src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Wed, 18 Jun 2008 18:36:47 -0700

author
jcoomes
date
Wed, 18 Jun 2008 18:36:47 -0700
changeset 645
05712c37c828
parent 577
8bd1e4487c18
child 670
9c2ecc2ffb12
child 698
12eea04c8b06
permissions
-rw-r--r--

6676016: ParallelOldGC leaks memory
Summary: ensure that GCTask threads release resource and handle memory
Reviewed-by: jmasa, chrisphi

duke@435 1 /*
duke@435 2 * Copyright 2005-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_psParallelCompact.cpp.incl"
duke@435 27
duke@435 28 #include <math.h>
duke@435 29
duke@435 30 // All sizes are in HeapWords.
duke@435 31 const size_t ParallelCompactData::Log2ChunkSize = 9; // 512 words
duke@435 32 const size_t ParallelCompactData::ChunkSize = (size_t)1 << Log2ChunkSize;
duke@435 33 const size_t ParallelCompactData::ChunkSizeBytes = ChunkSize << LogHeapWordSize;
duke@435 34 const size_t ParallelCompactData::ChunkSizeOffsetMask = ChunkSize - 1;
duke@435 35 const size_t ParallelCompactData::ChunkAddrOffsetMask = ChunkSizeBytes - 1;
duke@435 36 const size_t ParallelCompactData::ChunkAddrMask = ~ChunkAddrOffsetMask;
duke@435 37
duke@435 38 // 32-bit: 128 words covers 4 bitmap words
duke@435 39 // 64-bit: 128 words covers 2 bitmap words
duke@435 40 const size_t ParallelCompactData::Log2BlockSize = 7; // 128 words
duke@435 41 const size_t ParallelCompactData::BlockSize = (size_t)1 << Log2BlockSize;
duke@435 42 const size_t ParallelCompactData::BlockOffsetMask = BlockSize - 1;
duke@435 43 const size_t ParallelCompactData::BlockMask = ~BlockOffsetMask;
duke@435 44
duke@435 45 const size_t ParallelCompactData::BlocksPerChunk = ChunkSize / BlockSize;
duke@435 46
duke@435 47 const ParallelCompactData::ChunkData::chunk_sz_t
duke@435 48 ParallelCompactData::ChunkData::dc_shift = 27;
duke@435 49
duke@435 50 const ParallelCompactData::ChunkData::chunk_sz_t
duke@435 51 ParallelCompactData::ChunkData::dc_mask = ~0U << dc_shift;
duke@435 52
duke@435 53 const ParallelCompactData::ChunkData::chunk_sz_t
duke@435 54 ParallelCompactData::ChunkData::dc_one = 0x1U << dc_shift;
duke@435 55
duke@435 56 const ParallelCompactData::ChunkData::chunk_sz_t
duke@435 57 ParallelCompactData::ChunkData::los_mask = ~dc_mask;
duke@435 58
duke@435 59 const ParallelCompactData::ChunkData::chunk_sz_t
duke@435 60 ParallelCompactData::ChunkData::dc_claimed = 0x8U << dc_shift;
duke@435 61
duke@435 62 const ParallelCompactData::ChunkData::chunk_sz_t
duke@435 63 ParallelCompactData::ChunkData::dc_completed = 0xcU << dc_shift;
duke@435 64
duke@435 65 #ifdef ASSERT
duke@435 66 short ParallelCompactData::BlockData::_cur_phase = 0;
duke@435 67 #endif
duke@435 68
duke@435 69 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
duke@435 70 bool PSParallelCompact::_print_phases = false;
duke@435 71
duke@435 72 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
duke@435 73 klassOop PSParallelCompact::_updated_int_array_klass_obj = NULL;
duke@435 74
duke@435 75 double PSParallelCompact::_dwl_mean;
duke@435 76 double PSParallelCompact::_dwl_std_dev;
duke@435 77 double PSParallelCompact::_dwl_first_term;
duke@435 78 double PSParallelCompact::_dwl_adjustment;
duke@435 79 #ifdef ASSERT
duke@435 80 bool PSParallelCompact::_dwl_initialized = false;
duke@435 81 #endif // #ifdef ASSERT
duke@435 82
duke@435 83 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 84 GrowableArray<void*>* PSParallelCompact::_root_refs_stack = NULL;
duke@435 85 GrowableArray<oop> * PSParallelCompact::_live_oops = NULL;
duke@435 86 GrowableArray<oop> * PSParallelCompact::_live_oops_moved_to = NULL;
duke@435 87 GrowableArray<size_t>* PSParallelCompact::_live_oops_size = NULL;
duke@435 88 size_t PSParallelCompact::_live_oops_index = 0;
duke@435 89 size_t PSParallelCompact::_live_oops_index_at_perm = 0;
coleenp@548 90 GrowableArray<void*>* PSParallelCompact::_other_refs_stack = NULL;
coleenp@548 91 GrowableArray<void*>* PSParallelCompact::_adjusted_pointers = NULL;
duke@435 92 bool PSParallelCompact::_pointer_tracking = false;
duke@435 93 bool PSParallelCompact::_root_tracking = true;
duke@435 94
duke@435 95 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
duke@435 96 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
duke@435 97 GrowableArray<size_t> * PSParallelCompact::_cur_gc_live_oops_size = NULL;
duke@435 98 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
duke@435 99 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
duke@435 100 GrowableArray<size_t> * PSParallelCompact::_last_gc_live_oops_size = NULL;
duke@435 101 #endif
duke@435 102
duke@435 103 // XXX beg - verification code; only works while we also mark in object headers
duke@435 104 static void
duke@435 105 verify_mark_bitmap(ParMarkBitMap& _mark_bitmap)
duke@435 106 {
duke@435 107 ParallelScavengeHeap* heap = PSParallelCompact::gc_heap();
duke@435 108
duke@435 109 PSPermGen* perm_gen = heap->perm_gen();
duke@435 110 PSOldGen* old_gen = heap->old_gen();
duke@435 111 PSYoungGen* young_gen = heap->young_gen();
duke@435 112
duke@435 113 MutableSpace* perm_space = perm_gen->object_space();
duke@435 114 MutableSpace* old_space = old_gen->object_space();
duke@435 115 MutableSpace* eden_space = young_gen->eden_space();
duke@435 116 MutableSpace* from_space = young_gen->from_space();
duke@435 117 MutableSpace* to_space = young_gen->to_space();
duke@435 118
duke@435 119 // 'from_space' here is the survivor space at the lower address.
duke@435 120 if (to_space->bottom() < from_space->bottom()) {
duke@435 121 from_space = to_space;
duke@435 122 to_space = young_gen->from_space();
duke@435 123 }
duke@435 124
duke@435 125 HeapWord* boundaries[12];
duke@435 126 unsigned int bidx = 0;
duke@435 127 const unsigned int bidx_max = sizeof(boundaries) / sizeof(boundaries[0]);
duke@435 128
duke@435 129 boundaries[0] = perm_space->bottom();
duke@435 130 boundaries[1] = perm_space->top();
duke@435 131 boundaries[2] = old_space->bottom();
duke@435 132 boundaries[3] = old_space->top();
duke@435 133 boundaries[4] = eden_space->bottom();
duke@435 134 boundaries[5] = eden_space->top();
duke@435 135 boundaries[6] = from_space->bottom();
duke@435 136 boundaries[7] = from_space->top();
duke@435 137 boundaries[8] = to_space->bottom();
duke@435 138 boundaries[9] = to_space->top();
duke@435 139 boundaries[10] = to_space->end();
duke@435 140 boundaries[11] = to_space->end();
duke@435 141
duke@435 142 BitMap::idx_t beg_bit = 0;
duke@435 143 BitMap::idx_t end_bit;
duke@435 144 BitMap::idx_t tmp_bit;
duke@435 145 const BitMap::idx_t last_bit = _mark_bitmap.size();
duke@435 146 do {
duke@435 147 HeapWord* addr = _mark_bitmap.bit_to_addr(beg_bit);
duke@435 148 if (_mark_bitmap.is_marked(beg_bit)) {
duke@435 149 oop obj = (oop)addr;
duke@435 150 assert(obj->is_gc_marked(), "obj header is not marked");
duke@435 151 end_bit = _mark_bitmap.find_obj_end(beg_bit, last_bit);
duke@435 152 const size_t size = _mark_bitmap.obj_size(beg_bit, end_bit);
duke@435 153 assert(size == (size_t)obj->size(), "end bit wrong?");
duke@435 154 beg_bit = _mark_bitmap.find_obj_beg(beg_bit + 1, last_bit);
duke@435 155 assert(beg_bit > end_bit, "bit set in middle of an obj");
duke@435 156 } else {
duke@435 157 if (addr >= boundaries[bidx] && addr < boundaries[bidx + 1]) {
duke@435 158 // a dead object in the current space.
duke@435 159 oop obj = (oop)addr;
duke@435 160 end_bit = _mark_bitmap.addr_to_bit(addr + obj->size());
duke@435 161 assert(!obj->is_gc_marked(), "obj marked in header, not in bitmap");
duke@435 162 tmp_bit = beg_bit + 1;
duke@435 163 beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, end_bit);
duke@435 164 assert(beg_bit == end_bit, "beg bit set in unmarked obj");
duke@435 165 beg_bit = _mark_bitmap.find_obj_end(tmp_bit, end_bit);
duke@435 166 assert(beg_bit == end_bit, "end bit set in unmarked obj");
duke@435 167 } else if (addr < boundaries[bidx + 2]) {
duke@435 168 // addr is between top in the current space and bottom in the next.
duke@435 169 end_bit = beg_bit + pointer_delta(boundaries[bidx + 2], addr);
duke@435 170 tmp_bit = beg_bit;
duke@435 171 beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, end_bit);
duke@435 172 assert(beg_bit == end_bit, "beg bit set above top");
duke@435 173 beg_bit = _mark_bitmap.find_obj_end(tmp_bit, end_bit);
duke@435 174 assert(beg_bit == end_bit, "end bit set above top");
duke@435 175 bidx += 2;
duke@435 176 } else if (bidx < bidx_max - 2) {
duke@435 177 bidx += 2; // ???
duke@435 178 } else {
duke@435 179 tmp_bit = beg_bit;
duke@435 180 beg_bit = _mark_bitmap.find_obj_beg(tmp_bit, last_bit);
duke@435 181 assert(beg_bit == last_bit, "beg bit set outside heap");
duke@435 182 beg_bit = _mark_bitmap.find_obj_end(tmp_bit, last_bit);
duke@435 183 assert(beg_bit == last_bit, "end bit set outside heap");
duke@435 184 }
duke@435 185 }
duke@435 186 } while (beg_bit < last_bit);
duke@435 187 }
duke@435 188 // XXX end - verification code; only works while we also mark in object headers
duke@435 189
duke@435 190 #ifndef PRODUCT
duke@435 191 const char* PSParallelCompact::space_names[] = {
duke@435 192 "perm", "old ", "eden", "from", "to "
duke@435 193 };
duke@435 194
duke@435 195 void PSParallelCompact::print_chunk_ranges()
duke@435 196 {
duke@435 197 tty->print_cr("space bottom top end new_top");
duke@435 198 tty->print_cr("------ ---------- ---------- ---------- ----------");
duke@435 199
duke@435 200 for (unsigned int id = 0; id < last_space_id; ++id) {
duke@435 201 const MutableSpace* space = _space_info[id].space();
duke@435 202 tty->print_cr("%u %s "
duke@435 203 SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10") " "
duke@435 204 SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10") " ",
duke@435 205 id, space_names[id],
duke@435 206 summary_data().addr_to_chunk_idx(space->bottom()),
duke@435 207 summary_data().addr_to_chunk_idx(space->top()),
duke@435 208 summary_data().addr_to_chunk_idx(space->end()),
duke@435 209 summary_data().addr_to_chunk_idx(_space_info[id].new_top()));
duke@435 210 }
duke@435 211 }
duke@435 212
duke@435 213 void
duke@435 214 print_generic_summary_chunk(size_t i, const ParallelCompactData::ChunkData* c)
duke@435 215 {
duke@435 216 #define CHUNK_IDX_FORMAT SIZE_FORMAT_W("7")
duke@435 217 #define CHUNK_DATA_FORMAT SIZE_FORMAT_W("5")
duke@435 218
duke@435 219 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 220 size_t dci = c->destination() ? sd.addr_to_chunk_idx(c->destination()) : 0;
duke@435 221 tty->print_cr(CHUNK_IDX_FORMAT " " PTR_FORMAT " "
duke@435 222 CHUNK_IDX_FORMAT " " PTR_FORMAT " "
duke@435 223 CHUNK_DATA_FORMAT " " CHUNK_DATA_FORMAT " "
duke@435 224 CHUNK_DATA_FORMAT " " CHUNK_IDX_FORMAT " %d",
duke@435 225 i, c->data_location(), dci, c->destination(),
duke@435 226 c->partial_obj_size(), c->live_obj_size(),
duke@435 227 c->data_size(), c->source_chunk(), c->destination_count());
duke@435 228
duke@435 229 #undef CHUNK_IDX_FORMAT
duke@435 230 #undef CHUNK_DATA_FORMAT
duke@435 231 }
duke@435 232
duke@435 233 void
duke@435 234 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 235 HeapWord* const beg_addr,
duke@435 236 HeapWord* const end_addr)
duke@435 237 {
duke@435 238 size_t total_words = 0;
duke@435 239 size_t i = summary_data.addr_to_chunk_idx(beg_addr);
duke@435 240 const size_t last = summary_data.addr_to_chunk_idx(end_addr);
duke@435 241 HeapWord* pdest = 0;
duke@435 242
duke@435 243 while (i <= last) {
duke@435 244 ParallelCompactData::ChunkData* c = summary_data.chunk(i);
duke@435 245 if (c->data_size() != 0 || c->destination() != pdest) {
duke@435 246 print_generic_summary_chunk(i, c);
duke@435 247 total_words += c->data_size();
duke@435 248 pdest = c->destination();
duke@435 249 }
duke@435 250 ++i;
duke@435 251 }
duke@435 252
duke@435 253 tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
duke@435 254 }
duke@435 255
duke@435 256 void
duke@435 257 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 258 SpaceInfo* space_info)
duke@435 259 {
duke@435 260 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
duke@435 261 const MutableSpace* space = space_info[id].space();
duke@435 262 print_generic_summary_data(summary_data, space->bottom(),
duke@435 263 MAX2(space->top(), space_info[id].new_top()));
duke@435 264 }
duke@435 265 }
duke@435 266
duke@435 267 void
duke@435 268 print_initial_summary_chunk(size_t i,
duke@435 269 const ParallelCompactData::ChunkData* c,
duke@435 270 bool newline = true)
duke@435 271 {
duke@435 272 tty->print(SIZE_FORMAT_W("5") " " PTR_FORMAT " "
duke@435 273 SIZE_FORMAT_W("5") " " SIZE_FORMAT_W("5") " "
duke@435 274 SIZE_FORMAT_W("5") " " SIZE_FORMAT_W("5") " %d",
duke@435 275 i, c->destination(),
duke@435 276 c->partial_obj_size(), c->live_obj_size(),
duke@435 277 c->data_size(), c->source_chunk(), c->destination_count());
duke@435 278 if (newline) tty->cr();
duke@435 279 }
duke@435 280
duke@435 281 void
duke@435 282 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 283 const MutableSpace* space) {
duke@435 284 if (space->top() == space->bottom()) {
duke@435 285 return;
duke@435 286 }
duke@435 287
duke@435 288 const size_t chunk_size = ParallelCompactData::ChunkSize;
duke@435 289 HeapWord* const top_aligned_up = summary_data.chunk_align_up(space->top());
duke@435 290 const size_t end_chunk = summary_data.addr_to_chunk_idx(top_aligned_up);
duke@435 291 const ParallelCompactData::ChunkData* c = summary_data.chunk(end_chunk - 1);
duke@435 292 HeapWord* end_addr = c->destination() + c->data_size();
duke@435 293 const size_t live_in_space = pointer_delta(end_addr, space->bottom());
duke@435 294
duke@435 295 // Print (and count) the full chunks at the beginning of the space.
duke@435 296 size_t full_chunk_count = 0;
duke@435 297 size_t i = summary_data.addr_to_chunk_idx(space->bottom());
duke@435 298 while (i < end_chunk && summary_data.chunk(i)->data_size() == chunk_size) {
duke@435 299 print_initial_summary_chunk(i, summary_data.chunk(i));
duke@435 300 ++full_chunk_count;
duke@435 301 ++i;
duke@435 302 }
duke@435 303
duke@435 304 size_t live_to_right = live_in_space - full_chunk_count * chunk_size;
duke@435 305
duke@435 306 double max_reclaimed_ratio = 0.0;
duke@435 307 size_t max_reclaimed_ratio_chunk = 0;
duke@435 308 size_t max_dead_to_right = 0;
duke@435 309 size_t max_live_to_right = 0;
duke@435 310
duke@435 311 // Print the 'reclaimed ratio' for chunks while there is something live in the
duke@435 312 // chunk or to the right of it. The remaining chunks are empty (and
duke@435 313 // uninteresting), and computing the ratio will result in division by 0.
duke@435 314 while (i < end_chunk && live_to_right > 0) {
duke@435 315 c = summary_data.chunk(i);
duke@435 316 HeapWord* const chunk_addr = summary_data.chunk_to_addr(i);
duke@435 317 const size_t used_to_right = pointer_delta(space->top(), chunk_addr);
duke@435 318 const size_t dead_to_right = used_to_right - live_to_right;
duke@435 319 const double reclaimed_ratio = double(dead_to_right) / live_to_right;
duke@435 320
duke@435 321 if (reclaimed_ratio > max_reclaimed_ratio) {
duke@435 322 max_reclaimed_ratio = reclaimed_ratio;
duke@435 323 max_reclaimed_ratio_chunk = i;
duke@435 324 max_dead_to_right = dead_to_right;
duke@435 325 max_live_to_right = live_to_right;
duke@435 326 }
duke@435 327
duke@435 328 print_initial_summary_chunk(i, c, false);
duke@435 329 tty->print_cr(" %12.10f " SIZE_FORMAT_W("10") " " SIZE_FORMAT_W("10"),
duke@435 330 reclaimed_ratio, dead_to_right, live_to_right);
duke@435 331
duke@435 332 live_to_right -= c->data_size();
duke@435 333 ++i;
duke@435 334 }
duke@435 335
duke@435 336 // Any remaining chunks are empty. Print one more if there is one.
duke@435 337 if (i < end_chunk) {
duke@435 338 print_initial_summary_chunk(i, summary_data.chunk(i));
duke@435 339 }
duke@435 340
duke@435 341 tty->print_cr("max: " SIZE_FORMAT_W("4") " d2r=" SIZE_FORMAT_W("10") " "
duke@435 342 "l2r=" SIZE_FORMAT_W("10") " max_ratio=%14.12f",
duke@435 343 max_reclaimed_ratio_chunk, max_dead_to_right,
duke@435 344 max_live_to_right, max_reclaimed_ratio);
duke@435 345 }
duke@435 346
duke@435 347 void
duke@435 348 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 349 SpaceInfo* space_info) {
duke@435 350 unsigned int id = PSParallelCompact::perm_space_id;
duke@435 351 const MutableSpace* space;
duke@435 352 do {
duke@435 353 space = space_info[id].space();
duke@435 354 print_initial_summary_data(summary_data, space);
duke@435 355 } while (++id < PSParallelCompact::eden_space_id);
duke@435 356
duke@435 357 do {
duke@435 358 space = space_info[id].space();
duke@435 359 print_generic_summary_data(summary_data, space->bottom(), space->top());
duke@435 360 } while (++id < PSParallelCompact::last_space_id);
duke@435 361 }
duke@435 362 #endif // #ifndef PRODUCT
duke@435 363
duke@435 364 #ifdef ASSERT
duke@435 365 size_t add_obj_count;
duke@435 366 size_t add_obj_size;
duke@435 367 size_t mark_bitmap_count;
duke@435 368 size_t mark_bitmap_size;
duke@435 369 #endif // #ifdef ASSERT
duke@435 370
duke@435 371 ParallelCompactData::ParallelCompactData()
duke@435 372 {
duke@435 373 _region_start = 0;
duke@435 374
duke@435 375 _chunk_vspace = 0;
duke@435 376 _chunk_data = 0;
duke@435 377 _chunk_count = 0;
duke@435 378
duke@435 379 _block_vspace = 0;
duke@435 380 _block_data = 0;
duke@435 381 _block_count = 0;
duke@435 382 }
duke@435 383
duke@435 384 bool ParallelCompactData::initialize(MemRegion covered_region)
duke@435 385 {
duke@435 386 _region_start = covered_region.start();
duke@435 387 const size_t region_size = covered_region.word_size();
duke@435 388 DEBUG_ONLY(_region_end = _region_start + region_size;)
duke@435 389
duke@435 390 assert(chunk_align_down(_region_start) == _region_start,
duke@435 391 "region start not aligned");
duke@435 392 assert((region_size & ChunkSizeOffsetMask) == 0,
duke@435 393 "region size not a multiple of ChunkSize");
duke@435 394
duke@435 395 bool result = initialize_chunk_data(region_size);
duke@435 396
duke@435 397 // Initialize the block data if it will be used for updating pointers, or if
duke@435 398 // this is a debug build.
duke@435 399 if (!UseParallelOldGCChunkPointerCalc || trueInDebug) {
duke@435 400 result = result && initialize_block_data(region_size);
duke@435 401 }
duke@435 402
duke@435 403 return result;
duke@435 404 }
duke@435 405
duke@435 406 PSVirtualSpace*
duke@435 407 ParallelCompactData::create_vspace(size_t count, size_t element_size)
duke@435 408 {
duke@435 409 const size_t raw_bytes = count * element_size;
duke@435 410 const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
duke@435 411 const size_t granularity = os::vm_allocation_granularity();
duke@435 412 const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
duke@435 413
duke@435 414 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
duke@435 415 MAX2(page_sz, granularity);
jcoomes@514 416 ReservedSpace rs(bytes, rs_align, rs_align > 0);
duke@435 417 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
duke@435 418 rs.size());
duke@435 419 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
duke@435 420 if (vspace != 0) {
duke@435 421 if (vspace->expand_by(bytes)) {
duke@435 422 return vspace;
duke@435 423 }
duke@435 424 delete vspace;
duke@435 425 }
duke@435 426
duke@435 427 return 0;
duke@435 428 }
duke@435 429
duke@435 430 bool ParallelCompactData::initialize_chunk_data(size_t region_size)
duke@435 431 {
duke@435 432 const size_t count = (region_size + ChunkSizeOffsetMask) >> Log2ChunkSize;
duke@435 433 _chunk_vspace = create_vspace(count, sizeof(ChunkData));
duke@435 434 if (_chunk_vspace != 0) {
duke@435 435 _chunk_data = (ChunkData*)_chunk_vspace->reserved_low_addr();
duke@435 436 _chunk_count = count;
duke@435 437 return true;
duke@435 438 }
duke@435 439 return false;
duke@435 440 }
duke@435 441
duke@435 442 bool ParallelCompactData::initialize_block_data(size_t region_size)
duke@435 443 {
duke@435 444 const size_t count = (region_size + BlockOffsetMask) >> Log2BlockSize;
duke@435 445 _block_vspace = create_vspace(count, sizeof(BlockData));
duke@435 446 if (_block_vspace != 0) {
duke@435 447 _block_data = (BlockData*)_block_vspace->reserved_low_addr();
duke@435 448 _block_count = count;
duke@435 449 return true;
duke@435 450 }
duke@435 451 return false;
duke@435 452 }
duke@435 453
duke@435 454 void ParallelCompactData::clear()
duke@435 455 {
duke@435 456 if (_block_data) {
duke@435 457 memset(_block_data, 0, _block_vspace->committed_size());
duke@435 458 }
duke@435 459 memset(_chunk_data, 0, _chunk_vspace->committed_size());
duke@435 460 }
duke@435 461
duke@435 462 void ParallelCompactData::clear_range(size_t beg_chunk, size_t end_chunk) {
duke@435 463 assert(beg_chunk <= _chunk_count, "beg_chunk out of range");
duke@435 464 assert(end_chunk <= _chunk_count, "end_chunk out of range");
duke@435 465 assert(ChunkSize % BlockSize == 0, "ChunkSize not a multiple of BlockSize");
duke@435 466
duke@435 467 const size_t chunk_cnt = end_chunk - beg_chunk;
duke@435 468
duke@435 469 if (_block_data) {
duke@435 470 const size_t blocks_per_chunk = ChunkSize / BlockSize;
duke@435 471 const size_t beg_block = beg_chunk * blocks_per_chunk;
duke@435 472 const size_t block_cnt = chunk_cnt * blocks_per_chunk;
duke@435 473 memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
duke@435 474 }
duke@435 475 memset(_chunk_data + beg_chunk, 0, chunk_cnt * sizeof(ChunkData));
duke@435 476 }
duke@435 477
duke@435 478 HeapWord* ParallelCompactData::partial_obj_end(size_t chunk_idx) const
duke@435 479 {
duke@435 480 const ChunkData* cur_cp = chunk(chunk_idx);
duke@435 481 const ChunkData* const end_cp = chunk(chunk_count() - 1);
duke@435 482
duke@435 483 HeapWord* result = chunk_to_addr(chunk_idx);
duke@435 484 if (cur_cp < end_cp) {
duke@435 485 do {
duke@435 486 result += cur_cp->partial_obj_size();
duke@435 487 } while (cur_cp->partial_obj_size() == ChunkSize && ++cur_cp < end_cp);
duke@435 488 }
duke@435 489 return result;
duke@435 490 }
duke@435 491
duke@435 492 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
duke@435 493 {
duke@435 494 const size_t obj_ofs = pointer_delta(addr, _region_start);
duke@435 495 const size_t beg_chunk = obj_ofs >> Log2ChunkSize;
duke@435 496 const size_t end_chunk = (obj_ofs + len - 1) >> Log2ChunkSize;
duke@435 497
duke@435 498 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
duke@435 499 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
duke@435 500
duke@435 501 if (beg_chunk == end_chunk) {
duke@435 502 // All in one chunk.
duke@435 503 _chunk_data[beg_chunk].add_live_obj(len);
duke@435 504 return;
duke@435 505 }
duke@435 506
duke@435 507 // First chunk.
duke@435 508 const size_t beg_ofs = chunk_offset(addr);
duke@435 509 _chunk_data[beg_chunk].add_live_obj(ChunkSize - beg_ofs);
duke@435 510
duke@435 511 klassOop klass = ((oop)addr)->klass();
duke@435 512 // Middle chunks--completely spanned by this object.
duke@435 513 for (size_t chunk = beg_chunk + 1; chunk < end_chunk; ++chunk) {
duke@435 514 _chunk_data[chunk].set_partial_obj_size(ChunkSize);
duke@435 515 _chunk_data[chunk].set_partial_obj_addr(addr);
duke@435 516 }
duke@435 517
duke@435 518 // Last chunk.
duke@435 519 const size_t end_ofs = chunk_offset(addr + len - 1);
duke@435 520 _chunk_data[end_chunk].set_partial_obj_size(end_ofs + 1);
duke@435 521 _chunk_data[end_chunk].set_partial_obj_addr(addr);
duke@435 522 }
duke@435 523
duke@435 524 void
duke@435 525 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
duke@435 526 {
duke@435 527 assert(chunk_offset(beg) == 0, "not ChunkSize aligned");
duke@435 528 assert(chunk_offset(end) == 0, "not ChunkSize aligned");
duke@435 529
duke@435 530 size_t cur_chunk = addr_to_chunk_idx(beg);
duke@435 531 const size_t end_chunk = addr_to_chunk_idx(end);
duke@435 532 HeapWord* addr = beg;
duke@435 533 while (cur_chunk < end_chunk) {
duke@435 534 _chunk_data[cur_chunk].set_destination(addr);
duke@435 535 _chunk_data[cur_chunk].set_destination_count(0);
duke@435 536 _chunk_data[cur_chunk].set_source_chunk(cur_chunk);
duke@435 537 _chunk_data[cur_chunk].set_data_location(addr);
duke@435 538
duke@435 539 // Update live_obj_size so the chunk appears completely full.
duke@435 540 size_t live_size = ChunkSize - _chunk_data[cur_chunk].partial_obj_size();
duke@435 541 _chunk_data[cur_chunk].set_live_obj_size(live_size);
duke@435 542
duke@435 543 ++cur_chunk;
duke@435 544 addr += ChunkSize;
duke@435 545 }
duke@435 546 }
duke@435 547
duke@435 548 bool ParallelCompactData::summarize(HeapWord* target_beg, HeapWord* target_end,
duke@435 549 HeapWord* source_beg, HeapWord* source_end,
duke@435 550 HeapWord** target_next,
duke@435 551 HeapWord** source_next) {
duke@435 552 // This is too strict.
duke@435 553 // assert(chunk_offset(source_beg) == 0, "not ChunkSize aligned");
duke@435 554
duke@435 555 if (TraceParallelOldGCSummaryPhase) {
duke@435 556 tty->print_cr("tb=" PTR_FORMAT " te=" PTR_FORMAT " "
duke@435 557 "sb=" PTR_FORMAT " se=" PTR_FORMAT " "
duke@435 558 "tn=" PTR_FORMAT " sn=" PTR_FORMAT,
duke@435 559 target_beg, target_end,
duke@435 560 source_beg, source_end,
duke@435 561 target_next != 0 ? *target_next : (HeapWord*) 0,
duke@435 562 source_next != 0 ? *source_next : (HeapWord*) 0);
duke@435 563 }
duke@435 564
duke@435 565 size_t cur_chunk = addr_to_chunk_idx(source_beg);
duke@435 566 const size_t end_chunk = addr_to_chunk_idx(chunk_align_up(source_end));
duke@435 567
duke@435 568 HeapWord *dest_addr = target_beg;
duke@435 569 while (cur_chunk < end_chunk) {
duke@435 570 size_t words = _chunk_data[cur_chunk].data_size();
duke@435 571
duke@435 572 #if 1
duke@435 573 assert(pointer_delta(target_end, dest_addr) >= words,
duke@435 574 "source region does not fit into target region");
duke@435 575 #else
duke@435 576 // XXX - need some work on the corner cases here. If the chunk does not
duke@435 577 // fit, then must either make sure any partial_obj from the chunk fits, or
duke@435 578 // 'undo' the initial part of the partial_obj that is in the previous chunk.
duke@435 579 if (dest_addr + words >= target_end) {
duke@435 580 // Let the caller know where to continue.
duke@435 581 *target_next = dest_addr;
duke@435 582 *source_next = chunk_to_addr(cur_chunk);
duke@435 583 return false;
duke@435 584 }
duke@435 585 #endif // #if 1
duke@435 586
duke@435 587 _chunk_data[cur_chunk].set_destination(dest_addr);
duke@435 588
duke@435 589 // Set the destination_count for cur_chunk, and if necessary, update
duke@435 590 // source_chunk for a destination chunk. The source_chunk field is updated
duke@435 591 // if cur_chunk is the first (left-most) chunk to be copied to a destination
duke@435 592 // chunk.
duke@435 593 //
duke@435 594 // The destination_count calculation is a bit subtle. A chunk that has data
duke@435 595 // that compacts into itself does not count itself as a destination. This
duke@435 596 // maintains the invariant that a zero count means the chunk is available
duke@435 597 // and can be claimed and then filled.
duke@435 598 if (words > 0) {
duke@435 599 HeapWord* const last_addr = dest_addr + words - 1;
duke@435 600 const size_t dest_chunk_1 = addr_to_chunk_idx(dest_addr);
duke@435 601 const size_t dest_chunk_2 = addr_to_chunk_idx(last_addr);
duke@435 602 #if 0
duke@435 603 // Initially assume that the destination chunks will be the same and
duke@435 604 // adjust the value below if necessary. Under this assumption, if
duke@435 605 // cur_chunk == dest_chunk_2, then cur_chunk will be compacted completely
duke@435 606 // into itself.
duke@435 607 uint destination_count = cur_chunk == dest_chunk_2 ? 0 : 1;
duke@435 608 if (dest_chunk_1 != dest_chunk_2) {
duke@435 609 // Destination chunks differ; adjust destination_count.
duke@435 610 destination_count += 1;
duke@435 611 // Data from cur_chunk will be copied to the start of dest_chunk_2.
duke@435 612 _chunk_data[dest_chunk_2].set_source_chunk(cur_chunk);
duke@435 613 } else if (chunk_offset(dest_addr) == 0) {
duke@435 614 // Data from cur_chunk will be copied to the start of the destination
duke@435 615 // chunk.
duke@435 616 _chunk_data[dest_chunk_1].set_source_chunk(cur_chunk);
duke@435 617 }
duke@435 618 #else
duke@435 619 // Initially assume that the destination chunks will be different and
duke@435 620 // adjust the value below if necessary. Under this assumption, if
duke@435 621 // cur_chunk == dest_chunk2, then cur_chunk will be compacted partially
duke@435 622 // into dest_chunk_1 and partially into itself.
duke@435 623 uint destination_count = cur_chunk == dest_chunk_2 ? 1 : 2;
duke@435 624 if (dest_chunk_1 != dest_chunk_2) {
duke@435 625 // Data from cur_chunk will be copied to the start of dest_chunk_2.
duke@435 626 _chunk_data[dest_chunk_2].set_source_chunk(cur_chunk);
duke@435 627 } else {
duke@435 628 // Destination chunks are the same; adjust destination_count.
duke@435 629 destination_count -= 1;
duke@435 630 if (chunk_offset(dest_addr) == 0) {
duke@435 631 // Data from cur_chunk will be copied to the start of the destination
duke@435 632 // chunk.
duke@435 633 _chunk_data[dest_chunk_1].set_source_chunk(cur_chunk);
duke@435 634 }
duke@435 635 }
duke@435 636 #endif // #if 0
duke@435 637
duke@435 638 _chunk_data[cur_chunk].set_destination_count(destination_count);
duke@435 639 _chunk_data[cur_chunk].set_data_location(chunk_to_addr(cur_chunk));
duke@435 640 dest_addr += words;
duke@435 641 }
duke@435 642
duke@435 643 ++cur_chunk;
duke@435 644 }
duke@435 645
duke@435 646 *target_next = dest_addr;
duke@435 647 return true;
duke@435 648 }
duke@435 649
duke@435 650 bool ParallelCompactData::partial_obj_ends_in_block(size_t block_index) {
duke@435 651 HeapWord* block_addr = block_to_addr(block_index);
duke@435 652 HeapWord* block_end_addr = block_addr + BlockSize;
duke@435 653 size_t chunk_index = addr_to_chunk_idx(block_addr);
duke@435 654 HeapWord* partial_obj_end_addr = partial_obj_end(chunk_index);
duke@435 655
duke@435 656 // An object that ends at the end of the block, ends
duke@435 657 // in the block (the last word of the object is to
duke@435 658 // the left of the end).
duke@435 659 if ((block_addr < partial_obj_end_addr) &&
duke@435 660 (partial_obj_end_addr <= block_end_addr)) {
duke@435 661 return true;
duke@435 662 }
duke@435 663
duke@435 664 return false;
duke@435 665 }
duke@435 666
duke@435 667 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
duke@435 668 HeapWord* result = NULL;
duke@435 669 if (UseParallelOldGCChunkPointerCalc) {
duke@435 670 result = chunk_calc_new_pointer(addr);
duke@435 671 } else {
duke@435 672 result = block_calc_new_pointer(addr);
duke@435 673 }
duke@435 674 return result;
duke@435 675 }
duke@435 676
duke@435 677 // This method is overly complicated (expensive) to be called
duke@435 678 // for every reference.
duke@435 679 // Try to restructure this so that a NULL is returned if
duke@435 680 // the object is dead. But don't wast the cycles to explicitly check
duke@435 681 // that it is dead since only live objects should be passed in.
duke@435 682
duke@435 683 HeapWord* ParallelCompactData::chunk_calc_new_pointer(HeapWord* addr) {
duke@435 684 assert(addr != NULL, "Should detect NULL oop earlier");
duke@435 685 assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
duke@435 686 #ifdef ASSERT
duke@435 687 if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
duke@435 688 gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
duke@435 689 }
duke@435 690 #endif
duke@435 691 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
duke@435 692
duke@435 693 // Chunk covering the object.
duke@435 694 size_t chunk_index = addr_to_chunk_idx(addr);
duke@435 695 const ChunkData* const chunk_ptr = chunk(chunk_index);
duke@435 696 HeapWord* const chunk_addr = chunk_align_down(addr);
duke@435 697
duke@435 698 assert(addr < chunk_addr + ChunkSize, "Chunk does not cover object");
duke@435 699 assert(addr_to_chunk_ptr(chunk_addr) == chunk_ptr, "sanity check");
duke@435 700
duke@435 701 HeapWord* result = chunk_ptr->destination();
duke@435 702
duke@435 703 // If all the data in the chunk is live, then the new location of the object
duke@435 704 // can be calculated from the destination of the chunk plus the offset of the
duke@435 705 // object in the chunk.
duke@435 706 if (chunk_ptr->data_size() == ChunkSize) {
duke@435 707 result += pointer_delta(addr, chunk_addr);
duke@435 708 return result;
duke@435 709 }
duke@435 710
duke@435 711 // The new location of the object is
duke@435 712 // chunk destination +
duke@435 713 // size of the partial object extending onto the chunk +
duke@435 714 // sizes of the live objects in the Chunk that are to the left of addr
duke@435 715 const size_t partial_obj_size = chunk_ptr->partial_obj_size();
duke@435 716 HeapWord* const search_start = chunk_addr + partial_obj_size;
duke@435 717
duke@435 718 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
duke@435 719 size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
duke@435 720
duke@435 721 result += partial_obj_size + live_to_left;
duke@435 722 assert(result <= addr, "object cannot move to the right");
duke@435 723 return result;
duke@435 724 }
duke@435 725
duke@435 726 HeapWord* ParallelCompactData::block_calc_new_pointer(HeapWord* addr) {
duke@435 727 assert(addr != NULL, "Should detect NULL oop earlier");
duke@435 728 assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
duke@435 729 #ifdef ASSERT
duke@435 730 if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
duke@435 731 gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
duke@435 732 }
duke@435 733 #endif
duke@435 734 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
duke@435 735
duke@435 736 // Chunk covering the object.
duke@435 737 size_t chunk_index = addr_to_chunk_idx(addr);
duke@435 738 const ChunkData* const chunk_ptr = chunk(chunk_index);
duke@435 739 HeapWord* const chunk_addr = chunk_align_down(addr);
duke@435 740
duke@435 741 assert(addr < chunk_addr + ChunkSize, "Chunk does not cover object");
duke@435 742 assert(addr_to_chunk_ptr(chunk_addr) == chunk_ptr, "sanity check");
duke@435 743
duke@435 744 HeapWord* result = chunk_ptr->destination();
duke@435 745
duke@435 746 // If all the data in the chunk is live, then the new location of the object
duke@435 747 // can be calculated from the destination of the chunk plus the offset of the
duke@435 748 // object in the chunk.
duke@435 749 if (chunk_ptr->data_size() == ChunkSize) {
duke@435 750 result += pointer_delta(addr, chunk_addr);
duke@435 751 return result;
duke@435 752 }
duke@435 753
duke@435 754 // The new location of the object is
duke@435 755 // chunk destination +
duke@435 756 // block offset +
duke@435 757 // sizes of the live objects in the Block that are to the left of addr
duke@435 758 const size_t block_offset = addr_to_block_ptr(addr)->offset();
duke@435 759 HeapWord* const search_start = chunk_addr + block_offset;
duke@435 760
duke@435 761 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
duke@435 762 size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
duke@435 763
duke@435 764 result += block_offset + live_to_left;
duke@435 765 assert(result <= addr, "object cannot move to the right");
duke@435 766 assert(result == chunk_calc_new_pointer(addr), "Should match");
duke@435 767 return result;
duke@435 768 }
duke@435 769
duke@435 770 klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
duke@435 771 klassOop updated_klass;
duke@435 772 if (PSParallelCompact::should_update_klass(old_klass)) {
duke@435 773 updated_klass = (klassOop) calc_new_pointer(old_klass);
duke@435 774 } else {
duke@435 775 updated_klass = old_klass;
duke@435 776 }
duke@435 777
duke@435 778 return updated_klass;
duke@435 779 }
duke@435 780
duke@435 781 #ifdef ASSERT
duke@435 782 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
duke@435 783 {
duke@435 784 const size_t* const beg = (const size_t*)vspace->committed_low_addr();
duke@435 785 const size_t* const end = (const size_t*)vspace->committed_high_addr();
duke@435 786 for (const size_t* p = beg; p < end; ++p) {
duke@435 787 assert(*p == 0, "not zero");
duke@435 788 }
duke@435 789 }
duke@435 790
duke@435 791 void ParallelCompactData::verify_clear()
duke@435 792 {
duke@435 793 verify_clear(_chunk_vspace);
duke@435 794 verify_clear(_block_vspace);
duke@435 795 }
duke@435 796 #endif // #ifdef ASSERT
duke@435 797
duke@435 798 #ifdef NOT_PRODUCT
duke@435 799 ParallelCompactData::ChunkData* debug_chunk(size_t chunk_index) {
duke@435 800 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 801 return sd.chunk(chunk_index);
duke@435 802 }
duke@435 803 #endif
duke@435 804
duke@435 805 elapsedTimer PSParallelCompact::_accumulated_time;
duke@435 806 unsigned int PSParallelCompact::_total_invocations = 0;
duke@435 807 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0;
duke@435 808 jlong PSParallelCompact::_time_of_last_gc = 0;
duke@435 809 CollectorCounters* PSParallelCompact::_counters = NULL;
duke@435 810 ParMarkBitMap PSParallelCompact::_mark_bitmap;
duke@435 811 ParallelCompactData PSParallelCompact::_summary_data;
duke@435 812
duke@435 813 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
coleenp@548 814
coleenp@548 815 void PSParallelCompact::IsAliveClosure::do_object(oop p) { ShouldNotReachHere(); }
coleenp@548 816 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
coleenp@548 817
coleenp@548 818 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 819 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 820
duke@435 821 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
duke@435 822 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
duke@435 823
coleenp@548 824 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p, _is_root); }
coleenp@548 825 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
coleenp@548 826
coleenp@548 827 void PSParallelCompact::FollowStackClosure::do_void() { follow_stack(_compaction_manager); }
coleenp@548 828
coleenp@548 829 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) { mark_and_push(_compaction_manager, p); }
coleenp@548 830 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
duke@435 831
duke@435 832 void PSParallelCompact::post_initialize() {
duke@435 833 ParallelScavengeHeap* heap = gc_heap();
duke@435 834 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 835
duke@435 836 MemRegion mr = heap->reserved_region();
duke@435 837 _ref_processor = ReferenceProcessor::create_ref_processor(
duke@435 838 mr, // span
duke@435 839 true, // atomic_discovery
duke@435 840 true, // mt_discovery
duke@435 841 &_is_alive_closure,
duke@435 842 ParallelGCThreads,
duke@435 843 ParallelRefProcEnabled);
duke@435 844 _counters = new CollectorCounters("PSParallelCompact", 1);
duke@435 845
duke@435 846 // Initialize static fields in ParCompactionManager.
duke@435 847 ParCompactionManager::initialize(mark_bitmap());
duke@435 848 }
duke@435 849
duke@435 850 bool PSParallelCompact::initialize() {
duke@435 851 ParallelScavengeHeap* heap = gc_heap();
duke@435 852 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 853 MemRegion mr = heap->reserved_region();
duke@435 854
duke@435 855 // Was the old gen get allocated successfully?
duke@435 856 if (!heap->old_gen()->is_allocated()) {
duke@435 857 return false;
duke@435 858 }
duke@435 859
duke@435 860 initialize_space_info();
duke@435 861 initialize_dead_wood_limiter();
duke@435 862
duke@435 863 if (!_mark_bitmap.initialize(mr)) {
duke@435 864 vm_shutdown_during_initialization("Unable to allocate bit map for "
duke@435 865 "parallel garbage collection for the requested heap size.");
duke@435 866 return false;
duke@435 867 }
duke@435 868
duke@435 869 if (!_summary_data.initialize(mr)) {
duke@435 870 vm_shutdown_during_initialization("Unable to allocate tables for "
duke@435 871 "parallel garbage collection for the requested heap size.");
duke@435 872 return false;
duke@435 873 }
duke@435 874
duke@435 875 return true;
duke@435 876 }
duke@435 877
duke@435 878 void PSParallelCompact::initialize_space_info()
duke@435 879 {
duke@435 880 memset(&_space_info, 0, sizeof(_space_info));
duke@435 881
duke@435 882 ParallelScavengeHeap* heap = gc_heap();
duke@435 883 PSYoungGen* young_gen = heap->young_gen();
duke@435 884 MutableSpace* perm_space = heap->perm_gen()->object_space();
duke@435 885
duke@435 886 _space_info[perm_space_id].set_space(perm_space);
duke@435 887 _space_info[old_space_id].set_space(heap->old_gen()->object_space());
duke@435 888 _space_info[eden_space_id].set_space(young_gen->eden_space());
duke@435 889 _space_info[from_space_id].set_space(young_gen->from_space());
duke@435 890 _space_info[to_space_id].set_space(young_gen->to_space());
duke@435 891
duke@435 892 _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
duke@435 893 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
duke@435 894
duke@435 895 _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
duke@435 896 if (TraceParallelOldGCDensePrefix) {
duke@435 897 tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
duke@435 898 _space_info[perm_space_id].min_dense_prefix());
duke@435 899 }
duke@435 900 }
duke@435 901
duke@435 902 void PSParallelCompact::initialize_dead_wood_limiter()
duke@435 903 {
duke@435 904 const size_t max = 100;
duke@435 905 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
duke@435 906 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
duke@435 907 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
duke@435 908 DEBUG_ONLY(_dwl_initialized = true;)
duke@435 909 _dwl_adjustment = normal_distribution(1.0);
duke@435 910 }
duke@435 911
duke@435 912 // Simple class for storing info about the heap at the start of GC, to be used
duke@435 913 // after GC for comparison/printing.
duke@435 914 class PreGCValues {
duke@435 915 public:
duke@435 916 PreGCValues() { }
duke@435 917 PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
duke@435 918
duke@435 919 void fill(ParallelScavengeHeap* heap) {
duke@435 920 _heap_used = heap->used();
duke@435 921 _young_gen_used = heap->young_gen()->used_in_bytes();
duke@435 922 _old_gen_used = heap->old_gen()->used_in_bytes();
duke@435 923 _perm_gen_used = heap->perm_gen()->used_in_bytes();
duke@435 924 };
duke@435 925
duke@435 926 size_t heap_used() const { return _heap_used; }
duke@435 927 size_t young_gen_used() const { return _young_gen_used; }
duke@435 928 size_t old_gen_used() const { return _old_gen_used; }
duke@435 929 size_t perm_gen_used() const { return _perm_gen_used; }
duke@435 930
duke@435 931 private:
duke@435 932 size_t _heap_used;
duke@435 933 size_t _young_gen_used;
duke@435 934 size_t _old_gen_used;
duke@435 935 size_t _perm_gen_used;
duke@435 936 };
duke@435 937
duke@435 938 void
duke@435 939 PSParallelCompact::clear_data_covering_space(SpaceId id)
duke@435 940 {
duke@435 941 // At this point, top is the value before GC, new_top() is the value that will
duke@435 942 // be set at the end of GC. The marking bitmap is cleared to top; nothing
duke@435 943 // should be marked above top. The summary data is cleared to the larger of
duke@435 944 // top & new_top.
duke@435 945 MutableSpace* const space = _space_info[id].space();
duke@435 946 HeapWord* const bot = space->bottom();
duke@435 947 HeapWord* const top = space->top();
duke@435 948 HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
duke@435 949
duke@435 950 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
duke@435 951 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
duke@435 952 _mark_bitmap.clear_range(beg_bit, end_bit);
duke@435 953
duke@435 954 const size_t beg_chunk = _summary_data.addr_to_chunk_idx(bot);
duke@435 955 const size_t end_chunk =
duke@435 956 _summary_data.addr_to_chunk_idx(_summary_data.chunk_align_up(max_top));
duke@435 957 _summary_data.clear_range(beg_chunk, end_chunk);
duke@435 958 }
duke@435 959
duke@435 960 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
duke@435 961 {
duke@435 962 // Update the from & to space pointers in space_info, since they are swapped
duke@435 963 // at each young gen gc. Do the update unconditionally (even though a
duke@435 964 // promotion failure does not swap spaces) because an unknown number of minor
duke@435 965 // collections will have swapped the spaces an unknown number of times.
duke@435 966 TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
duke@435 967 ParallelScavengeHeap* heap = gc_heap();
duke@435 968 _space_info[from_space_id].set_space(heap->young_gen()->from_space());
duke@435 969 _space_info[to_space_id].set_space(heap->young_gen()->to_space());
duke@435 970
duke@435 971 pre_gc_values->fill(heap);
duke@435 972
duke@435 973 ParCompactionManager::reset();
duke@435 974 NOT_PRODUCT(_mark_bitmap.reset_counters());
duke@435 975 DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
duke@435 976 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
duke@435 977
duke@435 978 // Increment the invocation count
apetrusenko@574 979 heap->increment_total_collections(true);
duke@435 980
duke@435 981 // We need to track unique mark sweep invocations as well.
duke@435 982 _total_invocations++;
duke@435 983
duke@435 984 if (PrintHeapAtGC) {
duke@435 985 Universe::print_heap_before_gc();
duke@435 986 }
duke@435 987
duke@435 988 // Fill in TLABs
duke@435 989 heap->accumulate_statistics_all_tlabs();
duke@435 990 heap->ensure_parsability(true); // retire TLABs
duke@435 991
duke@435 992 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 993 HandleMark hm; // Discard invalid handles created during verification
duke@435 994 gclog_or_tty->print(" VerifyBeforeGC:");
duke@435 995 Universe::verify(true);
duke@435 996 }
duke@435 997
duke@435 998 // Verify object start arrays
duke@435 999 if (VerifyObjectStartArray &&
duke@435 1000 VerifyBeforeGC) {
duke@435 1001 heap->old_gen()->verify_object_start_array();
duke@435 1002 heap->perm_gen()->verify_object_start_array();
duke@435 1003 }
duke@435 1004
duke@435 1005 DEBUG_ONLY(mark_bitmap()->verify_clear();)
duke@435 1006 DEBUG_ONLY(summary_data().verify_clear();)
jcoomes@645 1007
jcoomes@645 1008 // Have worker threads release resources the next time they run a task.
jcoomes@645 1009 gc_task_manager()->release_all_resources();
duke@435 1010 }
duke@435 1011
duke@435 1012 void PSParallelCompact::post_compact()
duke@435 1013 {
duke@435 1014 TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
duke@435 1015
duke@435 1016 // Clear the marking bitmap and summary data and update top() in each space.
duke@435 1017 for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
duke@435 1018 clear_data_covering_space(SpaceId(id));
duke@435 1019 _space_info[id].space()->set_top(_space_info[id].new_top());
duke@435 1020 }
duke@435 1021
duke@435 1022 MutableSpace* const eden_space = _space_info[eden_space_id].space();
duke@435 1023 MutableSpace* const from_space = _space_info[from_space_id].space();
duke@435 1024 MutableSpace* const to_space = _space_info[to_space_id].space();
duke@435 1025
duke@435 1026 ParallelScavengeHeap* heap = gc_heap();
duke@435 1027 bool eden_empty = eden_space->is_empty();
duke@435 1028 if (!eden_empty) {
duke@435 1029 eden_empty = absorb_live_data_from_eden(heap->size_policy(),
duke@435 1030 heap->young_gen(), heap->old_gen());
duke@435 1031 }
duke@435 1032
duke@435 1033 // Update heap occupancy information which is used as input to the soft ref
duke@435 1034 // clearing policy at the next gc.
duke@435 1035 Universe::update_heap_info_at_gc();
duke@435 1036
duke@435 1037 bool young_gen_empty = eden_empty && from_space->is_empty() &&
duke@435 1038 to_space->is_empty();
duke@435 1039
duke@435 1040 BarrierSet* bs = heap->barrier_set();
duke@435 1041 if (bs->is_a(BarrierSet::ModRef)) {
duke@435 1042 ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
duke@435 1043 MemRegion old_mr = heap->old_gen()->reserved();
duke@435 1044 MemRegion perm_mr = heap->perm_gen()->reserved();
duke@435 1045 assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
duke@435 1046
duke@435 1047 if (young_gen_empty) {
duke@435 1048 modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
duke@435 1049 } else {
duke@435 1050 modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
duke@435 1051 }
duke@435 1052 }
duke@435 1053
duke@435 1054 Threads::gc_epilogue();
duke@435 1055 CodeCache::gc_epilogue();
duke@435 1056
duke@435 1057 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
duke@435 1058
duke@435 1059 ref_processor()->enqueue_discovered_references(NULL);
duke@435 1060
duke@435 1061 // Update time of last GC
duke@435 1062 reset_millis_since_last_gc();
duke@435 1063 }
duke@435 1064
duke@435 1065 HeapWord*
duke@435 1066 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
duke@435 1067 bool maximum_compaction)
duke@435 1068 {
duke@435 1069 const size_t chunk_size = ParallelCompactData::ChunkSize;
duke@435 1070 const ParallelCompactData& sd = summary_data();
duke@435 1071
duke@435 1072 const MutableSpace* const space = _space_info[id].space();
duke@435 1073 HeapWord* const top_aligned_up = sd.chunk_align_up(space->top());
duke@435 1074 const ChunkData* const beg_cp = sd.addr_to_chunk_ptr(space->bottom());
duke@435 1075 const ChunkData* const end_cp = sd.addr_to_chunk_ptr(top_aligned_up);
duke@435 1076
duke@435 1077 // Skip full chunks at the beginning of the space--they are necessarily part
duke@435 1078 // of the dense prefix.
duke@435 1079 size_t full_count = 0;
duke@435 1080 const ChunkData* cp;
duke@435 1081 for (cp = beg_cp; cp < end_cp && cp->data_size() == chunk_size; ++cp) {
duke@435 1082 ++full_count;
duke@435 1083 }
duke@435 1084
duke@435 1085 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1086 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1087 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
duke@435 1088 if (maximum_compaction || cp == end_cp || interval_ended) {
duke@435 1089 _maximum_compaction_gc_num = total_invocations();
duke@435 1090 return sd.chunk_to_addr(cp);
duke@435 1091 }
duke@435 1092
duke@435 1093 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1094 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1095 const size_t space_used = space->used_in_words();
duke@435 1096 const size_t space_capacity = space->capacity_in_words();
duke@435 1097
duke@435 1098 const double cur_density = double(space_live) / space_capacity;
duke@435 1099 const double deadwood_density =
duke@435 1100 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
duke@435 1101 const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
duke@435 1102
duke@435 1103 if (TraceParallelOldGCDensePrefix) {
duke@435 1104 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
duke@435 1105 cur_density, deadwood_density, deadwood_goal);
duke@435 1106 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1107 "space_cap=" SIZE_FORMAT,
duke@435 1108 space_live, space_used,
duke@435 1109 space_capacity);
duke@435 1110 }
duke@435 1111
duke@435 1112 // XXX - Use binary search?
duke@435 1113 HeapWord* dense_prefix = sd.chunk_to_addr(cp);
duke@435 1114 const ChunkData* full_cp = cp;
duke@435 1115 const ChunkData* const top_cp = sd.addr_to_chunk_ptr(space->top() - 1);
duke@435 1116 while (cp < end_cp) {
duke@435 1117 HeapWord* chunk_destination = cp->destination();
duke@435 1118 const size_t cur_deadwood = pointer_delta(dense_prefix, chunk_destination);
duke@435 1119 if (TraceParallelOldGCDensePrefix && Verbose) {
duke@435 1120 tty->print_cr("c#=" SIZE_FORMAT_W("04") " dst=" PTR_FORMAT " "
duke@435 1121 "dp=" SIZE_FORMAT_W("08") " " "cdw=" SIZE_FORMAT_W("08"),
duke@435 1122 sd.chunk(cp), chunk_destination,
duke@435 1123 dense_prefix, cur_deadwood);
duke@435 1124 }
duke@435 1125
duke@435 1126 if (cur_deadwood >= deadwood_goal) {
duke@435 1127 // Found the chunk that has the correct amount of deadwood to the left.
duke@435 1128 // This typically occurs after crossing a fairly sparse set of chunks, so
duke@435 1129 // iterate backwards over those sparse chunks, looking for the chunk that
duke@435 1130 // has the lowest density of live objects 'to the right.'
duke@435 1131 size_t space_to_left = sd.chunk(cp) * chunk_size;
duke@435 1132 size_t live_to_left = space_to_left - cur_deadwood;
duke@435 1133 size_t space_to_right = space_capacity - space_to_left;
duke@435 1134 size_t live_to_right = space_live - live_to_left;
duke@435 1135 double density_to_right = double(live_to_right) / space_to_right;
duke@435 1136 while (cp > full_cp) {
duke@435 1137 --cp;
duke@435 1138 const size_t prev_chunk_live_to_right = live_to_right - cp->data_size();
duke@435 1139 const size_t prev_chunk_space_to_right = space_to_right + chunk_size;
duke@435 1140 double prev_chunk_density_to_right =
duke@435 1141 double(prev_chunk_live_to_right) / prev_chunk_space_to_right;
duke@435 1142 if (density_to_right <= prev_chunk_density_to_right) {
duke@435 1143 return dense_prefix;
duke@435 1144 }
duke@435 1145 if (TraceParallelOldGCDensePrefix && Verbose) {
duke@435 1146 tty->print_cr("backing up from c=" SIZE_FORMAT_W("4") " d2r=%10.8f "
duke@435 1147 "pc_d2r=%10.8f", sd.chunk(cp), density_to_right,
duke@435 1148 prev_chunk_density_to_right);
duke@435 1149 }
duke@435 1150 dense_prefix -= chunk_size;
duke@435 1151 live_to_right = prev_chunk_live_to_right;
duke@435 1152 space_to_right = prev_chunk_space_to_right;
duke@435 1153 density_to_right = prev_chunk_density_to_right;
duke@435 1154 }
duke@435 1155 return dense_prefix;
duke@435 1156 }
duke@435 1157
duke@435 1158 dense_prefix += chunk_size;
duke@435 1159 ++cp;
duke@435 1160 }
duke@435 1161
duke@435 1162 return dense_prefix;
duke@435 1163 }
duke@435 1164
duke@435 1165 #ifndef PRODUCT
duke@435 1166 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
duke@435 1167 const SpaceId id,
duke@435 1168 const bool maximum_compaction,
duke@435 1169 HeapWord* const addr)
duke@435 1170 {
duke@435 1171 const size_t chunk_idx = summary_data().addr_to_chunk_idx(addr);
duke@435 1172 ChunkData* const cp = summary_data().chunk(chunk_idx);
duke@435 1173 const MutableSpace* const space = _space_info[id].space();
duke@435 1174 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1175
duke@435 1176 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1177 const size_t dead_to_left = pointer_delta(addr, cp->destination());
duke@435 1178 const size_t space_cap = space->capacity_in_words();
duke@435 1179 const double dead_to_left_pct = double(dead_to_left) / space_cap;
duke@435 1180 const size_t live_to_right = new_top - cp->destination();
duke@435 1181 const size_t dead_to_right = space->top() - addr - live_to_right;
duke@435 1182
duke@435 1183 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W("05") " "
duke@435 1184 "spl=" SIZE_FORMAT " "
duke@435 1185 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
duke@435 1186 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
duke@435 1187 " ratio=%10.8f",
duke@435 1188 algorithm, addr, chunk_idx,
duke@435 1189 space_live,
duke@435 1190 dead_to_left, dead_to_left_pct,
duke@435 1191 dead_to_right, live_to_right,
duke@435 1192 double(dead_to_right) / live_to_right);
duke@435 1193 }
duke@435 1194 #endif // #ifndef PRODUCT
duke@435 1195
duke@435 1196 // Return a fraction indicating how much of the generation can be treated as
duke@435 1197 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution
duke@435 1198 // based on the density of live objects in the generation to determine a limit,
duke@435 1199 // which is then adjusted so the return value is min_percent when the density is
duke@435 1200 // 1.
duke@435 1201 //
duke@435 1202 // The following table shows some return values for a different values of the
duke@435 1203 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
duke@435 1204 // min_percent is 1.
duke@435 1205 //
duke@435 1206 // fraction allowed as dead wood
duke@435 1207 // -----------------------------------------------------------------
duke@435 1208 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
duke@435 1209 // ------- ---------- ---------- ---------- ---------- ---------- ----------
duke@435 1210 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1211 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1212 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1213 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1214 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1215 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1216 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1217 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1218 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1219 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1220 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
duke@435 1221 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1222 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1223 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1224 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1225 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1226 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1227 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1228 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1229 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1230 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1231
duke@435 1232 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
duke@435 1233 {
duke@435 1234 assert(_dwl_initialized, "uninitialized");
duke@435 1235
duke@435 1236 // The raw limit is the value of the normal distribution at x = density.
duke@435 1237 const double raw_limit = normal_distribution(density);
duke@435 1238
duke@435 1239 // Adjust the raw limit so it becomes the minimum when the density is 1.
duke@435 1240 //
duke@435 1241 // First subtract the adjustment value (which is simply the precomputed value
duke@435 1242 // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
duke@435 1243 // Then add the minimum value, so the minimum is returned when the density is
duke@435 1244 // 1. Finally, prevent negative values, which occur when the mean is not 0.5.
duke@435 1245 const double min = double(min_percent) / 100.0;
duke@435 1246 const double limit = raw_limit - _dwl_adjustment + min;
duke@435 1247 return MAX2(limit, 0.0);
duke@435 1248 }
duke@435 1249
duke@435 1250 ParallelCompactData::ChunkData*
duke@435 1251 PSParallelCompact::first_dead_space_chunk(const ChunkData* beg,
duke@435 1252 const ChunkData* end)
duke@435 1253 {
duke@435 1254 const size_t chunk_size = ParallelCompactData::ChunkSize;
duke@435 1255 ParallelCompactData& sd = summary_data();
duke@435 1256 size_t left = sd.chunk(beg);
duke@435 1257 size_t right = end > beg ? sd.chunk(end) - 1 : left;
duke@435 1258
duke@435 1259 // Binary search.
duke@435 1260 while (left < right) {
duke@435 1261 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1262 const size_t middle = left + (right - left) / 2;
duke@435 1263 ChunkData* const middle_ptr = sd.chunk(middle);
duke@435 1264 HeapWord* const dest = middle_ptr->destination();
duke@435 1265 HeapWord* const addr = sd.chunk_to_addr(middle);
duke@435 1266 assert(dest != NULL, "sanity");
duke@435 1267 assert(dest <= addr, "must move left");
duke@435 1268
duke@435 1269 if (middle > left && dest < addr) {
duke@435 1270 right = middle - 1;
duke@435 1271 } else if (middle < right && middle_ptr->data_size() == chunk_size) {
duke@435 1272 left = middle + 1;
duke@435 1273 } else {
duke@435 1274 return middle_ptr;
duke@435 1275 }
duke@435 1276 }
duke@435 1277 return sd.chunk(left);
duke@435 1278 }
duke@435 1279
duke@435 1280 ParallelCompactData::ChunkData*
duke@435 1281 PSParallelCompact::dead_wood_limit_chunk(const ChunkData* beg,
duke@435 1282 const ChunkData* end,
duke@435 1283 size_t dead_words)
duke@435 1284 {
duke@435 1285 ParallelCompactData& sd = summary_data();
duke@435 1286 size_t left = sd.chunk(beg);
duke@435 1287 size_t right = end > beg ? sd.chunk(end) - 1 : left;
duke@435 1288
duke@435 1289 // Binary search.
duke@435 1290 while (left < right) {
duke@435 1291 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1292 const size_t middle = left + (right - left) / 2;
duke@435 1293 ChunkData* const middle_ptr = sd.chunk(middle);
duke@435 1294 HeapWord* const dest = middle_ptr->destination();
duke@435 1295 HeapWord* const addr = sd.chunk_to_addr(middle);
duke@435 1296 assert(dest != NULL, "sanity");
duke@435 1297 assert(dest <= addr, "must move left");
duke@435 1298
duke@435 1299 const size_t dead_to_left = pointer_delta(addr, dest);
duke@435 1300 if (middle > left && dead_to_left > dead_words) {
duke@435 1301 right = middle - 1;
duke@435 1302 } else if (middle < right && dead_to_left < dead_words) {
duke@435 1303 left = middle + 1;
duke@435 1304 } else {
duke@435 1305 return middle_ptr;
duke@435 1306 }
duke@435 1307 }
duke@435 1308 return sd.chunk(left);
duke@435 1309 }
duke@435 1310
duke@435 1311 // The result is valid during the summary phase, after the initial summarization
duke@435 1312 // of each space into itself, and before final summarization.
duke@435 1313 inline double
duke@435 1314 PSParallelCompact::reclaimed_ratio(const ChunkData* const cp,
duke@435 1315 HeapWord* const bottom,
duke@435 1316 HeapWord* const top,
duke@435 1317 HeapWord* const new_top)
duke@435 1318 {
duke@435 1319 ParallelCompactData& sd = summary_data();
duke@435 1320
duke@435 1321 assert(cp != NULL, "sanity");
duke@435 1322 assert(bottom != NULL, "sanity");
duke@435 1323 assert(top != NULL, "sanity");
duke@435 1324 assert(new_top != NULL, "sanity");
duke@435 1325 assert(top >= new_top, "summary data problem?");
duke@435 1326 assert(new_top > bottom, "space is empty; should not be here");
duke@435 1327 assert(new_top >= cp->destination(), "sanity");
duke@435 1328 assert(top >= sd.chunk_to_addr(cp), "sanity");
duke@435 1329
duke@435 1330 HeapWord* const destination = cp->destination();
duke@435 1331 const size_t dense_prefix_live = pointer_delta(destination, bottom);
duke@435 1332 const size_t compacted_region_live = pointer_delta(new_top, destination);
duke@435 1333 const size_t compacted_region_used = pointer_delta(top, sd.chunk_to_addr(cp));
duke@435 1334 const size_t reclaimable = compacted_region_used - compacted_region_live;
duke@435 1335
duke@435 1336 const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
duke@435 1337 return double(reclaimable) / divisor;
duke@435 1338 }
duke@435 1339
duke@435 1340 // Return the address of the end of the dense prefix, a.k.a. the start of the
duke@435 1341 // compacted region. The address is always on a chunk boundary.
duke@435 1342 //
duke@435 1343 // Completely full chunks at the left are skipped, since no compaction can occur
duke@435 1344 // in those chunks. Then the maximum amount of dead wood to allow is computed,
duke@435 1345 // based on the density (amount live / capacity) of the generation; the chunk
duke@435 1346 // with approximately that amount of dead space to the left is identified as the
duke@435 1347 // limit chunk. Chunks between the last completely full chunk and the limit
duke@435 1348 // chunk are scanned and the one that has the best (maximum) reclaimed_ratio()
duke@435 1349 // is selected.
duke@435 1350 HeapWord*
duke@435 1351 PSParallelCompact::compute_dense_prefix(const SpaceId id,
duke@435 1352 bool maximum_compaction)
duke@435 1353 {
duke@435 1354 const size_t chunk_size = ParallelCompactData::ChunkSize;
duke@435 1355 const ParallelCompactData& sd = summary_data();
duke@435 1356
duke@435 1357 const MutableSpace* const space = _space_info[id].space();
duke@435 1358 HeapWord* const top = space->top();
duke@435 1359 HeapWord* const top_aligned_up = sd.chunk_align_up(top);
duke@435 1360 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1361 HeapWord* const new_top_aligned_up = sd.chunk_align_up(new_top);
duke@435 1362 HeapWord* const bottom = space->bottom();
duke@435 1363 const ChunkData* const beg_cp = sd.addr_to_chunk_ptr(bottom);
duke@435 1364 const ChunkData* const top_cp = sd.addr_to_chunk_ptr(top_aligned_up);
duke@435 1365 const ChunkData* const new_top_cp = sd.addr_to_chunk_ptr(new_top_aligned_up);
duke@435 1366
duke@435 1367 // Skip full chunks at the beginning of the space--they are necessarily part
duke@435 1368 // of the dense prefix.
duke@435 1369 const ChunkData* const full_cp = first_dead_space_chunk(beg_cp, new_top_cp);
duke@435 1370 assert(full_cp->destination() == sd.chunk_to_addr(full_cp) ||
duke@435 1371 space->is_empty(), "no dead space allowed to the left");
duke@435 1372 assert(full_cp->data_size() < chunk_size || full_cp == new_top_cp - 1,
duke@435 1373 "chunk must have dead space");
duke@435 1374
duke@435 1375 // The gc number is saved whenever a maximum compaction is done, and used to
duke@435 1376 // determine when the maximum compaction interval has expired. This avoids
duke@435 1377 // successive max compactions for different reasons.
duke@435 1378 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1379 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1380 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
duke@435 1381 total_invocations() == HeapFirstMaximumCompactionCount;
duke@435 1382 if (maximum_compaction || full_cp == top_cp || interval_ended) {
duke@435 1383 _maximum_compaction_gc_num = total_invocations();
duke@435 1384 return sd.chunk_to_addr(full_cp);
duke@435 1385 }
duke@435 1386
duke@435 1387 const size_t space_live = pointer_delta(new_top, bottom);
duke@435 1388 const size_t space_used = space->used_in_words();
duke@435 1389 const size_t space_capacity = space->capacity_in_words();
duke@435 1390
duke@435 1391 const double density = double(space_live) / double(space_capacity);
duke@435 1392 const size_t min_percent_free =
duke@435 1393 id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
duke@435 1394 const double limiter = dead_wood_limiter(density, min_percent_free);
duke@435 1395 const size_t dead_wood_max = space_used - space_live;
duke@435 1396 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
duke@435 1397 dead_wood_max);
duke@435 1398
duke@435 1399 if (TraceParallelOldGCDensePrefix) {
duke@435 1400 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1401 "space_cap=" SIZE_FORMAT,
duke@435 1402 space_live, space_used,
duke@435 1403 space_capacity);
duke@435 1404 tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
duke@435 1405 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
duke@435 1406 density, min_percent_free, limiter,
duke@435 1407 dead_wood_max, dead_wood_limit);
duke@435 1408 }
duke@435 1409
duke@435 1410 // Locate the chunk with the desired amount of dead space to the left.
duke@435 1411 const ChunkData* const limit_cp =
duke@435 1412 dead_wood_limit_chunk(full_cp, top_cp, dead_wood_limit);
duke@435 1413
duke@435 1414 // Scan from the first chunk with dead space to the limit chunk and find the
duke@435 1415 // one with the best (largest) reclaimed ratio.
duke@435 1416 double best_ratio = 0.0;
duke@435 1417 const ChunkData* best_cp = full_cp;
duke@435 1418 for (const ChunkData* cp = full_cp; cp < limit_cp; ++cp) {
duke@435 1419 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
duke@435 1420 if (tmp_ratio > best_ratio) {
duke@435 1421 best_cp = cp;
duke@435 1422 best_ratio = tmp_ratio;
duke@435 1423 }
duke@435 1424 }
duke@435 1425
duke@435 1426 #if 0
duke@435 1427 // Something to consider: if the chunk with the best ratio is 'close to' the
duke@435 1428 // first chunk w/free space, choose the first chunk with free space
duke@435 1429 // ("first-free"). The first-free chunk is usually near the start of the
duke@435 1430 // heap, which means we are copying most of the heap already, so copy a bit
duke@435 1431 // more to get complete compaction.
duke@435 1432 if (pointer_delta(best_cp, full_cp, sizeof(ChunkData)) < 4) {
duke@435 1433 _maximum_compaction_gc_num = total_invocations();
duke@435 1434 best_cp = full_cp;
duke@435 1435 }
duke@435 1436 #endif // #if 0
duke@435 1437
duke@435 1438 return sd.chunk_to_addr(best_cp);
duke@435 1439 }
duke@435 1440
duke@435 1441 void PSParallelCompact::summarize_spaces_quick()
duke@435 1442 {
duke@435 1443 for (unsigned int i = 0; i < last_space_id; ++i) {
duke@435 1444 const MutableSpace* space = _space_info[i].space();
duke@435 1445 bool result = _summary_data.summarize(space->bottom(), space->end(),
duke@435 1446 space->bottom(), space->top(),
duke@435 1447 _space_info[i].new_top_addr());
duke@435 1448 assert(result, "should never fail");
duke@435 1449 _space_info[i].set_dense_prefix(space->bottom());
duke@435 1450 }
duke@435 1451 }
duke@435 1452
duke@435 1453 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
duke@435 1454 {
duke@435 1455 HeapWord* const dense_prefix_end = dense_prefix(id);
duke@435 1456 const ChunkData* chunk = _summary_data.addr_to_chunk_ptr(dense_prefix_end);
duke@435 1457 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
duke@435 1458 if (dead_space_crosses_boundary(chunk, dense_prefix_bit)) {
duke@435 1459 // Only enough dead space is filled so that any remaining dead space to the
duke@435 1460 // left is larger than the minimum filler object. (The remainder is filled
duke@435 1461 // during the copy/update phase.)
duke@435 1462 //
duke@435 1463 // The size of the dead space to the right of the boundary is not a
duke@435 1464 // concern, since compaction will be able to use whatever space is
duke@435 1465 // available.
duke@435 1466 //
duke@435 1467 // Here '||' is the boundary, 'x' represents a don't care bit and a box
duke@435 1468 // surrounds the space to be filled with an object.
duke@435 1469 //
duke@435 1470 // In the 32-bit VM, each bit represents two 32-bit words:
duke@435 1471 // +---+
duke@435 1472 // a) beg_bits: ... x x x | 0 | || 0 x x ...
duke@435 1473 // end_bits: ... x x x | 0 | || 0 x x ...
duke@435 1474 // +---+
duke@435 1475 //
duke@435 1476 // In the 64-bit VM, each bit represents one 64-bit word:
duke@435 1477 // +------------+
duke@435 1478 // b) beg_bits: ... x x x | 0 || 0 | x x ...
duke@435 1479 // end_bits: ... x x 1 | 0 || 0 | x x ...
duke@435 1480 // +------------+
duke@435 1481 // +-------+
duke@435 1482 // c) beg_bits: ... x x | 0 0 | || 0 x x ...
duke@435 1483 // end_bits: ... x 1 | 0 0 | || 0 x x ...
duke@435 1484 // +-------+
duke@435 1485 // +-----------+
duke@435 1486 // d) beg_bits: ... x | 0 0 0 | || 0 x x ...
duke@435 1487 // end_bits: ... 1 | 0 0 0 | || 0 x x ...
duke@435 1488 // +-----------+
duke@435 1489 // +-------+
duke@435 1490 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1491 // end_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1492 // +-------+
duke@435 1493
duke@435 1494 // Initially assume case a, c or e will apply.
duke@435 1495 size_t obj_len = (size_t)oopDesc::header_size();
duke@435 1496 HeapWord* obj_beg = dense_prefix_end - obj_len;
duke@435 1497
duke@435 1498 #ifdef _LP64
duke@435 1499 if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
duke@435 1500 // Case b above.
duke@435 1501 obj_beg = dense_prefix_end - 1;
duke@435 1502 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
duke@435 1503 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
duke@435 1504 // Case d above.
duke@435 1505 obj_beg = dense_prefix_end - 3;
duke@435 1506 obj_len = 3;
duke@435 1507 }
duke@435 1508 #endif // #ifdef _LP64
duke@435 1509
duke@435 1510 MemRegion region(obj_beg, obj_len);
duke@435 1511 SharedHeap::fill_region_with_object(region);
duke@435 1512 _mark_bitmap.mark_obj(obj_beg, obj_len);
duke@435 1513 _summary_data.add_obj(obj_beg, obj_len);
duke@435 1514 assert(start_array(id) != NULL, "sanity");
duke@435 1515 start_array(id)->allocate_block(obj_beg);
duke@435 1516 }
duke@435 1517 }
duke@435 1518
duke@435 1519 void
duke@435 1520 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
duke@435 1521 {
duke@435 1522 assert(id < last_space_id, "id out of range");
duke@435 1523
duke@435 1524 const MutableSpace* space = _space_info[id].space();
duke@435 1525 HeapWord** new_top_addr = _space_info[id].new_top_addr();
duke@435 1526
duke@435 1527 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
duke@435 1528 _space_info[id].set_dense_prefix(dense_prefix_end);
duke@435 1529
duke@435 1530 #ifndef PRODUCT
duke@435 1531 if (TraceParallelOldGCDensePrefix) {
duke@435 1532 print_dense_prefix_stats("ratio", id, maximum_compaction, dense_prefix_end);
duke@435 1533 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
duke@435 1534 print_dense_prefix_stats("density", id, maximum_compaction, addr);
duke@435 1535 }
duke@435 1536 #endif // #ifndef PRODUCT
duke@435 1537
duke@435 1538 // If dead space crosses the dense prefix boundary, it is (at least partially)
duke@435 1539 // filled with a dummy object, marked live and added to the summary data.
duke@435 1540 // This simplifies the copy/update phase and must be done before the final
duke@435 1541 // locations of objects are determined, to prevent leaving a fragment of dead
duke@435 1542 // space that is too small to fill with an object.
duke@435 1543 if (!maximum_compaction && dense_prefix_end != space->bottom()) {
duke@435 1544 fill_dense_prefix_end(id);
duke@435 1545 }
duke@435 1546
duke@435 1547 // Compute the destination of each Chunk, and thus each object.
duke@435 1548 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
duke@435 1549 _summary_data.summarize(dense_prefix_end, space->end(),
duke@435 1550 dense_prefix_end, space->top(),
duke@435 1551 new_top_addr);
duke@435 1552
duke@435 1553 if (TraceParallelOldGCSummaryPhase) {
duke@435 1554 const size_t chunk_size = ParallelCompactData::ChunkSize;
duke@435 1555 const size_t dp_chunk = _summary_data.addr_to_chunk_idx(dense_prefix_end);
duke@435 1556 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
duke@435 1557 const HeapWord* nt_aligned_up = _summary_data.chunk_align_up(*new_top_addr);
duke@435 1558 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
duke@435 1559 tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
duke@435 1560 "dp_chunk=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
duke@435 1561 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
duke@435 1562 id, space->capacity_in_words(), dense_prefix_end,
duke@435 1563 dp_chunk, dp_words / chunk_size,
duke@435 1564 cr_words / chunk_size, *new_top_addr);
duke@435 1565 }
duke@435 1566 }
duke@435 1567
duke@435 1568 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
duke@435 1569 bool maximum_compaction)
duke@435 1570 {
duke@435 1571 EventMark m("2 summarize");
duke@435 1572 TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
duke@435 1573 // trace("2");
duke@435 1574
duke@435 1575 #ifdef ASSERT
duke@435 1576 if (VerifyParallelOldWithMarkSweep &&
duke@435 1577 (PSParallelCompact::total_invocations() %
duke@435 1578 VerifyParallelOldWithMarkSweepInterval) == 0) {
duke@435 1579 verify_mark_bitmap(_mark_bitmap);
duke@435 1580 }
duke@435 1581 if (TraceParallelOldGCMarkingPhase) {
duke@435 1582 tty->print_cr("add_obj_count=" SIZE_FORMAT " "
duke@435 1583 "add_obj_bytes=" SIZE_FORMAT,
duke@435 1584 add_obj_count, add_obj_size * HeapWordSize);
duke@435 1585 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
duke@435 1586 "mark_bitmap_bytes=" SIZE_FORMAT,
duke@435 1587 mark_bitmap_count, mark_bitmap_size * HeapWordSize);
duke@435 1588 }
duke@435 1589 #endif // #ifdef ASSERT
duke@435 1590
duke@435 1591 // Quick summarization of each space into itself, to see how much is live.
duke@435 1592 summarize_spaces_quick();
duke@435 1593
duke@435 1594 if (TraceParallelOldGCSummaryPhase) {
duke@435 1595 tty->print_cr("summary_phase: after summarizing each space to self");
duke@435 1596 Universe::print();
duke@435 1597 NOT_PRODUCT(print_chunk_ranges());
duke@435 1598 if (Verbose) {
duke@435 1599 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
duke@435 1600 }
duke@435 1601 }
duke@435 1602
duke@435 1603 // The amount of live data that will end up in old space (assuming it fits).
duke@435 1604 size_t old_space_total_live = 0;
duke@435 1605 unsigned int id;
duke@435 1606 for (id = old_space_id; id < last_space_id; ++id) {
duke@435 1607 old_space_total_live += pointer_delta(_space_info[id].new_top(),
duke@435 1608 _space_info[id].space()->bottom());
duke@435 1609 }
duke@435 1610
duke@435 1611 const MutableSpace* old_space = _space_info[old_space_id].space();
duke@435 1612 if (old_space_total_live > old_space->capacity_in_words()) {
duke@435 1613 // XXX - should also try to expand
duke@435 1614 maximum_compaction = true;
duke@435 1615 } else if (!UseParallelOldGCDensePrefix) {
duke@435 1616 maximum_compaction = true;
duke@435 1617 }
duke@435 1618
duke@435 1619 // Permanent and Old generations.
duke@435 1620 summarize_space(perm_space_id, maximum_compaction);
duke@435 1621 summarize_space(old_space_id, maximum_compaction);
duke@435 1622
duke@435 1623 // Summarize the remaining spaces (those in the young gen) into old space. If
duke@435 1624 // the live data from a space doesn't fit, the existing summarization is left
duke@435 1625 // intact, so the data is compacted down within the space itself.
duke@435 1626 HeapWord** new_top_addr = _space_info[old_space_id].new_top_addr();
duke@435 1627 HeapWord* const target_space_end = old_space->end();
duke@435 1628 for (id = eden_space_id; id < last_space_id; ++id) {
duke@435 1629 const MutableSpace* space = _space_info[id].space();
duke@435 1630 const size_t live = pointer_delta(_space_info[id].new_top(),
duke@435 1631 space->bottom());
duke@435 1632 const size_t available = pointer_delta(target_space_end, *new_top_addr);
duke@435 1633 if (live <= available) {
duke@435 1634 // All the live data will fit.
duke@435 1635 if (TraceParallelOldGCSummaryPhase) {
duke@435 1636 tty->print_cr("summarizing %d into old_space @ " PTR_FORMAT,
duke@435 1637 id, *new_top_addr);
duke@435 1638 }
duke@435 1639 _summary_data.summarize(*new_top_addr, target_space_end,
duke@435 1640 space->bottom(), space->top(),
duke@435 1641 new_top_addr);
duke@435 1642
duke@435 1643 // Reset the new_top value for the space.
duke@435 1644 _space_info[id].set_new_top(space->bottom());
duke@435 1645
duke@435 1646 // Clear the source_chunk field for each chunk in the space.
duke@435 1647 ChunkData* beg_chunk = _summary_data.addr_to_chunk_ptr(space->bottom());
duke@435 1648 ChunkData* end_chunk = _summary_data.addr_to_chunk_ptr(space->top() - 1);
duke@435 1649 while (beg_chunk <= end_chunk) {
duke@435 1650 beg_chunk->set_source_chunk(0);
duke@435 1651 ++beg_chunk;
duke@435 1652 }
duke@435 1653 }
duke@435 1654 }
duke@435 1655
duke@435 1656 // Fill in the block data after any changes to the chunks have
duke@435 1657 // been made.
duke@435 1658 #ifdef ASSERT
duke@435 1659 summarize_blocks(cm, perm_space_id);
duke@435 1660 summarize_blocks(cm, old_space_id);
duke@435 1661 #else
duke@435 1662 if (!UseParallelOldGCChunkPointerCalc) {
duke@435 1663 summarize_blocks(cm, perm_space_id);
duke@435 1664 summarize_blocks(cm, old_space_id);
duke@435 1665 }
duke@435 1666 #endif
duke@435 1667
duke@435 1668 if (TraceParallelOldGCSummaryPhase) {
duke@435 1669 tty->print_cr("summary_phase: after final summarization");
duke@435 1670 Universe::print();
duke@435 1671 NOT_PRODUCT(print_chunk_ranges());
duke@435 1672 if (Verbose) {
duke@435 1673 NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
duke@435 1674 }
duke@435 1675 }
duke@435 1676 }
duke@435 1677
duke@435 1678 // Fill in the BlockData.
duke@435 1679 // Iterate over the spaces and within each space iterate over
duke@435 1680 // the chunks and fill in the BlockData for each chunk.
duke@435 1681
duke@435 1682 void PSParallelCompact::summarize_blocks(ParCompactionManager* cm,
duke@435 1683 SpaceId first_compaction_space_id) {
duke@435 1684 #if 0
duke@435 1685 DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(1);)
duke@435 1686 for (SpaceId cur_space_id = first_compaction_space_id;
duke@435 1687 cur_space_id != last_space_id;
duke@435 1688 cur_space_id = next_compaction_space_id(cur_space_id)) {
duke@435 1689 // Iterate over the chunks in the space
duke@435 1690 size_t start_chunk_index =
duke@435 1691 _summary_data.addr_to_chunk_idx(space(cur_space_id)->bottom());
duke@435 1692 BitBlockUpdateClosure bbu(mark_bitmap(),
duke@435 1693 cm,
duke@435 1694 start_chunk_index);
duke@435 1695 // Iterate over blocks.
duke@435 1696 for (size_t chunk_index = start_chunk_index;
duke@435 1697 chunk_index < _summary_data.chunk_count() &&
duke@435 1698 _summary_data.chunk_to_addr(chunk_index) < space(cur_space_id)->top();
duke@435 1699 chunk_index++) {
duke@435 1700
duke@435 1701 // Reset the closure for the new chunk. Note that the closure
duke@435 1702 // maintains some data that does not get reset for each chunk
duke@435 1703 // so a new instance of the closure is no appropriate.
duke@435 1704 bbu.reset_chunk(chunk_index);
duke@435 1705
duke@435 1706 // Start the iteration with the first live object. This
duke@435 1707 // may return the end of the chunk. That is acceptable since
duke@435 1708 // it will properly limit the iterations.
duke@435 1709 ParMarkBitMap::idx_t left_offset = mark_bitmap()->addr_to_bit(
duke@435 1710 _summary_data.first_live_or_end_in_chunk(chunk_index));
duke@435 1711
duke@435 1712 // End the iteration at the end of the chunk.
duke@435 1713 HeapWord* chunk_addr = _summary_data.chunk_to_addr(chunk_index);
duke@435 1714 HeapWord* chunk_end = chunk_addr + ParallelCompactData::ChunkSize;
duke@435 1715 ParMarkBitMap::idx_t right_offset =
duke@435 1716 mark_bitmap()->addr_to_bit(chunk_end);
duke@435 1717
duke@435 1718 // Blocks that have not objects starting in them can be
duke@435 1719 // skipped because their data will never be used.
duke@435 1720 if (left_offset < right_offset) {
duke@435 1721
duke@435 1722 // Iterate through the objects in the chunk.
duke@435 1723 ParMarkBitMap::idx_t last_offset =
duke@435 1724 mark_bitmap()->pair_iterate(&bbu, left_offset, right_offset);
duke@435 1725
duke@435 1726 // If last_offset is less than right_offset, then the iterations
duke@435 1727 // terminated while it was looking for an end bit. "last_offset"
duke@435 1728 // is then the offset for the last start bit. In this situation
duke@435 1729 // the "offset" field for the next block to the right (_cur_block + 1)
duke@435 1730 // will not have been update although there may be live data
duke@435 1731 // to the left of the chunk.
duke@435 1732
duke@435 1733 size_t cur_block_plus_1 = bbu.cur_block() + 1;
duke@435 1734 HeapWord* cur_block_plus_1_addr =
duke@435 1735 _summary_data.block_to_addr(bbu.cur_block()) +
duke@435 1736 ParallelCompactData::BlockSize;
duke@435 1737 HeapWord* last_offset_addr = mark_bitmap()->bit_to_addr(last_offset);
duke@435 1738 #if 1 // This code works. The else doesn't but should. Why does it?
duke@435 1739 // The current block (cur_block()) has already been updated.
duke@435 1740 // The last block that may need to be updated is either the
duke@435 1741 // next block (current block + 1) or the block where the
duke@435 1742 // last object starts (which can be greater than the
duke@435 1743 // next block if there were no objects found in intervening
duke@435 1744 // blocks).
duke@435 1745 size_t last_block =
duke@435 1746 MAX2(bbu.cur_block() + 1,
duke@435 1747 _summary_data.addr_to_block_idx(last_offset_addr));
duke@435 1748 #else
duke@435 1749 // The current block has already been updated. The only block
duke@435 1750 // that remains to be updated is the block where the last
duke@435 1751 // object in the chunk starts.
duke@435 1752 size_t last_block = _summary_data.addr_to_block_idx(last_offset_addr);
duke@435 1753 #endif
duke@435 1754 assert_bit_is_start(last_offset);
duke@435 1755 assert((last_block == _summary_data.block_count()) ||
duke@435 1756 (_summary_data.block(last_block)->raw_offset() == 0),
duke@435 1757 "Should not have been set");
duke@435 1758 // Is the last block still in the current chunk? If still
duke@435 1759 // in this chunk, update the last block (the counting that
duke@435 1760 // included the current block is meant for the offset of the last
duke@435 1761 // block). If not in this chunk, do nothing. Should not
duke@435 1762 // update a block in the next chunk.
duke@435 1763 if (ParallelCompactData::chunk_contains_block(bbu.chunk_index(),
duke@435 1764 last_block)) {
duke@435 1765 if (last_offset < right_offset) {
duke@435 1766 // The last object started in this chunk but ends beyond
duke@435 1767 // this chunk. Update the block for this last object.
duke@435 1768 assert(mark_bitmap()->is_marked(last_offset), "Should be marked");
duke@435 1769 // No end bit was found. The closure takes care of
duke@435 1770 // the cases where
duke@435 1771 // an objects crosses over into the next block
duke@435 1772 // an objects starts and ends in the next block
duke@435 1773 // It does not handle the case where an object is
duke@435 1774 // the first object in a later block and extends
duke@435 1775 // past the end of the chunk (i.e., the closure
duke@435 1776 // only handles complete objects that are in the range
duke@435 1777 // it is given). That object is handed back here
duke@435 1778 // for any special consideration necessary.
duke@435 1779 //
duke@435 1780 // Is the first bit in the last block a start or end bit?
duke@435 1781 //
duke@435 1782 // If the partial object ends in the last block L,
duke@435 1783 // then the 1st bit in L may be an end bit.
duke@435 1784 //
duke@435 1785 // Else does the last object start in a block after the current
duke@435 1786 // block? A block AA will already have been updated if an
duke@435 1787 // object ends in the next block AA+1. An object found to end in
duke@435 1788 // the AA+1 is the trigger that updates AA. Objects are being
duke@435 1789 // counted in the current block for updaing a following
duke@435 1790 // block. An object may start in later block
duke@435 1791 // block but may extend beyond the last block in the chunk.
duke@435 1792 // Updates are only done when the end of an object has been
duke@435 1793 // found. If the last object (covered by block L) starts
duke@435 1794 // beyond the current block, then no object ends in L (otherwise
duke@435 1795 // L would be the current block). So the first bit in L is
duke@435 1796 // a start bit.
duke@435 1797 //
duke@435 1798 // Else the last objects start in the current block and ends
duke@435 1799 // beyond the chunk. The current block has already been
duke@435 1800 // updated and there is no later block (with an object
duke@435 1801 // starting in it) that needs to be updated.
duke@435 1802 //
duke@435 1803 if (_summary_data.partial_obj_ends_in_block(last_block)) {
duke@435 1804 _summary_data.block(last_block)->set_end_bit_offset(
duke@435 1805 bbu.live_data_left());
duke@435 1806 } else if (last_offset_addr >= cur_block_plus_1_addr) {
duke@435 1807 // The start of the object is on a later block
duke@435 1808 // (to the right of the current block and there are no
duke@435 1809 // complete live objects to the left of this last object
duke@435 1810 // within the chunk.
duke@435 1811 // The first bit in the block is for the start of the
duke@435 1812 // last object.
duke@435 1813 _summary_data.block(last_block)->set_start_bit_offset(
duke@435 1814 bbu.live_data_left());
duke@435 1815 } else {
duke@435 1816 // The start of the last object was found in
duke@435 1817 // the current chunk (which has already
duke@435 1818 // been updated).
duke@435 1819 assert(bbu.cur_block() ==
duke@435 1820 _summary_data.addr_to_block_idx(last_offset_addr),
duke@435 1821 "Should be a block already processed");
duke@435 1822 }
duke@435 1823 #ifdef ASSERT
duke@435 1824 // Is there enough block information to find this object?
duke@435 1825 // The destination of the chunk has not been set so the
duke@435 1826 // values returned by calc_new_pointer() and
duke@435 1827 // block_calc_new_pointer() will only be
duke@435 1828 // offsets. But they should agree.
duke@435 1829 HeapWord* moved_obj_with_chunks =
duke@435 1830 _summary_data.chunk_calc_new_pointer(last_offset_addr);
duke@435 1831 HeapWord* moved_obj_with_blocks =
duke@435 1832 _summary_data.calc_new_pointer(last_offset_addr);
duke@435 1833 assert(moved_obj_with_chunks == moved_obj_with_blocks,
duke@435 1834 "Block calculation is wrong");
duke@435 1835 #endif
duke@435 1836 } else if (last_block < _summary_data.block_count()) {
duke@435 1837 // Iterations ended looking for a start bit (but
duke@435 1838 // did not run off the end of the block table).
duke@435 1839 _summary_data.block(last_block)->set_start_bit_offset(
duke@435 1840 bbu.live_data_left());
duke@435 1841 }
duke@435 1842 }
duke@435 1843 #ifdef ASSERT
duke@435 1844 // Is there enough block information to find this object?
duke@435 1845 HeapWord* left_offset_addr = mark_bitmap()->bit_to_addr(left_offset);
duke@435 1846 HeapWord* moved_obj_with_chunks =
duke@435 1847 _summary_data.calc_new_pointer(left_offset_addr);
duke@435 1848 HeapWord* moved_obj_with_blocks =
duke@435 1849 _summary_data.calc_new_pointer(left_offset_addr);
duke@435 1850 assert(moved_obj_with_chunks == moved_obj_with_blocks,
duke@435 1851 "Block calculation is wrong");
duke@435 1852 #endif
duke@435 1853
duke@435 1854 // Is there another block after the end of this chunk?
duke@435 1855 #ifdef ASSERT
duke@435 1856 if (last_block < _summary_data.block_count()) {
duke@435 1857 // No object may have been found in a block. If that
duke@435 1858 // block is at the end of the chunk, the iteration will
duke@435 1859 // terminate without incrementing the current block so
duke@435 1860 // that the current block is not the last block in the
duke@435 1861 // chunk. That situation precludes asserting that the
duke@435 1862 // current block is the last block in the chunk. Assert
duke@435 1863 // the lesser condition that the current block does not
duke@435 1864 // exceed the chunk.
duke@435 1865 assert(_summary_data.block_to_addr(last_block) <=
duke@435 1866 (_summary_data.chunk_to_addr(chunk_index) +
duke@435 1867 ParallelCompactData::ChunkSize),
duke@435 1868 "Chunk and block inconsistency");
duke@435 1869 assert(last_offset <= right_offset, "Iteration over ran end");
duke@435 1870 }
duke@435 1871 #endif
duke@435 1872 }
duke@435 1873 #ifdef ASSERT
duke@435 1874 if (PrintGCDetails && Verbose) {
duke@435 1875 if (_summary_data.chunk(chunk_index)->partial_obj_size() == 1) {
duke@435 1876 size_t first_block =
duke@435 1877 chunk_index / ParallelCompactData::BlocksPerChunk;
duke@435 1878 gclog_or_tty->print_cr("first_block " PTR_FORMAT
duke@435 1879 " _offset " PTR_FORMAT
duke@435 1880 "_first_is_start_bit %d",
duke@435 1881 first_block,
duke@435 1882 _summary_data.block(first_block)->raw_offset(),
duke@435 1883 _summary_data.block(first_block)->first_is_start_bit());
duke@435 1884 }
duke@435 1885 }
duke@435 1886 #endif
duke@435 1887 }
duke@435 1888 }
duke@435 1889 DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(16);)
duke@435 1890 #endif // #if 0
duke@435 1891 }
duke@435 1892
duke@435 1893 // This method should contain all heap-specific policy for invoking a full
duke@435 1894 // collection. invoke_no_policy() will only attempt to compact the heap; it
duke@435 1895 // will do nothing further. If we need to bail out for policy reasons, scavenge
duke@435 1896 // before full gc, or any other specialized behavior, it needs to be added here.
duke@435 1897 //
duke@435 1898 // Note that this method should only be called from the vm_thread while at a
duke@435 1899 // safepoint.
duke@435 1900 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
duke@435 1901 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 1902 assert(Thread::current() == (Thread*)VMThread::vm_thread(),
duke@435 1903 "should be in vm thread");
duke@435 1904 ParallelScavengeHeap* heap = gc_heap();
duke@435 1905 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1906 assert(!heap->is_gc_active(), "not reentrant");
duke@435 1907
duke@435 1908 PSAdaptiveSizePolicy* policy = heap->size_policy();
duke@435 1909
duke@435 1910 // Before each allocation/collection attempt, find out from the
duke@435 1911 // policy object if GCs are, on the whole, taking too long. If so,
duke@435 1912 // bail out without attempting a collection. The exceptions are
duke@435 1913 // for explicitly requested GC's.
duke@435 1914 if (!policy->gc_time_limit_exceeded() ||
duke@435 1915 GCCause::is_user_requested_gc(gc_cause) ||
duke@435 1916 GCCause::is_serviceability_requested_gc(gc_cause)) {
duke@435 1917 IsGCActiveMark mark;
duke@435 1918
duke@435 1919 if (ScavengeBeforeFullGC) {
duke@435 1920 PSScavenge::invoke_no_policy();
duke@435 1921 }
duke@435 1922
duke@435 1923 PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
duke@435 1924 }
duke@435 1925 }
duke@435 1926
duke@435 1927 bool ParallelCompactData::chunk_contains(size_t chunk_index, HeapWord* addr) {
duke@435 1928 size_t addr_chunk_index = addr_to_chunk_idx(addr);
duke@435 1929 return chunk_index == addr_chunk_index;
duke@435 1930 }
duke@435 1931
duke@435 1932 bool ParallelCompactData::chunk_contains_block(size_t chunk_index,
duke@435 1933 size_t block_index) {
duke@435 1934 size_t first_block_in_chunk = chunk_index * BlocksPerChunk;
duke@435 1935 size_t last_block_in_chunk = (chunk_index + 1) * BlocksPerChunk - 1;
duke@435 1936
duke@435 1937 return (first_block_in_chunk <= block_index) &&
duke@435 1938 (block_index <= last_block_in_chunk);
duke@435 1939 }
duke@435 1940
duke@435 1941 // This method contains no policy. You should probably
duke@435 1942 // be calling invoke() instead.
duke@435 1943 void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
duke@435 1944 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
duke@435 1945 assert(ref_processor() != NULL, "Sanity");
duke@435 1946
apetrusenko@574 1947 if (GC_locker::check_active_before_gc()) {
duke@435 1948 return;
duke@435 1949 }
duke@435 1950
duke@435 1951 TimeStamp marking_start;
duke@435 1952 TimeStamp compaction_start;
duke@435 1953 TimeStamp collection_exit;
duke@435 1954
duke@435 1955 ParallelScavengeHeap* heap = gc_heap();
duke@435 1956 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1957 PSYoungGen* young_gen = heap->young_gen();
duke@435 1958 PSOldGen* old_gen = heap->old_gen();
duke@435 1959 PSPermGen* perm_gen = heap->perm_gen();
duke@435 1960 PSAdaptiveSizePolicy* size_policy = heap->size_policy();
duke@435 1961
duke@435 1962 _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
duke@435 1963
duke@435 1964 // Make sure data structures are sane, make the heap parsable, and do other
duke@435 1965 // miscellaneous bookkeeping.
duke@435 1966 PreGCValues pre_gc_values;
duke@435 1967 pre_compact(&pre_gc_values);
duke@435 1968
jcoomes@645 1969 // Get the compaction manager reserved for the VM thread.
jcoomes@645 1970 ParCompactionManager* const vmthread_cm =
jcoomes@645 1971 ParCompactionManager::manager_array(gc_task_manager()->workers());
jcoomes@645 1972
duke@435 1973 // Place after pre_compact() where the number of invocations is incremented.
duke@435 1974 AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
duke@435 1975
duke@435 1976 {
duke@435 1977 ResourceMark rm;
duke@435 1978 HandleMark hm;
duke@435 1979
duke@435 1980 const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
duke@435 1981
duke@435 1982 // This is useful for debugging but don't change the output the
duke@435 1983 // the customer sees.
duke@435 1984 const char* gc_cause_str = "Full GC";
duke@435 1985 if (is_system_gc && PrintGCDetails) {
duke@435 1986 gc_cause_str = "Full GC (System)";
duke@435 1987 }
duke@435 1988 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
duke@435 1989 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
duke@435 1990 TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
duke@435 1991 TraceCollectorStats tcs(counters());
duke@435 1992 TraceMemoryManagerStats tms(true /* Full GC */);
duke@435 1993
duke@435 1994 if (TraceGen1Time) accumulated_time()->start();
duke@435 1995
duke@435 1996 // Let the size policy know we're starting
duke@435 1997 size_policy->major_collection_begin();
duke@435 1998
duke@435 1999 // When collecting the permanent generation methodOops may be moving,
duke@435 2000 // so we either have to flush all bcp data or convert it into bci.
duke@435 2001 CodeCache::gc_prologue();
duke@435 2002 Threads::gc_prologue();
duke@435 2003
duke@435 2004 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
duke@435 2005 COMPILER2_PRESENT(DerivedPointerTable::clear());
duke@435 2006
duke@435 2007 ref_processor()->enable_discovery();
duke@435 2008
duke@435 2009 bool marked_for_unloading = false;
duke@435 2010
duke@435 2011 marking_start.update();
jcoomes@645 2012 marking_phase(vmthread_cm, maximum_heap_compaction);
duke@435 2013
duke@435 2014 #ifndef PRODUCT
duke@435 2015 if (TraceParallelOldGCMarkingPhase) {
duke@435 2016 gclog_or_tty->print_cr("marking_phase: cas_tries %d cas_retries %d "
duke@435 2017 "cas_by_another %d",
duke@435 2018 mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
duke@435 2019 mark_bitmap()->cas_by_another());
duke@435 2020 }
duke@435 2021 #endif // #ifndef PRODUCT
duke@435 2022
duke@435 2023 #ifdef ASSERT
duke@435 2024 if (VerifyParallelOldWithMarkSweep &&
duke@435 2025 (PSParallelCompact::total_invocations() %
duke@435 2026 VerifyParallelOldWithMarkSweepInterval) == 0) {
duke@435 2027 gclog_or_tty->print_cr("Verify marking with mark_sweep_phase1()");
duke@435 2028 if (PrintGCDetails && Verbose) {
duke@435 2029 gclog_or_tty->print_cr("mark_sweep_phase1:");
duke@435 2030 }
duke@435 2031 // Clear the discovered lists so that discovered objects
duke@435 2032 // don't look like they have been discovered twice.
duke@435 2033 ref_processor()->clear_discovered_references();
duke@435 2034
duke@435 2035 PSMarkSweep::allocate_stacks();
duke@435 2036 MemRegion mr = Universe::heap()->reserved_region();
duke@435 2037 PSMarkSweep::ref_processor()->enable_discovery();
duke@435 2038 PSMarkSweep::mark_sweep_phase1(maximum_heap_compaction);
duke@435 2039 }
duke@435 2040 #endif
duke@435 2041
duke@435 2042 bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
jcoomes@645 2043 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
duke@435 2044
duke@435 2045 #ifdef ASSERT
duke@435 2046 if (VerifyParallelOldWithMarkSweep &&
duke@435 2047 (PSParallelCompact::total_invocations() %
duke@435 2048 VerifyParallelOldWithMarkSweepInterval) == 0) {
duke@435 2049 if (PrintGCDetails && Verbose) {
duke@435 2050 gclog_or_tty->print_cr("mark_sweep_phase2:");
duke@435 2051 }
duke@435 2052 PSMarkSweep::mark_sweep_phase2();
duke@435 2053 }
duke@435 2054 #endif
duke@435 2055
duke@435 2056 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
duke@435 2057 COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
duke@435 2058
duke@435 2059 // adjust_roots() updates Universe::_intArrayKlassObj which is
duke@435 2060 // needed by the compaction for filling holes in the dense prefix.
duke@435 2061 adjust_roots();
duke@435 2062
duke@435 2063 #ifdef ASSERT
duke@435 2064 if (VerifyParallelOldWithMarkSweep &&
duke@435 2065 (PSParallelCompact::total_invocations() %
duke@435 2066 VerifyParallelOldWithMarkSweepInterval) == 0) {
duke@435 2067 // Do a separate verify phase so that the verify
duke@435 2068 // code can use the the forwarding pointers to
duke@435 2069 // check the new pointer calculation. The restore_marks()
duke@435 2070 // has to be done before the real compact.
jcoomes@645 2071 vmthread_cm->set_action(ParCompactionManager::VerifyUpdate);
jcoomes@645 2072 compact_perm(vmthread_cm);
jcoomes@645 2073 compact_serial(vmthread_cm);
jcoomes@645 2074 vmthread_cm->set_action(ParCompactionManager::ResetObjects);
jcoomes@645 2075 compact_perm(vmthread_cm);
jcoomes@645 2076 compact_serial(vmthread_cm);
jcoomes@645 2077 vmthread_cm->set_action(ParCompactionManager::UpdateAndCopy);
duke@435 2078
duke@435 2079 // For debugging only
duke@435 2080 PSMarkSweep::restore_marks();
duke@435 2081 PSMarkSweep::deallocate_stacks();
duke@435 2082 }
duke@435 2083 #endif
duke@435 2084
duke@435 2085 compaction_start.update();
duke@435 2086 // Does the perm gen always have to be done serially because
duke@435 2087 // klasses are used in the update of an object?
jcoomes@645 2088 compact_perm(vmthread_cm);
duke@435 2089
duke@435 2090 if (UseParallelOldGCCompacting) {
duke@435 2091 compact();
duke@435 2092 } else {
jcoomes@645 2093 compact_serial(vmthread_cm);
duke@435 2094 }
duke@435 2095
duke@435 2096 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be
duke@435 2097 // done before resizing.
duke@435 2098 post_compact();
duke@435 2099
duke@435 2100 // Let the size policy know we're done
duke@435 2101 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
duke@435 2102
duke@435 2103 if (UseAdaptiveSizePolicy) {
duke@435 2104 if (PrintAdaptiveSizePolicy) {
duke@435 2105 gclog_or_tty->print("AdaptiveSizeStart: ");
duke@435 2106 gclog_or_tty->stamp();
duke@435 2107 gclog_or_tty->print_cr(" collection: %d ",
duke@435 2108 heap->total_collections());
duke@435 2109 if (Verbose) {
duke@435 2110 gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
duke@435 2111 " perm_gen_capacity: %d ",
duke@435 2112 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
duke@435 2113 perm_gen->capacity_in_bytes());
duke@435 2114 }
duke@435 2115 }
duke@435 2116
duke@435 2117 // Don't check if the size_policy is ready here. Let
duke@435 2118 // the size_policy check that internally.
duke@435 2119 if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
duke@435 2120 ((gc_cause != GCCause::_java_lang_system_gc) ||
duke@435 2121 UseAdaptiveSizePolicyWithSystemGC)) {
duke@435 2122 // Calculate optimal free space amounts
duke@435 2123 assert(young_gen->max_size() >
duke@435 2124 young_gen->from_space()->capacity_in_bytes() +
duke@435 2125 young_gen->to_space()->capacity_in_bytes(),
duke@435 2126 "Sizes of space in young gen are out-of-bounds");
duke@435 2127 size_t max_eden_size = young_gen->max_size() -
duke@435 2128 young_gen->from_space()->capacity_in_bytes() -
duke@435 2129 young_gen->to_space()->capacity_in_bytes();
duke@435 2130 size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
duke@435 2131 young_gen->eden_space()->used_in_bytes(),
duke@435 2132 old_gen->used_in_bytes(),
duke@435 2133 perm_gen->used_in_bytes(),
duke@435 2134 young_gen->eden_space()->capacity_in_bytes(),
duke@435 2135 old_gen->max_gen_size(),
duke@435 2136 max_eden_size,
duke@435 2137 true /* full gc*/,
duke@435 2138 gc_cause);
duke@435 2139
duke@435 2140 heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
duke@435 2141
duke@435 2142 // Don't resize the young generation at an major collection. A
duke@435 2143 // desired young generation size may have been calculated but
duke@435 2144 // resizing the young generation complicates the code because the
duke@435 2145 // resizing of the old generation may have moved the boundary
duke@435 2146 // between the young generation and the old generation. Let the
duke@435 2147 // young generation resizing happen at the minor collections.
duke@435 2148 }
duke@435 2149 if (PrintAdaptiveSizePolicy) {
duke@435 2150 gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
duke@435 2151 heap->total_collections());
duke@435 2152 }
duke@435 2153 }
duke@435 2154
duke@435 2155 if (UsePerfData) {
duke@435 2156 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
duke@435 2157 counters->update_counters();
duke@435 2158 counters->update_old_capacity(old_gen->capacity_in_bytes());
duke@435 2159 counters->update_young_capacity(young_gen->capacity_in_bytes());
duke@435 2160 }
duke@435 2161
duke@435 2162 heap->resize_all_tlabs();
duke@435 2163
duke@435 2164 // We collected the perm gen, so we'll resize it here.
duke@435 2165 perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
duke@435 2166
duke@435 2167 if (TraceGen1Time) accumulated_time()->stop();
duke@435 2168
duke@435 2169 if (PrintGC) {
duke@435 2170 if (PrintGCDetails) {
duke@435 2171 // No GC timestamp here. This is after GC so it would be confusing.
duke@435 2172 young_gen->print_used_change(pre_gc_values.young_gen_used());
duke@435 2173 old_gen->print_used_change(pre_gc_values.old_gen_used());
duke@435 2174 heap->print_heap_change(pre_gc_values.heap_used());
duke@435 2175 // Print perm gen last (print_heap_change() excludes the perm gen).
duke@435 2176 perm_gen->print_used_change(pre_gc_values.perm_gen_used());
duke@435 2177 } else {
duke@435 2178 heap->print_heap_change(pre_gc_values.heap_used());
duke@435 2179 }
duke@435 2180 }
duke@435 2181
duke@435 2182 // Track memory usage and detect low memory
duke@435 2183 MemoryService::track_memory_usage();
duke@435 2184 heap->update_counters();
duke@435 2185
duke@435 2186 if (PrintGCDetails) {
duke@435 2187 if (size_policy->print_gc_time_limit_would_be_exceeded()) {
duke@435 2188 if (size_policy->gc_time_limit_exceeded()) {
duke@435 2189 gclog_or_tty->print_cr(" GC time is exceeding GCTimeLimit "
duke@435 2190 "of %d%%", GCTimeLimit);
duke@435 2191 } else {
duke@435 2192 gclog_or_tty->print_cr(" GC time would exceed GCTimeLimit "
duke@435 2193 "of %d%%", GCTimeLimit);
duke@435 2194 }
duke@435 2195 }
duke@435 2196 size_policy->set_print_gc_time_limit_would_be_exceeded(false);
duke@435 2197 }
duke@435 2198 }
duke@435 2199
duke@435 2200 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 2201 HandleMark hm; // Discard invalid handles created during verification
duke@435 2202 gclog_or_tty->print(" VerifyAfterGC:");
duke@435 2203 Universe::verify(false);
duke@435 2204 }
duke@435 2205
duke@435 2206 // Re-verify object start arrays
duke@435 2207 if (VerifyObjectStartArray &&
duke@435 2208 VerifyAfterGC) {
duke@435 2209 old_gen->verify_object_start_array();
duke@435 2210 perm_gen->verify_object_start_array();
duke@435 2211 }
duke@435 2212
duke@435 2213 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
duke@435 2214
duke@435 2215 collection_exit.update();
duke@435 2216
duke@435 2217 if (PrintHeapAtGC) {
duke@435 2218 Universe::print_heap_after_gc();
duke@435 2219 }
duke@435 2220 if (PrintGCTaskTimeStamps) {
duke@435 2221 gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
duke@435 2222 INT64_FORMAT,
duke@435 2223 marking_start.ticks(), compaction_start.ticks(),
duke@435 2224 collection_exit.ticks());
duke@435 2225 gc_task_manager()->print_task_time_stamps();
duke@435 2226 }
duke@435 2227 }
duke@435 2228
duke@435 2229 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
duke@435 2230 PSYoungGen* young_gen,
duke@435 2231 PSOldGen* old_gen) {
duke@435 2232 MutableSpace* const eden_space = young_gen->eden_space();
duke@435 2233 assert(!eden_space->is_empty(), "eden must be non-empty");
duke@435 2234 assert(young_gen->virtual_space()->alignment() ==
duke@435 2235 old_gen->virtual_space()->alignment(), "alignments do not match");
duke@435 2236
duke@435 2237 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
duke@435 2238 return false;
duke@435 2239 }
duke@435 2240
duke@435 2241 // Both generations must be completely committed.
duke@435 2242 if (young_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2243 return false;
duke@435 2244 }
duke@435 2245 if (old_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2246 return false;
duke@435 2247 }
duke@435 2248
duke@435 2249 // Figure out how much to take from eden. Include the average amount promoted
duke@435 2250 // in the total; otherwise the next young gen GC will simply bail out to a
duke@435 2251 // full GC.
duke@435 2252 const size_t alignment = old_gen->virtual_space()->alignment();
duke@435 2253 const size_t eden_used = eden_space->used_in_bytes();
duke@435 2254 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
duke@435 2255 const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
duke@435 2256 const size_t eden_capacity = eden_space->capacity_in_bytes();
duke@435 2257
duke@435 2258 if (absorb_size >= eden_capacity) {
duke@435 2259 return false; // Must leave some space in eden.
duke@435 2260 }
duke@435 2261
duke@435 2262 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
duke@435 2263 if (new_young_size < young_gen->min_gen_size()) {
duke@435 2264 return false; // Respect young gen minimum size.
duke@435 2265 }
duke@435 2266
duke@435 2267 if (TraceAdaptiveGCBoundary && Verbose) {
duke@435 2268 gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: "
duke@435 2269 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
duke@435 2270 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
duke@435 2271 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
duke@435 2272 absorb_size / K,
duke@435 2273 eden_capacity / K, (eden_capacity - absorb_size) / K,
duke@435 2274 young_gen->from_space()->used_in_bytes() / K,
duke@435 2275 young_gen->to_space()->used_in_bytes() / K,
duke@435 2276 young_gen->capacity_in_bytes() / K, new_young_size / K);
duke@435 2277 }
duke@435 2278
duke@435 2279 // Fill the unused part of the old gen.
duke@435 2280 MutableSpace* const old_space = old_gen->object_space();
duke@435 2281 MemRegion old_gen_unused(old_space->top(), old_space->end());
duke@435 2282 if (!old_gen_unused.is_empty()) {
duke@435 2283 SharedHeap::fill_region_with_object(old_gen_unused);
duke@435 2284 }
duke@435 2285
duke@435 2286 // Take the live data from eden and set both top and end in the old gen to
duke@435 2287 // eden top. (Need to set end because reset_after_change() mangles the region
duke@435 2288 // from end to virtual_space->high() in debug builds).
duke@435 2289 HeapWord* const new_top = eden_space->top();
duke@435 2290 old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
duke@435 2291 absorb_size);
duke@435 2292 young_gen->reset_after_change();
duke@435 2293 old_space->set_top(new_top);
duke@435 2294 old_space->set_end(new_top);
duke@435 2295 old_gen->reset_after_change();
duke@435 2296
duke@435 2297 // Update the object start array for the filler object and the data from eden.
duke@435 2298 ObjectStartArray* const start_array = old_gen->start_array();
duke@435 2299 HeapWord* const start = old_gen_unused.start();
duke@435 2300 for (HeapWord* addr = start; addr < new_top; addr += oop(addr)->size()) {
duke@435 2301 start_array->allocate_block(addr);
duke@435 2302 }
duke@435 2303
duke@435 2304 // Could update the promoted average here, but it is not typically updated at
duke@435 2305 // full GCs and the value to use is unclear. Something like
duke@435 2306 //
duke@435 2307 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
duke@435 2308
duke@435 2309 size_policy->set_bytes_absorbed_from_eden(absorb_size);
duke@435 2310 return true;
duke@435 2311 }
duke@435 2312
duke@435 2313 GCTaskManager* const PSParallelCompact::gc_task_manager() {
duke@435 2314 assert(ParallelScavengeHeap::gc_task_manager() != NULL,
duke@435 2315 "shouldn't return NULL");
duke@435 2316 return ParallelScavengeHeap::gc_task_manager();
duke@435 2317 }
duke@435 2318
duke@435 2319 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
duke@435 2320 bool maximum_heap_compaction) {
duke@435 2321 // Recursively traverse all live objects and mark them
duke@435 2322 EventMark m("1 mark object");
duke@435 2323 TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
duke@435 2324
duke@435 2325 ParallelScavengeHeap* heap = gc_heap();
duke@435 2326 uint parallel_gc_threads = heap->gc_task_manager()->workers();
duke@435 2327 TaskQueueSetSuper* qset = ParCompactionManager::chunk_array();
duke@435 2328 ParallelTaskTerminator terminator(parallel_gc_threads, qset);
duke@435 2329
duke@435 2330 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
duke@435 2331 PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
duke@435 2332
duke@435 2333 {
duke@435 2334 TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
duke@435 2335
duke@435 2336 GCTaskQueue* q = GCTaskQueue::create();
duke@435 2337
duke@435 2338 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
duke@435 2339 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
duke@435 2340 // We scan the thread roots in parallel
duke@435 2341 Threads::create_thread_roots_marking_tasks(q);
duke@435 2342 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
duke@435 2343 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
duke@435 2344 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
duke@435 2345 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
duke@435 2346 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
duke@435 2347 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));
duke@435 2348
duke@435 2349 if (parallel_gc_threads > 1) {
duke@435 2350 for (uint j = 0; j < parallel_gc_threads; j++) {
duke@435 2351 q->enqueue(new StealMarkingTask(&terminator));
duke@435 2352 }
duke@435 2353 }
duke@435 2354
duke@435 2355 WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
duke@435 2356 q->enqueue(fin);
duke@435 2357
duke@435 2358 gc_task_manager()->add_list(q);
duke@435 2359
duke@435 2360 fin->wait_for();
duke@435 2361
duke@435 2362 // We have to release the barrier tasks!
duke@435 2363 WaitForBarrierGCTask::destroy(fin);
duke@435 2364 }
duke@435 2365
duke@435 2366 // Process reference objects found during marking
duke@435 2367 {
duke@435 2368 TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
duke@435 2369 ReferencePolicy *soft_ref_policy;
duke@435 2370 if (maximum_heap_compaction) {
duke@435 2371 soft_ref_policy = new AlwaysClearPolicy();
duke@435 2372 } else {
duke@435 2373 #ifdef COMPILER2
duke@435 2374 soft_ref_policy = new LRUMaxHeapPolicy();
duke@435 2375 #else
duke@435 2376 soft_ref_policy = new LRUCurrentHeapPolicy();
duke@435 2377 #endif // COMPILER2
duke@435 2378 }
duke@435 2379 assert(soft_ref_policy != NULL, "No soft reference policy");
duke@435 2380 if (ref_processor()->processing_is_mt()) {
duke@435 2381 RefProcTaskExecutor task_executor;
duke@435 2382 ref_processor()->process_discovered_references(
duke@435 2383 soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
duke@435 2384 &follow_stack_closure, &task_executor);
duke@435 2385 } else {
duke@435 2386 ref_processor()->process_discovered_references(
duke@435 2387 soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
duke@435 2388 &follow_stack_closure, NULL);
duke@435 2389 }
duke@435 2390 }
duke@435 2391
duke@435 2392 TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
duke@435 2393 // Follow system dictionary roots and unload classes.
duke@435 2394 bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
duke@435 2395
duke@435 2396 // Follow code cache roots.
duke@435 2397 CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
duke@435 2398 purged_class);
duke@435 2399 follow_stack(cm); // Flush marking stack.
duke@435 2400
duke@435 2401 // Update subklass/sibling/implementor links of live klasses
duke@435 2402 // revisit_klass_stack is used in follow_weak_klass_links().
duke@435 2403 follow_weak_klass_links(cm);
duke@435 2404
duke@435 2405 // Visit symbol and interned string tables and delete unmarked oops
duke@435 2406 SymbolTable::unlink(is_alive_closure());
duke@435 2407 StringTable::unlink(is_alive_closure());
duke@435 2408
duke@435 2409 assert(cm->marking_stack()->size() == 0, "stack should be empty by now");
duke@435 2410 assert(cm->overflow_stack()->is_empty(), "stack should be empty by now");
duke@435 2411 }
duke@435 2412
duke@435 2413 // This should be moved to the shared markSweep code!
duke@435 2414 class PSAlwaysTrueClosure: public BoolObjectClosure {
duke@435 2415 public:
duke@435 2416 void do_object(oop p) { ShouldNotReachHere(); }
duke@435 2417 bool do_object_b(oop p) { return true; }
duke@435 2418 };
duke@435 2419 static PSAlwaysTrueClosure always_true;
duke@435 2420
duke@435 2421 void PSParallelCompact::adjust_roots() {
duke@435 2422 // Adjust the pointers to reflect the new locations
duke@435 2423 EventMark m("3 adjust roots");
duke@435 2424 TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
duke@435 2425
duke@435 2426 // General strong roots.
duke@435 2427 Universe::oops_do(adjust_root_pointer_closure());
duke@435 2428 ReferenceProcessor::oops_do(adjust_root_pointer_closure());
duke@435 2429 JNIHandles::oops_do(adjust_root_pointer_closure()); // Global (strong) JNI handles
duke@435 2430 Threads::oops_do(adjust_root_pointer_closure());
duke@435 2431 ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
duke@435 2432 FlatProfiler::oops_do(adjust_root_pointer_closure());
duke@435 2433 Management::oops_do(adjust_root_pointer_closure());
duke@435 2434 JvmtiExport::oops_do(adjust_root_pointer_closure());
duke@435 2435 // SO_AllClasses
duke@435 2436 SystemDictionary::oops_do(adjust_root_pointer_closure());
duke@435 2437 vmSymbols::oops_do(adjust_root_pointer_closure());
duke@435 2438
duke@435 2439 // Now adjust pointers in remaining weak roots. (All of which should
duke@435 2440 // have been cleared if they pointed to non-surviving objects.)
duke@435 2441 // Global (weak) JNI handles
duke@435 2442 JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
duke@435 2443
duke@435 2444 CodeCache::oops_do(adjust_pointer_closure());
duke@435 2445 SymbolTable::oops_do(adjust_root_pointer_closure());
duke@435 2446 StringTable::oops_do(adjust_root_pointer_closure());
duke@435 2447 ref_processor()->weak_oops_do(adjust_root_pointer_closure());
duke@435 2448 // Roots were visited so references into the young gen in roots
duke@435 2449 // may have been scanned. Process them also.
duke@435 2450 // Should the reference processor have a span that excludes
duke@435 2451 // young gen objects?
duke@435 2452 PSScavenge::reference_processor()->weak_oops_do(
duke@435 2453 adjust_root_pointer_closure());
duke@435 2454 }
duke@435 2455
duke@435 2456 void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
duke@435 2457 EventMark m("4 compact perm");
duke@435 2458 TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
duke@435 2459 // trace("4");
duke@435 2460
duke@435 2461 gc_heap()->perm_gen()->start_array()->reset();
duke@435 2462 move_and_update(cm, perm_space_id);
duke@435 2463 }
duke@435 2464
duke@435 2465 void PSParallelCompact::enqueue_chunk_draining_tasks(GCTaskQueue* q,
duke@435 2466 uint parallel_gc_threads) {
duke@435 2467 TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
duke@435 2468
duke@435 2469 const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
duke@435 2470 for (unsigned int j = 0; j < task_count; j++) {
duke@435 2471 q->enqueue(new DrainStacksCompactionTask());
duke@435 2472 }
duke@435 2473
duke@435 2474 // Find all chunks that are available (can be filled immediately) and
duke@435 2475 // distribute them to the thread stacks. The iteration is done in reverse
duke@435 2476 // order (high to low) so the chunks will be removed in ascending order.
duke@435 2477
duke@435 2478 const ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2479
duke@435 2480 size_t fillable_chunks = 0; // A count for diagnostic purposes.
duke@435 2481 unsigned int which = 0; // The worker thread number.
duke@435 2482
duke@435 2483 for (unsigned int id = to_space_id; id > perm_space_id; --id) {
duke@435 2484 SpaceInfo* const space_info = _space_info + id;
duke@435 2485 MutableSpace* const space = space_info->space();
duke@435 2486 HeapWord* const new_top = space_info->new_top();
duke@435 2487
duke@435 2488 const size_t beg_chunk = sd.addr_to_chunk_idx(space_info->dense_prefix());
duke@435 2489 const size_t end_chunk = sd.addr_to_chunk_idx(sd.chunk_align_up(new_top));
duke@435 2490 assert(end_chunk > 0, "perm gen cannot be empty");
duke@435 2491
duke@435 2492 for (size_t cur = end_chunk - 1; cur >= beg_chunk; --cur) {
duke@435 2493 if (sd.chunk(cur)->claim_unsafe()) {
duke@435 2494 ParCompactionManager* cm = ParCompactionManager::manager_array(which);
duke@435 2495 cm->save_for_processing(cur);
duke@435 2496
duke@435 2497 if (TraceParallelOldGCCompactionPhase && Verbose) {
duke@435 2498 const size_t count_mod_8 = fillable_chunks & 7;
duke@435 2499 if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
duke@435 2500 gclog_or_tty->print(" " SIZE_FORMAT_W("7"), cur);
duke@435 2501 if (count_mod_8 == 7) gclog_or_tty->cr();
duke@435 2502 }
duke@435 2503
duke@435 2504 NOT_PRODUCT(++fillable_chunks;)
duke@435 2505
duke@435 2506 // Assign chunks to threads in round-robin fashion.
duke@435 2507 if (++which == task_count) {
duke@435 2508 which = 0;
duke@435 2509 }
duke@435 2510 }
duke@435 2511 }
duke@435 2512 }
duke@435 2513
duke@435 2514 if (TraceParallelOldGCCompactionPhase) {
duke@435 2515 if (Verbose && (fillable_chunks & 7) != 0) gclog_or_tty->cr();
duke@435 2516 gclog_or_tty->print_cr("%u initially fillable chunks", fillable_chunks);
duke@435 2517 }
duke@435 2518 }
duke@435 2519
duke@435 2520 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
duke@435 2521
duke@435 2522 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
duke@435 2523 uint parallel_gc_threads) {
duke@435 2524 TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
duke@435 2525
duke@435 2526 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2527
duke@435 2528 // Iterate over all the spaces adding tasks for updating
duke@435 2529 // chunks in the dense prefix. Assume that 1 gc thread
duke@435 2530 // will work on opening the gaps and the remaining gc threads
duke@435 2531 // will work on the dense prefix.
duke@435 2532 SpaceId space_id = old_space_id;
duke@435 2533 while (space_id != last_space_id) {
duke@435 2534 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
duke@435 2535 const MutableSpace* const space = _space_info[space_id].space();
duke@435 2536
duke@435 2537 if (dense_prefix_end == space->bottom()) {
duke@435 2538 // There is no dense prefix for this space.
duke@435 2539 space_id = next_compaction_space_id(space_id);
duke@435 2540 continue;
duke@435 2541 }
duke@435 2542
duke@435 2543 // The dense prefix is before this chunk.
duke@435 2544 size_t chunk_index_end_dense_prefix =
duke@435 2545 sd.addr_to_chunk_idx(dense_prefix_end);
duke@435 2546 ChunkData* const dense_prefix_cp = sd.chunk(chunk_index_end_dense_prefix);
duke@435 2547 assert(dense_prefix_end == space->end() ||
duke@435 2548 dense_prefix_cp->available() ||
duke@435 2549 dense_prefix_cp->claimed(),
duke@435 2550 "The chunk after the dense prefix should always be ready to fill");
duke@435 2551
duke@435 2552 size_t chunk_index_start = sd.addr_to_chunk_idx(space->bottom());
duke@435 2553
duke@435 2554 // Is there dense prefix work?
duke@435 2555 size_t total_dense_prefix_chunks =
duke@435 2556 chunk_index_end_dense_prefix - chunk_index_start;
duke@435 2557 // How many chunks of the dense prefix should be given to
duke@435 2558 // each thread?
duke@435 2559 if (total_dense_prefix_chunks > 0) {
duke@435 2560 uint tasks_for_dense_prefix = 1;
duke@435 2561 if (UseParallelDensePrefixUpdate) {
duke@435 2562 if (total_dense_prefix_chunks <=
duke@435 2563 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
duke@435 2564 // Don't over partition. This assumes that
duke@435 2565 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
duke@435 2566 // so there are not many chunks to process.
duke@435 2567 tasks_for_dense_prefix = parallel_gc_threads;
duke@435 2568 } else {
duke@435 2569 // Over partition
duke@435 2570 tasks_for_dense_prefix = parallel_gc_threads *
duke@435 2571 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
duke@435 2572 }
duke@435 2573 }
duke@435 2574 size_t chunks_per_thread = total_dense_prefix_chunks /
duke@435 2575 tasks_for_dense_prefix;
duke@435 2576 // Give each thread at least 1 chunk.
duke@435 2577 if (chunks_per_thread == 0) {
duke@435 2578 chunks_per_thread = 1;
duke@435 2579 }
duke@435 2580
duke@435 2581 for (uint k = 0; k < tasks_for_dense_prefix; k++) {
duke@435 2582 if (chunk_index_start >= chunk_index_end_dense_prefix) {
duke@435 2583 break;
duke@435 2584 }
duke@435 2585 // chunk_index_end is not processed
duke@435 2586 size_t chunk_index_end = MIN2(chunk_index_start + chunks_per_thread,
duke@435 2587 chunk_index_end_dense_prefix);
duke@435 2588 q->enqueue(new UpdateDensePrefixTask(
duke@435 2589 space_id,
duke@435 2590 chunk_index_start,
duke@435 2591 chunk_index_end));
duke@435 2592 chunk_index_start = chunk_index_end;
duke@435 2593 }
duke@435 2594 }
duke@435 2595 // This gets any part of the dense prefix that did not
duke@435 2596 // fit evenly.
duke@435 2597 if (chunk_index_start < chunk_index_end_dense_prefix) {
duke@435 2598 q->enqueue(new UpdateDensePrefixTask(
duke@435 2599 space_id,
duke@435 2600 chunk_index_start,
duke@435 2601 chunk_index_end_dense_prefix));
duke@435 2602 }
duke@435 2603 space_id = next_compaction_space_id(space_id);
duke@435 2604 } // End tasks for dense prefix
duke@435 2605 }
duke@435 2606
duke@435 2607 void PSParallelCompact::enqueue_chunk_stealing_tasks(
duke@435 2608 GCTaskQueue* q,
duke@435 2609 ParallelTaskTerminator* terminator_ptr,
duke@435 2610 uint parallel_gc_threads) {
duke@435 2611 TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
duke@435 2612
duke@435 2613 // Once a thread has drained it's stack, it should try to steal chunks from
duke@435 2614 // other threads.
duke@435 2615 if (parallel_gc_threads > 1) {
duke@435 2616 for (uint j = 0; j < parallel_gc_threads; j++) {
duke@435 2617 q->enqueue(new StealChunkCompactionTask(terminator_ptr));
duke@435 2618 }
duke@435 2619 }
duke@435 2620 }
duke@435 2621
duke@435 2622 void PSParallelCompact::compact() {
duke@435 2623 EventMark m("5 compact");
duke@435 2624 // trace("5");
duke@435 2625 TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
duke@435 2626
duke@435 2627 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 2628 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 2629 PSOldGen* old_gen = heap->old_gen();
duke@435 2630 old_gen->start_array()->reset();
duke@435 2631 uint parallel_gc_threads = heap->gc_task_manager()->workers();
duke@435 2632 TaskQueueSetSuper* qset = ParCompactionManager::chunk_array();
duke@435 2633 ParallelTaskTerminator terminator(parallel_gc_threads, qset);
duke@435 2634
duke@435 2635 GCTaskQueue* q = GCTaskQueue::create();
duke@435 2636 enqueue_chunk_draining_tasks(q, parallel_gc_threads);
duke@435 2637 enqueue_dense_prefix_tasks(q, parallel_gc_threads);
duke@435 2638 enqueue_chunk_stealing_tasks(q, &terminator, parallel_gc_threads);
duke@435 2639
duke@435 2640 {
duke@435 2641 TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
duke@435 2642
duke@435 2643 WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
duke@435 2644 q->enqueue(fin);
duke@435 2645
duke@435 2646 gc_task_manager()->add_list(q);
duke@435 2647
duke@435 2648 fin->wait_for();
duke@435 2649
duke@435 2650 // We have to release the barrier tasks!
duke@435 2651 WaitForBarrierGCTask::destroy(fin);
duke@435 2652
duke@435 2653 #ifdef ASSERT
duke@435 2654 // Verify that all chunks have been processed before the deferred updates.
duke@435 2655 // Note that perm_space_id is skipped; this type of verification is not
duke@435 2656 // valid until the perm gen is compacted by chunks.
duke@435 2657 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2658 verify_complete(SpaceId(id));
duke@435 2659 }
duke@435 2660 #endif
duke@435 2661 }
duke@435 2662
duke@435 2663 {
duke@435 2664 // Update the deferred objects, if any. Any compaction manager can be used.
duke@435 2665 TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
duke@435 2666 ParCompactionManager* cm = ParCompactionManager::manager_array(0);
duke@435 2667 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2668 update_deferred_objects(cm, SpaceId(id));
duke@435 2669 }
duke@435 2670 }
duke@435 2671 }
duke@435 2672
duke@435 2673 #ifdef ASSERT
duke@435 2674 void PSParallelCompact::verify_complete(SpaceId space_id) {
duke@435 2675 // All Chunks between space bottom() to new_top() should be marked as filled
duke@435 2676 // and all Chunks between new_top() and top() should be available (i.e.,
duke@435 2677 // should have been emptied).
duke@435 2678 ParallelCompactData& sd = summary_data();
duke@435 2679 SpaceInfo si = _space_info[space_id];
duke@435 2680 HeapWord* new_top_addr = sd.chunk_align_up(si.new_top());
duke@435 2681 HeapWord* old_top_addr = sd.chunk_align_up(si.space()->top());
duke@435 2682 const size_t beg_chunk = sd.addr_to_chunk_idx(si.space()->bottom());
duke@435 2683 const size_t new_top_chunk = sd.addr_to_chunk_idx(new_top_addr);
duke@435 2684 const size_t old_top_chunk = sd.addr_to_chunk_idx(old_top_addr);
duke@435 2685
duke@435 2686 bool issued_a_warning = false;
duke@435 2687
duke@435 2688 size_t cur_chunk;
duke@435 2689 for (cur_chunk = beg_chunk; cur_chunk < new_top_chunk; ++cur_chunk) {
duke@435 2690 const ChunkData* const c = sd.chunk(cur_chunk);
duke@435 2691 if (!c->completed()) {
duke@435 2692 warning("chunk " SIZE_FORMAT " not filled: "
duke@435 2693 "destination_count=" SIZE_FORMAT,
duke@435 2694 cur_chunk, c->destination_count());
duke@435 2695 issued_a_warning = true;
duke@435 2696 }
duke@435 2697 }
duke@435 2698
duke@435 2699 for (cur_chunk = new_top_chunk; cur_chunk < old_top_chunk; ++cur_chunk) {
duke@435 2700 const ChunkData* const c = sd.chunk(cur_chunk);
duke@435 2701 if (!c->available()) {
duke@435 2702 warning("chunk " SIZE_FORMAT " not empty: "
duke@435 2703 "destination_count=" SIZE_FORMAT,
duke@435 2704 cur_chunk, c->destination_count());
duke@435 2705 issued_a_warning = true;
duke@435 2706 }
duke@435 2707 }
duke@435 2708
duke@435 2709 if (issued_a_warning) {
duke@435 2710 print_chunk_ranges();
duke@435 2711 }
duke@435 2712 }
duke@435 2713 #endif // #ifdef ASSERT
duke@435 2714
duke@435 2715 void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
duke@435 2716 EventMark m("5 compact serial");
duke@435 2717 TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);
duke@435 2718
duke@435 2719 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 2720 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 2721
duke@435 2722 PSYoungGen* young_gen = heap->young_gen();
duke@435 2723 PSOldGen* old_gen = heap->old_gen();
duke@435 2724
duke@435 2725 old_gen->start_array()->reset();
duke@435 2726 old_gen->move_and_update(cm);
duke@435 2727 young_gen->move_and_update(cm);
duke@435 2728 }
duke@435 2729
duke@435 2730
duke@435 2731 void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
duke@435 2732 while(!cm->overflow_stack()->is_empty()) {
duke@435 2733 oop obj = cm->overflow_stack()->pop();
duke@435 2734 obj->follow_contents(cm);
duke@435 2735 }
duke@435 2736
duke@435 2737 oop obj;
duke@435 2738 // obj is a reference!!!
duke@435 2739 while (cm->marking_stack()->pop_local(obj)) {
duke@435 2740 // It would be nice to assert about the type of objects we might
duke@435 2741 // pop, but they can come from anywhere, unfortunately.
duke@435 2742 obj->follow_contents(cm);
duke@435 2743 }
duke@435 2744 }
duke@435 2745
duke@435 2746 void
duke@435 2747 PSParallelCompact::follow_weak_klass_links(ParCompactionManager* serial_cm) {
duke@435 2748 // All klasses on the revisit stack are marked at this point.
duke@435 2749 // Update and follow all subklass, sibling and implementor links.
duke@435 2750 for (uint i = 0; i < ParallelGCThreads+1; i++) {
duke@435 2751 ParCompactionManager* cm = ParCompactionManager::manager_array(i);
duke@435 2752 KeepAliveClosure keep_alive_closure(cm);
duke@435 2753 for (int i = 0; i < cm->revisit_klass_stack()->length(); i++) {
duke@435 2754 cm->revisit_klass_stack()->at(i)->follow_weak_klass_links(
duke@435 2755 is_alive_closure(),
duke@435 2756 &keep_alive_closure);
duke@435 2757 }
duke@435 2758 follow_stack(cm);
duke@435 2759 }
duke@435 2760 }
duke@435 2761
duke@435 2762 void
duke@435 2763 PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
duke@435 2764 cm->revisit_klass_stack()->push(k);
duke@435 2765 }
duke@435 2766
duke@435 2767 #ifdef VALIDATE_MARK_SWEEP
duke@435 2768
coleenp@548 2769 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
duke@435 2770 if (!ValidateMarkSweep)
duke@435 2771 return;
duke@435 2772
duke@435 2773 if (!isroot) {
duke@435 2774 if (_pointer_tracking) {
duke@435 2775 guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
duke@435 2776 _adjusted_pointers->remove(p);
duke@435 2777 }
duke@435 2778 } else {
duke@435 2779 ptrdiff_t index = _root_refs_stack->find(p);
duke@435 2780 if (index != -1) {
duke@435 2781 int l = _root_refs_stack->length();
duke@435 2782 if (l > 0 && l - 1 != index) {
coleenp@548 2783 void* last = _root_refs_stack->pop();
duke@435 2784 assert(last != p, "should be different");
duke@435 2785 _root_refs_stack->at_put(index, last);
duke@435 2786 } else {
duke@435 2787 _root_refs_stack->remove(p);
duke@435 2788 }
duke@435 2789 }
duke@435 2790 }
duke@435 2791 }
duke@435 2792
duke@435 2793
coleenp@548 2794 void PSParallelCompact::check_adjust_pointer(void* p) {
duke@435 2795 _adjusted_pointers->push(p);
duke@435 2796 }
duke@435 2797
duke@435 2798
duke@435 2799 class AdjusterTracker: public OopClosure {
duke@435 2800 public:
duke@435 2801 AdjusterTracker() {};
coleenp@548 2802 void do_oop(oop* o) { PSParallelCompact::check_adjust_pointer(o); }
coleenp@548 2803 void do_oop(narrowOop* o) { PSParallelCompact::check_adjust_pointer(o); }
duke@435 2804 };
duke@435 2805
duke@435 2806
duke@435 2807 void PSParallelCompact::track_interior_pointers(oop obj) {
duke@435 2808 if (ValidateMarkSweep) {
duke@435 2809 _adjusted_pointers->clear();
duke@435 2810 _pointer_tracking = true;
duke@435 2811
duke@435 2812 AdjusterTracker checker;
duke@435 2813 obj->oop_iterate(&checker);
duke@435 2814 }
duke@435 2815 }
duke@435 2816
duke@435 2817
duke@435 2818 void PSParallelCompact::check_interior_pointers() {
duke@435 2819 if (ValidateMarkSweep) {
duke@435 2820 _pointer_tracking = false;
duke@435 2821 guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
duke@435 2822 }
duke@435 2823 }
duke@435 2824
duke@435 2825
duke@435 2826 void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
duke@435 2827 if (ValidateMarkSweep) {
duke@435 2828 guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
duke@435 2829 _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
duke@435 2830 }
duke@435 2831 }
duke@435 2832
duke@435 2833
duke@435 2834 void PSParallelCompact::register_live_oop(oop p, size_t size) {
duke@435 2835 if (ValidateMarkSweep) {
duke@435 2836 _live_oops->push(p);
duke@435 2837 _live_oops_size->push(size);
duke@435 2838 _live_oops_index++;
duke@435 2839 }
duke@435 2840 }
duke@435 2841
duke@435 2842 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
duke@435 2843 if (ValidateMarkSweep) {
duke@435 2844 oop obj = _live_oops->at((int)_live_oops_index);
duke@435 2845 guarantee(obj == p, "should be the same object");
duke@435 2846 guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
duke@435 2847 _live_oops_index++;
duke@435 2848 }
duke@435 2849 }
duke@435 2850
duke@435 2851 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
duke@435 2852 HeapWord* compaction_top) {
duke@435 2853 assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
duke@435 2854 "should be moved to forwarded location");
duke@435 2855 if (ValidateMarkSweep) {
duke@435 2856 PSParallelCompact::validate_live_oop(oop(q), size);
duke@435 2857 _live_oops_moved_to->push(oop(compaction_top));
duke@435 2858 }
duke@435 2859 if (RecordMarkSweepCompaction) {
duke@435 2860 _cur_gc_live_oops->push(q);
duke@435 2861 _cur_gc_live_oops_moved_to->push(compaction_top);
duke@435 2862 _cur_gc_live_oops_size->push(size);
duke@435 2863 }
duke@435 2864 }
duke@435 2865
duke@435 2866
duke@435 2867 void PSParallelCompact::compaction_complete() {
duke@435 2868 if (RecordMarkSweepCompaction) {
duke@435 2869 GrowableArray<HeapWord*>* _tmp_live_oops = _cur_gc_live_oops;
duke@435 2870 GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
duke@435 2871 GrowableArray<size_t> * _tmp_live_oops_size = _cur_gc_live_oops_size;
duke@435 2872
duke@435 2873 _cur_gc_live_oops = _last_gc_live_oops;
duke@435 2874 _cur_gc_live_oops_moved_to = _last_gc_live_oops_moved_to;
duke@435 2875 _cur_gc_live_oops_size = _last_gc_live_oops_size;
duke@435 2876 _last_gc_live_oops = _tmp_live_oops;
duke@435 2877 _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
duke@435 2878 _last_gc_live_oops_size = _tmp_live_oops_size;
duke@435 2879 }
duke@435 2880 }
duke@435 2881
duke@435 2882
duke@435 2883 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
duke@435 2884 if (!RecordMarkSweepCompaction) {
duke@435 2885 tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
duke@435 2886 return;
duke@435 2887 }
duke@435 2888
duke@435 2889 if (_last_gc_live_oops == NULL) {
duke@435 2890 tty->print_cr("No compaction information gathered yet");
duke@435 2891 return;
duke@435 2892 }
duke@435 2893
duke@435 2894 for (int i = 0; i < _last_gc_live_oops->length(); i++) {
duke@435 2895 HeapWord* old_oop = _last_gc_live_oops->at(i);
duke@435 2896 size_t sz = _last_gc_live_oops_size->at(i);
duke@435 2897 if (old_oop <= q && q < (old_oop + sz)) {
duke@435 2898 HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
duke@435 2899 size_t offset = (q - old_oop);
duke@435 2900 tty->print_cr("Address " PTR_FORMAT, q);
duke@435 2901 tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
duke@435 2902 tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
duke@435 2903 return;
duke@435 2904 }
duke@435 2905 }
duke@435 2906
duke@435 2907 tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
duke@435 2908 }
duke@435 2909 #endif //VALIDATE_MARK_SWEEP
duke@435 2910
duke@435 2911 // Update interior oops in the ranges of chunks [beg_chunk, end_chunk).
duke@435 2912 void
duke@435 2913 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
duke@435 2914 SpaceId space_id,
duke@435 2915 size_t beg_chunk,
duke@435 2916 size_t end_chunk) {
duke@435 2917 ParallelCompactData& sd = summary_data();
duke@435 2918 ParMarkBitMap* const mbm = mark_bitmap();
duke@435 2919
duke@435 2920 HeapWord* beg_addr = sd.chunk_to_addr(beg_chunk);
duke@435 2921 HeapWord* const end_addr = sd.chunk_to_addr(end_chunk);
duke@435 2922 assert(beg_chunk <= end_chunk, "bad chunk range");
duke@435 2923 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
duke@435 2924
duke@435 2925 #ifdef ASSERT
duke@435 2926 // Claim the chunks to avoid triggering an assert when they are marked as
duke@435 2927 // filled.
duke@435 2928 for (size_t claim_chunk = beg_chunk; claim_chunk < end_chunk; ++claim_chunk) {
duke@435 2929 assert(sd.chunk(claim_chunk)->claim_unsafe(), "claim() failed");
duke@435 2930 }
duke@435 2931 #endif // #ifdef ASSERT
duke@435 2932
duke@435 2933 if (beg_addr != space(space_id)->bottom()) {
duke@435 2934 // Find the first live object or block of dead space that *starts* in this
duke@435 2935 // range of chunks. If a partial object crosses onto the chunk, skip it; it
duke@435 2936 // will be marked for 'deferred update' when the object head is processed.
duke@435 2937 // If dead space crosses onto the chunk, it is also skipped; it will be
duke@435 2938 // filled when the prior chunk is processed. If neither of those apply, the
duke@435 2939 // first word in the chunk is the start of a live object or dead space.
duke@435 2940 assert(beg_addr > space(space_id)->bottom(), "sanity");
duke@435 2941 const ChunkData* const cp = sd.chunk(beg_chunk);
duke@435 2942 if (cp->partial_obj_size() != 0) {
duke@435 2943 beg_addr = sd.partial_obj_end(beg_chunk);
duke@435 2944 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
duke@435 2945 beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
duke@435 2946 }
duke@435 2947 }
duke@435 2948
duke@435 2949 if (beg_addr < end_addr) {
duke@435 2950 // A live object or block of dead space starts in this range of Chunks.
duke@435 2951 HeapWord* const dense_prefix_end = dense_prefix(space_id);
duke@435 2952
duke@435 2953 // Create closures and iterate.
duke@435 2954 UpdateOnlyClosure update_closure(mbm, cm, space_id);
duke@435 2955 FillClosure fill_closure(cm, space_id);
duke@435 2956 ParMarkBitMap::IterationStatus status;
duke@435 2957 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
duke@435 2958 dense_prefix_end);
duke@435 2959 if (status == ParMarkBitMap::incomplete) {
duke@435 2960 update_closure.do_addr(update_closure.source());
duke@435 2961 }
duke@435 2962 }
duke@435 2963
duke@435 2964 // Mark the chunks as filled.
duke@435 2965 ChunkData* const beg_cp = sd.chunk(beg_chunk);
duke@435 2966 ChunkData* const end_cp = sd.chunk(end_chunk);
duke@435 2967 for (ChunkData* cp = beg_cp; cp < end_cp; ++cp) {
duke@435 2968 cp->set_completed();
duke@435 2969 }
duke@435 2970 }
duke@435 2971
duke@435 2972 // Return the SpaceId for the space containing addr. If addr is not in the
duke@435 2973 // heap, last_space_id is returned. In debug mode it expects the address to be
duke@435 2974 // in the heap and asserts such.
duke@435 2975 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
duke@435 2976 assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
duke@435 2977
duke@435 2978 for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
duke@435 2979 if (_space_info[id].space()->contains(addr)) {
duke@435 2980 return SpaceId(id);
duke@435 2981 }
duke@435 2982 }
duke@435 2983
duke@435 2984 assert(false, "no space contains the addr");
duke@435 2985 return last_space_id;
duke@435 2986 }
duke@435 2987
duke@435 2988 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
duke@435 2989 SpaceId id) {
duke@435 2990 assert(id < last_space_id, "bad space id");
duke@435 2991
duke@435 2992 ParallelCompactData& sd = summary_data();
duke@435 2993 const SpaceInfo* const space_info = _space_info + id;
duke@435 2994 ObjectStartArray* const start_array = space_info->start_array();
duke@435 2995
duke@435 2996 const MutableSpace* const space = space_info->space();
duke@435 2997 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
duke@435 2998 HeapWord* const beg_addr = space_info->dense_prefix();
duke@435 2999 HeapWord* const end_addr = sd.chunk_align_up(space_info->new_top());
duke@435 3000
duke@435 3001 const ChunkData* const beg_chunk = sd.addr_to_chunk_ptr(beg_addr);
duke@435 3002 const ChunkData* const end_chunk = sd.addr_to_chunk_ptr(end_addr);
duke@435 3003 const ChunkData* cur_chunk;
duke@435 3004 for (cur_chunk = beg_chunk; cur_chunk < end_chunk; ++cur_chunk) {
duke@435 3005 HeapWord* const addr = cur_chunk->deferred_obj_addr();
duke@435 3006 if (addr != NULL) {
duke@435 3007 if (start_array != NULL) {
duke@435 3008 start_array->allocate_block(addr);
duke@435 3009 }
duke@435 3010 oop(addr)->update_contents(cm);
duke@435 3011 assert(oop(addr)->is_oop_or_null(), "should be an oop now");
duke@435 3012 }
duke@435 3013 }
duke@435 3014 }
duke@435 3015
duke@435 3016 // Skip over count live words starting from beg, and return the address of the
duke@435 3017 // next live word. Unless marked, the word corresponding to beg is assumed to
duke@435 3018 // be dead. Callers must either ensure beg does not correspond to the middle of
duke@435 3019 // an object, or account for those live words in some other way. Callers must
duke@435 3020 // also ensure that there are enough live words in the range [beg, end) to skip.
duke@435 3021 HeapWord*
duke@435 3022 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
duke@435 3023 {
duke@435 3024 assert(count > 0, "sanity");
duke@435 3025
duke@435 3026 ParMarkBitMap* m = mark_bitmap();
duke@435 3027 idx_t bits_to_skip = m->words_to_bits(count);
duke@435 3028 idx_t cur_beg = m->addr_to_bit(beg);
duke@435 3029 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
duke@435 3030
duke@435 3031 do {
duke@435 3032 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 3033 idx_t cur_end = m->find_obj_end(cur_beg, search_end);
duke@435 3034 const size_t obj_bits = cur_end - cur_beg + 1;
duke@435 3035 if (obj_bits > bits_to_skip) {
duke@435 3036 return m->bit_to_addr(cur_beg + bits_to_skip);
duke@435 3037 }
duke@435 3038 bits_to_skip -= obj_bits;
duke@435 3039 cur_beg = cur_end + 1;
duke@435 3040 } while (bits_to_skip > 0);
duke@435 3041
duke@435 3042 // Skipping the desired number of words landed just past the end of an object.
duke@435 3043 // Find the start of the next object.
duke@435 3044 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 3045 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
duke@435 3046 return m->bit_to_addr(cur_beg);
duke@435 3047 }
duke@435 3048
duke@435 3049 HeapWord*
duke@435 3050 PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
duke@435 3051 size_t src_chunk_idx)
duke@435 3052 {
duke@435 3053 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3054 const ParallelCompactData& sd = summary_data();
duke@435 3055 const size_t ChunkSize = ParallelCompactData::ChunkSize;
duke@435 3056
duke@435 3057 assert(sd.is_chunk_aligned(dest_addr), "not aligned");
duke@435 3058
duke@435 3059 const ChunkData* const src_chunk_ptr = sd.chunk(src_chunk_idx);
duke@435 3060 const size_t partial_obj_size = src_chunk_ptr->partial_obj_size();
duke@435 3061 HeapWord* const src_chunk_destination = src_chunk_ptr->destination();
duke@435 3062
duke@435 3063 assert(dest_addr >= src_chunk_destination, "wrong src chunk");
duke@435 3064 assert(src_chunk_ptr->data_size() > 0, "src chunk cannot be empty");
duke@435 3065
duke@435 3066 HeapWord* const src_chunk_beg = sd.chunk_to_addr(src_chunk_idx);
duke@435 3067 HeapWord* const src_chunk_end = src_chunk_beg + ChunkSize;
duke@435 3068
duke@435 3069 HeapWord* addr = src_chunk_beg;
duke@435 3070 if (dest_addr == src_chunk_destination) {
duke@435 3071 // Return the first live word in the source chunk.
duke@435 3072 if (partial_obj_size == 0) {
duke@435 3073 addr = bitmap->find_obj_beg(addr, src_chunk_end);
duke@435 3074 assert(addr < src_chunk_end, "no objects start in src chunk");
duke@435 3075 }
duke@435 3076 return addr;
duke@435 3077 }
duke@435 3078
duke@435 3079 // Must skip some live data.
duke@435 3080 size_t words_to_skip = dest_addr - src_chunk_destination;
duke@435 3081 assert(src_chunk_ptr->data_size() > words_to_skip, "wrong src chunk");
duke@435 3082
duke@435 3083 if (partial_obj_size >= words_to_skip) {
duke@435 3084 // All the live words to skip are part of the partial object.
duke@435 3085 addr += words_to_skip;
duke@435 3086 if (partial_obj_size == words_to_skip) {
duke@435 3087 // Find the first live word past the partial object.
duke@435 3088 addr = bitmap->find_obj_beg(addr, src_chunk_end);
duke@435 3089 assert(addr < src_chunk_end, "wrong src chunk");
duke@435 3090 }
duke@435 3091 return addr;
duke@435 3092 }
duke@435 3093
duke@435 3094 // Skip over the partial object (if any).
duke@435 3095 if (partial_obj_size != 0) {
duke@435 3096 words_to_skip -= partial_obj_size;
duke@435 3097 addr += partial_obj_size;
duke@435 3098 }
duke@435 3099
duke@435 3100 // Skip over live words due to objects that start in the chunk.
duke@435 3101 addr = skip_live_words(addr, src_chunk_end, words_to_skip);
duke@435 3102 assert(addr < src_chunk_end, "wrong src chunk");
duke@435 3103 return addr;
duke@435 3104 }
duke@435 3105
duke@435 3106 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
duke@435 3107 size_t beg_chunk,
duke@435 3108 HeapWord* end_addr)
duke@435 3109 {
duke@435 3110 ParallelCompactData& sd = summary_data();
duke@435 3111 ChunkData* const beg = sd.chunk(beg_chunk);
duke@435 3112 HeapWord* const end_addr_aligned_up = sd.chunk_align_up(end_addr);
duke@435 3113 ChunkData* const end = sd.addr_to_chunk_ptr(end_addr_aligned_up);
duke@435 3114 size_t cur_idx = beg_chunk;
duke@435 3115 for (ChunkData* cur = beg; cur < end; ++cur, ++cur_idx) {
duke@435 3116 assert(cur->data_size() > 0, "chunk must have live data");
duke@435 3117 cur->decrement_destination_count();
duke@435 3118 if (cur_idx <= cur->source_chunk() && cur->available() && cur->claim()) {
duke@435 3119 cm->save_for_processing(cur_idx);
duke@435 3120 }
duke@435 3121 }
duke@435 3122 }
duke@435 3123
duke@435 3124 size_t PSParallelCompact::next_src_chunk(MoveAndUpdateClosure& closure,
duke@435 3125 SpaceId& src_space_id,
duke@435 3126 HeapWord*& src_space_top,
duke@435 3127 HeapWord* end_addr)
duke@435 3128 {
duke@435 3129 typedef ParallelCompactData::ChunkData ChunkData;
duke@435 3130
duke@435 3131 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 3132 const size_t chunk_size = ParallelCompactData::ChunkSize;
duke@435 3133
duke@435 3134 size_t src_chunk_idx = 0;
duke@435 3135
duke@435 3136 // Skip empty chunks (if any) up to the top of the space.
duke@435 3137 HeapWord* const src_aligned_up = sd.chunk_align_up(end_addr);
duke@435 3138 ChunkData* src_chunk_ptr = sd.addr_to_chunk_ptr(src_aligned_up);
duke@435 3139 HeapWord* const top_aligned_up = sd.chunk_align_up(src_space_top);
duke@435 3140 const ChunkData* const top_chunk_ptr = sd.addr_to_chunk_ptr(top_aligned_up);
duke@435 3141 while (src_chunk_ptr < top_chunk_ptr && src_chunk_ptr->data_size() == 0) {
duke@435 3142 ++src_chunk_ptr;
duke@435 3143 }
duke@435 3144
duke@435 3145 if (src_chunk_ptr < top_chunk_ptr) {
duke@435 3146 // The next source chunk is in the current space. Update src_chunk_idx and
duke@435 3147 // the source address to match src_chunk_ptr.
duke@435 3148 src_chunk_idx = sd.chunk(src_chunk_ptr);
duke@435 3149 HeapWord* const src_chunk_addr = sd.chunk_to_addr(src_chunk_idx);
duke@435 3150 if (src_chunk_addr > closure.source()) {
duke@435 3151 closure.set_source(src_chunk_addr);
duke@435 3152 }
duke@435 3153 return src_chunk_idx;
duke@435 3154 }
duke@435 3155
duke@435 3156 // Switch to a new source space and find the first non-empty chunk.
duke@435 3157 unsigned int space_id = src_space_id + 1;
duke@435 3158 assert(space_id < last_space_id, "not enough spaces");
duke@435 3159
duke@435 3160 HeapWord* const destination = closure.destination();
duke@435 3161
duke@435 3162 do {
duke@435 3163 MutableSpace* space = _space_info[space_id].space();
duke@435 3164 HeapWord* const bottom = space->bottom();
duke@435 3165 const ChunkData* const bottom_cp = sd.addr_to_chunk_ptr(bottom);
duke@435 3166
duke@435 3167 // Iterate over the spaces that do not compact into themselves.
duke@435 3168 if (bottom_cp->destination() != bottom) {
duke@435 3169 HeapWord* const top_aligned_up = sd.chunk_align_up(space->top());
duke@435 3170 const ChunkData* const top_cp = sd.addr_to_chunk_ptr(top_aligned_up);
duke@435 3171
duke@435 3172 for (const ChunkData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
duke@435 3173 if (src_cp->live_obj_size() > 0) {
duke@435 3174 // Found it.
duke@435 3175 assert(src_cp->destination() == destination,
duke@435 3176 "first live obj in the space must match the destination");
duke@435 3177 assert(src_cp->partial_obj_size() == 0,
duke@435 3178 "a space cannot begin with a partial obj");
duke@435 3179
duke@435 3180 src_space_id = SpaceId(space_id);
duke@435 3181 src_space_top = space->top();
duke@435 3182 const size_t src_chunk_idx = sd.chunk(src_cp);
duke@435 3183 closure.set_source(sd.chunk_to_addr(src_chunk_idx));
duke@435 3184 return src_chunk_idx;
duke@435 3185 } else {
duke@435 3186 assert(src_cp->data_size() == 0, "sanity");
duke@435 3187 }
duke@435 3188 }
duke@435 3189 }
duke@435 3190 } while (++space_id < last_space_id);
duke@435 3191
duke@435 3192 assert(false, "no source chunk was found");
duke@435 3193 return 0;
duke@435 3194 }
duke@435 3195
duke@435 3196 void PSParallelCompact::fill_chunk(ParCompactionManager* cm, size_t chunk_idx)
duke@435 3197 {
duke@435 3198 typedef ParMarkBitMap::IterationStatus IterationStatus;
duke@435 3199 const size_t ChunkSize = ParallelCompactData::ChunkSize;
duke@435 3200 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3201 ParallelCompactData& sd = summary_data();
duke@435 3202 ChunkData* const chunk_ptr = sd.chunk(chunk_idx);
duke@435 3203
duke@435 3204 // Get the items needed to construct the closure.
duke@435 3205 HeapWord* dest_addr = sd.chunk_to_addr(chunk_idx);
duke@435 3206 SpaceId dest_space_id = space_id(dest_addr);
duke@435 3207 ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
duke@435 3208 HeapWord* new_top = _space_info[dest_space_id].new_top();
duke@435 3209 assert(dest_addr < new_top, "sanity");
duke@435 3210 const size_t words = MIN2(pointer_delta(new_top, dest_addr), ChunkSize);
duke@435 3211
duke@435 3212 // Get the source chunk and related info.
duke@435 3213 size_t src_chunk_idx = chunk_ptr->source_chunk();
duke@435 3214 SpaceId src_space_id = space_id(sd.chunk_to_addr(src_chunk_idx));
duke@435 3215 HeapWord* src_space_top = _space_info[src_space_id].space()->top();
duke@435 3216
duke@435 3217 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
duke@435 3218 closure.set_source(first_src_addr(dest_addr, src_chunk_idx));
duke@435 3219
duke@435 3220 // Adjust src_chunk_idx to prepare for decrementing destination counts (the
duke@435 3221 // destination count is not decremented when a chunk is copied to itself).
duke@435 3222 if (src_chunk_idx == chunk_idx) {
duke@435 3223 src_chunk_idx += 1;
duke@435 3224 }
duke@435 3225
duke@435 3226 if (bitmap->is_unmarked(closure.source())) {
duke@435 3227 // The first source word is in the middle of an object; copy the remainder
duke@435 3228 // of the object or as much as will fit. The fact that pointer updates were
duke@435 3229 // deferred will be noted when the object header is processed.
duke@435 3230 HeapWord* const old_src_addr = closure.source();
duke@435 3231 closure.copy_partial_obj();
duke@435 3232 if (closure.is_full()) {
duke@435 3233 decrement_destination_counts(cm, src_chunk_idx, closure.source());
duke@435 3234 chunk_ptr->set_deferred_obj_addr(NULL);
duke@435 3235 chunk_ptr->set_completed();
duke@435 3236 return;
duke@435 3237 }
duke@435 3238
duke@435 3239 HeapWord* const end_addr = sd.chunk_align_down(closure.source());
duke@435 3240 if (sd.chunk_align_down(old_src_addr) != end_addr) {
duke@435 3241 // The partial object was copied from more than one source chunk.
duke@435 3242 decrement_destination_counts(cm, src_chunk_idx, end_addr);
duke@435 3243
duke@435 3244 // Move to the next source chunk, possibly switching spaces as well. All
duke@435 3245 // args except end_addr may be modified.
duke@435 3246 src_chunk_idx = next_src_chunk(closure, src_space_id, src_space_top,
duke@435 3247 end_addr);
duke@435 3248 }
duke@435 3249 }
duke@435 3250
duke@435 3251 do {
duke@435 3252 HeapWord* const cur_addr = closure.source();
duke@435 3253 HeapWord* const end_addr = MIN2(sd.chunk_align_up(cur_addr + 1),
duke@435 3254 src_space_top);
duke@435 3255 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
duke@435 3256
duke@435 3257 if (status == ParMarkBitMap::incomplete) {
duke@435 3258 // The last obj that starts in the source chunk does not end in the chunk.
duke@435 3259 assert(closure.source() < end_addr, "sanity")
duke@435 3260 HeapWord* const obj_beg = closure.source();
duke@435 3261 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
duke@435 3262 src_space_top);
duke@435 3263 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
duke@435 3264 if (obj_end < range_end) {
duke@435 3265 // The end was found; the entire object will fit.
duke@435 3266 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
duke@435 3267 assert(status != ParMarkBitMap::would_overflow, "sanity");
duke@435 3268 } else {
duke@435 3269 // The end was not found; the object will not fit.
duke@435 3270 assert(range_end < src_space_top, "obj cannot cross space boundary");
duke@435 3271 status = ParMarkBitMap::would_overflow;
duke@435 3272 }
duke@435 3273 }
duke@435 3274
duke@435 3275 if (status == ParMarkBitMap::would_overflow) {
duke@435 3276 // The last object did not fit. Note that interior oop updates were
duke@435 3277 // deferred, then copy enough of the object to fill the chunk.
duke@435 3278 chunk_ptr->set_deferred_obj_addr(closure.destination());
duke@435 3279 status = closure.copy_until_full(); // copies from closure.source()
duke@435 3280
duke@435 3281 decrement_destination_counts(cm, src_chunk_idx, closure.source());
duke@435 3282 chunk_ptr->set_completed();
duke@435 3283 return;
duke@435 3284 }
duke@435 3285
duke@435 3286 if (status == ParMarkBitMap::full) {
duke@435 3287 decrement_destination_counts(cm, src_chunk_idx, closure.source());
duke@435 3288 chunk_ptr->set_deferred_obj_addr(NULL);
duke@435 3289 chunk_ptr->set_completed();
duke@435 3290 return;
duke@435 3291 }
duke@435 3292
duke@435 3293 decrement_destination_counts(cm, src_chunk_idx, end_addr);
duke@435 3294
duke@435 3295 // Move to the next source chunk, possibly switching spaces as well. All
duke@435 3296 // args except end_addr may be modified.
duke@435 3297 src_chunk_idx = next_src_chunk(closure, src_space_id, src_space_top,
duke@435 3298 end_addr);
duke@435 3299 } while (true);
duke@435 3300 }
duke@435 3301
duke@435 3302 void
duke@435 3303 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
duke@435 3304 const MutableSpace* sp = space(space_id);
duke@435 3305 if (sp->is_empty()) {
duke@435 3306 return;
duke@435 3307 }
duke@435 3308
duke@435 3309 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 3310 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3311 HeapWord* const dp_addr = dense_prefix(space_id);
duke@435 3312 HeapWord* beg_addr = sp->bottom();
duke@435 3313 HeapWord* end_addr = sp->top();
duke@435 3314
duke@435 3315 #ifdef ASSERT
duke@435 3316 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
duke@435 3317 if (cm->should_verify_only()) {
duke@435 3318 VerifyUpdateClosure verify_update(cm, sp);
duke@435 3319 bitmap->iterate(&verify_update, beg_addr, end_addr);
duke@435 3320 return;
duke@435 3321 }
duke@435 3322
duke@435 3323 if (cm->should_reset_only()) {
duke@435 3324 ResetObjectsClosure reset_objects(cm);
duke@435 3325 bitmap->iterate(&reset_objects, beg_addr, end_addr);
duke@435 3326 return;
duke@435 3327 }
duke@435 3328 #endif
duke@435 3329
duke@435 3330 const size_t beg_chunk = sd.addr_to_chunk_idx(beg_addr);
duke@435 3331 const size_t dp_chunk = sd.addr_to_chunk_idx(dp_addr);
duke@435 3332 if (beg_chunk < dp_chunk) {
duke@435 3333 update_and_deadwood_in_dense_prefix(cm, space_id, beg_chunk, dp_chunk);
duke@435 3334 }
duke@435 3335
duke@435 3336 // The destination of the first live object that starts in the chunk is one
duke@435 3337 // past the end of the partial object entering the chunk (if any).
duke@435 3338 HeapWord* const dest_addr = sd.partial_obj_end(dp_chunk);
duke@435 3339 HeapWord* const new_top = _space_info[space_id].new_top();
duke@435 3340 assert(new_top >= dest_addr, "bad new_top value");
duke@435 3341 const size_t words = pointer_delta(new_top, dest_addr);
duke@435 3342
duke@435 3343 if (words > 0) {
duke@435 3344 ObjectStartArray* start_array = _space_info[space_id].start_array();
duke@435 3345 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
duke@435 3346
duke@435 3347 ParMarkBitMap::IterationStatus status;
duke@435 3348 status = bitmap->iterate(&closure, dest_addr, end_addr);
duke@435 3349 assert(status == ParMarkBitMap::full, "iteration not complete");
duke@435 3350 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
duke@435 3351 "live objects skipped because closure is full");
duke@435 3352 }
duke@435 3353 }
duke@435 3354
duke@435 3355 jlong PSParallelCompact::millis_since_last_gc() {
duke@435 3356 jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
duke@435 3357 // XXX See note in genCollectedHeap::millis_since_last_gc().
duke@435 3358 if (ret_val < 0) {
duke@435 3359 NOT_PRODUCT(warning("time warp: %d", ret_val);)
duke@435 3360 return 0;
duke@435 3361 }
duke@435 3362 return ret_val;
duke@435 3363 }
duke@435 3364
duke@435 3365 void PSParallelCompact::reset_millis_since_last_gc() {
duke@435 3366 _time_of_last_gc = os::javaTimeMillis();
duke@435 3367 }
duke@435 3368
duke@435 3369 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
duke@435 3370 {
duke@435 3371 if (source() != destination()) {
duke@435 3372 assert(source() > destination(), "must copy to the left");
duke@435 3373 Copy::aligned_conjoint_words(source(), destination(), words_remaining());
duke@435 3374 }
duke@435 3375 update_state(words_remaining());
duke@435 3376 assert(is_full(), "sanity");
duke@435 3377 return ParMarkBitMap::full;
duke@435 3378 }
duke@435 3379
duke@435 3380 void MoveAndUpdateClosure::copy_partial_obj()
duke@435 3381 {
duke@435 3382 size_t words = words_remaining();
duke@435 3383
duke@435 3384 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
duke@435 3385 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
duke@435 3386 if (end_addr < range_end) {
duke@435 3387 words = bitmap()->obj_size(source(), end_addr);
duke@435 3388 }
duke@435 3389
duke@435 3390 // This test is necessary; if omitted, the pointer updates to a partial object
duke@435 3391 // that crosses the dense prefix boundary could be overwritten.
duke@435 3392 if (source() != destination()) {
duke@435 3393 assert(source() > destination(), "must copy to the left");
duke@435 3394 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3395 }
duke@435 3396 update_state(words);
duke@435 3397 }
duke@435 3398
duke@435 3399 ParMarkBitMapClosure::IterationStatus
duke@435 3400 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3401 assert(destination() != NULL, "sanity");
duke@435 3402 assert(bitmap()->obj_size(addr) == words, "bad size");
duke@435 3403
duke@435 3404 _source = addr;
duke@435 3405 assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
duke@435 3406 destination(), "wrong destination");
duke@435 3407
duke@435 3408 if (words > words_remaining()) {
duke@435 3409 return ParMarkBitMap::would_overflow;
duke@435 3410 }
duke@435 3411
duke@435 3412 // The start_array must be updated even if the object is not moving.
duke@435 3413 if (_start_array != NULL) {
duke@435 3414 _start_array->allocate_block(destination());
duke@435 3415 }
duke@435 3416
duke@435 3417 if (destination() != source()) {
duke@435 3418 assert(destination() < source(), "must copy to the left");
duke@435 3419 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3420 }
duke@435 3421
duke@435 3422 oop moved_oop = (oop) destination();
duke@435 3423 moved_oop->update_contents(compaction_manager());
duke@435 3424 assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
duke@435 3425
duke@435 3426 update_state(words);
duke@435 3427 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
duke@435 3428 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
duke@435 3429 }
duke@435 3430
duke@435 3431 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
duke@435 3432 ParCompactionManager* cm,
duke@435 3433 PSParallelCompact::SpaceId space_id) :
duke@435 3434 ParMarkBitMapClosure(mbm, cm),
duke@435 3435 _space_id(space_id),
duke@435 3436 _start_array(PSParallelCompact::start_array(space_id))
duke@435 3437 {
duke@435 3438 }
duke@435 3439
duke@435 3440 // Updates the references in the object to their new values.
duke@435 3441 ParMarkBitMapClosure::IterationStatus
duke@435 3442 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3443 do_addr(addr);
duke@435 3444 return ParMarkBitMap::incomplete;
duke@435 3445 }
duke@435 3446
duke@435 3447 BitBlockUpdateClosure::BitBlockUpdateClosure(ParMarkBitMap* mbm,
duke@435 3448 ParCompactionManager* cm,
duke@435 3449 size_t chunk_index) :
duke@435 3450 ParMarkBitMapClosure(mbm, cm),
duke@435 3451 _live_data_left(0),
duke@435 3452 _cur_block(0) {
duke@435 3453 _chunk_start =
duke@435 3454 PSParallelCompact::summary_data().chunk_to_addr(chunk_index);
duke@435 3455 _chunk_end =
duke@435 3456 PSParallelCompact::summary_data().chunk_to_addr(chunk_index) +
duke@435 3457 ParallelCompactData::ChunkSize;
duke@435 3458 _chunk_index = chunk_index;
duke@435 3459 _cur_block =
duke@435 3460 PSParallelCompact::summary_data().addr_to_block_idx(_chunk_start);
duke@435 3461 }
duke@435 3462
duke@435 3463 bool BitBlockUpdateClosure::chunk_contains_cur_block() {
duke@435 3464 return ParallelCompactData::chunk_contains_block(_chunk_index, _cur_block);
duke@435 3465 }
duke@435 3466
duke@435 3467 void BitBlockUpdateClosure::reset_chunk(size_t chunk_index) {
duke@435 3468 DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(7);)
duke@435 3469 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 3470 _chunk_index = chunk_index;
duke@435 3471 _live_data_left = 0;
duke@435 3472 _chunk_start = sd.chunk_to_addr(chunk_index);
duke@435 3473 _chunk_end = sd.chunk_to_addr(chunk_index) + ParallelCompactData::ChunkSize;
duke@435 3474
duke@435 3475 // The first block in this chunk
duke@435 3476 size_t first_block = sd.addr_to_block_idx(_chunk_start);
duke@435 3477 size_t partial_live_size = sd.chunk(chunk_index)->partial_obj_size();
duke@435 3478
duke@435 3479 // Set the offset to 0. By definition it should have that value
duke@435 3480 // but it may have been written while processing an earlier chunk.
duke@435 3481 if (partial_live_size == 0) {
duke@435 3482 // No live object extends onto the chunk. The first bit
duke@435 3483 // in the bit map for the first chunk must be a start bit.
duke@435 3484 // Although there may not be any marked bits, it is safe
duke@435 3485 // to set it as a start bit.
duke@435 3486 sd.block(first_block)->set_start_bit_offset(0);
duke@435 3487 sd.block(first_block)->set_first_is_start_bit(true);
duke@435 3488 } else if (sd.partial_obj_ends_in_block(first_block)) {
duke@435 3489 sd.block(first_block)->set_end_bit_offset(0);
duke@435 3490 sd.block(first_block)->set_first_is_start_bit(false);
duke@435 3491 } else {
duke@435 3492 // The partial object extends beyond the first block.
duke@435 3493 // There is no object starting in the first block
duke@435 3494 // so the offset and bit parity are not needed.
duke@435 3495 // Set the the bit parity to start bit so assertions
duke@435 3496 // work when not bit is found.
duke@435 3497 sd.block(first_block)->set_end_bit_offset(0);
duke@435 3498 sd.block(first_block)->set_first_is_start_bit(false);
duke@435 3499 }
duke@435 3500 _cur_block = first_block;
duke@435 3501 #ifdef ASSERT
duke@435 3502 if (sd.block(first_block)->first_is_start_bit()) {
duke@435 3503 assert(!sd.partial_obj_ends_in_block(first_block),
duke@435 3504 "Partial object cannot end in first block");
duke@435 3505 }
duke@435 3506
duke@435 3507 if (PrintGCDetails && Verbose) {
duke@435 3508 if (partial_live_size == 1) {
duke@435 3509 gclog_or_tty->print_cr("first_block " PTR_FORMAT
duke@435 3510 " _offset " PTR_FORMAT
duke@435 3511 " _first_is_start_bit %d",
duke@435 3512 first_block,
duke@435 3513 sd.block(first_block)->raw_offset(),
duke@435 3514 sd.block(first_block)->first_is_start_bit());
duke@435 3515 }
duke@435 3516 }
duke@435 3517 #endif
duke@435 3518 DEBUG_ONLY(ParallelCompactData::BlockData::set_cur_phase(17);)
duke@435 3519 }
duke@435 3520
duke@435 3521 // This method is called when a object has been found (both beginning
duke@435 3522 // and end of the object) in the range of iteration. This method is
duke@435 3523 // calculating the words of live data to the left of a block. That live
duke@435 3524 // data includes any object starting to the left of the block (i.e.,
duke@435 3525 // the live-data-to-the-left of block AAA will include the full size
duke@435 3526 // of any object entering AAA).
duke@435 3527
duke@435 3528 ParMarkBitMapClosure::IterationStatus
duke@435 3529 BitBlockUpdateClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3530 // add the size to the block data.
duke@435 3531 HeapWord* obj = addr;
duke@435 3532 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 3533
duke@435 3534 assert(bitmap()->obj_size(obj) == words, "bad size");
duke@435 3535 assert(_chunk_start <= obj, "object is not in chunk");
duke@435 3536 assert(obj + words <= _chunk_end, "object is not in chunk");
duke@435 3537
duke@435 3538 // Update the live data to the left
duke@435 3539 size_t prev_live_data_left = _live_data_left;
duke@435 3540 _live_data_left = _live_data_left + words;
duke@435 3541
duke@435 3542 // Is this object in the current block.
duke@435 3543 size_t block_of_obj = sd.addr_to_block_idx(obj);
duke@435 3544 size_t block_of_obj_last = sd.addr_to_block_idx(obj + words - 1);
duke@435 3545 HeapWord* block_of_obj_last_addr = sd.block_to_addr(block_of_obj_last);
duke@435 3546 if (_cur_block < block_of_obj) {
duke@435 3547
duke@435 3548 //
duke@435 3549 // No object crossed the block boundary and this object was found
duke@435 3550 // on the other side of the block boundary. Update the offset for
duke@435 3551 // the new block with the data size that does not include this object.
duke@435 3552 //
duke@435 3553 // The first bit in block_of_obj is a start bit except in the
duke@435 3554 // case where the partial object for the chunk extends into
duke@435 3555 // this block.
duke@435 3556 if (sd.partial_obj_ends_in_block(block_of_obj)) {
duke@435 3557 sd.block(block_of_obj)->set_end_bit_offset(prev_live_data_left);
duke@435 3558 } else {
duke@435 3559 sd.block(block_of_obj)->set_start_bit_offset(prev_live_data_left);
duke@435 3560 }
duke@435 3561
duke@435 3562 // Does this object pass beyond the its block?
duke@435 3563 if (block_of_obj < block_of_obj_last) {
duke@435 3564 // Object crosses block boundary. Two blocks need to be udpated:
duke@435 3565 // the current block where the object started
duke@435 3566 // the block where the object ends
duke@435 3567 //
duke@435 3568 // The offset for blocks with no objects starting in them
duke@435 3569 // (e.g., blocks between _cur_block and block_of_obj_last)
duke@435 3570 // should not be needed.
duke@435 3571 // Note that block_of_obj_last may be in another chunk. If so,
duke@435 3572 // it should be overwritten later. This is a problem (writting
duke@435 3573 // into a block in a later chunk) for parallel execution.
duke@435 3574 assert(obj < block_of_obj_last_addr,
duke@435 3575 "Object should start in previous block");
duke@435 3576
duke@435 3577 // obj is crossing into block_of_obj_last so the first bit
duke@435 3578 // is and end bit.
duke@435 3579 sd.block(block_of_obj_last)->set_end_bit_offset(_live_data_left);
duke@435 3580
duke@435 3581 _cur_block = block_of_obj_last;
duke@435 3582 } else {
duke@435 3583 // _first_is_start_bit has already been set correctly
duke@435 3584 // in the if-then-else above so don't reset it here.
duke@435 3585 _cur_block = block_of_obj;
duke@435 3586 }
duke@435 3587 } else {
duke@435 3588 // The current block only changes if the object extends beyound
duke@435 3589 // the block it starts in.
duke@435 3590 //
duke@435 3591 // The object starts in the current block.
duke@435 3592 // Does this object pass beyond the end of it?
duke@435 3593 if (block_of_obj < block_of_obj_last) {
duke@435 3594 // Object crosses block boundary.
duke@435 3595 // See note above on possible blocks between block_of_obj and
duke@435 3596 // block_of_obj_last
duke@435 3597 assert(obj < block_of_obj_last_addr,
duke@435 3598 "Object should start in previous block");
duke@435 3599
duke@435 3600 sd.block(block_of_obj_last)->set_end_bit_offset(_live_data_left);
duke@435 3601
duke@435 3602 _cur_block = block_of_obj_last;
duke@435 3603 }
duke@435 3604 }
duke@435 3605
duke@435 3606 // Return incomplete if there are more blocks to be done.
duke@435 3607 if (chunk_contains_cur_block()) {
duke@435 3608 return ParMarkBitMap::incomplete;
duke@435 3609 }
duke@435 3610 return ParMarkBitMap::complete;
duke@435 3611 }
duke@435 3612
duke@435 3613 // Verify the new location using the forwarding pointer
duke@435 3614 // from MarkSweep::mark_sweep_phase2(). Set the mark_word
duke@435 3615 // to the initial value.
duke@435 3616 ParMarkBitMapClosure::IterationStatus
duke@435 3617 PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3618 // The second arg (words) is not used.
duke@435 3619 oop obj = (oop) addr;
duke@435 3620 HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
duke@435 3621 HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
duke@435 3622 if (forwarding_ptr == NULL) {
duke@435 3623 // The object is dead or not moving.
duke@435 3624 assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
duke@435 3625 "Object liveness is wrong.");
duke@435 3626 return ParMarkBitMap::incomplete;
duke@435 3627 }
duke@435 3628 assert(UseParallelOldGCDensePrefix ||
duke@435 3629 (HeapMaximumCompactionInterval > 1) ||
duke@435 3630 (MarkSweepAlwaysCompactCount > 1) ||
duke@435 3631 (forwarding_ptr == new_pointer),
duke@435 3632 "Calculation of new location is incorrect");
duke@435 3633 return ParMarkBitMap::incomplete;
duke@435 3634 }
duke@435 3635
duke@435 3636 // Reset objects modified for debug checking.
duke@435 3637 ParMarkBitMapClosure::IterationStatus
duke@435 3638 PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3639 // The second arg (words) is not used.
duke@435 3640 oop obj = (oop) addr;
duke@435 3641 obj->init_mark();
duke@435 3642 return ParMarkBitMap::incomplete;
duke@435 3643 }
duke@435 3644
duke@435 3645 // Prepare for compaction. This method is executed once
duke@435 3646 // (i.e., by a single thread) before compaction.
duke@435 3647 // Save the updated location of the intArrayKlassObj for
duke@435 3648 // filling holes in the dense prefix.
duke@435 3649 void PSParallelCompact::compact_prologue() {
duke@435 3650 _updated_int_array_klass_obj = (klassOop)
duke@435 3651 summary_data().calc_new_pointer(Universe::intArrayKlassObj());
duke@435 3652 }
duke@435 3653
duke@435 3654 // The initial implementation of this method created a field
duke@435 3655 // _next_compaction_space_id in SpaceInfo and initialized
duke@435 3656 // that field in SpaceInfo::initialize_space_info(). That
duke@435 3657 // required that _next_compaction_space_id be declared a
duke@435 3658 // SpaceId in SpaceInfo and that would have required that
duke@435 3659 // either SpaceId be declared in a separate class or that
duke@435 3660 // it be declared in SpaceInfo. It didn't seem consistent
duke@435 3661 // to declare it in SpaceInfo (didn't really fit logically).
duke@435 3662 // Alternatively, defining a separate class to define SpaceId
duke@435 3663 // seem excessive. This implementation is simple and localizes
duke@435 3664 // the knowledge.
duke@435 3665
duke@435 3666 PSParallelCompact::SpaceId
duke@435 3667 PSParallelCompact::next_compaction_space_id(SpaceId id) {
duke@435 3668 assert(id < last_space_id, "id out of range");
duke@435 3669 switch (id) {
duke@435 3670 case perm_space_id :
duke@435 3671 return last_space_id;
duke@435 3672 case old_space_id :
duke@435 3673 return eden_space_id;
duke@435 3674 case eden_space_id :
duke@435 3675 return from_space_id;
duke@435 3676 case from_space_id :
duke@435 3677 return to_space_id;
duke@435 3678 case to_space_id :
duke@435 3679 return last_space_id;
duke@435 3680 default:
duke@435 3681 assert(false, "Bad space id");
duke@435 3682 return last_space_id;
duke@435 3683 }
duke@435 3684 }
duke@435 3685
duke@435 3686 // Here temporarily for debugging
duke@435 3687 #ifdef ASSERT
duke@435 3688 size_t ParallelCompactData::block_idx(BlockData* block) {
duke@435 3689 size_t index = pointer_delta(block,
duke@435 3690 PSParallelCompact::summary_data()._block_data, sizeof(BlockData));
duke@435 3691 return index;
duke@435 3692 }
duke@435 3693 #endif

mercurial