src/cpu/sparc/vm/stubGenerator_sparc.cpp

Wed, 24 Apr 2013 20:55:28 -0400

author
dlong
date
Wed, 24 Apr 2013 20:55:28 -0400
changeset 5000
a6e09d6dd8e5
parent 4325
d2f8c38e543d
child 5283
46c544b8fbfc
permissions
-rw-r--r--

8003853: specify offset of IC load in java_to_interp stub
Summary: refactored code to allow platform-specific differences
Reviewed-by: dlong, twisti
Contributed-by: Goetz Lindenmaier <goetz.lindenmaier@sap.com>

duke@435 1 /*
coleenp@4037 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4323 26 #include "asm/macroAssembler.inline.hpp"
stefank@2314 27 #include "interpreter/interpreter.hpp"
stefank@2314 28 #include "nativeInst_sparc.hpp"
stefank@2314 29 #include "oops/instanceOop.hpp"
coleenp@4037 30 #include "oops/method.hpp"
stefank@2314 31 #include "oops/objArrayKlass.hpp"
stefank@2314 32 #include "oops/oop.inline.hpp"
stefank@2314 33 #include "prims/methodHandles.hpp"
stefank@2314 34 #include "runtime/frame.inline.hpp"
stefank@2314 35 #include "runtime/handles.inline.hpp"
stefank@2314 36 #include "runtime/sharedRuntime.hpp"
stefank@2314 37 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 38 #include "runtime/stubRoutines.hpp"
stefank@4299 39 #include "runtime/thread.inline.hpp"
stefank@2314 40 #include "utilities/top.hpp"
stefank@2314 41 #ifdef COMPILER2
stefank@2314 42 #include "opto/runtime.hpp"
stefank@2314 43 #endif
duke@435 44
duke@435 45 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 46 // For a more detailed description of the stub routine structure
duke@435 47 // see the comment in stubRoutines.hpp.
duke@435 48
duke@435 49 #define __ _masm->
duke@435 50
duke@435 51 #ifdef PRODUCT
duke@435 52 #define BLOCK_COMMENT(str) /* nothing */
duke@435 53 #else
duke@435 54 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 55 #endif
duke@435 56
duke@435 57 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 58
duke@435 59 // Note: The register L7 is used as L7_thread_cache, and may not be used
duke@435 60 // any other way within this module.
duke@435 61
duke@435 62
duke@435 63 static const Register& Lstub_temp = L2;
duke@435 64
duke@435 65 // -------------------------------------------------------------------------------------------------------------------------
duke@435 66 // Stub Code definitions
duke@435 67
duke@435 68 static address handle_unsafe_access() {
duke@435 69 JavaThread* thread = JavaThread::current();
duke@435 70 address pc = thread->saved_exception_pc();
duke@435 71 address npc = thread->saved_exception_npc();
duke@435 72 // pc is the instruction which we must emulate
duke@435 73 // doing a no-op is fine: return garbage from the load
duke@435 74
duke@435 75 // request an async exception
duke@435 76 thread->set_pending_unsafe_access_error();
duke@435 77
duke@435 78 // return address of next instruction to execute
duke@435 79 return npc;
duke@435 80 }
duke@435 81
duke@435 82 class StubGenerator: public StubCodeGenerator {
duke@435 83 private:
duke@435 84
duke@435 85 #ifdef PRODUCT
duke@435 86 #define inc_counter_np(a,b,c) (0)
duke@435 87 #else
duke@435 88 #define inc_counter_np(counter, t1, t2) \
duke@435 89 BLOCK_COMMENT("inc_counter " #counter); \
twisti@1162 90 __ inc_counter(&counter, t1, t2);
duke@435 91 #endif
duke@435 92
duke@435 93 //----------------------------------------------------------------------------------------------------
duke@435 94 // Call stubs are used to call Java from C
duke@435 95
duke@435 96 address generate_call_stub(address& return_pc) {
duke@435 97 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 98 address start = __ pc();
duke@435 99
duke@435 100 // Incoming arguments:
duke@435 101 //
duke@435 102 // o0 : call wrapper address
duke@435 103 // o1 : result (address)
duke@435 104 // o2 : result type
duke@435 105 // o3 : method
duke@435 106 // o4 : (interpreter) entry point
duke@435 107 // o5 : parameters (address)
duke@435 108 // [sp + 0x5c]: parameter size (in words)
duke@435 109 // [sp + 0x60]: thread
duke@435 110 //
duke@435 111 // +---------------+ <--- sp + 0
duke@435 112 // | |
duke@435 113 // . reg save area .
duke@435 114 // | |
duke@435 115 // +---------------+ <--- sp + 0x40
duke@435 116 // | |
duke@435 117 // . extra 7 slots .
duke@435 118 // | |
duke@435 119 // +---------------+ <--- sp + 0x5c
duke@435 120 // | param. size |
duke@435 121 // +---------------+ <--- sp + 0x60
duke@435 122 // | thread |
duke@435 123 // +---------------+
duke@435 124 // | |
duke@435 125
duke@435 126 // note: if the link argument position changes, adjust
duke@435 127 // the code in frame::entry_frame_call_wrapper()
duke@435 128
duke@435 129 const Argument link = Argument(0, false); // used only for GC
duke@435 130 const Argument result = Argument(1, false);
duke@435 131 const Argument result_type = Argument(2, false);
duke@435 132 const Argument method = Argument(3, false);
duke@435 133 const Argument entry_point = Argument(4, false);
duke@435 134 const Argument parameters = Argument(5, false);
duke@435 135 const Argument parameter_size = Argument(6, false);
duke@435 136 const Argument thread = Argument(7, false);
duke@435 137
duke@435 138 // setup thread register
duke@435 139 __ ld_ptr(thread.as_address(), G2_thread);
coleenp@548 140 __ reinit_heapbase();
duke@435 141
duke@435 142 #ifdef ASSERT
duke@435 143 // make sure we have no pending exceptions
duke@435 144 { const Register t = G3_scratch;
duke@435 145 Label L;
duke@435 146 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
kvn@3037 147 __ br_null_short(t, Assembler::pt, L);
duke@435 148 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 149 __ bind(L);
duke@435 150 }
duke@435 151 #endif
duke@435 152
duke@435 153 // create activation frame & allocate space for parameters
duke@435 154 { const Register t = G3_scratch;
duke@435 155 __ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words)
duke@435 156 __ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words)
duke@435 157 __ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words)
twisti@1861 158 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 159 __ neg(t); // negate so it can be used with save
duke@435 160 __ save(SP, t, SP); // setup new frame
duke@435 161 }
duke@435 162
duke@435 163 // +---------------+ <--- sp + 0
duke@435 164 // | |
duke@435 165 // . reg save area .
duke@435 166 // | |
duke@435 167 // +---------------+ <--- sp + 0x40
duke@435 168 // | |
duke@435 169 // . extra 7 slots .
duke@435 170 // | |
duke@435 171 // +---------------+ <--- sp + 0x5c
duke@435 172 // | empty slot | (only if parameter size is even)
duke@435 173 // +---------------+
duke@435 174 // | |
duke@435 175 // . parameters .
duke@435 176 // | |
duke@435 177 // +---------------+ <--- fp + 0
duke@435 178 // | |
duke@435 179 // . reg save area .
duke@435 180 // | |
duke@435 181 // +---------------+ <--- fp + 0x40
duke@435 182 // | |
duke@435 183 // . extra 7 slots .
duke@435 184 // | |
duke@435 185 // +---------------+ <--- fp + 0x5c
duke@435 186 // | param. size |
duke@435 187 // +---------------+ <--- fp + 0x60
duke@435 188 // | thread |
duke@435 189 // +---------------+
duke@435 190 // | |
duke@435 191
duke@435 192 // pass parameters if any
duke@435 193 BLOCK_COMMENT("pass parameters if any");
duke@435 194 { const Register src = parameters.as_in().as_register();
duke@435 195 const Register dst = Lentry_args;
duke@435 196 const Register tmp = G3_scratch;
duke@435 197 const Register cnt = G4_scratch;
duke@435 198
duke@435 199 // test if any parameters & setup of Lentry_args
duke@435 200 Label exit;
duke@435 201 __ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter
duke@435 202 __ add( FP, STACK_BIAS, dst );
kvn@3037 203 __ cmp_zero_and_br(Assembler::zero, cnt, exit);
duke@435 204 __ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args
duke@435 205
duke@435 206 // copy parameters if any
duke@435 207 Label loop;
duke@435 208 __ BIND(loop);
duke@435 209 // Store parameter value
duke@435 210 __ ld_ptr(src, 0, tmp);
duke@435 211 __ add(src, BytesPerWord, src);
twisti@1861 212 __ st_ptr(tmp, dst, 0);
duke@435 213 __ deccc(cnt);
duke@435 214 __ br(Assembler::greater, false, Assembler::pt, loop);
twisti@1861 215 __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
duke@435 216
duke@435 217 // done
duke@435 218 __ BIND(exit);
duke@435 219 }
duke@435 220
duke@435 221 // setup parameters, method & call Java function
duke@435 222 #ifdef ASSERT
duke@435 223 // layout_activation_impl checks it's notion of saved SP against
duke@435 224 // this register, so if this changes update it as well.
duke@435 225 const Register saved_SP = Lscratch;
duke@435 226 __ mov(SP, saved_SP); // keep track of SP before call
duke@435 227 #endif
duke@435 228
duke@435 229 // setup parameters
duke@435 230 const Register t = G3_scratch;
duke@435 231 __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
twisti@1861 232 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 233 __ sub(FP, t, Gargs); // setup parameter pointer
duke@435 234 #ifdef _LP64
duke@435 235 __ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias
duke@435 236 #endif
duke@435 237 __ mov(SP, O5_savedSP);
duke@435 238
duke@435 239
duke@435 240 // do the call
duke@435 241 //
duke@435 242 // the following register must be setup:
duke@435 243 //
duke@435 244 // G2_thread
duke@435 245 // G5_method
duke@435 246 // Gargs
duke@435 247 BLOCK_COMMENT("call Java function");
duke@435 248 __ jmpl(entry_point.as_in().as_register(), G0, O7);
duke@435 249 __ delayed()->mov(method.as_in().as_register(), G5_method); // setup method
duke@435 250
duke@435 251 BLOCK_COMMENT("call_stub_return_address:");
duke@435 252 return_pc = __ pc();
duke@435 253
duke@435 254 // The callee, if it wasn't interpreted, can return with SP changed so
duke@435 255 // we can no longer assert of change of SP.
duke@435 256
duke@435 257 // store result depending on type
duke@435 258 // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
duke@435 259 // is treated as T_INT)
duke@435 260 { const Register addr = result .as_in().as_register();
duke@435 261 const Register type = result_type.as_in().as_register();
duke@435 262 Label is_long, is_float, is_double, is_object, exit;
duke@435 263 __ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object);
duke@435 264 __ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float);
duke@435 265 __ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double);
duke@435 266 __ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long);
duke@435 267 __ delayed()->nop();
duke@435 268
duke@435 269 // store int result
duke@435 270 __ st(O0, addr, G0);
duke@435 271
duke@435 272 __ BIND(exit);
duke@435 273 __ ret();
duke@435 274 __ delayed()->restore();
duke@435 275
duke@435 276 __ BIND(is_object);
kvn@3037 277 __ ba(exit);
duke@435 278 __ delayed()->st_ptr(O0, addr, G0);
duke@435 279
duke@435 280 __ BIND(is_float);
kvn@3037 281 __ ba(exit);
duke@435 282 __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
duke@435 283
duke@435 284 __ BIND(is_double);
kvn@3037 285 __ ba(exit);
duke@435 286 __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
duke@435 287
duke@435 288 __ BIND(is_long);
duke@435 289 #ifdef _LP64
kvn@3037 290 __ ba(exit);
duke@435 291 __ delayed()->st_long(O0, addr, G0); // store entire long
duke@435 292 #else
duke@435 293 #if defined(COMPILER2)
duke@435 294 // All return values are where we want them, except for Longs. C2 returns
duke@435 295 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
duke@435 296 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
duke@435 297 // build we simply always use G1.
duke@435 298 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
duke@435 299 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
duke@435 300 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
duke@435 301
kvn@3037 302 __ ba(exit);
duke@435 303 __ delayed()->stx(G1, addr, G0); // store entire long
duke@435 304 #else
duke@435 305 __ st(O1, addr, BytesPerInt);
kvn@3037 306 __ ba(exit);
duke@435 307 __ delayed()->st(O0, addr, G0);
duke@435 308 #endif /* COMPILER2 */
duke@435 309 #endif /* _LP64 */
duke@435 310 }
duke@435 311 return start;
duke@435 312 }
duke@435 313
duke@435 314
duke@435 315 //----------------------------------------------------------------------------------------------------
duke@435 316 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 317 // The exception is caught and transformed into a pending exception stored in
duke@435 318 // JavaThread that can be tested from within the VM.
duke@435 319 //
duke@435 320 // Oexception: exception oop
duke@435 321
duke@435 322 address generate_catch_exception() {
duke@435 323 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 324
duke@435 325 address start = __ pc();
duke@435 326 // verify that thread corresponds
duke@435 327 __ verify_thread();
duke@435 328
duke@435 329 const Register& temp_reg = Gtemp;
twisti@1162 330 Address pending_exception_addr (G2_thread, Thread::pending_exception_offset());
twisti@1162 331 Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset ());
twisti@1162 332 Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset ());
duke@435 333
duke@435 334 // set pending exception
duke@435 335 __ verify_oop(Oexception);
duke@435 336 __ st_ptr(Oexception, pending_exception_addr);
duke@435 337 __ set((intptr_t)__FILE__, temp_reg);
duke@435 338 __ st_ptr(temp_reg, exception_file_offset_addr);
duke@435 339 __ set((intptr_t)__LINE__, temp_reg);
duke@435 340 __ st(temp_reg, exception_line_offset_addr);
duke@435 341
duke@435 342 // complete return to VM
duke@435 343 assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
duke@435 344
twisti@1162 345 AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
twisti@1162 346 __ jump_to(stub_ret, temp_reg);
duke@435 347 __ delayed()->nop();
duke@435 348
duke@435 349 return start;
duke@435 350 }
duke@435 351
duke@435 352
duke@435 353 //----------------------------------------------------------------------------------------------------
duke@435 354 // Continuation point for runtime calls returning with a pending exception
duke@435 355 // The pending exception check happened in the runtime or native call stub
duke@435 356 // The pending exception in Thread is converted into a Java-level exception
duke@435 357 //
duke@435 358 // Contract with Java-level exception handler: O0 = exception
duke@435 359 // O1 = throwing pc
duke@435 360
duke@435 361 address generate_forward_exception() {
duke@435 362 StubCodeMark mark(this, "StubRoutines", "forward_exception");
duke@435 363 address start = __ pc();
duke@435 364
duke@435 365 // Upon entry, O7 has the return address returning into Java
duke@435 366 // (interpreted or compiled) code; i.e. the return address
duke@435 367 // becomes the throwing pc.
duke@435 368
duke@435 369 const Register& handler_reg = Gtemp;
duke@435 370
twisti@1162 371 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 372
duke@435 373 #ifdef ASSERT
duke@435 374 // make sure that this code is only executed if there is a pending exception
duke@435 375 { Label L;
duke@435 376 __ ld_ptr(exception_addr, Gtemp);
kvn@3037 377 __ br_notnull_short(Gtemp, Assembler::pt, L);
duke@435 378 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 379 __ bind(L);
duke@435 380 }
duke@435 381 #endif
duke@435 382
duke@435 383 // compute exception handler into handler_reg
duke@435 384 __ get_thread();
duke@435 385 __ ld_ptr(exception_addr, Oexception);
duke@435 386 __ verify_oop(Oexception);
duke@435 387 __ save_frame(0); // compensates for compiler weakness
duke@435 388 __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
duke@435 389 BLOCK_COMMENT("call exception_handler_for_return_address");
twisti@1730 390 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
duke@435 391 __ mov(O0, handler_reg);
duke@435 392 __ restore(); // compensates for compiler weakness
duke@435 393
duke@435 394 __ ld_ptr(exception_addr, Oexception);
duke@435 395 __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
duke@435 396
duke@435 397 #ifdef ASSERT
duke@435 398 // make sure exception is set
duke@435 399 { Label L;
kvn@3037 400 __ br_notnull_short(Oexception, Assembler::pt, L);
duke@435 401 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 402 __ bind(L);
duke@435 403 }
duke@435 404 #endif
duke@435 405 // jump to exception handler
duke@435 406 __ jmp(handler_reg, 0);
duke@435 407 // clear pending exception
duke@435 408 __ delayed()->st_ptr(G0, exception_addr);
duke@435 409
duke@435 410 return start;
duke@435 411 }
duke@435 412
duke@435 413
duke@435 414 //------------------------------------------------------------------------------------------------------------------------
duke@435 415 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 416 // the current activation. Fabricates an exception oop and initiates normal
duke@435 417 // exception dispatching in this frame. Only callee-saved registers are preserved
duke@435 418 // (through the normal register window / RegisterMap handling).
duke@435 419 // If the compiler needs all registers to be preserved between the fault
duke@435 420 // point and the exception handler then it must assume responsibility for that in
duke@435 421 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 422 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 423 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 424 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 425 // so caller saved registers were assumed volatile in the compiler.
duke@435 426
duke@435 427 // Note that we generate only this stub into a RuntimeStub, because it needs to be
duke@435 428 // properly traversed and ignored during GC, so we change the meaning of the "__"
duke@435 429 // macro within this method.
duke@435 430 #undef __
duke@435 431 #define __ masm->
duke@435 432
never@3136 433 address generate_throw_exception(const char* name, address runtime_entry,
never@2978 434 Register arg1 = noreg, Register arg2 = noreg) {
duke@435 435 #ifdef ASSERT
duke@435 436 int insts_size = VerifyThread ? 1 * K : 600;
duke@435 437 #else
duke@435 438 int insts_size = VerifyThread ? 1 * K : 256;
duke@435 439 #endif /* ASSERT */
duke@435 440 int locs_size = 32;
duke@435 441
duke@435 442 CodeBuffer code(name, insts_size, locs_size);
duke@435 443 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 444
duke@435 445 __ verify_thread();
duke@435 446
duke@435 447 // This is an inlined and slightly modified version of call_VM
duke@435 448 // which has the ability to fetch the return PC out of thread-local storage
duke@435 449 __ assert_not_delayed();
duke@435 450
duke@435 451 // Note that we always push a frame because on the SPARC
duke@435 452 // architecture, for all of our implicit exception kinds at call
duke@435 453 // sites, the implicit exception is taken before the callee frame
duke@435 454 // is pushed.
duke@435 455 __ save_frame(0);
duke@435 456
duke@435 457 int frame_complete = __ offset();
duke@435 458
duke@435 459 // Note that we always have a runtime stub frame on the top of stack by this point
duke@435 460 Register last_java_sp = SP;
duke@435 461 // 64-bit last_java_sp is biased!
duke@435 462 __ set_last_Java_frame(last_java_sp, G0);
duke@435 463 if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early
duke@435 464 __ save_thread(noreg);
never@2978 465 if (arg1 != noreg) {
never@2978 466 assert(arg2 != O1, "clobbered");
never@2978 467 __ mov(arg1, O1);
never@2978 468 }
never@2978 469 if (arg2 != noreg) {
never@2978 470 __ mov(arg2, O2);
never@2978 471 }
duke@435 472 // do the call
duke@435 473 BLOCK_COMMENT("call runtime_entry");
duke@435 474 __ call(runtime_entry, relocInfo::runtime_call_type);
duke@435 475 if (!VerifyThread)
duke@435 476 __ delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 477 else
duke@435 478 __ delayed()->nop(); // (thread already passed)
duke@435 479 __ restore_thread(noreg);
duke@435 480 __ reset_last_Java_frame();
duke@435 481
duke@435 482 // check for pending exceptions. use Gtemp as scratch register.
duke@435 483 #ifdef ASSERT
duke@435 484 Label L;
duke@435 485
twisti@1162 486 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 487 Register scratch_reg = Gtemp;
duke@435 488 __ ld_ptr(exception_addr, scratch_reg);
kvn@3037 489 __ br_notnull_short(scratch_reg, Assembler::pt, L);
duke@435 490 __ should_not_reach_here();
duke@435 491 __ bind(L);
duke@435 492 #endif // ASSERT
duke@435 493 BLOCK_COMMENT("call forward_exception_entry");
duke@435 494 __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 495 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 496 __ delayed()->restore();
duke@435 497
duke@435 498 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
duke@435 499 return stub->entry_point();
duke@435 500 }
duke@435 501
duke@435 502 #undef __
duke@435 503 #define __ _masm->
duke@435 504
duke@435 505
duke@435 506 // Generate a routine that sets all the registers so we
duke@435 507 // can tell if the stop routine prints them correctly.
duke@435 508 address generate_test_stop() {
duke@435 509 StubCodeMark mark(this, "StubRoutines", "test_stop");
duke@435 510 address start = __ pc();
duke@435 511
duke@435 512 int i;
duke@435 513
duke@435 514 __ save_frame(0);
duke@435 515
duke@435 516 static jfloat zero = 0.0, one = 1.0;
duke@435 517
duke@435 518 // put addr in L0, then load through L0 to F0
duke@435 519 __ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0);
duke@435 520 __ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
duke@435 521
duke@435 522 // use add to put 2..18 in F2..F18
duke@435 523 for ( i = 2; i <= 18; ++i ) {
duke@435 524 __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i));
duke@435 525 }
duke@435 526
duke@435 527 // Now put double 2 in F16, double 18 in F18
duke@435 528 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
duke@435 529 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
duke@435 530
duke@435 531 // use add to put 20..32 in F20..F32
duke@435 532 for (i = 20; i < 32; i += 2) {
duke@435 533 __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i));
duke@435 534 }
duke@435 535
duke@435 536 // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
duke@435 537 for ( i = 0; i < 8; ++i ) {
duke@435 538 if (i < 6) {
duke@435 539 __ set( i, as_iRegister(i));
duke@435 540 __ set(16 + i, as_oRegister(i));
duke@435 541 __ set(24 + i, as_gRegister(i));
duke@435 542 }
duke@435 543 __ set( 8 + i, as_lRegister(i));
duke@435 544 }
duke@435 545
duke@435 546 __ stop("testing stop");
duke@435 547
duke@435 548
duke@435 549 __ ret();
duke@435 550 __ delayed()->restore();
duke@435 551
duke@435 552 return start;
duke@435 553 }
duke@435 554
duke@435 555
duke@435 556 address generate_stop_subroutine() {
duke@435 557 StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
duke@435 558 address start = __ pc();
duke@435 559
duke@435 560 __ stop_subroutine();
duke@435 561
duke@435 562 return start;
duke@435 563 }
duke@435 564
duke@435 565 address generate_flush_callers_register_windows() {
duke@435 566 StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
duke@435 567 address start = __ pc();
duke@435 568
duke@435 569 __ flush_windows();
duke@435 570 __ retl(false);
duke@435 571 __ delayed()->add( FP, STACK_BIAS, O0 );
duke@435 572 // The returned value must be a stack pointer whose register save area
duke@435 573 // is flushed, and will stay flushed while the caller executes.
duke@435 574
duke@435 575 return start;
duke@435 576 }
duke@435 577
duke@435 578 // Helper functions for v8 atomic operations.
duke@435 579 //
duke@435 580 void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
duke@435 581 if (mark_oop_reg == noreg) {
duke@435 582 address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
duke@435 583 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 584 } else {
duke@435 585 assert(scratch_reg != noreg, "just checking");
duke@435 586 address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
duke@435 587 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 588 __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
duke@435 589 __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
duke@435 590 }
duke@435 591 }
duke@435 592
duke@435 593 void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 594
duke@435 595 get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
duke@435 596 __ set(StubRoutines::Sparc::locked, lock_reg);
duke@435 597 // Initialize yield counter
duke@435 598 __ mov(G0,yield_reg);
duke@435 599
duke@435 600 __ BIND(retry);
kvn@3037 601 __ cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dontyield);
duke@435 602
duke@435 603 // This code can only be called from inside the VM, this
duke@435 604 // stub is only invoked from Atomic::add(). We do not
duke@435 605 // want to use call_VM, because _last_java_sp and such
duke@435 606 // must already be set.
duke@435 607 //
duke@435 608 // Save the regs and make space for a C call
duke@435 609 __ save(SP, -96, SP);
duke@435 610 __ save_all_globals_into_locals();
duke@435 611 BLOCK_COMMENT("call os::naked_sleep");
duke@435 612 __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
duke@435 613 __ delayed()->nop();
duke@435 614 __ restore_globals_from_locals();
duke@435 615 __ restore();
duke@435 616 // reset the counter
duke@435 617 __ mov(G0,yield_reg);
duke@435 618
duke@435 619 __ BIND(dontyield);
duke@435 620
duke@435 621 // try to get lock
duke@435 622 __ swap(lock_ptr_reg, 0, lock_reg);
duke@435 623
duke@435 624 // did we get the lock?
duke@435 625 __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 626 __ br(Assembler::notEqual, true, Assembler::pn, retry);
duke@435 627 __ delayed()->add(yield_reg,1,yield_reg);
duke@435 628
duke@435 629 // yes, got lock. do the operation here.
duke@435 630 }
duke@435 631
duke@435 632 void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 633 __ st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 634 }
duke@435 635
duke@435 636 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
duke@435 637 //
duke@435 638 // Arguments :
duke@435 639 //
duke@435 640 // exchange_value: O0
duke@435 641 // dest: O1
duke@435 642 //
duke@435 643 // Results:
duke@435 644 //
duke@435 645 // O0: the value previously stored in dest
duke@435 646 //
duke@435 647 address generate_atomic_xchg() {
duke@435 648 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 649 address start = __ pc();
duke@435 650
duke@435 651 if (UseCASForSwap) {
duke@435 652 // Use CAS instead of swap, just in case the MP hardware
duke@435 653 // prefers to work with just one kind of synch. instruction.
duke@435 654 Label retry;
duke@435 655 __ BIND(retry);
duke@435 656 __ mov(O0, O3); // scratch copy of exchange value
duke@435 657 __ ld(O1, 0, O2); // observe the previous value
duke@435 658 // try to replace O2 with O3
duke@435 659 __ cas_under_lock(O1, O2, O3,
duke@435 660 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
kvn@3037 661 __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
duke@435 662
duke@435 663 __ retl(false);
duke@435 664 __ delayed()->mov(O2, O0); // report previous value to caller
duke@435 665
duke@435 666 } else {
duke@435 667 if (VM_Version::v9_instructions_work()) {
duke@435 668 __ retl(false);
duke@435 669 __ delayed()->swap(O1, 0, O0);
duke@435 670 } else {
duke@435 671 const Register& lock_reg = O2;
duke@435 672 const Register& lock_ptr_reg = O3;
duke@435 673 const Register& yield_reg = O4;
duke@435 674
duke@435 675 Label retry;
duke@435 676 Label dontyield;
duke@435 677
duke@435 678 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 679 // got the lock, do the swap
duke@435 680 __ swap(O1, 0, O0);
duke@435 681
duke@435 682 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 683 __ retl(false);
duke@435 684 __ delayed()->nop();
duke@435 685 }
duke@435 686 }
duke@435 687
duke@435 688 return start;
duke@435 689 }
duke@435 690
duke@435 691
duke@435 692 // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
duke@435 693 //
duke@435 694 // Arguments :
duke@435 695 //
duke@435 696 // exchange_value: O0
duke@435 697 // dest: O1
duke@435 698 // compare_value: O2
duke@435 699 //
duke@435 700 // Results:
duke@435 701 //
duke@435 702 // O0: the value previously stored in dest
duke@435 703 //
duke@435 704 // Overwrites (v8): O3,O4,O5
duke@435 705 //
duke@435 706 address generate_atomic_cmpxchg() {
duke@435 707 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 708 address start = __ pc();
duke@435 709
duke@435 710 // cmpxchg(dest, compare_value, exchange_value)
duke@435 711 __ cas_under_lock(O1, O2, O0,
duke@435 712 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 713 __ retl(false);
duke@435 714 __ delayed()->nop();
duke@435 715
duke@435 716 return start;
duke@435 717 }
duke@435 718
duke@435 719 // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
duke@435 720 //
duke@435 721 // Arguments :
duke@435 722 //
duke@435 723 // exchange_value: O1:O0
duke@435 724 // dest: O2
duke@435 725 // compare_value: O4:O3
duke@435 726 //
duke@435 727 // Results:
duke@435 728 //
duke@435 729 // O1:O0: the value previously stored in dest
duke@435 730 //
duke@435 731 // This only works on V9, on V8 we don't generate any
duke@435 732 // code and just return NULL.
duke@435 733 //
duke@435 734 // Overwrites: G1,G2,G3
duke@435 735 //
duke@435 736 address generate_atomic_cmpxchg_long() {
duke@435 737 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 738 address start = __ pc();
duke@435 739
duke@435 740 if (!VM_Version::supports_cx8())
duke@435 741 return NULL;;
duke@435 742 __ sllx(O0, 32, O0);
duke@435 743 __ srl(O1, 0, O1);
duke@435 744 __ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value
duke@435 745 __ sllx(O3, 32, O3);
duke@435 746 __ srl(O4, 0, O4);
duke@435 747 __ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value
duke@435 748 __ casx(O2, O3, O0);
duke@435 749 __ srl(O0, 0, O1); // unpacked return value in O1:O0
duke@435 750 __ retl(false);
duke@435 751 __ delayed()->srlx(O0, 32, O0);
duke@435 752
duke@435 753 return start;
duke@435 754 }
duke@435 755
duke@435 756
duke@435 757 // Support for jint Atomic::add(jint add_value, volatile jint* dest).
duke@435 758 //
duke@435 759 // Arguments :
duke@435 760 //
duke@435 761 // add_value: O0 (e.g., +1 or -1)
duke@435 762 // dest: O1
duke@435 763 //
duke@435 764 // Results:
duke@435 765 //
duke@435 766 // O0: the new value stored in dest
duke@435 767 //
duke@435 768 // Overwrites (v9): O3
duke@435 769 // Overwrites (v8): O3,O4,O5
duke@435 770 //
duke@435 771 address generate_atomic_add() {
duke@435 772 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 773 address start = __ pc();
duke@435 774 __ BIND(_atomic_add_stub);
duke@435 775
duke@435 776 if (VM_Version::v9_instructions_work()) {
duke@435 777 Label(retry);
duke@435 778 __ BIND(retry);
duke@435 779
duke@435 780 __ lduw(O1, 0, O2);
kvn@3037 781 __ add(O0, O2, O3);
kvn@3037 782 __ cas(O1, O2, O3);
kvn@3037 783 __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
duke@435 784 __ retl(false);
duke@435 785 __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
duke@435 786 } else {
duke@435 787 const Register& lock_reg = O2;
duke@435 788 const Register& lock_ptr_reg = O3;
duke@435 789 const Register& value_reg = O4;
duke@435 790 const Register& yield_reg = O5;
duke@435 791
duke@435 792 Label(retry);
duke@435 793 Label(dontyield);
duke@435 794
duke@435 795 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 796 // got lock, do the increment
duke@435 797 __ ld(O1, 0, value_reg);
duke@435 798 __ add(O0, value_reg, value_reg);
duke@435 799 __ st(value_reg, O1, 0);
duke@435 800
duke@435 801 // %%% only for RMO and PSO
duke@435 802 __ membar(Assembler::StoreStore);
duke@435 803
duke@435 804 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 805
duke@435 806 __ retl(false);
duke@435 807 __ delayed()->mov(value_reg, O0);
duke@435 808 }
duke@435 809
duke@435 810 return start;
duke@435 811 }
duke@435 812 Label _atomic_add_stub; // called from other stubs
duke@435 813
duke@435 814
duke@435 815 //------------------------------------------------------------------------------------------------------------------------
duke@435 816 // The following routine generates a subroutine to throw an asynchronous
duke@435 817 // UnknownError when an unsafe access gets a fault that could not be
duke@435 818 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 819 //
duke@435 820 // Arguments :
duke@435 821 //
duke@435 822 // trapping PC: O7
duke@435 823 //
duke@435 824 // Results:
duke@435 825 // posts an asynchronous exception, skips the trapping instruction
duke@435 826 //
duke@435 827
duke@435 828 address generate_handler_for_unsafe_access() {
duke@435 829 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 830 address start = __ pc();
duke@435 831
duke@435 832 const int preserve_register_words = (64 * 2);
twisti@1162 833 Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
duke@435 834
duke@435 835 Register Lthread = L7_thread_cache;
duke@435 836 int i;
duke@435 837
duke@435 838 __ save_frame(0);
duke@435 839 __ mov(G1, L1);
duke@435 840 __ mov(G2, L2);
duke@435 841 __ mov(G3, L3);
duke@435 842 __ mov(G4, L4);
duke@435 843 __ mov(G5, L5);
duke@435 844 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 845 __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
duke@435 846 }
duke@435 847
duke@435 848 address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
duke@435 849 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 850 __ call(entry_point, relocInfo::runtime_call_type);
duke@435 851 __ delayed()->nop();
duke@435 852
duke@435 853 __ mov(L1, G1);
duke@435 854 __ mov(L2, G2);
duke@435 855 __ mov(L3, G3);
duke@435 856 __ mov(L4, G4);
duke@435 857 __ mov(L5, G5);
duke@435 858 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 859 __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
duke@435 860 }
duke@435 861
duke@435 862 __ verify_thread();
duke@435 863
duke@435 864 __ jmp(O0, 0);
duke@435 865 __ delayed()->restore();
duke@435 866
duke@435 867 return start;
duke@435 868 }
duke@435 869
duke@435 870
duke@435 871 // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
duke@435 872 // Arguments :
duke@435 873 //
duke@435 874 // ret : O0, returned
duke@435 875 // icc/xcc: set as O0 (depending on wordSize)
duke@435 876 // sub : O1, argument, not changed
duke@435 877 // super: O2, argument, not changed
duke@435 878 // raddr: O7, blown by call
duke@435 879 address generate_partial_subtype_check() {
coleenp@548 880 __ align(CodeEntryAlignment);
duke@435 881 StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
duke@435 882 address start = __ pc();
jrose@1079 883 Label miss;
duke@435 884
duke@435 885 #if defined(COMPILER2) && !defined(_LP64)
duke@435 886 // Do not use a 'save' because it blows the 64-bit O registers.
coleenp@548 887 __ add(SP,-4*wordSize,SP); // Make space for 4 temps (stack must be 2 words aligned)
duke@435 888 __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
duke@435 889 __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
duke@435 890 __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
duke@435 891 __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
duke@435 892 Register Rret = O0;
duke@435 893 Register Rsub = O1;
duke@435 894 Register Rsuper = O2;
duke@435 895 #else
duke@435 896 __ save_frame(0);
duke@435 897 Register Rret = I0;
duke@435 898 Register Rsub = I1;
duke@435 899 Register Rsuper = I2;
duke@435 900 #endif
duke@435 901
duke@435 902 Register L0_ary_len = L0;
duke@435 903 Register L1_ary_ptr = L1;
duke@435 904 Register L2_super = L2;
duke@435 905 Register L3_index = L3;
duke@435 906
jrose@1079 907 __ check_klass_subtype_slow_path(Rsub, Rsuper,
jrose@1079 908 L0, L1, L2, L3,
jrose@1079 909 NULL, &miss);
jrose@1079 910
jrose@1079 911 // Match falls through here.
jrose@1079 912 __ addcc(G0,0,Rret); // set Z flags, Z result
duke@435 913
duke@435 914 #if defined(COMPILER2) && !defined(_LP64)
duke@435 915 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 916 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 917 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 918 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 919 __ retl(); // Result in Rret is zero; flags set to Z
duke@435 920 __ delayed()->add(SP,4*wordSize,SP);
duke@435 921 #else
duke@435 922 __ ret(); // Result in Rret is zero; flags set to Z
duke@435 923 __ delayed()->restore();
duke@435 924 #endif
duke@435 925
duke@435 926 __ BIND(miss);
duke@435 927 __ addcc(G0,1,Rret); // set NZ flags, NZ result
duke@435 928
duke@435 929 #if defined(COMPILER2) && !defined(_LP64)
duke@435 930 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 931 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 932 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 933 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 934 __ retl(); // Result in Rret is != 0; flags set to NZ
duke@435 935 __ delayed()->add(SP,4*wordSize,SP);
duke@435 936 #else
duke@435 937 __ ret(); // Result in Rret is != 0; flags set to NZ
duke@435 938 __ delayed()->restore();
duke@435 939 #endif
duke@435 940
duke@435 941 return start;
duke@435 942 }
duke@435 943
duke@435 944
duke@435 945 // Called from MacroAssembler::verify_oop
duke@435 946 //
duke@435 947 address generate_verify_oop_subroutine() {
duke@435 948 StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
duke@435 949
duke@435 950 address start = __ pc();
duke@435 951
duke@435 952 __ verify_oop_subroutine();
duke@435 953
duke@435 954 return start;
duke@435 955 }
duke@435 956
duke@435 957
duke@435 958 //
duke@435 959 // Verify that a register contains clean 32-bits positive value
duke@435 960 // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
duke@435 961 //
duke@435 962 // Input:
duke@435 963 // Rint - 32-bits value
duke@435 964 // Rtmp - scratch
duke@435 965 //
duke@435 966 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 967 #if defined(ASSERT) && defined(_LP64)
duke@435 968 __ signx(Rint, Rtmp);
duke@435 969 __ cmp(Rint, Rtmp);
duke@435 970 __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
duke@435 971 #endif
duke@435 972 }
duke@435 973
duke@435 974 //
duke@435 975 // Generate overlap test for array copy stubs
duke@435 976 //
duke@435 977 // Input:
duke@435 978 // O0 - array1
duke@435 979 // O1 - array2
duke@435 980 // O2 - element count
duke@435 981 //
duke@435 982 // Kills temps: O3, O4
duke@435 983 //
duke@435 984 void array_overlap_test(address no_overlap_target, int log2_elem_size) {
duke@435 985 assert(no_overlap_target != NULL, "must be generated");
duke@435 986 array_overlap_test(no_overlap_target, NULL, log2_elem_size);
duke@435 987 }
duke@435 988 void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
duke@435 989 array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
duke@435 990 }
duke@435 991 void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
duke@435 992 const Register from = O0;
duke@435 993 const Register to = O1;
duke@435 994 const Register count = O2;
duke@435 995 const Register to_from = O3; // to - from
duke@435 996 const Register byte_count = O4; // count << log2_elem_size
duke@435 997
duke@435 998 __ subcc(to, from, to_from);
duke@435 999 __ sll_ptr(count, log2_elem_size, byte_count);
duke@435 1000 if (NOLp == NULL)
duke@435 1001 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1002 else
duke@435 1003 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1004 __ delayed()->cmp(to_from, byte_count);
duke@435 1005 if (NOLp == NULL)
tonyp@2010 1006 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1007 else
tonyp@2010 1008 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1009 __ delayed()->nop();
duke@435 1010 }
duke@435 1011
duke@435 1012 //
duke@435 1013 // Generate pre-write barrier for array.
duke@435 1014 //
duke@435 1015 // Input:
duke@435 1016 // addr - register containing starting address
duke@435 1017 // count - register containing element count
duke@435 1018 // tmp - scratch register
duke@435 1019 //
duke@435 1020 // The input registers are overwritten.
duke@435 1021 //
iveresov@2606 1022 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
duke@435 1023 BarrierSet* bs = Universe::heap()->barrier_set();
iveresov@2606 1024 switch (bs->kind()) {
iveresov@2606 1025 case BarrierSet::G1SATBCT:
iveresov@2606 1026 case BarrierSet::G1SATBCTLogging:
iveresov@2606 1027 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 1028 if (!dest_uninitialized) {
iveresov@2606 1029 __ save_frame(0);
iveresov@2606 1030 // Save the necessary global regs... will be used after.
iveresov@2606 1031 if (addr->is_global()) {
iveresov@2606 1032 __ mov(addr, L0);
iveresov@2606 1033 }
iveresov@2606 1034 if (count->is_global()) {
iveresov@2606 1035 __ mov(count, L1);
iveresov@2606 1036 }
iveresov@2606 1037 __ mov(addr->after_save(), O0);
iveresov@2606 1038 // Get the count into O1
iveresov@2606 1039 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
iveresov@2606 1040 __ delayed()->mov(count->after_save(), O1);
iveresov@2606 1041 if (addr->is_global()) {
iveresov@2606 1042 __ mov(L0, addr);
iveresov@2606 1043 }
iveresov@2606 1044 if (count->is_global()) {
iveresov@2606 1045 __ mov(L1, count);
iveresov@2606 1046 }
iveresov@2606 1047 __ restore();
iveresov@2606 1048 }
iveresov@2606 1049 break;
iveresov@2606 1050 case BarrierSet::CardTableModRef:
iveresov@2606 1051 case BarrierSet::CardTableExtension:
iveresov@2606 1052 case BarrierSet::ModRef:
iveresov@2606 1053 break;
iveresov@2606 1054 default:
iveresov@2606 1055 ShouldNotReachHere();
duke@435 1056 }
duke@435 1057 }
duke@435 1058 //
duke@435 1059 // Generate post-write barrier for array.
duke@435 1060 //
duke@435 1061 // Input:
duke@435 1062 // addr - register containing starting address
duke@435 1063 // count - register containing element count
duke@435 1064 // tmp - scratch register
duke@435 1065 //
duke@435 1066 // The input registers are overwritten.
duke@435 1067 //
duke@435 1068 void gen_write_ref_array_post_barrier(Register addr, Register count,
iveresov@2606 1069 Register tmp) {
duke@435 1070 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1071
duke@435 1072 switch (bs->kind()) {
duke@435 1073 case BarrierSet::G1SATBCT:
duke@435 1074 case BarrierSet::G1SATBCTLogging:
duke@435 1075 {
duke@435 1076 // Get some new fresh output registers.
duke@435 1077 __ save_frame(0);
ysr@777 1078 __ mov(addr->after_save(), O0);
duke@435 1079 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
ysr@777 1080 __ delayed()->mov(count->after_save(), O1);
duke@435 1081 __ restore();
duke@435 1082 }
duke@435 1083 break;
duke@435 1084 case BarrierSet::CardTableModRef:
duke@435 1085 case BarrierSet::CardTableExtension:
duke@435 1086 {
duke@435 1087 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1088 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1089 assert_different_registers(addr, count, tmp);
duke@435 1090
duke@435 1091 Label L_loop;
duke@435 1092
coleenp@548 1093 __ sll_ptr(count, LogBytesPerHeapOop, count);
coleenp@548 1094 __ sub(count, BytesPerHeapOop, count);
duke@435 1095 __ add(count, addr, count);
duke@435 1096 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
duke@435 1097 __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
duke@435 1098 __ srl_ptr(count, CardTableModRefBS::card_shift, count);
duke@435 1099 __ sub(count, addr, count);
twisti@1162 1100 AddressLiteral rs(ct->byte_map_base);
twisti@1162 1101 __ set(rs, tmp);
duke@435 1102 __ BIND(L_loop);
twisti@1162 1103 __ stb(G0, tmp, addr);
duke@435 1104 __ subcc(count, 1, count);
duke@435 1105 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1106 __ delayed()->add(addr, 1, addr);
twisti@1162 1107 }
duke@435 1108 break;
duke@435 1109 case BarrierSet::ModRef:
duke@435 1110 break;
twisti@1162 1111 default:
duke@435 1112 ShouldNotReachHere();
duke@435 1113 }
duke@435 1114 }
duke@435 1115
kvn@3103 1116 //
kvn@3103 1117 // Generate main code for disjoint arraycopy
kvn@3103 1118 //
kvn@3103 1119 typedef void (StubGenerator::*CopyLoopFunc)(Register from, Register to, Register count, int count_dec,
kvn@3103 1120 Label& L_loop, bool use_prefetch, bool use_bis);
kvn@3103 1121
kvn@3103 1122 void disjoint_copy_core(Register from, Register to, Register count, int log2_elem_size,
kvn@3103 1123 int iter_size, CopyLoopFunc copy_loop_func) {
kvn@3103 1124 Label L_copy;
kvn@3103 1125
kvn@3103 1126 assert(log2_elem_size <= 3, "the following code should be changed");
kvn@3103 1127 int count_dec = 16>>log2_elem_size;
kvn@3103 1128
kvn@3103 1129 int prefetch_dist = MAX2(ArraycopySrcPrefetchDistance, ArraycopyDstPrefetchDistance);
kvn@3103 1130 assert(prefetch_dist < 4096, "invalid value");
kvn@3103 1131 prefetch_dist = (prefetch_dist + (iter_size-1)) & (-iter_size); // round up to one iteration copy size
kvn@3103 1132 int prefetch_count = (prefetch_dist >> log2_elem_size); // elements count
kvn@3103 1133
kvn@3103 1134 if (UseBlockCopy) {
kvn@3103 1135 Label L_block_copy, L_block_copy_prefetch, L_skip_block_copy;
kvn@3103 1136
kvn@3103 1137 // 64 bytes tail + bytes copied in one loop iteration
kvn@3103 1138 int tail_size = 64 + iter_size;
kvn@3103 1139 int block_copy_count = (MAX2(tail_size, (int)BlockCopyLowLimit)) >> log2_elem_size;
kvn@3103 1140 // Use BIS copy only for big arrays since it requires membar.
kvn@3103 1141 __ set(block_copy_count, O4);
kvn@3103 1142 __ cmp_and_br_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_skip_block_copy);
kvn@3103 1143 // This code is for disjoint source and destination:
kvn@3103 1144 // to <= from || to >= from+count
kvn@3103 1145 // but BIS will stomp over 'from' if (to > from-tail_size && to <= from)
kvn@3103 1146 __ sub(from, to, O4);
kvn@3103 1147 __ srax(O4, 4, O4); // divide by 16 since following short branch have only 5 bits for imm.
kvn@3103 1148 __ cmp_and_br_short(O4, (tail_size>>4), Assembler::lessEqualUnsigned, Assembler::pn, L_skip_block_copy);
kvn@3103 1149
kvn@3103 1150 __ wrasi(G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
kvn@3103 1151 // BIS should not be used to copy tail (64 bytes+iter_size)
kvn@3103 1152 // to avoid zeroing of following values.
kvn@3103 1153 __ sub(count, (tail_size>>log2_elem_size), count); // count is still positive >= 0
kvn@3103 1154
kvn@3103 1155 if (prefetch_count > 0) { // rounded up to one iteration count
kvn@3103 1156 // Do prefetching only if copy size is bigger
kvn@3103 1157 // than prefetch distance.
kvn@3103 1158 __ set(prefetch_count, O4);
kvn@3103 1159 __ cmp_and_brx_short(count, O4, Assembler::less, Assembler::pt, L_block_copy);
kvn@3103 1160 __ sub(count, prefetch_count, count);
kvn@3103 1161
kvn@3103 1162 (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy_prefetch, true, true);
kvn@3103 1163 __ add(count, prefetch_count, count); // restore count
kvn@3103 1164
kvn@3103 1165 } // prefetch_count > 0
kvn@3103 1166
kvn@3103 1167 (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy, false, true);
kvn@3103 1168 __ add(count, (tail_size>>log2_elem_size), count); // restore count
kvn@3103 1169
kvn@3103 1170 __ wrasi(G0, Assembler::ASI_PRIMARY_NOFAULT);
kvn@3103 1171 // BIS needs membar.
kvn@3103 1172 __ membar(Assembler::StoreLoad);
kvn@3103 1173 // Copy tail
kvn@3103 1174 __ ba_short(L_copy);
kvn@3103 1175
kvn@3103 1176 __ BIND(L_skip_block_copy);
kvn@3103 1177 } // UseBlockCopy
kvn@3103 1178
kvn@3103 1179 if (prefetch_count > 0) { // rounded up to one iteration count
kvn@3103 1180 // Do prefetching only if copy size is bigger
kvn@3103 1181 // than prefetch distance.
kvn@3103 1182 __ set(prefetch_count, O4);
kvn@3103 1183 __ cmp_and_brx_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_copy);
kvn@3103 1184 __ sub(count, prefetch_count, count);
kvn@3103 1185
kvn@3103 1186 Label L_copy_prefetch;
kvn@3103 1187 (this->*copy_loop_func)(from, to, count, count_dec, L_copy_prefetch, true, false);
kvn@3103 1188 __ add(count, prefetch_count, count); // restore count
kvn@3103 1189
kvn@3103 1190 } // prefetch_count > 0
kvn@3103 1191
kvn@3103 1192 (this->*copy_loop_func)(from, to, count, count_dec, L_copy, false, false);
kvn@3103 1193 }
kvn@3103 1194
kvn@3103 1195
kvn@3103 1196
kvn@3103 1197 //
kvn@3103 1198 // Helper methods for copy_16_bytes_forward_with_shift()
kvn@3103 1199 //
kvn@3103 1200 void copy_16_bytes_shift_loop(Register from, Register to, Register count, int count_dec,
kvn@3103 1201 Label& L_loop, bool use_prefetch, bool use_bis) {
kvn@3103 1202
kvn@3103 1203 const Register left_shift = G1; // left shift bit counter
kvn@3103 1204 const Register right_shift = G5; // right shift bit counter
kvn@3103 1205
kvn@3103 1206 __ align(OptoLoopAlignment);
kvn@3103 1207 __ BIND(L_loop);
kvn@3103 1208 if (use_prefetch) {
kvn@3103 1209 if (ArraycopySrcPrefetchDistance > 0) {
kvn@3103 1210 __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
kvn@3103 1211 }
kvn@3103 1212 if (ArraycopyDstPrefetchDistance > 0) {
kvn@3103 1213 __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
kvn@3103 1214 }
kvn@3103 1215 }
kvn@3103 1216 __ ldx(from, 0, O4);
kvn@3103 1217 __ ldx(from, 8, G4);
kvn@3103 1218 __ inc(to, 16);
kvn@3103 1219 __ inc(from, 16);
kvn@3103 1220 __ deccc(count, count_dec); // Can we do next iteration after this one?
kvn@3103 1221 __ srlx(O4, right_shift, G3);
kvn@3103 1222 __ bset(G3, O3);
kvn@3103 1223 __ sllx(O4, left_shift, O4);
kvn@3103 1224 __ srlx(G4, right_shift, G3);
kvn@3103 1225 __ bset(G3, O4);
kvn@3103 1226 if (use_bis) {
kvn@3103 1227 __ stxa(O3, to, -16);
kvn@3103 1228 __ stxa(O4, to, -8);
kvn@3103 1229 } else {
kvn@3103 1230 __ stx(O3, to, -16);
kvn@3103 1231 __ stx(O4, to, -8);
kvn@3103 1232 }
kvn@3103 1233 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
kvn@3103 1234 __ delayed()->sllx(G4, left_shift, O3);
kvn@3103 1235 }
duke@435 1236
duke@435 1237 // Copy big chunks forward with shift
duke@435 1238 //
duke@435 1239 // Inputs:
duke@435 1240 // from - source arrays
duke@435 1241 // to - destination array aligned to 8-bytes
duke@435 1242 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1243 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1244 // L_copy_bytes - copy exit label
duke@435 1245 //
duke@435 1246 void copy_16_bytes_forward_with_shift(Register from, Register to,
kvn@3103 1247 Register count, int log2_elem_size, Label& L_copy_bytes) {
kvn@3103 1248 Label L_aligned_copy, L_copy_last_bytes;
kvn@3103 1249 assert(log2_elem_size <= 3, "the following code should be changed");
kvn@3103 1250 int count_dec = 16>>log2_elem_size;
duke@435 1251
duke@435 1252 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
kvn@3103 1253 __ andcc(from, 7, G1); // misaligned bytes
kvn@3103 1254 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
kvn@3103 1255 __ delayed()->nop();
duke@435 1256
duke@435 1257 const Register left_shift = G1; // left shift bit counter
duke@435 1258 const Register right_shift = G5; // right shift bit counter
duke@435 1259
kvn@3103 1260 __ sll(G1, LogBitsPerByte, left_shift);
kvn@3103 1261 __ mov(64, right_shift);
kvn@3103 1262 __ sub(right_shift, left_shift, right_shift);
duke@435 1263
duke@435 1264 //
duke@435 1265 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1266 // to form 2 aligned 8-bytes chunks to store.
duke@435 1267 //
kvn@3103 1268 __ dec(count, count_dec); // Pre-decrement 'count'
kvn@3103 1269 __ andn(from, 7, from); // Align address
kvn@3103 1270 __ ldx(from, 0, O3);
kvn@3103 1271 __ inc(from, 8);
kvn@3103 1272 __ sllx(O3, left_shift, O3);
kvn@3103 1273
kvn@3103 1274 disjoint_copy_core(from, to, count, log2_elem_size, 16, copy_16_bytes_shift_loop);
kvn@3103 1275
kvn@3103 1276 __ inccc(count, count_dec>>1 ); // + 8 bytes
kvn@3103 1277 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
kvn@3103 1278 __ delayed()->inc(count, count_dec>>1); // restore 'count'
kvn@3103 1279
kvn@3103 1280 // copy 8 bytes, part of them already loaded in O3
kvn@3103 1281 __ ldx(from, 0, O4);
kvn@3103 1282 __ inc(to, 8);
kvn@3103 1283 __ inc(from, 8);
kvn@3103 1284 __ srlx(O4, right_shift, G3);
kvn@3103 1285 __ bset(O3, G3);
kvn@3103 1286 __ stx(G3, to, -8);
duke@435 1287
duke@435 1288 __ BIND(L_copy_last_bytes);
kvn@3103 1289 __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
kvn@3103 1290 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
kvn@3103 1291 __ delayed()->sub(from, right_shift, from); // restore address
duke@435 1292
duke@435 1293 __ BIND(L_aligned_copy);
duke@435 1294 }
duke@435 1295
duke@435 1296 // Copy big chunks backward with shift
duke@435 1297 //
duke@435 1298 // Inputs:
duke@435 1299 // end_from - source arrays end address
duke@435 1300 // end_to - destination array end address aligned to 8-bytes
duke@435 1301 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1302 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1303 // L_aligned_copy - aligned copy exit label
duke@435 1304 // L_copy_bytes - copy exit label
duke@435 1305 //
duke@435 1306 void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
duke@435 1307 Register count, int count_dec,
duke@435 1308 Label& L_aligned_copy, Label& L_copy_bytes) {
duke@435 1309 Label L_loop, L_copy_last_bytes;
duke@435 1310
duke@435 1311 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1312 __ andcc(end_from, 7, G1); // misaligned bytes
duke@435 1313 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1314 __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1315
duke@435 1316 const Register left_shift = G1; // left shift bit counter
duke@435 1317 const Register right_shift = G5; // right shift bit counter
duke@435 1318
duke@435 1319 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1320 __ mov(64, right_shift);
duke@435 1321 __ sub(right_shift, left_shift, right_shift);
duke@435 1322
duke@435 1323 //
duke@435 1324 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1325 // to form 2 aligned 8-bytes chunks to store.
duke@435 1326 //
duke@435 1327 __ andn(end_from, 7, end_from); // Align address
duke@435 1328 __ ldx(end_from, 0, O3);
kvn@1800 1329 __ align(OptoLoopAlignment);
duke@435 1330 __ BIND(L_loop);
duke@435 1331 __ ldx(end_from, -8, O4);
duke@435 1332 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1333 __ ldx(end_from, -16, G4);
duke@435 1334 __ dec(end_to, 16);
duke@435 1335 __ dec(end_from, 16);
duke@435 1336 __ srlx(O3, right_shift, O3);
duke@435 1337 __ sllx(O4, left_shift, G3);
duke@435 1338 __ bset(G3, O3);
duke@435 1339 __ stx(O3, end_to, 8);
duke@435 1340 __ srlx(O4, right_shift, O4);
duke@435 1341 __ sllx(G4, left_shift, G3);
duke@435 1342 __ bset(G3, O4);
duke@435 1343 __ stx(O4, end_to, 0);
duke@435 1344 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1345 __ delayed()->mov(G4, O3);
duke@435 1346
duke@435 1347 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1348 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1349 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1350
duke@435 1351 // copy 8 bytes, part of them already loaded in O3
duke@435 1352 __ ldx(end_from, -8, O4);
duke@435 1353 __ dec(end_to, 8);
duke@435 1354 __ dec(end_from, 8);
duke@435 1355 __ srlx(O3, right_shift, O3);
duke@435 1356 __ sllx(O4, left_shift, G3);
duke@435 1357 __ bset(O3, G3);
duke@435 1358 __ stx(G3, end_to, 0);
duke@435 1359
duke@435 1360 __ BIND(L_copy_last_bytes);
duke@435 1361 __ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes
duke@435 1362 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1363 __ delayed()->add(end_from, left_shift, end_from); // restore address
duke@435 1364 }
duke@435 1365
duke@435 1366 //
duke@435 1367 // Generate stub for disjoint byte copy. If "aligned" is true, the
duke@435 1368 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1369 //
duke@435 1370 // Arguments for generated stub:
duke@435 1371 // from: O0
duke@435 1372 // to: O1
duke@435 1373 // count: O2 treated as signed
duke@435 1374 //
iveresov@2595 1375 address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) {
duke@435 1376 __ align(CodeEntryAlignment);
duke@435 1377 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1378 address start = __ pc();
duke@435 1379
duke@435 1380 Label L_skip_alignment, L_align;
duke@435 1381 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1382
duke@435 1383 const Register from = O0; // source array address
duke@435 1384 const Register to = O1; // destination array address
duke@435 1385 const Register count = O2; // elements count
duke@435 1386 const Register offset = O5; // offset from start of arrays
duke@435 1387 // O3, O4, G3, G4 are used as temp registers
duke@435 1388
duke@435 1389 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1390
iveresov@2595 1391 if (entry != NULL) {
iveresov@2595 1392 *entry = __ pc();
iveresov@2595 1393 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1394 BLOCK_COMMENT("Entry:");
iveresov@2595 1395 }
duke@435 1396
duke@435 1397 // for short arrays, just do single element copy
duke@435 1398 __ cmp(count, 23); // 16 + 7
duke@435 1399 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1400 __ delayed()->mov(G0, offset);
duke@435 1401
duke@435 1402 if (aligned) {
duke@435 1403 // 'aligned' == true when it is known statically during compilation
duke@435 1404 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1405 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1406 //
duke@435 1407 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1408 // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
duke@435 1409 //
duke@435 1410 #ifndef _LP64
duke@435 1411 // copy a 4-bytes word if necessary to align 'to' to 8 bytes
duke@435 1412 __ andcc(to, 7, G0);
duke@435 1413 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
duke@435 1414 __ delayed()->ld(from, 0, O3);
duke@435 1415 __ inc(from, 4);
duke@435 1416 __ inc(to, 4);
duke@435 1417 __ dec(count, 4);
duke@435 1418 __ st(O3, to, -4);
duke@435 1419 __ BIND(L_skip_alignment);
duke@435 1420 #endif
duke@435 1421 } else {
duke@435 1422 // copy bytes to align 'to' on 8 byte boundary
duke@435 1423 __ andcc(to, 7, G1); // misaligned bytes
duke@435 1424 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1425 __ delayed()->neg(G1);
duke@435 1426 __ inc(G1, 8); // bytes need to copy to next 8-bytes alignment
duke@435 1427 __ sub(count, G1, count);
duke@435 1428 __ BIND(L_align);
duke@435 1429 __ ldub(from, 0, O3);
duke@435 1430 __ deccc(G1);
duke@435 1431 __ inc(from);
duke@435 1432 __ stb(O3, to, 0);
duke@435 1433 __ br(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1434 __ delayed()->inc(to);
duke@435 1435 __ BIND(L_skip_alignment);
duke@435 1436 }
duke@435 1437 #ifdef _LP64
duke@435 1438 if (!aligned)
duke@435 1439 #endif
duke@435 1440 {
duke@435 1441 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1442 // the same alignment mod 8, otherwise fall through to the next
duke@435 1443 // code for aligned copy.
duke@435 1444 // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
duke@435 1445 // Also jump over aligned copy after the copy with shift completed.
duke@435 1446
kvn@3103 1447 copy_16_bytes_forward_with_shift(from, to, count, 0, L_copy_byte);
duke@435 1448 }
duke@435 1449
duke@435 1450 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1451 __ and3(count, 7, G4); // Save count
duke@435 1452 __ srl(count, 3, count);
duke@435 1453 generate_disjoint_long_copy_core(aligned);
duke@435 1454 __ mov(G4, count); // Restore count
duke@435 1455
duke@435 1456 // copy tailing bytes
duke@435 1457 __ BIND(L_copy_byte);
kvn@3037 1458 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1459 __ align(OptoLoopAlignment);
duke@435 1460 __ BIND(L_copy_byte_loop);
duke@435 1461 __ ldub(from, offset, O3);
duke@435 1462 __ deccc(count);
duke@435 1463 __ stb(O3, to, offset);
duke@435 1464 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
duke@435 1465 __ delayed()->inc(offset);
duke@435 1466
duke@435 1467 __ BIND(L_exit);
duke@435 1468 // O3, O4 are used as temp registers
duke@435 1469 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1470 __ retl();
duke@435 1471 __ delayed()->mov(G0, O0); // return 0
duke@435 1472 return start;
duke@435 1473 }
duke@435 1474
duke@435 1475 //
duke@435 1476 // Generate stub for conjoint byte copy. If "aligned" is true, the
duke@435 1477 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1478 //
duke@435 1479 // Arguments for generated stub:
duke@435 1480 // from: O0
duke@435 1481 // to: O1
duke@435 1482 // count: O2 treated as signed
duke@435 1483 //
iveresov@2595 1484 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
iveresov@2595 1485 address *entry, const char *name) {
duke@435 1486 // Do reverse copy.
duke@435 1487
duke@435 1488 __ align(CodeEntryAlignment);
duke@435 1489 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1490 address start = __ pc();
duke@435 1491
duke@435 1492 Label L_skip_alignment, L_align, L_aligned_copy;
duke@435 1493 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1494
duke@435 1495 const Register from = O0; // source array address
duke@435 1496 const Register to = O1; // destination array address
duke@435 1497 const Register count = O2; // elements count
duke@435 1498 const Register end_from = from; // source array end address
duke@435 1499 const Register end_to = to; // destination array end address
duke@435 1500
duke@435 1501 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1502
iveresov@2595 1503 if (entry != NULL) {
iveresov@2595 1504 *entry = __ pc();
iveresov@2595 1505 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1506 BLOCK_COMMENT("Entry:");
iveresov@2595 1507 }
duke@435 1508
duke@435 1509 array_overlap_test(nooverlap_target, 0);
duke@435 1510
duke@435 1511 __ add(to, count, end_to); // offset after last copied element
duke@435 1512
duke@435 1513 // for short arrays, just do single element copy
duke@435 1514 __ cmp(count, 23); // 16 + 7
duke@435 1515 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1516 __ delayed()->add(from, count, end_from);
duke@435 1517
duke@435 1518 {
duke@435 1519 // Align end of arrays since they could be not aligned even
duke@435 1520 // when arrays itself are aligned.
duke@435 1521
duke@435 1522 // copy bytes to align 'end_to' on 8 byte boundary
duke@435 1523 __ andcc(end_to, 7, G1); // misaligned bytes
duke@435 1524 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1525 __ delayed()->nop();
duke@435 1526 __ sub(count, G1, count);
duke@435 1527 __ BIND(L_align);
duke@435 1528 __ dec(end_from);
duke@435 1529 __ dec(end_to);
duke@435 1530 __ ldub(end_from, 0, O3);
duke@435 1531 __ deccc(G1);
duke@435 1532 __ brx(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1533 __ delayed()->stb(O3, end_to, 0);
duke@435 1534 __ BIND(L_skip_alignment);
duke@435 1535 }
duke@435 1536 #ifdef _LP64
duke@435 1537 if (aligned) {
duke@435 1538 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1539 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1540 // in unaligned case.
duke@435 1541 __ dec(count, 16);
duke@435 1542 } else
duke@435 1543 #endif
duke@435 1544 {
duke@435 1545 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1546 // the same alignment mod 8, otherwise jump to the next
duke@435 1547 // code for aligned copy (and substracting 16 from 'count' before jump).
duke@435 1548 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1549 // Also jump over aligned copy after the copy with shift completed.
duke@435 1550
duke@435 1551 copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
duke@435 1552 L_aligned_copy, L_copy_byte);
duke@435 1553 }
duke@435 1554 // copy 4 elements (16 bytes) at a time
kvn@1800 1555 __ align(OptoLoopAlignment);
duke@435 1556 __ BIND(L_aligned_copy);
duke@435 1557 __ dec(end_from, 16);
duke@435 1558 __ ldx(end_from, 8, O3);
duke@435 1559 __ ldx(end_from, 0, O4);
duke@435 1560 __ dec(end_to, 16);
duke@435 1561 __ deccc(count, 16);
duke@435 1562 __ stx(O3, end_to, 8);
duke@435 1563 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1564 __ delayed()->stx(O4, end_to, 0);
duke@435 1565 __ inc(count, 16);
duke@435 1566
duke@435 1567 // copy 1 element (2 bytes) at a time
duke@435 1568 __ BIND(L_copy_byte);
kvn@3037 1569 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1570 __ align(OptoLoopAlignment);
duke@435 1571 __ BIND(L_copy_byte_loop);
duke@435 1572 __ dec(end_from);
duke@435 1573 __ dec(end_to);
duke@435 1574 __ ldub(end_from, 0, O4);
duke@435 1575 __ deccc(count);
duke@435 1576 __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
duke@435 1577 __ delayed()->stb(O4, end_to, 0);
duke@435 1578
duke@435 1579 __ BIND(L_exit);
duke@435 1580 // O3, O4 are used as temp registers
duke@435 1581 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1582 __ retl();
duke@435 1583 __ delayed()->mov(G0, O0); // return 0
duke@435 1584 return start;
duke@435 1585 }
duke@435 1586
duke@435 1587 //
duke@435 1588 // Generate stub for disjoint short copy. If "aligned" is true, the
duke@435 1589 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1590 //
duke@435 1591 // Arguments for generated stub:
duke@435 1592 // from: O0
duke@435 1593 // to: O1
duke@435 1594 // count: O2 treated as signed
duke@435 1595 //
iveresov@2595 1596 address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) {
duke@435 1597 __ align(CodeEntryAlignment);
duke@435 1598 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1599 address start = __ pc();
duke@435 1600
duke@435 1601 Label L_skip_alignment, L_skip_alignment2;
duke@435 1602 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1603
duke@435 1604 const Register from = O0; // source array address
duke@435 1605 const Register to = O1; // destination array address
duke@435 1606 const Register count = O2; // elements count
duke@435 1607 const Register offset = O5; // offset from start of arrays
duke@435 1608 // O3, O4, G3, G4 are used as temp registers
duke@435 1609
duke@435 1610 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1611
iveresov@2595 1612 if (entry != NULL) {
iveresov@2595 1613 *entry = __ pc();
iveresov@2595 1614 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1615 BLOCK_COMMENT("Entry:");
iveresov@2595 1616 }
duke@435 1617
duke@435 1618 // for short arrays, just do single element copy
duke@435 1619 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1620 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1621 __ delayed()->mov(G0, offset);
duke@435 1622
duke@435 1623 if (aligned) {
duke@435 1624 // 'aligned' == true when it is known statically during compilation
duke@435 1625 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1626 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1627 //
duke@435 1628 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1629 // and 8 bytes - in 64-bits VM.
duke@435 1630 //
duke@435 1631 #ifndef _LP64
duke@435 1632 // copy a 2-elements word if necessary to align 'to' to 8 bytes
duke@435 1633 __ andcc(to, 7, G0);
duke@435 1634 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1635 __ delayed()->ld(from, 0, O3);
duke@435 1636 __ inc(from, 4);
duke@435 1637 __ inc(to, 4);
duke@435 1638 __ dec(count, 2);
duke@435 1639 __ st(O3, to, -4);
duke@435 1640 __ BIND(L_skip_alignment);
duke@435 1641 #endif
duke@435 1642 } else {
duke@435 1643 // copy 1 element if necessary to align 'to' on an 4 bytes
duke@435 1644 __ andcc(to, 3, G0);
duke@435 1645 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1646 __ delayed()->lduh(from, 0, O3);
duke@435 1647 __ inc(from, 2);
duke@435 1648 __ inc(to, 2);
duke@435 1649 __ dec(count);
duke@435 1650 __ sth(O3, to, -2);
duke@435 1651 __ BIND(L_skip_alignment);
duke@435 1652
duke@435 1653 // copy 2 elements to align 'to' on an 8 byte boundary
duke@435 1654 __ andcc(to, 7, G0);
duke@435 1655 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1656 __ delayed()->lduh(from, 0, O3);
duke@435 1657 __ dec(count, 2);
duke@435 1658 __ lduh(from, 2, O4);
duke@435 1659 __ inc(from, 4);
duke@435 1660 __ inc(to, 4);
duke@435 1661 __ sth(O3, to, -4);
duke@435 1662 __ sth(O4, to, -2);
duke@435 1663 __ BIND(L_skip_alignment2);
duke@435 1664 }
duke@435 1665 #ifdef _LP64
duke@435 1666 if (!aligned)
duke@435 1667 #endif
duke@435 1668 {
duke@435 1669 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1670 // the same alignment mod 8, otherwise fall through to the next
duke@435 1671 // code for aligned copy.
duke@435 1672 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1673 // Also jump over aligned copy after the copy with shift completed.
duke@435 1674
kvn@3103 1675 copy_16_bytes_forward_with_shift(from, to, count, 1, L_copy_2_bytes);
duke@435 1676 }
duke@435 1677
duke@435 1678 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1679 __ and3(count, 3, G4); // Save
duke@435 1680 __ srl(count, 2, count);
duke@435 1681 generate_disjoint_long_copy_core(aligned);
duke@435 1682 __ mov(G4, count); // restore
duke@435 1683
duke@435 1684 // copy 1 element at a time
duke@435 1685 __ BIND(L_copy_2_bytes);
kvn@3037 1686 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1687 __ align(OptoLoopAlignment);
duke@435 1688 __ BIND(L_copy_2_bytes_loop);
duke@435 1689 __ lduh(from, offset, O3);
duke@435 1690 __ deccc(count);
duke@435 1691 __ sth(O3, to, offset);
duke@435 1692 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1693 __ delayed()->inc(offset, 2);
duke@435 1694
duke@435 1695 __ BIND(L_exit);
duke@435 1696 // O3, O4 are used as temp registers
duke@435 1697 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1698 __ retl();
duke@435 1699 __ delayed()->mov(G0, O0); // return 0
duke@435 1700 return start;
duke@435 1701 }
duke@435 1702
duke@435 1703 //
never@2118 1704 // Generate stub for disjoint short fill. If "aligned" is true, the
never@2118 1705 // "to" address is assumed to be heapword aligned.
never@2118 1706 //
never@2118 1707 // Arguments for generated stub:
never@2118 1708 // to: O0
never@2118 1709 // value: O1
never@2118 1710 // count: O2 treated as signed
never@2118 1711 //
never@2118 1712 address generate_fill(BasicType t, bool aligned, const char* name) {
never@2118 1713 __ align(CodeEntryAlignment);
never@2118 1714 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1715 address start = __ pc();
never@2118 1716
never@2118 1717 const Register to = O0; // source array address
never@2118 1718 const Register value = O1; // fill value
never@2118 1719 const Register count = O2; // elements count
never@2118 1720 // O3 is used as a temp register
never@2118 1721
never@2118 1722 assert_clean_int(count, O3); // Make sure 'count' is clean int.
never@2118 1723
never@2118 1724 Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
never@2149 1725 Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
never@2118 1726
never@2118 1727 int shift = -1;
never@2118 1728 switch (t) {
never@2118 1729 case T_BYTE:
never@2118 1730 shift = 2;
never@2118 1731 break;
never@2118 1732 case T_SHORT:
never@2118 1733 shift = 1;
never@2118 1734 break;
never@2118 1735 case T_INT:
never@2118 1736 shift = 0;
never@2118 1737 break;
never@2118 1738 default: ShouldNotReachHere();
never@2118 1739 }
never@2118 1740
never@2118 1741 BLOCK_COMMENT("Entry:");
never@2118 1742
never@2118 1743 if (t == T_BYTE) {
never@2118 1744 // Zero extend value
never@2118 1745 __ and3(value, 0xff, value);
never@2118 1746 __ sllx(value, 8, O3);
never@2118 1747 __ or3(value, O3, value);
never@2118 1748 }
never@2118 1749 if (t == T_SHORT) {
never@2118 1750 // Zero extend value
never@2149 1751 __ sllx(value, 48, value);
never@2149 1752 __ srlx(value, 48, value);
never@2118 1753 }
never@2118 1754 if (t == T_BYTE || t == T_SHORT) {
never@2118 1755 __ sllx(value, 16, O3);
never@2118 1756 __ or3(value, O3, value);
never@2118 1757 }
never@2118 1758
never@2118 1759 __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
never@2149 1760 __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
never@2149 1761 __ delayed()->andcc(count, 1, G0);
never@2118 1762
never@2118 1763 if (!aligned && (t == T_BYTE || t == T_SHORT)) {
never@2118 1764 // align source address at 4 bytes address boundary
never@2118 1765 if (t == T_BYTE) {
never@2118 1766 // One byte misalignment happens only for byte arrays
never@2118 1767 __ andcc(to, 1, G0);
never@2118 1768 __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
never@2118 1769 __ delayed()->nop();
never@2118 1770 __ stb(value, to, 0);
never@2118 1771 __ inc(to, 1);
never@2118 1772 __ dec(count, 1);
never@2118 1773 __ BIND(L_skip_align1);
never@2118 1774 }
never@2118 1775 // Two bytes misalignment happens only for byte and short (char) arrays
never@2118 1776 __ andcc(to, 2, G0);
never@2118 1777 __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
never@2118 1778 __ delayed()->nop();
never@2118 1779 __ sth(value, to, 0);
never@2118 1780 __ inc(to, 2);
never@2118 1781 __ dec(count, 1 << (shift - 1));
never@2118 1782 __ BIND(L_skip_align2);
never@2118 1783 }
never@2118 1784 #ifdef _LP64
never@2118 1785 if (!aligned) {
never@2118 1786 #endif
never@2118 1787 // align to 8 bytes, we know we are 4 byte aligned to start
never@2118 1788 __ andcc(to, 7, G0);
never@2118 1789 __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
never@2118 1790 __ delayed()->nop();
never@2118 1791 __ stw(value, to, 0);
never@2118 1792 __ inc(to, 4);
never@2118 1793 __ dec(count, 1 << shift);
never@2118 1794 __ BIND(L_fill_32_bytes);
never@2118 1795 #ifdef _LP64
never@2118 1796 }
never@2118 1797 #endif
never@2118 1798
never@2118 1799 if (t == T_INT) {
never@2118 1800 // Zero extend value
never@2118 1801 __ srl(value, 0, value);
never@2118 1802 }
never@2118 1803 if (t == T_BYTE || t == T_SHORT || t == T_INT) {
never@2118 1804 __ sllx(value, 32, O3);
never@2118 1805 __ or3(value, O3, value);
never@2118 1806 }
never@2118 1807
never@2137 1808 Label L_check_fill_8_bytes;
never@2137 1809 // Fill 32-byte chunks
never@2137 1810 __ subcc(count, 8 << shift, count);
never@2137 1811 __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
never@2137 1812 __ delayed()->nop();
never@2137 1813
never@2149 1814 Label L_fill_32_bytes_loop, L_fill_4_bytes;
never@2118 1815 __ align(16);
never@2118 1816 __ BIND(L_fill_32_bytes_loop);
never@2118 1817
never@2118 1818 __ stx(value, to, 0);
never@2118 1819 __ stx(value, to, 8);
never@2118 1820 __ stx(value, to, 16);
never@2118 1821 __ stx(value, to, 24);
never@2118 1822
never@2118 1823 __ subcc(count, 8 << shift, count);
never@2118 1824 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
never@2118 1825 __ delayed()->add(to, 32, to);
never@2118 1826
never@2118 1827 __ BIND(L_check_fill_8_bytes);
never@2118 1828 __ addcc(count, 8 << shift, count);
never@2118 1829 __ brx(Assembler::zero, false, Assembler::pn, L_exit);
never@2118 1830 __ delayed()->subcc(count, 1 << (shift + 1), count);
never@2118 1831 __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
never@2118 1832 __ delayed()->andcc(count, 1<<shift, G0);
never@2118 1833
never@2118 1834 //
never@2118 1835 // length is too short, just fill 8 bytes at a time
never@2118 1836 //
never@2118 1837 Label L_fill_8_bytes_loop;
never@2118 1838 __ BIND(L_fill_8_bytes_loop);
never@2118 1839 __ stx(value, to, 0);
never@2118 1840 __ subcc(count, 1 << (shift + 1), count);
never@2118 1841 __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
never@2118 1842 __ delayed()->add(to, 8, to);
never@2118 1843
never@2118 1844 // fill trailing 4 bytes
never@2118 1845 __ andcc(count, 1<<shift, G0); // in delay slot of branches
never@2149 1846 if (t == T_INT) {
never@2149 1847 __ BIND(L_fill_elements);
never@2149 1848 }
never@2118 1849 __ BIND(L_fill_4_bytes);
never@2118 1850 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
never@2118 1851 if (t == T_BYTE || t == T_SHORT) {
never@2118 1852 __ delayed()->andcc(count, 1<<(shift-1), G0);
never@2118 1853 } else {
never@2118 1854 __ delayed()->nop();
never@2118 1855 }
never@2118 1856 __ stw(value, to, 0);
never@2118 1857 if (t == T_BYTE || t == T_SHORT) {
never@2118 1858 __ inc(to, 4);
never@2118 1859 // fill trailing 2 bytes
never@2118 1860 __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
never@2118 1861 __ BIND(L_fill_2_bytes);
never@2118 1862 __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
never@2118 1863 __ delayed()->andcc(count, 1, count);
never@2118 1864 __ sth(value, to, 0);
never@2118 1865 if (t == T_BYTE) {
never@2118 1866 __ inc(to, 2);
never@2118 1867 // fill trailing byte
never@2118 1868 __ andcc(count, 1, count); // in delay slot of branches
never@2118 1869 __ BIND(L_fill_byte);
never@2118 1870 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2118 1871 __ delayed()->nop();
never@2118 1872 __ stb(value, to, 0);
never@2118 1873 } else {
never@2118 1874 __ BIND(L_fill_byte);
never@2118 1875 }
never@2118 1876 } else {
never@2118 1877 __ BIND(L_fill_2_bytes);
never@2118 1878 }
never@2118 1879 __ BIND(L_exit);
never@2118 1880 __ retl();
never@2149 1881 __ delayed()->nop();
never@2149 1882
never@2149 1883 // Handle copies less than 8 bytes. Int is handled elsewhere.
never@2149 1884 if (t == T_BYTE) {
never@2149 1885 __ BIND(L_fill_elements);
never@2149 1886 Label L_fill_2, L_fill_4;
never@2149 1887 // in delay slot __ andcc(count, 1, G0);
never@2149 1888 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1889 __ delayed()->andcc(count, 2, G0);
never@2149 1890 __ stb(value, to, 0);
never@2149 1891 __ inc(to, 1);
never@2149 1892 __ BIND(L_fill_2);
never@2149 1893 __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
never@2149 1894 __ delayed()->andcc(count, 4, G0);
never@2149 1895 __ stb(value, to, 0);
never@2149 1896 __ stb(value, to, 1);
never@2149 1897 __ inc(to, 2);
never@2149 1898 __ BIND(L_fill_4);
never@2149 1899 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1900 __ delayed()->nop();
never@2149 1901 __ stb(value, to, 0);
never@2149 1902 __ stb(value, to, 1);
never@2149 1903 __ stb(value, to, 2);
never@2149 1904 __ retl();
never@2149 1905 __ delayed()->stb(value, to, 3);
never@2149 1906 }
never@2149 1907
never@2149 1908 if (t == T_SHORT) {
never@2149 1909 Label L_fill_2;
never@2149 1910 __ BIND(L_fill_elements);
never@2149 1911 // in delay slot __ andcc(count, 1, G0);
never@2149 1912 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1913 __ delayed()->andcc(count, 2, G0);
never@2149 1914 __ sth(value, to, 0);
never@2149 1915 __ inc(to, 2);
never@2149 1916 __ BIND(L_fill_2);
never@2149 1917 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1918 __ delayed()->nop();
never@2149 1919 __ sth(value, to, 0);
never@2149 1920 __ retl();
never@2149 1921 __ delayed()->sth(value, to, 2);
never@2149 1922 }
never@2118 1923 return start;
never@2118 1924 }
never@2118 1925
never@2118 1926 //
duke@435 1927 // Generate stub for conjoint short copy. If "aligned" is true, the
duke@435 1928 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1929 //
duke@435 1930 // Arguments for generated stub:
duke@435 1931 // from: O0
duke@435 1932 // to: O1
duke@435 1933 // count: O2 treated as signed
duke@435 1934 //
iveresov@2595 1935 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
iveresov@2595 1936 address *entry, const char *name) {
duke@435 1937 // Do reverse copy.
duke@435 1938
duke@435 1939 __ align(CodeEntryAlignment);
duke@435 1940 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1941 address start = __ pc();
duke@435 1942
duke@435 1943 Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
duke@435 1944 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1945
duke@435 1946 const Register from = O0; // source array address
duke@435 1947 const Register to = O1; // destination array address
duke@435 1948 const Register count = O2; // elements count
duke@435 1949 const Register end_from = from; // source array end address
duke@435 1950 const Register end_to = to; // destination array end address
duke@435 1951
duke@435 1952 const Register byte_count = O3; // bytes count to copy
duke@435 1953
duke@435 1954 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1955
iveresov@2595 1956 if (entry != NULL) {
iveresov@2595 1957 *entry = __ pc();
iveresov@2595 1958 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1959 BLOCK_COMMENT("Entry:");
iveresov@2595 1960 }
duke@435 1961
duke@435 1962 array_overlap_test(nooverlap_target, 1);
duke@435 1963
duke@435 1964 __ sllx(count, LogBytesPerShort, byte_count);
duke@435 1965 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1966
duke@435 1967 // for short arrays, just do single element copy
duke@435 1968 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1969 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1970 __ delayed()->add(from, byte_count, end_from);
duke@435 1971
duke@435 1972 {
duke@435 1973 // Align end of arrays since they could be not aligned even
duke@435 1974 // when arrays itself are aligned.
duke@435 1975
duke@435 1976 // copy 1 element if necessary to align 'end_to' on an 4 bytes
duke@435 1977 __ andcc(end_to, 3, G0);
duke@435 1978 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1979 __ delayed()->lduh(end_from, -2, O3);
duke@435 1980 __ dec(end_from, 2);
duke@435 1981 __ dec(end_to, 2);
duke@435 1982 __ dec(count);
duke@435 1983 __ sth(O3, end_to, 0);
duke@435 1984 __ BIND(L_skip_alignment);
duke@435 1985
duke@435 1986 // copy 2 elements to align 'end_to' on an 8 byte boundary
duke@435 1987 __ andcc(end_to, 7, G0);
duke@435 1988 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1989 __ delayed()->lduh(end_from, -2, O3);
duke@435 1990 __ dec(count, 2);
duke@435 1991 __ lduh(end_from, -4, O4);
duke@435 1992 __ dec(end_from, 4);
duke@435 1993 __ dec(end_to, 4);
duke@435 1994 __ sth(O3, end_to, 2);
duke@435 1995 __ sth(O4, end_to, 0);
duke@435 1996 __ BIND(L_skip_alignment2);
duke@435 1997 }
duke@435 1998 #ifdef _LP64
duke@435 1999 if (aligned) {
duke@435 2000 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 2001 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 2002 // in unaligned case.
duke@435 2003 __ dec(count, 8);
duke@435 2004 } else
duke@435 2005 #endif
duke@435 2006 {
duke@435 2007 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 2008 // the same alignment mod 8, otherwise jump to the next
duke@435 2009 // code for aligned copy (and substracting 8 from 'count' before jump).
duke@435 2010 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 2011 // Also jump over aligned copy after the copy with shift completed.
duke@435 2012
duke@435 2013 copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
duke@435 2014 L_aligned_copy, L_copy_2_bytes);
duke@435 2015 }
duke@435 2016 // copy 4 elements (16 bytes) at a time
kvn@1800 2017 __ align(OptoLoopAlignment);
duke@435 2018 __ BIND(L_aligned_copy);
duke@435 2019 __ dec(end_from, 16);
duke@435 2020 __ ldx(end_from, 8, O3);
duke@435 2021 __ ldx(end_from, 0, O4);
duke@435 2022 __ dec(end_to, 16);
duke@435 2023 __ deccc(count, 8);
duke@435 2024 __ stx(O3, end_to, 8);
duke@435 2025 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 2026 __ delayed()->stx(O4, end_to, 0);
duke@435 2027 __ inc(count, 8);
duke@435 2028
duke@435 2029 // copy 1 element (2 bytes) at a time
duke@435 2030 __ BIND(L_copy_2_bytes);
kvn@3037 2031 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 2032 __ BIND(L_copy_2_bytes_loop);
duke@435 2033 __ dec(end_from, 2);
duke@435 2034 __ dec(end_to, 2);
duke@435 2035 __ lduh(end_from, 0, O4);
duke@435 2036 __ deccc(count);
duke@435 2037 __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 2038 __ delayed()->sth(O4, end_to, 0);
duke@435 2039
duke@435 2040 __ BIND(L_exit);
duke@435 2041 // O3, O4 are used as temp registers
duke@435 2042 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 2043 __ retl();
duke@435 2044 __ delayed()->mov(G0, O0); // return 0
duke@435 2045 return start;
duke@435 2046 }
duke@435 2047
duke@435 2048 //
kvn@3103 2049 // Helper methods for generate_disjoint_int_copy_core()
kvn@3103 2050 //
kvn@3103 2051 void copy_16_bytes_loop(Register from, Register to, Register count, int count_dec,
kvn@3103 2052 Label& L_loop, bool use_prefetch, bool use_bis) {
kvn@3103 2053
kvn@3103 2054 __ align(OptoLoopAlignment);
kvn@3103 2055 __ BIND(L_loop);
kvn@3103 2056 if (use_prefetch) {
kvn@3103 2057 if (ArraycopySrcPrefetchDistance > 0) {
kvn@3103 2058 __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
kvn@3103 2059 }
kvn@3103 2060 if (ArraycopyDstPrefetchDistance > 0) {
kvn@3103 2061 __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
kvn@3103 2062 }
kvn@3103 2063 }
kvn@3103 2064 __ ldx(from, 4, O4);
kvn@3103 2065 __ ldx(from, 12, G4);
kvn@3103 2066 __ inc(to, 16);
kvn@3103 2067 __ inc(from, 16);
kvn@3103 2068 __ deccc(count, 4); // Can we do next iteration after this one?
kvn@3103 2069
kvn@3103 2070 __ srlx(O4, 32, G3);
kvn@3103 2071 __ bset(G3, O3);
kvn@3103 2072 __ sllx(O4, 32, O4);
kvn@3103 2073 __ srlx(G4, 32, G3);
kvn@3103 2074 __ bset(G3, O4);
kvn@3103 2075 if (use_bis) {
kvn@3103 2076 __ stxa(O3, to, -16);
kvn@3103 2077 __ stxa(O4, to, -8);
kvn@3103 2078 } else {
kvn@3103 2079 __ stx(O3, to, -16);
kvn@3103 2080 __ stx(O4, to, -8);
kvn@3103 2081 }
kvn@3103 2082 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
kvn@3103 2083 __ delayed()->sllx(G4, 32, O3);
kvn@3103 2084
kvn@3103 2085 }
kvn@3103 2086
kvn@3103 2087 //
duke@435 2088 // Generate core code for disjoint int copy (and oop copy on 32-bit).
duke@435 2089 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 2090 // to be heapword aligned.
duke@435 2091 //
duke@435 2092 // Arguments:
duke@435 2093 // from: O0
duke@435 2094 // to: O1
duke@435 2095 // count: O2 treated as signed
duke@435 2096 //
duke@435 2097 void generate_disjoint_int_copy_core(bool aligned) {
duke@435 2098
duke@435 2099 Label L_skip_alignment, L_aligned_copy;
kvn@3103 2100 Label L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 2101
duke@435 2102 const Register from = O0; // source array address
duke@435 2103 const Register to = O1; // destination array address
duke@435 2104 const Register count = O2; // elements count
duke@435 2105 const Register offset = O5; // offset from start of arrays
duke@435 2106 // O3, O4, G3, G4 are used as temp registers
duke@435 2107
duke@435 2108 // 'aligned' == true when it is known statically during compilation
duke@435 2109 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 2110 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 2111 //
duke@435 2112 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 2113 // and 8 bytes - in 64-bits VM.
duke@435 2114 //
duke@435 2115 #ifdef _LP64
duke@435 2116 if (!aligned)
duke@435 2117 #endif
duke@435 2118 {
duke@435 2119 // The next check could be put under 'ifndef' since the code in
duke@435 2120 // generate_disjoint_long_copy_core() has own checks and set 'offset'.
duke@435 2121
duke@435 2122 // for short arrays, just do single element copy
duke@435 2123 __ cmp(count, 5); // 4 + 1 (20 bytes)
duke@435 2124 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 2125 __ delayed()->mov(G0, offset);
duke@435 2126
duke@435 2127 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 2128 __ andcc(to, 7, G0);
duke@435 2129 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 2130 __ delayed()->ld(from, 0, O3);
duke@435 2131 __ inc(from, 4);
duke@435 2132 __ inc(to, 4);
duke@435 2133 __ dec(count);
duke@435 2134 __ st(O3, to, -4);
duke@435 2135 __ BIND(L_skip_alignment);
duke@435 2136
duke@435 2137 // if arrays have same alignment mod 8, do 4 elements copy
duke@435 2138 __ andcc(from, 7, G0);
duke@435 2139 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 2140 __ delayed()->ld(from, 0, O3);
duke@435 2141
duke@435 2142 //
duke@435 2143 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 2144 // to form 2 aligned 8-bytes chunks to store.
duke@435 2145 //
duke@435 2146 // copy_16_bytes_forward_with_shift() is not used here since this
duke@435 2147 // code is more optimal.
duke@435 2148
duke@435 2149 // copy with shift 4 elements (16 bytes) at a time
duke@435 2150 __ dec(count, 4); // The cmp at the beginning guaranty count >= 4
kvn@3103 2151 __ sllx(O3, 32, O3);
kvn@3103 2152
kvn@3103 2153 disjoint_copy_core(from, to, count, 2, 16, copy_16_bytes_loop);
duke@435 2154
duke@435 2155 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2156 __ delayed()->inc(count, 4); // restore 'count'
duke@435 2157
duke@435 2158 __ BIND(L_aligned_copy);
kvn@3103 2159 } // !aligned
kvn@3103 2160
duke@435 2161 // copy 4 elements (16 bytes) at a time
duke@435 2162 __ and3(count, 1, G4); // Save
duke@435 2163 __ srl(count, 1, count);
duke@435 2164 generate_disjoint_long_copy_core(aligned);
duke@435 2165 __ mov(G4, count); // Restore
duke@435 2166
duke@435 2167 // copy 1 element at a time
duke@435 2168 __ BIND(L_copy_4_bytes);
kvn@3037 2169 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 2170 __ BIND(L_copy_4_bytes_loop);
duke@435 2171 __ ld(from, offset, O3);
duke@435 2172 __ deccc(count);
duke@435 2173 __ st(O3, to, offset);
duke@435 2174 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2175 __ delayed()->inc(offset, 4);
duke@435 2176 __ BIND(L_exit);
duke@435 2177 }
duke@435 2178
duke@435 2179 //
duke@435 2180 // Generate stub for disjoint int copy. If "aligned" is true, the
duke@435 2181 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2182 //
duke@435 2183 // Arguments for generated stub:
duke@435 2184 // from: O0
duke@435 2185 // to: O1
duke@435 2186 // count: O2 treated as signed
duke@435 2187 //
iveresov@2595 2188 address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) {
duke@435 2189 __ align(CodeEntryAlignment);
duke@435 2190 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2191 address start = __ pc();
duke@435 2192
duke@435 2193 const Register count = O2;
duke@435 2194 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2195
iveresov@2595 2196 if (entry != NULL) {
iveresov@2595 2197 *entry = __ pc();
iveresov@2595 2198 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2199 BLOCK_COMMENT("Entry:");
iveresov@2595 2200 }
duke@435 2201
duke@435 2202 generate_disjoint_int_copy_core(aligned);
duke@435 2203
duke@435 2204 // O3, O4 are used as temp registers
duke@435 2205 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2206 __ retl();
duke@435 2207 __ delayed()->mov(G0, O0); // return 0
duke@435 2208 return start;
duke@435 2209 }
duke@435 2210
duke@435 2211 //
duke@435 2212 // Generate core code for conjoint int copy (and oop copy on 32-bit).
duke@435 2213 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 2214 // to be heapword aligned.
duke@435 2215 //
duke@435 2216 // Arguments:
duke@435 2217 // from: O0
duke@435 2218 // to: O1
duke@435 2219 // count: O2 treated as signed
duke@435 2220 //
duke@435 2221 void generate_conjoint_int_copy_core(bool aligned) {
duke@435 2222 // Do reverse copy.
duke@435 2223
duke@435 2224 Label L_skip_alignment, L_aligned_copy;
duke@435 2225 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 2226
duke@435 2227 const Register from = O0; // source array address
duke@435 2228 const Register to = O1; // destination array address
duke@435 2229 const Register count = O2; // elements count
duke@435 2230 const Register end_from = from; // source array end address
duke@435 2231 const Register end_to = to; // destination array end address
duke@435 2232 // O3, O4, O5, G3 are used as temp registers
duke@435 2233
duke@435 2234 const Register byte_count = O3; // bytes count to copy
duke@435 2235
duke@435 2236 __ sllx(count, LogBytesPerInt, byte_count);
duke@435 2237 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 2238
duke@435 2239 __ cmp(count, 5); // for short arrays, just do single element copy
duke@435 2240 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 2241 __ delayed()->add(from, byte_count, end_from);
duke@435 2242
duke@435 2243 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 2244 __ andcc(end_to, 7, G0);
duke@435 2245 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 2246 __ delayed()->nop();
duke@435 2247 __ dec(count);
duke@435 2248 __ dec(end_from, 4);
duke@435 2249 __ dec(end_to, 4);
duke@435 2250 __ ld(end_from, 0, O4);
duke@435 2251 __ st(O4, end_to, 0);
duke@435 2252 __ BIND(L_skip_alignment);
duke@435 2253
duke@435 2254 // Check if 'end_from' and 'end_to' has the same alignment.
duke@435 2255 __ andcc(end_from, 7, G0);
duke@435 2256 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 2257 __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
duke@435 2258
duke@435 2259 // copy with shift 4 elements (16 bytes) at a time
duke@435 2260 //
duke@435 2261 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 2262 // to form 2 aligned 8-bytes chunks to store.
duke@435 2263 //
duke@435 2264 __ ldx(end_from, -4, O3);
kvn@1800 2265 __ align(OptoLoopAlignment);
duke@435 2266 __ BIND(L_copy_16_bytes);
duke@435 2267 __ ldx(end_from, -12, O4);
duke@435 2268 __ deccc(count, 4);
duke@435 2269 __ ldx(end_from, -20, O5);
duke@435 2270 __ dec(end_to, 16);
duke@435 2271 __ dec(end_from, 16);
duke@435 2272 __ srlx(O3, 32, O3);
duke@435 2273 __ sllx(O4, 32, G3);
duke@435 2274 __ bset(G3, O3);
duke@435 2275 __ stx(O3, end_to, 8);
duke@435 2276 __ srlx(O4, 32, O4);
duke@435 2277 __ sllx(O5, 32, G3);
duke@435 2278 __ bset(O4, G3);
duke@435 2279 __ stx(G3, end_to, 0);
duke@435 2280 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2281 __ delayed()->mov(O5, O3);
duke@435 2282
duke@435 2283 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2284 __ delayed()->inc(count, 4);
duke@435 2285
duke@435 2286 // copy 4 elements (16 bytes) at a time
kvn@1800 2287 __ align(OptoLoopAlignment);
duke@435 2288 __ BIND(L_aligned_copy);
duke@435 2289 __ dec(end_from, 16);
duke@435 2290 __ ldx(end_from, 8, O3);
duke@435 2291 __ ldx(end_from, 0, O4);
duke@435 2292 __ dec(end_to, 16);
duke@435 2293 __ deccc(count, 4);
duke@435 2294 __ stx(O3, end_to, 8);
duke@435 2295 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 2296 __ delayed()->stx(O4, end_to, 0);
duke@435 2297 __ inc(count, 4);
duke@435 2298
duke@435 2299 // copy 1 element (4 bytes) at a time
duke@435 2300 __ BIND(L_copy_4_bytes);
kvn@3037 2301 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 2302 __ BIND(L_copy_4_bytes_loop);
duke@435 2303 __ dec(end_from, 4);
duke@435 2304 __ dec(end_to, 4);
duke@435 2305 __ ld(end_from, 0, O4);
duke@435 2306 __ deccc(count);
duke@435 2307 __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2308 __ delayed()->st(O4, end_to, 0);
duke@435 2309 __ BIND(L_exit);
duke@435 2310 }
duke@435 2311
duke@435 2312 //
duke@435 2313 // Generate stub for conjoint int copy. If "aligned" is true, the
duke@435 2314 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2315 //
duke@435 2316 // Arguments for generated stub:
duke@435 2317 // from: O0
duke@435 2318 // to: O1
duke@435 2319 // count: O2 treated as signed
duke@435 2320 //
iveresov@2595 2321 address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
iveresov@2595 2322 address *entry, const char *name) {
duke@435 2323 __ align(CodeEntryAlignment);
duke@435 2324 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2325 address start = __ pc();
duke@435 2326
duke@435 2327 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2328
iveresov@2595 2329 if (entry != NULL) {
iveresov@2595 2330 *entry = __ pc();
iveresov@2595 2331 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2332 BLOCK_COMMENT("Entry:");
iveresov@2595 2333 }
duke@435 2334
duke@435 2335 array_overlap_test(nooverlap_target, 2);
duke@435 2336
duke@435 2337 generate_conjoint_int_copy_core(aligned);
duke@435 2338
duke@435 2339 // O3, O4 are used as temp registers
duke@435 2340 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2341 __ retl();
duke@435 2342 __ delayed()->mov(G0, O0); // return 0
duke@435 2343 return start;
duke@435 2344 }
duke@435 2345
duke@435 2346 //
kvn@3103 2347 // Helper methods for generate_disjoint_long_copy_core()
kvn@3103 2348 //
kvn@3103 2349 void copy_64_bytes_loop(Register from, Register to, Register count, int count_dec,
kvn@3103 2350 Label& L_loop, bool use_prefetch, bool use_bis) {
kvn@3103 2351 __ align(OptoLoopAlignment);
kvn@3103 2352 __ BIND(L_loop);
kvn@3103 2353 for (int off = 0; off < 64; off += 16) {
kvn@3103 2354 if (use_prefetch && (off & 31) == 0) {
kvn@3103 2355 if (ArraycopySrcPrefetchDistance > 0) {
kvn@3157 2356 __ prefetch(from, ArraycopySrcPrefetchDistance+off, Assembler::severalReads);
kvn@3103 2357 }
kvn@3103 2358 if (ArraycopyDstPrefetchDistance > 0) {
kvn@3157 2359 __ prefetch(to, ArraycopyDstPrefetchDistance+off, Assembler::severalWritesAndPossiblyReads);
kvn@3103 2360 }
kvn@3103 2361 }
kvn@3103 2362 __ ldx(from, off+0, O4);
kvn@3103 2363 __ ldx(from, off+8, O5);
kvn@3103 2364 if (use_bis) {
kvn@3103 2365 __ stxa(O4, to, off+0);
kvn@3103 2366 __ stxa(O5, to, off+8);
kvn@3103 2367 } else {
kvn@3103 2368 __ stx(O4, to, off+0);
kvn@3103 2369 __ stx(O5, to, off+8);
kvn@3103 2370 }
kvn@3103 2371 }
kvn@3103 2372 __ deccc(count, 8);
kvn@3103 2373 __ inc(from, 64);
kvn@3103 2374 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
kvn@3103 2375 __ delayed()->inc(to, 64);
kvn@3103 2376 }
kvn@3103 2377
kvn@3103 2378 //
duke@435 2379 // Generate core code for disjoint long copy (and oop copy on 64-bit).
duke@435 2380 // "aligned" is ignored, because we must make the stronger
duke@435 2381 // assumption that both addresses are always 64-bit aligned.
duke@435 2382 //
duke@435 2383 // Arguments:
duke@435 2384 // from: O0
duke@435 2385 // to: O1
duke@435 2386 // count: O2 treated as signed
duke@435 2387 //
kvn@1799 2388 // count -= 2;
kvn@1799 2389 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2390 // if ( count > 6) { // >= 8 elements
kvn@1799 2391 // count -= 6; // original count - 8
kvn@1799 2392 // do {
kvn@1799 2393 // copy_8_elements;
kvn@1799 2394 // count -= 8;
kvn@1799 2395 // } while ( count >= 0 );
kvn@1799 2396 // count += 6;
kvn@1799 2397 // }
kvn@1799 2398 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2399 // do {
kvn@1799 2400 // copy_2_elements;
kvn@1799 2401 // } while ( (count=count-2) >= 0 );
kvn@1799 2402 // }
kvn@1799 2403 // }
kvn@1799 2404 // count += 2;
kvn@1799 2405 // if ( count != 0 ) { // 1 element left
kvn@1799 2406 // copy_1_element;
kvn@1799 2407 // }
kvn@1799 2408 //
duke@435 2409 void generate_disjoint_long_copy_core(bool aligned) {
duke@435 2410 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2411 const Register from = O0; // source array address
duke@435 2412 const Register to = O1; // destination array address
duke@435 2413 const Register count = O2; // elements count
duke@435 2414 const Register offset0 = O4; // element offset
duke@435 2415 const Register offset8 = O5; // next element offset
duke@435 2416
kvn@3103 2417 __ deccc(count, 2);
kvn@3103 2418 __ mov(G0, offset0); // offset from start of arrays (0)
kvn@3103 2419 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
kvn@3103 2420 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2421
kvn@1799 2422 // Copy by 64 bytes chunks
kvn@3103 2423
kvn@1799 2424 const Register from64 = O3; // source address
kvn@1799 2425 const Register to64 = G3; // destination address
kvn@3103 2426 __ subcc(count, 6, O3);
kvn@3103 2427 __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
kvn@3103 2428 __ delayed()->mov(to, to64);
kvn@3103 2429 // Now we can use O4(offset0), O5(offset8) as temps
kvn@3103 2430 __ mov(O3, count);
kvn@3103 2431 // count >= 0 (original count - 8)
kvn@3103 2432 __ mov(from, from64);
kvn@3103 2433
kvn@3103 2434 disjoint_copy_core(from64, to64, count, 3, 64, copy_64_bytes_loop);
kvn@1799 2435
kvn@1799 2436 // Restore O4(offset0), O5(offset8)
kvn@1799 2437 __ sub(from64, from, offset0);
kvn@3103 2438 __ inccc(count, 6); // restore count
kvn@1799 2439 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
kvn@1799 2440 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2441
kvn@1799 2442 // Copy by 16 bytes chunks
kvn@1800 2443 __ align(OptoLoopAlignment);
duke@435 2444 __ BIND(L_copy_16_bytes);
duke@435 2445 __ ldx(from, offset0, O3);
duke@435 2446 __ ldx(from, offset8, G3);
duke@435 2447 __ deccc(count, 2);
duke@435 2448 __ stx(O3, to, offset0);
duke@435 2449 __ inc(offset0, 16);
duke@435 2450 __ stx(G3, to, offset8);
duke@435 2451 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2452 __ delayed()->inc(offset8, 16);
duke@435 2453
kvn@1799 2454 // Copy last 8 bytes
duke@435 2455 __ BIND(L_copy_8_bytes);
duke@435 2456 __ inccc(count, 2);
duke@435 2457 __ brx(Assembler::zero, true, Assembler::pn, L_exit );
duke@435 2458 __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
duke@435 2459 __ ldx(from, offset0, O3);
duke@435 2460 __ stx(O3, to, offset0);
duke@435 2461 __ BIND(L_exit);
duke@435 2462 }
duke@435 2463
duke@435 2464 //
duke@435 2465 // Generate stub for disjoint long copy.
duke@435 2466 // "aligned" is ignored, because we must make the stronger
duke@435 2467 // assumption that both addresses are always 64-bit aligned.
duke@435 2468 //
duke@435 2469 // Arguments for generated stub:
duke@435 2470 // from: O0
duke@435 2471 // to: O1
duke@435 2472 // count: O2 treated as signed
duke@435 2473 //
iveresov@2595 2474 address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) {
duke@435 2475 __ align(CodeEntryAlignment);
duke@435 2476 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2477 address start = __ pc();
duke@435 2478
duke@435 2479 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2480
iveresov@2595 2481 if (entry != NULL) {
iveresov@2595 2482 *entry = __ pc();
iveresov@2595 2483 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2484 BLOCK_COMMENT("Entry:");
iveresov@2595 2485 }
duke@435 2486
duke@435 2487 generate_disjoint_long_copy_core(aligned);
duke@435 2488
duke@435 2489 // O3, O4 are used as temp registers
duke@435 2490 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2491 __ retl();
duke@435 2492 __ delayed()->mov(G0, O0); // return 0
duke@435 2493 return start;
duke@435 2494 }
duke@435 2495
duke@435 2496 //
duke@435 2497 // Generate core code for conjoint long copy (and oop copy on 64-bit).
duke@435 2498 // "aligned" is ignored, because we must make the stronger
duke@435 2499 // assumption that both addresses are always 64-bit aligned.
duke@435 2500 //
duke@435 2501 // Arguments:
duke@435 2502 // from: O0
duke@435 2503 // to: O1
duke@435 2504 // count: O2 treated as signed
duke@435 2505 //
duke@435 2506 void generate_conjoint_long_copy_core(bool aligned) {
duke@435 2507 // Do reverse copy.
duke@435 2508 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2509 const Register from = O0; // source array address
duke@435 2510 const Register to = O1; // destination array address
duke@435 2511 const Register count = O2; // elements count
duke@435 2512 const Register offset8 = O4; // element offset
duke@435 2513 const Register offset0 = O5; // previous element offset
duke@435 2514
duke@435 2515 __ subcc(count, 1, count);
duke@435 2516 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
duke@435 2517 __ delayed()->sllx(count, LogBytesPerLong, offset8);
duke@435 2518 __ sub(offset8, 8, offset0);
kvn@1800 2519 __ align(OptoLoopAlignment);
duke@435 2520 __ BIND(L_copy_16_bytes);
duke@435 2521 __ ldx(from, offset8, O2);
duke@435 2522 __ ldx(from, offset0, O3);
duke@435 2523 __ stx(O2, to, offset8);
duke@435 2524 __ deccc(offset8, 16); // use offset8 as counter
duke@435 2525 __ stx(O3, to, offset0);
duke@435 2526 __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
duke@435 2527 __ delayed()->dec(offset0, 16);
duke@435 2528
duke@435 2529 __ BIND(L_copy_8_bytes);
duke@435 2530 __ brx(Assembler::negative, false, Assembler::pn, L_exit );
duke@435 2531 __ delayed()->nop();
duke@435 2532 __ ldx(from, 0, O3);
duke@435 2533 __ stx(O3, to, 0);
duke@435 2534 __ BIND(L_exit);
duke@435 2535 }
duke@435 2536
duke@435 2537 // Generate stub for conjoint long copy.
duke@435 2538 // "aligned" is ignored, because we must make the stronger
duke@435 2539 // assumption that both addresses are always 64-bit aligned.
duke@435 2540 //
duke@435 2541 // Arguments for generated stub:
duke@435 2542 // from: O0
duke@435 2543 // to: O1
duke@435 2544 // count: O2 treated as signed
duke@435 2545 //
iveresov@2595 2546 address generate_conjoint_long_copy(bool aligned, address nooverlap_target,
iveresov@2595 2547 address *entry, const char *name) {
duke@435 2548 __ align(CodeEntryAlignment);
duke@435 2549 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2550 address start = __ pc();
duke@435 2551
iveresov@2606 2552 assert(aligned, "Should always be aligned");
duke@435 2553
duke@435 2554 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2555
iveresov@2595 2556 if (entry != NULL) {
iveresov@2595 2557 *entry = __ pc();
iveresov@2595 2558 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2559 BLOCK_COMMENT("Entry:");
iveresov@2595 2560 }
duke@435 2561
duke@435 2562 array_overlap_test(nooverlap_target, 3);
duke@435 2563
duke@435 2564 generate_conjoint_long_copy_core(aligned);
duke@435 2565
duke@435 2566 // O3, O4 are used as temp registers
duke@435 2567 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2568 __ retl();
duke@435 2569 __ delayed()->mov(G0, O0); // return 0
duke@435 2570 return start;
duke@435 2571 }
duke@435 2572
duke@435 2573 // Generate stub for disjoint oop copy. If "aligned" is true, the
duke@435 2574 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2575 //
duke@435 2576 // Arguments for generated stub:
duke@435 2577 // from: O0
duke@435 2578 // to: O1
duke@435 2579 // count: O2 treated as signed
duke@435 2580 //
iveresov@2606 2581 address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name,
iveresov@2606 2582 bool dest_uninitialized = false) {
duke@435 2583
duke@435 2584 const Register from = O0; // source array address
duke@435 2585 const Register to = O1; // destination array address
duke@435 2586 const Register count = O2; // elements count
duke@435 2587
duke@435 2588 __ align(CodeEntryAlignment);
duke@435 2589 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2590 address start = __ pc();
duke@435 2591
duke@435 2592 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2593
iveresov@2595 2594 if (entry != NULL) {
iveresov@2595 2595 *entry = __ pc();
iveresov@2595 2596 // caller can pass a 64-bit byte count here
iveresov@2595 2597 BLOCK_COMMENT("Entry:");
iveresov@2595 2598 }
duke@435 2599
duke@435 2600 // save arguments for barrier generation
duke@435 2601 __ mov(to, G1);
duke@435 2602 __ mov(count, G5);
iveresov@2606 2603 gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
duke@435 2604 #ifdef _LP64
coleenp@548 2605 assert_clean_int(count, O3); // Make sure 'count' is clean int.
coleenp@548 2606 if (UseCompressedOops) {
coleenp@548 2607 generate_disjoint_int_copy_core(aligned);
coleenp@548 2608 } else {
coleenp@548 2609 generate_disjoint_long_copy_core(aligned);
coleenp@548 2610 }
duke@435 2611 #else
duke@435 2612 generate_disjoint_int_copy_core(aligned);
duke@435 2613 #endif
duke@435 2614 // O0 is used as temp register
duke@435 2615 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2616
duke@435 2617 // O3, O4 are used as temp registers
duke@435 2618 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2619 __ retl();
duke@435 2620 __ delayed()->mov(G0, O0); // return 0
duke@435 2621 return start;
duke@435 2622 }
duke@435 2623
duke@435 2624 // Generate stub for conjoint oop copy. If "aligned" is true, the
duke@435 2625 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2626 //
duke@435 2627 // Arguments for generated stub:
duke@435 2628 // from: O0
duke@435 2629 // to: O1
duke@435 2630 // count: O2 treated as signed
duke@435 2631 //
iveresov@2595 2632 address generate_conjoint_oop_copy(bool aligned, address nooverlap_target,
iveresov@2606 2633 address *entry, const char *name,
iveresov@2606 2634 bool dest_uninitialized = false) {
duke@435 2635
duke@435 2636 const Register from = O0; // source array address
duke@435 2637 const Register to = O1; // destination array address
duke@435 2638 const Register count = O2; // elements count
duke@435 2639
duke@435 2640 __ align(CodeEntryAlignment);
duke@435 2641 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2642 address start = __ pc();
duke@435 2643
duke@435 2644 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2645
iveresov@2595 2646 if (entry != NULL) {
iveresov@2595 2647 *entry = __ pc();
iveresov@2595 2648 // caller can pass a 64-bit byte count here
iveresov@2595 2649 BLOCK_COMMENT("Entry:");
iveresov@2595 2650 }
iveresov@2595 2651
iveresov@2595 2652 array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
duke@435 2653
duke@435 2654 // save arguments for barrier generation
duke@435 2655 __ mov(to, G1);
duke@435 2656 __ mov(count, G5);
iveresov@2606 2657 gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
duke@435 2658
duke@435 2659 #ifdef _LP64
coleenp@548 2660 if (UseCompressedOops) {
coleenp@548 2661 generate_conjoint_int_copy_core(aligned);
coleenp@548 2662 } else {
coleenp@548 2663 generate_conjoint_long_copy_core(aligned);
coleenp@548 2664 }
duke@435 2665 #else
duke@435 2666 generate_conjoint_int_copy_core(aligned);
duke@435 2667 #endif
duke@435 2668
duke@435 2669 // O0 is used as temp register
duke@435 2670 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2671
duke@435 2672 // O3, O4 are used as temp registers
duke@435 2673 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2674 __ retl();
duke@435 2675 __ delayed()->mov(G0, O0); // return 0
duke@435 2676 return start;
duke@435 2677 }
duke@435 2678
duke@435 2679
duke@435 2680 // Helper for generating a dynamic type check.
duke@435 2681 // Smashes only the given temp registers.
duke@435 2682 void generate_type_check(Register sub_klass,
duke@435 2683 Register super_check_offset,
duke@435 2684 Register super_klass,
duke@435 2685 Register temp,
jrose@1079 2686 Label& L_success) {
duke@435 2687 assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
duke@435 2688
duke@435 2689 BLOCK_COMMENT("type_check:");
duke@435 2690
jrose@1079 2691 Label L_miss, L_pop_to_miss;
duke@435 2692
duke@435 2693 assert_clean_int(super_check_offset, temp);
duke@435 2694
jrose@1079 2695 __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
jrose@1079 2696 &L_success, &L_miss, NULL,
jrose@1079 2697 super_check_offset);
jrose@1079 2698
jrose@1079 2699 BLOCK_COMMENT("type_check_slow_path:");
duke@435 2700 __ save_frame(0);
jrose@1079 2701 __ check_klass_subtype_slow_path(sub_klass->after_save(),
jrose@1079 2702 super_klass->after_save(),
jrose@1079 2703 L0, L1, L2, L4,
jrose@1079 2704 NULL, &L_pop_to_miss);
kvn@3037 2705 __ ba(L_success);
jrose@1079 2706 __ delayed()->restore();
jrose@1079 2707
jrose@1079 2708 __ bind(L_pop_to_miss);
duke@435 2709 __ restore();
duke@435 2710
duke@435 2711 // Fall through on failure!
duke@435 2712 __ BIND(L_miss);
duke@435 2713 }
duke@435 2714
duke@435 2715
duke@435 2716 // Generate stub for checked oop copy.
duke@435 2717 //
duke@435 2718 // Arguments for generated stub:
duke@435 2719 // from: O0
duke@435 2720 // to: O1
duke@435 2721 // count: O2 treated as signed
duke@435 2722 // ckoff: O3 (super_check_offset)
duke@435 2723 // ckval: O4 (super_klass)
duke@435 2724 // ret: O0 zero for success; (-1^K) where K is partial transfer count
duke@435 2725 //
iveresov@2606 2726 address generate_checkcast_copy(const char *name, address *entry, bool dest_uninitialized = false) {
duke@435 2727
duke@435 2728 const Register O0_from = O0; // source array address
duke@435 2729 const Register O1_to = O1; // destination array address
duke@435 2730 const Register O2_count = O2; // elements count
duke@435 2731 const Register O3_ckoff = O3; // super_check_offset
duke@435 2732 const Register O4_ckval = O4; // super_klass
duke@435 2733
duke@435 2734 const Register O5_offset = O5; // loop var, with stride wordSize
duke@435 2735 const Register G1_remain = G1; // loop var, with stride -1
duke@435 2736 const Register G3_oop = G3; // actual oop copied
duke@435 2737 const Register G4_klass = G4; // oop._klass
duke@435 2738 const Register G5_super = G5; // oop._klass._primary_supers[ckval]
duke@435 2739
duke@435 2740 __ align(CodeEntryAlignment);
duke@435 2741 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2742 address start = __ pc();
duke@435 2743
duke@435 2744 #ifdef ASSERT
jrose@1079 2745 // We sometimes save a frame (see generate_type_check below).
duke@435 2746 // If this will cause trouble, let's fail now instead of later.
duke@435 2747 __ save_frame(0);
duke@435 2748 __ restore();
duke@435 2749 #endif
duke@435 2750
never@2199 2751 assert_clean_int(O2_count, G1); // Make sure 'count' is clean int.
never@2199 2752
duke@435 2753 #ifdef ASSERT
duke@435 2754 // caller guarantees that the arrays really are different
duke@435 2755 // otherwise, we would have to make conjoint checks
duke@435 2756 { Label L;
duke@435 2757 __ mov(O3, G1); // spill: overlap test smashes O3
duke@435 2758 __ mov(O4, G4); // spill: overlap test smashes O4
coleenp@548 2759 array_overlap_test(L, LogBytesPerHeapOop);
duke@435 2760 __ stop("checkcast_copy within a single array");
duke@435 2761 __ bind(L);
duke@435 2762 __ mov(G1, O3);
duke@435 2763 __ mov(G4, O4);
duke@435 2764 }
duke@435 2765 #endif //ASSERT
duke@435 2766
iveresov@2595 2767 if (entry != NULL) {
iveresov@2595 2768 *entry = __ pc();
iveresov@2595 2769 // caller can pass a 64-bit byte count here (from generic stub)
iveresov@2595 2770 BLOCK_COMMENT("Entry:");
iveresov@2595 2771 }
iveresov@2606 2772 gen_write_ref_array_pre_barrier(O1_to, O2_count, dest_uninitialized);
duke@435 2773
duke@435 2774 Label load_element, store_element, do_card_marks, fail, done;
duke@435 2775 __ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it
duke@435 2776 __ brx(Assembler::notZero, false, Assembler::pt, load_element);
duke@435 2777 __ delayed()->mov(G0, O5_offset); // offset from start of arrays
duke@435 2778
duke@435 2779 // Empty array: Nothing to do.
duke@435 2780 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2781 __ retl();
duke@435 2782 __ delayed()->set(0, O0); // return 0 on (trivial) success
duke@435 2783
duke@435 2784 // ======== begin loop ========
duke@435 2785 // (Loop is rotated; its entry is load_element.)
duke@435 2786 // Loop variables:
duke@435 2787 // (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
duke@435 2788 // (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
duke@435 2789 // G3, G4, G5 --- current oop, oop.klass, oop.klass.super
kvn@1800 2790 __ align(OptoLoopAlignment);
duke@435 2791
jrose@1079 2792 __ BIND(store_element);
jrose@1079 2793 __ deccc(G1_remain); // decrement the count
coleenp@548 2794 __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
coleenp@548 2795 __ inc(O5_offset, heapOopSize); // step to next offset
duke@435 2796 __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
duke@435 2797 __ delayed()->set(0, O0); // return -1 on success
duke@435 2798
duke@435 2799 // ======== loop entry is here ========
jrose@1079 2800 __ BIND(load_element);
coleenp@548 2801 __ load_heap_oop(O0_from, O5_offset, G3_oop); // load the oop
kvn@3037 2802 __ br_null_short(G3_oop, Assembler::pt, store_element);
duke@435 2803
coleenp@548 2804 __ load_klass(G3_oop, G4_klass); // query the object klass
duke@435 2805
duke@435 2806 generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
duke@435 2807 // branch to this on success:
jrose@1079 2808 store_element);
duke@435 2809 // ======== end loop ========
duke@435 2810
duke@435 2811 // It was a real error; we must depend on the caller to finish the job.
duke@435 2812 // Register G1 has number of *remaining* oops, O2 number of *total* oops.
duke@435 2813 // Emit GC store barriers for the oops we have copied (O2 minus G1),
duke@435 2814 // and report their number to the caller.
jrose@1079 2815 __ BIND(fail);
duke@435 2816 __ subcc(O2_count, G1_remain, O2_count);
duke@435 2817 __ brx(Assembler::zero, false, Assembler::pt, done);
duke@435 2818 __ delayed()->not1(O2_count, O0); // report (-1^K) to caller
duke@435 2819
jrose@1079 2820 __ BIND(do_card_marks);
duke@435 2821 gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2]
duke@435 2822
jrose@1079 2823 __ BIND(done);
duke@435 2824 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2825 __ retl();
duke@435 2826 __ delayed()->nop(); // return value in 00
duke@435 2827
duke@435 2828 return start;
duke@435 2829 }
duke@435 2830
duke@435 2831
duke@435 2832 // Generate 'unsafe' array copy stub
duke@435 2833 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2834 // size_t argument instead of an element count.
duke@435 2835 //
duke@435 2836 // Arguments for generated stub:
duke@435 2837 // from: O0
duke@435 2838 // to: O1
duke@435 2839 // count: O2 byte count, treated as ssize_t, can be zero
duke@435 2840 //
duke@435 2841 // Examines the alignment of the operands and dispatches
duke@435 2842 // to a long, int, short, or byte copy loop.
duke@435 2843 //
iveresov@2595 2844 address generate_unsafe_copy(const char* name,
iveresov@2595 2845 address byte_copy_entry,
iveresov@2595 2846 address short_copy_entry,
iveresov@2595 2847 address int_copy_entry,
iveresov@2595 2848 address long_copy_entry) {
duke@435 2849
duke@435 2850 const Register O0_from = O0; // source array address
duke@435 2851 const Register O1_to = O1; // destination array address
duke@435 2852 const Register O2_count = O2; // elements count
duke@435 2853
duke@435 2854 const Register G1_bits = G1; // test copy of low bits
duke@435 2855
duke@435 2856 __ align(CodeEntryAlignment);
duke@435 2857 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2858 address start = __ pc();
duke@435 2859
duke@435 2860 // bump this on entry, not on exit:
duke@435 2861 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
duke@435 2862
duke@435 2863 __ or3(O0_from, O1_to, G1_bits);
duke@435 2864 __ or3(O2_count, G1_bits, G1_bits);
duke@435 2865
duke@435 2866 __ btst(BytesPerLong-1, G1_bits);
duke@435 2867 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2868 long_copy_entry, relocInfo::runtime_call_type);
duke@435 2869 // scale the count on the way out:
duke@435 2870 __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
duke@435 2871
duke@435 2872 __ btst(BytesPerInt-1, G1_bits);
duke@435 2873 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2874 int_copy_entry, relocInfo::runtime_call_type);
duke@435 2875 // scale the count on the way out:
duke@435 2876 __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
duke@435 2877
duke@435 2878 __ btst(BytesPerShort-1, G1_bits);
duke@435 2879 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2880 short_copy_entry, relocInfo::runtime_call_type);
duke@435 2881 // scale the count on the way out:
duke@435 2882 __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
duke@435 2883
duke@435 2884 __ br(Assembler::always, false, Assembler::pt,
duke@435 2885 byte_copy_entry, relocInfo::runtime_call_type);
duke@435 2886 __ delayed()->nop();
duke@435 2887
duke@435 2888 return start;
duke@435 2889 }
duke@435 2890
duke@435 2891
duke@435 2892 // Perform range checks on the proposed arraycopy.
duke@435 2893 // Kills the two temps, but nothing else.
duke@435 2894 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2895 void arraycopy_range_checks(Register src, // source array oop (O0)
duke@435 2896 Register src_pos, // source position (O1)
duke@435 2897 Register dst, // destination array oo (O2)
duke@435 2898 Register dst_pos, // destination position (O3)
duke@435 2899 Register length, // length of copy (O4)
duke@435 2900 Register temp1, Register temp2,
duke@435 2901 Label& L_failed) {
duke@435 2902 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2903
duke@435 2904 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 2905
duke@435 2906 const Register array_length = temp1; // scratch
duke@435 2907 const Register end_pos = temp2; // scratch
duke@435 2908
duke@435 2909 // Note: This next instruction may be in the delay slot of a branch:
duke@435 2910 __ add(length, src_pos, end_pos); // src_pos + length
duke@435 2911 __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2912 __ cmp(end_pos, array_length);
duke@435 2913 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2914
duke@435 2915 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 2916 __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
duke@435 2917 __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2918 __ cmp(end_pos, array_length);
duke@435 2919 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2920
duke@435 2921 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2922 // Move with sign extension can be used since they are positive.
duke@435 2923 __ delayed()->signx(src_pos, src_pos);
duke@435 2924 __ signx(dst_pos, dst_pos);
duke@435 2925
duke@435 2926 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2927 }
duke@435 2928
duke@435 2929
duke@435 2930 //
duke@435 2931 // Generate generic array copy stubs
duke@435 2932 //
duke@435 2933 // Input:
duke@435 2934 // O0 - src oop
duke@435 2935 // O1 - src_pos
duke@435 2936 // O2 - dst oop
duke@435 2937 // O3 - dst_pos
duke@435 2938 // O4 - element count
duke@435 2939 //
duke@435 2940 // Output:
duke@435 2941 // O0 == 0 - success
duke@435 2942 // O0 == -1 - need to call System.arraycopy
duke@435 2943 //
iveresov@2595 2944 address generate_generic_copy(const char *name,
iveresov@2595 2945 address entry_jbyte_arraycopy,
iveresov@2595 2946 address entry_jshort_arraycopy,
iveresov@2595 2947 address entry_jint_arraycopy,
iveresov@2595 2948 address entry_oop_arraycopy,
iveresov@2595 2949 address entry_jlong_arraycopy,
iveresov@2595 2950 address entry_checkcast_arraycopy) {
duke@435 2951 Label L_failed, L_objArray;
duke@435 2952
duke@435 2953 // Input registers
duke@435 2954 const Register src = O0; // source array oop
duke@435 2955 const Register src_pos = O1; // source position
duke@435 2956 const Register dst = O2; // destination array oop
duke@435 2957 const Register dst_pos = O3; // destination position
duke@435 2958 const Register length = O4; // elements count
duke@435 2959
duke@435 2960 // registers used as temp
duke@435 2961 const Register G3_src_klass = G3; // source array klass
duke@435 2962 const Register G4_dst_klass = G4; // destination array klass
duke@435 2963 const Register G5_lh = G5; // layout handler
duke@435 2964 const Register O5_temp = O5;
duke@435 2965
duke@435 2966 __ align(CodeEntryAlignment);
duke@435 2967 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2968 address start = __ pc();
duke@435 2969
duke@435 2970 // bump this on entry, not on exit:
duke@435 2971 inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
duke@435 2972
duke@435 2973 // In principle, the int arguments could be dirty.
duke@435 2974 //assert_clean_int(src_pos, G1);
duke@435 2975 //assert_clean_int(dst_pos, G1);
duke@435 2976 //assert_clean_int(length, G1);
duke@435 2977
duke@435 2978 //-----------------------------------------------------------------------
duke@435 2979 // Assembler stubs will be used for this call to arraycopy
duke@435 2980 // if the following conditions are met:
duke@435 2981 //
duke@435 2982 // (1) src and dst must not be null.
duke@435 2983 // (2) src_pos must not be negative.
duke@435 2984 // (3) dst_pos must not be negative.
duke@435 2985 // (4) length must not be negative.
duke@435 2986 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2987 // (6) src and dst should be arrays.
duke@435 2988 // (7) src_pos + length must not exceed length of src.
duke@435 2989 // (8) dst_pos + length must not exceed length of dst.
duke@435 2990 BLOCK_COMMENT("arraycopy initial argument checks");
duke@435 2991
duke@435 2992 // if (src == NULL) return -1;
duke@435 2993 __ br_null(src, false, Assembler::pn, L_failed);
duke@435 2994
duke@435 2995 // if (src_pos < 0) return -1;
duke@435 2996 __ delayed()->tst(src_pos);
duke@435 2997 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2998 __ delayed()->nop();
duke@435 2999
duke@435 3000 // if (dst == NULL) return -1;
duke@435 3001 __ br_null(dst, false, Assembler::pn, L_failed);
duke@435 3002
duke@435 3003 // if (dst_pos < 0) return -1;
duke@435 3004 __ delayed()->tst(dst_pos);
duke@435 3005 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 3006
duke@435 3007 // if (length < 0) return -1;
duke@435 3008 __ delayed()->tst(length);
duke@435 3009 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 3010
duke@435 3011 BLOCK_COMMENT("arraycopy argument klass checks");
duke@435 3012 // get src->klass()
coleenp@4037 3013 if (UseCompressedKlassPointers) {
coleenp@548 3014 __ delayed()->nop(); // ??? not good
coleenp@548 3015 __ load_klass(src, G3_src_klass);
coleenp@548 3016 } else {
coleenp@548 3017 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
coleenp@548 3018 }
duke@435 3019
duke@435 3020 #ifdef ASSERT
duke@435 3021 // assert(src->klass() != NULL);
duke@435 3022 BLOCK_COMMENT("assert klasses not null");
duke@435 3023 { Label L_a, L_b;
kvn@3037 3024 __ br_notnull_short(G3_src_klass, Assembler::pt, L_b); // it is broken if klass is NULL
duke@435 3025 __ bind(L_a);
duke@435 3026 __ stop("broken null klass");
duke@435 3027 __ bind(L_b);
coleenp@548 3028 __ load_klass(dst, G4_dst_klass);
duke@435 3029 __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
duke@435 3030 __ delayed()->mov(G0, G4_dst_klass); // scribble the temp
duke@435 3031 BLOCK_COMMENT("assert done");
duke@435 3032 }
duke@435 3033 #endif
duke@435 3034
duke@435 3035 // Load layout helper
duke@435 3036 //
duke@435 3037 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 3038 // 32 30 24 16 8 2 0
duke@435 3039 //
duke@435 3040 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 3041 //
duke@435 3042
stefank@3391 3043 int lh_offset = in_bytes(Klass::layout_helper_offset());
duke@435 3044
duke@435 3045 // Load 32-bits signed value. Use br() instruction with it to check icc.
duke@435 3046 __ lduw(G3_src_klass, lh_offset, G5_lh);
duke@435 3047
coleenp@4037 3048 if (UseCompressedKlassPointers) {
coleenp@548 3049 __ load_klass(dst, G4_dst_klass);
coleenp@548 3050 }
duke@435 3051 // Handle objArrays completely differently...
duke@435 3052 juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 3053 __ set(objArray_lh, O5_temp);
duke@435 3054 __ cmp(G5_lh, O5_temp);
duke@435 3055 __ br(Assembler::equal, false, Assembler::pt, L_objArray);
coleenp@4037 3056 if (UseCompressedKlassPointers) {
coleenp@548 3057 __ delayed()->nop();
coleenp@548 3058 } else {
coleenp@548 3059 __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
coleenp@548 3060 }
duke@435 3061
duke@435 3062 // if (src->klass() != dst->klass()) return -1;
kvn@3037 3063 __ cmp_and_brx_short(G3_src_klass, G4_dst_klass, Assembler::notEqual, Assembler::pn, L_failed);
duke@435 3064
duke@435 3065 // if (!src->is_Array()) return -1;
duke@435 3066 __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
duke@435 3067 __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
duke@435 3068
duke@435 3069 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 3070 #ifdef ASSERT
duke@435 3071 __ delayed()->nop();
duke@435 3072 { Label L;
duke@435 3073 jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
duke@435 3074 __ set(lh_prim_tag_in_place, O5_temp);
duke@435 3075 __ cmp(G5_lh, O5_temp);
duke@435 3076 __ br(Assembler::greaterEqual, false, Assembler::pt, L);
duke@435 3077 __ delayed()->nop();
duke@435 3078 __ stop("must be a primitive array");
duke@435 3079 __ bind(L);
duke@435 3080 }
duke@435 3081 #else
duke@435 3082 __ delayed(); // match next insn to prev branch
duke@435 3083 #endif
duke@435 3084
duke@435 3085 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3086 O5_temp, G4_dst_klass, L_failed);
duke@435 3087
coleenp@4142 3088 // TypeArrayKlass
duke@435 3089 //
duke@435 3090 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 3091 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 3092 //
duke@435 3093
duke@435 3094 const Register G4_offset = G4_dst_klass; // array offset
duke@435 3095 const Register G3_elsize = G3_src_klass; // log2 element size
duke@435 3096
duke@435 3097 __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
duke@435 3098 __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
duke@435 3099 __ add(src, G4_offset, src); // src array offset
duke@435 3100 __ add(dst, G4_offset, dst); // dst array offset
duke@435 3101 __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
duke@435 3102
duke@435 3103 // next registers should be set before the jump to corresponding stub
duke@435 3104 const Register from = O0; // source array address
duke@435 3105 const Register to = O1; // destination array address
duke@435 3106 const Register count = O2; // elements count
duke@435 3107
duke@435 3108 // 'from', 'to', 'count' registers should be set in this order
duke@435 3109 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 3110
duke@435 3111 BLOCK_COMMENT("scale indexes to element size");
duke@435 3112 __ sll_ptr(src_pos, G3_elsize, src_pos);
duke@435 3113 __ sll_ptr(dst_pos, G3_elsize, dst_pos);
duke@435 3114 __ add(src, src_pos, from); // src_addr
duke@435 3115 __ add(dst, dst_pos, to); // dst_addr
duke@435 3116
duke@435 3117 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 3118 __ cmp(G3_elsize, 0);
iveresov@2595 3119 __ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy);
duke@435 3120 __ delayed()->signx(length, count); // length
duke@435 3121
duke@435 3122 __ cmp(G3_elsize, LogBytesPerShort);
iveresov@2595 3123 __ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy);
duke@435 3124 __ delayed()->signx(length, count); // length
duke@435 3125
duke@435 3126 __ cmp(G3_elsize, LogBytesPerInt);
iveresov@2595 3127 __ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy);
duke@435 3128 __ delayed()->signx(length, count); // length
duke@435 3129 #ifdef ASSERT
duke@435 3130 { Label L;
kvn@3037 3131 __ cmp_and_br_short(G3_elsize, LogBytesPerLong, Assembler::equal, Assembler::pt, L);
duke@435 3132 __ stop("must be long copy, but elsize is wrong");
duke@435 3133 __ bind(L);
duke@435 3134 }
duke@435 3135 #endif
iveresov@2595 3136 __ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy);
duke@435 3137 __ delayed()->signx(length, count); // length
duke@435 3138
coleenp@4142 3139 // ObjArrayKlass
duke@435 3140 __ BIND(L_objArray);
duke@435 3141 // live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
duke@435 3142
duke@435 3143 Label L_plain_copy, L_checkcast_copy;
duke@435 3144 // test array classes for subtyping
duke@435 3145 __ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality
duke@435 3146 __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
duke@435 3147 __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
duke@435 3148
duke@435 3149 // Identically typed arrays can be copied without element-wise checks.
duke@435 3150 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3151 O5_temp, G5_lh, L_failed);
duke@435 3152
duke@435 3153 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 3154 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 3155 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 3156 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 3157 __ add(src, src_pos, from); // src_addr
duke@435 3158 __ add(dst, dst_pos, to); // dst_addr
duke@435 3159 __ BIND(L_plain_copy);
iveresov@2595 3160 __ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy);
duke@435 3161 __ delayed()->signx(length, count); // length
duke@435 3162
duke@435 3163 __ BIND(L_checkcast_copy);
duke@435 3164 // live at this point: G3_src_klass, G4_dst_klass
duke@435 3165 {
duke@435 3166 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 3167 // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
duke@435 3168 __ cmp(G5_lh, O5_temp);
duke@435 3169 __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 3170
duke@435 3171 // It is safe to examine both src.length and dst.length.
duke@435 3172 __ delayed(); // match next insn to prev branch
duke@435 3173 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3174 O5_temp, G5_lh, L_failed);
duke@435 3175
duke@435 3176 // Marshal the base address arguments now, freeing registers.
duke@435 3177 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 3178 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 3179 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 3180 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 3181 __ add(src, src_pos, from); // src_addr
duke@435 3182 __ add(dst, dst_pos, to); // dst_addr
duke@435 3183 __ signx(length, count); // length (reloaded)
duke@435 3184
duke@435 3185 Register sco_temp = O3; // this register is free now
duke@435 3186 assert_different_registers(from, to, count, sco_temp,
duke@435 3187 G4_dst_klass, G3_src_klass);
duke@435 3188
duke@435 3189 // Generate the type check.
stefank@3391 3190 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 3191 __ lduw(G4_dst_klass, sco_offset, sco_temp);
duke@435 3192 generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
duke@435 3193 O5_temp, L_plain_copy);
duke@435 3194
coleenp@4142 3195 // Fetch destination element klass from the ObjArrayKlass header.
coleenp@4142 3196 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
duke@435 3197
duke@435 3198 // the checkcast_copy loop needs two extra arguments:
duke@435 3199 __ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass
duke@435 3200 // lduw(O4, sco_offset, O3); // sco of elem klass
duke@435 3201
iveresov@2595 3202 __ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy);
duke@435 3203 __ delayed()->lduw(O4, sco_offset, O3);
duke@435 3204 }
duke@435 3205
duke@435 3206 __ BIND(L_failed);
duke@435 3207 __ retl();
duke@435 3208 __ delayed()->sub(G0, 1, O0); // return -1
duke@435 3209 return start;
duke@435 3210 }
duke@435 3211
kvn@3092 3212 //
kvn@3092 3213 // Generate stub for heap zeroing.
kvn@3092 3214 // "to" address is aligned to jlong (8 bytes).
kvn@3092 3215 //
kvn@3092 3216 // Arguments for generated stub:
kvn@3092 3217 // to: O0
kvn@3092 3218 // count: O1 treated as signed (count of HeapWord)
kvn@3092 3219 // count could be 0
kvn@3092 3220 //
kvn@3092 3221 address generate_zero_aligned_words(const char* name) {
kvn@3092 3222 __ align(CodeEntryAlignment);
kvn@3092 3223 StubCodeMark mark(this, "StubRoutines", name);
kvn@3092 3224 address start = __ pc();
kvn@3092 3225
kvn@3092 3226 const Register to = O0; // source array address
kvn@3092 3227 const Register count = O1; // HeapWords count
kvn@3092 3228 const Register temp = O2; // scratch
kvn@3092 3229
kvn@3092 3230 Label Ldone;
kvn@3092 3231 __ sllx(count, LogHeapWordSize, count); // to bytes count
kvn@3092 3232 // Use BIS for zeroing
kvn@3092 3233 __ bis_zeroing(to, count, temp, Ldone);
kvn@3092 3234 __ bind(Ldone);
kvn@3092 3235 __ retl();
kvn@3092 3236 __ delayed()->nop();
kvn@3092 3237 return start;
kvn@3092 3238 }
kvn@3092 3239
duke@435 3240 void generate_arraycopy_stubs() {
iveresov@2595 3241 address entry;
iveresov@2595 3242 address entry_jbyte_arraycopy;
iveresov@2595 3243 address entry_jshort_arraycopy;
iveresov@2595 3244 address entry_jint_arraycopy;
iveresov@2595 3245 address entry_oop_arraycopy;
iveresov@2595 3246 address entry_jlong_arraycopy;
iveresov@2595 3247 address entry_checkcast_arraycopy;
iveresov@2595 3248
iveresov@2606 3249 //*** jbyte
iveresov@2606 3250 // Always need aligned and unaligned versions
iveresov@2606 3251 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
iveresov@2606 3252 "jbyte_disjoint_arraycopy");
iveresov@2606 3253 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry,
iveresov@2606 3254 &entry_jbyte_arraycopy,
iveresov@2606 3255 "jbyte_arraycopy");
iveresov@2606 3256 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
iveresov@2606 3257 "arrayof_jbyte_disjoint_arraycopy");
iveresov@2606 3258 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, entry, NULL,
iveresov@2606 3259 "arrayof_jbyte_arraycopy");
iveresov@2606 3260
iveresov@2606 3261 //*** jshort
iveresov@2606 3262 // Always need aligned and unaligned versions
iveresov@2606 3263 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
iveresov@2606 3264 "jshort_disjoint_arraycopy");
iveresov@2606 3265 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry,
iveresov@2606 3266 &entry_jshort_arraycopy,
iveresov@2606 3267 "jshort_arraycopy");
iveresov@2595 3268 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
iveresov@2595 3269 "arrayof_jshort_disjoint_arraycopy");
iveresov@2595 3270 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, entry, NULL,
iveresov@2595 3271 "arrayof_jshort_arraycopy");
iveresov@2595 3272
iveresov@2606 3273 //*** jint
iveresov@2606 3274 // Aligned versions
iveresov@2606 3275 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
iveresov@2606 3276 "arrayof_jint_disjoint_arraycopy");
iveresov@2606 3277 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
iveresov@2606 3278 "arrayof_jint_arraycopy");
duke@435 3279 #ifdef _LP64
iveresov@2606 3280 // In 64 bit we need both aligned and unaligned versions of jint arraycopy.
iveresov@2606 3281 // entry_jint_arraycopy always points to the unaligned version (notice that we overwrite it).
iveresov@2606 3282 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, &entry,
iveresov@2606 3283 "jint_disjoint_arraycopy");
iveresov@2606 3284 StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, entry,
iveresov@2606 3285 &entry_jint_arraycopy,
iveresov@2606 3286 "jint_arraycopy");
iveresov@2606 3287 #else
iveresov@2606 3288 // In 32 bit jints are always HeapWordSize aligned, so always use the aligned version
iveresov@2606 3289 // (in fact in 32bit we always have a pre-loop part even in the aligned version,
iveresov@2606 3290 // because it uses 64-bit loads/stores, so the aligned flag is actually ignored).
iveresov@2606 3291 StubRoutines::_jint_disjoint_arraycopy = StubRoutines::_arrayof_jint_disjoint_arraycopy;
iveresov@2606 3292 StubRoutines::_jint_arraycopy = StubRoutines::_arrayof_jint_arraycopy;
duke@435 3293 #endif
iveresov@2595 3294
iveresov@2606 3295
iveresov@2606 3296 //*** jlong
iveresov@2606 3297 // It is always aligned
iveresov@2606 3298 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
iveresov@2606 3299 "arrayof_jlong_disjoint_arraycopy");
iveresov@2606 3300 StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
iveresov@2606 3301 "arrayof_jlong_arraycopy");
iveresov@2606 3302 StubRoutines::_jlong_disjoint_arraycopy = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
iveresov@2606 3303 StubRoutines::_jlong_arraycopy = StubRoutines::_arrayof_jlong_arraycopy;
iveresov@2606 3304
iveresov@2606 3305
iveresov@2606 3306 //*** oops
iveresov@2606 3307 // Aligned versions
iveresov@2606 3308 StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, &entry,
iveresov@2606 3309 "arrayof_oop_disjoint_arraycopy");
iveresov@2606 3310 StubRoutines::_arrayof_oop_arraycopy = generate_conjoint_oop_copy(true, entry, &entry_oop_arraycopy,
iveresov@2606 3311 "arrayof_oop_arraycopy");
iveresov@2606 3312 // Aligned versions without pre-barriers
iveresov@2606 3313 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, &entry,
iveresov@2606 3314 "arrayof_oop_disjoint_arraycopy_uninit",
iveresov@2606 3315 /*dest_uninitialized*/true);
iveresov@2606 3316 StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, entry, NULL,
iveresov@2606 3317 "arrayof_oop_arraycopy_uninit",
iveresov@2606 3318 /*dest_uninitialized*/true);
iveresov@2606 3319 #ifdef _LP64
iveresov@2606 3320 if (UseCompressedOops) {
iveresov@2606 3321 // With compressed oops we need unaligned versions, notice that we overwrite entry_oop_arraycopy.
iveresov@2606 3322 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, &entry,
iveresov@2606 3323 "oop_disjoint_arraycopy");
iveresov@2606 3324 StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy,
iveresov@2606 3325 "oop_arraycopy");
iveresov@2606 3326 // Unaligned versions without pre-barriers
iveresov@2606 3327 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(false, &entry,
iveresov@2606 3328 "oop_disjoint_arraycopy_uninit",
iveresov@2606 3329 /*dest_uninitialized*/true);
iveresov@2606 3330 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, entry, NULL,
iveresov@2606 3331 "oop_arraycopy_uninit",
iveresov@2606 3332 /*dest_uninitialized*/true);
iveresov@2606 3333 } else
iveresov@2606 3334 #endif
iveresov@2606 3335 {
iveresov@2606 3336 // oop arraycopy is always aligned on 32bit and 64bit without compressed oops
iveresov@2606 3337 StubRoutines::_oop_disjoint_arraycopy = StubRoutines::_arrayof_oop_disjoint_arraycopy;
iveresov@2606 3338 StubRoutines::_oop_arraycopy = StubRoutines::_arrayof_oop_arraycopy;
iveresov@2606 3339 StubRoutines::_oop_disjoint_arraycopy_uninit = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
iveresov@2606 3340 StubRoutines::_oop_arraycopy_uninit = StubRoutines::_arrayof_oop_arraycopy_uninit;
iveresov@2606 3341 }
iveresov@2606 3342
iveresov@2606 3343 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 3344 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
iveresov@2606 3345 /*dest_uninitialized*/true);
iveresov@2606 3346
iveresov@2595 3347 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
iveresov@2595 3348 entry_jbyte_arraycopy,
iveresov@2595 3349 entry_jshort_arraycopy,
iveresov@2595 3350 entry_jint_arraycopy,
iveresov@2595 3351 entry_jlong_arraycopy);
iveresov@2595 3352 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
iveresov@2595 3353 entry_jbyte_arraycopy,
iveresov@2595 3354 entry_jshort_arraycopy,
iveresov@2595 3355 entry_jint_arraycopy,
iveresov@2595 3356 entry_oop_arraycopy,
iveresov@2595 3357 entry_jlong_arraycopy,
iveresov@2595 3358 entry_checkcast_arraycopy);
never@2118 3359
never@2118 3360 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 3361 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 3362 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 3363 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 3364 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 3365 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
kvn@3092 3366
kvn@3092 3367 if (UseBlockZeroing) {
kvn@3092 3368 StubRoutines::_zero_aligned_words = generate_zero_aligned_words("zero_aligned_words");
kvn@3092 3369 }
duke@435 3370 }
duke@435 3371
duke@435 3372 void generate_initial() {
duke@435 3373 // Generates all stubs and initializes the entry points
duke@435 3374
duke@435 3375 //------------------------------------------------------------------------------------------------------------------------
duke@435 3376 // entry points that exist in all platforms
duke@435 3377 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 3378 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 3379 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 3380
duke@435 3381 StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 3382 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 3383
duke@435 3384 //------------------------------------------------------------------------------------------------------------------------
duke@435 3385 // entry points that are platform specific
duke@435 3386 StubRoutines::Sparc::_test_stop_entry = generate_test_stop();
duke@435 3387
duke@435 3388 StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine();
duke@435 3389 StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
duke@435 3390
duke@435 3391 #if !defined(COMPILER2) && !defined(_LP64)
duke@435 3392 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 3393 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 3394 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 3395 StubRoutines::_atomic_xchg_ptr_entry = StubRoutines::_atomic_xchg_entry;
duke@435 3396 StubRoutines::_atomic_cmpxchg_ptr_entry = StubRoutines::_atomic_cmpxchg_entry;
duke@435 3397 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 3398 StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry;
duke@435 3399 #endif // COMPILER2 !=> _LP64
never@2978 3400
bdelsart@3372 3401 // Build this early so it's available for the interpreter.
bdelsart@3372 3402 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
duke@435 3403 }
duke@435 3404
duke@435 3405
duke@435 3406 void generate_all() {
duke@435 3407 // Generates all stubs and initializes the entry points
duke@435 3408
kvn@1077 3409 // Generate partial_subtype_check first here since its code depends on
kvn@1077 3410 // UseZeroBaseCompressedOops which is defined after heap initialization.
kvn@1077 3411 StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check();
duke@435 3412 // These entry points require SharedInfo::stack0 to be set up in non-core builds
never@3136 3413 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
never@3136 3414 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
never@3136 3415 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
duke@435 3416
duke@435 3417 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 3418 generate_handler_for_unsafe_access();
duke@435 3419
duke@435 3420 // support for verify_oop (must happen after universe_init)
duke@435 3421 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine();
duke@435 3422
duke@435 3423 // arraycopy stubs used by compilers
duke@435 3424 generate_arraycopy_stubs();
never@1609 3425
never@1609 3426 // Don't initialize the platform math functions since sparc
never@1609 3427 // doesn't have intrinsics for these operations.
duke@435 3428 }
duke@435 3429
duke@435 3430
duke@435 3431 public:
duke@435 3432 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3433 // replace the standard masm with a special one:
duke@435 3434 _masm = new MacroAssembler(code);
duke@435 3435
duke@435 3436 _stub_count = !all ? 0x100 : 0x200;
duke@435 3437 if (all) {
duke@435 3438 generate_all();
duke@435 3439 } else {
duke@435 3440 generate_initial();
duke@435 3441 }
duke@435 3442
duke@435 3443 // make sure this stub is available for all local calls
duke@435 3444 if (_atomic_add_stub.is_unbound()) {
duke@435 3445 // generate a second time, if necessary
duke@435 3446 (void) generate_atomic_add();
duke@435 3447 }
duke@435 3448 }
duke@435 3449
duke@435 3450
duke@435 3451 private:
duke@435 3452 int _stub_count;
duke@435 3453 void stub_prolog(StubCodeDesc* cdesc) {
duke@435 3454 # ifdef ASSERT
duke@435 3455 // put extra information in the stub code, to make it more readable
duke@435 3456 #ifdef _LP64
duke@435 3457 // Write the high part of the address
duke@435 3458 // [RGV] Check if there is a dependency on the size of this prolog
duke@435 3459 __ emit_data((intptr_t)cdesc >> 32, relocInfo::none);
duke@435 3460 #endif
duke@435 3461 __ emit_data((intptr_t)cdesc, relocInfo::none);
duke@435 3462 __ emit_data(++_stub_count, relocInfo::none);
duke@435 3463 # endif
duke@435 3464 align(true);
duke@435 3465 }
duke@435 3466
duke@435 3467 void align(bool at_header = false) {
duke@435 3468 // %%%%% move this constant somewhere else
duke@435 3469 // UltraSPARC cache line size is 8 instructions:
duke@435 3470 const unsigned int icache_line_size = 32;
duke@435 3471 const unsigned int icache_half_line_size = 16;
duke@435 3472
duke@435 3473 if (at_header) {
duke@435 3474 while ((intptr_t)(__ pc()) % icache_line_size != 0) {
duke@435 3475 __ emit_data(0, relocInfo::none);
duke@435 3476 }
duke@435 3477 } else {
duke@435 3478 while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
duke@435 3479 __ nop();
duke@435 3480 }
duke@435 3481 }
duke@435 3482 }
duke@435 3483
duke@435 3484 }; // end class declaration
duke@435 3485
duke@435 3486 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3487 StubGenerator g(code, all);
duke@435 3488 }

mercurial