src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Thu, 11 Dec 2008 12:05:14 -0800

author
jcoomes
date
Thu, 11 Dec 2008 12:05:14 -0800
changeset 917
7c2386d67889
parent 916
7d7a7c599c17
child 918
0f773163217d
permissions
-rw-r--r--

6765745: par compact - allow young gen spaces to be split
Reviewed-by: jmasa

duke@435 1 /*
xdono@631 2 * Copyright 2005-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_psParallelCompact.cpp.incl"
duke@435 27
duke@435 28 #include <math.h>
duke@435 29
duke@435 30 // All sizes are in HeapWords.
jcoomes@810 31 const size_t ParallelCompactData::Log2RegionSize = 9; // 512 words
jcoomes@810 32 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize;
jcoomes@810 33 const size_t ParallelCompactData::RegionSizeBytes =
jcoomes@810 34 RegionSize << LogHeapWordSize;
jcoomes@810 35 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
jcoomes@810 36 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
jcoomes@810 37 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask;
duke@435 38
jcoomes@810 39 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 40 ParallelCompactData::RegionData::dc_shift = 27;
jcoomes@810 41
jcoomes@810 42 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 43 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
jcoomes@810 44
jcoomes@810 45 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 46 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
jcoomes@810 47
jcoomes@810 48 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 49 ParallelCompactData::RegionData::los_mask = ~dc_mask;
jcoomes@810 50
jcoomes@810 51 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 52 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
jcoomes@810 53
jcoomes@810 54 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 55 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
duke@435 56
duke@435 57 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
duke@435 58 bool PSParallelCompact::_print_phases = false;
duke@435 59
duke@435 60 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
duke@435 61 klassOop PSParallelCompact::_updated_int_array_klass_obj = NULL;
duke@435 62
duke@435 63 double PSParallelCompact::_dwl_mean;
duke@435 64 double PSParallelCompact::_dwl_std_dev;
duke@435 65 double PSParallelCompact::_dwl_first_term;
duke@435 66 double PSParallelCompact::_dwl_adjustment;
duke@435 67 #ifdef ASSERT
duke@435 68 bool PSParallelCompact::_dwl_initialized = false;
duke@435 69 #endif // #ifdef ASSERT
duke@435 70
duke@435 71 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 72 GrowableArray<void*>* PSParallelCompact::_root_refs_stack = NULL;
duke@435 73 GrowableArray<oop> * PSParallelCompact::_live_oops = NULL;
duke@435 74 GrowableArray<oop> * PSParallelCompact::_live_oops_moved_to = NULL;
duke@435 75 GrowableArray<size_t>* PSParallelCompact::_live_oops_size = NULL;
duke@435 76 size_t PSParallelCompact::_live_oops_index = 0;
duke@435 77 size_t PSParallelCompact::_live_oops_index_at_perm = 0;
coleenp@548 78 GrowableArray<void*>* PSParallelCompact::_other_refs_stack = NULL;
coleenp@548 79 GrowableArray<void*>* PSParallelCompact::_adjusted_pointers = NULL;
duke@435 80 bool PSParallelCompact::_pointer_tracking = false;
duke@435 81 bool PSParallelCompact::_root_tracking = true;
duke@435 82
duke@435 83 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
duke@435 84 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
duke@435 85 GrowableArray<size_t> * PSParallelCompact::_cur_gc_live_oops_size = NULL;
duke@435 86 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
duke@435 87 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
duke@435 88 GrowableArray<size_t> * PSParallelCompact::_last_gc_live_oops_size = NULL;
duke@435 89 #endif
duke@435 90
jcoomes@917 91 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
jcoomes@917 92 HeapWord* destination)
jcoomes@917 93 {
jcoomes@917 94 assert(src_region_idx != 0, "invalid src_region_idx");
jcoomes@917 95 assert(partial_obj_size != 0, "invalid partial_obj_size argument");
jcoomes@917 96 assert(destination != NULL, "invalid destination argument");
jcoomes@917 97
jcoomes@917 98 _src_region_idx = src_region_idx;
jcoomes@917 99 _partial_obj_size = partial_obj_size;
jcoomes@917 100 _destination = destination;
jcoomes@917 101
jcoomes@917 102 // These fields may not be updated below, so make sure they're clear.
jcoomes@917 103 assert(_dest_region_addr == NULL, "should have been cleared");
jcoomes@917 104 assert(_first_src_addr == NULL, "should have been cleared");
jcoomes@917 105
jcoomes@917 106 // Determine the number of destination regions for the partial object.
jcoomes@917 107 HeapWord* const last_word = destination + partial_obj_size - 1;
jcoomes@917 108 const ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@917 109 HeapWord* const beg_region_addr = sd.region_align_down(destination);
jcoomes@917 110 HeapWord* const end_region_addr = sd.region_align_down(last_word);
jcoomes@917 111
jcoomes@917 112 if (beg_region_addr == end_region_addr) {
jcoomes@917 113 // One destination region.
jcoomes@917 114 _destination_count = 1;
jcoomes@917 115 if (end_region_addr == destination) {
jcoomes@917 116 // The destination falls on a region boundary, thus the first word of the
jcoomes@917 117 // partial object will be the first word copied to the destination region.
jcoomes@917 118 _dest_region_addr = end_region_addr;
jcoomes@917 119 _first_src_addr = sd.region_to_addr(src_region_idx);
jcoomes@917 120 }
jcoomes@917 121 } else {
jcoomes@917 122 // Two destination regions. When copied, the partial object will cross a
jcoomes@917 123 // destination region boundary, so a word somewhere within the partial
jcoomes@917 124 // object will be the first word copied to the second destination region.
jcoomes@917 125 _destination_count = 2;
jcoomes@917 126 _dest_region_addr = end_region_addr;
jcoomes@917 127 const size_t ofs = pointer_delta(end_region_addr, destination);
jcoomes@917 128 assert(ofs < _partial_obj_size, "sanity");
jcoomes@917 129 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
jcoomes@917 130 }
jcoomes@917 131 }
jcoomes@917 132
jcoomes@917 133 void SplitInfo::clear()
jcoomes@917 134 {
jcoomes@917 135 _src_region_idx = 0;
jcoomes@917 136 _partial_obj_size = 0;
jcoomes@917 137 _destination = NULL;
jcoomes@917 138 _destination_count = 0;
jcoomes@917 139 _dest_region_addr = NULL;
jcoomes@917 140 _first_src_addr = NULL;
jcoomes@917 141 assert(!is_valid(), "sanity");
jcoomes@917 142 }
jcoomes@917 143
jcoomes@917 144 #ifdef ASSERT
jcoomes@917 145 void SplitInfo::verify_clear()
jcoomes@917 146 {
jcoomes@917 147 assert(_src_region_idx == 0, "not clear");
jcoomes@917 148 assert(_partial_obj_size == 0, "not clear");
jcoomes@917 149 assert(_destination == NULL, "not clear");
jcoomes@917 150 assert(_destination_count == 0, "not clear");
jcoomes@917 151 assert(_dest_region_addr == NULL, "not clear");
jcoomes@917 152 assert(_first_src_addr == NULL, "not clear");
jcoomes@917 153 }
jcoomes@917 154 #endif // #ifdef ASSERT
jcoomes@917 155
jcoomes@917 156
duke@435 157 #ifndef PRODUCT
duke@435 158 const char* PSParallelCompact::space_names[] = {
duke@435 159 "perm", "old ", "eden", "from", "to "
duke@435 160 };
duke@435 161
jcoomes@810 162 void PSParallelCompact::print_region_ranges()
duke@435 163 {
duke@435 164 tty->print_cr("space bottom top end new_top");
duke@435 165 tty->print_cr("------ ---------- ---------- ---------- ----------");
duke@435 166
duke@435 167 for (unsigned int id = 0; id < last_space_id; ++id) {
duke@435 168 const MutableSpace* space = _space_info[id].space();
duke@435 169 tty->print_cr("%u %s "
jcoomes@699 170 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
jcoomes@699 171 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
duke@435 172 id, space_names[id],
jcoomes@810 173 summary_data().addr_to_region_idx(space->bottom()),
jcoomes@810 174 summary_data().addr_to_region_idx(space->top()),
jcoomes@810 175 summary_data().addr_to_region_idx(space->end()),
jcoomes@810 176 summary_data().addr_to_region_idx(_space_info[id].new_top()));
duke@435 177 }
duke@435 178 }
duke@435 179
duke@435 180 void
jcoomes@810 181 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
duke@435 182 {
jcoomes@810 183 #define REGION_IDX_FORMAT SIZE_FORMAT_W(7)
jcoomes@810 184 #define REGION_DATA_FORMAT SIZE_FORMAT_W(5)
duke@435 185
duke@435 186 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 187 size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
jcoomes@810 188 tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 189 REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 190 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
jcoomes@810 191 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
duke@435 192 i, c->data_location(), dci, c->destination(),
duke@435 193 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 194 c->data_size(), c->source_region(), c->destination_count());
jcoomes@810 195
jcoomes@810 196 #undef REGION_IDX_FORMAT
jcoomes@810 197 #undef REGION_DATA_FORMAT
duke@435 198 }
duke@435 199
duke@435 200 void
duke@435 201 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 202 HeapWord* const beg_addr,
duke@435 203 HeapWord* const end_addr)
duke@435 204 {
duke@435 205 size_t total_words = 0;
jcoomes@810 206 size_t i = summary_data.addr_to_region_idx(beg_addr);
jcoomes@810 207 const size_t last = summary_data.addr_to_region_idx(end_addr);
duke@435 208 HeapWord* pdest = 0;
duke@435 209
duke@435 210 while (i <= last) {
jcoomes@810 211 ParallelCompactData::RegionData* c = summary_data.region(i);
duke@435 212 if (c->data_size() != 0 || c->destination() != pdest) {
jcoomes@810 213 print_generic_summary_region(i, c);
duke@435 214 total_words += c->data_size();
duke@435 215 pdest = c->destination();
duke@435 216 }
duke@435 217 ++i;
duke@435 218 }
duke@435 219
duke@435 220 tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
duke@435 221 }
duke@435 222
duke@435 223 void
duke@435 224 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 225 SpaceInfo* space_info)
duke@435 226 {
duke@435 227 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
duke@435 228 const MutableSpace* space = space_info[id].space();
duke@435 229 print_generic_summary_data(summary_data, space->bottom(),
duke@435 230 MAX2(space->top(), space_info[id].new_top()));
duke@435 231 }
duke@435 232 }
duke@435 233
duke@435 234 void
jcoomes@810 235 print_initial_summary_region(size_t i,
jcoomes@810 236 const ParallelCompactData::RegionData* c,
jcoomes@810 237 bool newline = true)
duke@435 238 {
jcoomes@699 239 tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
jcoomes@699 240 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
jcoomes@699 241 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
duke@435 242 i, c->destination(),
duke@435 243 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 244 c->data_size(), c->source_region(), c->destination_count());
duke@435 245 if (newline) tty->cr();
duke@435 246 }
duke@435 247
duke@435 248 void
duke@435 249 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 250 const MutableSpace* space) {
duke@435 251 if (space->top() == space->bottom()) {
duke@435 252 return;
duke@435 253 }
duke@435 254
jcoomes@810 255 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 256 typedef ParallelCompactData::RegionData RegionData;
jcoomes@810 257 HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
jcoomes@810 258 const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
jcoomes@810 259 const RegionData* c = summary_data.region(end_region - 1);
duke@435 260 HeapWord* end_addr = c->destination() + c->data_size();
duke@435 261 const size_t live_in_space = pointer_delta(end_addr, space->bottom());
duke@435 262
jcoomes@810 263 // Print (and count) the full regions at the beginning of the space.
jcoomes@810 264 size_t full_region_count = 0;
jcoomes@810 265 size_t i = summary_data.addr_to_region_idx(space->bottom());
jcoomes@810 266 while (i < end_region && summary_data.region(i)->data_size() == region_size) {
jcoomes@810 267 print_initial_summary_region(i, summary_data.region(i));
jcoomes@810 268 ++full_region_count;
duke@435 269 ++i;
duke@435 270 }
duke@435 271
jcoomes@810 272 size_t live_to_right = live_in_space - full_region_count * region_size;
duke@435 273
duke@435 274 double max_reclaimed_ratio = 0.0;
jcoomes@810 275 size_t max_reclaimed_ratio_region = 0;
duke@435 276 size_t max_dead_to_right = 0;
duke@435 277 size_t max_live_to_right = 0;
duke@435 278
jcoomes@810 279 // Print the 'reclaimed ratio' for regions while there is something live in
jcoomes@810 280 // the region or to the right of it. The remaining regions are empty (and
duke@435 281 // uninteresting), and computing the ratio will result in division by 0.
jcoomes@810 282 while (i < end_region && live_to_right > 0) {
jcoomes@810 283 c = summary_data.region(i);
jcoomes@810 284 HeapWord* const region_addr = summary_data.region_to_addr(i);
jcoomes@810 285 const size_t used_to_right = pointer_delta(space->top(), region_addr);
duke@435 286 const size_t dead_to_right = used_to_right - live_to_right;
duke@435 287 const double reclaimed_ratio = double(dead_to_right) / live_to_right;
duke@435 288
duke@435 289 if (reclaimed_ratio > max_reclaimed_ratio) {
duke@435 290 max_reclaimed_ratio = reclaimed_ratio;
jcoomes@810 291 max_reclaimed_ratio_region = i;
duke@435 292 max_dead_to_right = dead_to_right;
duke@435 293 max_live_to_right = live_to_right;
duke@435 294 }
duke@435 295
jcoomes@810 296 print_initial_summary_region(i, c, false);
jcoomes@699 297 tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
duke@435 298 reclaimed_ratio, dead_to_right, live_to_right);
duke@435 299
duke@435 300 live_to_right -= c->data_size();
duke@435 301 ++i;
duke@435 302 }
duke@435 303
jcoomes@810 304 // Any remaining regions are empty. Print one more if there is one.
jcoomes@810 305 if (i < end_region) {
jcoomes@810 306 print_initial_summary_region(i, summary_data.region(i));
duke@435 307 }
duke@435 308
jcoomes@699 309 tty->print_cr("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
jcoomes@699 310 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
jcoomes@810 311 max_reclaimed_ratio_region, max_dead_to_right,
duke@435 312 max_live_to_right, max_reclaimed_ratio);
duke@435 313 }
duke@435 314
duke@435 315 void
duke@435 316 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 317 SpaceInfo* space_info) {
duke@435 318 unsigned int id = PSParallelCompact::perm_space_id;
duke@435 319 const MutableSpace* space;
duke@435 320 do {
duke@435 321 space = space_info[id].space();
duke@435 322 print_initial_summary_data(summary_data, space);
duke@435 323 } while (++id < PSParallelCompact::eden_space_id);
duke@435 324
duke@435 325 do {
duke@435 326 space = space_info[id].space();
duke@435 327 print_generic_summary_data(summary_data, space->bottom(), space->top());
duke@435 328 } while (++id < PSParallelCompact::last_space_id);
duke@435 329 }
duke@435 330 #endif // #ifndef PRODUCT
duke@435 331
duke@435 332 #ifdef ASSERT
duke@435 333 size_t add_obj_count;
duke@435 334 size_t add_obj_size;
duke@435 335 size_t mark_bitmap_count;
duke@435 336 size_t mark_bitmap_size;
duke@435 337 #endif // #ifdef ASSERT
duke@435 338
duke@435 339 ParallelCompactData::ParallelCompactData()
duke@435 340 {
duke@435 341 _region_start = 0;
duke@435 342
jcoomes@810 343 _region_vspace = 0;
jcoomes@810 344 _region_data = 0;
jcoomes@810 345 _region_count = 0;
duke@435 346 }
duke@435 347
duke@435 348 bool ParallelCompactData::initialize(MemRegion covered_region)
duke@435 349 {
duke@435 350 _region_start = covered_region.start();
duke@435 351 const size_t region_size = covered_region.word_size();
duke@435 352 DEBUG_ONLY(_region_end = _region_start + region_size;)
duke@435 353
jcoomes@810 354 assert(region_align_down(_region_start) == _region_start,
duke@435 355 "region start not aligned");
jcoomes@810 356 assert((region_size & RegionSizeOffsetMask) == 0,
jcoomes@810 357 "region size not a multiple of RegionSize");
jcoomes@810 358
jcoomes@810 359 bool result = initialize_region_data(region_size);
duke@435 360
duke@435 361 return result;
duke@435 362 }
duke@435 363
duke@435 364 PSVirtualSpace*
duke@435 365 ParallelCompactData::create_vspace(size_t count, size_t element_size)
duke@435 366 {
duke@435 367 const size_t raw_bytes = count * element_size;
duke@435 368 const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
duke@435 369 const size_t granularity = os::vm_allocation_granularity();
duke@435 370 const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
duke@435 371
duke@435 372 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
duke@435 373 MAX2(page_sz, granularity);
jcoomes@514 374 ReservedSpace rs(bytes, rs_align, rs_align > 0);
duke@435 375 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
duke@435 376 rs.size());
duke@435 377 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
duke@435 378 if (vspace != 0) {
duke@435 379 if (vspace->expand_by(bytes)) {
duke@435 380 return vspace;
duke@435 381 }
duke@435 382 delete vspace;
coleenp@672 383 // Release memory reserved in the space.
coleenp@672 384 rs.release();
duke@435 385 }
duke@435 386
duke@435 387 return 0;
duke@435 388 }
duke@435 389
jcoomes@810 390 bool ParallelCompactData::initialize_region_data(size_t region_size)
duke@435 391 {
jcoomes@810 392 const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
jcoomes@810 393 _region_vspace = create_vspace(count, sizeof(RegionData));
jcoomes@810 394 if (_region_vspace != 0) {
jcoomes@810 395 _region_data = (RegionData*)_region_vspace->reserved_low_addr();
jcoomes@810 396 _region_count = count;
duke@435 397 return true;
duke@435 398 }
duke@435 399 return false;
duke@435 400 }
duke@435 401
duke@435 402 void ParallelCompactData::clear()
duke@435 403 {
jcoomes@810 404 memset(_region_data, 0, _region_vspace->committed_size());
duke@435 405 }
duke@435 406
jcoomes@810 407 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
jcoomes@810 408 assert(beg_region <= _region_count, "beg_region out of range");
jcoomes@810 409 assert(end_region <= _region_count, "end_region out of range");
jcoomes@810 410
jcoomes@810 411 const size_t region_cnt = end_region - beg_region;
jcoomes@810 412 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
duke@435 413 }
duke@435 414
jcoomes@810 415 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
duke@435 416 {
jcoomes@810 417 const RegionData* cur_cp = region(region_idx);
jcoomes@810 418 const RegionData* const end_cp = region(region_count() - 1);
jcoomes@810 419
jcoomes@810 420 HeapWord* result = region_to_addr(region_idx);
duke@435 421 if (cur_cp < end_cp) {
duke@435 422 do {
duke@435 423 result += cur_cp->partial_obj_size();
jcoomes@810 424 } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
duke@435 425 }
duke@435 426 return result;
duke@435 427 }
duke@435 428
duke@435 429 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
duke@435 430 {
duke@435 431 const size_t obj_ofs = pointer_delta(addr, _region_start);
jcoomes@810 432 const size_t beg_region = obj_ofs >> Log2RegionSize;
jcoomes@810 433 const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
duke@435 434
duke@435 435 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
duke@435 436 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
duke@435 437
jcoomes@810 438 if (beg_region == end_region) {
jcoomes@810 439 // All in one region.
jcoomes@810 440 _region_data[beg_region].add_live_obj(len);
duke@435 441 return;
duke@435 442 }
duke@435 443
jcoomes@810 444 // First region.
jcoomes@810 445 const size_t beg_ofs = region_offset(addr);
jcoomes@810 446 _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
duke@435 447
duke@435 448 klassOop klass = ((oop)addr)->klass();
jcoomes@810 449 // Middle regions--completely spanned by this object.
jcoomes@810 450 for (size_t region = beg_region + 1; region < end_region; ++region) {
jcoomes@810 451 _region_data[region].set_partial_obj_size(RegionSize);
jcoomes@810 452 _region_data[region].set_partial_obj_addr(addr);
duke@435 453 }
duke@435 454
jcoomes@810 455 // Last region.
jcoomes@810 456 const size_t end_ofs = region_offset(addr + len - 1);
jcoomes@810 457 _region_data[end_region].set_partial_obj_size(end_ofs + 1);
jcoomes@810 458 _region_data[end_region].set_partial_obj_addr(addr);
duke@435 459 }
duke@435 460
duke@435 461 void
duke@435 462 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
duke@435 463 {
jcoomes@810 464 assert(region_offset(beg) == 0, "not RegionSize aligned");
jcoomes@810 465 assert(region_offset(end) == 0, "not RegionSize aligned");
jcoomes@810 466
jcoomes@810 467 size_t cur_region = addr_to_region_idx(beg);
jcoomes@810 468 const size_t end_region = addr_to_region_idx(end);
duke@435 469 HeapWord* addr = beg;
jcoomes@810 470 while (cur_region < end_region) {
jcoomes@810 471 _region_data[cur_region].set_destination(addr);
jcoomes@810 472 _region_data[cur_region].set_destination_count(0);
jcoomes@810 473 _region_data[cur_region].set_source_region(cur_region);
jcoomes@810 474 _region_data[cur_region].set_data_location(addr);
jcoomes@810 475
jcoomes@810 476 // Update live_obj_size so the region appears completely full.
jcoomes@810 477 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
jcoomes@810 478 _region_data[cur_region].set_live_obj_size(live_size);
jcoomes@810 479
jcoomes@810 480 ++cur_region;
jcoomes@810 481 addr += RegionSize;
duke@435 482 }
duke@435 483 }
duke@435 484
jcoomes@917 485 // Find the point at which a space can be split and, if necessary, record the
jcoomes@917 486 // split point.
jcoomes@917 487 //
jcoomes@917 488 // If the current src region (which overflowed the destination space) doesn't
jcoomes@917 489 // have a partial object, the split point is at the beginning of the current src
jcoomes@917 490 // region (an "easy" split, no extra bookkeeping required).
jcoomes@917 491 //
jcoomes@917 492 // If the current src region has a partial object, the split point is in the
jcoomes@917 493 // region where that partial object starts (call it the split_region). If
jcoomes@917 494 // split_region has a partial object, then the split point is just after that
jcoomes@917 495 // partial object (a "hard" split where we have to record the split data and
jcoomes@917 496 // zero the partial_obj_size field). With a "hard" split, we know that the
jcoomes@917 497 // partial_obj ends within split_region because the partial object that caused
jcoomes@917 498 // the overflow starts in split_region. If split_region doesn't have a partial
jcoomes@917 499 // obj, then the split is at the beginning of split_region (another "easy"
jcoomes@917 500 // split).
jcoomes@917 501 HeapWord*
jcoomes@917 502 ParallelCompactData::summarize_split_space(size_t src_region,
jcoomes@917 503 SplitInfo& split_info,
jcoomes@917 504 HeapWord* destination,
jcoomes@917 505 HeapWord* target_end,
jcoomes@917 506 HeapWord** target_next)
jcoomes@917 507 {
jcoomes@917 508 assert(destination <= target_end, "sanity");
jcoomes@917 509 assert(destination + _region_data[src_region].data_size() > target_end,
jcoomes@917 510 "region should not fit into target space");
jcoomes@917 511
jcoomes@917 512 size_t split_region = src_region;
jcoomes@917 513 HeapWord* split_destination = destination;
jcoomes@917 514 size_t partial_obj_size = _region_data[src_region].partial_obj_size();
jcoomes@917 515
jcoomes@917 516 if (destination + partial_obj_size > target_end) {
jcoomes@917 517 // The split point is just after the partial object (if any) in the
jcoomes@917 518 // src_region that contains the start of the object that overflowed the
jcoomes@917 519 // destination space.
jcoomes@917 520 //
jcoomes@917 521 // Find the start of the "overflow" object and set split_region to the
jcoomes@917 522 // region containing it.
jcoomes@917 523 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
jcoomes@917 524 split_region = addr_to_region_idx(overflow_obj);
jcoomes@917 525
jcoomes@917 526 // Clear the source_region field of all destination regions whose first word
jcoomes@917 527 // came from data after the split point (a non-null source_region field
jcoomes@917 528 // implies a region must be filled).
jcoomes@917 529 //
jcoomes@917 530 // An alternative to the simple loop below: clear during post_compact(),
jcoomes@917 531 // which uses memcpy instead of individual stores, and is easy to
jcoomes@917 532 // parallelize. (The downside is that it clears the entire RegionData
jcoomes@917 533 // object as opposed to just one field.)
jcoomes@917 534 //
jcoomes@917 535 // post_compact() would have to clear the summary data up to the highest
jcoomes@917 536 // address that was written during the summary phase, which would be
jcoomes@917 537 //
jcoomes@917 538 // max(top, max(new_top, clear_top))
jcoomes@917 539 //
jcoomes@917 540 // where clear_top is a new field in SpaceInfo. Would have to set clear_top
jcoomes@917 541 // to destination + partial_obj_size, where both have the values passed to
jcoomes@917 542 // this routine.
jcoomes@917 543 const RegionData* const sr = region(split_region);
jcoomes@917 544 const size_t beg_idx =
jcoomes@917 545 addr_to_region_idx(region_align_up(sr->destination() +
jcoomes@917 546 sr->partial_obj_size()));
jcoomes@917 547 const size_t end_idx =
jcoomes@917 548 addr_to_region_idx(region_align_up(destination + partial_obj_size));
jcoomes@917 549
jcoomes@917 550 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 551 gclog_or_tty->print_cr("split: clearing source_region field in ["
jcoomes@917 552 SIZE_FORMAT ", " SIZE_FORMAT ")",
jcoomes@917 553 beg_idx, end_idx);
jcoomes@917 554 }
jcoomes@917 555 for (size_t idx = beg_idx; idx < end_idx; ++idx) {
jcoomes@917 556 _region_data[idx].set_source_region(0);
jcoomes@917 557 }
jcoomes@917 558
jcoomes@917 559 // Set split_destination and partial_obj_size to reflect the split region.
jcoomes@917 560 split_destination = sr->destination();
jcoomes@917 561 partial_obj_size = sr->partial_obj_size();
jcoomes@917 562 }
jcoomes@917 563
jcoomes@917 564 // The split is recorded only if a partial object extends onto the region.
jcoomes@917 565 if (partial_obj_size != 0) {
jcoomes@917 566 _region_data[split_region].set_partial_obj_size(0);
jcoomes@917 567 split_info.record(split_region, partial_obj_size, split_destination);
jcoomes@917 568 }
jcoomes@917 569
jcoomes@917 570 // Setup the continuation addresses.
jcoomes@917 571 *target_next = split_destination + partial_obj_size;
jcoomes@917 572 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
jcoomes@917 573
jcoomes@917 574 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 575 const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
jcoomes@917 576 gclog_or_tty->print_cr("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT
jcoomes@917 577 " pos=" SIZE_FORMAT,
jcoomes@917 578 split_type, source_next, split_region,
jcoomes@917 579 partial_obj_size);
jcoomes@917 580 gclog_or_tty->print_cr("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
jcoomes@917 581 " tn=" PTR_FORMAT,
jcoomes@917 582 split_type, split_destination,
jcoomes@917 583 addr_to_region_idx(split_destination),
jcoomes@917 584 *target_next);
jcoomes@917 585
jcoomes@917 586 if (partial_obj_size != 0) {
jcoomes@917 587 HeapWord* const po_beg = split_info.destination();
jcoomes@917 588 HeapWord* const po_end = po_beg + split_info.partial_obj_size();
jcoomes@917 589 gclog_or_tty->print_cr("%s split: "
jcoomes@917 590 "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
jcoomes@917 591 "po_end=" PTR_FORMAT " " SIZE_FORMAT,
jcoomes@917 592 split_type,
jcoomes@917 593 po_beg, addr_to_region_idx(po_beg),
jcoomes@917 594 po_end, addr_to_region_idx(po_end));
jcoomes@917 595 }
jcoomes@917 596 }
jcoomes@917 597
jcoomes@917 598 return source_next;
jcoomes@917 599 }
jcoomes@917 600
jcoomes@917 601 bool ParallelCompactData::summarize(SplitInfo& split_info,
duke@435 602 HeapWord* source_beg, HeapWord* source_end,
jcoomes@917 603 HeapWord** source_next,
jcoomes@917 604 HeapWord* target_beg, HeapWord* target_end,
jcoomes@917 605 HeapWord** target_next)
jcoomes@917 606 {
duke@435 607 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 608 HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
jcoomes@917 609 tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
jcoomes@917 610 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
jcoomes@917 611 source_beg, source_end, source_next_val,
jcoomes@917 612 target_beg, target_end, *target_next);
duke@435 613 }
duke@435 614
jcoomes@810 615 size_t cur_region = addr_to_region_idx(source_beg);
jcoomes@810 616 const size_t end_region = addr_to_region_idx(region_align_up(source_end));
duke@435 617
duke@435 618 HeapWord *dest_addr = target_beg;
jcoomes@810 619 while (cur_region < end_region) {
jcoomes@917 620 // The destination must be set even if the region has no data.
jcoomes@917 621 _region_data[cur_region].set_destination(dest_addr);
jcoomes@917 622
jcoomes@810 623 size_t words = _region_data[cur_region].data_size();
duke@435 624 if (words > 0) {
jcoomes@917 625 // If cur_region does not fit entirely into the target space, find a point
jcoomes@917 626 // at which the source space can be 'split' so that part is copied to the
jcoomes@917 627 // target space and the rest is copied elsewhere.
jcoomes@917 628 if (dest_addr + words > target_end) {
jcoomes@917 629 assert(source_next != NULL, "source_next is NULL when splitting");
jcoomes@917 630 *source_next = summarize_split_space(cur_region, split_info, dest_addr,
jcoomes@917 631 target_end, target_next);
jcoomes@917 632 return false;
jcoomes@917 633 }
jcoomes@917 634
jcoomes@917 635 // Compute the destination_count for cur_region, and if necessary, update
jcoomes@917 636 // source_region for a destination region. The source_region field is
jcoomes@917 637 // updated if cur_region is the first (left-most) region to be copied to a
jcoomes@917 638 // destination region.
jcoomes@917 639 //
jcoomes@917 640 // The destination_count calculation is a bit subtle. A region that has
jcoomes@917 641 // data that compacts into itself does not count itself as a destination.
jcoomes@917 642 // This maintains the invariant that a zero count means the region is
jcoomes@917 643 // available and can be claimed and then filled.
jcoomes@917 644 uint destination_count = 0;
jcoomes@917 645 if (split_info.is_split(cur_region)) {
jcoomes@917 646 // The current region has been split: the partial object will be copied
jcoomes@917 647 // to one destination space and the remaining data will be copied to
jcoomes@917 648 // another destination space. Adjust the initial destination_count and,
jcoomes@917 649 // if necessary, set the source_region field if the partial object will
jcoomes@917 650 // cross a destination region boundary.
jcoomes@917 651 destination_count = split_info.destination_count();
jcoomes@917 652 if (destination_count == 2) {
jcoomes@917 653 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
jcoomes@917 654 _region_data[dest_idx].set_source_region(cur_region);
jcoomes@917 655 }
jcoomes@917 656 }
jcoomes@917 657
duke@435 658 HeapWord* const last_addr = dest_addr + words - 1;
jcoomes@810 659 const size_t dest_region_1 = addr_to_region_idx(dest_addr);
jcoomes@810 660 const size_t dest_region_2 = addr_to_region_idx(last_addr);
jcoomes@917 661
jcoomes@810 662 // Initially assume that the destination regions will be the same and
duke@435 663 // adjust the value below if necessary. Under this assumption, if
jcoomes@810 664 // cur_region == dest_region_2, then cur_region will be compacted
jcoomes@810 665 // completely into itself.
jcoomes@917 666 destination_count += cur_region == dest_region_2 ? 0 : 1;
jcoomes@810 667 if (dest_region_1 != dest_region_2) {
jcoomes@810 668 // Destination regions differ; adjust destination_count.
duke@435 669 destination_count += 1;
jcoomes@810 670 // Data from cur_region will be copied to the start of dest_region_2.
jcoomes@810 671 _region_data[dest_region_2].set_source_region(cur_region);
jcoomes@810 672 } else if (region_offset(dest_addr) == 0) {
jcoomes@810 673 // Data from cur_region will be copied to the start of the destination
jcoomes@810 674 // region.
jcoomes@810 675 _region_data[dest_region_1].set_source_region(cur_region);
duke@435 676 }
duke@435 677
jcoomes@810 678 _region_data[cur_region].set_destination_count(destination_count);
jcoomes@810 679 _region_data[cur_region].set_data_location(region_to_addr(cur_region));
duke@435 680 dest_addr += words;
duke@435 681 }
duke@435 682
jcoomes@810 683 ++cur_region;
duke@435 684 }
duke@435 685
duke@435 686 *target_next = dest_addr;
duke@435 687 return true;
duke@435 688 }
duke@435 689
duke@435 690 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
duke@435 691 assert(addr != NULL, "Should detect NULL oop earlier");
duke@435 692 assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
duke@435 693 #ifdef ASSERT
duke@435 694 if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
duke@435 695 gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
duke@435 696 }
duke@435 697 #endif
duke@435 698 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
duke@435 699
jcoomes@810 700 // Region covering the object.
jcoomes@810 701 size_t region_index = addr_to_region_idx(addr);
jcoomes@810 702 const RegionData* const region_ptr = region(region_index);
jcoomes@810 703 HeapWord* const region_addr = region_align_down(addr);
jcoomes@810 704
jcoomes@810 705 assert(addr < region_addr + RegionSize, "Region does not cover object");
jcoomes@810 706 assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
jcoomes@810 707
jcoomes@810 708 HeapWord* result = region_ptr->destination();
jcoomes@810 709
jcoomes@810 710 // If all the data in the region is live, then the new location of the object
jcoomes@810 711 // can be calculated from the destination of the region plus the offset of the
jcoomes@810 712 // object in the region.
jcoomes@810 713 if (region_ptr->data_size() == RegionSize) {
jcoomes@810 714 result += pointer_delta(addr, region_addr);
duke@435 715 return result;
duke@435 716 }
duke@435 717
duke@435 718 // The new location of the object is
jcoomes@810 719 // region destination +
jcoomes@810 720 // size of the partial object extending onto the region +
jcoomes@810 721 // sizes of the live objects in the Region that are to the left of addr
jcoomes@810 722 const size_t partial_obj_size = region_ptr->partial_obj_size();
jcoomes@810 723 HeapWord* const search_start = region_addr + partial_obj_size;
duke@435 724
duke@435 725 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
duke@435 726 size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
duke@435 727
duke@435 728 result += partial_obj_size + live_to_left;
duke@435 729 assert(result <= addr, "object cannot move to the right");
duke@435 730 return result;
duke@435 731 }
duke@435 732
duke@435 733 klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
duke@435 734 klassOop updated_klass;
duke@435 735 if (PSParallelCompact::should_update_klass(old_klass)) {
duke@435 736 updated_klass = (klassOop) calc_new_pointer(old_klass);
duke@435 737 } else {
duke@435 738 updated_klass = old_klass;
duke@435 739 }
duke@435 740
duke@435 741 return updated_klass;
duke@435 742 }
duke@435 743
duke@435 744 #ifdef ASSERT
duke@435 745 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
duke@435 746 {
duke@435 747 const size_t* const beg = (const size_t*)vspace->committed_low_addr();
duke@435 748 const size_t* const end = (const size_t*)vspace->committed_high_addr();
duke@435 749 for (const size_t* p = beg; p < end; ++p) {
duke@435 750 assert(*p == 0, "not zero");
duke@435 751 }
duke@435 752 }
duke@435 753
duke@435 754 void ParallelCompactData::verify_clear()
duke@435 755 {
jcoomes@810 756 verify_clear(_region_vspace);
duke@435 757 }
duke@435 758 #endif // #ifdef ASSERT
duke@435 759
duke@435 760 #ifdef NOT_PRODUCT
jcoomes@810 761 ParallelCompactData::RegionData* debug_region(size_t region_index) {
duke@435 762 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 763 return sd.region(region_index);
duke@435 764 }
duke@435 765 #endif
duke@435 766
duke@435 767 elapsedTimer PSParallelCompact::_accumulated_time;
duke@435 768 unsigned int PSParallelCompact::_total_invocations = 0;
duke@435 769 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0;
duke@435 770 jlong PSParallelCompact::_time_of_last_gc = 0;
duke@435 771 CollectorCounters* PSParallelCompact::_counters = NULL;
duke@435 772 ParMarkBitMap PSParallelCompact::_mark_bitmap;
duke@435 773 ParallelCompactData PSParallelCompact::_summary_data;
duke@435 774
duke@435 775 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
coleenp@548 776
coleenp@548 777 void PSParallelCompact::IsAliveClosure::do_object(oop p) { ShouldNotReachHere(); }
coleenp@548 778 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
coleenp@548 779
coleenp@548 780 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 781 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 782
duke@435 783 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
duke@435 784 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
duke@435 785
coleenp@548 786 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p, _is_root); }
coleenp@548 787 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
coleenp@548 788
coleenp@548 789 void PSParallelCompact::FollowStackClosure::do_void() { follow_stack(_compaction_manager); }
coleenp@548 790
coleenp@548 791 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) { mark_and_push(_compaction_manager, p); }
coleenp@548 792 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
duke@435 793
duke@435 794 void PSParallelCompact::post_initialize() {
duke@435 795 ParallelScavengeHeap* heap = gc_heap();
duke@435 796 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 797
duke@435 798 MemRegion mr = heap->reserved_region();
duke@435 799 _ref_processor = ReferenceProcessor::create_ref_processor(
duke@435 800 mr, // span
duke@435 801 true, // atomic_discovery
duke@435 802 true, // mt_discovery
duke@435 803 &_is_alive_closure,
duke@435 804 ParallelGCThreads,
duke@435 805 ParallelRefProcEnabled);
duke@435 806 _counters = new CollectorCounters("PSParallelCompact", 1);
duke@435 807
duke@435 808 // Initialize static fields in ParCompactionManager.
duke@435 809 ParCompactionManager::initialize(mark_bitmap());
duke@435 810 }
duke@435 811
duke@435 812 bool PSParallelCompact::initialize() {
duke@435 813 ParallelScavengeHeap* heap = gc_heap();
duke@435 814 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 815 MemRegion mr = heap->reserved_region();
duke@435 816
duke@435 817 // Was the old gen get allocated successfully?
duke@435 818 if (!heap->old_gen()->is_allocated()) {
duke@435 819 return false;
duke@435 820 }
duke@435 821
duke@435 822 initialize_space_info();
duke@435 823 initialize_dead_wood_limiter();
duke@435 824
duke@435 825 if (!_mark_bitmap.initialize(mr)) {
duke@435 826 vm_shutdown_during_initialization("Unable to allocate bit map for "
duke@435 827 "parallel garbage collection for the requested heap size.");
duke@435 828 return false;
duke@435 829 }
duke@435 830
duke@435 831 if (!_summary_data.initialize(mr)) {
duke@435 832 vm_shutdown_during_initialization("Unable to allocate tables for "
duke@435 833 "parallel garbage collection for the requested heap size.");
duke@435 834 return false;
duke@435 835 }
duke@435 836
duke@435 837 return true;
duke@435 838 }
duke@435 839
duke@435 840 void PSParallelCompact::initialize_space_info()
duke@435 841 {
duke@435 842 memset(&_space_info, 0, sizeof(_space_info));
duke@435 843
duke@435 844 ParallelScavengeHeap* heap = gc_heap();
duke@435 845 PSYoungGen* young_gen = heap->young_gen();
duke@435 846 MutableSpace* perm_space = heap->perm_gen()->object_space();
duke@435 847
duke@435 848 _space_info[perm_space_id].set_space(perm_space);
duke@435 849 _space_info[old_space_id].set_space(heap->old_gen()->object_space());
duke@435 850 _space_info[eden_space_id].set_space(young_gen->eden_space());
duke@435 851 _space_info[from_space_id].set_space(young_gen->from_space());
duke@435 852 _space_info[to_space_id].set_space(young_gen->to_space());
duke@435 853
duke@435 854 _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
duke@435 855 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
duke@435 856
duke@435 857 _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
duke@435 858 if (TraceParallelOldGCDensePrefix) {
duke@435 859 tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
duke@435 860 _space_info[perm_space_id].min_dense_prefix());
duke@435 861 }
duke@435 862 }
duke@435 863
duke@435 864 void PSParallelCompact::initialize_dead_wood_limiter()
duke@435 865 {
duke@435 866 const size_t max = 100;
duke@435 867 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
duke@435 868 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
duke@435 869 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
duke@435 870 DEBUG_ONLY(_dwl_initialized = true;)
duke@435 871 _dwl_adjustment = normal_distribution(1.0);
duke@435 872 }
duke@435 873
duke@435 874 // Simple class for storing info about the heap at the start of GC, to be used
duke@435 875 // after GC for comparison/printing.
duke@435 876 class PreGCValues {
duke@435 877 public:
duke@435 878 PreGCValues() { }
duke@435 879 PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
duke@435 880
duke@435 881 void fill(ParallelScavengeHeap* heap) {
duke@435 882 _heap_used = heap->used();
duke@435 883 _young_gen_used = heap->young_gen()->used_in_bytes();
duke@435 884 _old_gen_used = heap->old_gen()->used_in_bytes();
duke@435 885 _perm_gen_used = heap->perm_gen()->used_in_bytes();
duke@435 886 };
duke@435 887
duke@435 888 size_t heap_used() const { return _heap_used; }
duke@435 889 size_t young_gen_used() const { return _young_gen_used; }
duke@435 890 size_t old_gen_used() const { return _old_gen_used; }
duke@435 891 size_t perm_gen_used() const { return _perm_gen_used; }
duke@435 892
duke@435 893 private:
duke@435 894 size_t _heap_used;
duke@435 895 size_t _young_gen_used;
duke@435 896 size_t _old_gen_used;
duke@435 897 size_t _perm_gen_used;
duke@435 898 };
duke@435 899
duke@435 900 void
duke@435 901 PSParallelCompact::clear_data_covering_space(SpaceId id)
duke@435 902 {
duke@435 903 // At this point, top is the value before GC, new_top() is the value that will
duke@435 904 // be set at the end of GC. The marking bitmap is cleared to top; nothing
duke@435 905 // should be marked above top. The summary data is cleared to the larger of
duke@435 906 // top & new_top.
duke@435 907 MutableSpace* const space = _space_info[id].space();
duke@435 908 HeapWord* const bot = space->bottom();
duke@435 909 HeapWord* const top = space->top();
duke@435 910 HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
duke@435 911
duke@435 912 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
duke@435 913 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
duke@435 914 _mark_bitmap.clear_range(beg_bit, end_bit);
duke@435 915
jcoomes@810 916 const size_t beg_region = _summary_data.addr_to_region_idx(bot);
jcoomes@810 917 const size_t end_region =
jcoomes@810 918 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
jcoomes@810 919 _summary_data.clear_range(beg_region, end_region);
jcoomes@917 920
jcoomes@917 921 // Clear the data used to 'split' regions.
jcoomes@917 922 SplitInfo& split_info = _space_info[id].split_info();
jcoomes@917 923 if (split_info.is_valid()) {
jcoomes@917 924 split_info.clear();
jcoomes@917 925 }
jcoomes@917 926 DEBUG_ONLY(split_info.verify_clear();)
duke@435 927 }
duke@435 928
duke@435 929 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
duke@435 930 {
duke@435 931 // Update the from & to space pointers in space_info, since they are swapped
duke@435 932 // at each young gen gc. Do the update unconditionally (even though a
duke@435 933 // promotion failure does not swap spaces) because an unknown number of minor
duke@435 934 // collections will have swapped the spaces an unknown number of times.
duke@435 935 TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
duke@435 936 ParallelScavengeHeap* heap = gc_heap();
duke@435 937 _space_info[from_space_id].set_space(heap->young_gen()->from_space());
duke@435 938 _space_info[to_space_id].set_space(heap->young_gen()->to_space());
duke@435 939
duke@435 940 pre_gc_values->fill(heap);
duke@435 941
duke@435 942 ParCompactionManager::reset();
duke@435 943 NOT_PRODUCT(_mark_bitmap.reset_counters());
duke@435 944 DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
duke@435 945 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
duke@435 946
duke@435 947 // Increment the invocation count
apetrusenko@574 948 heap->increment_total_collections(true);
duke@435 949
duke@435 950 // We need to track unique mark sweep invocations as well.
duke@435 951 _total_invocations++;
duke@435 952
duke@435 953 if (PrintHeapAtGC) {
duke@435 954 Universe::print_heap_before_gc();
duke@435 955 }
duke@435 956
duke@435 957 // Fill in TLABs
duke@435 958 heap->accumulate_statistics_all_tlabs();
duke@435 959 heap->ensure_parsability(true); // retire TLABs
duke@435 960
duke@435 961 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 962 HandleMark hm; // Discard invalid handles created during verification
duke@435 963 gclog_or_tty->print(" VerifyBeforeGC:");
duke@435 964 Universe::verify(true);
duke@435 965 }
duke@435 966
duke@435 967 // Verify object start arrays
duke@435 968 if (VerifyObjectStartArray &&
duke@435 969 VerifyBeforeGC) {
duke@435 970 heap->old_gen()->verify_object_start_array();
duke@435 971 heap->perm_gen()->verify_object_start_array();
duke@435 972 }
duke@435 973
duke@435 974 DEBUG_ONLY(mark_bitmap()->verify_clear();)
duke@435 975 DEBUG_ONLY(summary_data().verify_clear();)
jcoomes@645 976
jcoomes@645 977 // Have worker threads release resources the next time they run a task.
jcoomes@645 978 gc_task_manager()->release_all_resources();
duke@435 979 }
duke@435 980
duke@435 981 void PSParallelCompact::post_compact()
duke@435 982 {
duke@435 983 TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
duke@435 984
duke@435 985 for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
jcoomes@917 986 // Clear the marking bitmap, summary data and split info.
duke@435 987 clear_data_covering_space(SpaceId(id));
jcoomes@917 988 // Update top(). Must be done after clearing the bitmap and summary data.
jcoomes@917 989 _space_info[id].publish_new_top();
duke@435 990 }
duke@435 991
duke@435 992 MutableSpace* const eden_space = _space_info[eden_space_id].space();
duke@435 993 MutableSpace* const from_space = _space_info[from_space_id].space();
duke@435 994 MutableSpace* const to_space = _space_info[to_space_id].space();
duke@435 995
duke@435 996 ParallelScavengeHeap* heap = gc_heap();
duke@435 997 bool eden_empty = eden_space->is_empty();
duke@435 998 if (!eden_empty) {
duke@435 999 eden_empty = absorb_live_data_from_eden(heap->size_policy(),
duke@435 1000 heap->young_gen(), heap->old_gen());
duke@435 1001 }
duke@435 1002
duke@435 1003 // Update heap occupancy information which is used as input to the soft ref
duke@435 1004 // clearing policy at the next gc.
duke@435 1005 Universe::update_heap_info_at_gc();
duke@435 1006
duke@435 1007 bool young_gen_empty = eden_empty && from_space->is_empty() &&
duke@435 1008 to_space->is_empty();
duke@435 1009
duke@435 1010 BarrierSet* bs = heap->barrier_set();
duke@435 1011 if (bs->is_a(BarrierSet::ModRef)) {
duke@435 1012 ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
duke@435 1013 MemRegion old_mr = heap->old_gen()->reserved();
duke@435 1014 MemRegion perm_mr = heap->perm_gen()->reserved();
duke@435 1015 assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
duke@435 1016
duke@435 1017 if (young_gen_empty) {
duke@435 1018 modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
duke@435 1019 } else {
duke@435 1020 modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
duke@435 1021 }
duke@435 1022 }
duke@435 1023
duke@435 1024 Threads::gc_epilogue();
duke@435 1025 CodeCache::gc_epilogue();
duke@435 1026
duke@435 1027 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
duke@435 1028
duke@435 1029 ref_processor()->enqueue_discovered_references(NULL);
duke@435 1030
jmasa@698 1031 if (ZapUnusedHeapArea) {
jmasa@698 1032 heap->gen_mangle_unused_area();
jmasa@698 1033 }
jmasa@698 1034
duke@435 1035 // Update time of last GC
duke@435 1036 reset_millis_since_last_gc();
duke@435 1037 }
duke@435 1038
duke@435 1039 HeapWord*
duke@435 1040 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
duke@435 1041 bool maximum_compaction)
duke@435 1042 {
jcoomes@810 1043 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1044 const ParallelCompactData& sd = summary_data();
duke@435 1045
duke@435 1046 const MutableSpace* const space = _space_info[id].space();
jcoomes@810 1047 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 1048 const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
jcoomes@810 1049 const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1050
jcoomes@810 1051 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1052 // of the dense prefix.
duke@435 1053 size_t full_count = 0;
jcoomes@810 1054 const RegionData* cp;
jcoomes@810 1055 for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
duke@435 1056 ++full_count;
duke@435 1057 }
duke@435 1058
duke@435 1059 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1060 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1061 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
duke@435 1062 if (maximum_compaction || cp == end_cp || interval_ended) {
duke@435 1063 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1064 return sd.region_to_addr(cp);
duke@435 1065 }
duke@435 1066
duke@435 1067 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1068 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1069 const size_t space_used = space->used_in_words();
duke@435 1070 const size_t space_capacity = space->capacity_in_words();
duke@435 1071
duke@435 1072 const double cur_density = double(space_live) / space_capacity;
duke@435 1073 const double deadwood_density =
duke@435 1074 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
duke@435 1075 const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
duke@435 1076
duke@435 1077 if (TraceParallelOldGCDensePrefix) {
duke@435 1078 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
duke@435 1079 cur_density, deadwood_density, deadwood_goal);
duke@435 1080 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1081 "space_cap=" SIZE_FORMAT,
duke@435 1082 space_live, space_used,
duke@435 1083 space_capacity);
duke@435 1084 }
duke@435 1085
duke@435 1086 // XXX - Use binary search?
jcoomes@810 1087 HeapWord* dense_prefix = sd.region_to_addr(cp);
jcoomes@810 1088 const RegionData* full_cp = cp;
jcoomes@810 1089 const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
duke@435 1090 while (cp < end_cp) {
jcoomes@810 1091 HeapWord* region_destination = cp->destination();
jcoomes@810 1092 const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
duke@435 1093 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1094 tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
jcoomes@699 1095 "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
jcoomes@810 1096 sd.region(cp), region_destination,
duke@435 1097 dense_prefix, cur_deadwood);
duke@435 1098 }
duke@435 1099
duke@435 1100 if (cur_deadwood >= deadwood_goal) {
jcoomes@810 1101 // Found the region that has the correct amount of deadwood to the left.
jcoomes@810 1102 // This typically occurs after crossing a fairly sparse set of regions, so
jcoomes@810 1103 // iterate backwards over those sparse regions, looking for the region
jcoomes@810 1104 // that has the lowest density of live objects 'to the right.'
jcoomes@810 1105 size_t space_to_left = sd.region(cp) * region_size;
duke@435 1106 size_t live_to_left = space_to_left - cur_deadwood;
duke@435 1107 size_t space_to_right = space_capacity - space_to_left;
duke@435 1108 size_t live_to_right = space_live - live_to_left;
duke@435 1109 double density_to_right = double(live_to_right) / space_to_right;
duke@435 1110 while (cp > full_cp) {
duke@435 1111 --cp;
jcoomes@810 1112 const size_t prev_region_live_to_right = live_to_right -
jcoomes@810 1113 cp->data_size();
jcoomes@810 1114 const size_t prev_region_space_to_right = space_to_right + region_size;
jcoomes@810 1115 double prev_region_density_to_right =
jcoomes@810 1116 double(prev_region_live_to_right) / prev_region_space_to_right;
jcoomes@810 1117 if (density_to_right <= prev_region_density_to_right) {
duke@435 1118 return dense_prefix;
duke@435 1119 }
duke@435 1120 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1121 tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
jcoomes@810 1122 "pc_d2r=%10.8f", sd.region(cp), density_to_right,
jcoomes@810 1123 prev_region_density_to_right);
duke@435 1124 }
jcoomes@810 1125 dense_prefix -= region_size;
jcoomes@810 1126 live_to_right = prev_region_live_to_right;
jcoomes@810 1127 space_to_right = prev_region_space_to_right;
jcoomes@810 1128 density_to_right = prev_region_density_to_right;
duke@435 1129 }
duke@435 1130 return dense_prefix;
duke@435 1131 }
duke@435 1132
jcoomes@810 1133 dense_prefix += region_size;
duke@435 1134 ++cp;
duke@435 1135 }
duke@435 1136
duke@435 1137 return dense_prefix;
duke@435 1138 }
duke@435 1139
duke@435 1140 #ifndef PRODUCT
duke@435 1141 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
duke@435 1142 const SpaceId id,
duke@435 1143 const bool maximum_compaction,
duke@435 1144 HeapWord* const addr)
duke@435 1145 {
jcoomes@810 1146 const size_t region_idx = summary_data().addr_to_region_idx(addr);
jcoomes@810 1147 RegionData* const cp = summary_data().region(region_idx);
duke@435 1148 const MutableSpace* const space = _space_info[id].space();
duke@435 1149 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1150
duke@435 1151 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1152 const size_t dead_to_left = pointer_delta(addr, cp->destination());
duke@435 1153 const size_t space_cap = space->capacity_in_words();
duke@435 1154 const double dead_to_left_pct = double(dead_to_left) / space_cap;
duke@435 1155 const size_t live_to_right = new_top - cp->destination();
duke@435 1156 const size_t dead_to_right = space->top() - addr - live_to_right;
duke@435 1157
jcoomes@699 1158 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
duke@435 1159 "spl=" SIZE_FORMAT " "
duke@435 1160 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
duke@435 1161 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
duke@435 1162 " ratio=%10.8f",
jcoomes@810 1163 algorithm, addr, region_idx,
duke@435 1164 space_live,
duke@435 1165 dead_to_left, dead_to_left_pct,
duke@435 1166 dead_to_right, live_to_right,
duke@435 1167 double(dead_to_right) / live_to_right);
duke@435 1168 }
duke@435 1169 #endif // #ifndef PRODUCT
duke@435 1170
duke@435 1171 // Return a fraction indicating how much of the generation can be treated as
duke@435 1172 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution
duke@435 1173 // based on the density of live objects in the generation to determine a limit,
duke@435 1174 // which is then adjusted so the return value is min_percent when the density is
duke@435 1175 // 1.
duke@435 1176 //
duke@435 1177 // The following table shows some return values for a different values of the
duke@435 1178 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
duke@435 1179 // min_percent is 1.
duke@435 1180 //
duke@435 1181 // fraction allowed as dead wood
duke@435 1182 // -----------------------------------------------------------------
duke@435 1183 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
duke@435 1184 // ------- ---------- ---------- ---------- ---------- ---------- ----------
duke@435 1185 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1186 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1187 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1188 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1189 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1190 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1191 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1192 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1193 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1194 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1195 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
duke@435 1196 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1197 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1198 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1199 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1200 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1201 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1202 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1203 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1204 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1205 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1206
duke@435 1207 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
duke@435 1208 {
duke@435 1209 assert(_dwl_initialized, "uninitialized");
duke@435 1210
duke@435 1211 // The raw limit is the value of the normal distribution at x = density.
duke@435 1212 const double raw_limit = normal_distribution(density);
duke@435 1213
duke@435 1214 // Adjust the raw limit so it becomes the minimum when the density is 1.
duke@435 1215 //
duke@435 1216 // First subtract the adjustment value (which is simply the precomputed value
duke@435 1217 // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
duke@435 1218 // Then add the minimum value, so the minimum is returned when the density is
duke@435 1219 // 1. Finally, prevent negative values, which occur when the mean is not 0.5.
duke@435 1220 const double min = double(min_percent) / 100.0;
duke@435 1221 const double limit = raw_limit - _dwl_adjustment + min;
duke@435 1222 return MAX2(limit, 0.0);
duke@435 1223 }
duke@435 1224
jcoomes@810 1225 ParallelCompactData::RegionData*
jcoomes@810 1226 PSParallelCompact::first_dead_space_region(const RegionData* beg,
jcoomes@810 1227 const RegionData* end)
duke@435 1228 {
jcoomes@810 1229 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1230 ParallelCompactData& sd = summary_data();
jcoomes@810 1231 size_t left = sd.region(beg);
jcoomes@810 1232 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1233
duke@435 1234 // Binary search.
duke@435 1235 while (left < right) {
duke@435 1236 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1237 const size_t middle = left + (right - left) / 2;
jcoomes@810 1238 RegionData* const middle_ptr = sd.region(middle);
duke@435 1239 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1240 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1241 assert(dest != NULL, "sanity");
duke@435 1242 assert(dest <= addr, "must move left");
duke@435 1243
duke@435 1244 if (middle > left && dest < addr) {
duke@435 1245 right = middle - 1;
jcoomes@810 1246 } else if (middle < right && middle_ptr->data_size() == region_size) {
duke@435 1247 left = middle + 1;
duke@435 1248 } else {
duke@435 1249 return middle_ptr;
duke@435 1250 }
duke@435 1251 }
jcoomes@810 1252 return sd.region(left);
duke@435 1253 }
duke@435 1254
jcoomes@810 1255 ParallelCompactData::RegionData*
jcoomes@810 1256 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
jcoomes@810 1257 const RegionData* end,
jcoomes@810 1258 size_t dead_words)
duke@435 1259 {
duke@435 1260 ParallelCompactData& sd = summary_data();
jcoomes@810 1261 size_t left = sd.region(beg);
jcoomes@810 1262 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1263
duke@435 1264 // Binary search.
duke@435 1265 while (left < right) {
duke@435 1266 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1267 const size_t middle = left + (right - left) / 2;
jcoomes@810 1268 RegionData* const middle_ptr = sd.region(middle);
duke@435 1269 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1270 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1271 assert(dest != NULL, "sanity");
duke@435 1272 assert(dest <= addr, "must move left");
duke@435 1273
duke@435 1274 const size_t dead_to_left = pointer_delta(addr, dest);
duke@435 1275 if (middle > left && dead_to_left > dead_words) {
duke@435 1276 right = middle - 1;
duke@435 1277 } else if (middle < right && dead_to_left < dead_words) {
duke@435 1278 left = middle + 1;
duke@435 1279 } else {
duke@435 1280 return middle_ptr;
duke@435 1281 }
duke@435 1282 }
jcoomes@810 1283 return sd.region(left);
duke@435 1284 }
duke@435 1285
duke@435 1286 // The result is valid during the summary phase, after the initial summarization
duke@435 1287 // of each space into itself, and before final summarization.
duke@435 1288 inline double
jcoomes@810 1289 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
duke@435 1290 HeapWord* const bottom,
duke@435 1291 HeapWord* const top,
duke@435 1292 HeapWord* const new_top)
duke@435 1293 {
duke@435 1294 ParallelCompactData& sd = summary_data();
duke@435 1295
duke@435 1296 assert(cp != NULL, "sanity");
duke@435 1297 assert(bottom != NULL, "sanity");
duke@435 1298 assert(top != NULL, "sanity");
duke@435 1299 assert(new_top != NULL, "sanity");
duke@435 1300 assert(top >= new_top, "summary data problem?");
duke@435 1301 assert(new_top > bottom, "space is empty; should not be here");
duke@435 1302 assert(new_top >= cp->destination(), "sanity");
jcoomes@810 1303 assert(top >= sd.region_to_addr(cp), "sanity");
duke@435 1304
duke@435 1305 HeapWord* const destination = cp->destination();
duke@435 1306 const size_t dense_prefix_live = pointer_delta(destination, bottom);
duke@435 1307 const size_t compacted_region_live = pointer_delta(new_top, destination);
jcoomes@810 1308 const size_t compacted_region_used = pointer_delta(top,
jcoomes@810 1309 sd.region_to_addr(cp));
duke@435 1310 const size_t reclaimable = compacted_region_used - compacted_region_live;
duke@435 1311
duke@435 1312 const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
duke@435 1313 return double(reclaimable) / divisor;
duke@435 1314 }
duke@435 1315
duke@435 1316 // Return the address of the end of the dense prefix, a.k.a. the start of the
jcoomes@810 1317 // compacted region. The address is always on a region boundary.
duke@435 1318 //
jcoomes@810 1319 // Completely full regions at the left are skipped, since no compaction can
jcoomes@810 1320 // occur in those regions. Then the maximum amount of dead wood to allow is
jcoomes@810 1321 // computed, based on the density (amount live / capacity) of the generation;
jcoomes@810 1322 // the region with approximately that amount of dead space to the left is
jcoomes@810 1323 // identified as the limit region. Regions between the last completely full
jcoomes@810 1324 // region and the limit region are scanned and the one that has the best
jcoomes@810 1325 // (maximum) reclaimed_ratio() is selected.
duke@435 1326 HeapWord*
duke@435 1327 PSParallelCompact::compute_dense_prefix(const SpaceId id,
duke@435 1328 bool maximum_compaction)
duke@435 1329 {
jcoomes@810 1330 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1331 const ParallelCompactData& sd = summary_data();
duke@435 1332
duke@435 1333 const MutableSpace* const space = _space_info[id].space();
duke@435 1334 HeapWord* const top = space->top();
jcoomes@810 1335 HeapWord* const top_aligned_up = sd.region_align_up(top);
duke@435 1336 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1337 HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
duke@435 1338 HeapWord* const bottom = space->bottom();
jcoomes@810 1339 const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
jcoomes@810 1340 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1341 const RegionData* const new_top_cp =
jcoomes@810 1342 sd.addr_to_region_ptr(new_top_aligned_up);
jcoomes@810 1343
jcoomes@810 1344 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1345 // of the dense prefix.
jcoomes@810 1346 const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
jcoomes@810 1347 assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
duke@435 1348 space->is_empty(), "no dead space allowed to the left");
jcoomes@810 1349 assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
jcoomes@810 1350 "region must have dead space");
duke@435 1351
duke@435 1352 // The gc number is saved whenever a maximum compaction is done, and used to
duke@435 1353 // determine when the maximum compaction interval has expired. This avoids
duke@435 1354 // successive max compactions for different reasons.
duke@435 1355 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1356 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1357 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
duke@435 1358 total_invocations() == HeapFirstMaximumCompactionCount;
duke@435 1359 if (maximum_compaction || full_cp == top_cp || interval_ended) {
duke@435 1360 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1361 return sd.region_to_addr(full_cp);
duke@435 1362 }
duke@435 1363
duke@435 1364 const size_t space_live = pointer_delta(new_top, bottom);
duke@435 1365 const size_t space_used = space->used_in_words();
duke@435 1366 const size_t space_capacity = space->capacity_in_words();
duke@435 1367
duke@435 1368 const double density = double(space_live) / double(space_capacity);
duke@435 1369 const size_t min_percent_free =
duke@435 1370 id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
duke@435 1371 const double limiter = dead_wood_limiter(density, min_percent_free);
duke@435 1372 const size_t dead_wood_max = space_used - space_live;
duke@435 1373 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
duke@435 1374 dead_wood_max);
duke@435 1375
duke@435 1376 if (TraceParallelOldGCDensePrefix) {
duke@435 1377 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1378 "space_cap=" SIZE_FORMAT,
duke@435 1379 space_live, space_used,
duke@435 1380 space_capacity);
duke@435 1381 tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
duke@435 1382 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
duke@435 1383 density, min_percent_free, limiter,
duke@435 1384 dead_wood_max, dead_wood_limit);
duke@435 1385 }
duke@435 1386
jcoomes@810 1387 // Locate the region with the desired amount of dead space to the left.
jcoomes@810 1388 const RegionData* const limit_cp =
jcoomes@810 1389 dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
jcoomes@810 1390
jcoomes@810 1391 // Scan from the first region with dead space to the limit region and find the
duke@435 1392 // one with the best (largest) reclaimed ratio.
duke@435 1393 double best_ratio = 0.0;
jcoomes@810 1394 const RegionData* best_cp = full_cp;
jcoomes@810 1395 for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
duke@435 1396 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
duke@435 1397 if (tmp_ratio > best_ratio) {
duke@435 1398 best_cp = cp;
duke@435 1399 best_ratio = tmp_ratio;
duke@435 1400 }
duke@435 1401 }
duke@435 1402
duke@435 1403 #if 0
jcoomes@810 1404 // Something to consider: if the region with the best ratio is 'close to' the
jcoomes@810 1405 // first region w/free space, choose the first region with free space
jcoomes@810 1406 // ("first-free"). The first-free region is usually near the start of the
duke@435 1407 // heap, which means we are copying most of the heap already, so copy a bit
duke@435 1408 // more to get complete compaction.
jcoomes@810 1409 if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
duke@435 1410 _maximum_compaction_gc_num = total_invocations();
duke@435 1411 best_cp = full_cp;
duke@435 1412 }
duke@435 1413 #endif // #if 0
duke@435 1414
jcoomes@810 1415 return sd.region_to_addr(best_cp);
duke@435 1416 }
duke@435 1417
duke@435 1418 void PSParallelCompact::summarize_spaces_quick()
duke@435 1419 {
duke@435 1420 for (unsigned int i = 0; i < last_space_id; ++i) {
duke@435 1421 const MutableSpace* space = _space_info[i].space();
jcoomes@917 1422 HeapWord** nta = _space_info[i].new_top_addr();
jcoomes@917 1423 bool result = _summary_data.summarize(_space_info[i].split_info(),
jcoomes@917 1424 space->bottom(), space->top(), NULL,
jcoomes@917 1425 space->bottom(), space->end(), nta);
jcoomes@917 1426 assert(result, "space must fit into itself");
duke@435 1427 _space_info[i].set_dense_prefix(space->bottom());
duke@435 1428 }
duke@435 1429 }
duke@435 1430
duke@435 1431 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
duke@435 1432 {
duke@435 1433 HeapWord* const dense_prefix_end = dense_prefix(id);
jcoomes@810 1434 const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
duke@435 1435 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
jcoomes@810 1436 if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
duke@435 1437 // Only enough dead space is filled so that any remaining dead space to the
duke@435 1438 // left is larger than the minimum filler object. (The remainder is filled
duke@435 1439 // during the copy/update phase.)
duke@435 1440 //
duke@435 1441 // The size of the dead space to the right of the boundary is not a
duke@435 1442 // concern, since compaction will be able to use whatever space is
duke@435 1443 // available.
duke@435 1444 //
duke@435 1445 // Here '||' is the boundary, 'x' represents a don't care bit and a box
duke@435 1446 // surrounds the space to be filled with an object.
duke@435 1447 //
duke@435 1448 // In the 32-bit VM, each bit represents two 32-bit words:
duke@435 1449 // +---+
duke@435 1450 // a) beg_bits: ... x x x | 0 | || 0 x x ...
duke@435 1451 // end_bits: ... x x x | 0 | || 0 x x ...
duke@435 1452 // +---+
duke@435 1453 //
duke@435 1454 // In the 64-bit VM, each bit represents one 64-bit word:
duke@435 1455 // +------------+
duke@435 1456 // b) beg_bits: ... x x x | 0 || 0 | x x ...
duke@435 1457 // end_bits: ... x x 1 | 0 || 0 | x x ...
duke@435 1458 // +------------+
duke@435 1459 // +-------+
duke@435 1460 // c) beg_bits: ... x x | 0 0 | || 0 x x ...
duke@435 1461 // end_bits: ... x 1 | 0 0 | || 0 x x ...
duke@435 1462 // +-------+
duke@435 1463 // +-----------+
duke@435 1464 // d) beg_bits: ... x | 0 0 0 | || 0 x x ...
duke@435 1465 // end_bits: ... 1 | 0 0 0 | || 0 x x ...
duke@435 1466 // +-----------+
duke@435 1467 // +-------+
duke@435 1468 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1469 // end_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1470 // +-------+
duke@435 1471
duke@435 1472 // Initially assume case a, c or e will apply.
duke@435 1473 size_t obj_len = (size_t)oopDesc::header_size();
duke@435 1474 HeapWord* obj_beg = dense_prefix_end - obj_len;
duke@435 1475
duke@435 1476 #ifdef _LP64
duke@435 1477 if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
duke@435 1478 // Case b above.
duke@435 1479 obj_beg = dense_prefix_end - 1;
duke@435 1480 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
duke@435 1481 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
duke@435 1482 // Case d above.
duke@435 1483 obj_beg = dense_prefix_end - 3;
duke@435 1484 obj_len = 3;
duke@435 1485 }
duke@435 1486 #endif // #ifdef _LP64
duke@435 1487
jcoomes@917 1488 CollectedHeap::fill_with_object(obj_beg, obj_len);
duke@435 1489 _mark_bitmap.mark_obj(obj_beg, obj_len);
duke@435 1490 _summary_data.add_obj(obj_beg, obj_len);
duke@435 1491 assert(start_array(id) != NULL, "sanity");
duke@435 1492 start_array(id)->allocate_block(obj_beg);
duke@435 1493 }
duke@435 1494 }
duke@435 1495
duke@435 1496 void
jcoomes@917 1497 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
jcoomes@917 1498 {
jcoomes@917 1499 RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
jcoomes@917 1500 HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
jcoomes@917 1501 RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
jcoomes@917 1502 for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
jcoomes@917 1503 cur->set_source_region(0);
jcoomes@917 1504 }
jcoomes@917 1505 }
jcoomes@917 1506
jcoomes@917 1507 void
duke@435 1508 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
duke@435 1509 {
duke@435 1510 assert(id < last_space_id, "id out of range");
jcoomes@700 1511 assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
jcoomes@700 1512 "should have been set in summarize_spaces_quick()");
duke@435 1513
duke@435 1514 const MutableSpace* space = _space_info[id].space();
jcoomes@700 1515 if (_space_info[id].new_top() != space->bottom()) {
jcoomes@700 1516 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
jcoomes@700 1517 _space_info[id].set_dense_prefix(dense_prefix_end);
duke@435 1518
duke@435 1519 #ifndef PRODUCT
jcoomes@700 1520 if (TraceParallelOldGCDensePrefix) {
jcoomes@700 1521 print_dense_prefix_stats("ratio", id, maximum_compaction,
jcoomes@700 1522 dense_prefix_end);
jcoomes@700 1523 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
jcoomes@700 1524 print_dense_prefix_stats("density", id, maximum_compaction, addr);
jcoomes@700 1525 }
jcoomes@700 1526 #endif // #ifndef PRODUCT
jcoomes@700 1527
jcoomes@917 1528 // Recompute the summary data, taking into account the dense prefix. If every
jcoomes@917 1529 // last byte will be reclaimed, then the existing summary data which compacts
jcoomes@917 1530 // everything can be left in place.
jcoomes@700 1531 if (!maximum_compaction && dense_prefix_end != space->bottom()) {
jcoomes@917 1532 // If dead space crosses the dense prefix boundary, it is (at least
jcoomes@917 1533 // partially) filled with a dummy object, marked live and added to the
jcoomes@917 1534 // summary data. This simplifies the copy/update phase and must be done
jcoomes@917 1535 // before the final locations of objects are determined, to prevent leaving
jcoomes@917 1536 // a fragment of dead space that is too small to fill with an object.
jcoomes@700 1537 fill_dense_prefix_end(id);
jcoomes@917 1538
jcoomes@917 1539 // Compute the destination of each Region, and thus each object.
jcoomes@917 1540 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
jcoomes@917 1541 _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1542 dense_prefix_end, space->top(), NULL,
jcoomes@917 1543 dense_prefix_end, space->end(),
jcoomes@917 1544 _space_info[id].new_top_addr());
jcoomes@700 1545 }
duke@435 1546 }
duke@435 1547
duke@435 1548 if (TraceParallelOldGCSummaryPhase) {
jcoomes@810 1549 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@700 1550 HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
jcoomes@810 1551 const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
duke@435 1552 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
jcoomes@700 1553 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1554 const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
duke@435 1555 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
duke@435 1556 tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
jcoomes@810 1557 "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
duke@435 1558 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
duke@435 1559 id, space->capacity_in_words(), dense_prefix_end,
jcoomes@810 1560 dp_region, dp_words / region_size,
jcoomes@810 1561 cr_words / region_size, new_top);
duke@435 1562 }
duke@435 1563 }
duke@435 1564
jcoomes@917 1565 #ifndef PRODUCT
jcoomes@917 1566 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
jcoomes@917 1567 HeapWord* dst_beg, HeapWord* dst_end,
jcoomes@917 1568 SpaceId src_space_id,
jcoomes@917 1569 HeapWord* src_beg, HeapWord* src_end)
jcoomes@917 1570 {
jcoomes@917 1571 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 1572 tty->print_cr("summarizing %d [%s] into %d [%s]: "
jcoomes@917 1573 "src=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1574 SIZE_FORMAT "-" SIZE_FORMAT " "
jcoomes@917 1575 "dst=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1576 SIZE_FORMAT "-" SIZE_FORMAT,
jcoomes@917 1577 src_space_id, space_names[src_space_id],
jcoomes@917 1578 dst_space_id, space_names[dst_space_id],
jcoomes@917 1579 src_beg, src_end,
jcoomes@917 1580 _summary_data.addr_to_region_idx(src_beg),
jcoomes@917 1581 _summary_data.addr_to_region_idx(src_end),
jcoomes@917 1582 dst_beg, dst_end,
jcoomes@917 1583 _summary_data.addr_to_region_idx(dst_beg),
jcoomes@917 1584 _summary_data.addr_to_region_idx(dst_end));
jcoomes@917 1585 }
jcoomes@917 1586 }
jcoomes@917 1587 #endif // #ifndef PRODUCT
jcoomes@917 1588
duke@435 1589 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
duke@435 1590 bool maximum_compaction)
duke@435 1591 {
duke@435 1592 EventMark m("2 summarize");
duke@435 1593 TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
duke@435 1594 // trace("2");
duke@435 1595
duke@435 1596 #ifdef ASSERT
duke@435 1597 if (TraceParallelOldGCMarkingPhase) {
duke@435 1598 tty->print_cr("add_obj_count=" SIZE_FORMAT " "
duke@435 1599 "add_obj_bytes=" SIZE_FORMAT,
duke@435 1600 add_obj_count, add_obj_size * HeapWordSize);
duke@435 1601 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
duke@435 1602 "mark_bitmap_bytes=" SIZE_FORMAT,
duke@435 1603 mark_bitmap_count, mark_bitmap_size * HeapWordSize);
duke@435 1604 }
duke@435 1605 #endif // #ifdef ASSERT
duke@435 1606
duke@435 1607 // Quick summarization of each space into itself, to see how much is live.
duke@435 1608 summarize_spaces_quick();
duke@435 1609
duke@435 1610 if (TraceParallelOldGCSummaryPhase) {
duke@435 1611 tty->print_cr("summary_phase: after summarizing each space to self");
duke@435 1612 Universe::print();
jcoomes@810 1613 NOT_PRODUCT(print_region_ranges());
duke@435 1614 if (Verbose) {
duke@435 1615 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
duke@435 1616 }
duke@435 1617 }
duke@435 1618
duke@435 1619 // The amount of live data that will end up in old space (assuming it fits).
duke@435 1620 size_t old_space_total_live = 0;
jcoomes@917 1621 assert(perm_space_id < old_space_id, "should not count perm data here");
jcoomes@917 1622 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 1623 old_space_total_live += pointer_delta(_space_info[id].new_top(),
duke@435 1624 _space_info[id].space()->bottom());
duke@435 1625 }
duke@435 1626
jcoomes@917 1627 MutableSpace* const old_space = _space_info[old_space_id].space();
duke@435 1628 if (old_space_total_live > old_space->capacity_in_words()) {
duke@435 1629 // XXX - should also try to expand
duke@435 1630 maximum_compaction = true;
duke@435 1631 }
duke@435 1632
duke@435 1633 // Permanent and Old generations.
duke@435 1634 summarize_space(perm_space_id, maximum_compaction);
duke@435 1635 summarize_space(old_space_id, maximum_compaction);
duke@435 1636
jcoomes@917 1637 // Summarize the remaining spaces in the young gen. The initial target space
jcoomes@917 1638 // is the old gen. If a space does not fit entirely into the target, then the
jcoomes@917 1639 // remainder is compacted into the space itself and that space becomes the new
jcoomes@917 1640 // target.
jcoomes@917 1641 SpaceId dst_space_id = old_space_id;
jcoomes@917 1642 HeapWord* dst_space_end = old_space->end();
jcoomes@917 1643 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
jcoomes@917 1644 for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
duke@435 1645 const MutableSpace* space = _space_info[id].space();
duke@435 1646 const size_t live = pointer_delta(_space_info[id].new_top(),
duke@435 1647 space->bottom());
jcoomes@917 1648 const size_t available = pointer_delta(dst_space_end, *new_top_addr);
jcoomes@917 1649
jcoomes@917 1650 NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
jcoomes@917 1651 SpaceId(id), space->bottom(), space->top());)
jcoomes@701 1652 if (live > 0 && live <= available) {
duke@435 1653 // All the live data will fit.
jcoomes@917 1654 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1655 space->bottom(), space->top(),
jcoomes@917 1656 NULL,
jcoomes@917 1657 *new_top_addr, dst_space_end,
jcoomes@917 1658 new_top_addr);
jcoomes@917 1659 assert(done, "space must fit into old gen");
jcoomes@917 1660
jcoomes@917 1661 // XXX - this is necessary because decrement_destination_counts() tests
jcoomes@917 1662 // source_region() to determine if a region will be filled. Probably
jcoomes@917 1663 // better to pass src_space->new_top() into decrement_destination_counts
jcoomes@917 1664 // and test that instead.
jcoomes@917 1665 //
jcoomes@810 1666 // Clear the source_region field for each region in the space.
jcoomes@917 1667 clear_source_region(space->bottom(), _space_info[id].new_top());
jcoomes@701 1668
jcoomes@701 1669 // Reset the new_top value for the space.
jcoomes@701 1670 _space_info[id].set_new_top(space->bottom());
jcoomes@917 1671 } else if (live > 0) {
jcoomes@917 1672 // Attempt to fit part of the source space into the target space.
jcoomes@917 1673 HeapWord* next_src_addr = NULL;
jcoomes@917 1674 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1675 space->bottom(), space->top(),
jcoomes@917 1676 &next_src_addr,
jcoomes@917 1677 *new_top_addr, dst_space_end,
jcoomes@917 1678 new_top_addr);
jcoomes@917 1679 assert(!done, "space should not fit into old gen");
jcoomes@917 1680 assert(next_src_addr != NULL, "sanity");
jcoomes@917 1681
jcoomes@917 1682 // The source space becomes the new target, so the remainder is compacted
jcoomes@917 1683 // within the space itself.
jcoomes@917 1684 dst_space_id = SpaceId(id);
jcoomes@917 1685 dst_space_end = space->end();
jcoomes@917 1686 new_top_addr = _space_info[id].new_top_addr();
jcoomes@917 1687 HeapWord* const clear_end = _space_info[id].new_top();
jcoomes@917 1688 NOT_PRODUCT(summary_phase_msg(dst_space_id,
jcoomes@917 1689 space->bottom(), dst_space_end,
jcoomes@917 1690 SpaceId(id), next_src_addr, space->top());)
jcoomes@917 1691 done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1692 next_src_addr, space->top(),
jcoomes@917 1693 NULL,
jcoomes@917 1694 space->bottom(), dst_space_end,
jcoomes@917 1695 new_top_addr);
jcoomes@917 1696 assert(done, "space must fit when compacted into itself");
jcoomes@917 1697 assert(*new_top_addr <= space->top(), "usage should not grow");
jcoomes@917 1698
jcoomes@917 1699 // XXX - this should go away. See comments above.
jcoomes@917 1700 //
jcoomes@917 1701 // Clear the source_region field in regions at the end of the space that
jcoomes@917 1702 // will not be filled.
jcoomes@917 1703 HeapWord* const clear_beg = _summary_data.region_align_up(*new_top_addr);
jcoomes@917 1704 clear_source_region(clear_beg, clear_end);
duke@435 1705 }
duke@435 1706 }
duke@435 1707
duke@435 1708 if (TraceParallelOldGCSummaryPhase) {
duke@435 1709 tty->print_cr("summary_phase: after final summarization");
duke@435 1710 Universe::print();
jcoomes@810 1711 NOT_PRODUCT(print_region_ranges());
duke@435 1712 if (Verbose) {
duke@435 1713 NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
duke@435 1714 }
duke@435 1715 }
duke@435 1716 }
duke@435 1717
duke@435 1718 // This method should contain all heap-specific policy for invoking a full
duke@435 1719 // collection. invoke_no_policy() will only attempt to compact the heap; it
duke@435 1720 // will do nothing further. If we need to bail out for policy reasons, scavenge
duke@435 1721 // before full gc, or any other specialized behavior, it needs to be added here.
duke@435 1722 //
duke@435 1723 // Note that this method should only be called from the vm_thread while at a
duke@435 1724 // safepoint.
duke@435 1725 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
duke@435 1726 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 1727 assert(Thread::current() == (Thread*)VMThread::vm_thread(),
duke@435 1728 "should be in vm thread");
duke@435 1729 ParallelScavengeHeap* heap = gc_heap();
duke@435 1730 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1731 assert(!heap->is_gc_active(), "not reentrant");
duke@435 1732
duke@435 1733 PSAdaptiveSizePolicy* policy = heap->size_policy();
duke@435 1734
duke@435 1735 // Before each allocation/collection attempt, find out from the
duke@435 1736 // policy object if GCs are, on the whole, taking too long. If so,
duke@435 1737 // bail out without attempting a collection. The exceptions are
duke@435 1738 // for explicitly requested GC's.
duke@435 1739 if (!policy->gc_time_limit_exceeded() ||
duke@435 1740 GCCause::is_user_requested_gc(gc_cause) ||
duke@435 1741 GCCause::is_serviceability_requested_gc(gc_cause)) {
duke@435 1742 IsGCActiveMark mark;
duke@435 1743
duke@435 1744 if (ScavengeBeforeFullGC) {
duke@435 1745 PSScavenge::invoke_no_policy();
duke@435 1746 }
duke@435 1747
duke@435 1748 PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
duke@435 1749 }
duke@435 1750 }
duke@435 1751
jcoomes@810 1752 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
jcoomes@810 1753 size_t addr_region_index = addr_to_region_idx(addr);
jcoomes@810 1754 return region_index == addr_region_index;
duke@435 1755 }
duke@435 1756
duke@435 1757 // This method contains no policy. You should probably
duke@435 1758 // be calling invoke() instead.
duke@435 1759 void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
duke@435 1760 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
duke@435 1761 assert(ref_processor() != NULL, "Sanity");
duke@435 1762
apetrusenko@574 1763 if (GC_locker::check_active_before_gc()) {
duke@435 1764 return;
duke@435 1765 }
duke@435 1766
duke@435 1767 TimeStamp marking_start;
duke@435 1768 TimeStamp compaction_start;
duke@435 1769 TimeStamp collection_exit;
duke@435 1770
duke@435 1771 ParallelScavengeHeap* heap = gc_heap();
duke@435 1772 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1773 PSYoungGen* young_gen = heap->young_gen();
duke@435 1774 PSOldGen* old_gen = heap->old_gen();
duke@435 1775 PSPermGen* perm_gen = heap->perm_gen();
duke@435 1776 PSAdaptiveSizePolicy* size_policy = heap->size_policy();
duke@435 1777
jmasa@698 1778 if (ZapUnusedHeapArea) {
jmasa@698 1779 // Save information needed to minimize mangling
jmasa@698 1780 heap->record_gen_tops_before_GC();
jmasa@698 1781 }
jmasa@698 1782
duke@435 1783 _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
duke@435 1784
duke@435 1785 // Make sure data structures are sane, make the heap parsable, and do other
duke@435 1786 // miscellaneous bookkeeping.
duke@435 1787 PreGCValues pre_gc_values;
duke@435 1788 pre_compact(&pre_gc_values);
duke@435 1789
jcoomes@645 1790 // Get the compaction manager reserved for the VM thread.
jcoomes@645 1791 ParCompactionManager* const vmthread_cm =
jcoomes@645 1792 ParCompactionManager::manager_array(gc_task_manager()->workers());
jcoomes@645 1793
duke@435 1794 // Place after pre_compact() where the number of invocations is incremented.
duke@435 1795 AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
duke@435 1796
duke@435 1797 {
duke@435 1798 ResourceMark rm;
duke@435 1799 HandleMark hm;
duke@435 1800
duke@435 1801 const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
duke@435 1802
duke@435 1803 // This is useful for debugging but don't change the output the
duke@435 1804 // the customer sees.
duke@435 1805 const char* gc_cause_str = "Full GC";
duke@435 1806 if (is_system_gc && PrintGCDetails) {
duke@435 1807 gc_cause_str = "Full GC (System)";
duke@435 1808 }
duke@435 1809 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
duke@435 1810 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
duke@435 1811 TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
duke@435 1812 TraceCollectorStats tcs(counters());
duke@435 1813 TraceMemoryManagerStats tms(true /* Full GC */);
duke@435 1814
duke@435 1815 if (TraceGen1Time) accumulated_time()->start();
duke@435 1816
duke@435 1817 // Let the size policy know we're starting
duke@435 1818 size_policy->major_collection_begin();
duke@435 1819
duke@435 1820 // When collecting the permanent generation methodOops may be moving,
duke@435 1821 // so we either have to flush all bcp data or convert it into bci.
duke@435 1822 CodeCache::gc_prologue();
duke@435 1823 Threads::gc_prologue();
duke@435 1824
duke@435 1825 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
duke@435 1826 COMPILER2_PRESENT(DerivedPointerTable::clear());
duke@435 1827
duke@435 1828 ref_processor()->enable_discovery();
ysr@892 1829 ref_processor()->setup_policy(maximum_heap_compaction);
duke@435 1830
duke@435 1831 bool marked_for_unloading = false;
duke@435 1832
duke@435 1833 marking_start.update();
jcoomes@645 1834 marking_phase(vmthread_cm, maximum_heap_compaction);
duke@435 1835
duke@435 1836 #ifndef PRODUCT
duke@435 1837 if (TraceParallelOldGCMarkingPhase) {
duke@435 1838 gclog_or_tty->print_cr("marking_phase: cas_tries %d cas_retries %d "
duke@435 1839 "cas_by_another %d",
duke@435 1840 mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
duke@435 1841 mark_bitmap()->cas_by_another());
duke@435 1842 }
duke@435 1843 #endif // #ifndef PRODUCT
duke@435 1844
duke@435 1845 bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
jcoomes@645 1846 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
duke@435 1847
duke@435 1848 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
duke@435 1849 COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
duke@435 1850
duke@435 1851 // adjust_roots() updates Universe::_intArrayKlassObj which is
duke@435 1852 // needed by the compaction for filling holes in the dense prefix.
duke@435 1853 adjust_roots();
duke@435 1854
duke@435 1855 compaction_start.update();
duke@435 1856 // Does the perm gen always have to be done serially because
duke@435 1857 // klasses are used in the update of an object?
jcoomes@645 1858 compact_perm(vmthread_cm);
duke@435 1859
duke@435 1860 if (UseParallelOldGCCompacting) {
duke@435 1861 compact();
duke@435 1862 } else {
jcoomes@645 1863 compact_serial(vmthread_cm);
duke@435 1864 }
duke@435 1865
duke@435 1866 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be
duke@435 1867 // done before resizing.
duke@435 1868 post_compact();
duke@435 1869
duke@435 1870 // Let the size policy know we're done
duke@435 1871 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
duke@435 1872
duke@435 1873 if (UseAdaptiveSizePolicy) {
duke@435 1874 if (PrintAdaptiveSizePolicy) {
duke@435 1875 gclog_or_tty->print("AdaptiveSizeStart: ");
duke@435 1876 gclog_or_tty->stamp();
duke@435 1877 gclog_or_tty->print_cr(" collection: %d ",
duke@435 1878 heap->total_collections());
duke@435 1879 if (Verbose) {
duke@435 1880 gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
duke@435 1881 " perm_gen_capacity: %d ",
duke@435 1882 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
duke@435 1883 perm_gen->capacity_in_bytes());
duke@435 1884 }
duke@435 1885 }
duke@435 1886
duke@435 1887 // Don't check if the size_policy is ready here. Let
duke@435 1888 // the size_policy check that internally.
duke@435 1889 if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
duke@435 1890 ((gc_cause != GCCause::_java_lang_system_gc) ||
duke@435 1891 UseAdaptiveSizePolicyWithSystemGC)) {
duke@435 1892 // Calculate optimal free space amounts
duke@435 1893 assert(young_gen->max_size() >
duke@435 1894 young_gen->from_space()->capacity_in_bytes() +
duke@435 1895 young_gen->to_space()->capacity_in_bytes(),
duke@435 1896 "Sizes of space in young gen are out-of-bounds");
duke@435 1897 size_t max_eden_size = young_gen->max_size() -
duke@435 1898 young_gen->from_space()->capacity_in_bytes() -
duke@435 1899 young_gen->to_space()->capacity_in_bytes();
jmasa@698 1900 size_policy->compute_generation_free_space(
jmasa@698 1901 young_gen->used_in_bytes(),
jmasa@698 1902 young_gen->eden_space()->used_in_bytes(),
jmasa@698 1903 old_gen->used_in_bytes(),
jmasa@698 1904 perm_gen->used_in_bytes(),
jmasa@698 1905 young_gen->eden_space()->capacity_in_bytes(),
jmasa@698 1906 old_gen->max_gen_size(),
jmasa@698 1907 max_eden_size,
jmasa@698 1908 true /* full gc*/,
jmasa@698 1909 gc_cause);
jmasa@698 1910
jmasa@698 1911 heap->resize_old_gen(
jmasa@698 1912 size_policy->calculated_old_free_size_in_bytes());
duke@435 1913
duke@435 1914 // Don't resize the young generation at an major collection. A
duke@435 1915 // desired young generation size may have been calculated but
duke@435 1916 // resizing the young generation complicates the code because the
duke@435 1917 // resizing of the old generation may have moved the boundary
duke@435 1918 // between the young generation and the old generation. Let the
duke@435 1919 // young generation resizing happen at the minor collections.
duke@435 1920 }
duke@435 1921 if (PrintAdaptiveSizePolicy) {
duke@435 1922 gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
duke@435 1923 heap->total_collections());
duke@435 1924 }
duke@435 1925 }
duke@435 1926
duke@435 1927 if (UsePerfData) {
duke@435 1928 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
duke@435 1929 counters->update_counters();
duke@435 1930 counters->update_old_capacity(old_gen->capacity_in_bytes());
duke@435 1931 counters->update_young_capacity(young_gen->capacity_in_bytes());
duke@435 1932 }
duke@435 1933
duke@435 1934 heap->resize_all_tlabs();
duke@435 1935
duke@435 1936 // We collected the perm gen, so we'll resize it here.
duke@435 1937 perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
duke@435 1938
duke@435 1939 if (TraceGen1Time) accumulated_time()->stop();
duke@435 1940
duke@435 1941 if (PrintGC) {
duke@435 1942 if (PrintGCDetails) {
duke@435 1943 // No GC timestamp here. This is after GC so it would be confusing.
duke@435 1944 young_gen->print_used_change(pre_gc_values.young_gen_used());
duke@435 1945 old_gen->print_used_change(pre_gc_values.old_gen_used());
duke@435 1946 heap->print_heap_change(pre_gc_values.heap_used());
duke@435 1947 // Print perm gen last (print_heap_change() excludes the perm gen).
duke@435 1948 perm_gen->print_used_change(pre_gc_values.perm_gen_used());
duke@435 1949 } else {
duke@435 1950 heap->print_heap_change(pre_gc_values.heap_used());
duke@435 1951 }
duke@435 1952 }
duke@435 1953
duke@435 1954 // Track memory usage and detect low memory
duke@435 1955 MemoryService::track_memory_usage();
duke@435 1956 heap->update_counters();
duke@435 1957
duke@435 1958 if (PrintGCDetails) {
duke@435 1959 if (size_policy->print_gc_time_limit_would_be_exceeded()) {
duke@435 1960 if (size_policy->gc_time_limit_exceeded()) {
duke@435 1961 gclog_or_tty->print_cr(" GC time is exceeding GCTimeLimit "
duke@435 1962 "of %d%%", GCTimeLimit);
duke@435 1963 } else {
duke@435 1964 gclog_or_tty->print_cr(" GC time would exceed GCTimeLimit "
duke@435 1965 "of %d%%", GCTimeLimit);
duke@435 1966 }
duke@435 1967 }
duke@435 1968 size_policy->set_print_gc_time_limit_would_be_exceeded(false);
duke@435 1969 }
duke@435 1970 }
duke@435 1971
duke@435 1972 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 1973 HandleMark hm; // Discard invalid handles created during verification
duke@435 1974 gclog_or_tty->print(" VerifyAfterGC:");
duke@435 1975 Universe::verify(false);
duke@435 1976 }
duke@435 1977
duke@435 1978 // Re-verify object start arrays
duke@435 1979 if (VerifyObjectStartArray &&
duke@435 1980 VerifyAfterGC) {
duke@435 1981 old_gen->verify_object_start_array();
duke@435 1982 perm_gen->verify_object_start_array();
duke@435 1983 }
duke@435 1984
jmasa@698 1985 if (ZapUnusedHeapArea) {
jmasa@698 1986 old_gen->object_space()->check_mangled_unused_area_complete();
jmasa@698 1987 perm_gen->object_space()->check_mangled_unused_area_complete();
jmasa@698 1988 }
jmasa@698 1989
duke@435 1990 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
duke@435 1991
duke@435 1992 collection_exit.update();
duke@435 1993
duke@435 1994 if (PrintHeapAtGC) {
duke@435 1995 Universe::print_heap_after_gc();
duke@435 1996 }
duke@435 1997 if (PrintGCTaskTimeStamps) {
duke@435 1998 gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
duke@435 1999 INT64_FORMAT,
duke@435 2000 marking_start.ticks(), compaction_start.ticks(),
duke@435 2001 collection_exit.ticks());
duke@435 2002 gc_task_manager()->print_task_time_stamps();
duke@435 2003 }
duke@435 2004 }
duke@435 2005
duke@435 2006 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
duke@435 2007 PSYoungGen* young_gen,
duke@435 2008 PSOldGen* old_gen) {
duke@435 2009 MutableSpace* const eden_space = young_gen->eden_space();
duke@435 2010 assert(!eden_space->is_empty(), "eden must be non-empty");
duke@435 2011 assert(young_gen->virtual_space()->alignment() ==
duke@435 2012 old_gen->virtual_space()->alignment(), "alignments do not match");
duke@435 2013
duke@435 2014 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
duke@435 2015 return false;
duke@435 2016 }
duke@435 2017
duke@435 2018 // Both generations must be completely committed.
duke@435 2019 if (young_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2020 return false;
duke@435 2021 }
duke@435 2022 if (old_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2023 return false;
duke@435 2024 }
duke@435 2025
duke@435 2026 // Figure out how much to take from eden. Include the average amount promoted
duke@435 2027 // in the total; otherwise the next young gen GC will simply bail out to a
duke@435 2028 // full GC.
duke@435 2029 const size_t alignment = old_gen->virtual_space()->alignment();
duke@435 2030 const size_t eden_used = eden_space->used_in_bytes();
duke@435 2031 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
duke@435 2032 const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
duke@435 2033 const size_t eden_capacity = eden_space->capacity_in_bytes();
duke@435 2034
duke@435 2035 if (absorb_size >= eden_capacity) {
duke@435 2036 return false; // Must leave some space in eden.
duke@435 2037 }
duke@435 2038
duke@435 2039 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
duke@435 2040 if (new_young_size < young_gen->min_gen_size()) {
duke@435 2041 return false; // Respect young gen minimum size.
duke@435 2042 }
duke@435 2043
duke@435 2044 if (TraceAdaptiveGCBoundary && Verbose) {
duke@435 2045 gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: "
duke@435 2046 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
duke@435 2047 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
duke@435 2048 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
duke@435 2049 absorb_size / K,
duke@435 2050 eden_capacity / K, (eden_capacity - absorb_size) / K,
duke@435 2051 young_gen->from_space()->used_in_bytes() / K,
duke@435 2052 young_gen->to_space()->used_in_bytes() / K,
duke@435 2053 young_gen->capacity_in_bytes() / K, new_young_size / K);
duke@435 2054 }
duke@435 2055
duke@435 2056 // Fill the unused part of the old gen.
duke@435 2057 MutableSpace* const old_space = old_gen->object_space();
jcoomes@916 2058 HeapWord* const unused_start = old_space->top();
jcoomes@916 2059 size_t const unused_words = pointer_delta(old_space->end(), unused_start);
jcoomes@916 2060
jcoomes@916 2061 if (unused_words > 0) {
jcoomes@916 2062 if (unused_words < CollectedHeap::min_fill_size()) {
jcoomes@916 2063 return false; // If the old gen cannot be filled, must give up.
jcoomes@916 2064 }
jcoomes@916 2065 CollectedHeap::fill_with_objects(unused_start, unused_words);
duke@435 2066 }
duke@435 2067
duke@435 2068 // Take the live data from eden and set both top and end in the old gen to
duke@435 2069 // eden top. (Need to set end because reset_after_change() mangles the region
duke@435 2070 // from end to virtual_space->high() in debug builds).
duke@435 2071 HeapWord* const new_top = eden_space->top();
duke@435 2072 old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
duke@435 2073 absorb_size);
duke@435 2074 young_gen->reset_after_change();
duke@435 2075 old_space->set_top(new_top);
duke@435 2076 old_space->set_end(new_top);
duke@435 2077 old_gen->reset_after_change();
duke@435 2078
duke@435 2079 // Update the object start array for the filler object and the data from eden.
duke@435 2080 ObjectStartArray* const start_array = old_gen->start_array();
jcoomes@916 2081 for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
jcoomes@916 2082 start_array->allocate_block(p);
duke@435 2083 }
duke@435 2084
duke@435 2085 // Could update the promoted average here, but it is not typically updated at
duke@435 2086 // full GCs and the value to use is unclear. Something like
duke@435 2087 //
duke@435 2088 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
duke@435 2089
duke@435 2090 size_policy->set_bytes_absorbed_from_eden(absorb_size);
duke@435 2091 return true;
duke@435 2092 }
duke@435 2093
duke@435 2094 GCTaskManager* const PSParallelCompact::gc_task_manager() {
duke@435 2095 assert(ParallelScavengeHeap::gc_task_manager() != NULL,
duke@435 2096 "shouldn't return NULL");
duke@435 2097 return ParallelScavengeHeap::gc_task_manager();
duke@435 2098 }
duke@435 2099
duke@435 2100 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
duke@435 2101 bool maximum_heap_compaction) {
duke@435 2102 // Recursively traverse all live objects and mark them
duke@435 2103 EventMark m("1 mark object");
duke@435 2104 TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
duke@435 2105
duke@435 2106 ParallelScavengeHeap* heap = gc_heap();
duke@435 2107 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jcoomes@810 2108 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
duke@435 2109 ParallelTaskTerminator terminator(parallel_gc_threads, qset);
duke@435 2110
duke@435 2111 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
duke@435 2112 PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
duke@435 2113
duke@435 2114 {
duke@435 2115 TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
duke@435 2116
duke@435 2117 GCTaskQueue* q = GCTaskQueue::create();
duke@435 2118
duke@435 2119 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
duke@435 2120 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
duke@435 2121 // We scan the thread roots in parallel
duke@435 2122 Threads::create_thread_roots_marking_tasks(q);
duke@435 2123 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
duke@435 2124 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
duke@435 2125 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
duke@435 2126 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
duke@435 2127 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
duke@435 2128 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));
duke@435 2129
duke@435 2130 if (parallel_gc_threads > 1) {
duke@435 2131 for (uint j = 0; j < parallel_gc_threads; j++) {
duke@435 2132 q->enqueue(new StealMarkingTask(&terminator));
duke@435 2133 }
duke@435 2134 }
duke@435 2135
duke@435 2136 WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
duke@435 2137 q->enqueue(fin);
duke@435 2138
duke@435 2139 gc_task_manager()->add_list(q);
duke@435 2140
duke@435 2141 fin->wait_for();
duke@435 2142
duke@435 2143 // We have to release the barrier tasks!
duke@435 2144 WaitForBarrierGCTask::destroy(fin);
duke@435 2145 }
duke@435 2146
duke@435 2147 // Process reference objects found during marking
duke@435 2148 {
duke@435 2149 TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
duke@435 2150 if (ref_processor()->processing_is_mt()) {
duke@435 2151 RefProcTaskExecutor task_executor;
duke@435 2152 ref_processor()->process_discovered_references(
ysr@888 2153 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
ysr@888 2154 &task_executor);
duke@435 2155 } else {
duke@435 2156 ref_processor()->process_discovered_references(
ysr@888 2157 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
duke@435 2158 }
duke@435 2159 }
duke@435 2160
duke@435 2161 TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
duke@435 2162 // Follow system dictionary roots and unload classes.
duke@435 2163 bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
duke@435 2164
duke@435 2165 // Follow code cache roots.
duke@435 2166 CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
duke@435 2167 purged_class);
duke@435 2168 follow_stack(cm); // Flush marking stack.
duke@435 2169
duke@435 2170 // Update subklass/sibling/implementor links of live klasses
duke@435 2171 // revisit_klass_stack is used in follow_weak_klass_links().
duke@435 2172 follow_weak_klass_links(cm);
duke@435 2173
duke@435 2174 // Visit symbol and interned string tables and delete unmarked oops
duke@435 2175 SymbolTable::unlink(is_alive_closure());
duke@435 2176 StringTable::unlink(is_alive_closure());
duke@435 2177
duke@435 2178 assert(cm->marking_stack()->size() == 0, "stack should be empty by now");
duke@435 2179 assert(cm->overflow_stack()->is_empty(), "stack should be empty by now");
duke@435 2180 }
duke@435 2181
duke@435 2182 // This should be moved to the shared markSweep code!
duke@435 2183 class PSAlwaysTrueClosure: public BoolObjectClosure {
duke@435 2184 public:
duke@435 2185 void do_object(oop p) { ShouldNotReachHere(); }
duke@435 2186 bool do_object_b(oop p) { return true; }
duke@435 2187 };
duke@435 2188 static PSAlwaysTrueClosure always_true;
duke@435 2189
duke@435 2190 void PSParallelCompact::adjust_roots() {
duke@435 2191 // Adjust the pointers to reflect the new locations
duke@435 2192 EventMark m("3 adjust roots");
duke@435 2193 TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
duke@435 2194
duke@435 2195 // General strong roots.
duke@435 2196 Universe::oops_do(adjust_root_pointer_closure());
duke@435 2197 ReferenceProcessor::oops_do(adjust_root_pointer_closure());
duke@435 2198 JNIHandles::oops_do(adjust_root_pointer_closure()); // Global (strong) JNI handles
duke@435 2199 Threads::oops_do(adjust_root_pointer_closure());
duke@435 2200 ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
duke@435 2201 FlatProfiler::oops_do(adjust_root_pointer_closure());
duke@435 2202 Management::oops_do(adjust_root_pointer_closure());
duke@435 2203 JvmtiExport::oops_do(adjust_root_pointer_closure());
duke@435 2204 // SO_AllClasses
duke@435 2205 SystemDictionary::oops_do(adjust_root_pointer_closure());
duke@435 2206 vmSymbols::oops_do(adjust_root_pointer_closure());
duke@435 2207
duke@435 2208 // Now adjust pointers in remaining weak roots. (All of which should
duke@435 2209 // have been cleared if they pointed to non-surviving objects.)
duke@435 2210 // Global (weak) JNI handles
duke@435 2211 JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
duke@435 2212
duke@435 2213 CodeCache::oops_do(adjust_pointer_closure());
duke@435 2214 SymbolTable::oops_do(adjust_root_pointer_closure());
duke@435 2215 StringTable::oops_do(adjust_root_pointer_closure());
duke@435 2216 ref_processor()->weak_oops_do(adjust_root_pointer_closure());
duke@435 2217 // Roots were visited so references into the young gen in roots
duke@435 2218 // may have been scanned. Process them also.
duke@435 2219 // Should the reference processor have a span that excludes
duke@435 2220 // young gen objects?
duke@435 2221 PSScavenge::reference_processor()->weak_oops_do(
duke@435 2222 adjust_root_pointer_closure());
duke@435 2223 }
duke@435 2224
duke@435 2225 void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
duke@435 2226 EventMark m("4 compact perm");
duke@435 2227 TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
duke@435 2228 // trace("4");
duke@435 2229
duke@435 2230 gc_heap()->perm_gen()->start_array()->reset();
duke@435 2231 move_and_update(cm, perm_space_id);
duke@435 2232 }
duke@435 2233
jcoomes@810 2234 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
jcoomes@810 2235 uint parallel_gc_threads)
jcoomes@810 2236 {
duke@435 2237 TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
duke@435 2238
duke@435 2239 const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
duke@435 2240 for (unsigned int j = 0; j < task_count; j++) {
duke@435 2241 q->enqueue(new DrainStacksCompactionTask());
duke@435 2242 }
duke@435 2243
jcoomes@810 2244 // Find all regions that are available (can be filled immediately) and
duke@435 2245 // distribute them to the thread stacks. The iteration is done in reverse
jcoomes@810 2246 // order (high to low) so the regions will be removed in ascending order.
duke@435 2247
duke@435 2248 const ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2249
jcoomes@810 2250 size_t fillable_regions = 0; // A count for diagnostic purposes.
duke@435 2251 unsigned int which = 0; // The worker thread number.
duke@435 2252
duke@435 2253 for (unsigned int id = to_space_id; id > perm_space_id; --id) {
duke@435 2254 SpaceInfo* const space_info = _space_info + id;
duke@435 2255 MutableSpace* const space = space_info->space();
duke@435 2256 HeapWord* const new_top = space_info->new_top();
duke@435 2257
jcoomes@810 2258 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
jcoomes@810 2259 const size_t end_region =
jcoomes@810 2260 sd.addr_to_region_idx(sd.region_align_up(new_top));
jcoomes@810 2261 assert(end_region > 0, "perm gen cannot be empty");
jcoomes@810 2262
jcoomes@810 2263 for (size_t cur = end_region - 1; cur >= beg_region; --cur) {
jcoomes@810 2264 if (sd.region(cur)->claim_unsafe()) {
duke@435 2265 ParCompactionManager* cm = ParCompactionManager::manager_array(which);
duke@435 2266 cm->save_for_processing(cur);
duke@435 2267
duke@435 2268 if (TraceParallelOldGCCompactionPhase && Verbose) {
jcoomes@810 2269 const size_t count_mod_8 = fillable_regions & 7;
duke@435 2270 if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
jcoomes@699 2271 gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
duke@435 2272 if (count_mod_8 == 7) gclog_or_tty->cr();
duke@435 2273 }
duke@435 2274
jcoomes@810 2275 NOT_PRODUCT(++fillable_regions;)
jcoomes@810 2276
jcoomes@810 2277 // Assign regions to threads in round-robin fashion.
duke@435 2278 if (++which == task_count) {
duke@435 2279 which = 0;
duke@435 2280 }
duke@435 2281 }
duke@435 2282 }
duke@435 2283 }
duke@435 2284
duke@435 2285 if (TraceParallelOldGCCompactionPhase) {
jcoomes@810 2286 if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
jcoomes@810 2287 gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
duke@435 2288 }
duke@435 2289 }
duke@435 2290
duke@435 2291 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
duke@435 2292
duke@435 2293 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
duke@435 2294 uint parallel_gc_threads) {
duke@435 2295 TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
duke@435 2296
duke@435 2297 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2298
duke@435 2299 // Iterate over all the spaces adding tasks for updating
jcoomes@810 2300 // regions in the dense prefix. Assume that 1 gc thread
duke@435 2301 // will work on opening the gaps and the remaining gc threads
duke@435 2302 // will work on the dense prefix.
jcoomes@917 2303 unsigned int space_id;
jcoomes@917 2304 for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
duke@435 2305 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
duke@435 2306 const MutableSpace* const space = _space_info[space_id].space();
duke@435 2307
duke@435 2308 if (dense_prefix_end == space->bottom()) {
duke@435 2309 // There is no dense prefix for this space.
duke@435 2310 continue;
duke@435 2311 }
duke@435 2312
jcoomes@810 2313 // The dense prefix is before this region.
jcoomes@810 2314 size_t region_index_end_dense_prefix =
jcoomes@810 2315 sd.addr_to_region_idx(dense_prefix_end);
jcoomes@810 2316 RegionData* const dense_prefix_cp =
jcoomes@810 2317 sd.region(region_index_end_dense_prefix);
duke@435 2318 assert(dense_prefix_end == space->end() ||
duke@435 2319 dense_prefix_cp->available() ||
duke@435 2320 dense_prefix_cp->claimed(),
jcoomes@810 2321 "The region after the dense prefix should always be ready to fill");
jcoomes@810 2322
jcoomes@810 2323 size_t region_index_start = sd.addr_to_region_idx(space->bottom());
duke@435 2324
duke@435 2325 // Is there dense prefix work?
jcoomes@810 2326 size_t total_dense_prefix_regions =
jcoomes@810 2327 region_index_end_dense_prefix - region_index_start;
jcoomes@810 2328 // How many regions of the dense prefix should be given to
duke@435 2329 // each thread?
jcoomes@810 2330 if (total_dense_prefix_regions > 0) {
duke@435 2331 uint tasks_for_dense_prefix = 1;
duke@435 2332 if (UseParallelDensePrefixUpdate) {
jcoomes@810 2333 if (total_dense_prefix_regions <=
duke@435 2334 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
duke@435 2335 // Don't over partition. This assumes that
duke@435 2336 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
jcoomes@810 2337 // so there are not many regions to process.
duke@435 2338 tasks_for_dense_prefix = parallel_gc_threads;
duke@435 2339 } else {
duke@435 2340 // Over partition
duke@435 2341 tasks_for_dense_prefix = parallel_gc_threads *
duke@435 2342 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
duke@435 2343 }
duke@435 2344 }
jcoomes@810 2345 size_t regions_per_thread = total_dense_prefix_regions /
duke@435 2346 tasks_for_dense_prefix;
jcoomes@810 2347 // Give each thread at least 1 region.
jcoomes@810 2348 if (regions_per_thread == 0) {
jcoomes@810 2349 regions_per_thread = 1;
duke@435 2350 }
duke@435 2351
duke@435 2352 for (uint k = 0; k < tasks_for_dense_prefix; k++) {
jcoomes@810 2353 if (region_index_start >= region_index_end_dense_prefix) {
duke@435 2354 break;
duke@435 2355 }
jcoomes@810 2356 // region_index_end is not processed
jcoomes@810 2357 size_t region_index_end = MIN2(region_index_start + regions_per_thread,
jcoomes@810 2358 region_index_end_dense_prefix);
jcoomes@917 2359 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2360 region_index_start,
jcoomes@917 2361 region_index_end));
jcoomes@810 2362 region_index_start = region_index_end;
duke@435 2363 }
duke@435 2364 }
duke@435 2365 // This gets any part of the dense prefix that did not
duke@435 2366 // fit evenly.
jcoomes@810 2367 if (region_index_start < region_index_end_dense_prefix) {
jcoomes@917 2368 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2369 region_index_start,
jcoomes@917 2370 region_index_end_dense_prefix));
duke@435 2371 }
jcoomes@917 2372 }
duke@435 2373 }
duke@435 2374
jcoomes@810 2375 void PSParallelCompact::enqueue_region_stealing_tasks(
duke@435 2376 GCTaskQueue* q,
duke@435 2377 ParallelTaskTerminator* terminator_ptr,
duke@435 2378 uint parallel_gc_threads) {
duke@435 2379 TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
duke@435 2380
jcoomes@810 2381 // Once a thread has drained it's stack, it should try to steal regions from
duke@435 2382 // other threads.
duke@435 2383 if (parallel_gc_threads > 1) {
duke@435 2384 for (uint j = 0; j < parallel_gc_threads; j++) {
jcoomes@810 2385 q->enqueue(new StealRegionCompactionTask(terminator_ptr));
duke@435 2386 }
duke@435 2387 }
duke@435 2388 }
duke@435 2389
duke@435 2390 void PSParallelCompact::compact() {
duke@435 2391 EventMark m("5 compact");
duke@435 2392 // trace("5");
duke@435 2393 TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
duke@435 2394
duke@435 2395 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 2396 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 2397 PSOldGen* old_gen = heap->old_gen();
duke@435 2398 old_gen->start_array()->reset();
duke@435 2399 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jcoomes@810 2400 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
duke@435 2401 ParallelTaskTerminator terminator(parallel_gc_threads, qset);
duke@435 2402
duke@435 2403 GCTaskQueue* q = GCTaskQueue::create();
jcoomes@810 2404 enqueue_region_draining_tasks(q, parallel_gc_threads);
duke@435 2405 enqueue_dense_prefix_tasks(q, parallel_gc_threads);
jcoomes@810 2406 enqueue_region_stealing_tasks(q, &terminator, parallel_gc_threads);
duke@435 2407
duke@435 2408 {
duke@435 2409 TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
duke@435 2410
duke@435 2411 WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
duke@435 2412 q->enqueue(fin);
duke@435 2413
duke@435 2414 gc_task_manager()->add_list(q);
duke@435 2415
duke@435 2416 fin->wait_for();
duke@435 2417
duke@435 2418 // We have to release the barrier tasks!
duke@435 2419 WaitForBarrierGCTask::destroy(fin);
duke@435 2420
duke@435 2421 #ifdef ASSERT
jcoomes@810 2422 // Verify that all regions have been processed before the deferred updates.
duke@435 2423 // Note that perm_space_id is skipped; this type of verification is not
jcoomes@810 2424 // valid until the perm gen is compacted by regions.
duke@435 2425 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2426 verify_complete(SpaceId(id));
duke@435 2427 }
duke@435 2428 #endif
duke@435 2429 }
duke@435 2430
duke@435 2431 {
duke@435 2432 // Update the deferred objects, if any. Any compaction manager can be used.
duke@435 2433 TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
duke@435 2434 ParCompactionManager* cm = ParCompactionManager::manager_array(0);
duke@435 2435 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2436 update_deferred_objects(cm, SpaceId(id));
duke@435 2437 }
duke@435 2438 }
duke@435 2439 }
duke@435 2440
duke@435 2441 #ifdef ASSERT
duke@435 2442 void PSParallelCompact::verify_complete(SpaceId space_id) {
jcoomes@810 2443 // All Regions between space bottom() to new_top() should be marked as filled
jcoomes@810 2444 // and all Regions between new_top() and top() should be available (i.e.,
duke@435 2445 // should have been emptied).
duke@435 2446 ParallelCompactData& sd = summary_data();
duke@435 2447 SpaceInfo si = _space_info[space_id];
jcoomes@810 2448 HeapWord* new_top_addr = sd.region_align_up(si.new_top());
jcoomes@810 2449 HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
jcoomes@810 2450 const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
jcoomes@810 2451 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
jcoomes@810 2452 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
duke@435 2453
duke@435 2454 bool issued_a_warning = false;
duke@435 2455
jcoomes@810 2456 size_t cur_region;
jcoomes@810 2457 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
jcoomes@810 2458 const RegionData* const c = sd.region(cur_region);
duke@435 2459 if (!c->completed()) {
jcoomes@810 2460 warning("region " SIZE_FORMAT " not filled: "
duke@435 2461 "destination_count=" SIZE_FORMAT,
jcoomes@810 2462 cur_region, c->destination_count());
duke@435 2463 issued_a_warning = true;
duke@435 2464 }
duke@435 2465 }
duke@435 2466
jcoomes@810 2467 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
jcoomes@810 2468 const RegionData* const c = sd.region(cur_region);
duke@435 2469 if (!c->available()) {
jcoomes@810 2470 warning("region " SIZE_FORMAT " not empty: "
duke@435 2471 "destination_count=" SIZE_FORMAT,
jcoomes@810 2472 cur_region, c->destination_count());
duke@435 2473 issued_a_warning = true;
duke@435 2474 }
duke@435 2475 }
duke@435 2476
duke@435 2477 if (issued_a_warning) {
jcoomes@810 2478 print_region_ranges();
duke@435 2479 }
duke@435 2480 }
duke@435 2481 #endif // #ifdef ASSERT
duke@435 2482
duke@435 2483 void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
duke@435 2484 EventMark m("5 compact serial");
duke@435 2485 TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);
duke@435 2486
duke@435 2487 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 2488 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 2489
duke@435 2490 PSYoungGen* young_gen = heap->young_gen();
duke@435 2491 PSOldGen* old_gen = heap->old_gen();
duke@435 2492
duke@435 2493 old_gen->start_array()->reset();
duke@435 2494 old_gen->move_and_update(cm);
duke@435 2495 young_gen->move_and_update(cm);
duke@435 2496 }
duke@435 2497
duke@435 2498
duke@435 2499 void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
duke@435 2500 while(!cm->overflow_stack()->is_empty()) {
duke@435 2501 oop obj = cm->overflow_stack()->pop();
duke@435 2502 obj->follow_contents(cm);
duke@435 2503 }
duke@435 2504
duke@435 2505 oop obj;
duke@435 2506 // obj is a reference!!!
duke@435 2507 while (cm->marking_stack()->pop_local(obj)) {
duke@435 2508 // It would be nice to assert about the type of objects we might
duke@435 2509 // pop, but they can come from anywhere, unfortunately.
duke@435 2510 obj->follow_contents(cm);
duke@435 2511 }
duke@435 2512 }
duke@435 2513
duke@435 2514 void
duke@435 2515 PSParallelCompact::follow_weak_klass_links(ParCompactionManager* serial_cm) {
duke@435 2516 // All klasses on the revisit stack are marked at this point.
duke@435 2517 // Update and follow all subklass, sibling and implementor links.
duke@435 2518 for (uint i = 0; i < ParallelGCThreads+1; i++) {
duke@435 2519 ParCompactionManager* cm = ParCompactionManager::manager_array(i);
duke@435 2520 KeepAliveClosure keep_alive_closure(cm);
duke@435 2521 for (int i = 0; i < cm->revisit_klass_stack()->length(); i++) {
duke@435 2522 cm->revisit_klass_stack()->at(i)->follow_weak_klass_links(
duke@435 2523 is_alive_closure(),
duke@435 2524 &keep_alive_closure);
duke@435 2525 }
duke@435 2526 follow_stack(cm);
duke@435 2527 }
duke@435 2528 }
duke@435 2529
duke@435 2530 void
duke@435 2531 PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
duke@435 2532 cm->revisit_klass_stack()->push(k);
duke@435 2533 }
duke@435 2534
duke@435 2535 #ifdef VALIDATE_MARK_SWEEP
duke@435 2536
coleenp@548 2537 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
duke@435 2538 if (!ValidateMarkSweep)
duke@435 2539 return;
duke@435 2540
duke@435 2541 if (!isroot) {
duke@435 2542 if (_pointer_tracking) {
duke@435 2543 guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
duke@435 2544 _adjusted_pointers->remove(p);
duke@435 2545 }
duke@435 2546 } else {
duke@435 2547 ptrdiff_t index = _root_refs_stack->find(p);
duke@435 2548 if (index != -1) {
duke@435 2549 int l = _root_refs_stack->length();
duke@435 2550 if (l > 0 && l - 1 != index) {
coleenp@548 2551 void* last = _root_refs_stack->pop();
duke@435 2552 assert(last != p, "should be different");
duke@435 2553 _root_refs_stack->at_put(index, last);
duke@435 2554 } else {
duke@435 2555 _root_refs_stack->remove(p);
duke@435 2556 }
duke@435 2557 }
duke@435 2558 }
duke@435 2559 }
duke@435 2560
duke@435 2561
coleenp@548 2562 void PSParallelCompact::check_adjust_pointer(void* p) {
duke@435 2563 _adjusted_pointers->push(p);
duke@435 2564 }
duke@435 2565
duke@435 2566
duke@435 2567 class AdjusterTracker: public OopClosure {
duke@435 2568 public:
duke@435 2569 AdjusterTracker() {};
coleenp@548 2570 void do_oop(oop* o) { PSParallelCompact::check_adjust_pointer(o); }
coleenp@548 2571 void do_oop(narrowOop* o) { PSParallelCompact::check_adjust_pointer(o); }
duke@435 2572 };
duke@435 2573
duke@435 2574
duke@435 2575 void PSParallelCompact::track_interior_pointers(oop obj) {
duke@435 2576 if (ValidateMarkSweep) {
duke@435 2577 _adjusted_pointers->clear();
duke@435 2578 _pointer_tracking = true;
duke@435 2579
duke@435 2580 AdjusterTracker checker;
duke@435 2581 obj->oop_iterate(&checker);
duke@435 2582 }
duke@435 2583 }
duke@435 2584
duke@435 2585
duke@435 2586 void PSParallelCompact::check_interior_pointers() {
duke@435 2587 if (ValidateMarkSweep) {
duke@435 2588 _pointer_tracking = false;
duke@435 2589 guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
duke@435 2590 }
duke@435 2591 }
duke@435 2592
duke@435 2593
duke@435 2594 void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
duke@435 2595 if (ValidateMarkSweep) {
duke@435 2596 guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
duke@435 2597 _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
duke@435 2598 }
duke@435 2599 }
duke@435 2600
duke@435 2601
duke@435 2602 void PSParallelCompact::register_live_oop(oop p, size_t size) {
duke@435 2603 if (ValidateMarkSweep) {
duke@435 2604 _live_oops->push(p);
duke@435 2605 _live_oops_size->push(size);
duke@435 2606 _live_oops_index++;
duke@435 2607 }
duke@435 2608 }
duke@435 2609
duke@435 2610 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
duke@435 2611 if (ValidateMarkSweep) {
duke@435 2612 oop obj = _live_oops->at((int)_live_oops_index);
duke@435 2613 guarantee(obj == p, "should be the same object");
duke@435 2614 guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
duke@435 2615 _live_oops_index++;
duke@435 2616 }
duke@435 2617 }
duke@435 2618
duke@435 2619 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
duke@435 2620 HeapWord* compaction_top) {
duke@435 2621 assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
duke@435 2622 "should be moved to forwarded location");
duke@435 2623 if (ValidateMarkSweep) {
duke@435 2624 PSParallelCompact::validate_live_oop(oop(q), size);
duke@435 2625 _live_oops_moved_to->push(oop(compaction_top));
duke@435 2626 }
duke@435 2627 if (RecordMarkSweepCompaction) {
duke@435 2628 _cur_gc_live_oops->push(q);
duke@435 2629 _cur_gc_live_oops_moved_to->push(compaction_top);
duke@435 2630 _cur_gc_live_oops_size->push(size);
duke@435 2631 }
duke@435 2632 }
duke@435 2633
duke@435 2634
duke@435 2635 void PSParallelCompact::compaction_complete() {
duke@435 2636 if (RecordMarkSweepCompaction) {
duke@435 2637 GrowableArray<HeapWord*>* _tmp_live_oops = _cur_gc_live_oops;
duke@435 2638 GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
duke@435 2639 GrowableArray<size_t> * _tmp_live_oops_size = _cur_gc_live_oops_size;
duke@435 2640
duke@435 2641 _cur_gc_live_oops = _last_gc_live_oops;
duke@435 2642 _cur_gc_live_oops_moved_to = _last_gc_live_oops_moved_to;
duke@435 2643 _cur_gc_live_oops_size = _last_gc_live_oops_size;
duke@435 2644 _last_gc_live_oops = _tmp_live_oops;
duke@435 2645 _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
duke@435 2646 _last_gc_live_oops_size = _tmp_live_oops_size;
duke@435 2647 }
duke@435 2648 }
duke@435 2649
duke@435 2650
duke@435 2651 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
duke@435 2652 if (!RecordMarkSweepCompaction) {
duke@435 2653 tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
duke@435 2654 return;
duke@435 2655 }
duke@435 2656
duke@435 2657 if (_last_gc_live_oops == NULL) {
duke@435 2658 tty->print_cr("No compaction information gathered yet");
duke@435 2659 return;
duke@435 2660 }
duke@435 2661
duke@435 2662 for (int i = 0; i < _last_gc_live_oops->length(); i++) {
duke@435 2663 HeapWord* old_oop = _last_gc_live_oops->at(i);
duke@435 2664 size_t sz = _last_gc_live_oops_size->at(i);
duke@435 2665 if (old_oop <= q && q < (old_oop + sz)) {
duke@435 2666 HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
duke@435 2667 size_t offset = (q - old_oop);
duke@435 2668 tty->print_cr("Address " PTR_FORMAT, q);
duke@435 2669 tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
duke@435 2670 tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
duke@435 2671 return;
duke@435 2672 }
duke@435 2673 }
duke@435 2674
duke@435 2675 tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
duke@435 2676 }
duke@435 2677 #endif //VALIDATE_MARK_SWEEP
duke@435 2678
jcoomes@810 2679 // Update interior oops in the ranges of regions [beg_region, end_region).
duke@435 2680 void
duke@435 2681 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
duke@435 2682 SpaceId space_id,
jcoomes@810 2683 size_t beg_region,
jcoomes@810 2684 size_t end_region) {
duke@435 2685 ParallelCompactData& sd = summary_data();
duke@435 2686 ParMarkBitMap* const mbm = mark_bitmap();
duke@435 2687
jcoomes@810 2688 HeapWord* beg_addr = sd.region_to_addr(beg_region);
jcoomes@810 2689 HeapWord* const end_addr = sd.region_to_addr(end_region);
jcoomes@810 2690 assert(beg_region <= end_region, "bad region range");
duke@435 2691 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
duke@435 2692
duke@435 2693 #ifdef ASSERT
jcoomes@810 2694 // Claim the regions to avoid triggering an assert when they are marked as
duke@435 2695 // filled.
jcoomes@810 2696 for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
jcoomes@810 2697 assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
duke@435 2698 }
duke@435 2699 #endif // #ifdef ASSERT
duke@435 2700
duke@435 2701 if (beg_addr != space(space_id)->bottom()) {
duke@435 2702 // Find the first live object or block of dead space that *starts* in this
jcoomes@810 2703 // range of regions. If a partial object crosses onto the region, skip it;
jcoomes@810 2704 // it will be marked for 'deferred update' when the object head is
jcoomes@810 2705 // processed. If dead space crosses onto the region, it is also skipped; it
jcoomes@810 2706 // will be filled when the prior region is processed. If neither of those
jcoomes@810 2707 // apply, the first word in the region is the start of a live object or dead
jcoomes@810 2708 // space.
duke@435 2709 assert(beg_addr > space(space_id)->bottom(), "sanity");
jcoomes@810 2710 const RegionData* const cp = sd.region(beg_region);
duke@435 2711 if (cp->partial_obj_size() != 0) {
jcoomes@810 2712 beg_addr = sd.partial_obj_end(beg_region);
duke@435 2713 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
duke@435 2714 beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
duke@435 2715 }
duke@435 2716 }
duke@435 2717
duke@435 2718 if (beg_addr < end_addr) {
jcoomes@810 2719 // A live object or block of dead space starts in this range of Regions.
duke@435 2720 HeapWord* const dense_prefix_end = dense_prefix(space_id);
duke@435 2721
duke@435 2722 // Create closures and iterate.
duke@435 2723 UpdateOnlyClosure update_closure(mbm, cm, space_id);
duke@435 2724 FillClosure fill_closure(cm, space_id);
duke@435 2725 ParMarkBitMap::IterationStatus status;
duke@435 2726 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
duke@435 2727 dense_prefix_end);
duke@435 2728 if (status == ParMarkBitMap::incomplete) {
duke@435 2729 update_closure.do_addr(update_closure.source());
duke@435 2730 }
duke@435 2731 }
duke@435 2732
jcoomes@810 2733 // Mark the regions as filled.
jcoomes@810 2734 RegionData* const beg_cp = sd.region(beg_region);
jcoomes@810 2735 RegionData* const end_cp = sd.region(end_region);
jcoomes@810 2736 for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
duke@435 2737 cp->set_completed();
duke@435 2738 }
duke@435 2739 }
duke@435 2740
duke@435 2741 // Return the SpaceId for the space containing addr. If addr is not in the
duke@435 2742 // heap, last_space_id is returned. In debug mode it expects the address to be
duke@435 2743 // in the heap and asserts such.
duke@435 2744 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
duke@435 2745 assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
duke@435 2746
duke@435 2747 for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
duke@435 2748 if (_space_info[id].space()->contains(addr)) {
duke@435 2749 return SpaceId(id);
duke@435 2750 }
duke@435 2751 }
duke@435 2752
duke@435 2753 assert(false, "no space contains the addr");
duke@435 2754 return last_space_id;
duke@435 2755 }
duke@435 2756
duke@435 2757 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
duke@435 2758 SpaceId id) {
duke@435 2759 assert(id < last_space_id, "bad space id");
duke@435 2760
duke@435 2761 ParallelCompactData& sd = summary_data();
duke@435 2762 const SpaceInfo* const space_info = _space_info + id;
duke@435 2763 ObjectStartArray* const start_array = space_info->start_array();
duke@435 2764
duke@435 2765 const MutableSpace* const space = space_info->space();
duke@435 2766 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
duke@435 2767 HeapWord* const beg_addr = space_info->dense_prefix();
jcoomes@810 2768 HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
jcoomes@810 2769
jcoomes@810 2770 const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
jcoomes@810 2771 const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
jcoomes@810 2772 const RegionData* cur_region;
jcoomes@810 2773 for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
jcoomes@810 2774 HeapWord* const addr = cur_region->deferred_obj_addr();
duke@435 2775 if (addr != NULL) {
duke@435 2776 if (start_array != NULL) {
duke@435 2777 start_array->allocate_block(addr);
duke@435 2778 }
duke@435 2779 oop(addr)->update_contents(cm);
duke@435 2780 assert(oop(addr)->is_oop_or_null(), "should be an oop now");
duke@435 2781 }
duke@435 2782 }
duke@435 2783 }
duke@435 2784
duke@435 2785 // Skip over count live words starting from beg, and return the address of the
duke@435 2786 // next live word. Unless marked, the word corresponding to beg is assumed to
duke@435 2787 // be dead. Callers must either ensure beg does not correspond to the middle of
duke@435 2788 // an object, or account for those live words in some other way. Callers must
duke@435 2789 // also ensure that there are enough live words in the range [beg, end) to skip.
duke@435 2790 HeapWord*
duke@435 2791 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
duke@435 2792 {
duke@435 2793 assert(count > 0, "sanity");
duke@435 2794
duke@435 2795 ParMarkBitMap* m = mark_bitmap();
duke@435 2796 idx_t bits_to_skip = m->words_to_bits(count);
duke@435 2797 idx_t cur_beg = m->addr_to_bit(beg);
duke@435 2798 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
duke@435 2799
duke@435 2800 do {
duke@435 2801 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 2802 idx_t cur_end = m->find_obj_end(cur_beg, search_end);
duke@435 2803 const size_t obj_bits = cur_end - cur_beg + 1;
duke@435 2804 if (obj_bits > bits_to_skip) {
duke@435 2805 return m->bit_to_addr(cur_beg + bits_to_skip);
duke@435 2806 }
duke@435 2807 bits_to_skip -= obj_bits;
duke@435 2808 cur_beg = cur_end + 1;
duke@435 2809 } while (bits_to_skip > 0);
duke@435 2810
duke@435 2811 // Skipping the desired number of words landed just past the end of an object.
duke@435 2812 // Find the start of the next object.
duke@435 2813 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 2814 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
duke@435 2815 return m->bit_to_addr(cur_beg);
duke@435 2816 }
duke@435 2817
jcoomes@917 2818 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
jcoomes@917 2819 SpaceId src_space_id,
jcoomes@917 2820 size_t src_region_idx)
duke@435 2821 {
jcoomes@917 2822 assert(summary_data().is_region_aligned(dest_addr), "not aligned");
jcoomes@917 2823
jcoomes@917 2824 const SplitInfo& split_info = _space_info[src_space_id].split_info();
jcoomes@917 2825 if (split_info.dest_region_addr() == dest_addr) {
jcoomes@917 2826 // The partial object ending at the split point contains the first word to
jcoomes@917 2827 // be copied to dest_addr.
jcoomes@917 2828 return split_info.first_src_addr();
jcoomes@917 2829 }
jcoomes@917 2830
jcoomes@917 2831 const ParallelCompactData& sd = summary_data();
duke@435 2832 ParMarkBitMap* const bitmap = mark_bitmap();
jcoomes@810 2833 const size_t RegionSize = ParallelCompactData::RegionSize;
jcoomes@810 2834
jcoomes@810 2835 assert(sd.is_region_aligned(dest_addr), "not aligned");
jcoomes@810 2836 const RegionData* const src_region_ptr = sd.region(src_region_idx);
jcoomes@810 2837 const size_t partial_obj_size = src_region_ptr->partial_obj_size();
jcoomes@810 2838 HeapWord* const src_region_destination = src_region_ptr->destination();
jcoomes@810 2839
jcoomes@810 2840 assert(dest_addr >= src_region_destination, "wrong src region");
jcoomes@810 2841 assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
jcoomes@810 2842
jcoomes@810 2843 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
jcoomes@810 2844 HeapWord* const src_region_end = src_region_beg + RegionSize;
jcoomes@810 2845
jcoomes@810 2846 HeapWord* addr = src_region_beg;
jcoomes@810 2847 if (dest_addr == src_region_destination) {
jcoomes@810 2848 // Return the first live word in the source region.
duke@435 2849 if (partial_obj_size == 0) {
jcoomes@810 2850 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 2851 assert(addr < src_region_end, "no objects start in src region");
duke@435 2852 }
duke@435 2853 return addr;
duke@435 2854 }
duke@435 2855
duke@435 2856 // Must skip some live data.
jcoomes@810 2857 size_t words_to_skip = dest_addr - src_region_destination;
jcoomes@810 2858 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
duke@435 2859
duke@435 2860 if (partial_obj_size >= words_to_skip) {
duke@435 2861 // All the live words to skip are part of the partial object.
duke@435 2862 addr += words_to_skip;
duke@435 2863 if (partial_obj_size == words_to_skip) {
duke@435 2864 // Find the first live word past the partial object.
jcoomes@810 2865 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 2866 assert(addr < src_region_end, "wrong src region");
duke@435 2867 }
duke@435 2868 return addr;
duke@435 2869 }
duke@435 2870
duke@435 2871 // Skip over the partial object (if any).
duke@435 2872 if (partial_obj_size != 0) {
duke@435 2873 words_to_skip -= partial_obj_size;
duke@435 2874 addr += partial_obj_size;
duke@435 2875 }
duke@435 2876
jcoomes@810 2877 // Skip over live words due to objects that start in the region.
jcoomes@810 2878 addr = skip_live_words(addr, src_region_end, words_to_skip);
jcoomes@810 2879 assert(addr < src_region_end, "wrong src region");
duke@435 2880 return addr;
duke@435 2881 }
duke@435 2882
duke@435 2883 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
jcoomes@810 2884 size_t beg_region,
duke@435 2885 HeapWord* end_addr)
duke@435 2886 {
duke@435 2887 ParallelCompactData& sd = summary_data();
jcoomes@810 2888 RegionData* const beg = sd.region(beg_region);
jcoomes@810 2889 HeapWord* const end_addr_aligned_up = sd.region_align_up(end_addr);
jcoomes@810 2890 RegionData* const end = sd.addr_to_region_ptr(end_addr_aligned_up);
jcoomes@810 2891 size_t cur_idx = beg_region;
jcoomes@810 2892 for (RegionData* cur = beg; cur < end; ++cur, ++cur_idx) {
jcoomes@810 2893 assert(cur->data_size() > 0, "region must have live data");
duke@435 2894 cur->decrement_destination_count();
jcoomes@810 2895 if (cur_idx <= cur->source_region() && cur->available() && cur->claim()) {
duke@435 2896 cm->save_for_processing(cur_idx);
duke@435 2897 }
duke@435 2898 }
duke@435 2899 }
duke@435 2900
jcoomes@810 2901 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
jcoomes@810 2902 SpaceId& src_space_id,
jcoomes@810 2903 HeapWord*& src_space_top,
jcoomes@810 2904 HeapWord* end_addr)
duke@435 2905 {
jcoomes@810 2906 typedef ParallelCompactData::RegionData RegionData;
duke@435 2907
duke@435 2908 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 2909 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 2910
jcoomes@810 2911 size_t src_region_idx = 0;
jcoomes@810 2912
jcoomes@810 2913 // Skip empty regions (if any) up to the top of the space.
jcoomes@810 2914 HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
jcoomes@810 2915 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
jcoomes@810 2916 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
jcoomes@810 2917 const RegionData* const top_region_ptr =
jcoomes@810 2918 sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 2919 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
jcoomes@810 2920 ++src_region_ptr;
duke@435 2921 }
duke@435 2922
jcoomes@810 2923 if (src_region_ptr < top_region_ptr) {
jcoomes@810 2924 // The next source region is in the current space. Update src_region_idx
jcoomes@810 2925 // and the source address to match src_region_ptr.
jcoomes@810 2926 src_region_idx = sd.region(src_region_ptr);
jcoomes@810 2927 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
jcoomes@810 2928 if (src_region_addr > closure.source()) {
jcoomes@810 2929 closure.set_source(src_region_addr);
duke@435 2930 }
jcoomes@810 2931 return src_region_idx;
duke@435 2932 }
duke@435 2933
jcoomes@810 2934 // Switch to a new source space and find the first non-empty region.
duke@435 2935 unsigned int space_id = src_space_id + 1;
duke@435 2936 assert(space_id < last_space_id, "not enough spaces");
duke@435 2937
duke@435 2938 HeapWord* const destination = closure.destination();
duke@435 2939
duke@435 2940 do {
duke@435 2941 MutableSpace* space = _space_info[space_id].space();
duke@435 2942 HeapWord* const bottom = space->bottom();
jcoomes@810 2943 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
duke@435 2944
duke@435 2945 // Iterate over the spaces that do not compact into themselves.
duke@435 2946 if (bottom_cp->destination() != bottom) {
jcoomes@810 2947 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 2948 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 2949
jcoomes@810 2950 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
duke@435 2951 if (src_cp->live_obj_size() > 0) {
duke@435 2952 // Found it.
duke@435 2953 assert(src_cp->destination() == destination,
duke@435 2954 "first live obj in the space must match the destination");
duke@435 2955 assert(src_cp->partial_obj_size() == 0,
duke@435 2956 "a space cannot begin with a partial obj");
duke@435 2957
duke@435 2958 src_space_id = SpaceId(space_id);
duke@435 2959 src_space_top = space->top();
jcoomes@810 2960 const size_t src_region_idx = sd.region(src_cp);
jcoomes@810 2961 closure.set_source(sd.region_to_addr(src_region_idx));
jcoomes@810 2962 return src_region_idx;
duke@435 2963 } else {
duke@435 2964 assert(src_cp->data_size() == 0, "sanity");
duke@435 2965 }
duke@435 2966 }
duke@435 2967 }
duke@435 2968 } while (++space_id < last_space_id);
duke@435 2969
jcoomes@810 2970 assert(false, "no source region was found");
duke@435 2971 return 0;
duke@435 2972 }
duke@435 2973
jcoomes@810 2974 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
duke@435 2975 {
duke@435 2976 typedef ParMarkBitMap::IterationStatus IterationStatus;
jcoomes@810 2977 const size_t RegionSize = ParallelCompactData::RegionSize;
duke@435 2978 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 2979 ParallelCompactData& sd = summary_data();
jcoomes@810 2980 RegionData* const region_ptr = sd.region(region_idx);
duke@435 2981
duke@435 2982 // Get the items needed to construct the closure.
jcoomes@810 2983 HeapWord* dest_addr = sd.region_to_addr(region_idx);
duke@435 2984 SpaceId dest_space_id = space_id(dest_addr);
duke@435 2985 ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
duke@435 2986 HeapWord* new_top = _space_info[dest_space_id].new_top();
duke@435 2987 assert(dest_addr < new_top, "sanity");
jcoomes@810 2988 const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
jcoomes@810 2989
jcoomes@810 2990 // Get the source region and related info.
jcoomes@810 2991 size_t src_region_idx = region_ptr->source_region();
jcoomes@810 2992 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
duke@435 2993 HeapWord* src_space_top = _space_info[src_space_id].space()->top();
duke@435 2994
duke@435 2995 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
jcoomes@917 2996 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
jcoomes@810 2997
jcoomes@810 2998 // Adjust src_region_idx to prepare for decrementing destination counts (the
jcoomes@810 2999 // destination count is not decremented when a region is copied to itself).
jcoomes@810 3000 if (src_region_idx == region_idx) {
jcoomes@810 3001 src_region_idx += 1;
duke@435 3002 }
duke@435 3003
duke@435 3004 if (bitmap->is_unmarked(closure.source())) {
duke@435 3005 // The first source word is in the middle of an object; copy the remainder
duke@435 3006 // of the object or as much as will fit. The fact that pointer updates were
duke@435 3007 // deferred will be noted when the object header is processed.
duke@435 3008 HeapWord* const old_src_addr = closure.source();
duke@435 3009 closure.copy_partial_obj();
duke@435 3010 if (closure.is_full()) {
jcoomes@810 3011 decrement_destination_counts(cm, src_region_idx, closure.source());
jcoomes@810 3012 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3013 region_ptr->set_completed();
duke@435 3014 return;
duke@435 3015 }
duke@435 3016
jcoomes@810 3017 HeapWord* const end_addr = sd.region_align_down(closure.source());
jcoomes@810 3018 if (sd.region_align_down(old_src_addr) != end_addr) {
jcoomes@810 3019 // The partial object was copied from more than one source region.
jcoomes@810 3020 decrement_destination_counts(cm, src_region_idx, end_addr);
jcoomes@810 3021
jcoomes@810 3022 // Move to the next source region, possibly switching spaces as well. All
duke@435 3023 // args except end_addr may be modified.
jcoomes@810 3024 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3025 end_addr);
duke@435 3026 }
duke@435 3027 }
duke@435 3028
duke@435 3029 do {
duke@435 3030 HeapWord* const cur_addr = closure.source();
jcoomes@810 3031 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
duke@435 3032 src_space_top);
duke@435 3033 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
duke@435 3034
duke@435 3035 if (status == ParMarkBitMap::incomplete) {
jcoomes@810 3036 // The last obj that starts in the source region does not end in the
jcoomes@810 3037 // region.
duke@435 3038 assert(closure.source() < end_addr, "sanity")
duke@435 3039 HeapWord* const obj_beg = closure.source();
duke@435 3040 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
duke@435 3041 src_space_top);
duke@435 3042 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
duke@435 3043 if (obj_end < range_end) {
duke@435 3044 // The end was found; the entire object will fit.
duke@435 3045 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
duke@435 3046 assert(status != ParMarkBitMap::would_overflow, "sanity");
duke@435 3047 } else {
duke@435 3048 // The end was not found; the object will not fit.
duke@435 3049 assert(range_end < src_space_top, "obj cannot cross space boundary");
duke@435 3050 status = ParMarkBitMap::would_overflow;
duke@435 3051 }
duke@435 3052 }
duke@435 3053
duke@435 3054 if (status == ParMarkBitMap::would_overflow) {
duke@435 3055 // The last object did not fit. Note that interior oop updates were
jcoomes@810 3056 // deferred, then copy enough of the object to fill the region.
jcoomes@810 3057 region_ptr->set_deferred_obj_addr(closure.destination());
duke@435 3058 status = closure.copy_until_full(); // copies from closure.source()
duke@435 3059
jcoomes@810 3060 decrement_destination_counts(cm, src_region_idx, closure.source());
jcoomes@810 3061 region_ptr->set_completed();
duke@435 3062 return;
duke@435 3063 }
duke@435 3064
duke@435 3065 if (status == ParMarkBitMap::full) {
jcoomes@810 3066 decrement_destination_counts(cm, src_region_idx, closure.source());
jcoomes@810 3067 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3068 region_ptr->set_completed();
duke@435 3069 return;
duke@435 3070 }
duke@435 3071
jcoomes@810 3072 decrement_destination_counts(cm, src_region_idx, end_addr);
jcoomes@810 3073
jcoomes@810 3074 // Move to the next source region, possibly switching spaces as well. All
duke@435 3075 // args except end_addr may be modified.
jcoomes@810 3076 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3077 end_addr);
duke@435 3078 } while (true);
duke@435 3079 }
duke@435 3080
duke@435 3081 void
duke@435 3082 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
duke@435 3083 const MutableSpace* sp = space(space_id);
duke@435 3084 if (sp->is_empty()) {
duke@435 3085 return;
duke@435 3086 }
duke@435 3087
duke@435 3088 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 3089 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3090 HeapWord* const dp_addr = dense_prefix(space_id);
duke@435 3091 HeapWord* beg_addr = sp->bottom();
duke@435 3092 HeapWord* end_addr = sp->top();
duke@435 3093
duke@435 3094 #ifdef ASSERT
duke@435 3095 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
duke@435 3096 if (cm->should_verify_only()) {
duke@435 3097 VerifyUpdateClosure verify_update(cm, sp);
duke@435 3098 bitmap->iterate(&verify_update, beg_addr, end_addr);
duke@435 3099 return;
duke@435 3100 }
duke@435 3101
duke@435 3102 if (cm->should_reset_only()) {
duke@435 3103 ResetObjectsClosure reset_objects(cm);
duke@435 3104 bitmap->iterate(&reset_objects, beg_addr, end_addr);
duke@435 3105 return;
duke@435 3106 }
duke@435 3107 #endif
duke@435 3108
jcoomes@810 3109 const size_t beg_region = sd.addr_to_region_idx(beg_addr);
jcoomes@810 3110 const size_t dp_region = sd.addr_to_region_idx(dp_addr);
jcoomes@810 3111 if (beg_region < dp_region) {
jcoomes@810 3112 update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
duke@435 3113 }
duke@435 3114
jcoomes@810 3115 // The destination of the first live object that starts in the region is one
jcoomes@810 3116 // past the end of the partial object entering the region (if any).
jcoomes@810 3117 HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
duke@435 3118 HeapWord* const new_top = _space_info[space_id].new_top();
duke@435 3119 assert(new_top >= dest_addr, "bad new_top value");
duke@435 3120 const size_t words = pointer_delta(new_top, dest_addr);
duke@435 3121
duke@435 3122 if (words > 0) {
duke@435 3123 ObjectStartArray* start_array = _space_info[space_id].start_array();
duke@435 3124 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
duke@435 3125
duke@435 3126 ParMarkBitMap::IterationStatus status;
duke@435 3127 status = bitmap->iterate(&closure, dest_addr, end_addr);
duke@435 3128 assert(status == ParMarkBitMap::full, "iteration not complete");
duke@435 3129 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
duke@435 3130 "live objects skipped because closure is full");
duke@435 3131 }
duke@435 3132 }
duke@435 3133
duke@435 3134 jlong PSParallelCompact::millis_since_last_gc() {
duke@435 3135 jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
duke@435 3136 // XXX See note in genCollectedHeap::millis_since_last_gc().
duke@435 3137 if (ret_val < 0) {
duke@435 3138 NOT_PRODUCT(warning("time warp: %d", ret_val);)
duke@435 3139 return 0;
duke@435 3140 }
duke@435 3141 return ret_val;
duke@435 3142 }
duke@435 3143
duke@435 3144 void PSParallelCompact::reset_millis_since_last_gc() {
duke@435 3145 _time_of_last_gc = os::javaTimeMillis();
duke@435 3146 }
duke@435 3147
duke@435 3148 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
duke@435 3149 {
duke@435 3150 if (source() != destination()) {
duke@435 3151 assert(source() > destination(), "must copy to the left");
duke@435 3152 Copy::aligned_conjoint_words(source(), destination(), words_remaining());
duke@435 3153 }
duke@435 3154 update_state(words_remaining());
duke@435 3155 assert(is_full(), "sanity");
duke@435 3156 return ParMarkBitMap::full;
duke@435 3157 }
duke@435 3158
duke@435 3159 void MoveAndUpdateClosure::copy_partial_obj()
duke@435 3160 {
duke@435 3161 size_t words = words_remaining();
duke@435 3162
duke@435 3163 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
duke@435 3164 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
duke@435 3165 if (end_addr < range_end) {
duke@435 3166 words = bitmap()->obj_size(source(), end_addr);
duke@435 3167 }
duke@435 3168
duke@435 3169 // This test is necessary; if omitted, the pointer updates to a partial object
duke@435 3170 // that crosses the dense prefix boundary could be overwritten.
duke@435 3171 if (source() != destination()) {
duke@435 3172 assert(source() > destination(), "must copy to the left");
duke@435 3173 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3174 }
duke@435 3175 update_state(words);
duke@435 3176 }
duke@435 3177
duke@435 3178 ParMarkBitMapClosure::IterationStatus
duke@435 3179 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3180 assert(destination() != NULL, "sanity");
duke@435 3181 assert(bitmap()->obj_size(addr) == words, "bad size");
duke@435 3182
duke@435 3183 _source = addr;
duke@435 3184 assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
duke@435 3185 destination(), "wrong destination");
duke@435 3186
duke@435 3187 if (words > words_remaining()) {
duke@435 3188 return ParMarkBitMap::would_overflow;
duke@435 3189 }
duke@435 3190
duke@435 3191 // The start_array must be updated even if the object is not moving.
duke@435 3192 if (_start_array != NULL) {
duke@435 3193 _start_array->allocate_block(destination());
duke@435 3194 }
duke@435 3195
duke@435 3196 if (destination() != source()) {
duke@435 3197 assert(destination() < source(), "must copy to the left");
duke@435 3198 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3199 }
duke@435 3200
duke@435 3201 oop moved_oop = (oop) destination();
duke@435 3202 moved_oop->update_contents(compaction_manager());
duke@435 3203 assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
duke@435 3204
duke@435 3205 update_state(words);
duke@435 3206 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
duke@435 3207 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
duke@435 3208 }
duke@435 3209
duke@435 3210 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
duke@435 3211 ParCompactionManager* cm,
duke@435 3212 PSParallelCompact::SpaceId space_id) :
duke@435 3213 ParMarkBitMapClosure(mbm, cm),
duke@435 3214 _space_id(space_id),
duke@435 3215 _start_array(PSParallelCompact::start_array(space_id))
duke@435 3216 {
duke@435 3217 }
duke@435 3218
duke@435 3219 // Updates the references in the object to their new values.
duke@435 3220 ParMarkBitMapClosure::IterationStatus
duke@435 3221 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3222 do_addr(addr);
duke@435 3223 return ParMarkBitMap::incomplete;
duke@435 3224 }
duke@435 3225
duke@435 3226 // Verify the new location using the forwarding pointer
duke@435 3227 // from MarkSweep::mark_sweep_phase2(). Set the mark_word
duke@435 3228 // to the initial value.
duke@435 3229 ParMarkBitMapClosure::IterationStatus
duke@435 3230 PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3231 // The second arg (words) is not used.
duke@435 3232 oop obj = (oop) addr;
duke@435 3233 HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
duke@435 3234 HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
duke@435 3235 if (forwarding_ptr == NULL) {
duke@435 3236 // The object is dead or not moving.
duke@435 3237 assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
duke@435 3238 "Object liveness is wrong.");
duke@435 3239 return ParMarkBitMap::incomplete;
duke@435 3240 }
duke@435 3241 assert(UseParallelOldGCDensePrefix ||
duke@435 3242 (HeapMaximumCompactionInterval > 1) ||
duke@435 3243 (MarkSweepAlwaysCompactCount > 1) ||
duke@435 3244 (forwarding_ptr == new_pointer),
duke@435 3245 "Calculation of new location is incorrect");
duke@435 3246 return ParMarkBitMap::incomplete;
duke@435 3247 }
duke@435 3248
duke@435 3249 // Reset objects modified for debug checking.
duke@435 3250 ParMarkBitMapClosure::IterationStatus
duke@435 3251 PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3252 // The second arg (words) is not used.
duke@435 3253 oop obj = (oop) addr;
duke@435 3254 obj->init_mark();
duke@435 3255 return ParMarkBitMap::incomplete;
duke@435 3256 }
duke@435 3257
duke@435 3258 // Prepare for compaction. This method is executed once
duke@435 3259 // (i.e., by a single thread) before compaction.
duke@435 3260 // Save the updated location of the intArrayKlassObj for
duke@435 3261 // filling holes in the dense prefix.
duke@435 3262 void PSParallelCompact::compact_prologue() {
duke@435 3263 _updated_int_array_klass_obj = (klassOop)
duke@435 3264 summary_data().calc_new_pointer(Universe::intArrayKlassObj());
duke@435 3265 }
duke@435 3266

mercurial