src/share/vm/opto/library_call.cpp

Fri, 25 May 2012 07:53:11 -0700

author
kvn
date
Fri, 25 May 2012 07:53:11 -0700
changeset 3834
8f6ce6f1049b
parent 3787
6759698e3140
child 3846
8b0a4867acf0
permissions
-rw-r--r--

7170463: C2 should recognize "obj.getClass() == A.class" code pattern
Summary: optimize this code pattern obj.getClass() == A.class.
Reviewed-by: jrose, kvn
Contributed-by: Krystal Mok <sajia@taobao.com>

duke@435 1 /*
rbackman@3709 2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
twisti@2687 28 #include "compiler/compileBroker.hpp"
stefank@2314 29 #include "compiler/compileLog.hpp"
stefank@2314 30 #include "oops/objArrayKlass.hpp"
stefank@2314 31 #include "opto/addnode.hpp"
stefank@2314 32 #include "opto/callGenerator.hpp"
stefank@2314 33 #include "opto/cfgnode.hpp"
stefank@2314 34 #include "opto/idealKit.hpp"
stefank@2314 35 #include "opto/mulnode.hpp"
stefank@2314 36 #include "opto/parse.hpp"
stefank@2314 37 #include "opto/runtime.hpp"
stefank@2314 38 #include "opto/subnode.hpp"
stefank@2314 39 #include "prims/nativeLookup.hpp"
stefank@2314 40 #include "runtime/sharedRuntime.hpp"
duke@435 41
duke@435 42 class LibraryIntrinsic : public InlineCallGenerator {
duke@435 43 // Extend the set of intrinsics known to the runtime:
duke@435 44 public:
duke@435 45 private:
duke@435 46 bool _is_virtual;
duke@435 47 vmIntrinsics::ID _intrinsic_id;
duke@435 48
duke@435 49 public:
duke@435 50 LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
duke@435 51 : InlineCallGenerator(m),
duke@435 52 _is_virtual(is_virtual),
duke@435 53 _intrinsic_id(id)
duke@435 54 {
duke@435 55 }
duke@435 56 virtual bool is_intrinsic() const { return true; }
duke@435 57 virtual bool is_virtual() const { return _is_virtual; }
duke@435 58 virtual JVMState* generate(JVMState* jvms);
duke@435 59 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
duke@435 60 };
duke@435 61
duke@435 62
duke@435 63 // Local helper class for LibraryIntrinsic:
duke@435 64 class LibraryCallKit : public GraphKit {
duke@435 65 private:
duke@435 66 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
duke@435 67
duke@435 68 public:
duke@435 69 LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
duke@435 70 : GraphKit(caller),
duke@435 71 _intrinsic(intrinsic)
duke@435 72 {
duke@435 73 }
duke@435 74
duke@435 75 ciMethod* caller() const { return jvms()->method(); }
duke@435 76 int bci() const { return jvms()->bci(); }
duke@435 77 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
duke@435 78 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
duke@435 79 ciMethod* callee() const { return _intrinsic->method(); }
duke@435 80 ciSignature* signature() const { return callee()->signature(); }
duke@435 81 int arg_size() const { return callee()->arg_size(); }
duke@435 82
duke@435 83 bool try_to_inline();
duke@435 84
duke@435 85 // Helper functions to inline natives
duke@435 86 void push_result(RegionNode* region, PhiNode* value);
duke@435 87 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
duke@435 88 Node* generate_slow_guard(Node* test, RegionNode* region);
duke@435 89 Node* generate_fair_guard(Node* test, RegionNode* region);
duke@435 90 Node* generate_negative_guard(Node* index, RegionNode* region,
duke@435 91 // resulting CastII of index:
duke@435 92 Node* *pos_index = NULL);
duke@435 93 Node* generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 94 // resulting CastII of index:
duke@435 95 Node* *pos_index = NULL);
duke@435 96 Node* generate_limit_guard(Node* offset, Node* subseq_length,
duke@435 97 Node* array_length,
duke@435 98 RegionNode* region);
duke@435 99 Node* generate_current_thread(Node* &tls_output);
duke@435 100 address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
iveresov@2606 101 bool disjoint_bases, const char* &name, bool dest_uninitialized);
duke@435 102 Node* load_mirror_from_klass(Node* klass);
duke@435 103 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
duke@435 104 int nargs,
duke@435 105 RegionNode* region, int null_path,
duke@435 106 int offset);
duke@435 107 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
duke@435 108 RegionNode* region, int null_path) {
duke@435 109 int offset = java_lang_Class::klass_offset_in_bytes();
duke@435 110 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 111 region, null_path,
duke@435 112 offset);
duke@435 113 }
duke@435 114 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 115 int nargs,
duke@435 116 RegionNode* region, int null_path) {
duke@435 117 int offset = java_lang_Class::array_klass_offset_in_bytes();
duke@435 118 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 119 region, null_path,
duke@435 120 offset);
duke@435 121 }
duke@435 122 Node* generate_access_flags_guard(Node* kls,
duke@435 123 int modifier_mask, int modifier_bits,
duke@435 124 RegionNode* region);
duke@435 125 Node* generate_interface_guard(Node* kls, RegionNode* region);
duke@435 126 Node* generate_array_guard(Node* kls, RegionNode* region) {
duke@435 127 return generate_array_guard_common(kls, region, false, false);
duke@435 128 }
duke@435 129 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
duke@435 130 return generate_array_guard_common(kls, region, false, true);
duke@435 131 }
duke@435 132 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
duke@435 133 return generate_array_guard_common(kls, region, true, false);
duke@435 134 }
duke@435 135 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
duke@435 136 return generate_array_guard_common(kls, region, true, true);
duke@435 137 }
duke@435 138 Node* generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 139 bool obj_array, bool not_array);
duke@435 140 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
duke@435 141 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
duke@435 142 bool is_virtual = false, bool is_static = false);
duke@435 143 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
duke@435 144 return generate_method_call(method_id, false, true);
duke@435 145 }
duke@435 146 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
duke@435 147 return generate_method_call(method_id, true, false);
duke@435 148 }
duke@435 149
kvn@3760 150 Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
kvn@3760 151 Node* make_string_method_node(int opcode, Node* str1, Node* str2);
duke@435 152 bool inline_string_compareTo();
duke@435 153 bool inline_string_indexOf();
duke@435 154 Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
cfang@1116 155 bool inline_string_equals();
duke@435 156 Node* pop_math_arg();
duke@435 157 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 158 bool inline_math_native(vmIntrinsics::ID id);
duke@435 159 bool inline_trig(vmIntrinsics::ID id);
duke@435 160 bool inline_trans(vmIntrinsics::ID id);
duke@435 161 bool inline_abs(vmIntrinsics::ID id);
duke@435 162 bool inline_sqrt(vmIntrinsics::ID id);
duke@435 163 bool inline_pow(vmIntrinsics::ID id);
duke@435 164 bool inline_exp(vmIntrinsics::ID id);
duke@435 165 bool inline_min_max(vmIntrinsics::ID id);
duke@435 166 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
duke@435 167 // This returns Type::AnyPtr, RawPtr, or OopPtr.
duke@435 168 int classify_unsafe_addr(Node* &base, Node* &offset);
duke@435 169 Node* make_unsafe_address(Node* base, Node* offset);
johnc@2781 170 // Helper for inline_unsafe_access.
johnc@2781 171 // Generates the guards that check whether the result of
johnc@2781 172 // Unsafe.getObject should be recorded in an SATB log buffer.
johnc@2781 173 void insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val);
duke@435 174 bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
duke@435 175 bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
duke@435 176 bool inline_unsafe_allocate();
duke@435 177 bool inline_unsafe_copyMemory();
duke@435 178 bool inline_native_currentThread();
rbackman@3709 179 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 180 bool inline_native_classID();
rbackman@3709 181 bool inline_native_threadID();
rbackman@3709 182 #endif
rbackman@3709 183 bool inline_native_time_funcs(address method, const char* funcName);
duke@435 184 bool inline_native_isInterrupted();
duke@435 185 bool inline_native_Class_query(vmIntrinsics::ID id);
duke@435 186 bool inline_native_subtype_check();
duke@435 187
duke@435 188 bool inline_native_newArray();
duke@435 189 bool inline_native_getLength();
duke@435 190 bool inline_array_copyOf(bool is_copyOfRange);
rasbold@604 191 bool inline_array_equals();
kvn@1268 192 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
duke@435 193 bool inline_native_clone(bool is_virtual);
duke@435 194 bool inline_native_Reflection_getCallerClass();
duke@435 195 bool inline_native_AtomicLong_get();
duke@435 196 bool inline_native_AtomicLong_attemptUpdate();
duke@435 197 bool is_method_invoke_or_aux_frame(JVMState* jvms);
duke@435 198 // Helper function for inlining native object hash method
duke@435 199 bool inline_native_hashcode(bool is_virtual, bool is_static);
duke@435 200 bool inline_native_getClass();
duke@435 201
duke@435 202 // Helper functions for inlining arraycopy
duke@435 203 bool inline_arraycopy();
duke@435 204 void generate_arraycopy(const TypePtr* adr_type,
duke@435 205 BasicType basic_elem_type,
duke@435 206 Node* src, Node* src_offset,
duke@435 207 Node* dest, Node* dest_offset,
duke@435 208 Node* copy_length,
duke@435 209 bool disjoint_bases = false,
duke@435 210 bool length_never_negative = false,
duke@435 211 RegionNode* slow_region = NULL);
duke@435 212 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
duke@435 213 RegionNode* slow_region);
duke@435 214 void generate_clear_array(const TypePtr* adr_type,
duke@435 215 Node* dest,
duke@435 216 BasicType basic_elem_type,
duke@435 217 Node* slice_off,
duke@435 218 Node* slice_len,
duke@435 219 Node* slice_end);
duke@435 220 bool generate_block_arraycopy(const TypePtr* adr_type,
duke@435 221 BasicType basic_elem_type,
duke@435 222 AllocateNode* alloc,
duke@435 223 Node* src, Node* src_offset,
duke@435 224 Node* dest, Node* dest_offset,
iveresov@2606 225 Node* dest_size, bool dest_uninitialized);
duke@435 226 void generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 227 Node* src, Node* src_offset,
duke@435 228 Node* dest, Node* dest_offset,
iveresov@2606 229 Node* copy_length, bool dest_uninitialized);
duke@435 230 Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 231 Node* dest_elem_klass,
duke@435 232 Node* src, Node* src_offset,
duke@435 233 Node* dest, Node* dest_offset,
iveresov@2606 234 Node* copy_length, bool dest_uninitialized);
duke@435 235 Node* generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 236 Node* src, Node* src_offset,
duke@435 237 Node* dest, Node* dest_offset,
iveresov@2606 238 Node* copy_length, bool dest_uninitialized);
duke@435 239 void generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 240 BasicType basic_elem_type,
duke@435 241 bool disjoint_bases,
duke@435 242 Node* src, Node* src_offset,
duke@435 243 Node* dest, Node* dest_offset,
iveresov@2606 244 Node* copy_length, bool dest_uninitialized);
duke@435 245 bool inline_unsafe_CAS(BasicType type);
duke@435 246 bool inline_unsafe_ordered_store(BasicType type);
duke@435 247 bool inline_fp_conversions(vmIntrinsics::ID id);
twisti@1210 248 bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
twisti@1210 249 bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
twisti@1078 250 bool inline_bitCount(vmIntrinsics::ID id);
duke@435 251 bool inline_reverseBytes(vmIntrinsics::ID id);
johnc@2781 252
johnc@2781 253 bool inline_reference_get();
duke@435 254 };
duke@435 255
duke@435 256
duke@435 257 //---------------------------make_vm_intrinsic----------------------------
duke@435 258 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 259 vmIntrinsics::ID id = m->intrinsic_id();
duke@435 260 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
duke@435 261
duke@435 262 if (DisableIntrinsic[0] != '\0'
duke@435 263 && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
duke@435 264 // disabled by a user request on the command line:
duke@435 265 // example: -XX:DisableIntrinsic=_hashCode,_getClass
duke@435 266 return NULL;
duke@435 267 }
duke@435 268
duke@435 269 if (!m->is_loaded()) {
duke@435 270 // do not attempt to inline unloaded methods
duke@435 271 return NULL;
duke@435 272 }
duke@435 273
duke@435 274 // Only a few intrinsics implement a virtual dispatch.
duke@435 275 // They are expensive calls which are also frequently overridden.
duke@435 276 if (is_virtual) {
duke@435 277 switch (id) {
duke@435 278 case vmIntrinsics::_hashCode:
duke@435 279 case vmIntrinsics::_clone:
duke@435 280 // OK, Object.hashCode and Object.clone intrinsics come in both flavors
duke@435 281 break;
duke@435 282 default:
duke@435 283 return NULL;
duke@435 284 }
duke@435 285 }
duke@435 286
duke@435 287 // -XX:-InlineNatives disables nearly all intrinsics:
duke@435 288 if (!InlineNatives) {
duke@435 289 switch (id) {
duke@435 290 case vmIntrinsics::_indexOf:
duke@435 291 case vmIntrinsics::_compareTo:
cfang@1116 292 case vmIntrinsics::_equals:
rasbold@604 293 case vmIntrinsics::_equalsC:
duke@435 294 break; // InlineNatives does not control String.compareTo
duke@435 295 default:
duke@435 296 return NULL;
duke@435 297 }
duke@435 298 }
duke@435 299
duke@435 300 switch (id) {
duke@435 301 case vmIntrinsics::_compareTo:
duke@435 302 if (!SpecialStringCompareTo) return NULL;
duke@435 303 break;
duke@435 304 case vmIntrinsics::_indexOf:
duke@435 305 if (!SpecialStringIndexOf) return NULL;
duke@435 306 break;
cfang@1116 307 case vmIntrinsics::_equals:
cfang@1116 308 if (!SpecialStringEquals) return NULL;
cfang@1116 309 break;
rasbold@604 310 case vmIntrinsics::_equalsC:
rasbold@604 311 if (!SpecialArraysEquals) return NULL;
rasbold@604 312 break;
duke@435 313 case vmIntrinsics::_arraycopy:
duke@435 314 if (!InlineArrayCopy) return NULL;
duke@435 315 break;
duke@435 316 case vmIntrinsics::_copyMemory:
duke@435 317 if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
duke@435 318 if (!InlineArrayCopy) return NULL;
duke@435 319 break;
duke@435 320 case vmIntrinsics::_hashCode:
duke@435 321 if (!InlineObjectHash) return NULL;
duke@435 322 break;
duke@435 323 case vmIntrinsics::_clone:
duke@435 324 case vmIntrinsics::_copyOf:
duke@435 325 case vmIntrinsics::_copyOfRange:
duke@435 326 if (!InlineObjectCopy) return NULL;
duke@435 327 // These also use the arraycopy intrinsic mechanism:
duke@435 328 if (!InlineArrayCopy) return NULL;
duke@435 329 break;
duke@435 330 case vmIntrinsics::_checkIndex:
duke@435 331 // We do not intrinsify this. The optimizer does fine with it.
duke@435 332 return NULL;
duke@435 333
duke@435 334 case vmIntrinsics::_get_AtomicLong:
duke@435 335 case vmIntrinsics::_attemptUpdate:
duke@435 336 if (!InlineAtomicLong) return NULL;
duke@435 337 break;
duke@435 338
duke@435 339 case vmIntrinsics::_getCallerClass:
duke@435 340 if (!UseNewReflection) return NULL;
duke@435 341 if (!InlineReflectionGetCallerClass) return NULL;
duke@435 342 if (!JDK_Version::is_gte_jdk14x_version()) return NULL;
duke@435 343 break;
duke@435 344
twisti@1078 345 case vmIntrinsics::_bitCount_i:
never@3637 346 if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
never@3631 347 break;
never@3631 348
twisti@1078 349 case vmIntrinsics::_bitCount_l:
never@3637 350 if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
never@3631 351 break;
never@3631 352
never@3631 353 case vmIntrinsics::_numberOfLeadingZeros_i:
never@3631 354 if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
never@3631 355 break;
never@3631 356
never@3631 357 case vmIntrinsics::_numberOfLeadingZeros_l:
never@3631 358 if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
never@3631 359 break;
never@3631 360
never@3631 361 case vmIntrinsics::_numberOfTrailingZeros_i:
never@3631 362 if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
never@3631 363 break;
never@3631 364
never@3631 365 case vmIntrinsics::_numberOfTrailingZeros_l:
never@3631 366 if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
twisti@1078 367 break;
twisti@1078 368
johnc@2781 369 case vmIntrinsics::_Reference_get:
johnc@2781 370 // It is only when G1 is enabled that we absolutely
johnc@2781 371 // need to use the intrinsic version of Reference.get()
johnc@2781 372 // so that the value in the referent field, if necessary,
johnc@2781 373 // can be registered by the pre-barrier code.
johnc@2781 374 if (!UseG1GC) return NULL;
johnc@2781 375 break;
johnc@2781 376
duke@435 377 default:
jrose@1291 378 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
jrose@1291 379 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
duke@435 380 break;
duke@435 381 }
duke@435 382
duke@435 383 // -XX:-InlineClassNatives disables natives from the Class class.
duke@435 384 // The flag applies to all reflective calls, notably Array.newArray
duke@435 385 // (visible to Java programmers as Array.newInstance).
duke@435 386 if (m->holder()->name() == ciSymbol::java_lang_Class() ||
duke@435 387 m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
duke@435 388 if (!InlineClassNatives) return NULL;
duke@435 389 }
duke@435 390
duke@435 391 // -XX:-InlineThreadNatives disables natives from the Thread class.
duke@435 392 if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
duke@435 393 if (!InlineThreadNatives) return NULL;
duke@435 394 }
duke@435 395
duke@435 396 // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
duke@435 397 if (m->holder()->name() == ciSymbol::java_lang_Math() ||
duke@435 398 m->holder()->name() == ciSymbol::java_lang_Float() ||
duke@435 399 m->holder()->name() == ciSymbol::java_lang_Double()) {
duke@435 400 if (!InlineMathNatives) return NULL;
duke@435 401 }
duke@435 402
duke@435 403 // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
duke@435 404 if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
duke@435 405 if (!InlineUnsafeOps) return NULL;
duke@435 406 }
duke@435 407
duke@435 408 return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
duke@435 409 }
duke@435 410
duke@435 411 //----------------------register_library_intrinsics-----------------------
duke@435 412 // Initialize this file's data structures, for each Compile instance.
duke@435 413 void Compile::register_library_intrinsics() {
duke@435 414 // Nothing to do here.
duke@435 415 }
duke@435 416
duke@435 417 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
duke@435 418 LibraryCallKit kit(jvms, this);
duke@435 419 Compile* C = kit.C;
duke@435 420 int nodes = C->unique();
duke@435 421 #ifndef PRODUCT
duke@435 422 if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
duke@435 423 char buf[1000];
duke@435 424 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
duke@435 425 tty->print_cr("Intrinsic %s", str);
duke@435 426 }
duke@435 427 #endif
johnc@2781 428
duke@435 429 if (kit.try_to_inline()) {
duke@435 430 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
twisti@2687 431 CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
duke@435 432 }
duke@435 433 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
duke@435 434 if (C->log()) {
duke@435 435 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
duke@435 436 vmIntrinsics::name_at(intrinsic_id()),
duke@435 437 (is_virtual() ? " virtual='1'" : ""),
duke@435 438 C->unique() - nodes);
duke@435 439 }
duke@435 440 return kit.transfer_exceptions_into_jvms();
duke@435 441 }
duke@435 442
never@3631 443 // The intrinsic bailed out
never@3631 444 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
johnc@2781 445 if (jvms->has_method()) {
johnc@2781 446 // Not a root compile.
never@3631 447 const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
never@3631 448 CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), msg);
johnc@2781 449 } else {
johnc@2781 450 // Root compile
johnc@2781 451 tty->print("Did not generate intrinsic %s%s at bci:%d in",
jrose@1291 452 vmIntrinsics::name_at(intrinsic_id()),
jrose@1291 453 (is_virtual() ? " (virtual)" : ""), kit.bci());
johnc@2781 454 }
duke@435 455 }
duke@435 456 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
duke@435 457 return NULL;
duke@435 458 }
duke@435 459
duke@435 460 bool LibraryCallKit::try_to_inline() {
duke@435 461 // Handle symbolic names for otherwise undistinguished boolean switches:
duke@435 462 const bool is_store = true;
duke@435 463 const bool is_native_ptr = true;
duke@435 464 const bool is_static = true;
duke@435 465
johnc@2781 466 if (!jvms()->has_method()) {
johnc@2781 467 // Root JVMState has a null method.
johnc@2781 468 assert(map()->memory()->Opcode() == Op_Parm, "");
johnc@2781 469 // Insert the memory aliasing node
johnc@2781 470 set_all_memory(reset_memory());
johnc@2781 471 }
johnc@2781 472 assert(merged_memory(), "");
johnc@2781 473
duke@435 474 switch (intrinsic_id()) {
duke@435 475 case vmIntrinsics::_hashCode:
duke@435 476 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
duke@435 477 case vmIntrinsics::_identityHashCode:
duke@435 478 return inline_native_hashcode(/*!virtual*/ false, is_static);
duke@435 479 case vmIntrinsics::_getClass:
duke@435 480 return inline_native_getClass();
duke@435 481
duke@435 482 case vmIntrinsics::_dsin:
duke@435 483 case vmIntrinsics::_dcos:
duke@435 484 case vmIntrinsics::_dtan:
duke@435 485 case vmIntrinsics::_dabs:
duke@435 486 case vmIntrinsics::_datan2:
duke@435 487 case vmIntrinsics::_dsqrt:
duke@435 488 case vmIntrinsics::_dexp:
duke@435 489 case vmIntrinsics::_dlog:
duke@435 490 case vmIntrinsics::_dlog10:
duke@435 491 case vmIntrinsics::_dpow:
duke@435 492 return inline_math_native(intrinsic_id());
duke@435 493
duke@435 494 case vmIntrinsics::_min:
duke@435 495 case vmIntrinsics::_max:
duke@435 496 return inline_min_max(intrinsic_id());
duke@435 497
duke@435 498 case vmIntrinsics::_arraycopy:
duke@435 499 return inline_arraycopy();
duke@435 500
duke@435 501 case vmIntrinsics::_compareTo:
duke@435 502 return inline_string_compareTo();
duke@435 503 case vmIntrinsics::_indexOf:
duke@435 504 return inline_string_indexOf();
cfang@1116 505 case vmIntrinsics::_equals:
cfang@1116 506 return inline_string_equals();
duke@435 507
duke@435 508 case vmIntrinsics::_getObject:
duke@435 509 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
duke@435 510 case vmIntrinsics::_getBoolean:
duke@435 511 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
duke@435 512 case vmIntrinsics::_getByte:
duke@435 513 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
duke@435 514 case vmIntrinsics::_getShort:
duke@435 515 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
duke@435 516 case vmIntrinsics::_getChar:
duke@435 517 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
duke@435 518 case vmIntrinsics::_getInt:
duke@435 519 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
duke@435 520 case vmIntrinsics::_getLong:
duke@435 521 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
duke@435 522 case vmIntrinsics::_getFloat:
duke@435 523 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
duke@435 524 case vmIntrinsics::_getDouble:
duke@435 525 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 526
duke@435 527 case vmIntrinsics::_putObject:
duke@435 528 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
duke@435 529 case vmIntrinsics::_putBoolean:
duke@435 530 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
duke@435 531 case vmIntrinsics::_putByte:
duke@435 532 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
duke@435 533 case vmIntrinsics::_putShort:
duke@435 534 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
duke@435 535 case vmIntrinsics::_putChar:
duke@435 536 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
duke@435 537 case vmIntrinsics::_putInt:
duke@435 538 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
duke@435 539 case vmIntrinsics::_putLong:
duke@435 540 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
duke@435 541 case vmIntrinsics::_putFloat:
duke@435 542 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
duke@435 543 case vmIntrinsics::_putDouble:
duke@435 544 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
duke@435 545
duke@435 546 case vmIntrinsics::_getByte_raw:
duke@435 547 return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
duke@435 548 case vmIntrinsics::_getShort_raw:
duke@435 549 return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
duke@435 550 case vmIntrinsics::_getChar_raw:
duke@435 551 return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
duke@435 552 case vmIntrinsics::_getInt_raw:
duke@435 553 return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
duke@435 554 case vmIntrinsics::_getLong_raw:
duke@435 555 return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
duke@435 556 case vmIntrinsics::_getFloat_raw:
duke@435 557 return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
duke@435 558 case vmIntrinsics::_getDouble_raw:
duke@435 559 return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 560 case vmIntrinsics::_getAddress_raw:
duke@435 561 return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
duke@435 562
duke@435 563 case vmIntrinsics::_putByte_raw:
duke@435 564 return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
duke@435 565 case vmIntrinsics::_putShort_raw:
duke@435 566 return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
duke@435 567 case vmIntrinsics::_putChar_raw:
duke@435 568 return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
duke@435 569 case vmIntrinsics::_putInt_raw:
duke@435 570 return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
duke@435 571 case vmIntrinsics::_putLong_raw:
duke@435 572 return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
duke@435 573 case vmIntrinsics::_putFloat_raw:
duke@435 574 return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
duke@435 575 case vmIntrinsics::_putDouble_raw:
duke@435 576 return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
duke@435 577 case vmIntrinsics::_putAddress_raw:
duke@435 578 return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
duke@435 579
duke@435 580 case vmIntrinsics::_getObjectVolatile:
duke@435 581 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
duke@435 582 case vmIntrinsics::_getBooleanVolatile:
duke@435 583 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
duke@435 584 case vmIntrinsics::_getByteVolatile:
duke@435 585 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
duke@435 586 case vmIntrinsics::_getShortVolatile:
duke@435 587 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
duke@435 588 case vmIntrinsics::_getCharVolatile:
duke@435 589 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
duke@435 590 case vmIntrinsics::_getIntVolatile:
duke@435 591 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
duke@435 592 case vmIntrinsics::_getLongVolatile:
duke@435 593 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
duke@435 594 case vmIntrinsics::_getFloatVolatile:
duke@435 595 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
duke@435 596 case vmIntrinsics::_getDoubleVolatile:
duke@435 597 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
duke@435 598
duke@435 599 case vmIntrinsics::_putObjectVolatile:
duke@435 600 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
duke@435 601 case vmIntrinsics::_putBooleanVolatile:
duke@435 602 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
duke@435 603 case vmIntrinsics::_putByteVolatile:
duke@435 604 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
duke@435 605 case vmIntrinsics::_putShortVolatile:
duke@435 606 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
duke@435 607 case vmIntrinsics::_putCharVolatile:
duke@435 608 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
duke@435 609 case vmIntrinsics::_putIntVolatile:
duke@435 610 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
duke@435 611 case vmIntrinsics::_putLongVolatile:
duke@435 612 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
duke@435 613 case vmIntrinsics::_putFloatVolatile:
duke@435 614 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
duke@435 615 case vmIntrinsics::_putDoubleVolatile:
duke@435 616 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
duke@435 617
duke@435 618 case vmIntrinsics::_prefetchRead:
duke@435 619 return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
duke@435 620 case vmIntrinsics::_prefetchWrite:
duke@435 621 return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
duke@435 622 case vmIntrinsics::_prefetchReadStatic:
duke@435 623 return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
duke@435 624 case vmIntrinsics::_prefetchWriteStatic:
duke@435 625 return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
duke@435 626
duke@435 627 case vmIntrinsics::_compareAndSwapObject:
duke@435 628 return inline_unsafe_CAS(T_OBJECT);
duke@435 629 case vmIntrinsics::_compareAndSwapInt:
duke@435 630 return inline_unsafe_CAS(T_INT);
duke@435 631 case vmIntrinsics::_compareAndSwapLong:
duke@435 632 return inline_unsafe_CAS(T_LONG);
duke@435 633
duke@435 634 case vmIntrinsics::_putOrderedObject:
duke@435 635 return inline_unsafe_ordered_store(T_OBJECT);
duke@435 636 case vmIntrinsics::_putOrderedInt:
duke@435 637 return inline_unsafe_ordered_store(T_INT);
duke@435 638 case vmIntrinsics::_putOrderedLong:
duke@435 639 return inline_unsafe_ordered_store(T_LONG);
duke@435 640
duke@435 641 case vmIntrinsics::_currentThread:
duke@435 642 return inline_native_currentThread();
duke@435 643 case vmIntrinsics::_isInterrupted:
duke@435 644 return inline_native_isInterrupted();
duke@435 645
rbackman@3709 646 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 647 case vmIntrinsics::_classID:
rbackman@3709 648 return inline_native_classID();
rbackman@3709 649 case vmIntrinsics::_threadID:
rbackman@3709 650 return inline_native_threadID();
rbackman@3709 651 case vmIntrinsics::_counterTime:
rbackman@3709 652 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
rbackman@3709 653 #endif
duke@435 654 case vmIntrinsics::_currentTimeMillis:
rbackman@3709 655 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
duke@435 656 case vmIntrinsics::_nanoTime:
rbackman@3709 657 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
duke@435 658 case vmIntrinsics::_allocateInstance:
duke@435 659 return inline_unsafe_allocate();
duke@435 660 case vmIntrinsics::_copyMemory:
duke@435 661 return inline_unsafe_copyMemory();
duke@435 662 case vmIntrinsics::_newArray:
duke@435 663 return inline_native_newArray();
duke@435 664 case vmIntrinsics::_getLength:
duke@435 665 return inline_native_getLength();
duke@435 666 case vmIntrinsics::_copyOf:
duke@435 667 return inline_array_copyOf(false);
duke@435 668 case vmIntrinsics::_copyOfRange:
duke@435 669 return inline_array_copyOf(true);
rasbold@604 670 case vmIntrinsics::_equalsC:
rasbold@604 671 return inline_array_equals();
duke@435 672 case vmIntrinsics::_clone:
duke@435 673 return inline_native_clone(intrinsic()->is_virtual());
duke@435 674
duke@435 675 case vmIntrinsics::_isAssignableFrom:
duke@435 676 return inline_native_subtype_check();
duke@435 677
duke@435 678 case vmIntrinsics::_isInstance:
duke@435 679 case vmIntrinsics::_getModifiers:
duke@435 680 case vmIntrinsics::_isInterface:
duke@435 681 case vmIntrinsics::_isArray:
duke@435 682 case vmIntrinsics::_isPrimitive:
duke@435 683 case vmIntrinsics::_getSuperclass:
duke@435 684 case vmIntrinsics::_getComponentType:
duke@435 685 case vmIntrinsics::_getClassAccessFlags:
duke@435 686 return inline_native_Class_query(intrinsic_id());
duke@435 687
duke@435 688 case vmIntrinsics::_floatToRawIntBits:
duke@435 689 case vmIntrinsics::_floatToIntBits:
duke@435 690 case vmIntrinsics::_intBitsToFloat:
duke@435 691 case vmIntrinsics::_doubleToRawLongBits:
duke@435 692 case vmIntrinsics::_doubleToLongBits:
duke@435 693 case vmIntrinsics::_longBitsToDouble:
duke@435 694 return inline_fp_conversions(intrinsic_id());
duke@435 695
twisti@1210 696 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 697 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 698 return inline_numberOfLeadingZeros(intrinsic_id());
twisti@1210 699
twisti@1210 700 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 701 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 702 return inline_numberOfTrailingZeros(intrinsic_id());
twisti@1210 703
twisti@1078 704 case vmIntrinsics::_bitCount_i:
twisti@1078 705 case vmIntrinsics::_bitCount_l:
twisti@1078 706 return inline_bitCount(intrinsic_id());
twisti@1078 707
duke@435 708 case vmIntrinsics::_reverseBytes_i:
duke@435 709 case vmIntrinsics::_reverseBytes_l:
never@1831 710 case vmIntrinsics::_reverseBytes_s:
never@1831 711 case vmIntrinsics::_reverseBytes_c:
duke@435 712 return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
duke@435 713
duke@435 714 case vmIntrinsics::_get_AtomicLong:
duke@435 715 return inline_native_AtomicLong_get();
duke@435 716 case vmIntrinsics::_attemptUpdate:
duke@435 717 return inline_native_AtomicLong_attemptUpdate();
duke@435 718
duke@435 719 case vmIntrinsics::_getCallerClass:
duke@435 720 return inline_native_Reflection_getCallerClass();
duke@435 721
johnc@2781 722 case vmIntrinsics::_Reference_get:
johnc@2781 723 return inline_reference_get();
johnc@2781 724
duke@435 725 default:
duke@435 726 // If you get here, it may be that someone has added a new intrinsic
duke@435 727 // to the list in vmSymbols.hpp without implementing it here.
duke@435 728 #ifndef PRODUCT
duke@435 729 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
duke@435 730 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
duke@435 731 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
duke@435 732 }
duke@435 733 #endif
duke@435 734 return false;
duke@435 735 }
duke@435 736 }
duke@435 737
duke@435 738 //------------------------------push_result------------------------------
duke@435 739 // Helper function for finishing intrinsics.
duke@435 740 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
duke@435 741 record_for_igvn(region);
duke@435 742 set_control(_gvn.transform(region));
duke@435 743 BasicType value_type = value->type()->basic_type();
duke@435 744 push_node(value_type, _gvn.transform(value));
duke@435 745 }
duke@435 746
duke@435 747 //------------------------------generate_guard---------------------------
duke@435 748 // Helper function for generating guarded fast-slow graph structures.
duke@435 749 // The given 'test', if true, guards a slow path. If the test fails
duke@435 750 // then a fast path can be taken. (We generally hope it fails.)
duke@435 751 // In all cases, GraphKit::control() is updated to the fast path.
duke@435 752 // The returned value represents the control for the slow path.
duke@435 753 // The return value is never 'top'; it is either a valid control
duke@435 754 // or NULL if it is obvious that the slow path can never be taken.
duke@435 755 // Also, if region and the slow control are not NULL, the slow edge
duke@435 756 // is appended to the region.
duke@435 757 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
duke@435 758 if (stopped()) {
duke@435 759 // Already short circuited.
duke@435 760 return NULL;
duke@435 761 }
duke@435 762
duke@435 763 // Build an if node and its projections.
duke@435 764 // If test is true we take the slow path, which we assume is uncommon.
duke@435 765 if (_gvn.type(test) == TypeInt::ZERO) {
duke@435 766 // The slow branch is never taken. No need to build this guard.
duke@435 767 return NULL;
duke@435 768 }
duke@435 769
duke@435 770 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
duke@435 771
duke@435 772 Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
duke@435 773 if (if_slow == top()) {
duke@435 774 // The slow branch is never taken. No need to build this guard.
duke@435 775 return NULL;
duke@435 776 }
duke@435 777
duke@435 778 if (region != NULL)
duke@435 779 region->add_req(if_slow);
duke@435 780
duke@435 781 Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
duke@435 782 set_control(if_fast);
duke@435 783
duke@435 784 return if_slow;
duke@435 785 }
duke@435 786
duke@435 787 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
duke@435 788 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
duke@435 789 }
duke@435 790 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
duke@435 791 return generate_guard(test, region, PROB_FAIR);
duke@435 792 }
duke@435 793
duke@435 794 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
duke@435 795 Node* *pos_index) {
duke@435 796 if (stopped())
duke@435 797 return NULL; // already stopped
duke@435 798 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
duke@435 799 return NULL; // index is already adequately typed
duke@435 800 Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 801 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 802 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
duke@435 803 if (is_neg != NULL && pos_index != NULL) {
duke@435 804 // Emulate effect of Parse::adjust_map_after_if.
duke@435 805 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
duke@435 806 ccast->set_req(0, control());
duke@435 807 (*pos_index) = _gvn.transform(ccast);
duke@435 808 }
duke@435 809 return is_neg;
duke@435 810 }
duke@435 811
duke@435 812 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 813 Node* *pos_index) {
duke@435 814 if (stopped())
duke@435 815 return NULL; // already stopped
duke@435 816 if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
duke@435 817 return NULL; // index is already adequately typed
duke@435 818 Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 819 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
duke@435 820 Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
duke@435 821 Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
duke@435 822 if (is_notp != NULL && pos_index != NULL) {
duke@435 823 // Emulate effect of Parse::adjust_map_after_if.
duke@435 824 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
duke@435 825 ccast->set_req(0, control());
duke@435 826 (*pos_index) = _gvn.transform(ccast);
duke@435 827 }
duke@435 828 return is_notp;
duke@435 829 }
duke@435 830
duke@435 831 // Make sure that 'position' is a valid limit index, in [0..length].
duke@435 832 // There are two equivalent plans for checking this:
duke@435 833 // A. (offset + copyLength) unsigned<= arrayLength
duke@435 834 // B. offset <= (arrayLength - copyLength)
duke@435 835 // We require that all of the values above, except for the sum and
duke@435 836 // difference, are already known to be non-negative.
duke@435 837 // Plan A is robust in the face of overflow, if offset and copyLength
duke@435 838 // are both hugely positive.
duke@435 839 //
duke@435 840 // Plan B is less direct and intuitive, but it does not overflow at
duke@435 841 // all, since the difference of two non-negatives is always
duke@435 842 // representable. Whenever Java methods must perform the equivalent
duke@435 843 // check they generally use Plan B instead of Plan A.
duke@435 844 // For the moment we use Plan A.
duke@435 845 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
duke@435 846 Node* subseq_length,
duke@435 847 Node* array_length,
duke@435 848 RegionNode* region) {
duke@435 849 if (stopped())
duke@435 850 return NULL; // already stopped
duke@435 851 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
kvn@3407 852 if (zero_offset && subseq_length->eqv_uncast(array_length))
duke@435 853 return NULL; // common case of whole-array copy
duke@435 854 Node* last = subseq_length;
duke@435 855 if (!zero_offset) // last += offset
duke@435 856 last = _gvn.transform( new (C, 3) AddINode(last, offset));
duke@435 857 Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
duke@435 858 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 859 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
duke@435 860 return is_over;
duke@435 861 }
duke@435 862
duke@435 863
duke@435 864 //--------------------------generate_current_thread--------------------
duke@435 865 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
duke@435 866 ciKlass* thread_klass = env()->Thread_klass();
duke@435 867 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
duke@435 868 Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
duke@435 869 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
duke@435 870 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
duke@435 871 tls_output = thread;
duke@435 872 return threadObj;
duke@435 873 }
duke@435 874
duke@435 875
kvn@1421 876 //------------------------------make_string_method_node------------------------
kvn@3760 877 // Helper method for String intrinsic functions. This version is called
kvn@3760 878 // with str1 and str2 pointing to String object nodes.
kvn@3760 879 //
kvn@3760 880 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
kvn@1421 881 Node* no_ctrl = NULL;
kvn@1421 882
kvn@3760 883 // Get start addr of string
kvn@3760 884 Node* str1_value = load_String_value(no_ctrl, str1);
kvn@3760 885 Node* str1_offset = load_String_offset(no_ctrl, str1);
kvn@1421 886 Node* str1_start = array_element_address(str1_value, str1_offset, T_CHAR);
kvn@1421 887
kvn@3760 888 // Get length of string 1
kvn@3760 889 Node* str1_len = load_String_length(no_ctrl, str1);
kvn@3760 890
kvn@3760 891 Node* str2_value = load_String_value(no_ctrl, str2);
kvn@3760 892 Node* str2_offset = load_String_offset(no_ctrl, str2);
kvn@1421 893 Node* str2_start = array_element_address(str2_value, str2_offset, T_CHAR);
kvn@1421 894
kvn@3760 895 Node* str2_len = NULL;
kvn@1421 896 Node* result = NULL;
kvn@3760 897
kvn@1421 898 switch (opcode) {
kvn@1421 899 case Op_StrIndexOf:
kvn@3760 900 // Get length of string 2
kvn@3760 901 str2_len = load_String_length(no_ctrl, str2);
kvn@3760 902
kvn@1421 903 result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 904 str1_start, str1_len, str2_start, str2_len);
kvn@1421 905 break;
kvn@1421 906 case Op_StrComp:
kvn@3760 907 // Get length of string 2
kvn@3760 908 str2_len = load_String_length(no_ctrl, str2);
kvn@3760 909
kvn@1421 910 result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 911 str1_start, str1_len, str2_start, str2_len);
kvn@1421 912 break;
kvn@1421 913 case Op_StrEquals:
kvn@1421 914 result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 915 str1_start, str2_start, str1_len);
kvn@1421 916 break;
kvn@1421 917 default:
kvn@1421 918 ShouldNotReachHere();
kvn@1421 919 return NULL;
kvn@1421 920 }
kvn@1421 921
kvn@1421 922 // All these intrinsics have checks.
kvn@1421 923 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@1421 924
kvn@1421 925 return _gvn.transform(result);
kvn@1421 926 }
kvn@1421 927
kvn@3760 928 // Helper method for String intrinsic functions. This version is called
kvn@3760 929 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
kvn@3760 930 // to Int nodes containing the lenghts of str1 and str2.
kvn@3760 931 //
kvn@3760 932 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
kvn@3760 933
kvn@3760 934 Node* result = NULL;
kvn@3760 935 switch (opcode) {
kvn@3760 936 case Op_StrIndexOf:
kvn@3760 937 result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 938 str1_start, cnt1, str2_start, cnt2);
kvn@3760 939 break;
kvn@3760 940 case Op_StrComp:
kvn@3760 941 result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 942 str1_start, cnt1, str2_start, cnt2);
kvn@3760 943 break;
kvn@3760 944 case Op_StrEquals:
kvn@3760 945 result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 946 str1_start, str2_start, cnt1);
kvn@3760 947 break;
kvn@3760 948 default:
kvn@3760 949 ShouldNotReachHere();
kvn@3760 950 return NULL;
kvn@3760 951 }
kvn@3760 952
kvn@3760 953 // All these intrinsics have checks.
kvn@3760 954 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@3760 955
kvn@3760 956 return _gvn.transform(result);
kvn@3760 957 }
kvn@3760 958
duke@435 959 //------------------------------inline_string_compareTo------------------------
duke@435 960 bool LibraryCallKit::inline_string_compareTo() {
duke@435 961
cfang@1116 962 if (!Matcher::has_match_rule(Op_StrComp)) return false;
cfang@1116 963
duke@435 964 _sp += 2;
duke@435 965 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 966 Node *receiver = pop();
duke@435 967
duke@435 968 // Null check on self without removing any arguments. The argument
duke@435 969 // null check technically happens in the wrong place, which can lead to
duke@435 970 // invalid stack traces when string compare is inlined into a method
duke@435 971 // which handles NullPointerExceptions.
duke@435 972 _sp += 2;
duke@435 973 receiver = do_null_check(receiver, T_OBJECT);
duke@435 974 argument = do_null_check(argument, T_OBJECT);
duke@435 975 _sp -= 2;
duke@435 976 if (stopped()) {
duke@435 977 return true;
duke@435 978 }
duke@435 979
kvn@3760 980 Node* compare = make_string_method_node(Op_StrComp, receiver, argument);
duke@435 981 push(compare);
duke@435 982 return true;
duke@435 983 }
duke@435 984
cfang@1116 985 //------------------------------inline_string_equals------------------------
cfang@1116 986 bool LibraryCallKit::inline_string_equals() {
cfang@1116 987
cfang@1116 988 if (!Matcher::has_match_rule(Op_StrEquals)) return false;
cfang@1116 989
jrose@2101 990 int nargs = 2;
jrose@2101 991 _sp += nargs;
cfang@1116 992 Node* argument = pop(); // pop non-receiver first: it was pushed second
cfang@1116 993 Node* receiver = pop();
cfang@1116 994
cfang@1116 995 // Null check on self without removing any arguments. The argument
cfang@1116 996 // null check technically happens in the wrong place, which can lead to
cfang@1116 997 // invalid stack traces when string compare is inlined into a method
cfang@1116 998 // which handles NullPointerExceptions.
jrose@2101 999 _sp += nargs;
cfang@1116 1000 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1001 //should not do null check for argument for String.equals(), because spec
cfang@1116 1002 //allows to specify NULL as argument.
jrose@2101 1003 _sp -= nargs;
cfang@1116 1004
cfang@1116 1005 if (stopped()) {
cfang@1116 1006 return true;
cfang@1116 1007 }
cfang@1116 1008
kvn@1421 1009 // paths (plus control) merge
kvn@1421 1010 RegionNode* region = new (C, 5) RegionNode(5);
kvn@1421 1011 Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
kvn@1421 1012
kvn@1421 1013 // does source == target string?
kvn@1421 1014 Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
kvn@1421 1015 Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
kvn@1421 1016
kvn@1421 1017 Node* if_eq = generate_slow_guard(bol, NULL);
kvn@1421 1018 if (if_eq != NULL) {
kvn@1421 1019 // receiver == argument
kvn@1421 1020 phi->init_req(2, intcon(1));
kvn@1421 1021 region->init_req(2, if_eq);
kvn@1421 1022 }
kvn@1421 1023
cfang@1116 1024 // get String klass for instanceOf
cfang@1116 1025 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1026
kvn@1421 1027 if (!stopped()) {
jrose@2101 1028 _sp += nargs; // gen_instanceof might do an uncommon trap
kvn@1421 1029 Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
jrose@2101 1030 _sp -= nargs;
kvn@1421 1031 Node* cmp = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
kvn@1421 1032 Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
kvn@1421 1033
kvn@1421 1034 Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
kvn@1421 1035 //instanceOf == true, fallthrough
kvn@1421 1036
kvn@1421 1037 if (inst_false != NULL) {
kvn@1421 1038 phi->init_req(3, intcon(0));
kvn@1421 1039 region->init_req(3, inst_false);
kvn@1421 1040 }
kvn@1421 1041 }
cfang@1116 1042
kvn@1421 1043 if (!stopped()) {
kvn@3760 1044 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
kvn@3760 1045
never@1851 1046 // Properly cast the argument to String
never@1851 1047 argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
kvn@2869 1048 // This path is taken only when argument's type is String:NotNull.
kvn@2869 1049 argument = cast_not_null(argument, false);
never@1851 1050
kvn@3760 1051 Node* no_ctrl = NULL;
kvn@3760 1052
kvn@3760 1053 // Get start addr of receiver
kvn@3760 1054 Node* receiver_val = load_String_value(no_ctrl, receiver);
kvn@3760 1055 Node* receiver_offset = load_String_offset(no_ctrl, receiver);
kvn@3760 1056 Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
kvn@3760 1057
kvn@3760 1058 // Get length of receiver
kvn@3760 1059 Node* receiver_cnt = load_String_length(no_ctrl, receiver);
kvn@3760 1060
kvn@3760 1061 // Get start addr of argument
kvn@3760 1062 Node* argument_val = load_String_value(no_ctrl, argument);
kvn@3760 1063 Node* argument_offset = load_String_offset(no_ctrl, argument);
kvn@3760 1064 Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
kvn@3760 1065
kvn@3760 1066 // Get length of argument
kvn@3760 1067 Node* argument_cnt = load_String_length(no_ctrl, argument);
kvn@1421 1068
kvn@1421 1069 // Check for receiver count != argument count
kvn@1421 1070 Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
kvn@1421 1071 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
kvn@1421 1072 Node* if_ne = generate_slow_guard(bol, NULL);
kvn@1421 1073 if (if_ne != NULL) {
kvn@1421 1074 phi->init_req(4, intcon(0));
kvn@1421 1075 region->init_req(4, if_ne);
kvn@1421 1076 }
kvn@3760 1077
kvn@3760 1078 // Check for count == 0 is done by assembler code for StrEquals.
kvn@3760 1079
kvn@3760 1080 if (!stopped()) {
kvn@3760 1081 Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
kvn@3760 1082 phi->init_req(1, equals);
kvn@3760 1083 region->init_req(1, control());
kvn@3760 1084 }
kvn@1421 1085 }
cfang@1116 1086
cfang@1116 1087 // post merge
cfang@1116 1088 set_control(_gvn.transform(region));
cfang@1116 1089 record_for_igvn(region);
cfang@1116 1090
cfang@1116 1091 push(_gvn.transform(phi));
cfang@1116 1092
cfang@1116 1093 return true;
cfang@1116 1094 }
cfang@1116 1095
rasbold@604 1096 //------------------------------inline_array_equals----------------------------
rasbold@604 1097 bool LibraryCallKit::inline_array_equals() {
rasbold@604 1098
rasbold@609 1099 if (!Matcher::has_match_rule(Op_AryEq)) return false;
rasbold@609 1100
rasbold@604 1101 _sp += 2;
rasbold@604 1102 Node *argument2 = pop();
rasbold@604 1103 Node *argument1 = pop();
rasbold@604 1104
rasbold@604 1105 Node* equals =
kvn@1421 1106 _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 1107 argument1, argument2) );
rasbold@604 1108 push(equals);
rasbold@604 1109 return true;
rasbold@604 1110 }
rasbold@604 1111
duke@435 1112 // Java version of String.indexOf(constant string)
duke@435 1113 // class StringDecl {
duke@435 1114 // StringDecl(char[] ca) {
duke@435 1115 // offset = 0;
duke@435 1116 // count = ca.length;
duke@435 1117 // value = ca;
duke@435 1118 // }
duke@435 1119 // int offset;
duke@435 1120 // int count;
duke@435 1121 // char[] value;
duke@435 1122 // }
duke@435 1123 //
duke@435 1124 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
duke@435 1125 // int targetOffset, int cache_i, int md2) {
duke@435 1126 // int cache = cache_i;
duke@435 1127 // int sourceOffset = string_object.offset;
duke@435 1128 // int sourceCount = string_object.count;
duke@435 1129 // int targetCount = target_object.length;
duke@435 1130 //
duke@435 1131 // int targetCountLess1 = targetCount - 1;
duke@435 1132 // int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
duke@435 1133 //
duke@435 1134 // char[] source = string_object.value;
duke@435 1135 // char[] target = target_object;
duke@435 1136 // int lastChar = target[targetCountLess1];
duke@435 1137 //
duke@435 1138 // outer_loop:
duke@435 1139 // for (int i = sourceOffset; i < sourceEnd; ) {
duke@435 1140 // int src = source[i + targetCountLess1];
duke@435 1141 // if (src == lastChar) {
duke@435 1142 // // With random strings and a 4-character alphabet,
duke@435 1143 // // reverse matching at this point sets up 0.8% fewer
duke@435 1144 // // frames, but (paradoxically) makes 0.3% more probes.
duke@435 1145 // // Since those probes are nearer the lastChar probe,
duke@435 1146 // // there is may be a net D$ win with reverse matching.
duke@435 1147 // // But, reversing loop inhibits unroll of inner loop
duke@435 1148 // // for unknown reason. So, does running outer loop from
duke@435 1149 // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
duke@435 1150 // for (int j = 0; j < targetCountLess1; j++) {
duke@435 1151 // if (target[targetOffset + j] != source[i+j]) {
duke@435 1152 // if ((cache & (1 << source[i+j])) == 0) {
duke@435 1153 // if (md2 < j+1) {
duke@435 1154 // i += j+1;
duke@435 1155 // continue outer_loop;
duke@435 1156 // }
duke@435 1157 // }
duke@435 1158 // i += md2;
duke@435 1159 // continue outer_loop;
duke@435 1160 // }
duke@435 1161 // }
duke@435 1162 // return i - sourceOffset;
duke@435 1163 // }
duke@435 1164 // if ((cache & (1 << src)) == 0) {
duke@435 1165 // i += targetCountLess1;
duke@435 1166 // } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
duke@435 1167 // i++;
duke@435 1168 // }
duke@435 1169 // return -1;
duke@435 1170 // }
duke@435 1171
duke@435 1172 //------------------------------string_indexOf------------------------
duke@435 1173 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
duke@435 1174 jint cache_i, jint md2_i) {
duke@435 1175
duke@435 1176 Node* no_ctrl = NULL;
duke@435 1177 float likely = PROB_LIKELY(0.9);
duke@435 1178 float unlikely = PROB_UNLIKELY(0.9);
duke@435 1179
kvn@2665 1180 const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
kvn@2665 1181
kvn@3760 1182 Node* source = load_String_value(no_ctrl, string_object);
kvn@3760 1183 Node* sourceOffset = load_String_offset(no_ctrl, string_object);
kvn@3760 1184 Node* sourceCount = load_String_length(no_ctrl, string_object);
duke@435 1185
jcoomes@2661 1186 Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
duke@435 1187 jint target_length = target_array->length();
duke@435 1188 const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
duke@435 1189 const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
duke@435 1190
kvn@2726 1191 IdealKit kit(this, false, true);
duke@435 1192 #define __ kit.
duke@435 1193 Node* zero = __ ConI(0);
duke@435 1194 Node* one = __ ConI(1);
duke@435 1195 Node* cache = __ ConI(cache_i);
duke@435 1196 Node* md2 = __ ConI(md2_i);
duke@435 1197 Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
duke@435 1198 Node* targetCount = __ ConI(target_length);
duke@435 1199 Node* targetCountLess1 = __ ConI(target_length - 1);
duke@435 1200 Node* targetOffset = __ ConI(targetOffset_i);
duke@435 1201 Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
duke@435 1202
kvn@1286 1203 IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
duke@435 1204 Node* outer_loop = __ make_label(2 /* goto */);
duke@435 1205 Node* return_ = __ make_label(1);
duke@435 1206
duke@435 1207 __ set(rtn,__ ConI(-1));
kvn@2665 1208 __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
duke@435 1209 Node* i2 = __ AddI(__ value(i), targetCountLess1);
duke@435 1210 // pin to prohibit loading of "next iteration" value which may SEGV (rare)
duke@435 1211 Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
duke@435 1212 __ if_then(src, BoolTest::eq, lastChar, unlikely); {
kvn@2665 1213 __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
duke@435 1214 Node* tpj = __ AddI(targetOffset, __ value(j));
duke@435 1215 Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
duke@435 1216 Node* ipj = __ AddI(__ value(i), __ value(j));
duke@435 1217 Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
duke@435 1218 __ if_then(targ, BoolTest::ne, src2); {
duke@435 1219 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
duke@435 1220 __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
duke@435 1221 __ increment(i, __ AddI(__ value(j), one));
duke@435 1222 __ goto_(outer_loop);
duke@435 1223 } __ end_if(); __ dead(j);
duke@435 1224 }__ end_if(); __ dead(j);
duke@435 1225 __ increment(i, md2);
duke@435 1226 __ goto_(outer_loop);
duke@435 1227 }__ end_if();
duke@435 1228 __ increment(j, one);
duke@435 1229 }__ end_loop(); __ dead(j);
duke@435 1230 __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
duke@435 1231 __ goto_(return_);
duke@435 1232 }__ end_if();
duke@435 1233 __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
duke@435 1234 __ increment(i, targetCountLess1);
duke@435 1235 }__ end_if();
duke@435 1236 __ increment(i, one);
duke@435 1237 __ bind(outer_loop);
duke@435 1238 }__ end_loop(); __ dead(i);
duke@435 1239 __ bind(return_);
kvn@1286 1240
kvn@1286 1241 // Final sync IdealKit and GraphKit.
kvn@2726 1242 final_sync(kit);
duke@435 1243 Node* result = __ value(rtn);
duke@435 1244 #undef __
duke@435 1245 C->set_has_loops(true);
duke@435 1246 return result;
duke@435 1247 }
duke@435 1248
duke@435 1249 //------------------------------inline_string_indexOf------------------------
duke@435 1250 bool LibraryCallKit::inline_string_indexOf() {
duke@435 1251
duke@435 1252 _sp += 2;
duke@435 1253 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 1254 Node *receiver = pop();
duke@435 1255
cfang@1116 1256 Node* result;
iveresov@1859 1257 // Disable the use of pcmpestri until it can be guaranteed that
iveresov@1859 1258 // the load doesn't cross into the uncommited space.
kvn@2602 1259 if (Matcher::has_match_rule(Op_StrIndexOf) &&
cfang@1116 1260 UseSSE42Intrinsics) {
cfang@1116 1261 // Generate SSE4.2 version of indexOf
cfang@1116 1262 // We currently only have match rules that use SSE4.2
cfang@1116 1263
cfang@1116 1264 // Null check on self without removing any arguments. The argument
cfang@1116 1265 // null check technically happens in the wrong place, which can lead to
cfang@1116 1266 // invalid stack traces when string compare is inlined into a method
cfang@1116 1267 // which handles NullPointerExceptions.
cfang@1116 1268 _sp += 2;
cfang@1116 1269 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1270 argument = do_null_check(argument, T_OBJECT);
cfang@1116 1271 _sp -= 2;
cfang@1116 1272
cfang@1116 1273 if (stopped()) {
cfang@1116 1274 return true;
cfang@1116 1275 }
cfang@1116 1276
kvn@2602 1277 ciInstanceKlass* str_klass = env()->String_klass();
kvn@2602 1278 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
kvn@2602 1279
kvn@1421 1280 // Make the merge point
kvn@2602 1281 RegionNode* result_rgn = new (C, 4) RegionNode(4);
kvn@2602 1282 Node* result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
kvn@1421 1283 Node* no_ctrl = NULL;
kvn@1421 1284
kvn@3760 1285 // Get start addr of source string
kvn@3760 1286 Node* source = load_String_value(no_ctrl, receiver);
kvn@3760 1287 Node* source_offset = load_String_offset(no_ctrl, receiver);
kvn@3760 1288 Node* source_start = array_element_address(source, source_offset, T_CHAR);
kvn@3760 1289
kvn@3760 1290 // Get length of source string
kvn@3760 1291 Node* source_cnt = load_String_length(no_ctrl, receiver);
kvn@3760 1292
kvn@3760 1293 // Get start addr of substring
kvn@3760 1294 Node* substr = load_String_value(no_ctrl, argument);
kvn@3760 1295 Node* substr_offset = load_String_offset(no_ctrl, argument);
kvn@3760 1296 Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
kvn@3760 1297
kvn@3760 1298 // Get length of source string
kvn@3760 1299 Node* substr_cnt = load_String_length(no_ctrl, argument);
kvn@1421 1300
kvn@1421 1301 // Check for substr count > string count
kvn@1421 1302 Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
kvn@1421 1303 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
kvn@1421 1304 Node* if_gt = generate_slow_guard(bol, NULL);
kvn@1421 1305 if (if_gt != NULL) {
kvn@1421 1306 result_phi->init_req(2, intcon(-1));
kvn@1421 1307 result_rgn->init_req(2, if_gt);
kvn@1421 1308 }
kvn@1421 1309
kvn@1421 1310 if (!stopped()) {
kvn@2602 1311 // Check for substr count == 0
kvn@2602 1312 cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
kvn@2602 1313 bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
kvn@2602 1314 Node* if_zero = generate_slow_guard(bol, NULL);
kvn@2602 1315 if (if_zero != NULL) {
kvn@2602 1316 result_phi->init_req(3, intcon(0));
kvn@2602 1317 result_rgn->init_req(3, if_zero);
kvn@2602 1318 }
kvn@2602 1319 }
kvn@2602 1320
kvn@2602 1321 if (!stopped()) {
kvn@3760 1322 result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
kvn@1421 1323 result_phi->init_req(1, result);
kvn@1421 1324 result_rgn->init_req(1, control());
kvn@1421 1325 }
kvn@1421 1326 set_control(_gvn.transform(result_rgn));
kvn@1421 1327 record_for_igvn(result_rgn);
kvn@1421 1328 result = _gvn.transform(result_phi);
kvn@1421 1329
kvn@2602 1330 } else { // Use LibraryCallKit::string_indexOf
kvn@2602 1331 // don't intrinsify if argument isn't a constant string.
cfang@1116 1332 if (!argument->is_Con()) {
cfang@1116 1333 return false;
cfang@1116 1334 }
cfang@1116 1335 const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
cfang@1116 1336 if (str_type == NULL) {
cfang@1116 1337 return false;
cfang@1116 1338 }
cfang@1116 1339 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1340 ciObject* str_const = str_type->const_oop();
cfang@1116 1341 if (str_const == NULL || str_const->klass() != klass) {
cfang@1116 1342 return false;
cfang@1116 1343 }
cfang@1116 1344 ciInstance* str = str_const->as_instance();
cfang@1116 1345 assert(str != NULL, "must be instance");
cfang@1116 1346
kvn@3760 1347 ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
cfang@1116 1348 ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
cfang@1116 1349
kvn@3760 1350 int o;
kvn@3760 1351 int c;
kvn@3760 1352 if (java_lang_String::has_offset_field()) {
kvn@3760 1353 o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
kvn@3760 1354 c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
kvn@3760 1355 } else {
kvn@3760 1356 o = 0;
kvn@3760 1357 c = pat->length();
kvn@3760 1358 }
kvn@3760 1359
cfang@1116 1360 // constant strings have no offset and count == length which
cfang@1116 1361 // simplifies the resulting code somewhat so lets optimize for that.
cfang@1116 1362 if (o != 0 || c != pat->length()) {
cfang@1116 1363 return false;
cfang@1116 1364 }
cfang@1116 1365
cfang@1116 1366 // Null check on self without removing any arguments. The argument
cfang@1116 1367 // null check technically happens in the wrong place, which can lead to
cfang@1116 1368 // invalid stack traces when string compare is inlined into a method
cfang@1116 1369 // which handles NullPointerExceptions.
cfang@1116 1370 _sp += 2;
cfang@1116 1371 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1372 // No null check on the argument is needed since it's a constant String oop.
cfang@1116 1373 _sp -= 2;
cfang@1116 1374 if (stopped()) {
kvn@2602 1375 return true;
cfang@1116 1376 }
cfang@1116 1377
cfang@1116 1378 // The null string as a pattern always returns 0 (match at beginning of string)
cfang@1116 1379 if (c == 0) {
cfang@1116 1380 push(intcon(0));
cfang@1116 1381 return true;
cfang@1116 1382 }
cfang@1116 1383
cfang@1116 1384 // Generate default indexOf
cfang@1116 1385 jchar lastChar = pat->char_at(o + (c - 1));
cfang@1116 1386 int cache = 0;
cfang@1116 1387 int i;
cfang@1116 1388 for (i = 0; i < c - 1; i++) {
cfang@1116 1389 assert(i < pat->length(), "out of range");
cfang@1116 1390 cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
cfang@1116 1391 }
cfang@1116 1392
cfang@1116 1393 int md2 = c;
cfang@1116 1394 for (i = 0; i < c - 1; i++) {
cfang@1116 1395 assert(i < pat->length(), "out of range");
cfang@1116 1396 if (pat->char_at(o + i) == lastChar) {
cfang@1116 1397 md2 = (c - 1) - i;
cfang@1116 1398 }
cfang@1116 1399 }
cfang@1116 1400
cfang@1116 1401 result = string_indexOf(receiver, pat, o, cache, md2);
duke@435 1402 }
cfang@1116 1403
duke@435 1404 push(result);
duke@435 1405 return true;
duke@435 1406 }
duke@435 1407
duke@435 1408 //--------------------------pop_math_arg--------------------------------
duke@435 1409 // Pop a double argument to a math function from the stack
duke@435 1410 // rounding it if necessary.
duke@435 1411 Node * LibraryCallKit::pop_math_arg() {
duke@435 1412 Node *arg = pop_pair();
duke@435 1413 if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
duke@435 1414 arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
duke@435 1415 return arg;
duke@435 1416 }
duke@435 1417
duke@435 1418 //------------------------------inline_trig----------------------------------
duke@435 1419 // Inline sin/cos/tan instructions, if possible. If rounding is required, do
duke@435 1420 // argument reduction which will turn into a fast/slow diamond.
duke@435 1421 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
duke@435 1422 _sp += arg_size(); // restore stack pointer
duke@435 1423 Node* arg = pop_math_arg();
duke@435 1424 Node* trig = NULL;
duke@435 1425
duke@435 1426 switch (id) {
duke@435 1427 case vmIntrinsics::_dsin:
duke@435 1428 trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
duke@435 1429 break;
duke@435 1430 case vmIntrinsics::_dcos:
duke@435 1431 trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
duke@435 1432 break;
duke@435 1433 case vmIntrinsics::_dtan:
duke@435 1434 trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
duke@435 1435 break;
duke@435 1436 default:
duke@435 1437 assert(false, "bad intrinsic was passed in");
duke@435 1438 return false;
duke@435 1439 }
duke@435 1440
duke@435 1441 // Rounding required? Check for argument reduction!
duke@435 1442 if( Matcher::strict_fp_requires_explicit_rounding ) {
duke@435 1443
duke@435 1444 static const double pi_4 = 0.7853981633974483;
duke@435 1445 static const double neg_pi_4 = -0.7853981633974483;
duke@435 1446 // pi/2 in 80-bit extended precision
duke@435 1447 // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1448 // -pi/2 in 80-bit extended precision
duke@435 1449 // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1450 // Cutoff value for using this argument reduction technique
duke@435 1451 //static const double pi_2_minus_epsilon = 1.564660403643354;
duke@435 1452 //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
duke@435 1453
duke@435 1454 // Pseudocode for sin:
duke@435 1455 // if (x <= Math.PI / 4.0) {
duke@435 1456 // if (x >= -Math.PI / 4.0) return fsin(x);
duke@435 1457 // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
duke@435 1458 // } else {
duke@435 1459 // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
duke@435 1460 // }
duke@435 1461 // return StrictMath.sin(x);
duke@435 1462
duke@435 1463 // Pseudocode for cos:
duke@435 1464 // if (x <= Math.PI / 4.0) {
duke@435 1465 // if (x >= -Math.PI / 4.0) return fcos(x);
duke@435 1466 // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
duke@435 1467 // } else {
duke@435 1468 // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
duke@435 1469 // }
duke@435 1470 // return StrictMath.cos(x);
duke@435 1471
duke@435 1472 // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
duke@435 1473 // requires a special machine instruction to load it. Instead we'll try
duke@435 1474 // the 'easy' case. If we really need the extra range +/- PI/2 we'll
duke@435 1475 // probably do the math inside the SIN encoding.
duke@435 1476
duke@435 1477 // Make the merge point
duke@435 1478 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 1479 Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
duke@435 1480
duke@435 1481 // Flatten arg so we need only 1 test
duke@435 1482 Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
duke@435 1483 // Node for PI/4 constant
duke@435 1484 Node *pi4 = makecon(TypeD::make(pi_4));
duke@435 1485 // Check PI/4 : abs(arg)
duke@435 1486 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
duke@435 1487 // Check: If PI/4 < abs(arg) then go slow
duke@435 1488 Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
duke@435 1489 // Branch either way
duke@435 1490 IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 1491 set_control(opt_iff(r,iff));
duke@435 1492
duke@435 1493 // Set fast path result
duke@435 1494 phi->init_req(2,trig);
duke@435 1495
duke@435 1496 // Slow path - non-blocking leaf call
duke@435 1497 Node* call = NULL;
duke@435 1498 switch (id) {
duke@435 1499 case vmIntrinsics::_dsin:
duke@435 1500 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1501 CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
duke@435 1502 "Sin", NULL, arg, top());
duke@435 1503 break;
duke@435 1504 case vmIntrinsics::_dcos:
duke@435 1505 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1506 CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
duke@435 1507 "Cos", NULL, arg, top());
duke@435 1508 break;
duke@435 1509 case vmIntrinsics::_dtan:
duke@435 1510 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1511 CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
duke@435 1512 "Tan", NULL, arg, top());
duke@435 1513 break;
duke@435 1514 }
duke@435 1515 assert(control()->in(0) == call, "");
duke@435 1516 Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
duke@435 1517 r->init_req(1,control());
duke@435 1518 phi->init_req(1,slow_result);
duke@435 1519
duke@435 1520 // Post-merge
duke@435 1521 set_control(_gvn.transform(r));
duke@435 1522 record_for_igvn(r);
duke@435 1523 trig = _gvn.transform(phi);
duke@435 1524
duke@435 1525 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1526 }
duke@435 1527 // Push result back on JVM stack
duke@435 1528 push_pair(trig);
duke@435 1529 return true;
duke@435 1530 }
duke@435 1531
duke@435 1532 //------------------------------inline_sqrt-------------------------------------
duke@435 1533 // Inline square root instruction, if possible.
duke@435 1534 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
duke@435 1535 assert(id == vmIntrinsics::_dsqrt, "Not square root");
duke@435 1536 _sp += arg_size(); // restore stack pointer
duke@435 1537 push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
duke@435 1538 return true;
duke@435 1539 }
duke@435 1540
duke@435 1541 //------------------------------inline_abs-------------------------------------
duke@435 1542 // Inline absolute value instruction, if possible.
duke@435 1543 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
duke@435 1544 assert(id == vmIntrinsics::_dabs, "Not absolute value");
duke@435 1545 _sp += arg_size(); // restore stack pointer
duke@435 1546 push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
duke@435 1547 return true;
duke@435 1548 }
duke@435 1549
duke@435 1550 //------------------------------inline_exp-------------------------------------
duke@435 1551 // Inline exp instructions, if possible. The Intel hardware only misses
duke@435 1552 // really odd corner cases (+/- Infinity). Just uncommon-trap them.
duke@435 1553 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
duke@435 1554 assert(id == vmIntrinsics::_dexp, "Not exp");
duke@435 1555
duke@435 1556 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1557 // every again. NaN results requires StrictMath.exp handling.
duke@435 1558 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1559
duke@435 1560 _sp += arg_size(); // restore stack pointer
duke@435 1561 Node *x = pop_math_arg();
duke@435 1562 Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
duke@435 1563
duke@435 1564 //-------------------
duke@435 1565 //result=(result.isNaN())? StrictMath::exp():result;
duke@435 1566 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1567 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1568 // Build the boolean node
duke@435 1569 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1570
duke@435 1571 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1572 // End the current control-flow path
duke@435 1573 push_pair(x);
duke@435 1574 // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
duke@435 1575 // to handle. Recompile without intrinsifying Math.exp
duke@435 1576 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1577 Deoptimization::Action_make_not_entrant);
duke@435 1578 }
duke@435 1579
duke@435 1580 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1581
duke@435 1582 push_pair(result);
duke@435 1583
duke@435 1584 return true;
duke@435 1585 }
duke@435 1586
duke@435 1587 //------------------------------inline_pow-------------------------------------
duke@435 1588 // Inline power instructions, if possible.
duke@435 1589 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
duke@435 1590 assert(id == vmIntrinsics::_dpow, "Not pow");
duke@435 1591
duke@435 1592 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1593 // every again. NaN results requires StrictMath.pow handling.
duke@435 1594 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1595
duke@435 1596 // Do not intrinsify on older platforms which lack cmove.
duke@435 1597 if (ConditionalMoveLimit == 0) return false;
duke@435 1598
duke@435 1599 // Pseudocode for pow
duke@435 1600 // if (x <= 0.0) {
duke@435 1601 // if ((double)((int)y)==y) { // if y is int
duke@435 1602 // result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1603 // } else {
duke@435 1604 // result = NaN;
duke@435 1605 // }
duke@435 1606 // } else {
duke@435 1607 // result = DPow(x,y);
duke@435 1608 // }
duke@435 1609 // if (result != result)? {
twisti@1040 1610 // uncommon_trap();
duke@435 1611 // }
duke@435 1612 // return result;
duke@435 1613
duke@435 1614 _sp += arg_size(); // restore stack pointer
duke@435 1615 Node* y = pop_math_arg();
duke@435 1616 Node* x = pop_math_arg();
duke@435 1617
duke@435 1618 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
duke@435 1619
duke@435 1620 // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
duke@435 1621 // inside of something) then skip the fancy tests and just check for
duke@435 1622 // NaN result.
duke@435 1623 Node *result = NULL;
duke@435 1624 if( jvms()->depth() >= 1 ) {
duke@435 1625 result = fast_result;
duke@435 1626 } else {
duke@435 1627
duke@435 1628 // Set the merge point for If node with condition of (x <= 0.0)
duke@435 1629 // There are four possible paths to region node and phi node
duke@435 1630 RegionNode *r = new (C, 4) RegionNode(4);
duke@435 1631 Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
duke@435 1632
duke@435 1633 // Build the first if node: if (x <= 0.0)
duke@435 1634 // Node for 0 constant
duke@435 1635 Node *zeronode = makecon(TypeD::ZERO);
duke@435 1636 // Check x:0
duke@435 1637 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
duke@435 1638 // Check: If (x<=0) then go complex path
duke@435 1639 Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
duke@435 1640 // Branch either way
duke@435 1641 IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1642 Node *opt_test = _gvn.transform(if1);
duke@435 1643 //assert( opt_test->is_If(), "Expect an IfNode");
duke@435 1644 IfNode *opt_if1 = (IfNode*)opt_test;
duke@435 1645 // Fast path taken; set region slot 3
duke@435 1646 Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
duke@435 1647 r->init_req(3,fast_taken); // Capture fast-control
duke@435 1648
duke@435 1649 // Fast path not-taken, i.e. slow path
duke@435 1650 Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
duke@435 1651
duke@435 1652 // Set fast path result
duke@435 1653 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
duke@435 1654 phi->init_req(3, fast_result);
duke@435 1655
duke@435 1656 // Complex path
duke@435 1657 // Build the second if node (if y is int)
duke@435 1658 // Node for (int)y
duke@435 1659 Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
duke@435 1660 // Node for (double)((int) y)
duke@435 1661 Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
duke@435 1662 // Check (double)((int) y) : y
duke@435 1663 Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
duke@435 1664 // Check if (y isn't int) then go to slow path
duke@435 1665
duke@435 1666 Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
twisti@1040 1667 // Branch either way
duke@435 1668 IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1669 Node *slow_path = opt_iff(r,if2); // Set region path 2
duke@435 1670
duke@435 1671 // Calculate DPow(abs(x), y)*(1 & (int)y)
duke@435 1672 // Node for constant 1
duke@435 1673 Node *conone = intcon(1);
duke@435 1674 // 1& (int)y
duke@435 1675 Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
duke@435 1676 // zero node
duke@435 1677 Node *conzero = intcon(0);
duke@435 1678 // Check (1&(int)y)==0?
duke@435 1679 Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
duke@435 1680 // Check if (1&(int)y)!=0?, if so the result is negative
duke@435 1681 Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
duke@435 1682 // abs(x)
duke@435 1683 Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
duke@435 1684 // abs(x)^y
duke@435 1685 Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
duke@435 1686 // -abs(x)^y
duke@435 1687 Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
duke@435 1688 // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1689 Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
duke@435 1690 // Set complex path fast result
duke@435 1691 phi->init_req(2, signresult);
duke@435 1692
duke@435 1693 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 1694 Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
duke@435 1695 r->init_req(1,slow_path);
duke@435 1696 phi->init_req(1,slow_result);
duke@435 1697
duke@435 1698 // Post merge
duke@435 1699 set_control(_gvn.transform(r));
duke@435 1700 record_for_igvn(r);
duke@435 1701 result=_gvn.transform(phi);
duke@435 1702 }
duke@435 1703
duke@435 1704 //-------------------
duke@435 1705 //result=(result.isNaN())? uncommon_trap():result;
duke@435 1706 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1707 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1708 // Build the boolean node
duke@435 1709 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1710
duke@435 1711 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1712 // End the current control-flow path
duke@435 1713 push_pair(x);
duke@435 1714 push_pair(y);
duke@435 1715 // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
duke@435 1716 // to handle. Recompile without intrinsifying Math.pow.
duke@435 1717 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1718 Deoptimization::Action_make_not_entrant);
duke@435 1719 }
duke@435 1720
duke@435 1721 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1722
duke@435 1723 push_pair(result);
duke@435 1724
duke@435 1725 return true;
duke@435 1726 }
duke@435 1727
duke@435 1728 //------------------------------inline_trans-------------------------------------
duke@435 1729 // Inline transcendental instructions, if possible. The Intel hardware gets
duke@435 1730 // these right, no funny corner cases missed.
duke@435 1731 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
duke@435 1732 _sp += arg_size(); // restore stack pointer
duke@435 1733 Node* arg = pop_math_arg();
duke@435 1734 Node* trans = NULL;
duke@435 1735
duke@435 1736 switch (id) {
duke@435 1737 case vmIntrinsics::_dlog:
duke@435 1738 trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
duke@435 1739 break;
duke@435 1740 case vmIntrinsics::_dlog10:
duke@435 1741 trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
duke@435 1742 break;
duke@435 1743 default:
duke@435 1744 assert(false, "bad intrinsic was passed in");
duke@435 1745 return false;
duke@435 1746 }
duke@435 1747
duke@435 1748 // Push result back on JVM stack
duke@435 1749 push_pair(trans);
duke@435 1750 return true;
duke@435 1751 }
duke@435 1752
duke@435 1753 //------------------------------runtime_math-----------------------------
duke@435 1754 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
duke@435 1755 Node* a = NULL;
duke@435 1756 Node* b = NULL;
duke@435 1757
duke@435 1758 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
duke@435 1759 "must be (DD)D or (D)D type");
duke@435 1760
duke@435 1761 // Inputs
duke@435 1762 _sp += arg_size(); // restore stack pointer
duke@435 1763 if (call_type == OptoRuntime::Math_DD_D_Type()) {
duke@435 1764 b = pop_math_arg();
duke@435 1765 }
duke@435 1766 a = pop_math_arg();
duke@435 1767
duke@435 1768 const TypePtr* no_memory_effects = NULL;
duke@435 1769 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
duke@435 1770 no_memory_effects,
duke@435 1771 a, top(), b, b ? top() : NULL);
duke@435 1772 Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
duke@435 1773 #ifdef ASSERT
duke@435 1774 Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
duke@435 1775 assert(value_top == top(), "second value must be top");
duke@435 1776 #endif
duke@435 1777
duke@435 1778 push_pair(value);
duke@435 1779 return true;
duke@435 1780 }
duke@435 1781
duke@435 1782 //------------------------------inline_math_native-----------------------------
duke@435 1783 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
duke@435 1784 switch (id) {
duke@435 1785 // These intrinsics are not properly supported on all hardware
duke@435 1786 case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
duke@435 1787 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
duke@435 1788 case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
duke@435 1789 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
duke@435 1790 case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
duke@435 1791 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
duke@435 1792
duke@435 1793 case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
duke@435 1794 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
duke@435 1795 case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
duke@435 1796 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
duke@435 1797
duke@435 1798 // These intrinsics are supported on all hardware
duke@435 1799 case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
duke@435 1800 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_abs(id) : false;
duke@435 1801
duke@435 1802 case vmIntrinsics::_dexp: return
roland@3787 1803 Matcher::has_match_rule(Op_ExpD) ? inline_exp(id) :
duke@435 1804 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
duke@435 1805 case vmIntrinsics::_dpow: return
roland@3787 1806 Matcher::has_match_rule(Op_PowD) ? inline_pow(id) :
duke@435 1807 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
duke@435 1808
duke@435 1809 // These intrinsics are not yet correctly implemented
duke@435 1810 case vmIntrinsics::_datan2:
duke@435 1811 return false;
duke@435 1812
duke@435 1813 default:
duke@435 1814 ShouldNotReachHere();
duke@435 1815 return false;
duke@435 1816 }
duke@435 1817 }
duke@435 1818
duke@435 1819 static bool is_simple_name(Node* n) {
duke@435 1820 return (n->req() == 1 // constant
duke@435 1821 || (n->is_Type() && n->as_Type()->type()->singleton())
duke@435 1822 || n->is_Proj() // parameter or return value
duke@435 1823 || n->is_Phi() // local of some sort
duke@435 1824 );
duke@435 1825 }
duke@435 1826
duke@435 1827 //----------------------------inline_min_max-----------------------------------
duke@435 1828 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
duke@435 1829 push(generate_min_max(id, argument(0), argument(1)));
duke@435 1830
duke@435 1831 return true;
duke@435 1832 }
duke@435 1833
duke@435 1834 Node*
duke@435 1835 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
duke@435 1836 // These are the candidate return value:
duke@435 1837 Node* xvalue = x0;
duke@435 1838 Node* yvalue = y0;
duke@435 1839
duke@435 1840 if (xvalue == yvalue) {
duke@435 1841 return xvalue;
duke@435 1842 }
duke@435 1843
duke@435 1844 bool want_max = (id == vmIntrinsics::_max);
duke@435 1845
duke@435 1846 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
duke@435 1847 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
duke@435 1848 if (txvalue == NULL || tyvalue == NULL) return top();
duke@435 1849 // This is not really necessary, but it is consistent with a
duke@435 1850 // hypothetical MaxINode::Value method:
duke@435 1851 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
duke@435 1852
duke@435 1853 // %%% This folding logic should (ideally) be in a different place.
duke@435 1854 // Some should be inside IfNode, and there to be a more reliable
duke@435 1855 // transformation of ?: style patterns into cmoves. We also want
duke@435 1856 // more powerful optimizations around cmove and min/max.
duke@435 1857
duke@435 1858 // Try to find a dominating comparison of these guys.
duke@435 1859 // It can simplify the index computation for Arrays.copyOf
duke@435 1860 // and similar uses of System.arraycopy.
duke@435 1861 // First, compute the normalized version of CmpI(x, y).
duke@435 1862 int cmp_op = Op_CmpI;
duke@435 1863 Node* xkey = xvalue;
duke@435 1864 Node* ykey = yvalue;
duke@435 1865 Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
duke@435 1866 if (ideal_cmpxy->is_Cmp()) {
duke@435 1867 // E.g., if we have CmpI(length - offset, count),
duke@435 1868 // it might idealize to CmpI(length, count + offset)
duke@435 1869 cmp_op = ideal_cmpxy->Opcode();
duke@435 1870 xkey = ideal_cmpxy->in(1);
duke@435 1871 ykey = ideal_cmpxy->in(2);
duke@435 1872 }
duke@435 1873
duke@435 1874 // Start by locating any relevant comparisons.
duke@435 1875 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
duke@435 1876 Node* cmpxy = NULL;
duke@435 1877 Node* cmpyx = NULL;
duke@435 1878 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
duke@435 1879 Node* cmp = start_from->fast_out(k);
duke@435 1880 if (cmp->outcnt() > 0 && // must have prior uses
duke@435 1881 cmp->in(0) == NULL && // must be context-independent
duke@435 1882 cmp->Opcode() == cmp_op) { // right kind of compare
duke@435 1883 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
duke@435 1884 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
duke@435 1885 }
duke@435 1886 }
duke@435 1887
duke@435 1888 const int NCMPS = 2;
duke@435 1889 Node* cmps[NCMPS] = { cmpxy, cmpyx };
duke@435 1890 int cmpn;
duke@435 1891 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1892 if (cmps[cmpn] != NULL) break; // find a result
duke@435 1893 }
duke@435 1894 if (cmpn < NCMPS) {
duke@435 1895 // Look for a dominating test that tells us the min and max.
duke@435 1896 int depth = 0; // Limit search depth for speed
duke@435 1897 Node* dom = control();
duke@435 1898 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
duke@435 1899 if (++depth >= 100) break;
duke@435 1900 Node* ifproj = dom;
duke@435 1901 if (!ifproj->is_Proj()) continue;
duke@435 1902 Node* iff = ifproj->in(0);
duke@435 1903 if (!iff->is_If()) continue;
duke@435 1904 Node* bol = iff->in(1);
duke@435 1905 if (!bol->is_Bool()) continue;
duke@435 1906 Node* cmp = bol->in(1);
duke@435 1907 if (cmp == NULL) continue;
duke@435 1908 for (cmpn = 0; cmpn < NCMPS; cmpn++)
duke@435 1909 if (cmps[cmpn] == cmp) break;
duke@435 1910 if (cmpn == NCMPS) continue;
duke@435 1911 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1912 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
duke@435 1913 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1914 // At this point, we know that 'x btest y' is true.
duke@435 1915 switch (btest) {
duke@435 1916 case BoolTest::eq:
duke@435 1917 // They are proven equal, so we can collapse the min/max.
duke@435 1918 // Either value is the answer. Choose the simpler.
duke@435 1919 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
duke@435 1920 return yvalue;
duke@435 1921 return xvalue;
duke@435 1922 case BoolTest::lt: // x < y
duke@435 1923 case BoolTest::le: // x <= y
duke@435 1924 return (want_max ? yvalue : xvalue);
duke@435 1925 case BoolTest::gt: // x > y
duke@435 1926 case BoolTest::ge: // x >= y
duke@435 1927 return (want_max ? xvalue : yvalue);
duke@435 1928 }
duke@435 1929 }
duke@435 1930 }
duke@435 1931
duke@435 1932 // We failed to find a dominating test.
duke@435 1933 // Let's pick a test that might GVN with prior tests.
duke@435 1934 Node* best_bol = NULL;
duke@435 1935 BoolTest::mask best_btest = BoolTest::illegal;
duke@435 1936 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1937 Node* cmp = cmps[cmpn];
duke@435 1938 if (cmp == NULL) continue;
duke@435 1939 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
duke@435 1940 Node* bol = cmp->fast_out(j);
duke@435 1941 if (!bol->is_Bool()) continue;
duke@435 1942 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1943 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
duke@435 1944 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1945 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
duke@435 1946 best_bol = bol->as_Bool();
duke@435 1947 best_btest = btest;
duke@435 1948 }
duke@435 1949 }
duke@435 1950 }
duke@435 1951
duke@435 1952 Node* answer_if_true = NULL;
duke@435 1953 Node* answer_if_false = NULL;
duke@435 1954 switch (best_btest) {
duke@435 1955 default:
duke@435 1956 if (cmpxy == NULL)
duke@435 1957 cmpxy = ideal_cmpxy;
duke@435 1958 best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
duke@435 1959 // and fall through:
duke@435 1960 case BoolTest::lt: // x < y
duke@435 1961 case BoolTest::le: // x <= y
duke@435 1962 answer_if_true = (want_max ? yvalue : xvalue);
duke@435 1963 answer_if_false = (want_max ? xvalue : yvalue);
duke@435 1964 break;
duke@435 1965 case BoolTest::gt: // x > y
duke@435 1966 case BoolTest::ge: // x >= y
duke@435 1967 answer_if_true = (want_max ? xvalue : yvalue);
duke@435 1968 answer_if_false = (want_max ? yvalue : xvalue);
duke@435 1969 break;
duke@435 1970 }
duke@435 1971
duke@435 1972 jint hi, lo;
duke@435 1973 if (want_max) {
duke@435 1974 // We can sharpen the minimum.
duke@435 1975 hi = MAX2(txvalue->_hi, tyvalue->_hi);
duke@435 1976 lo = MAX2(txvalue->_lo, tyvalue->_lo);
duke@435 1977 } else {
duke@435 1978 // We can sharpen the maximum.
duke@435 1979 hi = MIN2(txvalue->_hi, tyvalue->_hi);
duke@435 1980 lo = MIN2(txvalue->_lo, tyvalue->_lo);
duke@435 1981 }
duke@435 1982
duke@435 1983 // Use a flow-free graph structure, to avoid creating excess control edges
duke@435 1984 // which could hinder other optimizations.
duke@435 1985 // Since Math.min/max is often used with arraycopy, we want
duke@435 1986 // tightly_coupled_allocation to be able to see beyond min/max expressions.
duke@435 1987 Node* cmov = CMoveNode::make(C, NULL, best_bol,
duke@435 1988 answer_if_false, answer_if_true,
duke@435 1989 TypeInt::make(lo, hi, widen));
duke@435 1990
duke@435 1991 return _gvn.transform(cmov);
duke@435 1992
duke@435 1993 /*
duke@435 1994 // This is not as desirable as it may seem, since Min and Max
duke@435 1995 // nodes do not have a full set of optimizations.
duke@435 1996 // And they would interfere, anyway, with 'if' optimizations
duke@435 1997 // and with CMoveI canonical forms.
duke@435 1998 switch (id) {
duke@435 1999 case vmIntrinsics::_min:
duke@435 2000 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
duke@435 2001 case vmIntrinsics::_max:
duke@435 2002 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
duke@435 2003 default:
duke@435 2004 ShouldNotReachHere();
duke@435 2005 }
duke@435 2006 */
duke@435 2007 }
duke@435 2008
duke@435 2009 inline int
duke@435 2010 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
duke@435 2011 const TypePtr* base_type = TypePtr::NULL_PTR;
duke@435 2012 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
duke@435 2013 if (base_type == NULL) {
duke@435 2014 // Unknown type.
duke@435 2015 return Type::AnyPtr;
duke@435 2016 } else if (base_type == TypePtr::NULL_PTR) {
duke@435 2017 // Since this is a NULL+long form, we have to switch to a rawptr.
duke@435 2018 base = _gvn.transform( new (C, 2) CastX2PNode(offset) );
duke@435 2019 offset = MakeConX(0);
duke@435 2020 return Type::RawPtr;
duke@435 2021 } else if (base_type->base() == Type::RawPtr) {
duke@435 2022 return Type::RawPtr;
duke@435 2023 } else if (base_type->isa_oopptr()) {
duke@435 2024 // Base is never null => always a heap address.
duke@435 2025 if (base_type->ptr() == TypePtr::NotNull) {
duke@435 2026 return Type::OopPtr;
duke@435 2027 }
duke@435 2028 // Offset is small => always a heap address.
duke@435 2029 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
duke@435 2030 if (offset_type != NULL &&
duke@435 2031 base_type->offset() == 0 && // (should always be?)
duke@435 2032 offset_type->_lo >= 0 &&
duke@435 2033 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
duke@435 2034 return Type::OopPtr;
duke@435 2035 }
duke@435 2036 // Otherwise, it might either be oop+off or NULL+addr.
duke@435 2037 return Type::AnyPtr;
duke@435 2038 } else {
duke@435 2039 // No information:
duke@435 2040 return Type::AnyPtr;
duke@435 2041 }
duke@435 2042 }
duke@435 2043
duke@435 2044 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
duke@435 2045 int kind = classify_unsafe_addr(base, offset);
duke@435 2046 if (kind == Type::RawPtr) {
duke@435 2047 return basic_plus_adr(top(), base, offset);
duke@435 2048 } else {
duke@435 2049 return basic_plus_adr(base, offset);
duke@435 2050 }
duke@435 2051 }
duke@435 2052
twisti@1210 2053 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
twisti@1210 2054 // inline int Integer.numberOfLeadingZeros(int)
twisti@1210 2055 // inline int Long.numberOfLeadingZeros(long)
twisti@1210 2056 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
twisti@1210 2057 assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
twisti@1210 2058 if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
twisti@1210 2059 if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
twisti@1210 2060 _sp += arg_size(); // restore stack pointer
twisti@1210 2061 switch (id) {
twisti@1210 2062 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 2063 push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
twisti@1210 2064 break;
twisti@1210 2065 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 2066 push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
twisti@1210 2067 break;
twisti@1210 2068 default:
twisti@1210 2069 ShouldNotReachHere();
twisti@1210 2070 }
twisti@1210 2071 return true;
twisti@1210 2072 }
twisti@1210 2073
twisti@1210 2074 //-------------------inline_numberOfTrailingZeros_int/long----------------------
twisti@1210 2075 // inline int Integer.numberOfTrailingZeros(int)
twisti@1210 2076 // inline int Long.numberOfTrailingZeros(long)
twisti@1210 2077 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
twisti@1210 2078 assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
twisti@1210 2079 if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
twisti@1210 2080 if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
twisti@1210 2081 _sp += arg_size(); // restore stack pointer
twisti@1210 2082 switch (id) {
twisti@1210 2083 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 2084 push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
twisti@1210 2085 break;
twisti@1210 2086 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 2087 push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
twisti@1210 2088 break;
twisti@1210 2089 default:
twisti@1210 2090 ShouldNotReachHere();
twisti@1210 2091 }
twisti@1210 2092 return true;
twisti@1210 2093 }
twisti@1210 2094
twisti@1078 2095 //----------------------------inline_bitCount_int/long-----------------------
twisti@1078 2096 // inline int Integer.bitCount(int)
twisti@1078 2097 // inline int Long.bitCount(long)
twisti@1078 2098 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
twisti@1078 2099 assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
twisti@1078 2100 if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
twisti@1078 2101 if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
twisti@1078 2102 _sp += arg_size(); // restore stack pointer
twisti@1078 2103 switch (id) {
twisti@1078 2104 case vmIntrinsics::_bitCount_i:
twisti@1078 2105 push(_gvn.transform(new (C, 2) PopCountINode(pop())));
twisti@1078 2106 break;
twisti@1078 2107 case vmIntrinsics::_bitCount_l:
twisti@1078 2108 push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
twisti@1078 2109 break;
twisti@1078 2110 default:
twisti@1078 2111 ShouldNotReachHere();
twisti@1078 2112 }
twisti@1078 2113 return true;
twisti@1078 2114 }
twisti@1078 2115
never@1831 2116 //----------------------------inline_reverseBytes_int/long/char/short-------------------
twisti@1040 2117 // inline Integer.reverseBytes(int)
twisti@1040 2118 // inline Long.reverseBytes(long)
never@1831 2119 // inline Character.reverseBytes(char)
never@1831 2120 // inline Short.reverseBytes(short)
duke@435 2121 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
never@1831 2122 assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
never@1831 2123 id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
never@1831 2124 "not reverse Bytes");
never@1831 2125 if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
never@1831 2126 if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
never@1831 2127 if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
never@1831 2128 if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS)) return false;
duke@435 2129 _sp += arg_size(); // restore stack pointer
duke@435 2130 switch (id) {
duke@435 2131 case vmIntrinsics::_reverseBytes_i:
duke@435 2132 push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
duke@435 2133 break;
duke@435 2134 case vmIntrinsics::_reverseBytes_l:
duke@435 2135 push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
duke@435 2136 break;
never@1831 2137 case vmIntrinsics::_reverseBytes_c:
never@1831 2138 push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
never@1831 2139 break;
never@1831 2140 case vmIntrinsics::_reverseBytes_s:
never@1831 2141 push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
never@1831 2142 break;
duke@435 2143 default:
duke@435 2144 ;
duke@435 2145 }
duke@435 2146 return true;
duke@435 2147 }
duke@435 2148
duke@435 2149 //----------------------------inline_unsafe_access----------------------------
duke@435 2150
duke@435 2151 const static BasicType T_ADDRESS_HOLDER = T_LONG;
duke@435 2152
johnc@2781 2153 // Helper that guards and inserts a G1 pre-barrier.
johnc@2781 2154 void LibraryCallKit::insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val) {
johnc@2781 2155 assert(UseG1GC, "should not call this otherwise");
johnc@2781 2156
johnc@2781 2157 // We could be accessing the referent field of a reference object. If so, when G1
johnc@2781 2158 // is enabled, we need to log the value in the referent field in an SATB buffer.
johnc@2781 2159 // This routine performs some compile time filters and generates suitable
johnc@2781 2160 // runtime filters that guard the pre-barrier code.
johnc@2781 2161
johnc@2781 2162 // Some compile time checks.
johnc@2781 2163
johnc@2781 2164 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
johnc@2781 2165 const TypeX* otype = offset->find_intptr_t_type();
johnc@2781 2166 if (otype != NULL && otype->is_con() &&
johnc@2781 2167 otype->get_con() != java_lang_ref_Reference::referent_offset) {
johnc@2781 2168 // Constant offset but not the reference_offset so just return
johnc@2781 2169 return;
johnc@2781 2170 }
johnc@2781 2171
johnc@2781 2172 // We only need to generate the runtime guards for instances.
johnc@2781 2173 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
johnc@2781 2174 if (btype != NULL) {
johnc@2781 2175 if (btype->isa_aryptr()) {
johnc@2781 2176 // Array type so nothing to do
johnc@2781 2177 return;
johnc@2781 2178 }
johnc@2781 2179
johnc@2781 2180 const TypeInstPtr* itype = btype->isa_instptr();
johnc@2781 2181 if (itype != NULL) {
johnc@2781 2182 // Can the klass of base_oop be statically determined
johnc@2781 2183 // to be _not_ a sub-class of Reference?
johnc@2781 2184 ciKlass* klass = itype->klass();
johnc@2781 2185 if (klass->is_subtype_of(env()->Reference_klass()) &&
johnc@2781 2186 !env()->Reference_klass()->is_subtype_of(klass)) {
johnc@2781 2187 return;
johnc@2781 2188 }
johnc@2781 2189 }
johnc@2781 2190 }
johnc@2781 2191
johnc@2781 2192 // The compile time filters did not reject base_oop/offset so
johnc@2781 2193 // we need to generate the following runtime filters
johnc@2781 2194 //
johnc@2781 2195 // if (offset == java_lang_ref_Reference::_reference_offset) {
johnc@2781 2196 // if (base != null) {
jiangli@3526 2197 // if (instance_of(base, java.lang.ref.Reference)) {
johnc@2781 2198 // pre_barrier(_, pre_val, ...);
johnc@2781 2199 // }
johnc@2781 2200 // }
johnc@2781 2201 // }
johnc@2781 2202
johnc@2781 2203 float likely = PROB_LIKELY(0.999);
johnc@2781 2204 float unlikely = PROB_UNLIKELY(0.999);
johnc@2781 2205
johnc@2787 2206 IdealKit ideal(this);
johnc@2781 2207 #define __ ideal.
johnc@2781 2208
johnc@2786 2209 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
johnc@2781 2210
johnc@2781 2211 __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
johnc@2781 2212 __ if_then(base_oop, BoolTest::ne, null(), likely); {
johnc@2781 2213
johnc@2781 2214 // Update graphKit memory and control from IdealKit.
johnc@2787 2215 sync_kit(ideal);
johnc@2781 2216
johnc@2781 2217 Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
johnc@2781 2218 Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
johnc@2781 2219
johnc@2781 2220 // Update IdealKit memory and control from graphKit.
johnc@2787 2221 __ sync_kit(this);
johnc@2781 2222
johnc@2781 2223 Node* one = __ ConI(1);
johnc@2781 2224
johnc@2781 2225 __ if_then(is_instof, BoolTest::eq, one, unlikely); {
johnc@2781 2226
johnc@2781 2227 // Update graphKit from IdeakKit.
johnc@2787 2228 sync_kit(ideal);
johnc@2781 2229
johnc@2781 2230 // Use the pre-barrier to record the value in the referent field
johnc@2781 2231 pre_barrier(false /* do_load */,
johnc@2781 2232 __ ctrl(),
johnc@2790 2233 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 2234 pre_val /* pre_val */,
johnc@2781 2235 T_OBJECT);
johnc@2781 2236
johnc@2781 2237 // Update IdealKit from graphKit.
johnc@2787 2238 __ sync_kit(this);
johnc@2781 2239
johnc@2781 2240 } __ end_if(); // _ref_type != ref_none
johnc@2781 2241 } __ end_if(); // base != NULL
johnc@2781 2242 } __ end_if(); // offset == referent_offset
johnc@2781 2243
johnc@2781 2244 // Final sync IdealKit and GraphKit.
johnc@2787 2245 final_sync(ideal);
johnc@2781 2246 #undef __
johnc@2781 2247 }
johnc@2781 2248
johnc@2781 2249
duke@435 2250 // Interpret Unsafe.fieldOffset cookies correctly:
duke@435 2251 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
duke@435 2252
duke@435 2253 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
duke@435 2254 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2255
duke@435 2256 #ifndef PRODUCT
duke@435 2257 {
duke@435 2258 ResourceMark rm;
duke@435 2259 // Check the signatures.
duke@435 2260 ciSignature* sig = signature();
duke@435 2261 #ifdef ASSERT
duke@435 2262 if (!is_store) {
duke@435 2263 // Object getObject(Object base, int/long offset), etc.
duke@435 2264 BasicType rtype = sig->return_type()->basic_type();
duke@435 2265 if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
duke@435 2266 rtype = T_ADDRESS; // it is really a C void*
duke@435 2267 assert(rtype == type, "getter must return the expected value");
duke@435 2268 if (!is_native_ptr) {
duke@435 2269 assert(sig->count() == 2, "oop getter has 2 arguments");
duke@435 2270 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
duke@435 2271 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
duke@435 2272 } else {
duke@435 2273 assert(sig->count() == 1, "native getter has 1 argument");
duke@435 2274 assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
duke@435 2275 }
duke@435 2276 } else {
duke@435 2277 // void putObject(Object base, int/long offset, Object x), etc.
duke@435 2278 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
duke@435 2279 if (!is_native_ptr) {
duke@435 2280 assert(sig->count() == 3, "oop putter has 3 arguments");
duke@435 2281 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
duke@435 2282 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
duke@435 2283 } else {
duke@435 2284 assert(sig->count() == 2, "native putter has 2 arguments");
duke@435 2285 assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
duke@435 2286 }
duke@435 2287 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
duke@435 2288 if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
duke@435 2289 vtype = T_ADDRESS; // it is really a C void*
duke@435 2290 assert(vtype == type, "putter must accept the expected value");
duke@435 2291 }
duke@435 2292 #endif // ASSERT
duke@435 2293 }
duke@435 2294 #endif //PRODUCT
duke@435 2295
duke@435 2296 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2297
duke@435 2298 int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
duke@435 2299
duke@435 2300 // Argument words: "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
duke@435 2301 int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
duke@435 2302
duke@435 2303 debug_only(int saved_sp = _sp);
duke@435 2304 _sp += nargs;
duke@435 2305
duke@435 2306 Node* val;
duke@435 2307 debug_only(val = (Node*)(uintptr_t)-1);
duke@435 2308
duke@435 2309
duke@435 2310 if (is_store) {
duke@435 2311 // Get the value being stored. (Pop it first; it was pushed last.)
duke@435 2312 switch (type) {
duke@435 2313 case T_DOUBLE:
duke@435 2314 case T_LONG:
duke@435 2315 case T_ADDRESS:
duke@435 2316 val = pop_pair();
duke@435 2317 break;
duke@435 2318 default:
duke@435 2319 val = pop();
duke@435 2320 }
duke@435 2321 }
duke@435 2322
duke@435 2323 // Build address expression. See the code in inline_unsafe_prefetch.
duke@435 2324 Node *adr;
duke@435 2325 Node *heap_base_oop = top();
johnc@2781 2326 Node* offset = top();
johnc@2781 2327
duke@435 2328 if (!is_native_ptr) {
duke@435 2329 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
johnc@2781 2330 offset = pop_pair();
duke@435 2331 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2332 Node* base = pop();
duke@435 2333 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2334 // to be plain byte offsets, which are also the same as those accepted
duke@435 2335 // by oopDesc::field_base.
duke@435 2336 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2337 "fieldOffset must be byte-scaled");
duke@435 2338 // 32-bit machines ignore the high half!
duke@435 2339 offset = ConvL2X(offset);
duke@435 2340 adr = make_unsafe_address(base, offset);
duke@435 2341 heap_base_oop = base;
duke@435 2342 } else {
duke@435 2343 Node* ptr = pop_pair();
duke@435 2344 // Adjust Java long to machine word:
duke@435 2345 ptr = ConvL2X(ptr);
duke@435 2346 adr = make_unsafe_address(NULL, ptr);
duke@435 2347 }
duke@435 2348
duke@435 2349 // Pop receiver last: it was pushed first.
duke@435 2350 Node *receiver = pop();
duke@435 2351
duke@435 2352 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2353
duke@435 2354 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2355
duke@435 2356 // First guess at the value type.
duke@435 2357 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2358
duke@435 2359 // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
duke@435 2360 // there was not enough information to nail it down.
duke@435 2361 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2362 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2363
duke@435 2364 // We will need memory barriers unless we can determine a unique
duke@435 2365 // alias category for this reference. (Note: If for some reason
duke@435 2366 // the barriers get omitted and the unsafe reference begins to "pollute"
duke@435 2367 // the alias analysis of the rest of the graph, either Compile::can_alias
duke@435 2368 // or Compile::must_alias will throw a diagnostic assert.)
duke@435 2369 bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
duke@435 2370
johnc@2781 2371 // If we are reading the value of the referent field of a Reference
johnc@2781 2372 // object (either by using Unsafe directly or through reflection)
johnc@2781 2373 // then, if G1 is enabled, we need to record the referent in an
johnc@2781 2374 // SATB log buffer using the pre-barrier mechanism.
johnc@2781 2375 bool need_read_barrier = UseG1GC && !is_native_ptr && !is_store &&
johnc@2781 2376 offset != top() && heap_base_oop != top();
johnc@2781 2377
duke@435 2378 if (!is_store && type == T_OBJECT) {
duke@435 2379 // Attempt to infer a sharper value type from the offset and base type.
duke@435 2380 ciKlass* sharpened_klass = NULL;
duke@435 2381
duke@435 2382 // See if it is an instance field, with an object type.
duke@435 2383 if (alias_type->field() != NULL) {
duke@435 2384 assert(!is_native_ptr, "native pointer op cannot use a java address");
duke@435 2385 if (alias_type->field()->type()->is_klass()) {
duke@435 2386 sharpened_klass = alias_type->field()->type()->as_klass();
duke@435 2387 }
duke@435 2388 }
duke@435 2389
duke@435 2390 // See if it is a narrow oop array.
duke@435 2391 if (adr_type->isa_aryptr()) {
twisti@1330 2392 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
duke@435 2393 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
duke@435 2394 if (elem_type != NULL) {
duke@435 2395 sharpened_klass = elem_type->klass();
duke@435 2396 }
duke@435 2397 }
duke@435 2398 }
duke@435 2399
duke@435 2400 if (sharpened_klass != NULL) {
duke@435 2401 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
duke@435 2402
duke@435 2403 // Sharpen the value type.
duke@435 2404 value_type = tjp;
duke@435 2405
duke@435 2406 #ifndef PRODUCT
duke@435 2407 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 2408 tty->print(" from base type: "); adr_type->dump();
duke@435 2409 tty->print(" sharpened value: "); value_type->dump();
duke@435 2410 }
duke@435 2411 #endif
duke@435 2412 }
duke@435 2413 }
duke@435 2414
duke@435 2415 // Null check on self without removing any arguments. The argument
duke@435 2416 // null check technically happens in the wrong place, which can lead to
duke@435 2417 // invalid stack traces when the primitive is inlined into a method
duke@435 2418 // which handles NullPointerExceptions.
duke@435 2419 _sp += nargs;
duke@435 2420 do_null_check(receiver, T_OBJECT);
duke@435 2421 _sp -= nargs;
duke@435 2422 if (stopped()) {
duke@435 2423 return true;
duke@435 2424 }
duke@435 2425 // Heap pointers get a null-check from the interpreter,
duke@435 2426 // as a courtesy. However, this is not guaranteed by Unsafe,
duke@435 2427 // and it is not possible to fully distinguish unintended nulls
duke@435 2428 // from intended ones in this API.
duke@435 2429
duke@435 2430 if (is_volatile) {
duke@435 2431 // We need to emit leading and trailing CPU membars (see below) in
duke@435 2432 // addition to memory membars when is_volatile. This is a little
duke@435 2433 // too strong, but avoids the need to insert per-alias-type
duke@435 2434 // volatile membars (for stores; compare Parse::do_put_xxx), which
twisti@1040 2435 // we cannot do effectively here because we probably only have a
duke@435 2436 // rough approximation of type.
duke@435 2437 need_mem_bar = true;
duke@435 2438 // For Stores, place a memory ordering barrier now.
duke@435 2439 if (is_store)
duke@435 2440 insert_mem_bar(Op_MemBarRelease);
duke@435 2441 }
duke@435 2442
duke@435 2443 // Memory barrier to prevent normal and 'unsafe' accesses from
duke@435 2444 // bypassing each other. Happens after null checks, so the
duke@435 2445 // exception paths do not take memory state from the memory barrier,
duke@435 2446 // so there's no problems making a strong assert about mixing users
duke@435 2447 // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
duke@435 2448 // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
duke@435 2449 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2450
duke@435 2451 if (!is_store) {
duke@435 2452 Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
duke@435 2453 // load value and push onto stack
duke@435 2454 switch (type) {
duke@435 2455 case T_BOOLEAN:
duke@435 2456 case T_CHAR:
duke@435 2457 case T_BYTE:
duke@435 2458 case T_SHORT:
duke@435 2459 case T_INT:
duke@435 2460 case T_FLOAT:
johnc@2781 2461 push(p);
johnc@2781 2462 break;
duke@435 2463 case T_OBJECT:
johnc@2781 2464 if (need_read_barrier) {
johnc@2781 2465 insert_g1_pre_barrier(heap_base_oop, offset, p);
johnc@2781 2466 }
johnc@2781 2467 push(p);
duke@435 2468 break;
duke@435 2469 case T_ADDRESS:
duke@435 2470 // Cast to an int type.
duke@435 2471 p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
duke@435 2472 p = ConvX2L(p);
duke@435 2473 push_pair(p);
duke@435 2474 break;
duke@435 2475 case T_DOUBLE:
duke@435 2476 case T_LONG:
duke@435 2477 push_pair( p );
duke@435 2478 break;
duke@435 2479 default: ShouldNotReachHere();
duke@435 2480 }
duke@435 2481 } else {
duke@435 2482 // place effect of store into memory
duke@435 2483 switch (type) {
duke@435 2484 case T_DOUBLE:
duke@435 2485 val = dstore_rounding(val);
duke@435 2486 break;
duke@435 2487 case T_ADDRESS:
duke@435 2488 // Repackage the long as a pointer.
duke@435 2489 val = ConvL2X(val);
duke@435 2490 val = _gvn.transform( new (C, 2) CastX2PNode(val) );
duke@435 2491 break;
duke@435 2492 }
duke@435 2493
duke@435 2494 if (type != T_OBJECT ) {
duke@435 2495 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
duke@435 2496 } else {
duke@435 2497 // Possibly an oop being stored to Java heap or native memory
duke@435 2498 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
duke@435 2499 // oop to Java heap.
never@1260 2500 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
duke@435 2501 } else {
duke@435 2502 // We can't tell at compile time if we are storing in the Java heap or outside
duke@435 2503 // of it. So we need to emit code to conditionally do the proper type of
duke@435 2504 // store.
duke@435 2505
kvn@2726 2506 IdealKit ideal(this);
kvn@1286 2507 #define __ ideal.
duke@435 2508 // QQQ who knows what probability is here??
kvn@1286 2509 __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
kvn@1286 2510 // Sync IdealKit and graphKit.
kvn@2726 2511 sync_kit(ideal);
kvn@1286 2512 Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
kvn@1286 2513 // Update IdealKit memory.
kvn@2726 2514 __ sync_kit(this);
kvn@1286 2515 } __ else_(); {
kvn@1286 2516 __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
kvn@1286 2517 } __ end_if();
kvn@1286 2518 // Final sync IdealKit and GraphKit.
kvn@2726 2519 final_sync(ideal);
kvn@1286 2520 #undef __
duke@435 2521 }
duke@435 2522 }
duke@435 2523 }
duke@435 2524
duke@435 2525 if (is_volatile) {
duke@435 2526 if (!is_store)
duke@435 2527 insert_mem_bar(Op_MemBarAcquire);
duke@435 2528 else
duke@435 2529 insert_mem_bar(Op_MemBarVolatile);
duke@435 2530 }
duke@435 2531
duke@435 2532 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2533
duke@435 2534 return true;
duke@435 2535 }
duke@435 2536
duke@435 2537 //----------------------------inline_unsafe_prefetch----------------------------
duke@435 2538
duke@435 2539 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
duke@435 2540 #ifndef PRODUCT
duke@435 2541 {
duke@435 2542 ResourceMark rm;
duke@435 2543 // Check the signatures.
duke@435 2544 ciSignature* sig = signature();
duke@435 2545 #ifdef ASSERT
duke@435 2546 // Object getObject(Object base, int/long offset), etc.
duke@435 2547 BasicType rtype = sig->return_type()->basic_type();
duke@435 2548 if (!is_native_ptr) {
duke@435 2549 assert(sig->count() == 2, "oop prefetch has 2 arguments");
duke@435 2550 assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
duke@435 2551 assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
duke@435 2552 } else {
duke@435 2553 assert(sig->count() == 1, "native prefetch has 1 argument");
duke@435 2554 assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
duke@435 2555 }
duke@435 2556 #endif // ASSERT
duke@435 2557 }
duke@435 2558 #endif // !PRODUCT
duke@435 2559
duke@435 2560 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2561
duke@435 2562 // Argument words: "this" if not static, plus (oop/offset) or (lo/hi) args
duke@435 2563 int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
duke@435 2564
duke@435 2565 debug_only(int saved_sp = _sp);
duke@435 2566 _sp += nargs;
duke@435 2567
duke@435 2568 // Build address expression. See the code in inline_unsafe_access.
duke@435 2569 Node *adr;
duke@435 2570 if (!is_native_ptr) {
duke@435 2571 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
duke@435 2572 Node* offset = pop_pair();
duke@435 2573 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2574 Node* base = pop();
duke@435 2575 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2576 // to be plain byte offsets, which are also the same as those accepted
duke@435 2577 // by oopDesc::field_base.
duke@435 2578 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2579 "fieldOffset must be byte-scaled");
duke@435 2580 // 32-bit machines ignore the high half!
duke@435 2581 offset = ConvL2X(offset);
duke@435 2582 adr = make_unsafe_address(base, offset);
duke@435 2583 } else {
duke@435 2584 Node* ptr = pop_pair();
duke@435 2585 // Adjust Java long to machine word:
duke@435 2586 ptr = ConvL2X(ptr);
duke@435 2587 adr = make_unsafe_address(NULL, ptr);
duke@435 2588 }
duke@435 2589
duke@435 2590 if (is_static) {
duke@435 2591 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2592 } else {
duke@435 2593 // Pop receiver last: it was pushed first.
duke@435 2594 Node *receiver = pop();
duke@435 2595 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2596
duke@435 2597 // Null check on self without removing any arguments. The argument
duke@435 2598 // null check technically happens in the wrong place, which can lead to
duke@435 2599 // invalid stack traces when the primitive is inlined into a method
duke@435 2600 // which handles NullPointerExceptions.
duke@435 2601 _sp += nargs;
duke@435 2602 do_null_check(receiver, T_OBJECT);
duke@435 2603 _sp -= nargs;
duke@435 2604 if (stopped()) {
duke@435 2605 return true;
duke@435 2606 }
duke@435 2607 }
duke@435 2608
duke@435 2609 // Generate the read or write prefetch
duke@435 2610 Node *prefetch;
duke@435 2611 if (is_store) {
duke@435 2612 prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
duke@435 2613 } else {
duke@435 2614 prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
duke@435 2615 }
duke@435 2616 prefetch->init_req(0, control());
duke@435 2617 set_i_o(_gvn.transform(prefetch));
duke@435 2618
duke@435 2619 return true;
duke@435 2620 }
duke@435 2621
duke@435 2622 //----------------------------inline_unsafe_CAS----------------------------
duke@435 2623
duke@435 2624 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
duke@435 2625 // This basic scheme here is the same as inline_unsafe_access, but
duke@435 2626 // differs in enough details that combining them would make the code
duke@435 2627 // overly confusing. (This is a true fact! I originally combined
duke@435 2628 // them, but even I was confused by it!) As much code/comments as
duke@435 2629 // possible are retained from inline_unsafe_access though to make
twisti@1040 2630 // the correspondences clearer. - dl
duke@435 2631
duke@435 2632 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2633
duke@435 2634 #ifndef PRODUCT
duke@435 2635 {
duke@435 2636 ResourceMark rm;
duke@435 2637 // Check the signatures.
duke@435 2638 ciSignature* sig = signature();
duke@435 2639 #ifdef ASSERT
duke@435 2640 BasicType rtype = sig->return_type()->basic_type();
duke@435 2641 assert(rtype == T_BOOLEAN, "CAS must return boolean");
duke@435 2642 assert(sig->count() == 4, "CAS has 4 arguments");
duke@435 2643 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
duke@435 2644 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
duke@435 2645 #endif // ASSERT
duke@435 2646 }
duke@435 2647 #endif //PRODUCT
duke@435 2648
duke@435 2649 // number of stack slots per value argument (1 or 2)
duke@435 2650 int type_words = type2size[type];
duke@435 2651
duke@435 2652 // Cannot inline wide CAS on machines that don't support it natively
kvn@464 2653 if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
duke@435 2654 return false;
duke@435 2655
duke@435 2656 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2657
duke@435 2658 // Argument words: "this" plus oop plus offset plus oldvalue plus newvalue;
duke@435 2659 int nargs = 1 + 1 + 2 + type_words + type_words;
duke@435 2660
duke@435 2661 // pop arguments: newval, oldval, offset, base, and receiver
duke@435 2662 debug_only(int saved_sp = _sp);
duke@435 2663 _sp += nargs;
duke@435 2664 Node* newval = (type_words == 1) ? pop() : pop_pair();
duke@435 2665 Node* oldval = (type_words == 1) ? pop() : pop_pair();
duke@435 2666 Node *offset = pop_pair();
duke@435 2667 Node *base = pop();
duke@435 2668 Node *receiver = pop();
duke@435 2669 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2670
duke@435 2671 // Null check receiver.
duke@435 2672 _sp += nargs;
duke@435 2673 do_null_check(receiver, T_OBJECT);
duke@435 2674 _sp -= nargs;
duke@435 2675 if (stopped()) {
duke@435 2676 return true;
duke@435 2677 }
duke@435 2678
duke@435 2679 // Build field offset expression.
duke@435 2680 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2681 // to be plain byte offsets, which are also the same as those accepted
duke@435 2682 // by oopDesc::field_base.
duke@435 2683 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2684 // 32-bit machines ignore the high half of long offsets
duke@435 2685 offset = ConvL2X(offset);
duke@435 2686 Node* adr = make_unsafe_address(base, offset);
duke@435 2687 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2688
duke@435 2689 // (Unlike inline_unsafe_access, there seems no point in trying
duke@435 2690 // to refine types. Just use the coarse types here.
duke@435 2691 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2692 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2693 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2694 int alias_idx = C->get_alias_index(adr_type);
duke@435 2695
duke@435 2696 // Memory-model-wise, a CAS acts like a little synchronized block,
twisti@1040 2697 // so needs barriers on each side. These don't translate into
duke@435 2698 // actual barriers on most machines, but we still need rest of
duke@435 2699 // compiler to respect ordering.
duke@435 2700
duke@435 2701 insert_mem_bar(Op_MemBarRelease);
duke@435 2702 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2703
duke@435 2704 // 4984716: MemBars must be inserted before this
duke@435 2705 // memory node in order to avoid a false
duke@435 2706 // dependency which will confuse the scheduler.
duke@435 2707 Node *mem = memory(alias_idx);
duke@435 2708
duke@435 2709 // For now, we handle only those cases that actually exist: ints,
duke@435 2710 // longs, and Object. Adding others should be straightforward.
duke@435 2711 Node* cas;
duke@435 2712 switch(type) {
duke@435 2713 case T_INT:
duke@435 2714 cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
duke@435 2715 break;
duke@435 2716 case T_LONG:
duke@435 2717 cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
duke@435 2718 break;
duke@435 2719 case T_OBJECT:
kvn@3521 2720 // Transformation of a value which could be NULL pointer (CastPP #NULL)
kvn@3521 2721 // could be delayed during Parse (for example, in adjust_map_after_if()).
kvn@3521 2722 // Execute transformation here to avoid barrier generation in such case.
kvn@3521 2723 if (_gvn.type(newval) == TypePtr::NULL_PTR)
kvn@3521 2724 newval = _gvn.makecon(TypePtr::NULL_PTR);
kvn@3521 2725
kvn@3521 2726 // Reference stores need a store barrier.
duke@435 2727 // (They don't if CAS fails, but it isn't worth checking.)
johnc@2781 2728 pre_barrier(true /* do_load*/,
johnc@2781 2729 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
johnc@2781 2730 NULL /* pre_val*/,
johnc@2781 2731 T_OBJECT);
coleenp@548 2732 #ifdef _LP64
kvn@598 2733 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@656 2734 Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
kvn@656 2735 Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
coleenp@548 2736 cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
kvn@656 2737 newval_enc, oldval_enc));
coleenp@548 2738 } else
coleenp@548 2739 #endif
kvn@656 2740 {
kvn@656 2741 cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
kvn@656 2742 }
duke@435 2743 post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
duke@435 2744 break;
duke@435 2745 default:
duke@435 2746 ShouldNotReachHere();
duke@435 2747 break;
duke@435 2748 }
duke@435 2749
duke@435 2750 // SCMemProjNodes represent the memory state of CAS. Their main
duke@435 2751 // role is to prevent CAS nodes from being optimized away when their
duke@435 2752 // results aren't used.
duke@435 2753 Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
duke@435 2754 set_memory(proj, alias_idx);
duke@435 2755
duke@435 2756 // Add the trailing membar surrounding the access
duke@435 2757 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2758 insert_mem_bar(Op_MemBarAcquire);
duke@435 2759
duke@435 2760 push(cas);
duke@435 2761 return true;
duke@435 2762 }
duke@435 2763
duke@435 2764 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
duke@435 2765 // This is another variant of inline_unsafe_access, differing in
duke@435 2766 // that it always issues store-store ("release") barrier and ensures
duke@435 2767 // store-atomicity (which only matters for "long").
duke@435 2768
duke@435 2769 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2770
duke@435 2771 #ifndef PRODUCT
duke@435 2772 {
duke@435 2773 ResourceMark rm;
duke@435 2774 // Check the signatures.
duke@435 2775 ciSignature* sig = signature();
duke@435 2776 #ifdef ASSERT
duke@435 2777 BasicType rtype = sig->return_type()->basic_type();
duke@435 2778 assert(rtype == T_VOID, "must return void");
duke@435 2779 assert(sig->count() == 3, "has 3 arguments");
duke@435 2780 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
duke@435 2781 assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
duke@435 2782 #endif // ASSERT
duke@435 2783 }
duke@435 2784 #endif //PRODUCT
duke@435 2785
duke@435 2786 // number of stack slots per value argument (1 or 2)
duke@435 2787 int type_words = type2size[type];
duke@435 2788
duke@435 2789 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2790
duke@435 2791 // Argument words: "this" plus oop plus offset plus value;
duke@435 2792 int nargs = 1 + 1 + 2 + type_words;
duke@435 2793
duke@435 2794 // pop arguments: val, offset, base, and receiver
duke@435 2795 debug_only(int saved_sp = _sp);
duke@435 2796 _sp += nargs;
duke@435 2797 Node* val = (type_words == 1) ? pop() : pop_pair();
duke@435 2798 Node *offset = pop_pair();
duke@435 2799 Node *base = pop();
duke@435 2800 Node *receiver = pop();
duke@435 2801 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2802
duke@435 2803 // Null check receiver.
duke@435 2804 _sp += nargs;
duke@435 2805 do_null_check(receiver, T_OBJECT);
duke@435 2806 _sp -= nargs;
duke@435 2807 if (stopped()) {
duke@435 2808 return true;
duke@435 2809 }
duke@435 2810
duke@435 2811 // Build field offset expression.
duke@435 2812 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2813 // 32-bit machines ignore the high half of long offsets
duke@435 2814 offset = ConvL2X(offset);
duke@435 2815 Node* adr = make_unsafe_address(base, offset);
duke@435 2816 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2817 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2818 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2819
duke@435 2820 insert_mem_bar(Op_MemBarRelease);
duke@435 2821 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2822 // Ensure that the store is atomic for longs:
duke@435 2823 bool require_atomic_access = true;
duke@435 2824 Node* store;
duke@435 2825 if (type == T_OBJECT) // reference stores need a store barrier.
never@1260 2826 store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
duke@435 2827 else {
duke@435 2828 store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
duke@435 2829 }
duke@435 2830 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2831 return true;
duke@435 2832 }
duke@435 2833
duke@435 2834 bool LibraryCallKit::inline_unsafe_allocate() {
duke@435 2835 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2836 int nargs = 1 + 1;
duke@435 2837 assert(signature()->size() == nargs-1, "alloc has 1 argument");
duke@435 2838 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 2839 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2840 Node* cls = do_null_check(argument(1), T_OBJECT);
duke@435 2841 _sp -= nargs;
duke@435 2842 if (stopped()) return true;
duke@435 2843
duke@435 2844 Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
duke@435 2845 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2846 kls = do_null_check(kls, T_OBJECT);
duke@435 2847 _sp -= nargs;
duke@435 2848 if (stopped()) return true; // argument was like int.class
duke@435 2849
duke@435 2850 // Note: The argument might still be an illegal value like
duke@435 2851 // Serializable.class or Object[].class. The runtime will handle it.
duke@435 2852 // But we must make an explicit check for initialization.
stefank@3391 2853 Node* insp = basic_plus_adr(kls, in_bytes(instanceKlass::init_state_offset()));
coleenp@3368 2854 // Use T_BOOLEAN for instanceKlass::_init_state so the compiler
coleenp@3368 2855 // can generate code to load it as unsigned byte.
coleenp@3368 2856 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
duke@435 2857 Node* bits = intcon(instanceKlass::fully_initialized);
duke@435 2858 Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
duke@435 2859 // The 'test' is non-zero if we need to take a slow path.
duke@435 2860
duke@435 2861 Node* obj = new_instance(kls, test);
duke@435 2862 push(obj);
duke@435 2863
duke@435 2864 return true;
duke@435 2865 }
duke@435 2866
rbackman@3709 2867 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 2868 /*
rbackman@3709 2869 * oop -> myklass
rbackman@3709 2870 * myklass->trace_id |= USED
rbackman@3709 2871 * return myklass->trace_id & ~0x3
rbackman@3709 2872 */
rbackman@3709 2873 bool LibraryCallKit::inline_native_classID() {
rbackman@3709 2874 int nargs = 1 + 1;
rbackman@3709 2875 null_check_receiver(callee()); // check then ignore argument(0)
rbackman@3709 2876 _sp += nargs;
rbackman@3709 2877 Node* cls = do_null_check(argument(1), T_OBJECT);
rbackman@3709 2878 _sp -= nargs;
rbackman@3709 2879 Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
rbackman@3709 2880 _sp += nargs;
rbackman@3709 2881 kls = do_null_check(kls, T_OBJECT);
rbackman@3709 2882 _sp -= nargs;
rbackman@3709 2883 ByteSize offset = TRACE_ID_OFFSET;
rbackman@3709 2884 Node* insp = basic_plus_adr(kls, in_bytes(offset));
rbackman@3709 2885 Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
rbackman@3709 2886 Node* bits = longcon(~0x03l); // ignore bit 0 & 1
rbackman@3709 2887 Node* andl = _gvn.transform(new (C, 3) AndLNode(tvalue, bits));
rbackman@3709 2888 Node* clsused = longcon(0x01l); // set the class bit
rbackman@3709 2889 Node* orl = _gvn.transform(new (C, 3) OrLNode(tvalue, clsused));
rbackman@3709 2890
rbackman@3709 2891 const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
rbackman@3709 2892 store_to_memory(control(), insp, orl, T_LONG, adr_type);
rbackman@3709 2893 push_pair(andl);
rbackman@3709 2894 return true;
rbackman@3709 2895 }
rbackman@3709 2896
rbackman@3709 2897 bool LibraryCallKit::inline_native_threadID() {
rbackman@3709 2898 Node* tls_ptr = NULL;
rbackman@3709 2899 Node* cur_thr = generate_current_thread(tls_ptr);
rbackman@3709 2900 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
rbackman@3709 2901 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
rbackman@3709 2902 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
rbackman@3709 2903
rbackman@3709 2904 Node* threadid = NULL;
rbackman@3709 2905 size_t thread_id_size = OSThread::thread_id_size();
rbackman@3709 2906 if (thread_id_size == (size_t) BytesPerLong) {
rbackman@3709 2907 threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
rbackman@3709 2908 push(threadid);
rbackman@3709 2909 } else if (thread_id_size == (size_t) BytesPerInt) {
rbackman@3709 2910 threadid = make_load(control(), p, TypeInt::INT, T_INT);
rbackman@3709 2911 push(threadid);
rbackman@3709 2912 } else {
rbackman@3709 2913 ShouldNotReachHere();
rbackman@3709 2914 }
rbackman@3709 2915 return true;
rbackman@3709 2916 }
rbackman@3709 2917 #endif
rbackman@3709 2918
duke@435 2919 //------------------------inline_native_time_funcs--------------
duke@435 2920 // inline code for System.currentTimeMillis() and System.nanoTime()
duke@435 2921 // these have the same type and signature
rbackman@3709 2922 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
rbackman@3709 2923 const TypeFunc *tf = OptoRuntime::void_long_Type();
duke@435 2924 const TypePtr* no_memory_effects = NULL;
duke@435 2925 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
duke@435 2926 Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
duke@435 2927 #ifdef ASSERT
duke@435 2928 Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
duke@435 2929 assert(value_top == top(), "second value must be top");
duke@435 2930 #endif
duke@435 2931 push_pair(value);
duke@435 2932 return true;
duke@435 2933 }
duke@435 2934
duke@435 2935 //------------------------inline_native_currentThread------------------
duke@435 2936 bool LibraryCallKit::inline_native_currentThread() {
duke@435 2937 Node* junk = NULL;
duke@435 2938 push(generate_current_thread(junk));
duke@435 2939 return true;
duke@435 2940 }
duke@435 2941
duke@435 2942 //------------------------inline_native_isInterrupted------------------
duke@435 2943 bool LibraryCallKit::inline_native_isInterrupted() {
duke@435 2944 const int nargs = 1+1; // receiver + boolean
duke@435 2945 assert(nargs == arg_size(), "sanity");
duke@435 2946 // Add a fast path to t.isInterrupted(clear_int):
duke@435 2947 // (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
duke@435 2948 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
duke@435 2949 // So, in the common case that the interrupt bit is false,
duke@435 2950 // we avoid making a call into the VM. Even if the interrupt bit
duke@435 2951 // is true, if the clear_int argument is false, we avoid the VM call.
duke@435 2952 // However, if the receiver is not currentThread, we must call the VM,
duke@435 2953 // because there must be some locking done around the operation.
duke@435 2954
duke@435 2955 // We only go to the fast case code if we pass two guards.
duke@435 2956 // Paths which do not pass are accumulated in the slow_region.
duke@435 2957 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 2958 record_for_igvn(slow_region);
duke@435 2959 RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
duke@435 2960 PhiNode* result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
duke@435 2961 enum { no_int_result_path = 1,
duke@435 2962 no_clear_result_path = 2,
duke@435 2963 slow_result_path = 3
duke@435 2964 };
duke@435 2965
duke@435 2966 // (a) Receiving thread must be the current thread.
duke@435 2967 Node* rec_thr = argument(0);
duke@435 2968 Node* tls_ptr = NULL;
duke@435 2969 Node* cur_thr = generate_current_thread(tls_ptr);
duke@435 2970 Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
duke@435 2971 Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
duke@435 2972
duke@435 2973 bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
duke@435 2974 if (!known_current_thread)
duke@435 2975 generate_slow_guard(bol_thr, slow_region);
duke@435 2976
duke@435 2977 // (b) Interrupt bit on TLS must be false.
duke@435 2978 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
duke@435 2979 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
duke@435 2980 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
kvn@1222 2981 // Set the control input on the field _interrupted read to prevent it floating up.
kvn@1222 2982 Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
duke@435 2983 Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
duke@435 2984 Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
duke@435 2985
duke@435 2986 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
duke@435 2987
duke@435 2988 // First fast path: if (!TLS._interrupted) return false;
duke@435 2989 Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
duke@435 2990 result_rgn->init_req(no_int_result_path, false_bit);
duke@435 2991 result_val->init_req(no_int_result_path, intcon(0));
duke@435 2992
duke@435 2993 // drop through to next case
duke@435 2994 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
duke@435 2995
duke@435 2996 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
duke@435 2997 Node* clr_arg = argument(1);
duke@435 2998 Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
duke@435 2999 Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
duke@435 3000 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
duke@435 3001
duke@435 3002 // Second fast path: ... else if (!clear_int) return true;
duke@435 3003 Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
duke@435 3004 result_rgn->init_req(no_clear_result_path, false_arg);
duke@435 3005 result_val->init_req(no_clear_result_path, intcon(1));
duke@435 3006
duke@435 3007 // drop through to next case
duke@435 3008 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
duke@435 3009
duke@435 3010 // (d) Otherwise, go to the slow path.
duke@435 3011 slow_region->add_req(control());
duke@435 3012 set_control( _gvn.transform(slow_region) );
duke@435 3013
duke@435 3014 if (stopped()) {
duke@435 3015 // There is no slow path.
duke@435 3016 result_rgn->init_req(slow_result_path, top());
duke@435 3017 result_val->init_req(slow_result_path, top());
duke@435 3018 } else {
duke@435 3019 // non-virtual because it is a private non-static
duke@435 3020 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
duke@435 3021
duke@435 3022 Node* slow_val = set_results_for_java_call(slow_call);
duke@435 3023 // this->control() comes from set_results_for_java_call
duke@435 3024
duke@435 3025 // If we know that the result of the slow call will be true, tell the optimizer!
duke@435 3026 if (known_current_thread) slow_val = intcon(1);
duke@435 3027
duke@435 3028 Node* fast_io = slow_call->in(TypeFunc::I_O);
duke@435 3029 Node* fast_mem = slow_call->in(TypeFunc::Memory);
duke@435 3030 // These two phis are pre-filled with copies of of the fast IO and Memory
duke@435 3031 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
duke@435 3032 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
duke@435 3033
duke@435 3034 result_rgn->init_req(slow_result_path, control());
duke@435 3035 io_phi ->init_req(slow_result_path, i_o());
duke@435 3036 mem_phi ->init_req(slow_result_path, reset_memory());
duke@435 3037 result_val->init_req(slow_result_path, slow_val);
duke@435 3038
duke@435 3039 set_all_memory( _gvn.transform(mem_phi) );
duke@435 3040 set_i_o( _gvn.transform(io_phi) );
duke@435 3041 }
duke@435 3042
duke@435 3043 push_result(result_rgn, result_val);
duke@435 3044 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3045
duke@435 3046 return true;
duke@435 3047 }
duke@435 3048
duke@435 3049 //---------------------------load_mirror_from_klass----------------------------
duke@435 3050 // Given a klass oop, load its java mirror (a java.lang.Class oop).
duke@435 3051 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
stefank@3391 3052 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
duke@435 3053 return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3054 }
duke@435 3055
duke@435 3056 //-----------------------load_klass_from_mirror_common-------------------------
duke@435 3057 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
duke@435 3058 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
duke@435 3059 // and branch to the given path on the region.
duke@435 3060 // If never_see_null, take an uncommon trap on null, so we can optimistically
duke@435 3061 // compile for the non-null case.
duke@435 3062 // If the region is NULL, force never_see_null = true.
duke@435 3063 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
duke@435 3064 bool never_see_null,
duke@435 3065 int nargs,
duke@435 3066 RegionNode* region,
duke@435 3067 int null_path,
duke@435 3068 int offset) {
duke@435 3069 if (region == NULL) never_see_null = true;
duke@435 3070 Node* p = basic_plus_adr(mirror, offset);
duke@435 3071 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
kvn@599 3072 Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
duke@435 3073 _sp += nargs; // any deopt will start just before call to enclosing method
duke@435 3074 Node* null_ctl = top();
duke@435 3075 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3076 if (region != NULL) {
duke@435 3077 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
duke@435 3078 region->init_req(null_path, null_ctl);
duke@435 3079 } else {
duke@435 3080 assert(null_ctl == top(), "no loose ends");
duke@435 3081 }
duke@435 3082 _sp -= nargs;
duke@435 3083 return kls;
duke@435 3084 }
duke@435 3085
duke@435 3086 //--------------------(inline_native_Class_query helpers)---------------------
duke@435 3087 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
duke@435 3088 // Fall through if (mods & mask) == bits, take the guard otherwise.
duke@435 3089 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
duke@435 3090 // Branch around if the given klass has the given modifier bit set.
duke@435 3091 // Like generate_guard, adds a new path onto the region.
stefank@3391 3092 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3093 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
duke@435 3094 Node* mask = intcon(modifier_mask);
duke@435 3095 Node* bits = intcon(modifier_bits);
duke@435 3096 Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
duke@435 3097 Node* cmp = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
duke@435 3098 Node* bol = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
duke@435 3099 return generate_fair_guard(bol, region);
duke@435 3100 }
duke@435 3101 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
duke@435 3102 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
duke@435 3103 }
duke@435 3104
duke@435 3105 //-------------------------inline_native_Class_query-------------------
duke@435 3106 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
duke@435 3107 int nargs = 1+0; // just the Class mirror, in most cases
duke@435 3108 const Type* return_type = TypeInt::BOOL;
duke@435 3109 Node* prim_return_value = top(); // what happens if it's a primitive class?
duke@435 3110 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3111 bool expect_prim = false; // most of these guys expect to work on refs
duke@435 3112
duke@435 3113 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
duke@435 3114
duke@435 3115 switch (id) {
duke@435 3116 case vmIntrinsics::_isInstance:
duke@435 3117 nargs = 1+1; // the Class mirror, plus the object getting queried about
duke@435 3118 // nothing is an instance of a primitive type
duke@435 3119 prim_return_value = intcon(0);
duke@435 3120 break;
duke@435 3121 case vmIntrinsics::_getModifiers:
duke@435 3122 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3123 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
duke@435 3124 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
duke@435 3125 break;
duke@435 3126 case vmIntrinsics::_isInterface:
duke@435 3127 prim_return_value = intcon(0);
duke@435 3128 break;
duke@435 3129 case vmIntrinsics::_isArray:
duke@435 3130 prim_return_value = intcon(0);
duke@435 3131 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
duke@435 3132 break;
duke@435 3133 case vmIntrinsics::_isPrimitive:
duke@435 3134 prim_return_value = intcon(1);
duke@435 3135 expect_prim = true; // obviously
duke@435 3136 break;
duke@435 3137 case vmIntrinsics::_getSuperclass:
duke@435 3138 prim_return_value = null();
duke@435 3139 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3140 break;
duke@435 3141 case vmIntrinsics::_getComponentType:
duke@435 3142 prim_return_value = null();
duke@435 3143 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3144 break;
duke@435 3145 case vmIntrinsics::_getClassAccessFlags:
duke@435 3146 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3147 return_type = TypeInt::INT; // not bool! 6297094
duke@435 3148 break;
duke@435 3149 default:
duke@435 3150 ShouldNotReachHere();
duke@435 3151 }
duke@435 3152
duke@435 3153 Node* mirror = argument(0);
duke@435 3154 Node* obj = (nargs <= 1)? top(): argument(1);
duke@435 3155
duke@435 3156 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
duke@435 3157 if (mirror_con == NULL) return false; // cannot happen?
duke@435 3158
duke@435 3159 #ifndef PRODUCT
duke@435 3160 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 3161 ciType* k = mirror_con->java_mirror_type();
duke@435 3162 if (k) {
duke@435 3163 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
duke@435 3164 k->print_name();
duke@435 3165 tty->cr();
duke@435 3166 }
duke@435 3167 }
duke@435 3168 #endif
duke@435 3169
duke@435 3170 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
duke@435 3171 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3172 record_for_igvn(region);
duke@435 3173 PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
duke@435 3174
duke@435 3175 // The mirror will never be null of Reflection.getClassAccessFlags, however
duke@435 3176 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
duke@435 3177 // if it is. See bug 4774291.
duke@435 3178
duke@435 3179 // For Reflection.getClassAccessFlags(), the null check occurs in
duke@435 3180 // the wrong place; see inline_unsafe_access(), above, for a similar
duke@435 3181 // situation.
duke@435 3182 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3183 mirror = do_null_check(mirror, T_OBJECT);
duke@435 3184 _sp -= nargs;
duke@435 3185 // If mirror or obj is dead, only null-path is taken.
duke@435 3186 if (stopped()) return true;
duke@435 3187
duke@435 3188 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
duke@435 3189
duke@435 3190 // Now load the mirror's klass metaobject, and null-check it.
duke@435 3191 // Side-effects region with the control path if the klass is null.
duke@435 3192 Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
duke@435 3193 region, _prim_path);
duke@435 3194 // If kls is null, we have a primitive mirror.
duke@435 3195 phi->init_req(_prim_path, prim_return_value);
duke@435 3196 if (stopped()) { push_result(region, phi); return true; }
duke@435 3197
duke@435 3198 Node* p; // handy temp
duke@435 3199 Node* null_ctl;
duke@435 3200
duke@435 3201 // Now that we have the non-null klass, we can perform the real query.
duke@435 3202 // For constant classes, the query will constant-fold in LoadNode::Value.
duke@435 3203 Node* query_value = top();
duke@435 3204 switch (id) {
duke@435 3205 case vmIntrinsics::_isInstance:
duke@435 3206 // nothing is an instance of a primitive type
jrose@2101 3207 _sp += nargs; // gen_instanceof might do an uncommon trap
duke@435 3208 query_value = gen_instanceof(obj, kls);
jrose@2101 3209 _sp -= nargs;
duke@435 3210 break;
duke@435 3211
duke@435 3212 case vmIntrinsics::_getModifiers:
stefank@3391 3213 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
duke@435 3214 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3215 break;
duke@435 3216
duke@435 3217 case vmIntrinsics::_isInterface:
duke@435 3218 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3219 if (generate_interface_guard(kls, region) != NULL)
duke@435 3220 // A guard was added. If the guard is taken, it was an interface.
duke@435 3221 phi->add_req(intcon(1));
duke@435 3222 // If we fall through, it's a plain class.
duke@435 3223 query_value = intcon(0);
duke@435 3224 break;
duke@435 3225
duke@435 3226 case vmIntrinsics::_isArray:
duke@435 3227 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
duke@435 3228 if (generate_array_guard(kls, region) != NULL)
duke@435 3229 // A guard was added. If the guard is taken, it was an array.
duke@435 3230 phi->add_req(intcon(1));
duke@435 3231 // If we fall through, it's a plain class.
duke@435 3232 query_value = intcon(0);
duke@435 3233 break;
duke@435 3234
duke@435 3235 case vmIntrinsics::_isPrimitive:
duke@435 3236 query_value = intcon(0); // "normal" path produces false
duke@435 3237 break;
duke@435 3238
duke@435 3239 case vmIntrinsics::_getSuperclass:
duke@435 3240 // The rules here are somewhat unfortunate, but we can still do better
duke@435 3241 // with random logic than with a JNI call.
duke@435 3242 // Interfaces store null or Object as _super, but must report null.
duke@435 3243 // Arrays store an intermediate super as _super, but must report Object.
duke@435 3244 // Other types can report the actual _super.
duke@435 3245 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3246 if (generate_interface_guard(kls, region) != NULL)
duke@435 3247 // A guard was added. If the guard is taken, it was an interface.
duke@435 3248 phi->add_req(null());
duke@435 3249 if (generate_array_guard(kls, region) != NULL)
duke@435 3250 // A guard was added. If the guard is taken, it was an array.
duke@435 3251 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
duke@435 3252 // If we fall through, it's a plain class. Get its _super.
stefank@3391 3253 p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
kvn@599 3254 kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
duke@435 3255 null_ctl = top();
duke@435 3256 kls = null_check_oop(kls, &null_ctl);
duke@435 3257 if (null_ctl != top()) {
duke@435 3258 // If the guard is taken, Object.superClass is null (both klass and mirror).
duke@435 3259 region->add_req(null_ctl);
duke@435 3260 phi ->add_req(null());
duke@435 3261 }
duke@435 3262 if (!stopped()) {
duke@435 3263 query_value = load_mirror_from_klass(kls);
duke@435 3264 }
duke@435 3265 break;
duke@435 3266
duke@435 3267 case vmIntrinsics::_getComponentType:
duke@435 3268 if (generate_array_guard(kls, region) != NULL) {
duke@435 3269 // Be sure to pin the oop load to the guard edge just created:
duke@435 3270 Node* is_array_ctrl = region->in(region->req()-1);
stefank@3391 3271 Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
duke@435 3272 Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3273 phi->add_req(cmo);
duke@435 3274 }
duke@435 3275 query_value = null(); // non-array case is null
duke@435 3276 break;
duke@435 3277
duke@435 3278 case vmIntrinsics::_getClassAccessFlags:
stefank@3391 3279 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3280 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3281 break;
duke@435 3282
duke@435 3283 default:
duke@435 3284 ShouldNotReachHere();
duke@435 3285 }
duke@435 3286
duke@435 3287 // Fall-through is the normal case of a query to a real class.
duke@435 3288 phi->init_req(1, query_value);
duke@435 3289 region->init_req(1, control());
duke@435 3290
duke@435 3291 push_result(region, phi);
duke@435 3292 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3293
duke@435 3294 return true;
duke@435 3295 }
duke@435 3296
duke@435 3297 //--------------------------inline_native_subtype_check------------------------
duke@435 3298 // This intrinsic takes the JNI calls out of the heart of
duke@435 3299 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
duke@435 3300 bool LibraryCallKit::inline_native_subtype_check() {
duke@435 3301 int nargs = 1+1; // the Class mirror, plus the other class getting examined
duke@435 3302
duke@435 3303 // Pull both arguments off the stack.
duke@435 3304 Node* args[2]; // two java.lang.Class mirrors: superc, subc
duke@435 3305 args[0] = argument(0);
duke@435 3306 args[1] = argument(1);
duke@435 3307 Node* klasses[2]; // corresponding Klasses: superk, subk
duke@435 3308 klasses[0] = klasses[1] = top();
duke@435 3309
duke@435 3310 enum {
duke@435 3311 // A full decision tree on {superc is prim, subc is prim}:
duke@435 3312 _prim_0_path = 1, // {P,N} => false
duke@435 3313 // {P,P} & superc!=subc => false
duke@435 3314 _prim_same_path, // {P,P} & superc==subc => true
duke@435 3315 _prim_1_path, // {N,P} => false
duke@435 3316 _ref_subtype_path, // {N,N} & subtype check wins => true
duke@435 3317 _both_ref_path, // {N,N} & subtype check loses => false
duke@435 3318 PATH_LIMIT
duke@435 3319 };
duke@435 3320
duke@435 3321 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3322 Node* phi = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
duke@435 3323 record_for_igvn(region);
duke@435 3324
duke@435 3325 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
duke@435 3326 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3327 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
duke@435 3328
duke@435 3329 // First null-check both mirrors and load each mirror's klass metaobject.
duke@435 3330 int which_arg;
duke@435 3331 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3332 Node* arg = args[which_arg];
duke@435 3333 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3334 arg = do_null_check(arg, T_OBJECT);
duke@435 3335 _sp -= nargs;
duke@435 3336 if (stopped()) break;
duke@435 3337 args[which_arg] = _gvn.transform(arg);
duke@435 3338
duke@435 3339 Node* p = basic_plus_adr(arg, class_klass_offset);
kvn@599 3340 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
duke@435 3341 klasses[which_arg] = _gvn.transform(kls);
duke@435 3342 }
duke@435 3343
duke@435 3344 // Having loaded both klasses, test each for null.
duke@435 3345 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3346 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3347 Node* kls = klasses[which_arg];
duke@435 3348 Node* null_ctl = top();
duke@435 3349 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3350 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3351 _sp -= nargs;
duke@435 3352 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
duke@435 3353 region->init_req(prim_path, null_ctl);
duke@435 3354 if (stopped()) break;
duke@435 3355 klasses[which_arg] = kls;
duke@435 3356 }
duke@435 3357
duke@435 3358 if (!stopped()) {
duke@435 3359 // now we have two reference types, in klasses[0..1]
duke@435 3360 Node* subk = klasses[1]; // the argument to isAssignableFrom
duke@435 3361 Node* superk = klasses[0]; // the receiver
duke@435 3362 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
duke@435 3363 // now we have a successful reference subtype check
duke@435 3364 region->set_req(_ref_subtype_path, control());
duke@435 3365 }
duke@435 3366
duke@435 3367 // If both operands are primitive (both klasses null), then
duke@435 3368 // we must return true when they are identical primitives.
duke@435 3369 // It is convenient to test this after the first null klass check.
duke@435 3370 set_control(region->in(_prim_0_path)); // go back to first null check
duke@435 3371 if (!stopped()) {
duke@435 3372 // Since superc is primitive, make a guard for the superc==subc case.
duke@435 3373 Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
duke@435 3374 Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
duke@435 3375 generate_guard(bol_eq, region, PROB_FAIR);
duke@435 3376 if (region->req() == PATH_LIMIT+1) {
duke@435 3377 // A guard was added. If the added guard is taken, superc==subc.
duke@435 3378 region->swap_edges(PATH_LIMIT, _prim_same_path);
duke@435 3379 region->del_req(PATH_LIMIT);
duke@435 3380 }
duke@435 3381 region->set_req(_prim_0_path, control()); // Not equal after all.
duke@435 3382 }
duke@435 3383
duke@435 3384 // these are the only paths that produce 'true':
duke@435 3385 phi->set_req(_prim_same_path, intcon(1));
duke@435 3386 phi->set_req(_ref_subtype_path, intcon(1));
duke@435 3387
duke@435 3388 // pull together the cases:
duke@435 3389 assert(region->req() == PATH_LIMIT, "sane region");
duke@435 3390 for (uint i = 1; i < region->req(); i++) {
duke@435 3391 Node* ctl = region->in(i);
duke@435 3392 if (ctl == NULL || ctl == top()) {
duke@435 3393 region->set_req(i, top());
duke@435 3394 phi ->set_req(i, top());
duke@435 3395 } else if (phi->in(i) == NULL) {
duke@435 3396 phi->set_req(i, intcon(0)); // all other paths produce 'false'
duke@435 3397 }
duke@435 3398 }
duke@435 3399
duke@435 3400 set_control(_gvn.transform(region));
duke@435 3401 push(_gvn.transform(phi));
duke@435 3402
duke@435 3403 return true;
duke@435 3404 }
duke@435 3405
duke@435 3406 //---------------------generate_array_guard_common------------------------
duke@435 3407 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 3408 bool obj_array, bool not_array) {
duke@435 3409 // If obj_array/non_array==false/false:
duke@435 3410 // Branch around if the given klass is in fact an array (either obj or prim).
duke@435 3411 // If obj_array/non_array==false/true:
duke@435 3412 // Branch around if the given klass is not an array klass of any kind.
duke@435 3413 // If obj_array/non_array==true/true:
duke@435 3414 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
duke@435 3415 // If obj_array/non_array==true/false:
duke@435 3416 // Branch around if the kls is an oop array (Object[] or subtype)
duke@435 3417 //
duke@435 3418 // Like generate_guard, adds a new path onto the region.
duke@435 3419 jint layout_con = 0;
duke@435 3420 Node* layout_val = get_layout_helper(kls, layout_con);
duke@435 3421 if (layout_val == NULL) {
duke@435 3422 bool query = (obj_array
duke@435 3423 ? Klass::layout_helper_is_objArray(layout_con)
duke@435 3424 : Klass::layout_helper_is_javaArray(layout_con));
duke@435 3425 if (query == not_array) {
duke@435 3426 return NULL; // never a branch
duke@435 3427 } else { // always a branch
duke@435 3428 Node* always_branch = control();
duke@435 3429 if (region != NULL)
duke@435 3430 region->add_req(always_branch);
duke@435 3431 set_control(top());
duke@435 3432 return always_branch;
duke@435 3433 }
duke@435 3434 }
duke@435 3435 // Now test the correct condition.
duke@435 3436 jint nval = (obj_array
duke@435 3437 ? ((jint)Klass::_lh_array_tag_type_value
duke@435 3438 << Klass::_lh_array_tag_shift)
duke@435 3439 : Klass::_lh_neutral_value);
duke@435 3440 Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
duke@435 3441 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
duke@435 3442 // invert the test if we are looking for a non-array
duke@435 3443 if (not_array) btest = BoolTest(btest).negate();
duke@435 3444 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
duke@435 3445 return generate_fair_guard(bol, region);
duke@435 3446 }
duke@435 3447
duke@435 3448
duke@435 3449 //-----------------------inline_native_newArray--------------------------
duke@435 3450 bool LibraryCallKit::inline_native_newArray() {
duke@435 3451 int nargs = 2;
duke@435 3452 Node* mirror = argument(0);
duke@435 3453 Node* count_val = argument(1);
duke@435 3454
duke@435 3455 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3456 mirror = do_null_check(mirror, T_OBJECT);
duke@435 3457 _sp -= nargs;
kvn@598 3458 // If mirror or obj is dead, only null-path is taken.
kvn@598 3459 if (stopped()) return true;
duke@435 3460
duke@435 3461 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
duke@435 3462 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3463 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3464 TypeInstPtr::NOTNULL);
duke@435 3465 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3466 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3467 TypePtr::BOTTOM);
duke@435 3468
duke@435 3469 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3470 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
duke@435 3471 nargs,
duke@435 3472 result_reg, _slow_path);
duke@435 3473 Node* normal_ctl = control();
duke@435 3474 Node* no_array_ctl = result_reg->in(_slow_path);
duke@435 3475
duke@435 3476 // Generate code for the slow case. We make a call to newArray().
duke@435 3477 set_control(no_array_ctl);
duke@435 3478 if (!stopped()) {
duke@435 3479 // Either the input type is void.class, or else the
duke@435 3480 // array klass has not yet been cached. Either the
duke@435 3481 // ensuing call will throw an exception, or else it
duke@435 3482 // will cache the array klass for next time.
duke@435 3483 PreserveJVMState pjvms(this);
duke@435 3484 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
duke@435 3485 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3486 // this->control() comes from set_results_for_java_call
duke@435 3487 result_reg->set_req(_slow_path, control());
duke@435 3488 result_val->set_req(_slow_path, slow_result);
duke@435 3489 result_io ->set_req(_slow_path, i_o());
duke@435 3490 result_mem->set_req(_slow_path, reset_memory());
duke@435 3491 }
duke@435 3492
duke@435 3493 set_control(normal_ctl);
duke@435 3494 if (!stopped()) {
duke@435 3495 // Normal case: The array type has been cached in the java.lang.Class.
duke@435 3496 // The following call works fine even if the array type is polymorphic.
duke@435 3497 // It could be a dynamic mix of int[], boolean[], Object[], etc.
cfang@1165 3498 Node* obj = new_array(klass_node, count_val, nargs);
duke@435 3499 result_reg->init_req(_normal_path, control());
duke@435 3500 result_val->init_req(_normal_path, obj);
duke@435 3501 result_io ->init_req(_normal_path, i_o());
duke@435 3502 result_mem->init_req(_normal_path, reset_memory());
duke@435 3503 }
duke@435 3504
duke@435 3505 // Return the combined state.
duke@435 3506 set_i_o( _gvn.transform(result_io) );
duke@435 3507 set_all_memory( _gvn.transform(result_mem) );
duke@435 3508 push_result(result_reg, result_val);
duke@435 3509 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3510
duke@435 3511 return true;
duke@435 3512 }
duke@435 3513
duke@435 3514 //----------------------inline_native_getLength--------------------------
duke@435 3515 bool LibraryCallKit::inline_native_getLength() {
duke@435 3516 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3517
duke@435 3518 int nargs = 1;
duke@435 3519 Node* array = argument(0);
duke@435 3520
duke@435 3521 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3522 array = do_null_check(array, T_OBJECT);
duke@435 3523 _sp -= nargs;
duke@435 3524
duke@435 3525 // If array is dead, only null-path is taken.
duke@435 3526 if (stopped()) return true;
duke@435 3527
duke@435 3528 // Deoptimize if it is a non-array.
duke@435 3529 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
duke@435 3530
duke@435 3531 if (non_array != NULL) {
duke@435 3532 PreserveJVMState pjvms(this);
duke@435 3533 set_control(non_array);
duke@435 3534 _sp += nargs; // push the arguments back on the stack
duke@435 3535 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 3536 Deoptimization::Action_maybe_recompile);
duke@435 3537 }
duke@435 3538
duke@435 3539 // If control is dead, only non-array-path is taken.
duke@435 3540 if (stopped()) return true;
duke@435 3541
duke@435 3542 // The works fine even if the array type is polymorphic.
duke@435 3543 // It could be a dynamic mix of int[], boolean[], Object[], etc.
duke@435 3544 push( load_array_length(array) );
duke@435 3545
duke@435 3546 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3547
duke@435 3548 return true;
duke@435 3549 }
duke@435 3550
duke@435 3551 //------------------------inline_array_copyOf----------------------------
duke@435 3552 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
duke@435 3553 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3554
duke@435 3555 // Restore the stack and pop off the arguments.
duke@435 3556 int nargs = 3 + (is_copyOfRange? 1: 0);
duke@435 3557 Node* original = argument(0);
duke@435 3558 Node* start = is_copyOfRange? argument(1): intcon(0);
duke@435 3559 Node* end = is_copyOfRange? argument(2): argument(1);
duke@435 3560 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
duke@435 3561
cfang@1337 3562 Node* newcopy;
cfang@1337 3563
cfang@1337 3564 //set the original stack and the reexecute bit for the interpreter to reexecute
cfang@1337 3565 //the bytecode that invokes Arrays.copyOf if deoptimization happens
cfang@1337 3566 { PreserveReexecuteState preexecs(this);
cfang@1337 3567 _sp += nargs;
cfang@1337 3568 jvms()->set_should_reexecute(true);
cfang@1337 3569
cfang@1337 3570 array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
cfang@1337 3571 original = do_null_check(original, T_OBJECT);
cfang@1337 3572
cfang@1337 3573 // Check if a null path was taken unconditionally.
cfang@1337 3574 if (stopped()) return true;
cfang@1337 3575
cfang@1337 3576 Node* orig_length = load_array_length(original);
cfang@1337 3577
cfang@1337 3578 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
cfang@1337 3579 NULL, 0);
cfang@1337 3580 klass_node = do_null_check(klass_node, T_OBJECT);
cfang@1337 3581
cfang@1337 3582 RegionNode* bailout = new (C, 1) RegionNode(1);
cfang@1337 3583 record_for_igvn(bailout);
cfang@1337 3584
cfang@1337 3585 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
cfang@1337 3586 // Bail out if that is so.
cfang@1337 3587 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
cfang@1337 3588 if (not_objArray != NULL) {
cfang@1337 3589 // Improve the klass node's type from the new optimistic assumption:
cfang@1337 3590 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
cfang@1337 3591 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
cfang@1337 3592 Node* cast = new (C, 2) CastPPNode(klass_node, akls);
cfang@1337 3593 cast->init_req(0, control());
cfang@1337 3594 klass_node = _gvn.transform(cast);
cfang@1337 3595 }
cfang@1337 3596
cfang@1337 3597 // Bail out if either start or end is negative.
cfang@1337 3598 generate_negative_guard(start, bailout, &start);
cfang@1337 3599 generate_negative_guard(end, bailout, &end);
cfang@1337 3600
cfang@1337 3601 Node* length = end;
cfang@1337 3602 if (_gvn.type(start) != TypeInt::ZERO) {
cfang@1337 3603 length = _gvn.transform( new (C, 3) SubINode(end, start) );
cfang@1337 3604 }
cfang@1337 3605
cfang@1337 3606 // Bail out if length is negative.
cfang@1337 3607 // ...Not needed, since the new_array will throw the right exception.
cfang@1337 3608 //generate_negative_guard(length, bailout, &length);
cfang@1337 3609
cfang@1337 3610 if (bailout->req() > 1) {
cfang@1337 3611 PreserveJVMState pjvms(this);
cfang@1337 3612 set_control( _gvn.transform(bailout) );
cfang@1337 3613 uncommon_trap(Deoptimization::Reason_intrinsic,
cfang@1337 3614 Deoptimization::Action_maybe_recompile);
cfang@1337 3615 }
cfang@1337 3616
cfang@1337 3617 if (!stopped()) {
cfang@1335 3618
cfang@1335 3619 // How many elements will we copy from the original?
cfang@1335 3620 // The answer is MinI(orig_length - start, length).
cfang@1335 3621 Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
cfang@1335 3622 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
cfang@1335 3623
kvn@2810 3624 newcopy = new_array(klass_node, length, 0);
cfang@1335 3625
cfang@1335 3626 // Generate a direct call to the right arraycopy function(s).
cfang@1335 3627 // We know the copy is disjoint but we might not know if the
cfang@1335 3628 // oop stores need checking.
cfang@1335 3629 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
cfang@1335 3630 // This will fail a store-check if x contains any non-nulls.
cfang@1335 3631 bool disjoint_bases = true;
cfang@1335 3632 bool length_never_negative = true;
cfang@1335 3633 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 3634 original, start, newcopy, intcon(0), moved,
cfang@1335 3635 disjoint_bases, length_never_negative);
cfang@1337 3636 }
cfang@1337 3637 } //original reexecute and sp are set back here
cfang@1337 3638
cfang@1337 3639 if(!stopped()) {
duke@435 3640 push(newcopy);
duke@435 3641 }
duke@435 3642
duke@435 3643 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3644
duke@435 3645 return true;
duke@435 3646 }
duke@435 3647
duke@435 3648
duke@435 3649 //----------------------generate_virtual_guard---------------------------
duke@435 3650 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
duke@435 3651 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
duke@435 3652 RegionNode* slow_region) {
duke@435 3653 ciMethod* method = callee();
duke@435 3654 int vtable_index = method->vtable_index();
duke@435 3655 // Get the methodOop out of the appropriate vtable entry.
duke@435 3656 int entry_offset = (instanceKlass::vtable_start_offset() +
duke@435 3657 vtable_index*vtableEntry::size()) * wordSize +
duke@435 3658 vtableEntry::method_offset_in_bytes();
duke@435 3659 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
duke@435 3660 Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
duke@435 3661
duke@435 3662 // Compare the target method with the expected method (e.g., Object.hashCode).
duke@435 3663 const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
duke@435 3664
duke@435 3665 Node* native_call = makecon(native_call_addr);
duke@435 3666 Node* chk_native = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
duke@435 3667 Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
duke@435 3668
duke@435 3669 return generate_slow_guard(test_native, slow_region);
duke@435 3670 }
duke@435 3671
duke@435 3672 //-----------------------generate_method_call----------------------------
duke@435 3673 // Use generate_method_call to make a slow-call to the real
duke@435 3674 // method if the fast path fails. An alternative would be to
duke@435 3675 // use a stub like OptoRuntime::slow_arraycopy_Java.
duke@435 3676 // This only works for expanding the current library call,
duke@435 3677 // not another intrinsic. (E.g., don't use this for making an
duke@435 3678 // arraycopy call inside of the copyOf intrinsic.)
duke@435 3679 CallJavaNode*
duke@435 3680 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
duke@435 3681 // When compiling the intrinsic method itself, do not use this technique.
duke@435 3682 guarantee(callee() != C->method(), "cannot make slow-call to self");
duke@435 3683
duke@435 3684 ciMethod* method = callee();
duke@435 3685 // ensure the JVMS we have will be correct for this call
duke@435 3686 guarantee(method_id == method->intrinsic_id(), "must match");
duke@435 3687
duke@435 3688 const TypeFunc* tf = TypeFunc::make(method);
duke@435 3689 int tfdc = tf->domain()->cnt();
duke@435 3690 CallJavaNode* slow_call;
duke@435 3691 if (is_static) {
duke@435 3692 assert(!is_virtual, "");
duke@435 3693 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3694 SharedRuntime::get_resolve_static_call_stub(),
duke@435 3695 method, bci());
duke@435 3696 } else if (is_virtual) {
duke@435 3697 null_check_receiver(method);
duke@435 3698 int vtable_index = methodOopDesc::invalid_vtable_index;
duke@435 3699 if (UseInlineCaches) {
duke@435 3700 // Suppress the vtable call
duke@435 3701 } else {
duke@435 3702 // hashCode and clone are not a miranda methods,
duke@435 3703 // so the vtable index is fixed.
duke@435 3704 // No need to use the linkResolver to get it.
duke@435 3705 vtable_index = method->vtable_index();
duke@435 3706 }
duke@435 3707 slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
duke@435 3708 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 3709 method, vtable_index, bci());
duke@435 3710 } else { // neither virtual nor static: opt_virtual
duke@435 3711 null_check_receiver(method);
duke@435 3712 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3713 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 3714 method, bci());
duke@435 3715 slow_call->set_optimized_virtual(true);
duke@435 3716 }
duke@435 3717 set_arguments_for_java_call(slow_call);
duke@435 3718 set_edges_for_java_call(slow_call);
duke@435 3719 return slow_call;
duke@435 3720 }
duke@435 3721
duke@435 3722
duke@435 3723 //------------------------------inline_native_hashcode--------------------
duke@435 3724 // Build special case code for calls to hashCode on an object.
duke@435 3725 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
duke@435 3726 assert(is_static == callee()->is_static(), "correct intrinsic selection");
duke@435 3727 assert(!(is_virtual && is_static), "either virtual, special, or static");
duke@435 3728
duke@435 3729 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
duke@435 3730
duke@435 3731 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3732 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3733 TypeInt::INT);
duke@435 3734 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3735 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3736 TypePtr::BOTTOM);
duke@435 3737 Node* obj = NULL;
duke@435 3738 if (!is_static) {
duke@435 3739 // Check for hashing null object
duke@435 3740 obj = null_check_receiver(callee());
duke@435 3741 if (stopped()) return true; // unconditionally null
duke@435 3742 result_reg->init_req(_null_path, top());
duke@435 3743 result_val->init_req(_null_path, top());
duke@435 3744 } else {
duke@435 3745 // Do a null check, and return zero if null.
duke@435 3746 // System.identityHashCode(null) == 0
duke@435 3747 obj = argument(0);
duke@435 3748 Node* null_ctl = top();
duke@435 3749 obj = null_check_oop(obj, &null_ctl);
duke@435 3750 result_reg->init_req(_null_path, null_ctl);
duke@435 3751 result_val->init_req(_null_path, _gvn.intcon(0));
duke@435 3752 }
duke@435 3753
duke@435 3754 // Unconditionally null? Then return right away.
duke@435 3755 if (stopped()) {
duke@435 3756 set_control( result_reg->in(_null_path) );
duke@435 3757 if (!stopped())
duke@435 3758 push( result_val ->in(_null_path) );
duke@435 3759 return true;
duke@435 3760 }
duke@435 3761
duke@435 3762 // After null check, get the object's klass.
duke@435 3763 Node* obj_klass = load_object_klass(obj);
duke@435 3764
duke@435 3765 // This call may be virtual (invokevirtual) or bound (invokespecial).
duke@435 3766 // For each case we generate slightly different code.
duke@435 3767
duke@435 3768 // We only go to the fast case code if we pass a number of guards. The
duke@435 3769 // paths which do not pass are accumulated in the slow_region.
duke@435 3770 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 3771 record_for_igvn(slow_region);
duke@435 3772
duke@435 3773 // If this is a virtual call, we generate a funny guard. We pull out
duke@435 3774 // the vtable entry corresponding to hashCode() from the target object.
duke@435 3775 // If the target method which we are calling happens to be the native
duke@435 3776 // Object hashCode() method, we pass the guard. We do not need this
duke@435 3777 // guard for non-virtual calls -- the caller is known to be the native
duke@435 3778 // Object hashCode().
duke@435 3779 if (is_virtual) {
duke@435 3780 generate_virtual_guard(obj_klass, slow_region);
duke@435 3781 }
duke@435 3782
duke@435 3783 // Get the header out of the object, use LoadMarkNode when available
duke@435 3784 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@1964 3785 Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
duke@435 3786
duke@435 3787 // Test the header to see if it is unlocked.
duke@435 3788 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
duke@435 3789 Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
duke@435 3790 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
duke@435 3791 Node *chk_unlocked = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
duke@435 3792 Node *test_unlocked = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
duke@435 3793
duke@435 3794 generate_slow_guard(test_unlocked, slow_region);
duke@435 3795
duke@435 3796 // Get the hash value and check to see that it has been properly assigned.
duke@435 3797 // We depend on hash_mask being at most 32 bits and avoid the use of
duke@435 3798 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
duke@435 3799 // vm: see markOop.hpp.
duke@435 3800 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
duke@435 3801 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
duke@435 3802 Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
duke@435 3803 // This hack lets the hash bits live anywhere in the mark object now, as long
twisti@1040 3804 // as the shift drops the relevant bits into the low 32 bits. Note that
duke@435 3805 // Java spec says that HashCode is an int so there's no point in capturing
duke@435 3806 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
duke@435 3807 hshifted_header = ConvX2I(hshifted_header);
duke@435 3808 Node *hash_val = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
duke@435 3809
duke@435 3810 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
duke@435 3811 Node *chk_assigned = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
duke@435 3812 Node *test_assigned = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
duke@435 3813
duke@435 3814 generate_slow_guard(test_assigned, slow_region);
duke@435 3815
duke@435 3816 Node* init_mem = reset_memory();
duke@435 3817 // fill in the rest of the null path:
duke@435 3818 result_io ->init_req(_null_path, i_o());
duke@435 3819 result_mem->init_req(_null_path, init_mem);
duke@435 3820
duke@435 3821 result_val->init_req(_fast_path, hash_val);
duke@435 3822 result_reg->init_req(_fast_path, control());
duke@435 3823 result_io ->init_req(_fast_path, i_o());
duke@435 3824 result_mem->init_req(_fast_path, init_mem);
duke@435 3825
duke@435 3826 // Generate code for the slow case. We make a call to hashCode().
duke@435 3827 set_control(_gvn.transform(slow_region));
duke@435 3828 if (!stopped()) {
duke@435 3829 // No need for PreserveJVMState, because we're using up the present state.
duke@435 3830 set_all_memory(init_mem);
duke@435 3831 vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
duke@435 3832 if (is_static) hashCode_id = vmIntrinsics::_identityHashCode;
duke@435 3833 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
duke@435 3834 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3835 // this->control() comes from set_results_for_java_call
duke@435 3836 result_reg->init_req(_slow_path, control());
duke@435 3837 result_val->init_req(_slow_path, slow_result);
duke@435 3838 result_io ->set_req(_slow_path, i_o());
duke@435 3839 result_mem ->set_req(_slow_path, reset_memory());
duke@435 3840 }
duke@435 3841
duke@435 3842 // Return the combined state.
duke@435 3843 set_i_o( _gvn.transform(result_io) );
duke@435 3844 set_all_memory( _gvn.transform(result_mem) );
duke@435 3845 push_result(result_reg, result_val);
duke@435 3846
duke@435 3847 return true;
duke@435 3848 }
duke@435 3849
duke@435 3850 //---------------------------inline_native_getClass----------------------------
twisti@1040 3851 // Build special case code for calls to getClass on an object.
duke@435 3852 bool LibraryCallKit::inline_native_getClass() {
duke@435 3853 Node* obj = null_check_receiver(callee());
duke@435 3854 if (stopped()) return true;
duke@435 3855 push( load_mirror_from_klass(load_object_klass(obj)) );
duke@435 3856 return true;
duke@435 3857 }
duke@435 3858
duke@435 3859 //-----------------inline_native_Reflection_getCallerClass---------------------
duke@435 3860 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
duke@435 3861 //
duke@435 3862 // NOTE that this code must perform the same logic as
duke@435 3863 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3864 // Method.invoke() and auxiliary frames.
duke@435 3865
duke@435 3866
duke@435 3867
duke@435 3868
duke@435 3869 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
duke@435 3870 ciMethod* method = callee();
duke@435 3871
duke@435 3872 #ifndef PRODUCT
duke@435 3873 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3874 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
duke@435 3875 }
duke@435 3876 #endif
duke@435 3877
duke@435 3878 debug_only(int saved_sp = _sp);
duke@435 3879
duke@435 3880 // Argument words: (int depth)
duke@435 3881 int nargs = 1;
duke@435 3882
duke@435 3883 _sp += nargs;
duke@435 3884 Node* caller_depth_node = pop();
duke@435 3885
duke@435 3886 assert(saved_sp == _sp, "must have correct argument count");
duke@435 3887
duke@435 3888 // The depth value must be a constant in order for the runtime call
duke@435 3889 // to be eliminated.
duke@435 3890 const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
duke@435 3891 if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
duke@435 3892 #ifndef PRODUCT
duke@435 3893 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3894 tty->print_cr(" Bailing out because caller depth was not a constant");
duke@435 3895 }
duke@435 3896 #endif
duke@435 3897 return false;
duke@435 3898 }
duke@435 3899 // Note that the JVM state at this point does not include the
duke@435 3900 // getCallerClass() frame which we are trying to inline. The
duke@435 3901 // semantics of getCallerClass(), however, are that the "first"
duke@435 3902 // frame is the getCallerClass() frame, so we subtract one from the
duke@435 3903 // requested depth before continuing. We don't inline requests of
duke@435 3904 // getCallerClass(0).
duke@435 3905 int caller_depth = caller_depth_type->get_con() - 1;
duke@435 3906 if (caller_depth < 0) {
duke@435 3907 #ifndef PRODUCT
duke@435 3908 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3909 tty->print_cr(" Bailing out because caller depth was %d", caller_depth);
duke@435 3910 }
duke@435 3911 #endif
duke@435 3912 return false;
duke@435 3913 }
duke@435 3914
duke@435 3915 if (!jvms()->has_method()) {
duke@435 3916 #ifndef PRODUCT
duke@435 3917 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3918 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
duke@435 3919 }
duke@435 3920 #endif
duke@435 3921 return false;
duke@435 3922 }
duke@435 3923 int _depth = jvms()->depth(); // cache call chain depth
duke@435 3924
duke@435 3925 // Walk back up the JVM state to find the caller at the required
duke@435 3926 // depth. NOTE that this code must perform the same logic as
duke@435 3927 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3928 // Method.invoke() and auxiliary frames. Note also that depth is
duke@435 3929 // 1-based (1 is the bottom of the inlining).
duke@435 3930 int inlining_depth = _depth;
duke@435 3931 JVMState* caller_jvms = NULL;
duke@435 3932
duke@435 3933 if (inlining_depth > 0) {
duke@435 3934 caller_jvms = jvms();
duke@435 3935 assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
duke@435 3936 do {
duke@435 3937 // The following if-tests should be performed in this order
duke@435 3938 if (is_method_invoke_or_aux_frame(caller_jvms)) {
duke@435 3939 // Skip a Method.invoke() or auxiliary frame
duke@435 3940 } else if (caller_depth > 0) {
duke@435 3941 // Skip real frame
duke@435 3942 --caller_depth;
duke@435 3943 } else {
duke@435 3944 // We're done: reached desired caller after skipping.
duke@435 3945 break;
duke@435 3946 }
duke@435 3947 caller_jvms = caller_jvms->caller();
duke@435 3948 --inlining_depth;
duke@435 3949 } while (inlining_depth > 0);
duke@435 3950 }
duke@435 3951
duke@435 3952 if (inlining_depth == 0) {
duke@435 3953 #ifndef PRODUCT
duke@435 3954 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3955 tty->print_cr(" Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
duke@435 3956 tty->print_cr(" JVM state at this point:");
duke@435 3957 for (int i = _depth; i >= 1; i--) {
duke@435 3958 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3959 }
duke@435 3960 }
duke@435 3961 #endif
duke@435 3962 return false; // Reached end of inlining
duke@435 3963 }
duke@435 3964
duke@435 3965 // Acquire method holder as java.lang.Class
duke@435 3966 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
duke@435 3967 ciInstance* caller_mirror = caller_klass->java_mirror();
duke@435 3968 // Push this as a constant
duke@435 3969 push(makecon(TypeInstPtr::make(caller_mirror)));
duke@435 3970 #ifndef PRODUCT
duke@435 3971 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3972 tty->print_cr(" Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
duke@435 3973 tty->print_cr(" JVM state at this point:");
duke@435 3974 for (int i = _depth; i >= 1; i--) {
duke@435 3975 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3976 }
duke@435 3977 }
duke@435 3978 #endif
duke@435 3979 return true;
duke@435 3980 }
duke@435 3981
duke@435 3982 // Helper routine for above
duke@435 3983 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
twisti@1587 3984 ciMethod* method = jvms->method();
twisti@1587 3985
duke@435 3986 // Is this the Method.invoke method itself?
twisti@1587 3987 if (method->intrinsic_id() == vmIntrinsics::_invoke)
duke@435 3988 return true;
duke@435 3989
duke@435 3990 // Is this a helper, defined somewhere underneath MethodAccessorImpl.
twisti@1587 3991 ciKlass* k = method->holder();
duke@435 3992 if (k->is_instance_klass()) {
duke@435 3993 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3994 for (; ik != NULL; ik = ik->super()) {
duke@435 3995 if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
duke@435 3996 ik == env()->find_system_klass(ik->name())) {
duke@435 3997 return true;
duke@435 3998 }
duke@435 3999 }
duke@435 4000 }
twisti@1587 4001 else if (method->is_method_handle_adapter()) {
twisti@1587 4002 // This is an internal adapter frame from the MethodHandleCompiler -- skip it
twisti@1587 4003 return true;
twisti@1587 4004 }
duke@435 4005
duke@435 4006 return false;
duke@435 4007 }
duke@435 4008
duke@435 4009 static int value_field_offset = -1; // offset of the "value" field of AtomicLongCSImpl. This is needed by
duke@435 4010 // inline_native_AtomicLong_attemptUpdate() but it has no way of
duke@435 4011 // computing it since there is no lookup field by name function in the
duke@435 4012 // CI interface. This is computed and set by inline_native_AtomicLong_get().
duke@435 4013 // Using a static variable here is safe even if we have multiple compilation
duke@435 4014 // threads because the offset is constant. At worst the same offset will be
duke@435 4015 // computed and stored multiple
duke@435 4016
duke@435 4017 bool LibraryCallKit::inline_native_AtomicLong_get() {
duke@435 4018 // Restore the stack and pop off the argument
duke@435 4019 _sp+=1;
duke@435 4020 Node *obj = pop();
duke@435 4021
duke@435 4022 // get the offset of the "value" field. Since the CI interfaces
duke@435 4023 // does not provide a way to look up a field by name, we scan the bytecodes
duke@435 4024 // to get the field index. We expect the first 2 instructions of the method
duke@435 4025 // to be:
duke@435 4026 // 0 aload_0
duke@435 4027 // 1 getfield "value"
duke@435 4028 ciMethod* method = callee();
duke@435 4029 if (value_field_offset == -1)
duke@435 4030 {
duke@435 4031 ciField* value_field;
duke@435 4032 ciBytecodeStream iter(method);
duke@435 4033 Bytecodes::Code bc = iter.next();
duke@435 4034
duke@435 4035 if ((bc != Bytecodes::_aload_0) &&
duke@435 4036 ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
duke@435 4037 return false;
duke@435 4038 bc = iter.next();
duke@435 4039 if (bc != Bytecodes::_getfield)
duke@435 4040 return false;
duke@435 4041 bool ignore;
duke@435 4042 value_field = iter.get_field(ignore);
duke@435 4043 value_field_offset = value_field->offset_in_bytes();
duke@435 4044 }
duke@435 4045
duke@435 4046 // Null check without removing any arguments.
duke@435 4047 _sp++;
duke@435 4048 obj = do_null_check(obj, T_OBJECT);
duke@435 4049 _sp--;
duke@435 4050 // Check for locking null object
duke@435 4051 if (stopped()) return true;
duke@435 4052
duke@435 4053 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
duke@435 4054 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
duke@435 4055 int alias_idx = C->get_alias_index(adr_type);
duke@435 4056
duke@435 4057 Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
duke@435 4058
duke@435 4059 push_pair(result);
duke@435 4060
duke@435 4061 return true;
duke@435 4062 }
duke@435 4063
duke@435 4064 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
duke@435 4065 // Restore the stack and pop off the arguments
duke@435 4066 _sp+=5;
duke@435 4067 Node *newVal = pop_pair();
duke@435 4068 Node *oldVal = pop_pair();
duke@435 4069 Node *obj = pop();
duke@435 4070
duke@435 4071 // we need the offset of the "value" field which was computed when
duke@435 4072 // inlining the get() method. Give up if we don't have it.
duke@435 4073 if (value_field_offset == -1)
duke@435 4074 return false;
duke@435 4075
duke@435 4076 // Null check without removing any arguments.
duke@435 4077 _sp+=5;
duke@435 4078 obj = do_null_check(obj, T_OBJECT);
duke@435 4079 _sp-=5;
duke@435 4080 // Check for locking null object
duke@435 4081 if (stopped()) return true;
duke@435 4082
duke@435 4083 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
duke@435 4084 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
duke@435 4085 int alias_idx = C->get_alias_index(adr_type);
duke@435 4086
kvn@855 4087 Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
kvn@855 4088 Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
duke@435 4089 set_memory(store_proj, alias_idx);
kvn@855 4090 Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
kvn@855 4091
kvn@855 4092 Node *result;
kvn@855 4093 // CMove node is not used to be able fold a possible check code
kvn@855 4094 // after attemptUpdate() call. This code could be transformed
kvn@855 4095 // into CMove node by loop optimizations.
kvn@855 4096 {
kvn@855 4097 RegionNode *r = new (C, 3) RegionNode(3);
kvn@855 4098 result = new (C, 3) PhiNode(r, TypeInt::BOOL);
kvn@855 4099
kvn@855 4100 Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
kvn@855 4101 Node *iftrue = opt_iff(r, iff);
kvn@855 4102 r->init_req(1, iftrue);
kvn@855 4103 result->init_req(1, intcon(1));
kvn@855 4104 result->init_req(2, intcon(0));
kvn@855 4105
kvn@855 4106 set_control(_gvn.transform(r));
kvn@855 4107 record_for_igvn(r);
kvn@855 4108
kvn@855 4109 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@855 4110 }
kvn@855 4111
kvn@855 4112 push(_gvn.transform(result));
duke@435 4113 return true;
duke@435 4114 }
duke@435 4115
duke@435 4116 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
duke@435 4117 // restore the arguments
duke@435 4118 _sp += arg_size();
duke@435 4119
duke@435 4120 switch (id) {
duke@435 4121 case vmIntrinsics::_floatToRawIntBits:
duke@435 4122 push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
duke@435 4123 break;
duke@435 4124
duke@435 4125 case vmIntrinsics::_intBitsToFloat:
duke@435 4126 push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
duke@435 4127 break;
duke@435 4128
duke@435 4129 case vmIntrinsics::_doubleToRawLongBits:
duke@435 4130 push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
duke@435 4131 break;
duke@435 4132
duke@435 4133 case vmIntrinsics::_longBitsToDouble:
duke@435 4134 push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
duke@435 4135 break;
duke@435 4136
duke@435 4137 case vmIntrinsics::_doubleToLongBits: {
duke@435 4138 Node* value = pop_pair();
duke@435 4139
duke@435 4140 // two paths (plus control) merge in a wood
duke@435 4141 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 4142 Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
duke@435 4143
duke@435 4144 Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
duke@435 4145 // Build the boolean node
duke@435 4146 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 4147
duke@435 4148 // Branch either way.
duke@435 4149 // NaN case is less traveled, which makes all the difference.
duke@435 4150 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 4151 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 4152 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 4153 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 4154 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 4155
duke@435 4156 set_control(iftrue);
duke@435 4157
duke@435 4158 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 4159 Node *slow_result = longcon(nan_bits); // return NaN
duke@435 4160 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 4161 r->init_req(1, iftrue);
duke@435 4162
duke@435 4163 // Else fall through
duke@435 4164 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 4165 set_control(iffalse);
duke@435 4166
duke@435 4167 phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
duke@435 4168 r->init_req(2, iffalse);
duke@435 4169
duke@435 4170 // Post merge
duke@435 4171 set_control(_gvn.transform(r));
duke@435 4172 record_for_igvn(r);
duke@435 4173
duke@435 4174 Node* result = _gvn.transform(phi);
duke@435 4175 assert(result->bottom_type()->isa_long(), "must be");
duke@435 4176 push_pair(result);
duke@435 4177
duke@435 4178 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 4179
duke@435 4180 break;
duke@435 4181 }
duke@435 4182
duke@435 4183 case vmIntrinsics::_floatToIntBits: {
duke@435 4184 Node* value = pop();
duke@435 4185
duke@435 4186 // two paths (plus control) merge in a wood
duke@435 4187 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 4188 Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
duke@435 4189
duke@435 4190 Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
duke@435 4191 // Build the boolean node
duke@435 4192 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 4193
duke@435 4194 // Branch either way.
duke@435 4195 // NaN case is less traveled, which makes all the difference.
duke@435 4196 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 4197 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 4198 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 4199 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 4200 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 4201
duke@435 4202 set_control(iftrue);
duke@435 4203
duke@435 4204 static const jint nan_bits = 0x7fc00000;
duke@435 4205 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
duke@435 4206 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 4207 r->init_req(1, iftrue);
duke@435 4208
duke@435 4209 // Else fall through
duke@435 4210 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 4211 set_control(iffalse);
duke@435 4212
duke@435 4213 phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
duke@435 4214 r->init_req(2, iffalse);
duke@435 4215
duke@435 4216 // Post merge
duke@435 4217 set_control(_gvn.transform(r));
duke@435 4218 record_for_igvn(r);
duke@435 4219
duke@435 4220 Node* result = _gvn.transform(phi);
duke@435 4221 assert(result->bottom_type()->isa_int(), "must be");
duke@435 4222 push(result);
duke@435 4223
duke@435 4224 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 4225
duke@435 4226 break;
duke@435 4227 }
duke@435 4228
duke@435 4229 default:
duke@435 4230 ShouldNotReachHere();
duke@435 4231 }
duke@435 4232
duke@435 4233 return true;
duke@435 4234 }
duke@435 4235
duke@435 4236 #ifdef _LP64
duke@435 4237 #define XTOP ,top() /*additional argument*/
duke@435 4238 #else //_LP64
duke@435 4239 #define XTOP /*no additional argument*/
duke@435 4240 #endif //_LP64
duke@435 4241
duke@435 4242 //----------------------inline_unsafe_copyMemory-------------------------
duke@435 4243 bool LibraryCallKit::inline_unsafe_copyMemory() {
duke@435 4244 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 4245 int nargs = 1 + 5 + 3; // 5 args: (src: ptr,off, dst: ptr,off, size)
duke@435 4246 assert(signature()->size() == nargs-1, "copy has 5 arguments");
duke@435 4247 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 4248 if (stopped()) return true;
duke@435 4249
duke@435 4250 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 4251
duke@435 4252 Node* src_ptr = argument(1);
duke@435 4253 Node* src_off = ConvL2X(argument(2));
duke@435 4254 assert(argument(3)->is_top(), "2nd half of long");
duke@435 4255 Node* dst_ptr = argument(4);
duke@435 4256 Node* dst_off = ConvL2X(argument(5));
duke@435 4257 assert(argument(6)->is_top(), "2nd half of long");
duke@435 4258 Node* size = ConvL2X(argument(7));
duke@435 4259 assert(argument(8)->is_top(), "2nd half of long");
duke@435 4260
duke@435 4261 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 4262 "fieldOffset must be byte-scaled");
duke@435 4263
duke@435 4264 Node* src = make_unsafe_address(src_ptr, src_off);
duke@435 4265 Node* dst = make_unsafe_address(dst_ptr, dst_off);
duke@435 4266
duke@435 4267 // Conservatively insert a memory barrier on all memory slices.
duke@435 4268 // Do not let writes of the copy source or destination float below the copy.
duke@435 4269 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4270
duke@435 4271 // Call it. Note that the length argument is not scaled.
duke@435 4272 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 4273 OptoRuntime::fast_arraycopy_Type(),
duke@435 4274 StubRoutines::unsafe_arraycopy(),
duke@435 4275 "unsafe_arraycopy",
duke@435 4276 TypeRawPtr::BOTTOM,
duke@435 4277 src, dst, size XTOP);
duke@435 4278
duke@435 4279 // Do not let reads of the copy destination float above the copy.
duke@435 4280 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4281
duke@435 4282 return true;
duke@435 4283 }
duke@435 4284
kvn@1268 4285 //------------------------clone_coping-----------------------------------
kvn@1268 4286 // Helper function for inline_native_clone.
kvn@1268 4287 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
kvn@1268 4288 assert(obj_size != NULL, "");
kvn@1268 4289 Node* raw_obj = alloc_obj->in(1);
kvn@1268 4290 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
kvn@1268 4291
roland@3392 4292 AllocateNode* alloc = NULL;
kvn@1268 4293 if (ReduceBulkZeroing) {
kvn@1268 4294 // We will be completely responsible for initializing this object -
kvn@1268 4295 // mark Initialize node as complete.
roland@3392 4296 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
kvn@1268 4297 // The object was just allocated - there should be no any stores!
kvn@1268 4298 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
roland@3392 4299 // Mark as complete_with_arraycopy so that on AllocateNode
roland@3392 4300 // expansion, we know this AllocateNode is initialized by an array
roland@3392 4301 // copy and a StoreStore barrier exists after the array copy.
roland@3392 4302 alloc->initialization()->set_complete_with_arraycopy();
kvn@1268 4303 }
kvn@1268 4304
kvn@1268 4305 // Copy the fastest available way.
kvn@1268 4306 // TODO: generate fields copies for small objects instead.
kvn@1268 4307 Node* src = obj;
kvn@1393 4308 Node* dest = alloc_obj;
kvn@1268 4309 Node* size = _gvn.transform(obj_size);
kvn@1268 4310
kvn@1268 4311 // Exclude the header but include array length to copy by 8 bytes words.
kvn@1268 4312 // Can't use base_offset_in_bytes(bt) since basic type is unknown.
kvn@1268 4313 int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
kvn@1268 4314 instanceOopDesc::base_offset_in_bytes();
kvn@1268 4315 // base_off:
kvn@1268 4316 // 8 - 32-bit VM
kvn@1268 4317 // 12 - 64-bit VM, compressed oops
kvn@1268 4318 // 16 - 64-bit VM, normal oops
kvn@1268 4319 if (base_off % BytesPerLong != 0) {
kvn@1268 4320 assert(UseCompressedOops, "");
kvn@1268 4321 if (is_array) {
kvn@1268 4322 // Exclude length to copy by 8 bytes words.
kvn@1268 4323 base_off += sizeof(int);
kvn@1268 4324 } else {
kvn@1268 4325 // Include klass to copy by 8 bytes words.
kvn@1268 4326 base_off = instanceOopDesc::klass_offset_in_bytes();
kvn@1268 4327 }
kvn@1268 4328 assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
kvn@1268 4329 }
kvn@1268 4330 src = basic_plus_adr(src, base_off);
kvn@1268 4331 dest = basic_plus_adr(dest, base_off);
kvn@1268 4332
kvn@1268 4333 // Compute the length also, if needed:
kvn@1268 4334 Node* countx = size;
kvn@1268 4335 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
kvn@1268 4336 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
kvn@1268 4337
kvn@1268 4338 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
kvn@1268 4339 bool disjoint_bases = true;
kvn@1268 4340 generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
iveresov@2606 4341 src, NULL, dest, NULL, countx,
iveresov@2606 4342 /*dest_uninitialized*/true);
kvn@1268 4343
kvn@1268 4344 // If necessary, emit some card marks afterwards. (Non-arrays only.)
kvn@1268 4345 if (card_mark) {
kvn@1268 4346 assert(!is_array, "");
kvn@1268 4347 // Put in store barrier for any and all oops we are sticking
kvn@1268 4348 // into this object. (We could avoid this if we could prove
kvn@1268 4349 // that the object type contains no oop fields at all.)
kvn@1268 4350 Node* no_particular_value = NULL;
kvn@1268 4351 Node* no_particular_field = NULL;
kvn@1268 4352 int raw_adr_idx = Compile::AliasIdxRaw;
kvn@1268 4353 post_barrier(control(),
kvn@1268 4354 memory(raw_adr_type),
kvn@1393 4355 alloc_obj,
kvn@1268 4356 no_particular_field,
kvn@1268 4357 raw_adr_idx,
kvn@1268 4358 no_particular_value,
kvn@1268 4359 T_OBJECT,
kvn@1268 4360 false);
kvn@1268 4361 }
kvn@1268 4362
kvn@1393 4363 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 4364 if (alloc != NULL) {
roland@3392 4365 // Do not let stores that initialize this object be reordered with
roland@3392 4366 // a subsequent store that would make this object accessible by
roland@3392 4367 // other threads.
roland@3392 4368 // Record what AllocateNode this StoreStore protects so that
roland@3392 4369 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 4370 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 4371 // based on the escape status of the AllocateNode.
roland@3392 4372 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 4373 } else {
roland@3392 4374 insert_mem_bar(Op_MemBarCPUOrder);
roland@3392 4375 }
kvn@1268 4376 }
duke@435 4377
duke@435 4378 //------------------------inline_native_clone----------------------------
duke@435 4379 // Here are the simple edge cases:
duke@435 4380 // null receiver => normal trap
duke@435 4381 // virtual and clone was overridden => slow path to out-of-line clone
duke@435 4382 // not cloneable or finalizer => slow path to out-of-line Object.clone
duke@435 4383 //
duke@435 4384 // The general case has two steps, allocation and copying.
duke@435 4385 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
duke@435 4386 //
duke@435 4387 // Copying also has two cases, oop arrays and everything else.
duke@435 4388 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
duke@435 4389 // Everything else uses the tight inline loop supplied by CopyArrayNode.
duke@435 4390 //
duke@435 4391 // These steps fold up nicely if and when the cloned object's klass
duke@435 4392 // can be sharply typed as an object array, a type array, or an instance.
duke@435 4393 //
duke@435 4394 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
duke@435 4395 int nargs = 1;
cfang@1337 4396 PhiNode* result_val;
duke@435 4397
cfang@1335 4398 //set the original stack and the reexecute bit for the interpreter to reexecute
cfang@1335 4399 //the bytecode that invokes Object.clone if deoptimization happens
cfang@1335 4400 { PreserveReexecuteState preexecs(this);
cfang@1337 4401 jvms()->set_should_reexecute(true);
cfang@1337 4402
cfang@1337 4403 //null_check_receiver will adjust _sp (push and pop)
cfang@1337 4404 Node* obj = null_check_receiver(callee());
cfang@1337 4405 if (stopped()) return true;
cfang@1337 4406
cfang@1335 4407 _sp += nargs;
cfang@1337 4408
cfang@1337 4409 Node* obj_klass = load_object_klass(obj);
cfang@1337 4410 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
cfang@1337 4411 const TypeOopPtr* toop = ((tklass != NULL)
cfang@1337 4412 ? tklass->as_instance_type()
cfang@1337 4413 : TypeInstPtr::NOTNULL);
cfang@1337 4414
cfang@1337 4415 // Conservatively insert a memory barrier on all memory slices.
cfang@1337 4416 // Do not let writes into the original float below the clone.
cfang@1337 4417 insert_mem_bar(Op_MemBarCPUOrder);
cfang@1337 4418
cfang@1337 4419 // paths into result_reg:
cfang@1337 4420 enum {
cfang@1337 4421 _slow_path = 1, // out-of-line call to clone method (virtual or not)
cfang@1337 4422 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
cfang@1337 4423 _array_path, // plain array allocation, plus arrayof_long_arraycopy
cfang@1337 4424 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy
cfang@1337 4425 PATH_LIMIT
cfang@1337 4426 };
cfang@1337 4427 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
cfang@1337 4428 result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
cfang@1337 4429 TypeInstPtr::NOTNULL);
cfang@1337 4430 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
cfang@1337 4431 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
cfang@1337 4432 TypePtr::BOTTOM);
cfang@1337 4433 record_for_igvn(result_reg);
cfang@1337 4434
cfang@1337 4435 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
cfang@1337 4436 int raw_adr_idx = Compile::AliasIdxRaw;
cfang@1335 4437
cfang@1335 4438 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4439 if (array_ctl != NULL) {
cfang@1335 4440 // It's an array.
cfang@1335 4441 PreserveJVMState pjvms(this);
cfang@1335 4442 set_control(array_ctl);
cfang@1335 4443 Node* obj_length = load_array_length(obj);
cfang@1335 4444 Node* obj_size = NULL;
kvn@2810 4445 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
cfang@1335 4446
cfang@1335 4447 if (!use_ReduceInitialCardMarks()) {
cfang@1335 4448 // If it is an oop array, it requires very special treatment,
cfang@1335 4449 // because card marking is required on each card of the array.
cfang@1335 4450 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4451 if (is_obja != NULL) {
cfang@1335 4452 PreserveJVMState pjvms2(this);
cfang@1335 4453 set_control(is_obja);
cfang@1335 4454 // Generate a direct call to the right arraycopy function(s).
cfang@1335 4455 bool disjoint_bases = true;
cfang@1335 4456 bool length_never_negative = true;
cfang@1335 4457 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 4458 obj, intcon(0), alloc_obj, intcon(0),
cfang@1335 4459 obj_length,
cfang@1335 4460 disjoint_bases, length_never_negative);
cfang@1335 4461 result_reg->init_req(_objArray_path, control());
cfang@1335 4462 result_val->init_req(_objArray_path, alloc_obj);
cfang@1335 4463 result_i_o ->set_req(_objArray_path, i_o());
cfang@1335 4464 result_mem ->set_req(_objArray_path, reset_memory());
cfang@1335 4465 }
cfang@1335 4466 }
cfang@1335 4467 // Otherwise, there are no card marks to worry about.
ysr@1462 4468 // (We can dispense with card marks if we know the allocation
ysr@1462 4469 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
ysr@1462 4470 // causes the non-eden paths to take compensating steps to
ysr@1462 4471 // simulate a fresh allocation, so that no further
ysr@1462 4472 // card marks are required in compiled code to initialize
ysr@1462 4473 // the object.)
cfang@1335 4474
cfang@1335 4475 if (!stopped()) {
cfang@1335 4476 copy_to_clone(obj, alloc_obj, obj_size, true, false);
cfang@1335 4477
cfang@1335 4478 // Present the results of the copy.
cfang@1335 4479 result_reg->init_req(_array_path, control());
cfang@1335 4480 result_val->init_req(_array_path, alloc_obj);
cfang@1335 4481 result_i_o ->set_req(_array_path, i_o());
cfang@1335 4482 result_mem ->set_req(_array_path, reset_memory());
duke@435 4483 }
duke@435 4484 }
cfang@1335 4485
cfang@1335 4486 // We only go to the instance fast case code if we pass a number of guards.
cfang@1335 4487 // The paths which do not pass are accumulated in the slow_region.
cfang@1335 4488 RegionNode* slow_region = new (C, 1) RegionNode(1);
cfang@1335 4489 record_for_igvn(slow_region);
kvn@1268 4490 if (!stopped()) {
cfang@1335 4491 // It's an instance (we did array above). Make the slow-path tests.
cfang@1335 4492 // If this is a virtual call, we generate a funny guard. We grab
cfang@1335 4493 // the vtable entry corresponding to clone() from the target object.
cfang@1335 4494 // If the target method which we are calling happens to be the
cfang@1335 4495 // Object clone() method, we pass the guard. We do not need this
cfang@1335 4496 // guard for non-virtual calls; the caller is known to be the native
cfang@1335 4497 // Object clone().
cfang@1335 4498 if (is_virtual) {
cfang@1335 4499 generate_virtual_guard(obj_klass, slow_region);
cfang@1335 4500 }
cfang@1335 4501
cfang@1335 4502 // The object must be cloneable and must not have a finalizer.
cfang@1335 4503 // Both of these conditions may be checked in a single test.
cfang@1335 4504 // We could optimize the cloneable test further, but we don't care.
cfang@1335 4505 generate_access_flags_guard(obj_klass,
cfang@1335 4506 // Test both conditions:
cfang@1335 4507 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
cfang@1335 4508 // Must be cloneable but not finalizer:
cfang@1335 4509 JVM_ACC_IS_CLONEABLE,
cfang@1335 4510 slow_region);
kvn@1268 4511 }
cfang@1335 4512
cfang@1335 4513 if (!stopped()) {
cfang@1335 4514 // It's an instance, and it passed the slow-path tests.
cfang@1335 4515 PreserveJVMState pjvms(this);
cfang@1335 4516 Node* obj_size = NULL;
kvn@2810 4517 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
cfang@1335 4518
cfang@1335 4519 copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
cfang@1335 4520
cfang@1335 4521 // Present the results of the slow call.
cfang@1335 4522 result_reg->init_req(_instance_path, control());
cfang@1335 4523 result_val->init_req(_instance_path, alloc_obj);
cfang@1335 4524 result_i_o ->set_req(_instance_path, i_o());
cfang@1335 4525 result_mem ->set_req(_instance_path, reset_memory());
duke@435 4526 }
duke@435 4527
cfang@1335 4528 // Generate code for the slow case. We make a call to clone().
cfang@1335 4529 set_control(_gvn.transform(slow_region));
cfang@1335 4530 if (!stopped()) {
cfang@1335 4531 PreserveJVMState pjvms(this);
cfang@1335 4532 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
cfang@1335 4533 Node* slow_result = set_results_for_java_call(slow_call);
cfang@1335 4534 // this->control() comes from set_results_for_java_call
cfang@1335 4535 result_reg->init_req(_slow_path, control());
cfang@1335 4536 result_val->init_req(_slow_path, slow_result);
cfang@1335 4537 result_i_o ->set_req(_slow_path, i_o());
cfang@1335 4538 result_mem ->set_req(_slow_path, reset_memory());
cfang@1335 4539 }
cfang@1337 4540
cfang@1337 4541 // Return the combined state.
cfang@1337 4542 set_control( _gvn.transform(result_reg) );
cfang@1337 4543 set_i_o( _gvn.transform(result_i_o) );
cfang@1337 4544 set_all_memory( _gvn.transform(result_mem) );
cfang@1335 4545 } //original reexecute and sp are set back here
duke@435 4546
kvn@1268 4547 push(_gvn.transform(result_val));
duke@435 4548
duke@435 4549 return true;
duke@435 4550 }
duke@435 4551
duke@435 4552 //------------------------------basictype2arraycopy----------------------------
duke@435 4553 address LibraryCallKit::basictype2arraycopy(BasicType t,
duke@435 4554 Node* src_offset,
duke@435 4555 Node* dest_offset,
duke@435 4556 bool disjoint_bases,
iveresov@2606 4557 const char* &name,
iveresov@2606 4558 bool dest_uninitialized) {
duke@435 4559 const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
duke@435 4560 const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
duke@435 4561
duke@435 4562 bool aligned = false;
duke@435 4563 bool disjoint = disjoint_bases;
duke@435 4564
duke@435 4565 // if the offsets are the same, we can treat the memory regions as
duke@435 4566 // disjoint, because either the memory regions are in different arrays,
duke@435 4567 // or they are identical (which we can treat as disjoint.) We can also
duke@435 4568 // treat a copy with a destination index less that the source index
duke@435 4569 // as disjoint since a low->high copy will work correctly in this case.
duke@435 4570 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
duke@435 4571 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
duke@435 4572 // both indices are constants
duke@435 4573 int s_offs = src_offset_inttype->get_con();
duke@435 4574 int d_offs = dest_offset_inttype->get_con();
kvn@464 4575 int element_size = type2aelembytes(t);
duke@435 4576 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
duke@435 4577 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
duke@435 4578 if (s_offs >= d_offs) disjoint = true;
duke@435 4579 } else if (src_offset == dest_offset && src_offset != NULL) {
duke@435 4580 // This can occur if the offsets are identical non-constants.
duke@435 4581 disjoint = true;
duke@435 4582 }
duke@435 4583
roland@2728 4584 return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
duke@435 4585 }
duke@435 4586
duke@435 4587
duke@435 4588 //------------------------------inline_arraycopy-----------------------
duke@435 4589 bool LibraryCallKit::inline_arraycopy() {
duke@435 4590 // Restore the stack and pop off the arguments.
duke@435 4591 int nargs = 5; // 2 oops, 3 ints, no size_t or long
duke@435 4592 assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
duke@435 4593
duke@435 4594 Node *src = argument(0);
duke@435 4595 Node *src_offset = argument(1);
duke@435 4596 Node *dest = argument(2);
duke@435 4597 Node *dest_offset = argument(3);
duke@435 4598 Node *length = argument(4);
duke@435 4599
duke@435 4600 // Compile time checks. If any of these checks cannot be verified at compile time,
duke@435 4601 // we do not make a fast path for this call. Instead, we let the call remain as it
duke@435 4602 // is. The checks we choose to mandate at compile time are:
duke@435 4603 //
duke@435 4604 // (1) src and dest are arrays.
duke@435 4605 const Type* src_type = src->Value(&_gvn);
duke@435 4606 const Type* dest_type = dest->Value(&_gvn);
duke@435 4607 const TypeAryPtr* top_src = src_type->isa_aryptr();
duke@435 4608 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
duke@435 4609 if (top_src == NULL || top_src->klass() == NULL ||
duke@435 4610 top_dest == NULL || top_dest->klass() == NULL) {
duke@435 4611 // Conservatively insert a memory barrier on all memory slices.
duke@435 4612 // Do not let writes into the source float below the arraycopy.
duke@435 4613 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4614
duke@435 4615 // Call StubRoutines::generic_arraycopy stub.
duke@435 4616 generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
kvn@1268 4617 src, src_offset, dest, dest_offset, length);
duke@435 4618
duke@435 4619 // Do not let reads from the destination float above the arraycopy.
duke@435 4620 // Since we cannot type the arrays, we don't know which slices
duke@435 4621 // might be affected. We could restrict this barrier only to those
duke@435 4622 // memory slices which pertain to array elements--but don't bother.
duke@435 4623 if (!InsertMemBarAfterArraycopy)
duke@435 4624 // (If InsertMemBarAfterArraycopy, there is already one in place.)
duke@435 4625 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4626 return true;
duke@435 4627 }
duke@435 4628
duke@435 4629 // (2) src and dest arrays must have elements of the same BasicType
duke@435 4630 // Figure out the size and type of the elements we will be copying.
duke@435 4631 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4632 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4633 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
duke@435 4634 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
duke@435 4635
duke@435 4636 if (src_elem != dest_elem || dest_elem == T_VOID) {
duke@435 4637 // The component types are not the same or are not recognized. Punt.
duke@435 4638 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
duke@435 4639 generate_slow_arraycopy(TypePtr::BOTTOM,
iveresov@2606 4640 src, src_offset, dest, dest_offset, length,
iveresov@2606 4641 /*dest_uninitialized*/false);
duke@435 4642 return true;
duke@435 4643 }
duke@435 4644
duke@435 4645 //---------------------------------------------------------------------------
duke@435 4646 // We will make a fast path for this call to arraycopy.
duke@435 4647
duke@435 4648 // We have the following tests left to perform:
duke@435 4649 //
duke@435 4650 // (3) src and dest must not be null.
duke@435 4651 // (4) src_offset must not be negative.
duke@435 4652 // (5) dest_offset must not be negative.
duke@435 4653 // (6) length must not be negative.
duke@435 4654 // (7) src_offset + length must not exceed length of src.
duke@435 4655 // (8) dest_offset + length must not exceed length of dest.
duke@435 4656 // (9) each element of an oop array must be assignable
duke@435 4657
duke@435 4658 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 4659 record_for_igvn(slow_region);
duke@435 4660
duke@435 4661 // (3) operands must not be null
duke@435 4662 // We currently perform our null checks with the do_null_check routine.
duke@435 4663 // This means that the null exceptions will be reported in the caller
duke@435 4664 // rather than (correctly) reported inside of the native arraycopy call.
duke@435 4665 // This should be corrected, given time. We do our null check with the
duke@435 4666 // stack pointer restored.
duke@435 4667 _sp += nargs;
duke@435 4668 src = do_null_check(src, T_ARRAY);
duke@435 4669 dest = do_null_check(dest, T_ARRAY);
duke@435 4670 _sp -= nargs;
duke@435 4671
duke@435 4672 // (4) src_offset must not be negative.
duke@435 4673 generate_negative_guard(src_offset, slow_region);
duke@435 4674
duke@435 4675 // (5) dest_offset must not be negative.
duke@435 4676 generate_negative_guard(dest_offset, slow_region);
duke@435 4677
duke@435 4678 // (6) length must not be negative (moved to generate_arraycopy()).
duke@435 4679 // generate_negative_guard(length, slow_region);
duke@435 4680
duke@435 4681 // (7) src_offset + length must not exceed length of src.
duke@435 4682 generate_limit_guard(src_offset, length,
duke@435 4683 load_array_length(src),
duke@435 4684 slow_region);
duke@435 4685
duke@435 4686 // (8) dest_offset + length must not exceed length of dest.
duke@435 4687 generate_limit_guard(dest_offset, length,
duke@435 4688 load_array_length(dest),
duke@435 4689 slow_region);
duke@435 4690
duke@435 4691 // (9) each element of an oop array must be assignable
duke@435 4692 // The generate_arraycopy subroutine checks this.
duke@435 4693
duke@435 4694 // This is where the memory effects are placed:
duke@435 4695 const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
duke@435 4696 generate_arraycopy(adr_type, dest_elem,
duke@435 4697 src, src_offset, dest, dest_offset, length,
kvn@1268 4698 false, false, slow_region);
duke@435 4699
duke@435 4700 return true;
duke@435 4701 }
duke@435 4702
duke@435 4703 //-----------------------------generate_arraycopy----------------------
duke@435 4704 // Generate an optimized call to arraycopy.
duke@435 4705 // Caller must guard against non-arrays.
duke@435 4706 // Caller must determine a common array basic-type for both arrays.
duke@435 4707 // Caller must validate offsets against array bounds.
duke@435 4708 // The slow_region has already collected guard failure paths
duke@435 4709 // (such as out of bounds length or non-conformable array types).
duke@435 4710 // The generated code has this shape, in general:
duke@435 4711 //
duke@435 4712 // if (length == 0) return // via zero_path
duke@435 4713 // slowval = -1
duke@435 4714 // if (types unknown) {
duke@435 4715 // slowval = call generic copy loop
duke@435 4716 // if (slowval == 0) return // via checked_path
duke@435 4717 // } else if (indexes in bounds) {
duke@435 4718 // if ((is object array) && !(array type check)) {
duke@435 4719 // slowval = call checked copy loop
duke@435 4720 // if (slowval == 0) return // via checked_path
duke@435 4721 // } else {
duke@435 4722 // call bulk copy loop
duke@435 4723 // return // via fast_path
duke@435 4724 // }
duke@435 4725 // }
duke@435 4726 // // adjust params for remaining work:
duke@435 4727 // if (slowval != -1) {
duke@435 4728 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n
duke@435 4729 // }
duke@435 4730 // slow_region:
duke@435 4731 // call slow arraycopy(src, src_offset, dest, dest_offset, length)
duke@435 4732 // return // via slow_call_path
duke@435 4733 //
duke@435 4734 // This routine is used from several intrinsics: System.arraycopy,
duke@435 4735 // Object.clone (the array subcase), and Arrays.copyOf[Range].
duke@435 4736 //
duke@435 4737 void
duke@435 4738 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
duke@435 4739 BasicType basic_elem_type,
duke@435 4740 Node* src, Node* src_offset,
duke@435 4741 Node* dest, Node* dest_offset,
duke@435 4742 Node* copy_length,
duke@435 4743 bool disjoint_bases,
duke@435 4744 bool length_never_negative,
duke@435 4745 RegionNode* slow_region) {
duke@435 4746
duke@435 4747 if (slow_region == NULL) {
duke@435 4748 slow_region = new(C,1) RegionNode(1);
duke@435 4749 record_for_igvn(slow_region);
duke@435 4750 }
duke@435 4751
duke@435 4752 Node* original_dest = dest;
duke@435 4753 AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
iveresov@2606 4754 bool dest_uninitialized = false;
duke@435 4755
duke@435 4756 // See if this is the initialization of a newly-allocated array.
duke@435 4757 // If so, we will take responsibility here for initializing it to zero.
duke@435 4758 // (Note: Because tightly_coupled_allocation performs checks on the
duke@435 4759 // out-edges of the dest, we need to avoid making derived pointers
duke@435 4760 // from it until we have checked its uses.)
duke@435 4761 if (ReduceBulkZeroing
duke@435 4762 && !ZeroTLAB // pointless if already zeroed
duke@435 4763 && basic_elem_type != T_CONFLICT // avoid corner case
kvn@3407 4764 && !src->eqv_uncast(dest)
duke@435 4765 && ((alloc = tightly_coupled_allocation(dest, slow_region))
duke@435 4766 != NULL)
kvn@469 4767 && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
duke@435 4768 && alloc->maybe_set_complete(&_gvn)) {
duke@435 4769 // "You break it, you buy it."
duke@435 4770 InitializeNode* init = alloc->initialization();
duke@435 4771 assert(init->is_complete(), "we just did this");
kvn@3157 4772 init->set_complete_with_arraycopy();
kvn@1268 4773 assert(dest->is_CheckCastPP(), "sanity");
duke@435 4774 assert(dest->in(0)->in(0) == init, "dest pinned");
duke@435 4775 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
duke@435 4776 // From this point on, every exit path is responsible for
duke@435 4777 // initializing any non-copied parts of the object to zero.
iveresov@2606 4778 // Also, if this flag is set we make sure that arraycopy interacts properly
iveresov@2606 4779 // with G1, eliding pre-barriers. See CR 6627983.
iveresov@2606 4780 dest_uninitialized = true;
duke@435 4781 } else {
duke@435 4782 // No zeroing elimination here.
duke@435 4783 alloc = NULL;
duke@435 4784 //original_dest = dest;
iveresov@2606 4785 //dest_uninitialized = false;
duke@435 4786 }
duke@435 4787
duke@435 4788 // Results are placed here:
duke@435 4789 enum { fast_path = 1, // normal void-returning assembly stub
duke@435 4790 checked_path = 2, // special assembly stub with cleanup
duke@435 4791 slow_call_path = 3, // something went wrong; call the VM
duke@435 4792 zero_path = 4, // bypass when length of copy is zero
duke@435 4793 bcopy_path = 5, // copy primitive array by 64-bit blocks
duke@435 4794 PATH_LIMIT = 6
duke@435 4795 };
duke@435 4796 RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 4797 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
duke@435 4798 PhiNode* result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
duke@435 4799 record_for_igvn(result_region);
duke@435 4800 _gvn.set_type_bottom(result_i_o);
duke@435 4801 _gvn.set_type_bottom(result_memory);
duke@435 4802 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
duke@435 4803
duke@435 4804 // The slow_control path:
duke@435 4805 Node* slow_control;
duke@435 4806 Node* slow_i_o = i_o();
duke@435 4807 Node* slow_mem = memory(adr_type);
duke@435 4808 debug_only(slow_control = (Node*) badAddress);
duke@435 4809
duke@435 4810 // Checked control path:
duke@435 4811 Node* checked_control = top();
duke@435 4812 Node* checked_mem = NULL;
duke@435 4813 Node* checked_i_o = NULL;
duke@435 4814 Node* checked_value = NULL;
duke@435 4815
duke@435 4816 if (basic_elem_type == T_CONFLICT) {
iveresov@2606 4817 assert(!dest_uninitialized, "");
duke@435 4818 Node* cv = generate_generic_arraycopy(adr_type,
duke@435 4819 src, src_offset, dest, dest_offset,
iveresov@2606 4820 copy_length, dest_uninitialized);
duke@435 4821 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4822 checked_control = control();
duke@435 4823 checked_i_o = i_o();
duke@435 4824 checked_mem = memory(adr_type);
duke@435 4825 checked_value = cv;
duke@435 4826 set_control(top()); // no fast path
duke@435 4827 }
duke@435 4828
duke@435 4829 Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
duke@435 4830 if (not_pos != NULL) {
duke@435 4831 PreserveJVMState pjvms(this);
duke@435 4832 set_control(not_pos);
duke@435 4833
duke@435 4834 // (6) length must not be negative.
duke@435 4835 if (!length_never_negative) {
duke@435 4836 generate_negative_guard(copy_length, slow_region);
duke@435 4837 }
duke@435 4838
kvn@1271 4839 // copy_length is 0.
iveresov@2606 4840 if (!stopped() && dest_uninitialized) {
duke@435 4841 Node* dest_length = alloc->in(AllocateNode::ALength);
kvn@3407 4842 if (copy_length->eqv_uncast(dest_length)
duke@435 4843 || _gvn.find_int_con(dest_length, 1) <= 0) {
kvn@1271 4844 // There is no zeroing to do. No need for a secondary raw memory barrier.
duke@435 4845 } else {
duke@435 4846 // Clear the whole thing since there are no source elements to copy.
duke@435 4847 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4848 intcon(0), NULL,
duke@435 4849 alloc->in(AllocateNode::AllocSize));
kvn@1271 4850 // Use a secondary InitializeNode as raw memory barrier.
kvn@1271 4851 // Currently it is needed only on this path since other
kvn@1271 4852 // paths have stub or runtime calls as raw memory barriers.
kvn@1271 4853 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
kvn@1271 4854 Compile::AliasIdxRaw,
kvn@1271 4855 top())->as_Initialize();
kvn@1271 4856 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
duke@435 4857 }
duke@435 4858 }
duke@435 4859
duke@435 4860 // Present the results of the fast call.
duke@435 4861 result_region->init_req(zero_path, control());
duke@435 4862 result_i_o ->init_req(zero_path, i_o());
duke@435 4863 result_memory->init_req(zero_path, memory(adr_type));
duke@435 4864 }
duke@435 4865
iveresov@2606 4866 if (!stopped() && dest_uninitialized) {
duke@435 4867 // We have to initialize the *uncopied* part of the array to zero.
duke@435 4868 // The copy destination is the slice dest[off..off+len]. The other slices
duke@435 4869 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
duke@435 4870 Node* dest_size = alloc->in(AllocateNode::AllocSize);
duke@435 4871 Node* dest_length = alloc->in(AllocateNode::ALength);
duke@435 4872 Node* dest_tail = _gvn.transform( new(C,3) AddINode(dest_offset,
duke@435 4873 copy_length) );
duke@435 4874
duke@435 4875 // If there is a head section that needs zeroing, do it now.
duke@435 4876 if (find_int_con(dest_offset, -1) != 0) {
duke@435 4877 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4878 intcon(0), dest_offset,
duke@435 4879 NULL);
duke@435 4880 }
duke@435 4881
duke@435 4882 // Next, perform a dynamic check on the tail length.
duke@435 4883 // It is often zero, and we can win big if we prove this.
duke@435 4884 // There are two wins: Avoid generating the ClearArray
duke@435 4885 // with its attendant messy index arithmetic, and upgrade
duke@435 4886 // the copy to a more hardware-friendly word size of 64 bits.
duke@435 4887 Node* tail_ctl = NULL;
kvn@3407 4888 if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
duke@435 4889 Node* cmp_lt = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
duke@435 4890 Node* bol_lt = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 4891 tail_ctl = generate_slow_guard(bol_lt, NULL);
duke@435 4892 assert(tail_ctl != NULL || !stopped(), "must be an outcome");
duke@435 4893 }
duke@435 4894
duke@435 4895 // At this point, let's assume there is no tail.
duke@435 4896 if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
duke@435 4897 // There is no tail. Try an upgrade to a 64-bit copy.
duke@435 4898 bool didit = false;
duke@435 4899 { PreserveJVMState pjvms(this);
duke@435 4900 didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
duke@435 4901 src, src_offset, dest, dest_offset,
iveresov@2606 4902 dest_size, dest_uninitialized);
duke@435 4903 if (didit) {
duke@435 4904 // Present the results of the block-copying fast call.
duke@435 4905 result_region->init_req(bcopy_path, control());
duke@435 4906 result_i_o ->init_req(bcopy_path, i_o());
duke@435 4907 result_memory->init_req(bcopy_path, memory(adr_type));
duke@435 4908 }
duke@435 4909 }
duke@435 4910 if (didit)
duke@435 4911 set_control(top()); // no regular fast path
duke@435 4912 }
duke@435 4913
duke@435 4914 // Clear the tail, if any.
duke@435 4915 if (tail_ctl != NULL) {
duke@435 4916 Node* notail_ctl = stopped() ? NULL : control();
duke@435 4917 set_control(tail_ctl);
duke@435 4918 if (notail_ctl == NULL) {
duke@435 4919 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4920 dest_tail, NULL,
duke@435 4921 dest_size);
duke@435 4922 } else {
duke@435 4923 // Make a local merge.
duke@435 4924 Node* done_ctl = new(C,3) RegionNode(3);
duke@435 4925 Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
duke@435 4926 done_ctl->init_req(1, notail_ctl);
duke@435 4927 done_mem->init_req(1, memory(adr_type));
duke@435 4928 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4929 dest_tail, NULL,
duke@435 4930 dest_size);
duke@435 4931 done_ctl->init_req(2, control());
duke@435 4932 done_mem->init_req(2, memory(adr_type));
duke@435 4933 set_control( _gvn.transform(done_ctl) );
duke@435 4934 set_memory( _gvn.transform(done_mem), adr_type );
duke@435 4935 }
duke@435 4936 }
duke@435 4937 }
duke@435 4938
duke@435 4939 BasicType copy_type = basic_elem_type;
duke@435 4940 assert(basic_elem_type != T_ARRAY, "caller must fix this");
duke@435 4941 if (!stopped() && copy_type == T_OBJECT) {
duke@435 4942 // If src and dest have compatible element types, we can copy bits.
duke@435 4943 // Types S[] and D[] are compatible if D is a supertype of S.
duke@435 4944 //
duke@435 4945 // If they are not, we will use checked_oop_disjoint_arraycopy,
duke@435 4946 // which performs a fast optimistic per-oop check, and backs off
duke@435 4947 // further to JVM_ArrayCopy on the first per-oop check that fails.
duke@435 4948 // (Actually, we don't move raw bits only; the GC requires card marks.)
duke@435 4949
duke@435 4950 // Get the klassOop for both src and dest
duke@435 4951 Node* src_klass = load_object_klass(src);
duke@435 4952 Node* dest_klass = load_object_klass(dest);
duke@435 4953
duke@435 4954 // Generate the subtype check.
duke@435 4955 // This might fold up statically, or then again it might not.
duke@435 4956 //
duke@435 4957 // Non-static example: Copying List<String>.elements to a new String[].
duke@435 4958 // The backing store for a List<String> is always an Object[],
duke@435 4959 // but its elements are always type String, if the generic types
duke@435 4960 // are correct at the source level.
duke@435 4961 //
duke@435 4962 // Test S[] against D[], not S against D, because (probably)
duke@435 4963 // the secondary supertype cache is less busy for S[] than S.
duke@435 4964 // This usually only matters when D is an interface.
duke@435 4965 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
duke@435 4966 // Plug failing path into checked_oop_disjoint_arraycopy
duke@435 4967 if (not_subtype_ctrl != top()) {
duke@435 4968 PreserveJVMState pjvms(this);
duke@435 4969 set_control(not_subtype_ctrl);
duke@435 4970 // (At this point we can assume disjoint_bases, since types differ.)
stefank@3391 4971 int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
duke@435 4972 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
kvn@599 4973 Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
duke@435 4974 Node* dest_elem_klass = _gvn.transform(n1);
duke@435 4975 Node* cv = generate_checkcast_arraycopy(adr_type,
duke@435 4976 dest_elem_klass,
duke@435 4977 src, src_offset, dest, dest_offset,
iveresov@2606 4978 ConvI2X(copy_length), dest_uninitialized);
duke@435 4979 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4980 checked_control = control();
duke@435 4981 checked_i_o = i_o();
duke@435 4982 checked_mem = memory(adr_type);
duke@435 4983 checked_value = cv;
duke@435 4984 }
duke@435 4985 // At this point we know we do not need type checks on oop stores.
duke@435 4986
duke@435 4987 // Let's see if we need card marks:
duke@435 4988 if (alloc != NULL && use_ReduceInitialCardMarks()) {
duke@435 4989 // If we do not need card marks, copy using the jint or jlong stub.
coleenp@548 4990 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
kvn@464 4991 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
duke@435 4992 "sizes agree");
duke@435 4993 }
duke@435 4994 }
duke@435 4995
duke@435 4996 if (!stopped()) {
duke@435 4997 // Generate the fast path, if possible.
duke@435 4998 PreserveJVMState pjvms(this);
duke@435 4999 generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
duke@435 5000 src, src_offset, dest, dest_offset,
iveresov@2606 5001 ConvI2X(copy_length), dest_uninitialized);
duke@435 5002
duke@435 5003 // Present the results of the fast call.
duke@435 5004 result_region->init_req(fast_path, control());
duke@435 5005 result_i_o ->init_req(fast_path, i_o());
duke@435 5006 result_memory->init_req(fast_path, memory(adr_type));
duke@435 5007 }
duke@435 5008
duke@435 5009 // Here are all the slow paths up to this point, in one bundle:
duke@435 5010 slow_control = top();
duke@435 5011 if (slow_region != NULL)
duke@435 5012 slow_control = _gvn.transform(slow_region);
duke@435 5013 debug_only(slow_region = (RegionNode*)badAddress);
duke@435 5014
duke@435 5015 set_control(checked_control);
duke@435 5016 if (!stopped()) {
duke@435 5017 // Clean up after the checked call.
duke@435 5018 // The returned value is either 0 or -1^K,
duke@435 5019 // where K = number of partially transferred array elements.
duke@435 5020 Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
duke@435 5021 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
duke@435 5022 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
duke@435 5023
duke@435 5024 // If it is 0, we are done, so transfer to the end.
duke@435 5025 Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
duke@435 5026 result_region->init_req(checked_path, checks_done);
duke@435 5027 result_i_o ->init_req(checked_path, checked_i_o);
duke@435 5028 result_memory->init_req(checked_path, checked_mem);
duke@435 5029
duke@435 5030 // If it is not zero, merge into the slow call.
duke@435 5031 set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
duke@435 5032 RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
duke@435 5033 PhiNode* slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
duke@435 5034 PhiNode* slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
duke@435 5035 record_for_igvn(slow_reg2);
duke@435 5036 slow_reg2 ->init_req(1, slow_control);
duke@435 5037 slow_i_o2 ->init_req(1, slow_i_o);
duke@435 5038 slow_mem2 ->init_req(1, slow_mem);
duke@435 5039 slow_reg2 ->init_req(2, control());
kvn@1268 5040 slow_i_o2 ->init_req(2, checked_i_o);
kvn@1268 5041 slow_mem2 ->init_req(2, checked_mem);
duke@435 5042
duke@435 5043 slow_control = _gvn.transform(slow_reg2);
duke@435 5044 slow_i_o = _gvn.transform(slow_i_o2);
duke@435 5045 slow_mem = _gvn.transform(slow_mem2);
duke@435 5046
duke@435 5047 if (alloc != NULL) {
duke@435 5048 // We'll restart from the very beginning, after zeroing the whole thing.
duke@435 5049 // This can cause double writes, but that's OK since dest is brand new.
duke@435 5050 // So we ignore the low 31 bits of the value returned from the stub.
duke@435 5051 } else {
duke@435 5052 // We must continue the copy exactly where it failed, or else
duke@435 5053 // another thread might see the wrong number of writes to dest.
duke@435 5054 Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
duke@435 5055 Node* slow_offset = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
duke@435 5056 slow_offset->init_req(1, intcon(0));
duke@435 5057 slow_offset->init_req(2, checked_offset);
duke@435 5058 slow_offset = _gvn.transform(slow_offset);
duke@435 5059
duke@435 5060 // Adjust the arguments by the conditionally incoming offset.
duke@435 5061 Node* src_off_plus = _gvn.transform( new(C, 3) AddINode(src_offset, slow_offset) );
duke@435 5062 Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
duke@435 5063 Node* length_minus = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
duke@435 5064
duke@435 5065 // Tweak the node variables to adjust the code produced below:
duke@435 5066 src_offset = src_off_plus;
duke@435 5067 dest_offset = dest_off_plus;
duke@435 5068 copy_length = length_minus;
duke@435 5069 }
duke@435 5070 }
duke@435 5071
duke@435 5072 set_control(slow_control);
duke@435 5073 if (!stopped()) {
duke@435 5074 // Generate the slow path, if needed.
duke@435 5075 PreserveJVMState pjvms(this); // replace_in_map may trash the map
duke@435 5076
duke@435 5077 set_memory(slow_mem, adr_type);
duke@435 5078 set_i_o(slow_i_o);
duke@435 5079
iveresov@2606 5080 if (dest_uninitialized) {
duke@435 5081 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 5082 intcon(0), NULL,
duke@435 5083 alloc->in(AllocateNode::AllocSize));
duke@435 5084 }
duke@435 5085
duke@435 5086 generate_slow_arraycopy(adr_type,
duke@435 5087 src, src_offset, dest, dest_offset,
iveresov@2606 5088 copy_length, /*dest_uninitialized*/false);
duke@435 5089
duke@435 5090 result_region->init_req(slow_call_path, control());
duke@435 5091 result_i_o ->init_req(slow_call_path, i_o());
duke@435 5092 result_memory->init_req(slow_call_path, memory(adr_type));
duke@435 5093 }
duke@435 5094
duke@435 5095 // Remove unused edges.
duke@435 5096 for (uint i = 1; i < result_region->req(); i++) {
duke@435 5097 if (result_region->in(i) == NULL)
duke@435 5098 result_region->init_req(i, top());
duke@435 5099 }
duke@435 5100
duke@435 5101 // Finished; return the combined state.
duke@435 5102 set_control( _gvn.transform(result_region) );
duke@435 5103 set_i_o( _gvn.transform(result_i_o) );
duke@435 5104 set_memory( _gvn.transform(result_memory), adr_type );
duke@435 5105
duke@435 5106 // The memory edges above are precise in order to model effects around
twisti@1040 5107 // array copies accurately to allow value numbering of field loads around
duke@435 5108 // arraycopy. Such field loads, both before and after, are common in Java
duke@435 5109 // collections and similar classes involving header/array data structures.
duke@435 5110 //
duke@435 5111 // But with low number of register or when some registers are used or killed
duke@435 5112 // by arraycopy calls it causes registers spilling on stack. See 6544710.
duke@435 5113 // The next memory barrier is added to avoid it. If the arraycopy can be
duke@435 5114 // optimized away (which it can, sometimes) then we can manually remove
duke@435 5115 // the membar also.
kvn@1393 5116 //
kvn@1393 5117 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 5118 if (alloc != NULL) {
roland@3392 5119 // Do not let stores that initialize this object be reordered with
roland@3392 5120 // a subsequent store that would make this object accessible by
roland@3392 5121 // other threads.
roland@3392 5122 // Record what AllocateNode this StoreStore protects so that
roland@3392 5123 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 5124 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 5125 // based on the escape status of the AllocateNode.
roland@3392 5126 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 5127 } else if (InsertMemBarAfterArraycopy)
duke@435 5128 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 5129 }
duke@435 5130
duke@435 5131
duke@435 5132 // Helper function which determines if an arraycopy immediately follows
duke@435 5133 // an allocation, with no intervening tests or other escapes for the object.
duke@435 5134 AllocateArrayNode*
duke@435 5135 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
duke@435 5136 RegionNode* slow_region) {
duke@435 5137 if (stopped()) return NULL; // no fast path
duke@435 5138 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
duke@435 5139
duke@435 5140 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
duke@435 5141 if (alloc == NULL) return NULL;
duke@435 5142
duke@435 5143 Node* rawmem = memory(Compile::AliasIdxRaw);
duke@435 5144 // Is the allocation's memory state untouched?
duke@435 5145 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
duke@435 5146 // Bail out if there have been raw-memory effects since the allocation.
duke@435 5147 // (Example: There might have been a call or safepoint.)
duke@435 5148 return NULL;
duke@435 5149 }
duke@435 5150 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
duke@435 5151 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
duke@435 5152 return NULL;
duke@435 5153 }
duke@435 5154
duke@435 5155 // There must be no unexpected observers of this allocation.
duke@435 5156 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
duke@435 5157 Node* obs = ptr->fast_out(i);
duke@435 5158 if (obs != this->map()) {
duke@435 5159 return NULL;
duke@435 5160 }
duke@435 5161 }
duke@435 5162
duke@435 5163 // This arraycopy must unconditionally follow the allocation of the ptr.
duke@435 5164 Node* alloc_ctl = ptr->in(0);
duke@435 5165 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
duke@435 5166
duke@435 5167 Node* ctl = control();
duke@435 5168 while (ctl != alloc_ctl) {
duke@435 5169 // There may be guards which feed into the slow_region.
duke@435 5170 // Any other control flow means that we might not get a chance
duke@435 5171 // to finish initializing the allocated object.
duke@435 5172 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
duke@435 5173 IfNode* iff = ctl->in(0)->as_If();
duke@435 5174 Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
duke@435 5175 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
duke@435 5176 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
duke@435 5177 ctl = iff->in(0); // This test feeds the known slow_region.
duke@435 5178 continue;
duke@435 5179 }
duke@435 5180 // One more try: Various low-level checks bottom out in
duke@435 5181 // uncommon traps. If the debug-info of the trap omits
duke@435 5182 // any reference to the allocation, as we've already
duke@435 5183 // observed, then there can be no objection to the trap.
duke@435 5184 bool found_trap = false;
duke@435 5185 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
duke@435 5186 Node* obs = not_ctl->fast_out(j);
duke@435 5187 if (obs->in(0) == not_ctl && obs->is_Call() &&
twisti@2103 5188 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
duke@435 5189 found_trap = true; break;
duke@435 5190 }
duke@435 5191 }
duke@435 5192 if (found_trap) {
duke@435 5193 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
duke@435 5194 continue;
duke@435 5195 }
duke@435 5196 }
duke@435 5197 return NULL;
duke@435 5198 }
duke@435 5199
duke@435 5200 // If we get this far, we have an allocation which immediately
duke@435 5201 // precedes the arraycopy, and we can take over zeroing the new object.
duke@435 5202 // The arraycopy will finish the initialization, and provide
duke@435 5203 // a new control state to which we will anchor the destination pointer.
duke@435 5204
duke@435 5205 return alloc;
duke@435 5206 }
duke@435 5207
duke@435 5208 // Helper for initialization of arrays, creating a ClearArray.
duke@435 5209 // It writes zero bits in [start..end), within the body of an array object.
duke@435 5210 // The memory effects are all chained onto the 'adr_type' alias category.
duke@435 5211 //
duke@435 5212 // Since the object is otherwise uninitialized, we are free
duke@435 5213 // to put a little "slop" around the edges of the cleared area,
duke@435 5214 // as long as it does not go back into the array's header,
duke@435 5215 // or beyond the array end within the heap.
duke@435 5216 //
duke@435 5217 // The lower edge can be rounded down to the nearest jint and the
duke@435 5218 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
duke@435 5219 //
duke@435 5220 // Arguments:
duke@435 5221 // adr_type memory slice where writes are generated
duke@435 5222 // dest oop of the destination array
duke@435 5223 // basic_elem_type element type of the destination
duke@435 5224 // slice_idx array index of first element to store
duke@435 5225 // slice_len number of elements to store (or NULL)
duke@435 5226 // dest_size total size in bytes of the array object
duke@435 5227 //
duke@435 5228 // Exactly one of slice_len or dest_size must be non-NULL.
duke@435 5229 // If dest_size is non-NULL, zeroing extends to the end of the object.
duke@435 5230 // If slice_len is non-NULL, the slice_idx value must be a constant.
duke@435 5231 void
duke@435 5232 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
duke@435 5233 Node* dest,
duke@435 5234 BasicType basic_elem_type,
duke@435 5235 Node* slice_idx,
duke@435 5236 Node* slice_len,
duke@435 5237 Node* dest_size) {
duke@435 5238 // one or the other but not both of slice_len and dest_size:
duke@435 5239 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
duke@435 5240 if (slice_len == NULL) slice_len = top();
duke@435 5241 if (dest_size == NULL) dest_size = top();
duke@435 5242
duke@435 5243 // operate on this memory slice:
duke@435 5244 Node* mem = memory(adr_type); // memory slice to operate on
duke@435 5245
duke@435 5246 // scaling and rounding of indexes:
kvn@464 5247 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5248 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 5249 int clear_low = (-1 << scale) & (BytesPerInt - 1);
duke@435 5250 int bump_bit = (-1 << scale) & BytesPerInt;
duke@435 5251
duke@435 5252 // determine constant starts and ends
duke@435 5253 const intptr_t BIG_NEG = -128;
duke@435 5254 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 5255 intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
duke@435 5256 intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
duke@435 5257 if (slice_len_con == 0) {
duke@435 5258 return; // nothing to do here
duke@435 5259 }
duke@435 5260 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
duke@435 5261 intptr_t end_con = find_intptr_t_con(dest_size, -1);
duke@435 5262 if (slice_idx_con >= 0 && slice_len_con >= 0) {
duke@435 5263 assert(end_con < 0, "not two cons");
duke@435 5264 end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
duke@435 5265 BytesPerLong);
duke@435 5266 }
duke@435 5267
duke@435 5268 if (start_con >= 0 && end_con >= 0) {
duke@435 5269 // Constant start and end. Simple.
duke@435 5270 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5271 start_con, end_con, &_gvn);
duke@435 5272 } else if (start_con >= 0 && dest_size != top()) {
duke@435 5273 // Constant start, pre-rounded end after the tail of the array.
duke@435 5274 Node* end = dest_size;
duke@435 5275 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5276 start_con, end, &_gvn);
duke@435 5277 } else if (start_con >= 0 && slice_len != top()) {
duke@435 5278 // Constant start, non-constant end. End needs rounding up.
duke@435 5279 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
duke@435 5280 intptr_t end_base = abase + (slice_idx_con << scale);
duke@435 5281 int end_round = (-1 << scale) & (BytesPerLong - 1);
duke@435 5282 Node* end = ConvI2X(slice_len);
duke@435 5283 if (scale != 0)
duke@435 5284 end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
duke@435 5285 end_base += end_round;
duke@435 5286 end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
duke@435 5287 end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
duke@435 5288 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5289 start_con, end, &_gvn);
duke@435 5290 } else if (start_con < 0 && dest_size != top()) {
duke@435 5291 // Non-constant start, pre-rounded end after the tail of the array.
duke@435 5292 // This is almost certainly a "round-to-end" operation.
duke@435 5293 Node* start = slice_idx;
duke@435 5294 start = ConvI2X(start);
duke@435 5295 if (scale != 0)
duke@435 5296 start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
duke@435 5297 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
duke@435 5298 if ((bump_bit | clear_low) != 0) {
duke@435 5299 int to_clear = (bump_bit | clear_low);
duke@435 5300 // Align up mod 8, then store a jint zero unconditionally
duke@435 5301 // just before the mod-8 boundary.
coleenp@548 5302 if (((abase + bump_bit) & ~to_clear) - bump_bit
coleenp@548 5303 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
coleenp@548 5304 bump_bit = 0;
coleenp@548 5305 assert((abase & to_clear) == 0, "array base must be long-aligned");
coleenp@548 5306 } else {
coleenp@548 5307 // Bump 'start' up to (or past) the next jint boundary:
coleenp@548 5308 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
coleenp@548 5309 assert((abase & clear_low) == 0, "array base must be int-aligned");
coleenp@548 5310 }
duke@435 5311 // Round bumped 'start' down to jlong boundary in body of array.
duke@435 5312 start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
coleenp@548 5313 if (bump_bit != 0) {
coleenp@548 5314 // Store a zero to the immediately preceding jint:
coleenp@548 5315 Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
coleenp@548 5316 Node* p1 = basic_plus_adr(dest, x1);
coleenp@548 5317 mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
coleenp@548 5318 mem = _gvn.transform(mem);
coleenp@548 5319 }
duke@435 5320 }
duke@435 5321 Node* end = dest_size; // pre-rounded
duke@435 5322 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5323 start, end, &_gvn);
duke@435 5324 } else {
duke@435 5325 // Non-constant start, unrounded non-constant end.
duke@435 5326 // (Nobody zeroes a random midsection of an array using this routine.)
duke@435 5327 ShouldNotReachHere(); // fix caller
duke@435 5328 }
duke@435 5329
duke@435 5330 // Done.
duke@435 5331 set_memory(mem, adr_type);
duke@435 5332 }
duke@435 5333
duke@435 5334
duke@435 5335 bool
duke@435 5336 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
duke@435 5337 BasicType basic_elem_type,
duke@435 5338 AllocateNode* alloc,
duke@435 5339 Node* src, Node* src_offset,
duke@435 5340 Node* dest, Node* dest_offset,
iveresov@2606 5341 Node* dest_size, bool dest_uninitialized) {
duke@435 5342 // See if there is an advantage from block transfer.
kvn@464 5343 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5344 if (scale >= LogBytesPerLong)
duke@435 5345 return false; // it is already a block transfer
duke@435 5346
duke@435 5347 // Look at the alignment of the starting offsets.
duke@435 5348 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@2939 5349
kvn@2939 5350 intptr_t src_off_con = (intptr_t) find_int_con(src_offset, -1);
kvn@2939 5351 intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
kvn@2939 5352 if (src_off_con < 0 || dest_off_con < 0)
duke@435 5353 // At present, we can only understand constants.
duke@435 5354 return false;
duke@435 5355
kvn@2939 5356 intptr_t src_off = abase + (src_off_con << scale);
kvn@2939 5357 intptr_t dest_off = abase + (dest_off_con << scale);
kvn@2939 5358
duke@435 5359 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
duke@435 5360 // Non-aligned; too bad.
duke@435 5361 // One more chance: Pick off an initial 32-bit word.
duke@435 5362 // This is a common case, since abase can be odd mod 8.
duke@435 5363 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
duke@435 5364 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
duke@435 5365 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5366 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5367 Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
duke@435 5368 store_to_memory(control(), dptr, sval, T_INT, adr_type);
duke@435 5369 src_off += BytesPerInt;
duke@435 5370 dest_off += BytesPerInt;
duke@435 5371 } else {
duke@435 5372 return false;
duke@435 5373 }
duke@435 5374 }
duke@435 5375 assert(src_off % BytesPerLong == 0, "");
duke@435 5376 assert(dest_off % BytesPerLong == 0, "");
duke@435 5377
duke@435 5378 // Do this copy by giant steps.
duke@435 5379 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5380 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5381 Node* countx = dest_size;
duke@435 5382 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
duke@435 5383 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
duke@435 5384
duke@435 5385 bool disjoint_bases = true; // since alloc != NULL
duke@435 5386 generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
iveresov@2606 5387 sptr, NULL, dptr, NULL, countx, dest_uninitialized);
duke@435 5388
duke@435 5389 return true;
duke@435 5390 }
duke@435 5391
duke@435 5392
duke@435 5393 // Helper function; generates code for the slow case.
duke@435 5394 // We make a call to a runtime method which emulates the native method,
duke@435 5395 // but without the native wrapper overhead.
duke@435 5396 void
duke@435 5397 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 5398 Node* src, Node* src_offset,
duke@435 5399 Node* dest, Node* dest_offset,
iveresov@2606 5400 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5401 assert(!dest_uninitialized, "Invariant");
duke@435 5402 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
duke@435 5403 OptoRuntime::slow_arraycopy_Type(),
duke@435 5404 OptoRuntime::slow_arraycopy_Java(),
duke@435 5405 "slow_arraycopy", adr_type,
duke@435 5406 src, src_offset, dest, dest_offset,
duke@435 5407 copy_length);
duke@435 5408
duke@435 5409 // Handle exceptions thrown by this fellow:
duke@435 5410 make_slow_call_ex(call, env()->Throwable_klass(), false);
duke@435 5411 }
duke@435 5412
duke@435 5413 // Helper function; generates code for cases requiring runtime checks.
duke@435 5414 Node*
duke@435 5415 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 5416 Node* dest_elem_klass,
duke@435 5417 Node* src, Node* src_offset,
duke@435 5418 Node* dest, Node* dest_offset,
iveresov@2606 5419 Node* copy_length, bool dest_uninitialized) {
duke@435 5420 if (stopped()) return NULL;
duke@435 5421
iveresov@2606 5422 address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
duke@435 5423 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5424 return NULL;
duke@435 5425 }
duke@435 5426
duke@435 5427 // Pick out the parameters required to perform a store-check
duke@435 5428 // for the target array. This is an optimistic check. It will
duke@435 5429 // look in each non-null element's class, at the desired klass's
duke@435 5430 // super_check_offset, for the desired klass.
stefank@3391 5431 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 5432 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
kvn@1964 5433 Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
never@2199 5434 Node* check_offset = ConvI2X(_gvn.transform(n3));
duke@435 5435 Node* check_value = dest_elem_klass;
duke@435 5436
duke@435 5437 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
duke@435 5438 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
duke@435 5439
duke@435 5440 // (We know the arrays are never conjoint, because their types differ.)
duke@435 5441 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5442 OptoRuntime::checkcast_arraycopy_Type(),
duke@435 5443 copyfunc_addr, "checkcast_arraycopy", adr_type,
duke@435 5444 // five arguments, of which two are
duke@435 5445 // intptr_t (jlong in LP64)
duke@435 5446 src_start, dest_start,
duke@435 5447 copy_length XTOP,
duke@435 5448 check_offset XTOP,
duke@435 5449 check_value);
duke@435 5450
duke@435 5451 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5452 }
duke@435 5453
duke@435 5454
duke@435 5455 // Helper function; generates code for cases requiring runtime checks.
duke@435 5456 Node*
duke@435 5457 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 5458 Node* src, Node* src_offset,
duke@435 5459 Node* dest, Node* dest_offset,
iveresov@2606 5460 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5461 assert(!dest_uninitialized, "Invariant");
duke@435 5462 if (stopped()) return NULL;
duke@435 5463 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 5464 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5465 return NULL;
duke@435 5466 }
duke@435 5467
duke@435 5468 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5469 OptoRuntime::generic_arraycopy_Type(),
duke@435 5470 copyfunc_addr, "generic_arraycopy", adr_type,
duke@435 5471 src, src_offset, dest, dest_offset, copy_length);
duke@435 5472
duke@435 5473 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5474 }
duke@435 5475
duke@435 5476 // Helper function; generates the fast out-of-line call to an arraycopy stub.
duke@435 5477 void
duke@435 5478 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 5479 BasicType basic_elem_type,
duke@435 5480 bool disjoint_bases,
duke@435 5481 Node* src, Node* src_offset,
duke@435 5482 Node* dest, Node* dest_offset,
iveresov@2606 5483 Node* copy_length, bool dest_uninitialized) {
duke@435 5484 if (stopped()) return; // nothing to do
duke@435 5485
duke@435 5486 Node* src_start = src;
duke@435 5487 Node* dest_start = dest;
duke@435 5488 if (src_offset != NULL || dest_offset != NULL) {
duke@435 5489 assert(src_offset != NULL && dest_offset != NULL, "");
duke@435 5490 src_start = array_element_address(src, src_offset, basic_elem_type);
duke@435 5491 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
duke@435 5492 }
duke@435 5493
duke@435 5494 // Figure out which arraycopy runtime method to call.
duke@435 5495 const char* copyfunc_name = "arraycopy";
duke@435 5496 address copyfunc_addr =
duke@435 5497 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
iveresov@2606 5498 disjoint_bases, copyfunc_name, dest_uninitialized);
duke@435 5499
duke@435 5500 // Call it. Note that the count_ix value is not scaled to a byte-size.
duke@435 5501 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5502 OptoRuntime::fast_arraycopy_Type(),
duke@435 5503 copyfunc_addr, copyfunc_name, adr_type,
duke@435 5504 src_start, dest_start, copy_length XTOP);
duke@435 5505 }
johnc@2781 5506
johnc@2781 5507 //----------------------------inline_reference_get----------------------------
johnc@2781 5508
johnc@2781 5509 bool LibraryCallKit::inline_reference_get() {
johnc@2781 5510 const int nargs = 1; // self
johnc@2781 5511
johnc@2781 5512 guarantee(java_lang_ref_Reference::referent_offset > 0,
johnc@2781 5513 "should have already been set");
johnc@2781 5514
johnc@2781 5515 int referent_offset = java_lang_ref_Reference::referent_offset;
johnc@2781 5516
johnc@2781 5517 // Restore the stack and pop off the argument
johnc@2781 5518 _sp += nargs;
johnc@2781 5519 Node *reference_obj = pop();
johnc@2781 5520
johnc@2781 5521 // Null check on self without removing any arguments.
johnc@2781 5522 _sp += nargs;
johnc@2781 5523 reference_obj = do_null_check(reference_obj, T_OBJECT);
johnc@2781 5524 _sp -= nargs;;
johnc@2781 5525
johnc@2781 5526 if (stopped()) return true;
johnc@2781 5527
johnc@2781 5528 Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
johnc@2781 5529
johnc@2781 5530 ciInstanceKlass* klass = env()->Object_klass();
johnc@2781 5531 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
johnc@2781 5532
johnc@2781 5533 Node* no_ctrl = NULL;
johnc@2781 5534 Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
johnc@2781 5535
johnc@2781 5536 // Use the pre-barrier to record the value in the referent field
johnc@2781 5537 pre_barrier(false /* do_load */,
johnc@2781 5538 control(),
johnc@2790 5539 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 5540 result /* pre_val */,
johnc@2781 5541 T_OBJECT);
johnc@2781 5542
johnc@2781 5543 push(result);
johnc@2781 5544 return true;
johnc@2781 5545 }

mercurial