src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Tue, 25 Sep 2012 14:58:12 +0200

author
brutisso
date
Tue, 25 Sep 2012 14:58:12 +0200
changeset 4098
8966c2d65d96
parent 4068
e861d44e0c9c
child 4176
4202510ee0fe
permissions
-rw-r--r--

7200470: KeepAliveClosure not needed in CodeCache::do_unloading
Summary: Removed the unused keep_alive parameter
Reviewed-by: stefank, dholmes, kamg, coleenp

duke@435 1 /*
never@3499 2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/symbolTable.hpp"
stefank@2314 27 #include "classfile/systemDictionary.hpp"
stefank@2314 28 #include "code/codeCache.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
stefank@2314 30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
stefank@2314 31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
stefank@2314 32 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
stefank@2314 33 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
stefank@2314 34 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
stefank@2314 35 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
stefank@2314 36 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
stefank@2314 37 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
stefank@2314 38 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
stefank@2314 39 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
stefank@2314 40 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
stefank@2314 41 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
stefank@2314 42 #include "gc_implementation/shared/isGCActiveMark.hpp"
stefank@2314 43 #include "gc_interface/gcCause.hpp"
stefank@2314 44 #include "memory/gcLocker.inline.hpp"
stefank@2314 45 #include "memory/referencePolicy.hpp"
stefank@2314 46 #include "memory/referenceProcessor.hpp"
coleenp@4037 47 #include "oops/methodData.hpp"
stefank@2314 48 #include "oops/oop.inline.hpp"
stefank@2314 49 #include "oops/oop.pcgc.inline.hpp"
stefank@2314 50 #include "runtime/fprofiler.hpp"
stefank@2314 51 #include "runtime/safepoint.hpp"
stefank@2314 52 #include "runtime/vmThread.hpp"
stefank@2314 53 #include "services/management.hpp"
stefank@2314 54 #include "services/memoryService.hpp"
zgu@3900 55 #include "services/memTracker.hpp"
stefank@2314 56 #include "utilities/events.hpp"
stefank@2314 57 #include "utilities/stack.inline.hpp"
duke@435 58
duke@435 59 #include <math.h>
duke@435 60
duke@435 61 // All sizes are in HeapWords.
jcoomes@810 62 const size_t ParallelCompactData::Log2RegionSize = 9; // 512 words
jcoomes@810 63 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize;
jcoomes@810 64 const size_t ParallelCompactData::RegionSizeBytes =
jcoomes@810 65 RegionSize << LogHeapWordSize;
jcoomes@810 66 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
jcoomes@810 67 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
jcoomes@810 68 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask;
duke@435 69
jcoomes@810 70 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 71 ParallelCompactData::RegionData::dc_shift = 27;
jcoomes@810 72
jcoomes@810 73 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 74 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
jcoomes@810 75
jcoomes@810 76 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 77 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
jcoomes@810 78
jcoomes@810 79 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 80 ParallelCompactData::RegionData::los_mask = ~dc_mask;
jcoomes@810 81
jcoomes@810 82 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 83 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
jcoomes@810 84
jcoomes@810 85 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 86 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
duke@435 87
duke@435 88 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
duke@435 89 bool PSParallelCompact::_print_phases = false;
duke@435 90
duke@435 91 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
coleenp@4037 92 Klass* PSParallelCompact::_updated_int_array_klass_obj = NULL;
duke@435 93
duke@435 94 double PSParallelCompact::_dwl_mean;
duke@435 95 double PSParallelCompact::_dwl_std_dev;
duke@435 96 double PSParallelCompact::_dwl_first_term;
duke@435 97 double PSParallelCompact::_dwl_adjustment;
duke@435 98 #ifdef ASSERT
duke@435 99 bool PSParallelCompact::_dwl_initialized = false;
duke@435 100 #endif // #ifdef ASSERT
duke@435 101
duke@435 102 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 103 GrowableArray<void*>* PSParallelCompact::_root_refs_stack = NULL;
duke@435 104 GrowableArray<oop> * PSParallelCompact::_live_oops = NULL;
duke@435 105 GrowableArray<oop> * PSParallelCompact::_live_oops_moved_to = NULL;
duke@435 106 GrowableArray<size_t>* PSParallelCompact::_live_oops_size = NULL;
duke@435 107 size_t PSParallelCompact::_live_oops_index = 0;
coleenp@548 108 GrowableArray<void*>* PSParallelCompact::_other_refs_stack = NULL;
coleenp@548 109 GrowableArray<void*>* PSParallelCompact::_adjusted_pointers = NULL;
duke@435 110 bool PSParallelCompact::_pointer_tracking = false;
duke@435 111 bool PSParallelCompact::_root_tracking = true;
duke@435 112
duke@435 113 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
duke@435 114 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
duke@435 115 GrowableArray<size_t> * PSParallelCompact::_cur_gc_live_oops_size = NULL;
duke@435 116 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
duke@435 117 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
duke@435 118 GrowableArray<size_t> * PSParallelCompact::_last_gc_live_oops_size = NULL;
duke@435 119 #endif
duke@435 120
jcoomes@917 121 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
jcoomes@917 122 HeapWord* destination)
jcoomes@917 123 {
jcoomes@917 124 assert(src_region_idx != 0, "invalid src_region_idx");
jcoomes@917 125 assert(partial_obj_size != 0, "invalid partial_obj_size argument");
jcoomes@917 126 assert(destination != NULL, "invalid destination argument");
jcoomes@917 127
jcoomes@917 128 _src_region_idx = src_region_idx;
jcoomes@917 129 _partial_obj_size = partial_obj_size;
jcoomes@917 130 _destination = destination;
jcoomes@917 131
jcoomes@917 132 // These fields may not be updated below, so make sure they're clear.
jcoomes@917 133 assert(_dest_region_addr == NULL, "should have been cleared");
jcoomes@917 134 assert(_first_src_addr == NULL, "should have been cleared");
jcoomes@917 135
jcoomes@917 136 // Determine the number of destination regions for the partial object.
jcoomes@917 137 HeapWord* const last_word = destination + partial_obj_size - 1;
jcoomes@917 138 const ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@917 139 HeapWord* const beg_region_addr = sd.region_align_down(destination);
jcoomes@917 140 HeapWord* const end_region_addr = sd.region_align_down(last_word);
jcoomes@917 141
jcoomes@917 142 if (beg_region_addr == end_region_addr) {
jcoomes@917 143 // One destination region.
jcoomes@917 144 _destination_count = 1;
jcoomes@917 145 if (end_region_addr == destination) {
jcoomes@917 146 // The destination falls on a region boundary, thus the first word of the
jcoomes@917 147 // partial object will be the first word copied to the destination region.
jcoomes@917 148 _dest_region_addr = end_region_addr;
jcoomes@917 149 _first_src_addr = sd.region_to_addr(src_region_idx);
jcoomes@917 150 }
jcoomes@917 151 } else {
jcoomes@917 152 // Two destination regions. When copied, the partial object will cross a
jcoomes@917 153 // destination region boundary, so a word somewhere within the partial
jcoomes@917 154 // object will be the first word copied to the second destination region.
jcoomes@917 155 _destination_count = 2;
jcoomes@917 156 _dest_region_addr = end_region_addr;
jcoomes@917 157 const size_t ofs = pointer_delta(end_region_addr, destination);
jcoomes@917 158 assert(ofs < _partial_obj_size, "sanity");
jcoomes@917 159 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
jcoomes@917 160 }
jcoomes@917 161 }
jcoomes@917 162
jcoomes@917 163 void SplitInfo::clear()
jcoomes@917 164 {
jcoomes@917 165 _src_region_idx = 0;
jcoomes@917 166 _partial_obj_size = 0;
jcoomes@917 167 _destination = NULL;
jcoomes@917 168 _destination_count = 0;
jcoomes@917 169 _dest_region_addr = NULL;
jcoomes@917 170 _first_src_addr = NULL;
jcoomes@917 171 assert(!is_valid(), "sanity");
jcoomes@917 172 }
jcoomes@917 173
jcoomes@917 174 #ifdef ASSERT
jcoomes@917 175 void SplitInfo::verify_clear()
jcoomes@917 176 {
jcoomes@917 177 assert(_src_region_idx == 0, "not clear");
jcoomes@917 178 assert(_partial_obj_size == 0, "not clear");
jcoomes@917 179 assert(_destination == NULL, "not clear");
jcoomes@917 180 assert(_destination_count == 0, "not clear");
jcoomes@917 181 assert(_dest_region_addr == NULL, "not clear");
jcoomes@917 182 assert(_first_src_addr == NULL, "not clear");
jcoomes@917 183 }
jcoomes@917 184 #endif // #ifdef ASSERT
jcoomes@917 185
jcoomes@917 186
duke@435 187 #ifndef PRODUCT
duke@435 188 const char* PSParallelCompact::space_names[] = {
coleenp@4037 189 "old ", "eden", "from", "to "
duke@435 190 };
duke@435 191
jcoomes@810 192 void PSParallelCompact::print_region_ranges()
duke@435 193 {
duke@435 194 tty->print_cr("space bottom top end new_top");
duke@435 195 tty->print_cr("------ ---------- ---------- ---------- ----------");
duke@435 196
duke@435 197 for (unsigned int id = 0; id < last_space_id; ++id) {
duke@435 198 const MutableSpace* space = _space_info[id].space();
duke@435 199 tty->print_cr("%u %s "
jcoomes@699 200 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
jcoomes@699 201 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
duke@435 202 id, space_names[id],
jcoomes@810 203 summary_data().addr_to_region_idx(space->bottom()),
jcoomes@810 204 summary_data().addr_to_region_idx(space->top()),
jcoomes@810 205 summary_data().addr_to_region_idx(space->end()),
jcoomes@810 206 summary_data().addr_to_region_idx(_space_info[id].new_top()));
duke@435 207 }
duke@435 208 }
duke@435 209
duke@435 210 void
jcoomes@810 211 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
duke@435 212 {
jcoomes@810 213 #define REGION_IDX_FORMAT SIZE_FORMAT_W(7)
jcoomes@810 214 #define REGION_DATA_FORMAT SIZE_FORMAT_W(5)
duke@435 215
duke@435 216 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 217 size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
jcoomes@810 218 tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 219 REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 220 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
jcoomes@810 221 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
duke@435 222 i, c->data_location(), dci, c->destination(),
duke@435 223 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 224 c->data_size(), c->source_region(), c->destination_count());
jcoomes@810 225
jcoomes@810 226 #undef REGION_IDX_FORMAT
jcoomes@810 227 #undef REGION_DATA_FORMAT
duke@435 228 }
duke@435 229
duke@435 230 void
duke@435 231 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 232 HeapWord* const beg_addr,
duke@435 233 HeapWord* const end_addr)
duke@435 234 {
duke@435 235 size_t total_words = 0;
jcoomes@810 236 size_t i = summary_data.addr_to_region_idx(beg_addr);
jcoomes@810 237 const size_t last = summary_data.addr_to_region_idx(end_addr);
duke@435 238 HeapWord* pdest = 0;
duke@435 239
duke@435 240 while (i <= last) {
jcoomes@810 241 ParallelCompactData::RegionData* c = summary_data.region(i);
duke@435 242 if (c->data_size() != 0 || c->destination() != pdest) {
jcoomes@810 243 print_generic_summary_region(i, c);
duke@435 244 total_words += c->data_size();
duke@435 245 pdest = c->destination();
duke@435 246 }
duke@435 247 ++i;
duke@435 248 }
duke@435 249
duke@435 250 tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
duke@435 251 }
duke@435 252
duke@435 253 void
duke@435 254 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 255 SpaceInfo* space_info)
duke@435 256 {
duke@435 257 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
duke@435 258 const MutableSpace* space = space_info[id].space();
duke@435 259 print_generic_summary_data(summary_data, space->bottom(),
duke@435 260 MAX2(space->top(), space_info[id].new_top()));
duke@435 261 }
duke@435 262 }
duke@435 263
duke@435 264 void
jcoomes@810 265 print_initial_summary_region(size_t i,
jcoomes@810 266 const ParallelCompactData::RegionData* c,
jcoomes@810 267 bool newline = true)
duke@435 268 {
jcoomes@699 269 tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
jcoomes@699 270 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
jcoomes@699 271 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
duke@435 272 i, c->destination(),
duke@435 273 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 274 c->data_size(), c->source_region(), c->destination_count());
duke@435 275 if (newline) tty->cr();
duke@435 276 }
duke@435 277
duke@435 278 void
duke@435 279 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 280 const MutableSpace* space) {
duke@435 281 if (space->top() == space->bottom()) {
duke@435 282 return;
duke@435 283 }
duke@435 284
jcoomes@810 285 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 286 typedef ParallelCompactData::RegionData RegionData;
jcoomes@810 287 HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
jcoomes@810 288 const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
jcoomes@810 289 const RegionData* c = summary_data.region(end_region - 1);
duke@435 290 HeapWord* end_addr = c->destination() + c->data_size();
duke@435 291 const size_t live_in_space = pointer_delta(end_addr, space->bottom());
duke@435 292
jcoomes@810 293 // Print (and count) the full regions at the beginning of the space.
jcoomes@810 294 size_t full_region_count = 0;
jcoomes@810 295 size_t i = summary_data.addr_to_region_idx(space->bottom());
jcoomes@810 296 while (i < end_region && summary_data.region(i)->data_size() == region_size) {
jcoomes@810 297 print_initial_summary_region(i, summary_data.region(i));
jcoomes@810 298 ++full_region_count;
duke@435 299 ++i;
duke@435 300 }
duke@435 301
jcoomes@810 302 size_t live_to_right = live_in_space - full_region_count * region_size;
duke@435 303
duke@435 304 double max_reclaimed_ratio = 0.0;
jcoomes@810 305 size_t max_reclaimed_ratio_region = 0;
duke@435 306 size_t max_dead_to_right = 0;
duke@435 307 size_t max_live_to_right = 0;
duke@435 308
jcoomes@810 309 // Print the 'reclaimed ratio' for regions while there is something live in
jcoomes@810 310 // the region or to the right of it. The remaining regions are empty (and
duke@435 311 // uninteresting), and computing the ratio will result in division by 0.
jcoomes@810 312 while (i < end_region && live_to_right > 0) {
jcoomes@810 313 c = summary_data.region(i);
jcoomes@810 314 HeapWord* const region_addr = summary_data.region_to_addr(i);
jcoomes@810 315 const size_t used_to_right = pointer_delta(space->top(), region_addr);
duke@435 316 const size_t dead_to_right = used_to_right - live_to_right;
duke@435 317 const double reclaimed_ratio = double(dead_to_right) / live_to_right;
duke@435 318
duke@435 319 if (reclaimed_ratio > max_reclaimed_ratio) {
duke@435 320 max_reclaimed_ratio = reclaimed_ratio;
jcoomes@810 321 max_reclaimed_ratio_region = i;
duke@435 322 max_dead_to_right = dead_to_right;
duke@435 323 max_live_to_right = live_to_right;
duke@435 324 }
duke@435 325
jcoomes@810 326 print_initial_summary_region(i, c, false);
jcoomes@699 327 tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
duke@435 328 reclaimed_ratio, dead_to_right, live_to_right);
duke@435 329
duke@435 330 live_to_right -= c->data_size();
duke@435 331 ++i;
duke@435 332 }
duke@435 333
jcoomes@810 334 // Any remaining regions are empty. Print one more if there is one.
jcoomes@810 335 if (i < end_region) {
jcoomes@810 336 print_initial_summary_region(i, summary_data.region(i));
duke@435 337 }
duke@435 338
jcoomes@699 339 tty->print_cr("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
jcoomes@699 340 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
jcoomes@810 341 max_reclaimed_ratio_region, max_dead_to_right,
duke@435 342 max_live_to_right, max_reclaimed_ratio);
duke@435 343 }
duke@435 344
duke@435 345 void
duke@435 346 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 347 SpaceInfo* space_info) {
coleenp@4037 348 unsigned int id = PSParallelCompact::old_space_id;
duke@435 349 const MutableSpace* space;
duke@435 350 do {
duke@435 351 space = space_info[id].space();
duke@435 352 print_initial_summary_data(summary_data, space);
duke@435 353 } while (++id < PSParallelCompact::eden_space_id);
duke@435 354
duke@435 355 do {
duke@435 356 space = space_info[id].space();
duke@435 357 print_generic_summary_data(summary_data, space->bottom(), space->top());
duke@435 358 } while (++id < PSParallelCompact::last_space_id);
duke@435 359 }
duke@435 360 #endif // #ifndef PRODUCT
duke@435 361
duke@435 362 #ifdef ASSERT
duke@435 363 size_t add_obj_count;
duke@435 364 size_t add_obj_size;
duke@435 365 size_t mark_bitmap_count;
duke@435 366 size_t mark_bitmap_size;
duke@435 367 #endif // #ifdef ASSERT
duke@435 368
duke@435 369 ParallelCompactData::ParallelCompactData()
duke@435 370 {
duke@435 371 _region_start = 0;
duke@435 372
jcoomes@810 373 _region_vspace = 0;
jcoomes@810 374 _region_data = 0;
jcoomes@810 375 _region_count = 0;
duke@435 376 }
duke@435 377
duke@435 378 bool ParallelCompactData::initialize(MemRegion covered_region)
duke@435 379 {
duke@435 380 _region_start = covered_region.start();
duke@435 381 const size_t region_size = covered_region.word_size();
duke@435 382 DEBUG_ONLY(_region_end = _region_start + region_size;)
duke@435 383
jcoomes@810 384 assert(region_align_down(_region_start) == _region_start,
duke@435 385 "region start not aligned");
jcoomes@810 386 assert((region_size & RegionSizeOffsetMask) == 0,
jcoomes@810 387 "region size not a multiple of RegionSize");
jcoomes@810 388
jcoomes@810 389 bool result = initialize_region_data(region_size);
duke@435 390
duke@435 391 return result;
duke@435 392 }
duke@435 393
duke@435 394 PSVirtualSpace*
duke@435 395 ParallelCompactData::create_vspace(size_t count, size_t element_size)
duke@435 396 {
duke@435 397 const size_t raw_bytes = count * element_size;
duke@435 398 const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
duke@435 399 const size_t granularity = os::vm_allocation_granularity();
duke@435 400 const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
duke@435 401
duke@435 402 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
duke@435 403 MAX2(page_sz, granularity);
jcoomes@514 404 ReservedSpace rs(bytes, rs_align, rs_align > 0);
duke@435 405 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
duke@435 406 rs.size());
zgu@3900 407
zgu@3900 408 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
zgu@3900 409
duke@435 410 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
duke@435 411 if (vspace != 0) {
duke@435 412 if (vspace->expand_by(bytes)) {
duke@435 413 return vspace;
duke@435 414 }
duke@435 415 delete vspace;
coleenp@672 416 // Release memory reserved in the space.
coleenp@672 417 rs.release();
duke@435 418 }
duke@435 419
duke@435 420 return 0;
duke@435 421 }
duke@435 422
jcoomes@810 423 bool ParallelCompactData::initialize_region_data(size_t region_size)
duke@435 424 {
jcoomes@810 425 const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
jcoomes@810 426 _region_vspace = create_vspace(count, sizeof(RegionData));
jcoomes@810 427 if (_region_vspace != 0) {
jcoomes@810 428 _region_data = (RegionData*)_region_vspace->reserved_low_addr();
jcoomes@810 429 _region_count = count;
duke@435 430 return true;
duke@435 431 }
duke@435 432 return false;
duke@435 433 }
duke@435 434
duke@435 435 void ParallelCompactData::clear()
duke@435 436 {
jcoomes@810 437 memset(_region_data, 0, _region_vspace->committed_size());
duke@435 438 }
duke@435 439
jcoomes@810 440 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
jcoomes@810 441 assert(beg_region <= _region_count, "beg_region out of range");
jcoomes@810 442 assert(end_region <= _region_count, "end_region out of range");
jcoomes@810 443
jcoomes@810 444 const size_t region_cnt = end_region - beg_region;
jcoomes@810 445 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
duke@435 446 }
duke@435 447
jcoomes@810 448 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
duke@435 449 {
jcoomes@810 450 const RegionData* cur_cp = region(region_idx);
jcoomes@810 451 const RegionData* const end_cp = region(region_count() - 1);
jcoomes@810 452
jcoomes@810 453 HeapWord* result = region_to_addr(region_idx);
duke@435 454 if (cur_cp < end_cp) {
duke@435 455 do {
duke@435 456 result += cur_cp->partial_obj_size();
jcoomes@810 457 } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
duke@435 458 }
duke@435 459 return result;
duke@435 460 }
duke@435 461
duke@435 462 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
duke@435 463 {
duke@435 464 const size_t obj_ofs = pointer_delta(addr, _region_start);
jcoomes@810 465 const size_t beg_region = obj_ofs >> Log2RegionSize;
jcoomes@810 466 const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
duke@435 467
duke@435 468 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
duke@435 469 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
duke@435 470
jcoomes@810 471 if (beg_region == end_region) {
jcoomes@810 472 // All in one region.
jcoomes@810 473 _region_data[beg_region].add_live_obj(len);
duke@435 474 return;
duke@435 475 }
duke@435 476
jcoomes@810 477 // First region.
jcoomes@810 478 const size_t beg_ofs = region_offset(addr);
jcoomes@810 479 _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
duke@435 480
coleenp@4037 481 Klass* klass = ((oop)addr)->klass();
jcoomes@810 482 // Middle regions--completely spanned by this object.
jcoomes@810 483 for (size_t region = beg_region + 1; region < end_region; ++region) {
jcoomes@810 484 _region_data[region].set_partial_obj_size(RegionSize);
jcoomes@810 485 _region_data[region].set_partial_obj_addr(addr);
duke@435 486 }
duke@435 487
jcoomes@810 488 // Last region.
jcoomes@810 489 const size_t end_ofs = region_offset(addr + len - 1);
jcoomes@810 490 _region_data[end_region].set_partial_obj_size(end_ofs + 1);
jcoomes@810 491 _region_data[end_region].set_partial_obj_addr(addr);
duke@435 492 }
duke@435 493
duke@435 494 void
duke@435 495 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
duke@435 496 {
jcoomes@810 497 assert(region_offset(beg) == 0, "not RegionSize aligned");
jcoomes@810 498 assert(region_offset(end) == 0, "not RegionSize aligned");
jcoomes@810 499
jcoomes@810 500 size_t cur_region = addr_to_region_idx(beg);
jcoomes@810 501 const size_t end_region = addr_to_region_idx(end);
duke@435 502 HeapWord* addr = beg;
jcoomes@810 503 while (cur_region < end_region) {
jcoomes@810 504 _region_data[cur_region].set_destination(addr);
jcoomes@810 505 _region_data[cur_region].set_destination_count(0);
jcoomes@810 506 _region_data[cur_region].set_source_region(cur_region);
jcoomes@810 507 _region_data[cur_region].set_data_location(addr);
jcoomes@810 508
jcoomes@810 509 // Update live_obj_size so the region appears completely full.
jcoomes@810 510 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
jcoomes@810 511 _region_data[cur_region].set_live_obj_size(live_size);
jcoomes@810 512
jcoomes@810 513 ++cur_region;
jcoomes@810 514 addr += RegionSize;
duke@435 515 }
duke@435 516 }
duke@435 517
jcoomes@917 518 // Find the point at which a space can be split and, if necessary, record the
jcoomes@917 519 // split point.
jcoomes@917 520 //
jcoomes@917 521 // If the current src region (which overflowed the destination space) doesn't
jcoomes@917 522 // have a partial object, the split point is at the beginning of the current src
jcoomes@917 523 // region (an "easy" split, no extra bookkeeping required).
jcoomes@917 524 //
jcoomes@917 525 // If the current src region has a partial object, the split point is in the
jcoomes@917 526 // region where that partial object starts (call it the split_region). If
jcoomes@917 527 // split_region has a partial object, then the split point is just after that
jcoomes@917 528 // partial object (a "hard" split where we have to record the split data and
jcoomes@917 529 // zero the partial_obj_size field). With a "hard" split, we know that the
jcoomes@917 530 // partial_obj ends within split_region because the partial object that caused
jcoomes@917 531 // the overflow starts in split_region. If split_region doesn't have a partial
jcoomes@917 532 // obj, then the split is at the beginning of split_region (another "easy"
jcoomes@917 533 // split).
jcoomes@917 534 HeapWord*
jcoomes@917 535 ParallelCompactData::summarize_split_space(size_t src_region,
jcoomes@917 536 SplitInfo& split_info,
jcoomes@917 537 HeapWord* destination,
jcoomes@917 538 HeapWord* target_end,
jcoomes@917 539 HeapWord** target_next)
jcoomes@917 540 {
jcoomes@917 541 assert(destination <= target_end, "sanity");
jcoomes@917 542 assert(destination + _region_data[src_region].data_size() > target_end,
jcoomes@917 543 "region should not fit into target space");
jcoomes@1131 544 assert(is_region_aligned(target_end), "sanity");
jcoomes@917 545
jcoomes@917 546 size_t split_region = src_region;
jcoomes@917 547 HeapWord* split_destination = destination;
jcoomes@917 548 size_t partial_obj_size = _region_data[src_region].partial_obj_size();
jcoomes@917 549
jcoomes@917 550 if (destination + partial_obj_size > target_end) {
jcoomes@917 551 // The split point is just after the partial object (if any) in the
jcoomes@917 552 // src_region that contains the start of the object that overflowed the
jcoomes@917 553 // destination space.
jcoomes@917 554 //
jcoomes@917 555 // Find the start of the "overflow" object and set split_region to the
jcoomes@917 556 // region containing it.
jcoomes@917 557 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
jcoomes@917 558 split_region = addr_to_region_idx(overflow_obj);
jcoomes@917 559
jcoomes@917 560 // Clear the source_region field of all destination regions whose first word
jcoomes@917 561 // came from data after the split point (a non-null source_region field
jcoomes@917 562 // implies a region must be filled).
jcoomes@917 563 //
jcoomes@917 564 // An alternative to the simple loop below: clear during post_compact(),
jcoomes@917 565 // which uses memcpy instead of individual stores, and is easy to
jcoomes@917 566 // parallelize. (The downside is that it clears the entire RegionData
jcoomes@917 567 // object as opposed to just one field.)
jcoomes@917 568 //
jcoomes@917 569 // post_compact() would have to clear the summary data up to the highest
jcoomes@917 570 // address that was written during the summary phase, which would be
jcoomes@917 571 //
jcoomes@917 572 // max(top, max(new_top, clear_top))
jcoomes@917 573 //
jcoomes@917 574 // where clear_top is a new field in SpaceInfo. Would have to set clear_top
jcoomes@1131 575 // to target_end.
jcoomes@917 576 const RegionData* const sr = region(split_region);
jcoomes@917 577 const size_t beg_idx =
jcoomes@917 578 addr_to_region_idx(region_align_up(sr->destination() +
jcoomes@917 579 sr->partial_obj_size()));
jcoomes@1131 580 const size_t end_idx = addr_to_region_idx(target_end);
jcoomes@917 581
jcoomes@917 582 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 583 gclog_or_tty->print_cr("split: clearing source_region field in ["
jcoomes@917 584 SIZE_FORMAT ", " SIZE_FORMAT ")",
jcoomes@917 585 beg_idx, end_idx);
jcoomes@917 586 }
jcoomes@917 587 for (size_t idx = beg_idx; idx < end_idx; ++idx) {
jcoomes@917 588 _region_data[idx].set_source_region(0);
jcoomes@917 589 }
jcoomes@917 590
jcoomes@917 591 // Set split_destination and partial_obj_size to reflect the split region.
jcoomes@917 592 split_destination = sr->destination();
jcoomes@917 593 partial_obj_size = sr->partial_obj_size();
jcoomes@917 594 }
jcoomes@917 595
jcoomes@917 596 // The split is recorded only if a partial object extends onto the region.
jcoomes@917 597 if (partial_obj_size != 0) {
jcoomes@917 598 _region_data[split_region].set_partial_obj_size(0);
jcoomes@917 599 split_info.record(split_region, partial_obj_size, split_destination);
jcoomes@917 600 }
jcoomes@917 601
jcoomes@917 602 // Setup the continuation addresses.
jcoomes@917 603 *target_next = split_destination + partial_obj_size;
jcoomes@917 604 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
jcoomes@917 605
jcoomes@917 606 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 607 const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
jcoomes@917 608 gclog_or_tty->print_cr("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT
jcoomes@917 609 " pos=" SIZE_FORMAT,
jcoomes@917 610 split_type, source_next, split_region,
jcoomes@917 611 partial_obj_size);
jcoomes@917 612 gclog_or_tty->print_cr("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
jcoomes@917 613 " tn=" PTR_FORMAT,
jcoomes@917 614 split_type, split_destination,
jcoomes@917 615 addr_to_region_idx(split_destination),
jcoomes@917 616 *target_next);
jcoomes@917 617
jcoomes@917 618 if (partial_obj_size != 0) {
jcoomes@917 619 HeapWord* const po_beg = split_info.destination();
jcoomes@917 620 HeapWord* const po_end = po_beg + split_info.partial_obj_size();
jcoomes@917 621 gclog_or_tty->print_cr("%s split: "
jcoomes@917 622 "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
jcoomes@917 623 "po_end=" PTR_FORMAT " " SIZE_FORMAT,
jcoomes@917 624 split_type,
jcoomes@917 625 po_beg, addr_to_region_idx(po_beg),
jcoomes@917 626 po_end, addr_to_region_idx(po_end));
jcoomes@917 627 }
jcoomes@917 628 }
jcoomes@917 629
jcoomes@917 630 return source_next;
jcoomes@917 631 }
jcoomes@917 632
jcoomes@917 633 bool ParallelCompactData::summarize(SplitInfo& split_info,
duke@435 634 HeapWord* source_beg, HeapWord* source_end,
jcoomes@917 635 HeapWord** source_next,
jcoomes@917 636 HeapWord* target_beg, HeapWord* target_end,
jcoomes@917 637 HeapWord** target_next)
jcoomes@917 638 {
duke@435 639 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 640 HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
jcoomes@917 641 tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
jcoomes@917 642 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
jcoomes@917 643 source_beg, source_end, source_next_val,
jcoomes@917 644 target_beg, target_end, *target_next);
duke@435 645 }
duke@435 646
jcoomes@810 647 size_t cur_region = addr_to_region_idx(source_beg);
jcoomes@810 648 const size_t end_region = addr_to_region_idx(region_align_up(source_end));
duke@435 649
duke@435 650 HeapWord *dest_addr = target_beg;
jcoomes@810 651 while (cur_region < end_region) {
jcoomes@917 652 // The destination must be set even if the region has no data.
jcoomes@917 653 _region_data[cur_region].set_destination(dest_addr);
jcoomes@917 654
jcoomes@810 655 size_t words = _region_data[cur_region].data_size();
duke@435 656 if (words > 0) {
jcoomes@917 657 // If cur_region does not fit entirely into the target space, find a point
jcoomes@917 658 // at which the source space can be 'split' so that part is copied to the
jcoomes@917 659 // target space and the rest is copied elsewhere.
jcoomes@917 660 if (dest_addr + words > target_end) {
jcoomes@917 661 assert(source_next != NULL, "source_next is NULL when splitting");
jcoomes@917 662 *source_next = summarize_split_space(cur_region, split_info, dest_addr,
jcoomes@917 663 target_end, target_next);
jcoomes@917 664 return false;
jcoomes@917 665 }
jcoomes@917 666
jcoomes@917 667 // Compute the destination_count for cur_region, and if necessary, update
jcoomes@917 668 // source_region for a destination region. The source_region field is
jcoomes@917 669 // updated if cur_region is the first (left-most) region to be copied to a
jcoomes@917 670 // destination region.
jcoomes@917 671 //
jcoomes@917 672 // The destination_count calculation is a bit subtle. A region that has
jcoomes@917 673 // data that compacts into itself does not count itself as a destination.
jcoomes@917 674 // This maintains the invariant that a zero count means the region is
jcoomes@917 675 // available and can be claimed and then filled.
jcoomes@917 676 uint destination_count = 0;
jcoomes@917 677 if (split_info.is_split(cur_region)) {
jcoomes@917 678 // The current region has been split: the partial object will be copied
jcoomes@917 679 // to one destination space and the remaining data will be copied to
jcoomes@917 680 // another destination space. Adjust the initial destination_count and,
jcoomes@917 681 // if necessary, set the source_region field if the partial object will
jcoomes@917 682 // cross a destination region boundary.
jcoomes@917 683 destination_count = split_info.destination_count();
jcoomes@917 684 if (destination_count == 2) {
jcoomes@917 685 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
jcoomes@917 686 _region_data[dest_idx].set_source_region(cur_region);
jcoomes@917 687 }
jcoomes@917 688 }
jcoomes@917 689
duke@435 690 HeapWord* const last_addr = dest_addr + words - 1;
jcoomes@810 691 const size_t dest_region_1 = addr_to_region_idx(dest_addr);
jcoomes@810 692 const size_t dest_region_2 = addr_to_region_idx(last_addr);
jcoomes@917 693
jcoomes@810 694 // Initially assume that the destination regions will be the same and
duke@435 695 // adjust the value below if necessary. Under this assumption, if
jcoomes@810 696 // cur_region == dest_region_2, then cur_region will be compacted
jcoomes@810 697 // completely into itself.
jcoomes@917 698 destination_count += cur_region == dest_region_2 ? 0 : 1;
jcoomes@810 699 if (dest_region_1 != dest_region_2) {
jcoomes@810 700 // Destination regions differ; adjust destination_count.
duke@435 701 destination_count += 1;
jcoomes@810 702 // Data from cur_region will be copied to the start of dest_region_2.
jcoomes@810 703 _region_data[dest_region_2].set_source_region(cur_region);
jcoomes@810 704 } else if (region_offset(dest_addr) == 0) {
jcoomes@810 705 // Data from cur_region will be copied to the start of the destination
jcoomes@810 706 // region.
jcoomes@810 707 _region_data[dest_region_1].set_source_region(cur_region);
duke@435 708 }
duke@435 709
jcoomes@810 710 _region_data[cur_region].set_destination_count(destination_count);
jcoomes@810 711 _region_data[cur_region].set_data_location(region_to_addr(cur_region));
duke@435 712 dest_addr += words;
duke@435 713 }
duke@435 714
jcoomes@810 715 ++cur_region;
duke@435 716 }
duke@435 717
duke@435 718 *target_next = dest_addr;
duke@435 719 return true;
duke@435 720 }
duke@435 721
duke@435 722 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
duke@435 723 assert(addr != NULL, "Should detect NULL oop earlier");
duke@435 724 assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
duke@435 725 #ifdef ASSERT
duke@435 726 if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
duke@435 727 gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
duke@435 728 }
duke@435 729 #endif
duke@435 730 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
duke@435 731
jcoomes@810 732 // Region covering the object.
jcoomes@810 733 size_t region_index = addr_to_region_idx(addr);
jcoomes@810 734 const RegionData* const region_ptr = region(region_index);
jcoomes@810 735 HeapWord* const region_addr = region_align_down(addr);
jcoomes@810 736
jcoomes@810 737 assert(addr < region_addr + RegionSize, "Region does not cover object");
jcoomes@810 738 assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
jcoomes@810 739
jcoomes@810 740 HeapWord* result = region_ptr->destination();
jcoomes@810 741
jcoomes@810 742 // If all the data in the region is live, then the new location of the object
jcoomes@810 743 // can be calculated from the destination of the region plus the offset of the
jcoomes@810 744 // object in the region.
jcoomes@810 745 if (region_ptr->data_size() == RegionSize) {
jcoomes@810 746 result += pointer_delta(addr, region_addr);
kvn@1926 747 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
duke@435 748 return result;
duke@435 749 }
duke@435 750
duke@435 751 // The new location of the object is
jcoomes@810 752 // region destination +
jcoomes@810 753 // size of the partial object extending onto the region +
jcoomes@810 754 // sizes of the live objects in the Region that are to the left of addr
jcoomes@810 755 const size_t partial_obj_size = region_ptr->partial_obj_size();
jcoomes@810 756 HeapWord* const search_start = region_addr + partial_obj_size;
duke@435 757
duke@435 758 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
duke@435 759 size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
duke@435 760
duke@435 761 result += partial_obj_size + live_to_left;
jcoomes@930 762 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
duke@435 763 return result;
duke@435 764 }
duke@435 765
duke@435 766 #ifdef ASSERT
duke@435 767 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
duke@435 768 {
duke@435 769 const size_t* const beg = (const size_t*)vspace->committed_low_addr();
duke@435 770 const size_t* const end = (const size_t*)vspace->committed_high_addr();
duke@435 771 for (const size_t* p = beg; p < end; ++p) {
duke@435 772 assert(*p == 0, "not zero");
duke@435 773 }
duke@435 774 }
duke@435 775
duke@435 776 void ParallelCompactData::verify_clear()
duke@435 777 {
jcoomes@810 778 verify_clear(_region_vspace);
duke@435 779 }
duke@435 780 #endif // #ifdef ASSERT
duke@435 781
duke@435 782 #ifdef NOT_PRODUCT
jcoomes@810 783 ParallelCompactData::RegionData* debug_region(size_t region_index) {
duke@435 784 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 785 return sd.region(region_index);
duke@435 786 }
duke@435 787 #endif
duke@435 788
duke@435 789 elapsedTimer PSParallelCompact::_accumulated_time;
duke@435 790 unsigned int PSParallelCompact::_total_invocations = 0;
duke@435 791 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0;
duke@435 792 jlong PSParallelCompact::_time_of_last_gc = 0;
duke@435 793 CollectorCounters* PSParallelCompact::_counters = NULL;
duke@435 794 ParMarkBitMap PSParallelCompact::_mark_bitmap;
duke@435 795 ParallelCompactData PSParallelCompact::_summary_data;
duke@435 796
duke@435 797 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
coleenp@548 798
coleenp@548 799 void PSParallelCompact::IsAliveClosure::do_object(oop p) { ShouldNotReachHere(); }
coleenp@548 800 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
coleenp@548 801
coleenp@548 802 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 803 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 804
duke@435 805 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
duke@435 806 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
coleenp@4037 807 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
duke@435 808
coleenp@548 809 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p, _is_root); }
coleenp@548 810 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
coleenp@548 811
jcoomes@1746 812 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
coleenp@548 813
coleenp@4037 814 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) {
coleenp@4037 815 mark_and_push(_compaction_manager, p);
coleenp@4037 816 }
coleenp@548 817 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
duke@435 818
coleenp@4037 819 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
coleenp@4037 820 klass->oops_do(_mark_and_push_closure);
coleenp@4037 821 }
coleenp@4037 822 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
coleenp@4037 823 klass->oops_do(&PSParallelCompact::_adjust_root_pointer_closure);
coleenp@4037 824 }
coleenp@4037 825
duke@435 826 void PSParallelCompact::post_initialize() {
duke@435 827 ParallelScavengeHeap* heap = gc_heap();
duke@435 828 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 829
duke@435 830 MemRegion mr = heap->reserved_region();
ysr@2651 831 _ref_processor =
ysr@2651 832 new ReferenceProcessor(mr, // span
ysr@2651 833 ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
ysr@2651 834 (int) ParallelGCThreads, // mt processing degree
ysr@2651 835 true, // mt discovery
ysr@2651 836 (int) ParallelGCThreads, // mt discovery degree
ysr@2651 837 true, // atomic_discovery
ysr@2651 838 &_is_alive_closure, // non-header is alive closure
ysr@2651 839 false); // write barrier for next field updates
duke@435 840 _counters = new CollectorCounters("PSParallelCompact", 1);
duke@435 841
duke@435 842 // Initialize static fields in ParCompactionManager.
duke@435 843 ParCompactionManager::initialize(mark_bitmap());
duke@435 844 }
duke@435 845
duke@435 846 bool PSParallelCompact::initialize() {
duke@435 847 ParallelScavengeHeap* heap = gc_heap();
duke@435 848 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 849 MemRegion mr = heap->reserved_region();
duke@435 850
duke@435 851 // Was the old gen get allocated successfully?
duke@435 852 if (!heap->old_gen()->is_allocated()) {
duke@435 853 return false;
duke@435 854 }
duke@435 855
duke@435 856 initialize_space_info();
duke@435 857 initialize_dead_wood_limiter();
duke@435 858
duke@435 859 if (!_mark_bitmap.initialize(mr)) {
duke@435 860 vm_shutdown_during_initialization("Unable to allocate bit map for "
duke@435 861 "parallel garbage collection for the requested heap size.");
duke@435 862 return false;
duke@435 863 }
duke@435 864
duke@435 865 if (!_summary_data.initialize(mr)) {
duke@435 866 vm_shutdown_during_initialization("Unable to allocate tables for "
duke@435 867 "parallel garbage collection for the requested heap size.");
duke@435 868 return false;
duke@435 869 }
duke@435 870
duke@435 871 return true;
duke@435 872 }
duke@435 873
duke@435 874 void PSParallelCompact::initialize_space_info()
duke@435 875 {
duke@435 876 memset(&_space_info, 0, sizeof(_space_info));
duke@435 877
duke@435 878 ParallelScavengeHeap* heap = gc_heap();
duke@435 879 PSYoungGen* young_gen = heap->young_gen();
coleenp@4037 880
duke@435 881 _space_info[old_space_id].set_space(heap->old_gen()->object_space());
duke@435 882 _space_info[eden_space_id].set_space(young_gen->eden_space());
duke@435 883 _space_info[from_space_id].set_space(young_gen->from_space());
duke@435 884 _space_info[to_space_id].set_space(young_gen->to_space());
duke@435 885
duke@435 886 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
duke@435 887 }
duke@435 888
duke@435 889 void PSParallelCompact::initialize_dead_wood_limiter()
duke@435 890 {
duke@435 891 const size_t max = 100;
duke@435 892 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
duke@435 893 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
duke@435 894 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
duke@435 895 DEBUG_ONLY(_dwl_initialized = true;)
duke@435 896 _dwl_adjustment = normal_distribution(1.0);
duke@435 897 }
duke@435 898
duke@435 899 // Simple class for storing info about the heap at the start of GC, to be used
duke@435 900 // after GC for comparison/printing.
duke@435 901 class PreGCValues {
duke@435 902 public:
duke@435 903 PreGCValues() { }
duke@435 904 PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
duke@435 905
duke@435 906 void fill(ParallelScavengeHeap* heap) {
duke@435 907 _heap_used = heap->used();
duke@435 908 _young_gen_used = heap->young_gen()->used_in_bytes();
duke@435 909 _old_gen_used = heap->old_gen()->used_in_bytes();
coleenp@4037 910 _metadata_used = MetaspaceAux::used_in_bytes();
duke@435 911 };
duke@435 912
duke@435 913 size_t heap_used() const { return _heap_used; }
duke@435 914 size_t young_gen_used() const { return _young_gen_used; }
duke@435 915 size_t old_gen_used() const { return _old_gen_used; }
coleenp@4037 916 size_t metadata_used() const { return _metadata_used; }
duke@435 917
duke@435 918 private:
duke@435 919 size_t _heap_used;
duke@435 920 size_t _young_gen_used;
duke@435 921 size_t _old_gen_used;
coleenp@4037 922 size_t _metadata_used;
duke@435 923 };
duke@435 924
duke@435 925 void
duke@435 926 PSParallelCompact::clear_data_covering_space(SpaceId id)
duke@435 927 {
duke@435 928 // At this point, top is the value before GC, new_top() is the value that will
duke@435 929 // be set at the end of GC. The marking bitmap is cleared to top; nothing
duke@435 930 // should be marked above top. The summary data is cleared to the larger of
duke@435 931 // top & new_top.
duke@435 932 MutableSpace* const space = _space_info[id].space();
duke@435 933 HeapWord* const bot = space->bottom();
duke@435 934 HeapWord* const top = space->top();
duke@435 935 HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
duke@435 936
duke@435 937 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
duke@435 938 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
duke@435 939 _mark_bitmap.clear_range(beg_bit, end_bit);
duke@435 940
jcoomes@810 941 const size_t beg_region = _summary_data.addr_to_region_idx(bot);
jcoomes@810 942 const size_t end_region =
jcoomes@810 943 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
jcoomes@810 944 _summary_data.clear_range(beg_region, end_region);
jcoomes@917 945
jcoomes@917 946 // Clear the data used to 'split' regions.
jcoomes@917 947 SplitInfo& split_info = _space_info[id].split_info();
jcoomes@917 948 if (split_info.is_valid()) {
jcoomes@917 949 split_info.clear();
jcoomes@917 950 }
jcoomes@917 951 DEBUG_ONLY(split_info.verify_clear();)
duke@435 952 }
duke@435 953
duke@435 954 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
duke@435 955 {
duke@435 956 // Update the from & to space pointers in space_info, since they are swapped
duke@435 957 // at each young gen gc. Do the update unconditionally (even though a
duke@435 958 // promotion failure does not swap spaces) because an unknown number of minor
duke@435 959 // collections will have swapped the spaces an unknown number of times.
duke@435 960 TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
duke@435 961 ParallelScavengeHeap* heap = gc_heap();
duke@435 962 _space_info[from_space_id].set_space(heap->young_gen()->from_space());
duke@435 963 _space_info[to_space_id].set_space(heap->young_gen()->to_space());
duke@435 964
duke@435 965 pre_gc_values->fill(heap);
duke@435 966
duke@435 967 NOT_PRODUCT(_mark_bitmap.reset_counters());
duke@435 968 DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
duke@435 969 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
duke@435 970
duke@435 971 // Increment the invocation count
apetrusenko@574 972 heap->increment_total_collections(true);
duke@435 973
duke@435 974 // We need to track unique mark sweep invocations as well.
duke@435 975 _total_invocations++;
duke@435 976
never@3499 977 heap->print_heap_before_gc();
duke@435 978
duke@435 979 // Fill in TLABs
duke@435 980 heap->accumulate_statistics_all_tlabs();
duke@435 981 heap->ensure_parsability(true); // retire TLABs
duke@435 982
duke@435 983 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 984 HandleMark hm; // Discard invalid handles created during verification
duke@435 985 gclog_or_tty->print(" VerifyBeforeGC:");
duke@435 986 Universe::verify(true);
duke@435 987 }
duke@435 988
duke@435 989 // Verify object start arrays
duke@435 990 if (VerifyObjectStartArray &&
duke@435 991 VerifyBeforeGC) {
duke@435 992 heap->old_gen()->verify_object_start_array();
duke@435 993 }
duke@435 994
duke@435 995 DEBUG_ONLY(mark_bitmap()->verify_clear();)
duke@435 996 DEBUG_ONLY(summary_data().verify_clear();)
jcoomes@645 997
jcoomes@645 998 // Have worker threads release resources the next time they run a task.
jcoomes@645 999 gc_task_manager()->release_all_resources();
duke@435 1000 }
duke@435 1001
duke@435 1002 void PSParallelCompact::post_compact()
duke@435 1003 {
duke@435 1004 TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
duke@435 1005
coleenp@4037 1006 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
jcoomes@917 1007 // Clear the marking bitmap, summary data and split info.
duke@435 1008 clear_data_covering_space(SpaceId(id));
jcoomes@917 1009 // Update top(). Must be done after clearing the bitmap and summary data.
jcoomes@917 1010 _space_info[id].publish_new_top();
duke@435 1011 }
duke@435 1012
duke@435 1013 MutableSpace* const eden_space = _space_info[eden_space_id].space();
duke@435 1014 MutableSpace* const from_space = _space_info[from_space_id].space();
duke@435 1015 MutableSpace* const to_space = _space_info[to_space_id].space();
duke@435 1016
duke@435 1017 ParallelScavengeHeap* heap = gc_heap();
duke@435 1018 bool eden_empty = eden_space->is_empty();
duke@435 1019 if (!eden_empty) {
duke@435 1020 eden_empty = absorb_live_data_from_eden(heap->size_policy(),
duke@435 1021 heap->young_gen(), heap->old_gen());
duke@435 1022 }
duke@435 1023
duke@435 1024 // Update heap occupancy information which is used as input to the soft ref
duke@435 1025 // clearing policy at the next gc.
duke@435 1026 Universe::update_heap_info_at_gc();
duke@435 1027
duke@435 1028 bool young_gen_empty = eden_empty && from_space->is_empty() &&
duke@435 1029 to_space->is_empty();
duke@435 1030
duke@435 1031 BarrierSet* bs = heap->barrier_set();
duke@435 1032 if (bs->is_a(BarrierSet::ModRef)) {
duke@435 1033 ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
duke@435 1034 MemRegion old_mr = heap->old_gen()->reserved();
duke@435 1035
duke@435 1036 if (young_gen_empty) {
coleenp@4037 1037 modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
duke@435 1038 } else {
coleenp@4037 1039 modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
duke@435 1040 }
duke@435 1041 }
duke@435 1042
coleenp@4037 1043 // Delete metaspaces for unloaded class loaders and clean up loader_data graph
coleenp@4037 1044 ClassLoaderDataGraph::purge();
coleenp@4037 1045
duke@435 1046 Threads::gc_epilogue();
duke@435 1047 CodeCache::gc_epilogue();
kamg@2467 1048 JvmtiExport::gc_epilogue();
duke@435 1049
duke@435 1050 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
duke@435 1051
duke@435 1052 ref_processor()->enqueue_discovered_references(NULL);
duke@435 1053
jmasa@698 1054 if (ZapUnusedHeapArea) {
jmasa@698 1055 heap->gen_mangle_unused_area();
jmasa@698 1056 }
jmasa@698 1057
duke@435 1058 // Update time of last GC
duke@435 1059 reset_millis_since_last_gc();
duke@435 1060 }
duke@435 1061
duke@435 1062 HeapWord*
duke@435 1063 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
duke@435 1064 bool maximum_compaction)
duke@435 1065 {
jcoomes@810 1066 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1067 const ParallelCompactData& sd = summary_data();
duke@435 1068
duke@435 1069 const MutableSpace* const space = _space_info[id].space();
jcoomes@810 1070 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 1071 const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
jcoomes@810 1072 const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1073
jcoomes@810 1074 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1075 // of the dense prefix.
duke@435 1076 size_t full_count = 0;
jcoomes@810 1077 const RegionData* cp;
jcoomes@810 1078 for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
duke@435 1079 ++full_count;
duke@435 1080 }
duke@435 1081
duke@435 1082 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1083 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1084 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
duke@435 1085 if (maximum_compaction || cp == end_cp || interval_ended) {
duke@435 1086 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1087 return sd.region_to_addr(cp);
duke@435 1088 }
duke@435 1089
duke@435 1090 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1091 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1092 const size_t space_used = space->used_in_words();
duke@435 1093 const size_t space_capacity = space->capacity_in_words();
duke@435 1094
duke@435 1095 const double cur_density = double(space_live) / space_capacity;
duke@435 1096 const double deadwood_density =
duke@435 1097 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
duke@435 1098 const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
duke@435 1099
duke@435 1100 if (TraceParallelOldGCDensePrefix) {
duke@435 1101 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
duke@435 1102 cur_density, deadwood_density, deadwood_goal);
duke@435 1103 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1104 "space_cap=" SIZE_FORMAT,
duke@435 1105 space_live, space_used,
duke@435 1106 space_capacity);
duke@435 1107 }
duke@435 1108
duke@435 1109 // XXX - Use binary search?
jcoomes@810 1110 HeapWord* dense_prefix = sd.region_to_addr(cp);
jcoomes@810 1111 const RegionData* full_cp = cp;
jcoomes@810 1112 const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
duke@435 1113 while (cp < end_cp) {
jcoomes@810 1114 HeapWord* region_destination = cp->destination();
jcoomes@810 1115 const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
duke@435 1116 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1117 tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
jcoomes@699 1118 "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
jcoomes@810 1119 sd.region(cp), region_destination,
duke@435 1120 dense_prefix, cur_deadwood);
duke@435 1121 }
duke@435 1122
duke@435 1123 if (cur_deadwood >= deadwood_goal) {
jcoomes@810 1124 // Found the region that has the correct amount of deadwood to the left.
jcoomes@810 1125 // This typically occurs after crossing a fairly sparse set of regions, so
jcoomes@810 1126 // iterate backwards over those sparse regions, looking for the region
jcoomes@810 1127 // that has the lowest density of live objects 'to the right.'
jcoomes@810 1128 size_t space_to_left = sd.region(cp) * region_size;
duke@435 1129 size_t live_to_left = space_to_left - cur_deadwood;
duke@435 1130 size_t space_to_right = space_capacity - space_to_left;
duke@435 1131 size_t live_to_right = space_live - live_to_left;
duke@435 1132 double density_to_right = double(live_to_right) / space_to_right;
duke@435 1133 while (cp > full_cp) {
duke@435 1134 --cp;
jcoomes@810 1135 const size_t prev_region_live_to_right = live_to_right -
jcoomes@810 1136 cp->data_size();
jcoomes@810 1137 const size_t prev_region_space_to_right = space_to_right + region_size;
jcoomes@810 1138 double prev_region_density_to_right =
jcoomes@810 1139 double(prev_region_live_to_right) / prev_region_space_to_right;
jcoomes@810 1140 if (density_to_right <= prev_region_density_to_right) {
duke@435 1141 return dense_prefix;
duke@435 1142 }
duke@435 1143 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1144 tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
jcoomes@810 1145 "pc_d2r=%10.8f", sd.region(cp), density_to_right,
jcoomes@810 1146 prev_region_density_to_right);
duke@435 1147 }
jcoomes@810 1148 dense_prefix -= region_size;
jcoomes@810 1149 live_to_right = prev_region_live_to_right;
jcoomes@810 1150 space_to_right = prev_region_space_to_right;
jcoomes@810 1151 density_to_right = prev_region_density_to_right;
duke@435 1152 }
duke@435 1153 return dense_prefix;
duke@435 1154 }
duke@435 1155
jcoomes@810 1156 dense_prefix += region_size;
duke@435 1157 ++cp;
duke@435 1158 }
duke@435 1159
duke@435 1160 return dense_prefix;
duke@435 1161 }
duke@435 1162
duke@435 1163 #ifndef PRODUCT
duke@435 1164 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
duke@435 1165 const SpaceId id,
duke@435 1166 const bool maximum_compaction,
duke@435 1167 HeapWord* const addr)
duke@435 1168 {
jcoomes@810 1169 const size_t region_idx = summary_data().addr_to_region_idx(addr);
jcoomes@810 1170 RegionData* const cp = summary_data().region(region_idx);
duke@435 1171 const MutableSpace* const space = _space_info[id].space();
duke@435 1172 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1173
duke@435 1174 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1175 const size_t dead_to_left = pointer_delta(addr, cp->destination());
duke@435 1176 const size_t space_cap = space->capacity_in_words();
duke@435 1177 const double dead_to_left_pct = double(dead_to_left) / space_cap;
duke@435 1178 const size_t live_to_right = new_top - cp->destination();
duke@435 1179 const size_t dead_to_right = space->top() - addr - live_to_right;
duke@435 1180
jcoomes@699 1181 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
duke@435 1182 "spl=" SIZE_FORMAT " "
duke@435 1183 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
duke@435 1184 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
duke@435 1185 " ratio=%10.8f",
jcoomes@810 1186 algorithm, addr, region_idx,
duke@435 1187 space_live,
duke@435 1188 dead_to_left, dead_to_left_pct,
duke@435 1189 dead_to_right, live_to_right,
duke@435 1190 double(dead_to_right) / live_to_right);
duke@435 1191 }
duke@435 1192 #endif // #ifndef PRODUCT
duke@435 1193
duke@435 1194 // Return a fraction indicating how much of the generation can be treated as
duke@435 1195 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution
duke@435 1196 // based on the density of live objects in the generation to determine a limit,
duke@435 1197 // which is then adjusted so the return value is min_percent when the density is
duke@435 1198 // 1.
duke@435 1199 //
duke@435 1200 // The following table shows some return values for a different values of the
duke@435 1201 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
duke@435 1202 // min_percent is 1.
duke@435 1203 //
duke@435 1204 // fraction allowed as dead wood
duke@435 1205 // -----------------------------------------------------------------
duke@435 1206 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
duke@435 1207 // ------- ---------- ---------- ---------- ---------- ---------- ----------
duke@435 1208 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1209 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1210 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1211 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1212 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1213 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1214 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1215 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1216 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1217 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1218 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
duke@435 1219 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1220 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1221 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1222 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1223 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1224 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1225 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1226 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1227 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1228 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1229
duke@435 1230 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
duke@435 1231 {
duke@435 1232 assert(_dwl_initialized, "uninitialized");
duke@435 1233
duke@435 1234 // The raw limit is the value of the normal distribution at x = density.
duke@435 1235 const double raw_limit = normal_distribution(density);
duke@435 1236
duke@435 1237 // Adjust the raw limit so it becomes the minimum when the density is 1.
duke@435 1238 //
duke@435 1239 // First subtract the adjustment value (which is simply the precomputed value
duke@435 1240 // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
duke@435 1241 // Then add the minimum value, so the minimum is returned when the density is
duke@435 1242 // 1. Finally, prevent negative values, which occur when the mean is not 0.5.
duke@435 1243 const double min = double(min_percent) / 100.0;
duke@435 1244 const double limit = raw_limit - _dwl_adjustment + min;
duke@435 1245 return MAX2(limit, 0.0);
duke@435 1246 }
duke@435 1247
jcoomes@810 1248 ParallelCompactData::RegionData*
jcoomes@810 1249 PSParallelCompact::first_dead_space_region(const RegionData* beg,
jcoomes@810 1250 const RegionData* end)
duke@435 1251 {
jcoomes@810 1252 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1253 ParallelCompactData& sd = summary_data();
jcoomes@810 1254 size_t left = sd.region(beg);
jcoomes@810 1255 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1256
duke@435 1257 // Binary search.
duke@435 1258 while (left < right) {
duke@435 1259 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1260 const size_t middle = left + (right - left) / 2;
jcoomes@810 1261 RegionData* const middle_ptr = sd.region(middle);
duke@435 1262 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1263 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1264 assert(dest != NULL, "sanity");
duke@435 1265 assert(dest <= addr, "must move left");
duke@435 1266
duke@435 1267 if (middle > left && dest < addr) {
duke@435 1268 right = middle - 1;
jcoomes@810 1269 } else if (middle < right && middle_ptr->data_size() == region_size) {
duke@435 1270 left = middle + 1;
duke@435 1271 } else {
duke@435 1272 return middle_ptr;
duke@435 1273 }
duke@435 1274 }
jcoomes@810 1275 return sd.region(left);
duke@435 1276 }
duke@435 1277
jcoomes@810 1278 ParallelCompactData::RegionData*
jcoomes@810 1279 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
jcoomes@810 1280 const RegionData* end,
jcoomes@810 1281 size_t dead_words)
duke@435 1282 {
duke@435 1283 ParallelCompactData& sd = summary_data();
jcoomes@810 1284 size_t left = sd.region(beg);
jcoomes@810 1285 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1286
duke@435 1287 // Binary search.
duke@435 1288 while (left < right) {
duke@435 1289 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1290 const size_t middle = left + (right - left) / 2;
jcoomes@810 1291 RegionData* const middle_ptr = sd.region(middle);
duke@435 1292 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1293 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1294 assert(dest != NULL, "sanity");
duke@435 1295 assert(dest <= addr, "must move left");
duke@435 1296
duke@435 1297 const size_t dead_to_left = pointer_delta(addr, dest);
duke@435 1298 if (middle > left && dead_to_left > dead_words) {
duke@435 1299 right = middle - 1;
duke@435 1300 } else if (middle < right && dead_to_left < dead_words) {
duke@435 1301 left = middle + 1;
duke@435 1302 } else {
duke@435 1303 return middle_ptr;
duke@435 1304 }
duke@435 1305 }
jcoomes@810 1306 return sd.region(left);
duke@435 1307 }
duke@435 1308
duke@435 1309 // The result is valid during the summary phase, after the initial summarization
duke@435 1310 // of each space into itself, and before final summarization.
duke@435 1311 inline double
jcoomes@810 1312 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
duke@435 1313 HeapWord* const bottom,
duke@435 1314 HeapWord* const top,
duke@435 1315 HeapWord* const new_top)
duke@435 1316 {
duke@435 1317 ParallelCompactData& sd = summary_data();
duke@435 1318
duke@435 1319 assert(cp != NULL, "sanity");
duke@435 1320 assert(bottom != NULL, "sanity");
duke@435 1321 assert(top != NULL, "sanity");
duke@435 1322 assert(new_top != NULL, "sanity");
duke@435 1323 assert(top >= new_top, "summary data problem?");
duke@435 1324 assert(new_top > bottom, "space is empty; should not be here");
duke@435 1325 assert(new_top >= cp->destination(), "sanity");
jcoomes@810 1326 assert(top >= sd.region_to_addr(cp), "sanity");
duke@435 1327
duke@435 1328 HeapWord* const destination = cp->destination();
duke@435 1329 const size_t dense_prefix_live = pointer_delta(destination, bottom);
duke@435 1330 const size_t compacted_region_live = pointer_delta(new_top, destination);
jcoomes@810 1331 const size_t compacted_region_used = pointer_delta(top,
jcoomes@810 1332 sd.region_to_addr(cp));
duke@435 1333 const size_t reclaimable = compacted_region_used - compacted_region_live;
duke@435 1334
duke@435 1335 const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
duke@435 1336 return double(reclaimable) / divisor;
duke@435 1337 }
duke@435 1338
duke@435 1339 // Return the address of the end of the dense prefix, a.k.a. the start of the
jcoomes@810 1340 // compacted region. The address is always on a region boundary.
duke@435 1341 //
jcoomes@810 1342 // Completely full regions at the left are skipped, since no compaction can
jcoomes@810 1343 // occur in those regions. Then the maximum amount of dead wood to allow is
jcoomes@810 1344 // computed, based on the density (amount live / capacity) of the generation;
jcoomes@810 1345 // the region with approximately that amount of dead space to the left is
jcoomes@810 1346 // identified as the limit region. Regions between the last completely full
jcoomes@810 1347 // region and the limit region are scanned and the one that has the best
jcoomes@810 1348 // (maximum) reclaimed_ratio() is selected.
duke@435 1349 HeapWord*
duke@435 1350 PSParallelCompact::compute_dense_prefix(const SpaceId id,
duke@435 1351 bool maximum_compaction)
duke@435 1352 {
jcoomes@918 1353 if (ParallelOldGCSplitALot) {
jcoomes@918 1354 if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
jcoomes@918 1355 // The value was chosen to provoke splitting a young gen space; use it.
jcoomes@918 1356 return _space_info[id].dense_prefix();
jcoomes@918 1357 }
jcoomes@918 1358 }
jcoomes@918 1359
jcoomes@810 1360 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1361 const ParallelCompactData& sd = summary_data();
duke@435 1362
duke@435 1363 const MutableSpace* const space = _space_info[id].space();
duke@435 1364 HeapWord* const top = space->top();
jcoomes@810 1365 HeapWord* const top_aligned_up = sd.region_align_up(top);
duke@435 1366 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1367 HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
duke@435 1368 HeapWord* const bottom = space->bottom();
jcoomes@810 1369 const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
jcoomes@810 1370 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1371 const RegionData* const new_top_cp =
jcoomes@810 1372 sd.addr_to_region_ptr(new_top_aligned_up);
jcoomes@810 1373
jcoomes@810 1374 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1375 // of the dense prefix.
jcoomes@810 1376 const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
jcoomes@810 1377 assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
duke@435 1378 space->is_empty(), "no dead space allowed to the left");
jcoomes@810 1379 assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
jcoomes@810 1380 "region must have dead space");
duke@435 1381
duke@435 1382 // The gc number is saved whenever a maximum compaction is done, and used to
duke@435 1383 // determine when the maximum compaction interval has expired. This avoids
duke@435 1384 // successive max compactions for different reasons.
duke@435 1385 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1386 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1387 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
duke@435 1388 total_invocations() == HeapFirstMaximumCompactionCount;
duke@435 1389 if (maximum_compaction || full_cp == top_cp || interval_ended) {
duke@435 1390 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1391 return sd.region_to_addr(full_cp);
duke@435 1392 }
duke@435 1393
duke@435 1394 const size_t space_live = pointer_delta(new_top, bottom);
duke@435 1395 const size_t space_used = space->used_in_words();
duke@435 1396 const size_t space_capacity = space->capacity_in_words();
duke@435 1397
duke@435 1398 const double density = double(space_live) / double(space_capacity);
coleenp@4037 1399 const size_t min_percent_free = MarkSweepDeadRatio;
duke@435 1400 const double limiter = dead_wood_limiter(density, min_percent_free);
duke@435 1401 const size_t dead_wood_max = space_used - space_live;
duke@435 1402 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
duke@435 1403 dead_wood_max);
duke@435 1404
duke@435 1405 if (TraceParallelOldGCDensePrefix) {
duke@435 1406 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1407 "space_cap=" SIZE_FORMAT,
duke@435 1408 space_live, space_used,
duke@435 1409 space_capacity);
duke@435 1410 tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
duke@435 1411 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
duke@435 1412 density, min_percent_free, limiter,
duke@435 1413 dead_wood_max, dead_wood_limit);
duke@435 1414 }
duke@435 1415
jcoomes@810 1416 // Locate the region with the desired amount of dead space to the left.
jcoomes@810 1417 const RegionData* const limit_cp =
jcoomes@810 1418 dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
jcoomes@810 1419
jcoomes@810 1420 // Scan from the first region with dead space to the limit region and find the
duke@435 1421 // one with the best (largest) reclaimed ratio.
duke@435 1422 double best_ratio = 0.0;
jcoomes@810 1423 const RegionData* best_cp = full_cp;
jcoomes@810 1424 for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
duke@435 1425 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
duke@435 1426 if (tmp_ratio > best_ratio) {
duke@435 1427 best_cp = cp;
duke@435 1428 best_ratio = tmp_ratio;
duke@435 1429 }
duke@435 1430 }
duke@435 1431
duke@435 1432 #if 0
jcoomes@810 1433 // Something to consider: if the region with the best ratio is 'close to' the
jcoomes@810 1434 // first region w/free space, choose the first region with free space
jcoomes@810 1435 // ("first-free"). The first-free region is usually near the start of the
duke@435 1436 // heap, which means we are copying most of the heap already, so copy a bit
duke@435 1437 // more to get complete compaction.
jcoomes@810 1438 if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
duke@435 1439 _maximum_compaction_gc_num = total_invocations();
duke@435 1440 best_cp = full_cp;
duke@435 1441 }
duke@435 1442 #endif // #if 0
duke@435 1443
jcoomes@810 1444 return sd.region_to_addr(best_cp);
duke@435 1445 }
duke@435 1446
jcoomes@918 1447 #ifndef PRODUCT
jcoomes@918 1448 void
jcoomes@918 1449 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
jcoomes@918 1450 size_t words)
jcoomes@918 1451 {
jcoomes@918 1452 if (TraceParallelOldGCSummaryPhase) {
jcoomes@918 1453 tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
jcoomes@918 1454 SIZE_FORMAT, start, start + words, words);
jcoomes@918 1455 }
jcoomes@918 1456
jcoomes@918 1457 ObjectStartArray* const start_array = _space_info[id].start_array();
jcoomes@918 1458 CollectedHeap::fill_with_objects(start, words);
jcoomes@918 1459 for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
jcoomes@918 1460 _mark_bitmap.mark_obj(p, words);
jcoomes@918 1461 _summary_data.add_obj(p, words);
jcoomes@918 1462 start_array->allocate_block(p);
jcoomes@918 1463 }
jcoomes@918 1464 }
jcoomes@918 1465
jcoomes@918 1466 void
jcoomes@918 1467 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
jcoomes@918 1468 {
jcoomes@918 1469 ParallelCompactData& sd = summary_data();
jcoomes@918 1470 MutableSpace* space = _space_info[id].space();
jcoomes@918 1471
jcoomes@918 1472 // Find the source and destination start addresses.
jcoomes@918 1473 HeapWord* const src_addr = sd.region_align_down(start);
jcoomes@918 1474 HeapWord* dst_addr;
jcoomes@918 1475 if (src_addr < start) {
jcoomes@918 1476 dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
jcoomes@918 1477 } else if (src_addr > space->bottom()) {
jcoomes@918 1478 // The start (the original top() value) is aligned to a region boundary so
jcoomes@918 1479 // the associated region does not have a destination. Compute the
jcoomes@918 1480 // destination from the previous region.
jcoomes@918 1481 RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
jcoomes@918 1482 dst_addr = cp->destination() + cp->data_size();
jcoomes@918 1483 } else {
jcoomes@918 1484 // Filling the entire space.
jcoomes@918 1485 dst_addr = space->bottom();
jcoomes@918 1486 }
jcoomes@918 1487 assert(dst_addr != NULL, "sanity");
jcoomes@918 1488
jcoomes@918 1489 // Update the summary data.
jcoomes@918 1490 bool result = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@918 1491 src_addr, space->top(), NULL,
jcoomes@918 1492 dst_addr, space->end(),
jcoomes@918 1493 _space_info[id].new_top_addr());
jcoomes@918 1494 assert(result, "should not fail: bad filler object size");
jcoomes@918 1495 }
jcoomes@918 1496
jcoomes@918 1497 void
jcoomes@931 1498 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
jcoomes@931 1499 {
jcoomes@931 1500 if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
jcoomes@931 1501 return;
jcoomes@931 1502 }
jcoomes@931 1503
jcoomes@931 1504 MutableSpace* const space = _space_info[id].space();
jcoomes@931 1505 if (space->is_empty()) {
jcoomes@931 1506 HeapWord* b = space->bottom();
jcoomes@931 1507 HeapWord* t = b + space->capacity_in_words() / 2;
jcoomes@931 1508 space->set_top(t);
jcoomes@931 1509 if (ZapUnusedHeapArea) {
jcoomes@931 1510 space->set_top_for_allocations();
jcoomes@931 1511 }
jcoomes@931 1512
kvn@1926 1513 size_t min_size = CollectedHeap::min_fill_size();
kvn@1926 1514 size_t obj_len = min_size;
jcoomes@931 1515 while (b + obj_len <= t) {
jcoomes@931 1516 CollectedHeap::fill_with_object(b, obj_len);
jcoomes@931 1517 mark_bitmap()->mark_obj(b, obj_len);
jcoomes@931 1518 summary_data().add_obj(b, obj_len);
jcoomes@931 1519 b += obj_len;
kvn@1926 1520 obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
jcoomes@931 1521 }
jcoomes@931 1522 if (b < t) {
jcoomes@931 1523 // The loop didn't completely fill to t (top); adjust top downward.
jcoomes@931 1524 space->set_top(b);
jcoomes@931 1525 if (ZapUnusedHeapArea) {
jcoomes@931 1526 space->set_top_for_allocations();
jcoomes@931 1527 }
jcoomes@931 1528 }
jcoomes@931 1529
jcoomes@931 1530 HeapWord** nta = _space_info[id].new_top_addr();
jcoomes@931 1531 bool result = summary_data().summarize(_space_info[id].split_info(),
jcoomes@931 1532 space->bottom(), space->top(), NULL,
jcoomes@931 1533 space->bottom(), space->end(), nta);
jcoomes@931 1534 assert(result, "space must fit into itself");
jcoomes@931 1535 }
jcoomes@931 1536 }
jcoomes@931 1537
jcoomes@931 1538 void
jcoomes@918 1539 PSParallelCompact::provoke_split(bool & max_compaction)
jcoomes@918 1540 {
jcoomes@931 1541 if (total_invocations() % ParallelOldGCSplitInterval != 0) {
jcoomes@931 1542 return;
jcoomes@931 1543 }
jcoomes@931 1544
jcoomes@918 1545 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@918 1546 ParallelCompactData& sd = summary_data();
jcoomes@918 1547
jcoomes@918 1548 MutableSpace* const eden_space = _space_info[eden_space_id].space();
jcoomes@918 1549 MutableSpace* const from_space = _space_info[from_space_id].space();
jcoomes@918 1550 const size_t eden_live = pointer_delta(eden_space->top(),
jcoomes@918 1551 _space_info[eden_space_id].new_top());
jcoomes@918 1552 const size_t from_live = pointer_delta(from_space->top(),
jcoomes@918 1553 _space_info[from_space_id].new_top());
jcoomes@918 1554
jcoomes@918 1555 const size_t min_fill_size = CollectedHeap::min_fill_size();
jcoomes@918 1556 const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
jcoomes@918 1557 const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
jcoomes@918 1558 const size_t from_free = pointer_delta(from_space->end(), from_space->top());
jcoomes@918 1559 const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
jcoomes@918 1560
jcoomes@918 1561 // Choose the space to split; need at least 2 regions live (or fillable).
jcoomes@918 1562 SpaceId id;
jcoomes@918 1563 MutableSpace* space;
jcoomes@918 1564 size_t live_words;
jcoomes@918 1565 size_t fill_words;
jcoomes@918 1566 if (eden_live + eden_fillable >= region_size * 2) {
jcoomes@918 1567 id = eden_space_id;
jcoomes@918 1568 space = eden_space;
jcoomes@918 1569 live_words = eden_live;
jcoomes@918 1570 fill_words = eden_fillable;
jcoomes@918 1571 } else if (from_live + from_fillable >= region_size * 2) {
jcoomes@918 1572 id = from_space_id;
jcoomes@918 1573 space = from_space;
jcoomes@918 1574 live_words = from_live;
jcoomes@918 1575 fill_words = from_fillable;
jcoomes@918 1576 } else {
jcoomes@918 1577 return; // Give up.
jcoomes@918 1578 }
jcoomes@918 1579 assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
jcoomes@918 1580
jcoomes@918 1581 if (live_words < region_size * 2) {
jcoomes@918 1582 // Fill from top() to end() w/live objects of mixed sizes.
jcoomes@918 1583 HeapWord* const fill_start = space->top();
jcoomes@918 1584 live_words += fill_words;
jcoomes@918 1585
jcoomes@918 1586 space->set_top(fill_start + fill_words);
jcoomes@918 1587 if (ZapUnusedHeapArea) {
jcoomes@918 1588 space->set_top_for_allocations();
jcoomes@918 1589 }
jcoomes@918 1590
jcoomes@918 1591 HeapWord* cur_addr = fill_start;
jcoomes@918 1592 while (fill_words > 0) {
jcoomes@918 1593 const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
jcoomes@918 1594 size_t cur_size = MIN2(align_object_size_(r), fill_words);
jcoomes@918 1595 if (fill_words - cur_size < min_fill_size) {
jcoomes@918 1596 cur_size = fill_words; // Avoid leaving a fragment too small to fill.
jcoomes@918 1597 }
jcoomes@918 1598
jcoomes@918 1599 CollectedHeap::fill_with_object(cur_addr, cur_size);
jcoomes@918 1600 mark_bitmap()->mark_obj(cur_addr, cur_size);
jcoomes@918 1601 sd.add_obj(cur_addr, cur_size);
jcoomes@918 1602
jcoomes@918 1603 cur_addr += cur_size;
jcoomes@918 1604 fill_words -= cur_size;
jcoomes@918 1605 }
jcoomes@918 1606
jcoomes@918 1607 summarize_new_objects(id, fill_start);
jcoomes@918 1608 }
jcoomes@918 1609
jcoomes@918 1610 max_compaction = false;
jcoomes@918 1611
jcoomes@918 1612 // Manipulate the old gen so that it has room for about half of the live data
jcoomes@918 1613 // in the target young gen space (live_words / 2).
jcoomes@918 1614 id = old_space_id;
jcoomes@918 1615 space = _space_info[id].space();
jcoomes@918 1616 const size_t free_at_end = space->free_in_words();
jcoomes@918 1617 const size_t free_target = align_object_size(live_words / 2);
jcoomes@918 1618 const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
jcoomes@918 1619
jcoomes@918 1620 if (free_at_end >= free_target + min_fill_size) {
jcoomes@918 1621 // Fill space above top() and set the dense prefix so everything survives.
jcoomes@918 1622 HeapWord* const fill_start = space->top();
jcoomes@918 1623 const size_t fill_size = free_at_end - free_target;
jcoomes@918 1624 space->set_top(space->top() + fill_size);
jcoomes@918 1625 if (ZapUnusedHeapArea) {
jcoomes@918 1626 space->set_top_for_allocations();
jcoomes@918 1627 }
jcoomes@918 1628 fill_with_live_objects(id, fill_start, fill_size);
jcoomes@918 1629 summarize_new_objects(id, fill_start);
jcoomes@918 1630 _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
jcoomes@918 1631 } else if (dead + free_at_end > free_target) {
jcoomes@918 1632 // Find a dense prefix that makes the right amount of space available.
jcoomes@918 1633 HeapWord* cur = sd.region_align_down(space->top());
jcoomes@918 1634 HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
jcoomes@918 1635 size_t dead_to_right = pointer_delta(space->end(), cur_destination);
jcoomes@918 1636 while (dead_to_right < free_target) {
jcoomes@918 1637 cur -= region_size;
jcoomes@918 1638 cur_destination = sd.addr_to_region_ptr(cur)->destination();
jcoomes@918 1639 dead_to_right = pointer_delta(space->end(), cur_destination);
jcoomes@918 1640 }
jcoomes@918 1641 _space_info[id].set_dense_prefix(cur);
jcoomes@918 1642 }
jcoomes@918 1643 }
jcoomes@918 1644 #endif // #ifndef PRODUCT
jcoomes@918 1645
duke@435 1646 void PSParallelCompact::summarize_spaces_quick()
duke@435 1647 {
duke@435 1648 for (unsigned int i = 0; i < last_space_id; ++i) {
duke@435 1649 const MutableSpace* space = _space_info[i].space();
jcoomes@917 1650 HeapWord** nta = _space_info[i].new_top_addr();
jcoomes@917 1651 bool result = _summary_data.summarize(_space_info[i].split_info(),
jcoomes@917 1652 space->bottom(), space->top(), NULL,
jcoomes@917 1653 space->bottom(), space->end(), nta);
jcoomes@917 1654 assert(result, "space must fit into itself");
duke@435 1655 _space_info[i].set_dense_prefix(space->bottom());
duke@435 1656 }
jcoomes@931 1657
jcoomes@931 1658 #ifndef PRODUCT
jcoomes@931 1659 if (ParallelOldGCSplitALot) {
jcoomes@931 1660 provoke_split_fill_survivor(to_space_id);
jcoomes@931 1661 }
jcoomes@931 1662 #endif // #ifndef PRODUCT
duke@435 1663 }
duke@435 1664
duke@435 1665 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
duke@435 1666 {
duke@435 1667 HeapWord* const dense_prefix_end = dense_prefix(id);
jcoomes@810 1668 const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
duke@435 1669 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
jcoomes@810 1670 if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
duke@435 1671 // Only enough dead space is filled so that any remaining dead space to the
duke@435 1672 // left is larger than the minimum filler object. (The remainder is filled
duke@435 1673 // during the copy/update phase.)
duke@435 1674 //
duke@435 1675 // The size of the dead space to the right of the boundary is not a
duke@435 1676 // concern, since compaction will be able to use whatever space is
duke@435 1677 // available.
duke@435 1678 //
duke@435 1679 // Here '||' is the boundary, 'x' represents a don't care bit and a box
duke@435 1680 // surrounds the space to be filled with an object.
duke@435 1681 //
duke@435 1682 // In the 32-bit VM, each bit represents two 32-bit words:
duke@435 1683 // +---+
duke@435 1684 // a) beg_bits: ... x x x | 0 | || 0 x x ...
duke@435 1685 // end_bits: ... x x x | 0 | || 0 x x ...
duke@435 1686 // +---+
duke@435 1687 //
duke@435 1688 // In the 64-bit VM, each bit represents one 64-bit word:
duke@435 1689 // +------------+
duke@435 1690 // b) beg_bits: ... x x x | 0 || 0 | x x ...
duke@435 1691 // end_bits: ... x x 1 | 0 || 0 | x x ...
duke@435 1692 // +------------+
duke@435 1693 // +-------+
duke@435 1694 // c) beg_bits: ... x x | 0 0 | || 0 x x ...
duke@435 1695 // end_bits: ... x 1 | 0 0 | || 0 x x ...
duke@435 1696 // +-------+
duke@435 1697 // +-----------+
duke@435 1698 // d) beg_bits: ... x | 0 0 0 | || 0 x x ...
duke@435 1699 // end_bits: ... 1 | 0 0 0 | || 0 x x ...
duke@435 1700 // +-----------+
duke@435 1701 // +-------+
duke@435 1702 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1703 // end_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1704 // +-------+
duke@435 1705
duke@435 1706 // Initially assume case a, c or e will apply.
kvn@1926 1707 size_t obj_len = CollectedHeap::min_fill_size();
duke@435 1708 HeapWord* obj_beg = dense_prefix_end - obj_len;
duke@435 1709
duke@435 1710 #ifdef _LP64
kvn@1926 1711 if (MinObjAlignment > 1) { // object alignment > heap word size
kvn@1926 1712 // Cases a, c or e.
kvn@1926 1713 } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
duke@435 1714 // Case b above.
duke@435 1715 obj_beg = dense_prefix_end - 1;
duke@435 1716 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
duke@435 1717 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
duke@435 1718 // Case d above.
duke@435 1719 obj_beg = dense_prefix_end - 3;
duke@435 1720 obj_len = 3;
duke@435 1721 }
duke@435 1722 #endif // #ifdef _LP64
duke@435 1723
jcoomes@917 1724 CollectedHeap::fill_with_object(obj_beg, obj_len);
duke@435 1725 _mark_bitmap.mark_obj(obj_beg, obj_len);
duke@435 1726 _summary_data.add_obj(obj_beg, obj_len);
duke@435 1727 assert(start_array(id) != NULL, "sanity");
duke@435 1728 start_array(id)->allocate_block(obj_beg);
duke@435 1729 }
duke@435 1730 }
duke@435 1731
duke@435 1732 void
jcoomes@917 1733 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
jcoomes@917 1734 {
jcoomes@917 1735 RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
jcoomes@917 1736 HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
jcoomes@917 1737 RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
jcoomes@917 1738 for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
jcoomes@917 1739 cur->set_source_region(0);
jcoomes@917 1740 }
jcoomes@917 1741 }
jcoomes@917 1742
jcoomes@917 1743 void
duke@435 1744 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
duke@435 1745 {
duke@435 1746 assert(id < last_space_id, "id out of range");
jcoomes@918 1747 assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
jcoomes@918 1748 ParallelOldGCSplitALot && id == old_space_id,
jcoomes@918 1749 "should have been reset in summarize_spaces_quick()");
duke@435 1750
duke@435 1751 const MutableSpace* space = _space_info[id].space();
jcoomes@700 1752 if (_space_info[id].new_top() != space->bottom()) {
jcoomes@700 1753 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
jcoomes@700 1754 _space_info[id].set_dense_prefix(dense_prefix_end);
duke@435 1755
duke@435 1756 #ifndef PRODUCT
jcoomes@700 1757 if (TraceParallelOldGCDensePrefix) {
jcoomes@700 1758 print_dense_prefix_stats("ratio", id, maximum_compaction,
jcoomes@700 1759 dense_prefix_end);
jcoomes@700 1760 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
jcoomes@700 1761 print_dense_prefix_stats("density", id, maximum_compaction, addr);
jcoomes@700 1762 }
jcoomes@700 1763 #endif // #ifndef PRODUCT
jcoomes@700 1764
jcoomes@918 1765 // Recompute the summary data, taking into account the dense prefix. If
jcoomes@918 1766 // every last byte will be reclaimed, then the existing summary data which
jcoomes@918 1767 // compacts everything can be left in place.
jcoomes@700 1768 if (!maximum_compaction && dense_prefix_end != space->bottom()) {
jcoomes@917 1769 // If dead space crosses the dense prefix boundary, it is (at least
jcoomes@917 1770 // partially) filled with a dummy object, marked live and added to the
jcoomes@917 1771 // summary data. This simplifies the copy/update phase and must be done
jcoomes@918 1772 // before the final locations of objects are determined, to prevent
jcoomes@918 1773 // leaving a fragment of dead space that is too small to fill.
jcoomes@700 1774 fill_dense_prefix_end(id);
jcoomes@917 1775
jcoomes@917 1776 // Compute the destination of each Region, and thus each object.
jcoomes@917 1777 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
jcoomes@917 1778 _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1779 dense_prefix_end, space->top(), NULL,
jcoomes@917 1780 dense_prefix_end, space->end(),
jcoomes@917 1781 _space_info[id].new_top_addr());
jcoomes@700 1782 }
duke@435 1783 }
duke@435 1784
duke@435 1785 if (TraceParallelOldGCSummaryPhase) {
jcoomes@810 1786 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@700 1787 HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
jcoomes@810 1788 const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
duke@435 1789 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
jcoomes@700 1790 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1791 const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
duke@435 1792 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
duke@435 1793 tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
jcoomes@810 1794 "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
duke@435 1795 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
duke@435 1796 id, space->capacity_in_words(), dense_prefix_end,
jcoomes@810 1797 dp_region, dp_words / region_size,
jcoomes@810 1798 cr_words / region_size, new_top);
duke@435 1799 }
duke@435 1800 }
duke@435 1801
jcoomes@917 1802 #ifndef PRODUCT
jcoomes@917 1803 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
jcoomes@917 1804 HeapWord* dst_beg, HeapWord* dst_end,
jcoomes@917 1805 SpaceId src_space_id,
jcoomes@917 1806 HeapWord* src_beg, HeapWord* src_end)
jcoomes@917 1807 {
jcoomes@917 1808 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 1809 tty->print_cr("summarizing %d [%s] into %d [%s]: "
jcoomes@917 1810 "src=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1811 SIZE_FORMAT "-" SIZE_FORMAT " "
jcoomes@917 1812 "dst=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1813 SIZE_FORMAT "-" SIZE_FORMAT,
jcoomes@917 1814 src_space_id, space_names[src_space_id],
jcoomes@917 1815 dst_space_id, space_names[dst_space_id],
jcoomes@917 1816 src_beg, src_end,
jcoomes@917 1817 _summary_data.addr_to_region_idx(src_beg),
jcoomes@917 1818 _summary_data.addr_to_region_idx(src_end),
jcoomes@917 1819 dst_beg, dst_end,
jcoomes@917 1820 _summary_data.addr_to_region_idx(dst_beg),
jcoomes@917 1821 _summary_data.addr_to_region_idx(dst_end));
jcoomes@917 1822 }
jcoomes@917 1823 }
jcoomes@917 1824 #endif // #ifndef PRODUCT
jcoomes@917 1825
duke@435 1826 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
duke@435 1827 bool maximum_compaction)
duke@435 1828 {
duke@435 1829 TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
duke@435 1830 // trace("2");
duke@435 1831
duke@435 1832 #ifdef ASSERT
duke@435 1833 if (TraceParallelOldGCMarkingPhase) {
duke@435 1834 tty->print_cr("add_obj_count=" SIZE_FORMAT " "
duke@435 1835 "add_obj_bytes=" SIZE_FORMAT,
duke@435 1836 add_obj_count, add_obj_size * HeapWordSize);
duke@435 1837 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
duke@435 1838 "mark_bitmap_bytes=" SIZE_FORMAT,
duke@435 1839 mark_bitmap_count, mark_bitmap_size * HeapWordSize);
duke@435 1840 }
duke@435 1841 #endif // #ifdef ASSERT
duke@435 1842
duke@435 1843 // Quick summarization of each space into itself, to see how much is live.
duke@435 1844 summarize_spaces_quick();
duke@435 1845
duke@435 1846 if (TraceParallelOldGCSummaryPhase) {
duke@435 1847 tty->print_cr("summary_phase: after summarizing each space to self");
duke@435 1848 Universe::print();
jcoomes@810 1849 NOT_PRODUCT(print_region_ranges());
duke@435 1850 if (Verbose) {
duke@435 1851 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
duke@435 1852 }
duke@435 1853 }
duke@435 1854
duke@435 1855 // The amount of live data that will end up in old space (assuming it fits).
duke@435 1856 size_t old_space_total_live = 0;
jcoomes@917 1857 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 1858 old_space_total_live += pointer_delta(_space_info[id].new_top(),
duke@435 1859 _space_info[id].space()->bottom());
duke@435 1860 }
duke@435 1861
jcoomes@917 1862 MutableSpace* const old_space = _space_info[old_space_id].space();
jcoomes@918 1863 const size_t old_capacity = old_space->capacity_in_words();
jcoomes@918 1864 if (old_space_total_live > old_capacity) {
duke@435 1865 // XXX - should also try to expand
duke@435 1866 maximum_compaction = true;
duke@435 1867 }
jcoomes@918 1868 #ifndef PRODUCT
jcoomes@918 1869 if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
jcoomes@931 1870 provoke_split(maximum_compaction);
jcoomes@918 1871 }
jcoomes@918 1872 #endif // #ifndef PRODUCT
duke@435 1873
coleenp@4037 1874 // Old generations.
duke@435 1875 summarize_space(old_space_id, maximum_compaction);
duke@435 1876
jcoomes@917 1877 // Summarize the remaining spaces in the young gen. The initial target space
jcoomes@917 1878 // is the old gen. If a space does not fit entirely into the target, then the
jcoomes@917 1879 // remainder is compacted into the space itself and that space becomes the new
jcoomes@917 1880 // target.
jcoomes@917 1881 SpaceId dst_space_id = old_space_id;
jcoomes@917 1882 HeapWord* dst_space_end = old_space->end();
jcoomes@917 1883 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
jcoomes@917 1884 for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
duke@435 1885 const MutableSpace* space = _space_info[id].space();
duke@435 1886 const size_t live = pointer_delta(_space_info[id].new_top(),
duke@435 1887 space->bottom());
jcoomes@917 1888 const size_t available = pointer_delta(dst_space_end, *new_top_addr);
jcoomes@917 1889
jcoomes@917 1890 NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
jcoomes@917 1891 SpaceId(id), space->bottom(), space->top());)
jcoomes@701 1892 if (live > 0 && live <= available) {
duke@435 1893 // All the live data will fit.
jcoomes@917 1894 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1895 space->bottom(), space->top(),
jcoomes@917 1896 NULL,
jcoomes@917 1897 *new_top_addr, dst_space_end,
jcoomes@917 1898 new_top_addr);
jcoomes@917 1899 assert(done, "space must fit into old gen");
jcoomes@917 1900
jcoomes@701 1901 // Reset the new_top value for the space.
jcoomes@701 1902 _space_info[id].set_new_top(space->bottom());
jcoomes@917 1903 } else if (live > 0) {
jcoomes@917 1904 // Attempt to fit part of the source space into the target space.
jcoomes@917 1905 HeapWord* next_src_addr = NULL;
jcoomes@917 1906 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1907 space->bottom(), space->top(),
jcoomes@917 1908 &next_src_addr,
jcoomes@917 1909 *new_top_addr, dst_space_end,
jcoomes@917 1910 new_top_addr);
jcoomes@917 1911 assert(!done, "space should not fit into old gen");
jcoomes@917 1912 assert(next_src_addr != NULL, "sanity");
jcoomes@917 1913
jcoomes@917 1914 // The source space becomes the new target, so the remainder is compacted
jcoomes@917 1915 // within the space itself.
jcoomes@917 1916 dst_space_id = SpaceId(id);
jcoomes@917 1917 dst_space_end = space->end();
jcoomes@917 1918 new_top_addr = _space_info[id].new_top_addr();
jcoomes@917 1919 NOT_PRODUCT(summary_phase_msg(dst_space_id,
jcoomes@917 1920 space->bottom(), dst_space_end,
jcoomes@917 1921 SpaceId(id), next_src_addr, space->top());)
jcoomes@917 1922 done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1923 next_src_addr, space->top(),
jcoomes@917 1924 NULL,
jcoomes@917 1925 space->bottom(), dst_space_end,
jcoomes@917 1926 new_top_addr);
jcoomes@917 1927 assert(done, "space must fit when compacted into itself");
jcoomes@917 1928 assert(*new_top_addr <= space->top(), "usage should not grow");
duke@435 1929 }
duke@435 1930 }
duke@435 1931
duke@435 1932 if (TraceParallelOldGCSummaryPhase) {
duke@435 1933 tty->print_cr("summary_phase: after final summarization");
duke@435 1934 Universe::print();
jcoomes@810 1935 NOT_PRODUCT(print_region_ranges());
duke@435 1936 if (Verbose) {
duke@435 1937 NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
duke@435 1938 }
duke@435 1939 }
duke@435 1940 }
duke@435 1941
duke@435 1942 // This method should contain all heap-specific policy for invoking a full
duke@435 1943 // collection. invoke_no_policy() will only attempt to compact the heap; it
duke@435 1944 // will do nothing further. If we need to bail out for policy reasons, scavenge
duke@435 1945 // before full gc, or any other specialized behavior, it needs to be added here.
duke@435 1946 //
duke@435 1947 // Note that this method should only be called from the vm_thread while at a
duke@435 1948 // safepoint.
jmasa@1822 1949 //
jmasa@1822 1950 // Note that the all_soft_refs_clear flag in the collector policy
jmasa@1822 1951 // may be true because this method can be called without intervening
jmasa@1822 1952 // activity. For example when the heap space is tight and full measure
jmasa@1822 1953 // are being taken to free space.
duke@435 1954 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
duke@435 1955 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 1956 assert(Thread::current() == (Thread*)VMThread::vm_thread(),
duke@435 1957 "should be in vm thread");
jmasa@1822 1958
duke@435 1959 ParallelScavengeHeap* heap = gc_heap();
duke@435 1960 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1961 assert(!heap->is_gc_active(), "not reentrant");
duke@435 1962
duke@435 1963 PSAdaptiveSizePolicy* policy = heap->size_policy();
jmasa@1822 1964 IsGCActiveMark mark;
jmasa@1822 1965
jmasa@1822 1966 if (ScavengeBeforeFullGC) {
jmasa@1822 1967 PSScavenge::invoke_no_policy();
duke@435 1968 }
jmasa@1822 1969
jmasa@1822 1970 const bool clear_all_soft_refs =
jmasa@1822 1971 heap->collector_policy()->should_clear_all_soft_refs();
jmasa@1822 1972
jmasa@1822 1973 PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
jmasa@1822 1974 maximum_heap_compaction);
duke@435 1975 }
duke@435 1976
jcoomes@810 1977 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
jcoomes@810 1978 size_t addr_region_index = addr_to_region_idx(addr);
jcoomes@810 1979 return region_index == addr_region_index;
duke@435 1980 }
duke@435 1981
duke@435 1982 // This method contains no policy. You should probably
duke@435 1983 // be calling invoke() instead.
jcoomes@3540 1984 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
duke@435 1985 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
duke@435 1986 assert(ref_processor() != NULL, "Sanity");
duke@435 1987
apetrusenko@574 1988 if (GC_locker::check_active_before_gc()) {
jcoomes@3540 1989 return false;
duke@435 1990 }
duke@435 1991
duke@435 1992 TimeStamp marking_start;
duke@435 1993 TimeStamp compaction_start;
duke@435 1994 TimeStamp collection_exit;
duke@435 1995
duke@435 1996 ParallelScavengeHeap* heap = gc_heap();
duke@435 1997 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1998 PSYoungGen* young_gen = heap->young_gen();
duke@435 1999 PSOldGen* old_gen = heap->old_gen();
duke@435 2000 PSAdaptiveSizePolicy* size_policy = heap->size_policy();
duke@435 2001
jmasa@1822 2002 // The scope of casr should end after code that can change
jmasa@1822 2003 // CollectorPolicy::_should_clear_all_soft_refs.
jmasa@1822 2004 ClearedAllSoftRefs casr(maximum_heap_compaction,
jmasa@1822 2005 heap->collector_policy());
jmasa@1822 2006
jmasa@698 2007 if (ZapUnusedHeapArea) {
jmasa@698 2008 // Save information needed to minimize mangling
jmasa@698 2009 heap->record_gen_tops_before_GC();
jmasa@698 2010 }
jmasa@698 2011
ysr@1050 2012 heap->pre_full_gc_dump();
ysr@1050 2013
duke@435 2014 _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
duke@435 2015
duke@435 2016 // Make sure data structures are sane, make the heap parsable, and do other
duke@435 2017 // miscellaneous bookkeeping.
duke@435 2018 PreGCValues pre_gc_values;
duke@435 2019 pre_compact(&pre_gc_values);
duke@435 2020
jcoomes@645 2021 // Get the compaction manager reserved for the VM thread.
jcoomes@645 2022 ParCompactionManager* const vmthread_cm =
jcoomes@645 2023 ParCompactionManager::manager_array(gc_task_manager()->workers());
jcoomes@645 2024
duke@435 2025 // Place after pre_compact() where the number of invocations is incremented.
duke@435 2026 AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
duke@435 2027
duke@435 2028 {
duke@435 2029 ResourceMark rm;
duke@435 2030 HandleMark hm;
duke@435 2031
jmasa@3294 2032 // Set the number of GC threads to be used in this collection
jmasa@3294 2033 gc_task_manager()->set_active_gang();
jmasa@3294 2034 gc_task_manager()->task_idle_workers();
jmasa@3294 2035 heap->set_par_threads(gc_task_manager()->active_workers());
jmasa@3294 2036
duke@435 2037 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
duke@435 2038 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
brutisso@3767 2039 TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
duke@435 2040 TraceCollectorStats tcs(counters());
fparain@2888 2041 TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
duke@435 2042
duke@435 2043 if (TraceGen1Time) accumulated_time()->start();
duke@435 2044
duke@435 2045 // Let the size policy know we're starting
duke@435 2046 size_policy->major_collection_begin();
duke@435 2047
duke@435 2048 CodeCache::gc_prologue();
duke@435 2049 Threads::gc_prologue();
duke@435 2050
duke@435 2051 COMPILER2_PRESENT(DerivedPointerTable::clear());
duke@435 2052
johnc@3175 2053 ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
ysr@892 2054 ref_processor()->setup_policy(maximum_heap_compaction);
duke@435 2055
duke@435 2056 bool marked_for_unloading = false;
duke@435 2057
duke@435 2058 marking_start.update();
jcoomes@645 2059 marking_phase(vmthread_cm, maximum_heap_compaction);
duke@435 2060
duke@435 2061 #ifndef PRODUCT
duke@435 2062 if (TraceParallelOldGCMarkingPhase) {
duke@435 2063 gclog_or_tty->print_cr("marking_phase: cas_tries %d cas_retries %d "
duke@435 2064 "cas_by_another %d",
duke@435 2065 mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
duke@435 2066 mark_bitmap()->cas_by_another());
duke@435 2067 }
duke@435 2068 #endif // #ifndef PRODUCT
duke@435 2069
brutisso@3767 2070 bool max_on_system_gc = UseMaximumCompactionOnSystemGC
brutisso@3767 2071 && gc_cause == GCCause::_java_lang_system_gc;
jcoomes@645 2072 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
duke@435 2073
duke@435 2074 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
duke@435 2075 COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
duke@435 2076
duke@435 2077 // adjust_roots() updates Universe::_intArrayKlassObj which is
duke@435 2078 // needed by the compaction for filling holes in the dense prefix.
duke@435 2079 adjust_roots();
duke@435 2080
duke@435 2081 compaction_start.update();
jcoomes@2783 2082 compact();
duke@435 2083
duke@435 2084 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be
duke@435 2085 // done before resizing.
duke@435 2086 post_compact();
duke@435 2087
duke@435 2088 // Let the size policy know we're done
duke@435 2089 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
duke@435 2090
duke@435 2091 if (UseAdaptiveSizePolicy) {
duke@435 2092 if (PrintAdaptiveSizePolicy) {
duke@435 2093 gclog_or_tty->print("AdaptiveSizeStart: ");
duke@435 2094 gclog_or_tty->stamp();
duke@435 2095 gclog_or_tty->print_cr(" collection: %d ",
duke@435 2096 heap->total_collections());
duke@435 2097 if (Verbose) {
coleenp@4037 2098 gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
coleenp@4037 2099 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
duke@435 2100 }
duke@435 2101 }
duke@435 2102
duke@435 2103 // Don't check if the size_policy is ready here. Let
duke@435 2104 // the size_policy check that internally.
duke@435 2105 if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
duke@435 2106 ((gc_cause != GCCause::_java_lang_system_gc) ||
duke@435 2107 UseAdaptiveSizePolicyWithSystemGC)) {
duke@435 2108 // Calculate optimal free space amounts
duke@435 2109 assert(young_gen->max_size() >
duke@435 2110 young_gen->from_space()->capacity_in_bytes() +
duke@435 2111 young_gen->to_space()->capacity_in_bytes(),
duke@435 2112 "Sizes of space in young gen are out-of-bounds");
duke@435 2113 size_t max_eden_size = young_gen->max_size() -
duke@435 2114 young_gen->from_space()->capacity_in_bytes() -
duke@435 2115 young_gen->to_space()->capacity_in_bytes();
jmasa@698 2116 size_policy->compute_generation_free_space(
jmasa@698 2117 young_gen->used_in_bytes(),
jmasa@698 2118 young_gen->eden_space()->used_in_bytes(),
jmasa@698 2119 old_gen->used_in_bytes(),
jmasa@698 2120 young_gen->eden_space()->capacity_in_bytes(),
jmasa@698 2121 old_gen->max_gen_size(),
jmasa@698 2122 max_eden_size,
jmasa@698 2123 true /* full gc*/,
jmasa@1822 2124 gc_cause,
jmasa@1822 2125 heap->collector_policy());
jmasa@698 2126
jmasa@698 2127 heap->resize_old_gen(
jmasa@698 2128 size_policy->calculated_old_free_size_in_bytes());
duke@435 2129
duke@435 2130 // Don't resize the young generation at an major collection. A
duke@435 2131 // desired young generation size may have been calculated but
duke@435 2132 // resizing the young generation complicates the code because the
duke@435 2133 // resizing of the old generation may have moved the boundary
duke@435 2134 // between the young generation and the old generation. Let the
duke@435 2135 // young generation resizing happen at the minor collections.
duke@435 2136 }
duke@435 2137 if (PrintAdaptiveSizePolicy) {
duke@435 2138 gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
duke@435 2139 heap->total_collections());
duke@435 2140 }
duke@435 2141 }
duke@435 2142
duke@435 2143 if (UsePerfData) {
duke@435 2144 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
duke@435 2145 counters->update_counters();
duke@435 2146 counters->update_old_capacity(old_gen->capacity_in_bytes());
duke@435 2147 counters->update_young_capacity(young_gen->capacity_in_bytes());
duke@435 2148 }
duke@435 2149
duke@435 2150 heap->resize_all_tlabs();
duke@435 2151
coleenp@4037 2152 // Resize the metaspace capactiy after a collection
coleenp@4037 2153 MetaspaceGC::compute_new_size();
duke@435 2154
duke@435 2155 if (TraceGen1Time) accumulated_time()->stop();
duke@435 2156
duke@435 2157 if (PrintGC) {
duke@435 2158 if (PrintGCDetails) {
duke@435 2159 // No GC timestamp here. This is after GC so it would be confusing.
duke@435 2160 young_gen->print_used_change(pre_gc_values.young_gen_used());
duke@435 2161 old_gen->print_used_change(pre_gc_values.old_gen_used());
duke@435 2162 heap->print_heap_change(pre_gc_values.heap_used());
coleenp@4037 2163 MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
duke@435 2164 } else {
duke@435 2165 heap->print_heap_change(pre_gc_values.heap_used());
duke@435 2166 }
duke@435 2167 }
duke@435 2168
duke@435 2169 // Track memory usage and detect low memory
duke@435 2170 MemoryService::track_memory_usage();
duke@435 2171 heap->update_counters();
jmasa@3294 2172 gc_task_manager()->release_idle_workers();
duke@435 2173 }
duke@435 2174
jcoomes@2191 2175 #ifdef ASSERT
jcoomes@2191 2176 for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
jcoomes@2191 2177 ParCompactionManager* const cm =
jcoomes@2191 2178 ParCompactionManager::manager_array(int(i));
jcoomes@2191 2179 assert(cm->marking_stack()->is_empty(), "should be empty");
jmasa@3294 2180 assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
jcoomes@2191 2181 }
jcoomes@2191 2182 #endif // ASSERT
jcoomes@2191 2183
duke@435 2184 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 2185 HandleMark hm; // Discard invalid handles created during verification
duke@435 2186 gclog_or_tty->print(" VerifyAfterGC:");
duke@435 2187 Universe::verify(false);
duke@435 2188 }
duke@435 2189
duke@435 2190 // Re-verify object start arrays
duke@435 2191 if (VerifyObjectStartArray &&
duke@435 2192 VerifyAfterGC) {
duke@435 2193 old_gen->verify_object_start_array();
duke@435 2194 }
duke@435 2195
jmasa@698 2196 if (ZapUnusedHeapArea) {
jmasa@698 2197 old_gen->object_space()->check_mangled_unused_area_complete();
jmasa@698 2198 }
jmasa@698 2199
duke@435 2200 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
duke@435 2201
duke@435 2202 collection_exit.update();
duke@435 2203
never@3499 2204 heap->print_heap_after_gc();
duke@435 2205 if (PrintGCTaskTimeStamps) {
duke@435 2206 gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
duke@435 2207 INT64_FORMAT,
duke@435 2208 marking_start.ticks(), compaction_start.ticks(),
duke@435 2209 collection_exit.ticks());
duke@435 2210 gc_task_manager()->print_task_time_stamps();
duke@435 2211 }
jmasa@981 2212
ysr@1050 2213 heap->post_full_gc_dump();
ysr@1050 2214
jmasa@981 2215 #ifdef TRACESPINNING
jmasa@981 2216 ParallelTaskTerminator::print_termination_counts();
jmasa@981 2217 #endif
jcoomes@3540 2218
jcoomes@3540 2219 return true;
duke@435 2220 }
duke@435 2221
duke@435 2222 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
duke@435 2223 PSYoungGen* young_gen,
duke@435 2224 PSOldGen* old_gen) {
duke@435 2225 MutableSpace* const eden_space = young_gen->eden_space();
duke@435 2226 assert(!eden_space->is_empty(), "eden must be non-empty");
duke@435 2227 assert(young_gen->virtual_space()->alignment() ==
duke@435 2228 old_gen->virtual_space()->alignment(), "alignments do not match");
duke@435 2229
duke@435 2230 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
duke@435 2231 return false;
duke@435 2232 }
duke@435 2233
duke@435 2234 // Both generations must be completely committed.
duke@435 2235 if (young_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2236 return false;
duke@435 2237 }
duke@435 2238 if (old_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2239 return false;
duke@435 2240 }
duke@435 2241
duke@435 2242 // Figure out how much to take from eden. Include the average amount promoted
duke@435 2243 // in the total; otherwise the next young gen GC will simply bail out to a
duke@435 2244 // full GC.
duke@435 2245 const size_t alignment = old_gen->virtual_space()->alignment();
duke@435 2246 const size_t eden_used = eden_space->used_in_bytes();
duke@435 2247 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
duke@435 2248 const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
duke@435 2249 const size_t eden_capacity = eden_space->capacity_in_bytes();
duke@435 2250
duke@435 2251 if (absorb_size >= eden_capacity) {
duke@435 2252 return false; // Must leave some space in eden.
duke@435 2253 }
duke@435 2254
duke@435 2255 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
duke@435 2256 if (new_young_size < young_gen->min_gen_size()) {
duke@435 2257 return false; // Respect young gen minimum size.
duke@435 2258 }
duke@435 2259
duke@435 2260 if (TraceAdaptiveGCBoundary && Verbose) {
duke@435 2261 gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: "
duke@435 2262 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
duke@435 2263 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
duke@435 2264 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
duke@435 2265 absorb_size / K,
duke@435 2266 eden_capacity / K, (eden_capacity - absorb_size) / K,
duke@435 2267 young_gen->from_space()->used_in_bytes() / K,
duke@435 2268 young_gen->to_space()->used_in_bytes() / K,
duke@435 2269 young_gen->capacity_in_bytes() / K, new_young_size / K);
duke@435 2270 }
duke@435 2271
duke@435 2272 // Fill the unused part of the old gen.
duke@435 2273 MutableSpace* const old_space = old_gen->object_space();
jcoomes@916 2274 HeapWord* const unused_start = old_space->top();
jcoomes@916 2275 size_t const unused_words = pointer_delta(old_space->end(), unused_start);
jcoomes@916 2276
jcoomes@916 2277 if (unused_words > 0) {
jcoomes@916 2278 if (unused_words < CollectedHeap::min_fill_size()) {
jcoomes@916 2279 return false; // If the old gen cannot be filled, must give up.
jcoomes@916 2280 }
jcoomes@916 2281 CollectedHeap::fill_with_objects(unused_start, unused_words);
duke@435 2282 }
duke@435 2283
duke@435 2284 // Take the live data from eden and set both top and end in the old gen to
duke@435 2285 // eden top. (Need to set end because reset_after_change() mangles the region
duke@435 2286 // from end to virtual_space->high() in debug builds).
duke@435 2287 HeapWord* const new_top = eden_space->top();
duke@435 2288 old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
duke@435 2289 absorb_size);
duke@435 2290 young_gen->reset_after_change();
duke@435 2291 old_space->set_top(new_top);
duke@435 2292 old_space->set_end(new_top);
duke@435 2293 old_gen->reset_after_change();
duke@435 2294
duke@435 2295 // Update the object start array for the filler object and the data from eden.
duke@435 2296 ObjectStartArray* const start_array = old_gen->start_array();
jcoomes@916 2297 for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
jcoomes@916 2298 start_array->allocate_block(p);
duke@435 2299 }
duke@435 2300
duke@435 2301 // Could update the promoted average here, but it is not typically updated at
duke@435 2302 // full GCs and the value to use is unclear. Something like
duke@435 2303 //
duke@435 2304 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
duke@435 2305
duke@435 2306 size_policy->set_bytes_absorbed_from_eden(absorb_size);
duke@435 2307 return true;
duke@435 2308 }
duke@435 2309
duke@435 2310 GCTaskManager* const PSParallelCompact::gc_task_manager() {
duke@435 2311 assert(ParallelScavengeHeap::gc_task_manager() != NULL,
duke@435 2312 "shouldn't return NULL");
duke@435 2313 return ParallelScavengeHeap::gc_task_manager();
duke@435 2314 }
duke@435 2315
duke@435 2316 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
duke@435 2317 bool maximum_heap_compaction) {
duke@435 2318 // Recursively traverse all live objects and mark them
duke@435 2319 TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
duke@435 2320
duke@435 2321 ParallelScavengeHeap* heap = gc_heap();
duke@435 2322 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jmasa@3294 2323 uint active_gc_threads = heap->gc_task_manager()->active_workers();
jcoomes@810 2324 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
jmasa@3294 2325 ParallelTaskTerminator terminator(active_gc_threads, qset);
duke@435 2326
duke@435 2327 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
duke@435 2328 PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
duke@435 2329
coleenp@4037 2330 // Need new claim bits before marking starts.
coleenp@4037 2331 ClassLoaderDataGraph::clear_claimed_marks();
coleenp@4037 2332
duke@435 2333 {
duke@435 2334 TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
jrose@1424 2335 ParallelScavengeHeap::ParStrongRootsScope psrs;
duke@435 2336
duke@435 2337 GCTaskQueue* q = GCTaskQueue::create();
duke@435 2338
duke@435 2339 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
duke@435 2340 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
duke@435 2341 // We scan the thread roots in parallel
duke@435 2342 Threads::create_thread_roots_marking_tasks(q);
duke@435 2343 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
duke@435 2344 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
duke@435 2345 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
duke@435 2346 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
duke@435 2347 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
jrose@1424 2348 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
duke@435 2349
jmasa@3294 2350 if (active_gc_threads > 1) {
jmasa@3294 2351 for (uint j = 0; j < active_gc_threads; j++) {
duke@435 2352 q->enqueue(new StealMarkingTask(&terminator));
duke@435 2353 }
duke@435 2354 }
duke@435 2355
jmasa@3294 2356 gc_task_manager()->execute_and_wait(q);
duke@435 2357 }
duke@435 2358
duke@435 2359 // Process reference objects found during marking
duke@435 2360 {
duke@435 2361 TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
duke@435 2362 if (ref_processor()->processing_is_mt()) {
duke@435 2363 RefProcTaskExecutor task_executor;
duke@435 2364 ref_processor()->process_discovered_references(
ysr@888 2365 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
ysr@888 2366 &task_executor);
duke@435 2367 } else {
duke@435 2368 ref_processor()->process_discovered_references(
ysr@888 2369 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
duke@435 2370 }
duke@435 2371 }
duke@435 2372
duke@435 2373 TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
duke@435 2374 // Follow system dictionary roots and unload classes.
duke@435 2375 bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
duke@435 2376
duke@435 2377 // Follow code cache roots.
brutisso@4098 2378 CodeCache::do_unloading(is_alive_closure(), purged_class);
jcoomes@1746 2379 cm->follow_marking_stacks(); // Flush marking stack.
duke@435 2380
duke@435 2381 // Update subklass/sibling/implementor links of live klasses
coleenp@4037 2382 Klass::clean_weak_klass_links(is_alive_closure());
duke@435 2383
coleenp@2497 2384 // Visit interned string tables and delete unmarked oops
duke@435 2385 StringTable::unlink(is_alive_closure());
coleenp@2497 2386 // Clean up unreferenced symbols in symbol table.
coleenp@2497 2387 SymbolTable::unlink();
duke@435 2388
jcoomes@1746 2389 assert(cm->marking_stacks_empty(), "marking stacks should be empty");
duke@435 2390 }
duke@435 2391
coleenp@4037 2392 void PSParallelCompact::follow_klass(ParCompactionManager* cm, Klass* klass) {
coleenp@4037 2393 ClassLoaderData* cld = klass->class_loader_data();
coleenp@4037 2394 // The actual processing of the klass is done when we
coleenp@4037 2395 // traverse the list of Klasses in the class loader data.
coleenp@4037 2396 PSParallelCompact::follow_class_loader(cm, cld);
coleenp@4037 2397 }
coleenp@4037 2398
coleenp@4037 2399 void PSParallelCompact::adjust_klass(ParCompactionManager* cm, Klass* klass) {
coleenp@4037 2400 ClassLoaderData* cld = klass->class_loader_data();
coleenp@4037 2401 // The actual processing of the klass is done when we
coleenp@4037 2402 // traverse the list of Klasses in the class loader data.
coleenp@4037 2403 PSParallelCompact::adjust_class_loader(cm, cld);
coleenp@4037 2404 }
coleenp@4037 2405
coleenp@4037 2406 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
coleenp@4037 2407 ClassLoaderData* cld) {
coleenp@4037 2408 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
coleenp@4037 2409 PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);
coleenp@4037 2410
coleenp@4037 2411 cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
coleenp@4037 2412 }
coleenp@4037 2413
coleenp@4037 2414 void PSParallelCompact::adjust_class_loader(ParCompactionManager* cm,
coleenp@4037 2415 ClassLoaderData* cld) {
coleenp@4037 2416 cld->oops_do(PSParallelCompact::adjust_root_pointer_closure(),
coleenp@4037 2417 PSParallelCompact::adjust_klass_closure(),
coleenp@4037 2418 true);
coleenp@4037 2419 }
coleenp@4037 2420
duke@435 2421 // This should be moved to the shared markSweep code!
duke@435 2422 class PSAlwaysTrueClosure: public BoolObjectClosure {
duke@435 2423 public:
duke@435 2424 void do_object(oop p) { ShouldNotReachHere(); }
duke@435 2425 bool do_object_b(oop p) { return true; }
duke@435 2426 };
duke@435 2427 static PSAlwaysTrueClosure always_true;
duke@435 2428
duke@435 2429 void PSParallelCompact::adjust_roots() {
duke@435 2430 // Adjust the pointers to reflect the new locations
duke@435 2431 TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
duke@435 2432
coleenp@4037 2433 // Need new claim bits when tracing through and adjusting pointers.
coleenp@4037 2434 ClassLoaderDataGraph::clear_claimed_marks();
coleenp@4037 2435
duke@435 2436 // General strong roots.
duke@435 2437 Universe::oops_do(adjust_root_pointer_closure());
duke@435 2438 JNIHandles::oops_do(adjust_root_pointer_closure()); // Global (strong) JNI handles
jrose@1424 2439 Threads::oops_do(adjust_root_pointer_closure(), NULL);
duke@435 2440 ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
duke@435 2441 FlatProfiler::oops_do(adjust_root_pointer_closure());
duke@435 2442 Management::oops_do(adjust_root_pointer_closure());
duke@435 2443 JvmtiExport::oops_do(adjust_root_pointer_closure());
duke@435 2444 // SO_AllClasses
duke@435 2445 SystemDictionary::oops_do(adjust_root_pointer_closure());
coleenp@4037 2446 ClassLoaderDataGraph::oops_do(adjust_root_pointer_closure(), adjust_klass_closure(), true);
duke@435 2447
duke@435 2448 // Now adjust pointers in remaining weak roots. (All of which should
duke@435 2449 // have been cleared if they pointed to non-surviving objects.)
duke@435 2450 // Global (weak) JNI handles
duke@435 2451 JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
duke@435 2452
duke@435 2453 CodeCache::oops_do(adjust_pointer_closure());
duke@435 2454 StringTable::oops_do(adjust_root_pointer_closure());
duke@435 2455 ref_processor()->weak_oops_do(adjust_root_pointer_closure());
duke@435 2456 // Roots were visited so references into the young gen in roots
duke@435 2457 // may have been scanned. Process them also.
duke@435 2458 // Should the reference processor have a span that excludes
duke@435 2459 // young gen objects?
duke@435 2460 PSScavenge::reference_processor()->weak_oops_do(
duke@435 2461 adjust_root_pointer_closure());
duke@435 2462 }
duke@435 2463
jcoomes@810 2464 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
jcoomes@810 2465 uint parallel_gc_threads)
jcoomes@810 2466 {
duke@435 2467 TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
duke@435 2468
jmasa@3294 2469 // Find the threads that are active
jmasa@3294 2470 unsigned int which = 0;
jmasa@3294 2471
jmasa@3294 2472 const uint task_count = MAX2(parallel_gc_threads, 1U);
jmasa@3294 2473 for (uint j = 0; j < task_count; j++) {
jmasa@2188 2474 q->enqueue(new DrainStacksCompactionTask(j));
jmasa@3294 2475 ParCompactionManager::verify_region_list_empty(j);
jmasa@3294 2476 // Set the region stacks variables to "no" region stack values
jmasa@3294 2477 // so that they will be recognized and needing a region stack
jmasa@3294 2478 // in the stealing tasks if they do not get one by executing
jmasa@3294 2479 // a draining stack.
jmasa@3294 2480 ParCompactionManager* cm = ParCompactionManager::manager_array(j);
jmasa@3294 2481 cm->set_region_stack(NULL);
jmasa@3294 2482 cm->set_region_stack_index((uint)max_uintx);
duke@435 2483 }
jmasa@3294 2484 ParCompactionManager::reset_recycled_stack_index();
duke@435 2485
jcoomes@810 2486 // Find all regions that are available (can be filled immediately) and
duke@435 2487 // distribute them to the thread stacks. The iteration is done in reverse
jcoomes@810 2488 // order (high to low) so the regions will be removed in ascending order.
duke@435 2489
duke@435 2490 const ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2491
jcoomes@810 2492 size_t fillable_regions = 0; // A count for diagnostic purposes.
jmasa@3294 2493 // A region index which corresponds to the tasks created above.
jmasa@3294 2494 // "which" must be 0 <= which < task_count
jmasa@3294 2495
jmasa@3294 2496 which = 0;
coleenp@4037 2497 // id + 1 is used to test termination so unsigned can
coleenp@4037 2498 // be used with an old_space_id == 0.
coleenp@4037 2499 for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
duke@435 2500 SpaceInfo* const space_info = _space_info + id;
duke@435 2501 MutableSpace* const space = space_info->space();
duke@435 2502 HeapWord* const new_top = space_info->new_top();
duke@435 2503
jcoomes@810 2504 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
jcoomes@810 2505 const size_t end_region =
jcoomes@810 2506 sd.addr_to_region_idx(sd.region_align_up(new_top));
coleenp@4037 2507
coleenp@4037 2508 for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
jcoomes@810 2509 if (sd.region(cur)->claim_unsafe()) {
jmasa@3294 2510 ParCompactionManager::region_list_push(which, cur);
duke@435 2511
duke@435 2512 if (TraceParallelOldGCCompactionPhase && Verbose) {
jcoomes@810 2513 const size_t count_mod_8 = fillable_regions & 7;
duke@435 2514 if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
jcoomes@699 2515 gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
duke@435 2516 if (count_mod_8 == 7) gclog_or_tty->cr();
duke@435 2517 }
duke@435 2518
jcoomes@810 2519 NOT_PRODUCT(++fillable_regions;)
jcoomes@810 2520
jmasa@3294 2521 // Assign regions to tasks in round-robin fashion.
duke@435 2522 if (++which == task_count) {
jmasa@3294 2523 assert(which <= parallel_gc_threads,
jmasa@3294 2524 "Inconsistent number of workers");
duke@435 2525 which = 0;
duke@435 2526 }
duke@435 2527 }
duke@435 2528 }
duke@435 2529 }
duke@435 2530
duke@435 2531 if (TraceParallelOldGCCompactionPhase) {
jcoomes@810 2532 if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
jcoomes@810 2533 gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
duke@435 2534 }
duke@435 2535 }
duke@435 2536
duke@435 2537 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
duke@435 2538
duke@435 2539 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
duke@435 2540 uint parallel_gc_threads) {
duke@435 2541 TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
duke@435 2542
duke@435 2543 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2544
duke@435 2545 // Iterate over all the spaces adding tasks for updating
jcoomes@810 2546 // regions in the dense prefix. Assume that 1 gc thread
duke@435 2547 // will work on opening the gaps and the remaining gc threads
duke@435 2548 // will work on the dense prefix.
jcoomes@917 2549 unsigned int space_id;
jcoomes@917 2550 for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
duke@435 2551 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
duke@435 2552 const MutableSpace* const space = _space_info[space_id].space();
duke@435 2553
duke@435 2554 if (dense_prefix_end == space->bottom()) {
duke@435 2555 // There is no dense prefix for this space.
duke@435 2556 continue;
duke@435 2557 }
duke@435 2558
jcoomes@810 2559 // The dense prefix is before this region.
jcoomes@810 2560 size_t region_index_end_dense_prefix =
jcoomes@810 2561 sd.addr_to_region_idx(dense_prefix_end);
jcoomes@810 2562 RegionData* const dense_prefix_cp =
jcoomes@810 2563 sd.region(region_index_end_dense_prefix);
duke@435 2564 assert(dense_prefix_end == space->end() ||
duke@435 2565 dense_prefix_cp->available() ||
duke@435 2566 dense_prefix_cp->claimed(),
jcoomes@810 2567 "The region after the dense prefix should always be ready to fill");
jcoomes@810 2568
jcoomes@810 2569 size_t region_index_start = sd.addr_to_region_idx(space->bottom());
duke@435 2570
duke@435 2571 // Is there dense prefix work?
jcoomes@810 2572 size_t total_dense_prefix_regions =
jcoomes@810 2573 region_index_end_dense_prefix - region_index_start;
jcoomes@810 2574 // How many regions of the dense prefix should be given to
duke@435 2575 // each thread?
jcoomes@810 2576 if (total_dense_prefix_regions > 0) {
duke@435 2577 uint tasks_for_dense_prefix = 1;
jcoomes@2783 2578 if (total_dense_prefix_regions <=
jcoomes@2783 2579 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
jcoomes@2783 2580 // Don't over partition. This assumes that
jcoomes@2783 2581 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
jcoomes@2783 2582 // so there are not many regions to process.
jcoomes@2783 2583 tasks_for_dense_prefix = parallel_gc_threads;
jcoomes@2783 2584 } else {
jcoomes@2783 2585 // Over partition
jcoomes@2783 2586 tasks_for_dense_prefix = parallel_gc_threads *
jcoomes@2783 2587 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
duke@435 2588 }
jcoomes@810 2589 size_t regions_per_thread = total_dense_prefix_regions /
duke@435 2590 tasks_for_dense_prefix;
jcoomes@810 2591 // Give each thread at least 1 region.
jcoomes@810 2592 if (regions_per_thread == 0) {
jcoomes@810 2593 regions_per_thread = 1;
duke@435 2594 }
duke@435 2595
duke@435 2596 for (uint k = 0; k < tasks_for_dense_prefix; k++) {
jcoomes@810 2597 if (region_index_start >= region_index_end_dense_prefix) {
duke@435 2598 break;
duke@435 2599 }
jcoomes@810 2600 // region_index_end is not processed
jcoomes@810 2601 size_t region_index_end = MIN2(region_index_start + regions_per_thread,
jcoomes@810 2602 region_index_end_dense_prefix);
jcoomes@917 2603 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2604 region_index_start,
jcoomes@917 2605 region_index_end));
jcoomes@810 2606 region_index_start = region_index_end;
duke@435 2607 }
duke@435 2608 }
duke@435 2609 // This gets any part of the dense prefix that did not
duke@435 2610 // fit evenly.
jcoomes@810 2611 if (region_index_start < region_index_end_dense_prefix) {
jcoomes@917 2612 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2613 region_index_start,
jcoomes@917 2614 region_index_end_dense_prefix));
duke@435 2615 }
jcoomes@917 2616 }
duke@435 2617 }
duke@435 2618
jcoomes@810 2619 void PSParallelCompact::enqueue_region_stealing_tasks(
duke@435 2620 GCTaskQueue* q,
duke@435 2621 ParallelTaskTerminator* terminator_ptr,
duke@435 2622 uint parallel_gc_threads) {
duke@435 2623 TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
duke@435 2624
jcoomes@810 2625 // Once a thread has drained it's stack, it should try to steal regions from
duke@435 2626 // other threads.
duke@435 2627 if (parallel_gc_threads > 1) {
duke@435 2628 for (uint j = 0; j < parallel_gc_threads; j++) {
jcoomes@810 2629 q->enqueue(new StealRegionCompactionTask(terminator_ptr));
duke@435 2630 }
duke@435 2631 }
duke@435 2632 }
duke@435 2633
duke@435 2634 void PSParallelCompact::compact() {
duke@435 2635 // trace("5");
duke@435 2636 TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
duke@435 2637
duke@435 2638 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 2639 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 2640 PSOldGen* old_gen = heap->old_gen();
duke@435 2641 old_gen->start_array()->reset();
duke@435 2642 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jmasa@3294 2643 uint active_gc_threads = heap->gc_task_manager()->active_workers();
jcoomes@810 2644 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
jmasa@3294 2645 ParallelTaskTerminator terminator(active_gc_threads, qset);
duke@435 2646
duke@435 2647 GCTaskQueue* q = GCTaskQueue::create();
jmasa@3294 2648 enqueue_region_draining_tasks(q, active_gc_threads);
jmasa@3294 2649 enqueue_dense_prefix_tasks(q, active_gc_threads);
jmasa@3294 2650 enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
duke@435 2651
duke@435 2652 {
duke@435 2653 TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
duke@435 2654
jmasa@3294 2655 gc_task_manager()->execute_and_wait(q);
duke@435 2656
duke@435 2657 #ifdef ASSERT
jcoomes@810 2658 // Verify that all regions have been processed before the deferred updates.
duke@435 2659 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2660 verify_complete(SpaceId(id));
duke@435 2661 }
duke@435 2662 #endif
duke@435 2663 }
duke@435 2664
duke@435 2665 {
duke@435 2666 // Update the deferred objects, if any. Any compaction manager can be used.
duke@435 2667 TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
duke@435 2668 ParCompactionManager* cm = ParCompactionManager::manager_array(0);
duke@435 2669 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2670 update_deferred_objects(cm, SpaceId(id));
duke@435 2671 }
duke@435 2672 }
duke@435 2673 }
duke@435 2674
duke@435 2675 #ifdef ASSERT
duke@435 2676 void PSParallelCompact::verify_complete(SpaceId space_id) {
jcoomes@810 2677 // All Regions between space bottom() to new_top() should be marked as filled
jcoomes@810 2678 // and all Regions between new_top() and top() should be available (i.e.,
duke@435 2679 // should have been emptied).
duke@435 2680 ParallelCompactData& sd = summary_data();
duke@435 2681 SpaceInfo si = _space_info[space_id];
jcoomes@810 2682 HeapWord* new_top_addr = sd.region_align_up(si.new_top());
jcoomes@810 2683 HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
jcoomes@810 2684 const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
jcoomes@810 2685 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
jcoomes@810 2686 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
duke@435 2687
duke@435 2688 bool issued_a_warning = false;
duke@435 2689
jcoomes@810 2690 size_t cur_region;
jcoomes@810 2691 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
jcoomes@810 2692 const RegionData* const c = sd.region(cur_region);
duke@435 2693 if (!c->completed()) {
jcoomes@810 2694 warning("region " SIZE_FORMAT " not filled: "
duke@435 2695 "destination_count=" SIZE_FORMAT,
jcoomes@810 2696 cur_region, c->destination_count());
duke@435 2697 issued_a_warning = true;
duke@435 2698 }
duke@435 2699 }
duke@435 2700
jcoomes@810 2701 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
jcoomes@810 2702 const RegionData* const c = sd.region(cur_region);
duke@435 2703 if (!c->available()) {
jcoomes@810 2704 warning("region " SIZE_FORMAT " not empty: "
duke@435 2705 "destination_count=" SIZE_FORMAT,
jcoomes@810 2706 cur_region, c->destination_count());
duke@435 2707 issued_a_warning = true;
duke@435 2708 }
duke@435 2709 }
duke@435 2710
duke@435 2711 if (issued_a_warning) {
jcoomes@810 2712 print_region_ranges();
duke@435 2713 }
duke@435 2714 }
duke@435 2715 #endif // #ifdef ASSERT
duke@435 2716
ysr@1376 2717
duke@435 2718 #ifdef VALIDATE_MARK_SWEEP
duke@435 2719
coleenp@548 2720 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
duke@435 2721 if (!ValidateMarkSweep)
duke@435 2722 return;
duke@435 2723
duke@435 2724 if (!isroot) {
duke@435 2725 if (_pointer_tracking) {
duke@435 2726 guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
duke@435 2727 _adjusted_pointers->remove(p);
duke@435 2728 }
duke@435 2729 } else {
duke@435 2730 ptrdiff_t index = _root_refs_stack->find(p);
duke@435 2731 if (index != -1) {
duke@435 2732 int l = _root_refs_stack->length();
duke@435 2733 if (l > 0 && l - 1 != index) {
coleenp@548 2734 void* last = _root_refs_stack->pop();
duke@435 2735 assert(last != p, "should be different");
duke@435 2736 _root_refs_stack->at_put(index, last);
duke@435 2737 } else {
duke@435 2738 _root_refs_stack->remove(p);
duke@435 2739 }
duke@435 2740 }
duke@435 2741 }
duke@435 2742 }
duke@435 2743
duke@435 2744
coleenp@548 2745 void PSParallelCompact::check_adjust_pointer(void* p) {
duke@435 2746 _adjusted_pointers->push(p);
duke@435 2747 }
duke@435 2748
duke@435 2749
duke@435 2750 class AdjusterTracker: public OopClosure {
duke@435 2751 public:
duke@435 2752 AdjusterTracker() {};
coleenp@548 2753 void do_oop(oop* o) { PSParallelCompact::check_adjust_pointer(o); }
coleenp@548 2754 void do_oop(narrowOop* o) { PSParallelCompact::check_adjust_pointer(o); }
duke@435 2755 };
duke@435 2756
duke@435 2757
duke@435 2758 void PSParallelCompact::track_interior_pointers(oop obj) {
duke@435 2759 if (ValidateMarkSweep) {
duke@435 2760 _adjusted_pointers->clear();
duke@435 2761 _pointer_tracking = true;
duke@435 2762
duke@435 2763 AdjusterTracker checker;
coleenp@4037 2764 obj->oop_iterate_no_header(&checker);
duke@435 2765 }
duke@435 2766 }
duke@435 2767
duke@435 2768
duke@435 2769 void PSParallelCompact::check_interior_pointers() {
duke@435 2770 if (ValidateMarkSweep) {
duke@435 2771 _pointer_tracking = false;
duke@435 2772 guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
duke@435 2773 }
duke@435 2774 }
duke@435 2775
duke@435 2776
coleenp@4037 2777 void PSParallelCompact::reset_live_oop_tracking() {
duke@435 2778 if (ValidateMarkSweep) {
duke@435 2779 guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
coleenp@4037 2780 _live_oops_index = 0;
duke@435 2781 }
duke@435 2782 }
duke@435 2783
duke@435 2784
duke@435 2785 void PSParallelCompact::register_live_oop(oop p, size_t size) {
duke@435 2786 if (ValidateMarkSweep) {
duke@435 2787 _live_oops->push(p);
duke@435 2788 _live_oops_size->push(size);
duke@435 2789 _live_oops_index++;
duke@435 2790 }
duke@435 2791 }
duke@435 2792
duke@435 2793 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
duke@435 2794 if (ValidateMarkSweep) {
duke@435 2795 oop obj = _live_oops->at((int)_live_oops_index);
duke@435 2796 guarantee(obj == p, "should be the same object");
duke@435 2797 guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
duke@435 2798 _live_oops_index++;
duke@435 2799 }
duke@435 2800 }
duke@435 2801
duke@435 2802 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
duke@435 2803 HeapWord* compaction_top) {
duke@435 2804 assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
duke@435 2805 "should be moved to forwarded location");
duke@435 2806 if (ValidateMarkSweep) {
duke@435 2807 PSParallelCompact::validate_live_oop(oop(q), size);
duke@435 2808 _live_oops_moved_to->push(oop(compaction_top));
duke@435 2809 }
duke@435 2810 if (RecordMarkSweepCompaction) {
duke@435 2811 _cur_gc_live_oops->push(q);
duke@435 2812 _cur_gc_live_oops_moved_to->push(compaction_top);
duke@435 2813 _cur_gc_live_oops_size->push(size);
duke@435 2814 }
duke@435 2815 }
duke@435 2816
duke@435 2817
duke@435 2818 void PSParallelCompact::compaction_complete() {
duke@435 2819 if (RecordMarkSweepCompaction) {
duke@435 2820 GrowableArray<HeapWord*>* _tmp_live_oops = _cur_gc_live_oops;
duke@435 2821 GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
duke@435 2822 GrowableArray<size_t> * _tmp_live_oops_size = _cur_gc_live_oops_size;
duke@435 2823
duke@435 2824 _cur_gc_live_oops = _last_gc_live_oops;
duke@435 2825 _cur_gc_live_oops_moved_to = _last_gc_live_oops_moved_to;
duke@435 2826 _cur_gc_live_oops_size = _last_gc_live_oops_size;
duke@435 2827 _last_gc_live_oops = _tmp_live_oops;
duke@435 2828 _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
duke@435 2829 _last_gc_live_oops_size = _tmp_live_oops_size;
duke@435 2830 }
duke@435 2831 }
duke@435 2832
duke@435 2833
duke@435 2834 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
duke@435 2835 if (!RecordMarkSweepCompaction) {
duke@435 2836 tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
duke@435 2837 return;
duke@435 2838 }
duke@435 2839
duke@435 2840 if (_last_gc_live_oops == NULL) {
duke@435 2841 tty->print_cr("No compaction information gathered yet");
duke@435 2842 return;
duke@435 2843 }
duke@435 2844
duke@435 2845 for (int i = 0; i < _last_gc_live_oops->length(); i++) {
duke@435 2846 HeapWord* old_oop = _last_gc_live_oops->at(i);
duke@435 2847 size_t sz = _last_gc_live_oops_size->at(i);
duke@435 2848 if (old_oop <= q && q < (old_oop + sz)) {
duke@435 2849 HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
duke@435 2850 size_t offset = (q - old_oop);
duke@435 2851 tty->print_cr("Address " PTR_FORMAT, q);
duke@435 2852 tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
duke@435 2853 tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
duke@435 2854 return;
duke@435 2855 }
duke@435 2856 }
duke@435 2857
duke@435 2858 tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
duke@435 2859 }
duke@435 2860 #endif //VALIDATE_MARK_SWEEP
duke@435 2861
jcoomes@810 2862 // Update interior oops in the ranges of regions [beg_region, end_region).
duke@435 2863 void
duke@435 2864 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
duke@435 2865 SpaceId space_id,
jcoomes@810 2866 size_t beg_region,
jcoomes@810 2867 size_t end_region) {
duke@435 2868 ParallelCompactData& sd = summary_data();
duke@435 2869 ParMarkBitMap* const mbm = mark_bitmap();
duke@435 2870
jcoomes@810 2871 HeapWord* beg_addr = sd.region_to_addr(beg_region);
jcoomes@810 2872 HeapWord* const end_addr = sd.region_to_addr(end_region);
jcoomes@810 2873 assert(beg_region <= end_region, "bad region range");
duke@435 2874 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
duke@435 2875
duke@435 2876 #ifdef ASSERT
jcoomes@810 2877 // Claim the regions to avoid triggering an assert when they are marked as
duke@435 2878 // filled.
jcoomes@810 2879 for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
jcoomes@810 2880 assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
duke@435 2881 }
duke@435 2882 #endif // #ifdef ASSERT
duke@435 2883
duke@435 2884 if (beg_addr != space(space_id)->bottom()) {
duke@435 2885 // Find the first live object or block of dead space that *starts* in this
jcoomes@810 2886 // range of regions. If a partial object crosses onto the region, skip it;
jcoomes@810 2887 // it will be marked for 'deferred update' when the object head is
jcoomes@810 2888 // processed. If dead space crosses onto the region, it is also skipped; it
jcoomes@810 2889 // will be filled when the prior region is processed. If neither of those
jcoomes@810 2890 // apply, the first word in the region is the start of a live object or dead
jcoomes@810 2891 // space.
duke@435 2892 assert(beg_addr > space(space_id)->bottom(), "sanity");
jcoomes@810 2893 const RegionData* const cp = sd.region(beg_region);
duke@435 2894 if (cp->partial_obj_size() != 0) {
jcoomes@810 2895 beg_addr = sd.partial_obj_end(beg_region);
duke@435 2896 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
duke@435 2897 beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
duke@435 2898 }
duke@435 2899 }
duke@435 2900
duke@435 2901 if (beg_addr < end_addr) {
jcoomes@810 2902 // A live object or block of dead space starts in this range of Regions.
duke@435 2903 HeapWord* const dense_prefix_end = dense_prefix(space_id);
duke@435 2904
duke@435 2905 // Create closures and iterate.
duke@435 2906 UpdateOnlyClosure update_closure(mbm, cm, space_id);
duke@435 2907 FillClosure fill_closure(cm, space_id);
duke@435 2908 ParMarkBitMap::IterationStatus status;
duke@435 2909 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
duke@435 2910 dense_prefix_end);
duke@435 2911 if (status == ParMarkBitMap::incomplete) {
duke@435 2912 update_closure.do_addr(update_closure.source());
duke@435 2913 }
duke@435 2914 }
duke@435 2915
jcoomes@810 2916 // Mark the regions as filled.
jcoomes@810 2917 RegionData* const beg_cp = sd.region(beg_region);
jcoomes@810 2918 RegionData* const end_cp = sd.region(end_region);
jcoomes@810 2919 for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
duke@435 2920 cp->set_completed();
duke@435 2921 }
duke@435 2922 }
duke@435 2923
duke@435 2924 // Return the SpaceId for the space containing addr. If addr is not in the
duke@435 2925 // heap, last_space_id is returned. In debug mode it expects the address to be
duke@435 2926 // in the heap and asserts such.
duke@435 2927 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
duke@435 2928 assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
duke@435 2929
coleenp@4037 2930 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2931 if (_space_info[id].space()->contains(addr)) {
duke@435 2932 return SpaceId(id);
duke@435 2933 }
duke@435 2934 }
duke@435 2935
duke@435 2936 assert(false, "no space contains the addr");
duke@435 2937 return last_space_id;
duke@435 2938 }
duke@435 2939
duke@435 2940 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
duke@435 2941 SpaceId id) {
duke@435 2942 assert(id < last_space_id, "bad space id");
duke@435 2943
duke@435 2944 ParallelCompactData& sd = summary_data();
duke@435 2945 const SpaceInfo* const space_info = _space_info + id;
duke@435 2946 ObjectStartArray* const start_array = space_info->start_array();
duke@435 2947
duke@435 2948 const MutableSpace* const space = space_info->space();
duke@435 2949 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
duke@435 2950 HeapWord* const beg_addr = space_info->dense_prefix();
jcoomes@810 2951 HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
jcoomes@810 2952
jcoomes@810 2953 const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
jcoomes@810 2954 const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
jcoomes@810 2955 const RegionData* cur_region;
jcoomes@810 2956 for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
jcoomes@810 2957 HeapWord* const addr = cur_region->deferred_obj_addr();
duke@435 2958 if (addr != NULL) {
duke@435 2959 if (start_array != NULL) {
duke@435 2960 start_array->allocate_block(addr);
duke@435 2961 }
duke@435 2962 oop(addr)->update_contents(cm);
duke@435 2963 assert(oop(addr)->is_oop_or_null(), "should be an oop now");
duke@435 2964 }
duke@435 2965 }
duke@435 2966 }
duke@435 2967
duke@435 2968 // Skip over count live words starting from beg, and return the address of the
duke@435 2969 // next live word. Unless marked, the word corresponding to beg is assumed to
duke@435 2970 // be dead. Callers must either ensure beg does not correspond to the middle of
duke@435 2971 // an object, or account for those live words in some other way. Callers must
duke@435 2972 // also ensure that there are enough live words in the range [beg, end) to skip.
duke@435 2973 HeapWord*
duke@435 2974 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
duke@435 2975 {
duke@435 2976 assert(count > 0, "sanity");
duke@435 2977
duke@435 2978 ParMarkBitMap* m = mark_bitmap();
duke@435 2979 idx_t bits_to_skip = m->words_to_bits(count);
duke@435 2980 idx_t cur_beg = m->addr_to_bit(beg);
duke@435 2981 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
duke@435 2982
duke@435 2983 do {
duke@435 2984 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 2985 idx_t cur_end = m->find_obj_end(cur_beg, search_end);
duke@435 2986 const size_t obj_bits = cur_end - cur_beg + 1;
duke@435 2987 if (obj_bits > bits_to_skip) {
duke@435 2988 return m->bit_to_addr(cur_beg + bits_to_skip);
duke@435 2989 }
duke@435 2990 bits_to_skip -= obj_bits;
duke@435 2991 cur_beg = cur_end + 1;
duke@435 2992 } while (bits_to_skip > 0);
duke@435 2993
duke@435 2994 // Skipping the desired number of words landed just past the end of an object.
duke@435 2995 // Find the start of the next object.
duke@435 2996 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 2997 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
duke@435 2998 return m->bit_to_addr(cur_beg);
duke@435 2999 }
duke@435 3000
jcoomes@917 3001 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
jcoomes@917 3002 SpaceId src_space_id,
jcoomes@917 3003 size_t src_region_idx)
duke@435 3004 {
jcoomes@917 3005 assert(summary_data().is_region_aligned(dest_addr), "not aligned");
jcoomes@917 3006
jcoomes@917 3007 const SplitInfo& split_info = _space_info[src_space_id].split_info();
jcoomes@917 3008 if (split_info.dest_region_addr() == dest_addr) {
jcoomes@917 3009 // The partial object ending at the split point contains the first word to
jcoomes@917 3010 // be copied to dest_addr.
jcoomes@917 3011 return split_info.first_src_addr();
jcoomes@917 3012 }
jcoomes@917 3013
jcoomes@917 3014 const ParallelCompactData& sd = summary_data();
duke@435 3015 ParMarkBitMap* const bitmap = mark_bitmap();
jcoomes@810 3016 const size_t RegionSize = ParallelCompactData::RegionSize;
jcoomes@810 3017
jcoomes@810 3018 assert(sd.is_region_aligned(dest_addr), "not aligned");
jcoomes@810 3019 const RegionData* const src_region_ptr = sd.region(src_region_idx);
jcoomes@810 3020 const size_t partial_obj_size = src_region_ptr->partial_obj_size();
jcoomes@810 3021 HeapWord* const src_region_destination = src_region_ptr->destination();
jcoomes@810 3022
jcoomes@810 3023 assert(dest_addr >= src_region_destination, "wrong src region");
jcoomes@810 3024 assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
jcoomes@810 3025
jcoomes@810 3026 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
jcoomes@810 3027 HeapWord* const src_region_end = src_region_beg + RegionSize;
jcoomes@810 3028
jcoomes@810 3029 HeapWord* addr = src_region_beg;
jcoomes@810 3030 if (dest_addr == src_region_destination) {
jcoomes@810 3031 // Return the first live word in the source region.
duke@435 3032 if (partial_obj_size == 0) {
jcoomes@810 3033 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 3034 assert(addr < src_region_end, "no objects start in src region");
duke@435 3035 }
duke@435 3036 return addr;
duke@435 3037 }
duke@435 3038
duke@435 3039 // Must skip some live data.
jcoomes@810 3040 size_t words_to_skip = dest_addr - src_region_destination;
jcoomes@810 3041 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
duke@435 3042
duke@435 3043 if (partial_obj_size >= words_to_skip) {
duke@435 3044 // All the live words to skip are part of the partial object.
duke@435 3045 addr += words_to_skip;
duke@435 3046 if (partial_obj_size == words_to_skip) {
duke@435 3047 // Find the first live word past the partial object.
jcoomes@810 3048 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 3049 assert(addr < src_region_end, "wrong src region");
duke@435 3050 }
duke@435 3051 return addr;
duke@435 3052 }
duke@435 3053
duke@435 3054 // Skip over the partial object (if any).
duke@435 3055 if (partial_obj_size != 0) {
duke@435 3056 words_to_skip -= partial_obj_size;
duke@435 3057 addr += partial_obj_size;
duke@435 3058 }
duke@435 3059
jcoomes@810 3060 // Skip over live words due to objects that start in the region.
jcoomes@810 3061 addr = skip_live_words(addr, src_region_end, words_to_skip);
jcoomes@810 3062 assert(addr < src_region_end, "wrong src region");
duke@435 3063 return addr;
duke@435 3064 }
duke@435 3065
duke@435 3066 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
jcoomes@930 3067 SpaceId src_space_id,
jcoomes@810 3068 size_t beg_region,
duke@435 3069 HeapWord* end_addr)
duke@435 3070 {
duke@435 3071 ParallelCompactData& sd = summary_data();
jcoomes@930 3072
jcoomes@930 3073 #ifdef ASSERT
jcoomes@930 3074 MutableSpace* const src_space = _space_info[src_space_id].space();
jcoomes@930 3075 HeapWord* const beg_addr = sd.region_to_addr(beg_region);
jcoomes@930 3076 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
jcoomes@930 3077 "src_space_id does not match beg_addr");
jcoomes@930 3078 assert(src_space->contains(end_addr) || end_addr == src_space->end(),
jcoomes@930 3079 "src_space_id does not match end_addr");
jcoomes@930 3080 #endif // #ifdef ASSERT
jcoomes@930 3081
jcoomes@810 3082 RegionData* const beg = sd.region(beg_region);
jcoomes@930 3083 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
jcoomes@930 3084
jcoomes@930 3085 // Regions up to new_top() are enqueued if they become available.
jcoomes@930 3086 HeapWord* const new_top = _space_info[src_space_id].new_top();
jcoomes@930 3087 RegionData* const enqueue_end =
jcoomes@930 3088 sd.addr_to_region_ptr(sd.region_align_up(new_top));
jcoomes@930 3089
jcoomes@930 3090 for (RegionData* cur = beg; cur < end; ++cur) {
jcoomes@810 3091 assert(cur->data_size() > 0, "region must have live data");
duke@435 3092 cur->decrement_destination_count();
jcoomes@930 3093 if (cur < enqueue_end && cur->available() && cur->claim()) {
jcoomes@1993 3094 cm->push_region(sd.region(cur));
duke@435 3095 }
duke@435 3096 }
duke@435 3097 }
duke@435 3098
jcoomes@810 3099 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
jcoomes@810 3100 SpaceId& src_space_id,
jcoomes@810 3101 HeapWord*& src_space_top,
jcoomes@810 3102 HeapWord* end_addr)
duke@435 3103 {
jcoomes@810 3104 typedef ParallelCompactData::RegionData RegionData;
duke@435 3105
duke@435 3106 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 3107 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 3108
jcoomes@810 3109 size_t src_region_idx = 0;
jcoomes@810 3110
jcoomes@810 3111 // Skip empty regions (if any) up to the top of the space.
jcoomes@810 3112 HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
jcoomes@810 3113 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
jcoomes@810 3114 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
jcoomes@810 3115 const RegionData* const top_region_ptr =
jcoomes@810 3116 sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 3117 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
jcoomes@810 3118 ++src_region_ptr;
duke@435 3119 }
duke@435 3120
jcoomes@810 3121 if (src_region_ptr < top_region_ptr) {
jcoomes@810 3122 // The next source region is in the current space. Update src_region_idx
jcoomes@810 3123 // and the source address to match src_region_ptr.
jcoomes@810 3124 src_region_idx = sd.region(src_region_ptr);
jcoomes@810 3125 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
jcoomes@810 3126 if (src_region_addr > closure.source()) {
jcoomes@810 3127 closure.set_source(src_region_addr);
duke@435 3128 }
jcoomes@810 3129 return src_region_idx;
duke@435 3130 }
duke@435 3131
jcoomes@810 3132 // Switch to a new source space and find the first non-empty region.
duke@435 3133 unsigned int space_id = src_space_id + 1;
duke@435 3134 assert(space_id < last_space_id, "not enough spaces");
duke@435 3135
duke@435 3136 HeapWord* const destination = closure.destination();
duke@435 3137
duke@435 3138 do {
duke@435 3139 MutableSpace* space = _space_info[space_id].space();
duke@435 3140 HeapWord* const bottom = space->bottom();
jcoomes@810 3141 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
duke@435 3142
duke@435 3143 // Iterate over the spaces that do not compact into themselves.
duke@435 3144 if (bottom_cp->destination() != bottom) {
jcoomes@810 3145 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 3146 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 3147
jcoomes@810 3148 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
duke@435 3149 if (src_cp->live_obj_size() > 0) {
duke@435 3150 // Found it.
duke@435 3151 assert(src_cp->destination() == destination,
duke@435 3152 "first live obj in the space must match the destination");
duke@435 3153 assert(src_cp->partial_obj_size() == 0,
duke@435 3154 "a space cannot begin with a partial obj");
duke@435 3155
duke@435 3156 src_space_id = SpaceId(space_id);
duke@435 3157 src_space_top = space->top();
jcoomes@810 3158 const size_t src_region_idx = sd.region(src_cp);
jcoomes@810 3159 closure.set_source(sd.region_to_addr(src_region_idx));
jcoomes@810 3160 return src_region_idx;
duke@435 3161 } else {
duke@435 3162 assert(src_cp->data_size() == 0, "sanity");
duke@435 3163 }
duke@435 3164 }
duke@435 3165 }
duke@435 3166 } while (++space_id < last_space_id);
duke@435 3167
jcoomes@810 3168 assert(false, "no source region was found");
duke@435 3169 return 0;
duke@435 3170 }
duke@435 3171
jcoomes@810 3172 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
duke@435 3173 {
duke@435 3174 typedef ParMarkBitMap::IterationStatus IterationStatus;
jcoomes@810 3175 const size_t RegionSize = ParallelCompactData::RegionSize;
duke@435 3176 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3177 ParallelCompactData& sd = summary_data();
jcoomes@810 3178 RegionData* const region_ptr = sd.region(region_idx);
duke@435 3179
duke@435 3180 // Get the items needed to construct the closure.
jcoomes@810 3181 HeapWord* dest_addr = sd.region_to_addr(region_idx);
duke@435 3182 SpaceId dest_space_id = space_id(dest_addr);
duke@435 3183 ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
duke@435 3184 HeapWord* new_top = _space_info[dest_space_id].new_top();
duke@435 3185 assert(dest_addr < new_top, "sanity");
jcoomes@810 3186 const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
jcoomes@810 3187
jcoomes@810 3188 // Get the source region and related info.
jcoomes@810 3189 size_t src_region_idx = region_ptr->source_region();
jcoomes@810 3190 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
duke@435 3191 HeapWord* src_space_top = _space_info[src_space_id].space()->top();
duke@435 3192
duke@435 3193 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
jcoomes@917 3194 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
jcoomes@810 3195
jcoomes@810 3196 // Adjust src_region_idx to prepare for decrementing destination counts (the
jcoomes@810 3197 // destination count is not decremented when a region is copied to itself).
jcoomes@810 3198 if (src_region_idx == region_idx) {
jcoomes@810 3199 src_region_idx += 1;
duke@435 3200 }
duke@435 3201
duke@435 3202 if (bitmap->is_unmarked(closure.source())) {
duke@435 3203 // The first source word is in the middle of an object; copy the remainder
duke@435 3204 // of the object or as much as will fit. The fact that pointer updates were
duke@435 3205 // deferred will be noted when the object header is processed.
duke@435 3206 HeapWord* const old_src_addr = closure.source();
duke@435 3207 closure.copy_partial_obj();
duke@435 3208 if (closure.is_full()) {
jcoomes@930 3209 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3210 closure.source());
jcoomes@810 3211 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3212 region_ptr->set_completed();
duke@435 3213 return;
duke@435 3214 }
duke@435 3215
jcoomes@810 3216 HeapWord* const end_addr = sd.region_align_down(closure.source());
jcoomes@810 3217 if (sd.region_align_down(old_src_addr) != end_addr) {
jcoomes@810 3218 // The partial object was copied from more than one source region.
jcoomes@930 3219 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
jcoomes@810 3220
jcoomes@810 3221 // Move to the next source region, possibly switching spaces as well. All
duke@435 3222 // args except end_addr may be modified.
jcoomes@810 3223 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3224 end_addr);
duke@435 3225 }
duke@435 3226 }
duke@435 3227
duke@435 3228 do {
duke@435 3229 HeapWord* const cur_addr = closure.source();
jcoomes@810 3230 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
duke@435 3231 src_space_top);
duke@435 3232 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
duke@435 3233
duke@435 3234 if (status == ParMarkBitMap::incomplete) {
jcoomes@810 3235 // The last obj that starts in the source region does not end in the
jcoomes@810 3236 // region.
jcoomes@1844 3237 assert(closure.source() < end_addr, "sanity");
duke@435 3238 HeapWord* const obj_beg = closure.source();
duke@435 3239 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
duke@435 3240 src_space_top);
duke@435 3241 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
duke@435 3242 if (obj_end < range_end) {
duke@435 3243 // The end was found; the entire object will fit.
duke@435 3244 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
duke@435 3245 assert(status != ParMarkBitMap::would_overflow, "sanity");
duke@435 3246 } else {
duke@435 3247 // The end was not found; the object will not fit.
duke@435 3248 assert(range_end < src_space_top, "obj cannot cross space boundary");
duke@435 3249 status = ParMarkBitMap::would_overflow;
duke@435 3250 }
duke@435 3251 }
duke@435 3252
duke@435 3253 if (status == ParMarkBitMap::would_overflow) {
duke@435 3254 // The last object did not fit. Note that interior oop updates were
jcoomes@810 3255 // deferred, then copy enough of the object to fill the region.
jcoomes@810 3256 region_ptr->set_deferred_obj_addr(closure.destination());
duke@435 3257 status = closure.copy_until_full(); // copies from closure.source()
duke@435 3258
jcoomes@930 3259 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3260 closure.source());
jcoomes@810 3261 region_ptr->set_completed();
duke@435 3262 return;
duke@435 3263 }
duke@435 3264
duke@435 3265 if (status == ParMarkBitMap::full) {
jcoomes@930 3266 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3267 closure.source());
jcoomes@810 3268 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3269 region_ptr->set_completed();
duke@435 3270 return;
duke@435 3271 }
duke@435 3272
jcoomes@930 3273 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
jcoomes@810 3274
jcoomes@810 3275 // Move to the next source region, possibly switching spaces as well. All
duke@435 3276 // args except end_addr may be modified.
jcoomes@810 3277 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3278 end_addr);
duke@435 3279 } while (true);
duke@435 3280 }
duke@435 3281
duke@435 3282 void
duke@435 3283 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
duke@435 3284 const MutableSpace* sp = space(space_id);
duke@435 3285 if (sp->is_empty()) {
duke@435 3286 return;
duke@435 3287 }
duke@435 3288
duke@435 3289 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 3290 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3291 HeapWord* const dp_addr = dense_prefix(space_id);
duke@435 3292 HeapWord* beg_addr = sp->bottom();
duke@435 3293 HeapWord* end_addr = sp->top();
duke@435 3294
duke@435 3295 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
duke@435 3296
jcoomes@810 3297 const size_t beg_region = sd.addr_to_region_idx(beg_addr);
jcoomes@810 3298 const size_t dp_region = sd.addr_to_region_idx(dp_addr);
jcoomes@810 3299 if (beg_region < dp_region) {
jcoomes@810 3300 update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
duke@435 3301 }
duke@435 3302
jcoomes@810 3303 // The destination of the first live object that starts in the region is one
jcoomes@810 3304 // past the end of the partial object entering the region (if any).
jcoomes@810 3305 HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
duke@435 3306 HeapWord* const new_top = _space_info[space_id].new_top();
duke@435 3307 assert(new_top >= dest_addr, "bad new_top value");
duke@435 3308 const size_t words = pointer_delta(new_top, dest_addr);
duke@435 3309
duke@435 3310 if (words > 0) {
duke@435 3311 ObjectStartArray* start_array = _space_info[space_id].start_array();
duke@435 3312 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
duke@435 3313
duke@435 3314 ParMarkBitMap::IterationStatus status;
duke@435 3315 status = bitmap->iterate(&closure, dest_addr, end_addr);
duke@435 3316 assert(status == ParMarkBitMap::full, "iteration not complete");
duke@435 3317 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
duke@435 3318 "live objects skipped because closure is full");
duke@435 3319 }
duke@435 3320 }
duke@435 3321
duke@435 3322 jlong PSParallelCompact::millis_since_last_gc() {
johnc@3339 3323 // We need a monotonically non-deccreasing time in ms but
johnc@3339 3324 // os::javaTimeMillis() does not guarantee monotonicity.
johnc@3339 3325 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
johnc@3339 3326 jlong ret_val = now - _time_of_last_gc;
duke@435 3327 // XXX See note in genCollectedHeap::millis_since_last_gc().
duke@435 3328 if (ret_val < 0) {
johnc@3339 3329 NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
duke@435 3330 return 0;
duke@435 3331 }
duke@435 3332 return ret_val;
duke@435 3333 }
duke@435 3334
duke@435 3335 void PSParallelCompact::reset_millis_since_last_gc() {
johnc@3339 3336 // We need a monotonically non-deccreasing time in ms but
johnc@3339 3337 // os::javaTimeMillis() does not guarantee monotonicity.
johnc@3339 3338 _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
duke@435 3339 }
duke@435 3340
duke@435 3341 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
duke@435 3342 {
duke@435 3343 if (source() != destination()) {
jcoomes@930 3344 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3345 Copy::aligned_conjoint_words(source(), destination(), words_remaining());
duke@435 3346 }
duke@435 3347 update_state(words_remaining());
duke@435 3348 assert(is_full(), "sanity");
duke@435 3349 return ParMarkBitMap::full;
duke@435 3350 }
duke@435 3351
duke@435 3352 void MoveAndUpdateClosure::copy_partial_obj()
duke@435 3353 {
duke@435 3354 size_t words = words_remaining();
duke@435 3355
duke@435 3356 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
duke@435 3357 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
duke@435 3358 if (end_addr < range_end) {
duke@435 3359 words = bitmap()->obj_size(source(), end_addr);
duke@435 3360 }
duke@435 3361
duke@435 3362 // This test is necessary; if omitted, the pointer updates to a partial object
duke@435 3363 // that crosses the dense prefix boundary could be overwritten.
duke@435 3364 if (source() != destination()) {
jcoomes@930 3365 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3366 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3367 }
duke@435 3368 update_state(words);
duke@435 3369 }
duke@435 3370
duke@435 3371 ParMarkBitMapClosure::IterationStatus
duke@435 3372 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3373 assert(destination() != NULL, "sanity");
duke@435 3374 assert(bitmap()->obj_size(addr) == words, "bad size");
duke@435 3375
duke@435 3376 _source = addr;
duke@435 3377 assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
duke@435 3378 destination(), "wrong destination");
duke@435 3379
duke@435 3380 if (words > words_remaining()) {
duke@435 3381 return ParMarkBitMap::would_overflow;
duke@435 3382 }
duke@435 3383
duke@435 3384 // The start_array must be updated even if the object is not moving.
duke@435 3385 if (_start_array != NULL) {
duke@435 3386 _start_array->allocate_block(destination());
duke@435 3387 }
duke@435 3388
duke@435 3389 if (destination() != source()) {
jcoomes@930 3390 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3391 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3392 }
duke@435 3393
duke@435 3394 oop moved_oop = (oop) destination();
duke@435 3395 moved_oop->update_contents(compaction_manager());
duke@435 3396 assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
duke@435 3397
duke@435 3398 update_state(words);
duke@435 3399 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
duke@435 3400 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
duke@435 3401 }
duke@435 3402
duke@435 3403 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
duke@435 3404 ParCompactionManager* cm,
duke@435 3405 PSParallelCompact::SpaceId space_id) :
duke@435 3406 ParMarkBitMapClosure(mbm, cm),
duke@435 3407 _space_id(space_id),
duke@435 3408 _start_array(PSParallelCompact::start_array(space_id))
duke@435 3409 {
duke@435 3410 }
duke@435 3411
duke@435 3412 // Updates the references in the object to their new values.
duke@435 3413 ParMarkBitMapClosure::IterationStatus
duke@435 3414 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3415 do_addr(addr);
duke@435 3416 return ParMarkBitMap::incomplete;
duke@435 3417 }

mercurial