }
duke@435 3116 }
duke@435 3117
jcoomes@810 3118 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
jcoomes@810 3119 SpaceId& src_space_id,
jcoomes@810 3120 HeapWord*& src_space_top,
jcoomes@810 3121 HeapWord* end_addr)
duke@435 3122 {
jcoomes@810 3123 typedef ParallelCompactData::RegionData RegionData;
duke@435 3124
duke@435 3125 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 3126 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 3127
jcoomes@810 3128 size_t src_region_idx = 0;
jcoomes@810 3129
jcoomes@810 3130 // Skip empty regions (if any) up to the top of the space.
jcoomes@810 3131 HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
jcoomes@810 3132 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
jcoomes@810 3133 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
jcoomes@810 3134 const RegionData* const top_region_ptr =
jcoomes@810 3135 sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 3136 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
jcoomes@810 3137 ++src_region_ptr;
duke@435 3138 }
duke@435 3139
jcoomes@810 3140 if (src_region_ptr < top_region_ptr) {
jcoomes@810 3141 // The next source region is in the current space. Update src_region_idx
jcoomes@810 3142 // and the source address to match src_region_ptr.
jcoomes@810 3143 src_region_idx = sd.region(src_region_ptr);
jcoomes@810 3144 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
jcoomes@810 3145 if (src_region_addr > closure.source()) {
jcoomes@810 3146 closure.set_source(src_region_addr);
duke@435 3147 }
jcoomes@810 3148 return src_region_idx;
duke@435 3149 }
duke@435 3150
jcoomes@810 3151 // Switch to a new source space and find the first non-empty region.
duke@435 3152 unsigned int space_id = src_space_id + 1;
duke@435 3153 assert(space_id < last_space_id, "not enough spaces");
duke@435 3154
duke@435 3155 HeapWord* const destination = closure.destination();
duke@435 3156
duke@435 3157 do {
duke@435 3158 MutableSpace* space = _space_info[space_id].space();
duke@435 3159 HeapWord* const bottom = space->bottom();
jcoomes@810 3160 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
duke@435 3161
duke@435 3162 // Iterate over the spaces that do not compact into themselves.
duke@435 3163 if (bottom_cp->destination() != bottom) {
jcoomes@810 3164 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 3165 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 3166
jcoomes@810 3167 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
duke@435 3168 if (src_cp->live_obj_size() > 0) {
duke@435 3169 // Found it.
duke@435 3170 assert(src_cp->destination() == destination,
duke@435 3171 "first live obj in the space must match the destination");
duke@435 3172 assert(src_cp->partial_obj_size() == 0,
duke@435 3173 "a space cannot begin with a partial obj");
duke@435 3174
duke@435 3175 src_space_id = SpaceId(space_id);
duke@435 3176 src_space_top = space->top();
jcoomes@810 3177 const size_t src_region_idx = sd.region(src_cp);
jcoomes@810 3178 closure.set_source(sd.region_to_addr(src_region_idx));
jcoomes@810 3179 return src_region_idx;
duke@435 3180 } else {
duke@435 3181 assert(src_cp->data_size() == 0, "sanity");
duke@435 3182 }
duke@435 3183 }
duke@435 3184 }
duke@435 3185 } while (++space_id < last_space_id);
duke@435 3186
jcoomes@810 3187 assert(false, "no source region was found");
duke@435 3188 return 0;
duke@435 3189 }
duke@435 3190
jcoomes@810 3191 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
duke@435 3192 {
duke@435 3193 typedef ParMarkBitMap::IterationStatus IterationStatus;
jcoomes@810 3194 const size_t RegionSize = ParallelCompactData::RegionSize;
duke@435 3195 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3196 ParallelCompactData& sd = summary_data();
jcoomes@810 3197 RegionData* const region_ptr = sd.region(region_idx);
duke@435 3198
duke@435 3199 // Get the items needed to construct the closure.
jcoomes@810 3200 HeapWord* dest_addr = sd.region_to_addr(region_idx);
duke@435 3201 SpaceId dest_space_id = space_id(dest_addr);
duke@435 3202 ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
duke@435 3203 HeapWord* new_top = _space_info[dest_space_id].new_top();
duke@435 3204 assert(dest_addr < new_top, "sanity");
jcoomes@810 3205 const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
jcoomes@810 3206
jcoomes@810 3207 // Get the source region and related info.
jcoomes@810 3208 size_t src_region_idx = region_ptr->source_region();
jcoomes@810 3209 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
duke@435 3210 HeapWord* src_space_top = _space_info[src_space_id].space()->top();
duke@435 3211
duke@435 3212 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
jcoomes@917 3213 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
jcoomes@810 3214
jcoomes@810 3215 // Adjust src_region_idx to prepare for decrementing destination counts (the
jcoomes@810 3216 // destination count is not decremented when a region is copied to itself).
jcoomes@810 3217 if (src_region_idx == region_idx) {
jcoomes@810 3218 src_region_idx += 1;
duke@435 3219 }
duke@435 3220
duke@435 3221 if (bitmap->is_unmarked(closure.source())) {
duke@435 3222 // The first source word is in the middle of an object; copy the remainder
duke@435 3223 // of the object or as much as will fit. The fact that pointer updates were
duke@435 3224 // deferred will be noted when the object header is processed.
duke@435 3225 HeapWord* const old_src_addr = closure.source();
duke@435 3226 closure.copy_partial_obj();
duke@435 3227 if (closure.is_full()) {
jcoomes@930 3228 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3229 closure.source());
jcoomes@810 3230 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3231 region_ptr->set_completed();
duke@435 3232 return;
duke@435 3233 }
duke@435 3234
jcoomes@810 3235 HeapWord* const end_addr = sd.region_align_down(closure.source());
jcoomes@810 3236 if (sd.region_align_down(old_src_addr) != end_addr) {
jcoomes@810 3237 // The partial object was copied from more than one source region.
jcoomes@930 3238 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
jcoomes@810 3239
jcoomes@810 3240 // Move to the next source region, possibly switching spaces as well. All
duke@435 3241 // args except end_addr may be modified.
jcoomes@810 3242 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3243 end_addr);
duke@435 3244 }
duke@435 3245 }
duke@435 3246
duke@435 3247 do {
duke@435 3248 HeapWord* const cur_addr = closure.source();
jcoomes@810 3249 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
duke@435 3250 src_space_top);
duke@435 3251 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
duke@435 3252
duke@435 3253 if (status == ParMarkBitMap::incomplete) {
jcoomes@810 3254 // The last obj that starts in the source region does not end in the
jcoomes@810 3255 // region.
duke@435 3256 assert(closure.source() < end_addr, "sanity")
duke@435 3257 HeapWord* const obj_beg = closure.source();
duke@435 3258 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
duke@435 3259 src_space_top);
duke@435 3260 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
duke@435 3261 if (obj_end < range_end) {
duke@435 3262 // The end was found; the entire object will fit.
duke@435 3263 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
duke@435 3264 assert(status != ParMarkBitMap::would_overflow, "sanity");
duke@435 3265 } else {
duke@435 3266 // The end was not found; the object will not fit.
duke@435 3267 assert(range_end < src_space_top, "obj cannot cross space boundary");
duke@435 3268 status = ParMarkBitMap::would_overflow;
duke@435 3269 }
duke@435 3270 }
duke@435 3271
duke@435 3272 if (status == ParMarkBitMap::would_overflow) {
duke@435 3273 // The last object did not fit. Note that interior oop updates were
jcoomes@810 3274 // deferred, then copy enough of the object to fill the region.
jcoomes@810 3275 region_ptr->set_deferred_obj_addr(closure.destination());
duke@435 3276 status = closure.copy_until_full(); // copies from closure.source()
duke@435 3277
jcoomes@930 3278 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3279 closure.source());
jcoomes@810 3280 region_ptr->set_completed();
duke@435 3281 return;
duke@435 3282 }
duke@435 3283
duke@435 3284 if (status == ParMarkBitMap::full) {
jcoomes@930 3285 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3286 closure.source());
jcoomes@810 3287 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3288 region_ptr->set_completed();
duke@435 3289 return;
duke@435 3290 }
duke@435 3291
jcoomes@930 3292 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
jcoomes@810 3293
jcoomes@810 3294 // Move to the next source region, possibly switching spaces as well. All
duke@435 3295 // args except end_addr may be modified.
jcoomes@810 3296 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3297 end_addr);
duke@435 3298 } while (true);
duke@435 3299 }
duke@435 3300
duke@435 3301 void
duke@435 3302 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
duke@435 3303 const MutableSpace* sp = space(space_id);
duke@435 3304 if (sp->is_empty()) {
duke@435 3305 return;
duke@435 3306 }
duke@435 3307
duke@435 3308 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 3309 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3310 HeapWord* const dp_addr = dense_prefix(space_id);
duke@435 3311 HeapWord* beg_addr = sp->bottom();
duke@435 3312 HeapWord* end_addr = sp->top();
duke@435 3313
duke@435 3314 #ifdef ASSERT
duke@435 3315 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
duke@435 3316 if (cm->should_verify_only()) {
duke@435 3317 VerifyUpdateClosure verify_update(cm, sp);
duke@435 3318 bitmap->iterate(&verify_update, beg_addr, end_addr);
duke@435 3319 return;
duke@435 3320 }
duke@435 3321
duke@435 3322 if (cm->should_reset_only()) {
duke@435 3323 ResetObjectsClosure reset_objects(cm);
duke@435 3324 bitmap->iterate(&reset_objects, beg_addr, end_addr);
duke@435 3325 return;
duke@435 3326 }
duke@435 3327 #endif
duke@435 3328
jcoomes@810 3329 const size_t beg_region = sd.addr_to_region_idx(beg_addr);
jcoomes@810 3330 const size_t dp_region = sd.addr_to_region_idx(dp_addr);
jcoomes@810 3331 if (beg_region < dp_region) {
jcoomes@810 3332 update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
duke@435 3333 }
duke@435 3334
jcoomes@810 3335 // The destination of the first live object that starts in the region is one
jcoomes@810 3336 // past the end of the partial object entering the region (if any).
jcoomes@810 3337 HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
duke@435 3338 HeapWord* const new_top = _space_info[space_id].new_top();
duke@435 3339 assert(new_top >= dest_addr, "bad new_top value");
duke@435 3340 const size_t words = pointer_delta(new_top, dest_addr);
duke@435 3341
duke@435 3342 if (words > 0) {
duke@435 3343 ObjectStartArray* start_array = _space_info[space_id].start_array();
duke@435 3344 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
duke@435 3345
duke@435 3346 ParMarkBitMap::IterationStatus status;
duke@435 3347 status = bitmap->iterate(&closure, dest_addr, end_addr);
duke@435 3348 assert(status == ParMarkBitMap::full, "iteration not complete");
duke@435 3349 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
duke@435 3350 "live objects skipped because closure is full");
duke@435 3351 }
duke@435 3352 }
duke@435 3353
duke@435 3354 jlong PSParallelCompact::millis_since_last_gc() {
duke@435 3355 jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
duke@435 3356 // XXX See note in genCollectedHeap::millis_since_last_gc().
duke@435 3357 if (ret_val < 0) {
duke@435 3358 NOT_PRODUCT(warning("time warp: %d", ret_val);)
duke@435 3359 return 0;
duke@435 3360 }
duke@435 3361 return ret_val;
duke@435 3362 }
duke@435 3363
duke@435 3364 void PSParallelCompact::reset_millis_since_last_gc() {
duke@435 3365 _time_of_last_gc = os::javaTimeMillis();
duke@435 3366 }
duke@435 3367
duke@435 3368 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
duke@435 3369 {
duke@435 3370 if (source() != destination()) {
jcoomes@930 3371 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3372 Copy::aligned_conjoint_words(source(), destination(), words_remaining());
duke@435 3373 }
duke@435 3374 update_state(words_remaining());
duke@435 3375 assert(is_full(), "sanity");
duke@435 3376 return ParMarkBitMap::full;
duke@435 3377 }
duke@435 3378
duke@435 3379 void MoveAndUpdateClosure::copy_partial_obj()
duke@435 3380 {
duke@435 3381 size_t words = words_remaining();
duke@435 3382
duke@435 3383 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
duke@435 3384 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
duke@435 3385 if (end_addr < range_end) {
duke@435 3386 words = bitmap()->obj_size(source(), end_addr);
duke@435 3387 }
duke@435 3388
duke@435 3389 // This test is necessary; if omitted, the pointer updates to a partial object
duke@435 3390 // that crosses the dense prefix boundary could be overwritten.
duke@435 3391 if (source() != destination()) {
jcoomes@930 3392 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3393 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3394 }
duke@435 3395 update_state(words);
duke@435 3396 }
duke@435 3397
duke@435 3398 ParMarkBitMapClosure::IterationStatus
duke@435 3399 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3400 assert(destination() != NULL, "sanity");
duke@435 3401 assert(bitmap()->obj_size(addr) == words, "bad size");
duke@435 3402
duke@435 3403 _source = addr;
duke@435 3404 assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
duke@435 3405 destination(), "wrong destination");
duke@435 3406
duke@435 3407 if (words > words_remaining()) {
duke@435 3408 return ParMarkBitMap::would_overflow;
duke@435 3409 }
duke@435 3410
duke@435 3411 // The start_array must be updated even if the object is not moving.
duke@435 3412 if (_start_array != NULL) {
duke@435 3413 _start_array->allocate_block(destination());
duke@435 3414 }
duke@435 3415
duke@435 3416 if (destination() != source()) {
jcoomes@930 3417 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3418 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3419 }
duke@435 3420
duke@435 3421 oop moved_oop = (oop) destination();
duke@435 3422 moved_oop->update_contents(compaction_manager());
duke@435 3423 assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
duke@435 3424
duke@435 3425 update_state(words);
duke@435 3426 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
duke@435 3427 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
duke@435 3428 }
duke@435 3429
duke@435 3430 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
duke@435 3431 ParCompactionManager* cm,
duke@435 3432 PSParallelCompact::SpaceId space_id) :
duke@435 3433 ParMarkBitMapClosure(mbm, cm),
duke@435 3434 _space_id(space_id),
duke@435 3435 _start_array(PSParallelCompact::start_array(space_id))
duke@435 3436 {
duke@435 3437 }
duke@435 3438
duke@435 3439 // Updates the references in the object to their new values.
duke@435 3440 ParMarkBitMapClosure::IterationStatus
duke@435 3441 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3442 do_addr(addr);
duke@435 3443 return ParMarkBitMap::incomplete;
duke@435 3444 }
duke@435 3445
duke@435 3446 // Verify the new location using the forwarding pointer
duke@435 3447 // from MarkSweep::mark_sweep_phase2(). Set the mark_word
duke@435 3448 // to the initial value.
duke@435 3449 ParMarkBitMapClosure::IterationStatus
duke@435 3450 PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3451 // The second arg (words) is not used.
duke@435 3452 oop obj = (oop) addr;
duke@435 3453 HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
duke@435 3454 HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
duke@435 3455 if (forwarding_ptr == NULL) {
duke@435 3456 // The object is dead or not moving.
duke@435 3457 assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
duke@435 3458 "Object liveness is wrong.");
duke@435 3459 return ParMarkBitMap::incomplete;
duke@435 3460 }
duke@435 3461 assert(UseParallelOldGCDensePrefix ||
duke@435 3462 (HeapMaximumCompactionInterval > 1) ||
duke@435 3463 (MarkSweepAlwaysCompactCount > 1) ||
duke@435 3464 (forwarding_ptr == new_pointer),
duke@435 3465 "Calculation of new location is incorrect");
duke@435 3466 return ParMarkBitMap::incomplete;
duke@435 3467 }
duke@435 3468
duke@435 3469 // Reset objects modified for debug checking.
duke@435 3470 ParMarkBitMapClosure::IterationStatus
duke@435 3471 PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3472 // The second arg (words) is not used.
duke@435 3473 oop obj = (oop) addr;
duke@435 3474 obj->init_mark();
duke@435 3475 return ParMarkBitMap::incomplete;
duke@435 3476 }
duke@435 3477
duke@435 3478 // Prepare for compaction. This method is executed once
duke@435 3479 // (i.e., by a single thread) before compaction.
duke@435 3480 // Save the updated location of the intArrayKlassObj for
duke@435 3481 // filling holes in the dense prefix.
duke@435 3482 void PSParallelCompact::compact_prologue() {
duke@435 3483 _updated_int_array_klass_obj = (klassOop)
duke@435 3484 summary_data().calc_new_pointer(Universe::intArrayKlassObj());
duke@435 3485 }
duke@435 3486

mercurial