src/share/vm/opto/library_call.cpp

Tue, 12 Jun 2012 14:31:44 -0700

author
twisti
date
Tue, 12 Jun 2012 14:31:44 -0700
changeset 3846
8b0a4867acf0
parent 3787
6759698e3140
child 3883
eeb819cf36e5
permissions
-rw-r--r--

7174218: remove AtomicLongCSImpl intrinsics
Reviewed-by: kvn, twisti
Contributed-by: Krystal Mok <sajia@taobao.com>

duke@435 1 /*
rbackman@3709 2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
twisti@2687 28 #include "compiler/compileBroker.hpp"
stefank@2314 29 #include "compiler/compileLog.hpp"
stefank@2314 30 #include "oops/objArrayKlass.hpp"
stefank@2314 31 #include "opto/addnode.hpp"
stefank@2314 32 #include "opto/callGenerator.hpp"
stefank@2314 33 #include "opto/cfgnode.hpp"
stefank@2314 34 #include "opto/idealKit.hpp"
stefank@2314 35 #include "opto/mulnode.hpp"
stefank@2314 36 #include "opto/parse.hpp"
stefank@2314 37 #include "opto/runtime.hpp"
stefank@2314 38 #include "opto/subnode.hpp"
stefank@2314 39 #include "prims/nativeLookup.hpp"
stefank@2314 40 #include "runtime/sharedRuntime.hpp"
duke@435 41
duke@435 42 class LibraryIntrinsic : public InlineCallGenerator {
duke@435 43 // Extend the set of intrinsics known to the runtime:
duke@435 44 public:
duke@435 45 private:
duke@435 46 bool _is_virtual;
duke@435 47 vmIntrinsics::ID _intrinsic_id;
duke@435 48
duke@435 49 public:
duke@435 50 LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
duke@435 51 : InlineCallGenerator(m),
duke@435 52 _is_virtual(is_virtual),
duke@435 53 _intrinsic_id(id)
duke@435 54 {
duke@435 55 }
duke@435 56 virtual bool is_intrinsic() const { return true; }
duke@435 57 virtual bool is_virtual() const { return _is_virtual; }
duke@435 58 virtual JVMState* generate(JVMState* jvms);
duke@435 59 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
duke@435 60 };
duke@435 61
duke@435 62
duke@435 63 // Local helper class for LibraryIntrinsic:
duke@435 64 class LibraryCallKit : public GraphKit {
duke@435 65 private:
duke@435 66 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
duke@435 67
duke@435 68 public:
duke@435 69 LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
duke@435 70 : GraphKit(caller),
duke@435 71 _intrinsic(intrinsic)
duke@435 72 {
duke@435 73 }
duke@435 74
duke@435 75 ciMethod* caller() const { return jvms()->method(); }
duke@435 76 int bci() const { return jvms()->bci(); }
duke@435 77 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
duke@435 78 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
duke@435 79 ciMethod* callee() const { return _intrinsic->method(); }
duke@435 80 ciSignature* signature() const { return callee()->signature(); }
duke@435 81 int arg_size() const { return callee()->arg_size(); }
duke@435 82
duke@435 83 bool try_to_inline();
duke@435 84
duke@435 85 // Helper functions to inline natives
duke@435 86 void push_result(RegionNode* region, PhiNode* value);
duke@435 87 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
duke@435 88 Node* generate_slow_guard(Node* test, RegionNode* region);
duke@435 89 Node* generate_fair_guard(Node* test, RegionNode* region);
duke@435 90 Node* generate_negative_guard(Node* index, RegionNode* region,
duke@435 91 // resulting CastII of index:
duke@435 92 Node* *pos_index = NULL);
duke@435 93 Node* generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 94 // resulting CastII of index:
duke@435 95 Node* *pos_index = NULL);
duke@435 96 Node* generate_limit_guard(Node* offset, Node* subseq_length,
duke@435 97 Node* array_length,
duke@435 98 RegionNode* region);
duke@435 99 Node* generate_current_thread(Node* &tls_output);
duke@435 100 address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
iveresov@2606 101 bool disjoint_bases, const char* &name, bool dest_uninitialized);
duke@435 102 Node* load_mirror_from_klass(Node* klass);
duke@435 103 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
duke@435 104 int nargs,
duke@435 105 RegionNode* region, int null_path,
duke@435 106 int offset);
duke@435 107 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
duke@435 108 RegionNode* region, int null_path) {
duke@435 109 int offset = java_lang_Class::klass_offset_in_bytes();
duke@435 110 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 111 region, null_path,
duke@435 112 offset);
duke@435 113 }
duke@435 114 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 115 int nargs,
duke@435 116 RegionNode* region, int null_path) {
duke@435 117 int offset = java_lang_Class::array_klass_offset_in_bytes();
duke@435 118 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 119 region, null_path,
duke@435 120 offset);
duke@435 121 }
duke@435 122 Node* generate_access_flags_guard(Node* kls,
duke@435 123 int modifier_mask, int modifier_bits,
duke@435 124 RegionNode* region);
duke@435 125 Node* generate_interface_guard(Node* kls, RegionNode* region);
duke@435 126 Node* generate_array_guard(Node* kls, RegionNode* region) {
duke@435 127 return generate_array_guard_common(kls, region, false, false);
duke@435 128 }
duke@435 129 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
duke@435 130 return generate_array_guard_common(kls, region, false, true);
duke@435 131 }
duke@435 132 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
duke@435 133 return generate_array_guard_common(kls, region, true, false);
duke@435 134 }
duke@435 135 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
duke@435 136 return generate_array_guard_common(kls, region, true, true);
duke@435 137 }
duke@435 138 Node* generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 139 bool obj_array, bool not_array);
duke@435 140 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
duke@435 141 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
duke@435 142 bool is_virtual = false, bool is_static = false);
duke@435 143 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
duke@435 144 return generate_method_call(method_id, false, true);
duke@435 145 }
duke@435 146 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
duke@435 147 return generate_method_call(method_id, true, false);
duke@435 148 }
duke@435 149
kvn@3760 150 Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
kvn@3760 151 Node* make_string_method_node(int opcode, Node* str1, Node* str2);
duke@435 152 bool inline_string_compareTo();
duke@435 153 bool inline_string_indexOf();
duke@435 154 Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
cfang@1116 155 bool inline_string_equals();
duke@435 156 Node* pop_math_arg();
duke@435 157 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 158 bool inline_math_native(vmIntrinsics::ID id);
duke@435 159 bool inline_trig(vmIntrinsics::ID id);
duke@435 160 bool inline_trans(vmIntrinsics::ID id);
duke@435 161 bool inline_abs(vmIntrinsics::ID id);
duke@435 162 bool inline_sqrt(vmIntrinsics::ID id);
duke@435 163 bool inline_pow(vmIntrinsics::ID id);
duke@435 164 bool inline_exp(vmIntrinsics::ID id);
duke@435 165 bool inline_min_max(vmIntrinsics::ID id);
duke@435 166 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
duke@435 167 // This returns Type::AnyPtr, RawPtr, or OopPtr.
duke@435 168 int classify_unsafe_addr(Node* &base, Node* &offset);
duke@435 169 Node* make_unsafe_address(Node* base, Node* offset);
johnc@2781 170 // Helper for inline_unsafe_access.
johnc@2781 171 // Generates the guards that check whether the result of
johnc@2781 172 // Unsafe.getObject should be recorded in an SATB log buffer.
johnc@2781 173 void insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val);
duke@435 174 bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
duke@435 175 bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
duke@435 176 bool inline_unsafe_allocate();
duke@435 177 bool inline_unsafe_copyMemory();
duke@435 178 bool inline_native_currentThread();
rbackman@3709 179 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 180 bool inline_native_classID();
rbackman@3709 181 bool inline_native_threadID();
rbackman@3709 182 #endif
rbackman@3709 183 bool inline_native_time_funcs(address method, const char* funcName);
duke@435 184 bool inline_native_isInterrupted();
duke@435 185 bool inline_native_Class_query(vmIntrinsics::ID id);
duke@435 186 bool inline_native_subtype_check();
duke@435 187
duke@435 188 bool inline_native_newArray();
duke@435 189 bool inline_native_getLength();
duke@435 190 bool inline_array_copyOf(bool is_copyOfRange);
rasbold@604 191 bool inline_array_equals();
kvn@1268 192 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
duke@435 193 bool inline_native_clone(bool is_virtual);
duke@435 194 bool inline_native_Reflection_getCallerClass();
duke@435 195 bool is_method_invoke_or_aux_frame(JVMState* jvms);
duke@435 196 // Helper function for inlining native object hash method
duke@435 197 bool inline_native_hashcode(bool is_virtual, bool is_static);
duke@435 198 bool inline_native_getClass();
duke@435 199
duke@435 200 // Helper functions for inlining arraycopy
duke@435 201 bool inline_arraycopy();
duke@435 202 void generate_arraycopy(const TypePtr* adr_type,
duke@435 203 BasicType basic_elem_type,
duke@435 204 Node* src, Node* src_offset,
duke@435 205 Node* dest, Node* dest_offset,
duke@435 206 Node* copy_length,
duke@435 207 bool disjoint_bases = false,
duke@435 208 bool length_never_negative = false,
duke@435 209 RegionNode* slow_region = NULL);
duke@435 210 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
duke@435 211 RegionNode* slow_region);
duke@435 212 void generate_clear_array(const TypePtr* adr_type,
duke@435 213 Node* dest,
duke@435 214 BasicType basic_elem_type,
duke@435 215 Node* slice_off,
duke@435 216 Node* slice_len,
duke@435 217 Node* slice_end);
duke@435 218 bool generate_block_arraycopy(const TypePtr* adr_type,
duke@435 219 BasicType basic_elem_type,
duke@435 220 AllocateNode* alloc,
duke@435 221 Node* src, Node* src_offset,
duke@435 222 Node* dest, Node* dest_offset,
iveresov@2606 223 Node* dest_size, bool dest_uninitialized);
duke@435 224 void generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 225 Node* src, Node* src_offset,
duke@435 226 Node* dest, Node* dest_offset,
iveresov@2606 227 Node* copy_length, bool dest_uninitialized);
duke@435 228 Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 229 Node* dest_elem_klass,
duke@435 230 Node* src, Node* src_offset,
duke@435 231 Node* dest, Node* dest_offset,
iveresov@2606 232 Node* copy_length, bool dest_uninitialized);
duke@435 233 Node* generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 234 Node* src, Node* src_offset,
duke@435 235 Node* dest, Node* dest_offset,
iveresov@2606 236 Node* copy_length, bool dest_uninitialized);
duke@435 237 void generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 238 BasicType basic_elem_type,
duke@435 239 bool disjoint_bases,
duke@435 240 Node* src, Node* src_offset,
duke@435 241 Node* dest, Node* dest_offset,
iveresov@2606 242 Node* copy_length, bool dest_uninitialized);
duke@435 243 bool inline_unsafe_CAS(BasicType type);
duke@435 244 bool inline_unsafe_ordered_store(BasicType type);
duke@435 245 bool inline_fp_conversions(vmIntrinsics::ID id);
twisti@1210 246 bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
twisti@1210 247 bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
twisti@1078 248 bool inline_bitCount(vmIntrinsics::ID id);
duke@435 249 bool inline_reverseBytes(vmIntrinsics::ID id);
johnc@2781 250
johnc@2781 251 bool inline_reference_get();
duke@435 252 };
duke@435 253
duke@435 254
duke@435 255 //---------------------------make_vm_intrinsic----------------------------
duke@435 256 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 257 vmIntrinsics::ID id = m->intrinsic_id();
duke@435 258 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
duke@435 259
duke@435 260 if (DisableIntrinsic[0] != '\0'
duke@435 261 && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
duke@435 262 // disabled by a user request on the command line:
duke@435 263 // example: -XX:DisableIntrinsic=_hashCode,_getClass
duke@435 264 return NULL;
duke@435 265 }
duke@435 266
duke@435 267 if (!m->is_loaded()) {
duke@435 268 // do not attempt to inline unloaded methods
duke@435 269 return NULL;
duke@435 270 }
duke@435 271
duke@435 272 // Only a few intrinsics implement a virtual dispatch.
duke@435 273 // They are expensive calls which are also frequently overridden.
duke@435 274 if (is_virtual) {
duke@435 275 switch (id) {
duke@435 276 case vmIntrinsics::_hashCode:
duke@435 277 case vmIntrinsics::_clone:
duke@435 278 // OK, Object.hashCode and Object.clone intrinsics come in both flavors
duke@435 279 break;
duke@435 280 default:
duke@435 281 return NULL;
duke@435 282 }
duke@435 283 }
duke@435 284
duke@435 285 // -XX:-InlineNatives disables nearly all intrinsics:
duke@435 286 if (!InlineNatives) {
duke@435 287 switch (id) {
duke@435 288 case vmIntrinsics::_indexOf:
duke@435 289 case vmIntrinsics::_compareTo:
cfang@1116 290 case vmIntrinsics::_equals:
rasbold@604 291 case vmIntrinsics::_equalsC:
duke@435 292 break; // InlineNatives does not control String.compareTo
duke@435 293 default:
duke@435 294 return NULL;
duke@435 295 }
duke@435 296 }
duke@435 297
duke@435 298 switch (id) {
duke@435 299 case vmIntrinsics::_compareTo:
duke@435 300 if (!SpecialStringCompareTo) return NULL;
duke@435 301 break;
duke@435 302 case vmIntrinsics::_indexOf:
duke@435 303 if (!SpecialStringIndexOf) return NULL;
duke@435 304 break;
cfang@1116 305 case vmIntrinsics::_equals:
cfang@1116 306 if (!SpecialStringEquals) return NULL;
cfang@1116 307 break;
rasbold@604 308 case vmIntrinsics::_equalsC:
rasbold@604 309 if (!SpecialArraysEquals) return NULL;
rasbold@604 310 break;
duke@435 311 case vmIntrinsics::_arraycopy:
duke@435 312 if (!InlineArrayCopy) return NULL;
duke@435 313 break;
duke@435 314 case vmIntrinsics::_copyMemory:
duke@435 315 if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
duke@435 316 if (!InlineArrayCopy) return NULL;
duke@435 317 break;
duke@435 318 case vmIntrinsics::_hashCode:
duke@435 319 if (!InlineObjectHash) return NULL;
duke@435 320 break;
duke@435 321 case vmIntrinsics::_clone:
duke@435 322 case vmIntrinsics::_copyOf:
duke@435 323 case vmIntrinsics::_copyOfRange:
duke@435 324 if (!InlineObjectCopy) return NULL;
duke@435 325 // These also use the arraycopy intrinsic mechanism:
duke@435 326 if (!InlineArrayCopy) return NULL;
duke@435 327 break;
duke@435 328 case vmIntrinsics::_checkIndex:
duke@435 329 // We do not intrinsify this. The optimizer does fine with it.
duke@435 330 return NULL;
duke@435 331
duke@435 332 case vmIntrinsics::_getCallerClass:
duke@435 333 if (!UseNewReflection) return NULL;
duke@435 334 if (!InlineReflectionGetCallerClass) return NULL;
duke@435 335 if (!JDK_Version::is_gte_jdk14x_version()) return NULL;
duke@435 336 break;
duke@435 337
twisti@1078 338 case vmIntrinsics::_bitCount_i:
never@3637 339 if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
never@3631 340 break;
never@3631 341
twisti@1078 342 case vmIntrinsics::_bitCount_l:
never@3637 343 if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
never@3631 344 break;
never@3631 345
never@3631 346 case vmIntrinsics::_numberOfLeadingZeros_i:
never@3631 347 if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
never@3631 348 break;
never@3631 349
never@3631 350 case vmIntrinsics::_numberOfLeadingZeros_l:
never@3631 351 if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
never@3631 352 break;
never@3631 353
never@3631 354 case vmIntrinsics::_numberOfTrailingZeros_i:
never@3631 355 if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
never@3631 356 break;
never@3631 357
never@3631 358 case vmIntrinsics::_numberOfTrailingZeros_l:
never@3631 359 if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
twisti@1078 360 break;
twisti@1078 361
johnc@2781 362 case vmIntrinsics::_Reference_get:
johnc@2781 363 // It is only when G1 is enabled that we absolutely
johnc@2781 364 // need to use the intrinsic version of Reference.get()
johnc@2781 365 // so that the value in the referent field, if necessary,
johnc@2781 366 // can be registered by the pre-barrier code.
johnc@2781 367 if (!UseG1GC) return NULL;
johnc@2781 368 break;
johnc@2781 369
duke@435 370 default:
jrose@1291 371 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
jrose@1291 372 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
duke@435 373 break;
duke@435 374 }
duke@435 375
duke@435 376 // -XX:-InlineClassNatives disables natives from the Class class.
duke@435 377 // The flag applies to all reflective calls, notably Array.newArray
duke@435 378 // (visible to Java programmers as Array.newInstance).
duke@435 379 if (m->holder()->name() == ciSymbol::java_lang_Class() ||
duke@435 380 m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
duke@435 381 if (!InlineClassNatives) return NULL;
duke@435 382 }
duke@435 383
duke@435 384 // -XX:-InlineThreadNatives disables natives from the Thread class.
duke@435 385 if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
duke@435 386 if (!InlineThreadNatives) return NULL;
duke@435 387 }
duke@435 388
duke@435 389 // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
duke@435 390 if (m->holder()->name() == ciSymbol::java_lang_Math() ||
duke@435 391 m->holder()->name() == ciSymbol::java_lang_Float() ||
duke@435 392 m->holder()->name() == ciSymbol::java_lang_Double()) {
duke@435 393 if (!InlineMathNatives) return NULL;
duke@435 394 }
duke@435 395
duke@435 396 // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
duke@435 397 if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
duke@435 398 if (!InlineUnsafeOps) return NULL;
duke@435 399 }
duke@435 400
duke@435 401 return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
duke@435 402 }
duke@435 403
duke@435 404 //----------------------register_library_intrinsics-----------------------
duke@435 405 // Initialize this file's data structures, for each Compile instance.
duke@435 406 void Compile::register_library_intrinsics() {
duke@435 407 // Nothing to do here.
duke@435 408 }
duke@435 409
duke@435 410 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
duke@435 411 LibraryCallKit kit(jvms, this);
duke@435 412 Compile* C = kit.C;
duke@435 413 int nodes = C->unique();
duke@435 414 #ifndef PRODUCT
duke@435 415 if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
duke@435 416 char buf[1000];
duke@435 417 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
duke@435 418 tty->print_cr("Intrinsic %s", str);
duke@435 419 }
duke@435 420 #endif
johnc@2781 421
duke@435 422 if (kit.try_to_inline()) {
duke@435 423 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
twisti@2687 424 CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
duke@435 425 }
duke@435 426 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
duke@435 427 if (C->log()) {
duke@435 428 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
duke@435 429 vmIntrinsics::name_at(intrinsic_id()),
duke@435 430 (is_virtual() ? " virtual='1'" : ""),
duke@435 431 C->unique() - nodes);
duke@435 432 }
duke@435 433 return kit.transfer_exceptions_into_jvms();
duke@435 434 }
duke@435 435
never@3631 436 // The intrinsic bailed out
never@3631 437 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
johnc@2781 438 if (jvms->has_method()) {
johnc@2781 439 // Not a root compile.
never@3631 440 const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
never@3631 441 CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), msg);
johnc@2781 442 } else {
johnc@2781 443 // Root compile
johnc@2781 444 tty->print("Did not generate intrinsic %s%s at bci:%d in",
jrose@1291 445 vmIntrinsics::name_at(intrinsic_id()),
jrose@1291 446 (is_virtual() ? " (virtual)" : ""), kit.bci());
johnc@2781 447 }
duke@435 448 }
duke@435 449 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
duke@435 450 return NULL;
duke@435 451 }
duke@435 452
duke@435 453 bool LibraryCallKit::try_to_inline() {
duke@435 454 // Handle symbolic names for otherwise undistinguished boolean switches:
duke@435 455 const bool is_store = true;
duke@435 456 const bool is_native_ptr = true;
duke@435 457 const bool is_static = true;
duke@435 458
johnc@2781 459 if (!jvms()->has_method()) {
johnc@2781 460 // Root JVMState has a null method.
johnc@2781 461 assert(map()->memory()->Opcode() == Op_Parm, "");
johnc@2781 462 // Insert the memory aliasing node
johnc@2781 463 set_all_memory(reset_memory());
johnc@2781 464 }
johnc@2781 465 assert(merged_memory(), "");
johnc@2781 466
duke@435 467 switch (intrinsic_id()) {
duke@435 468 case vmIntrinsics::_hashCode:
duke@435 469 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
duke@435 470 case vmIntrinsics::_identityHashCode:
duke@435 471 return inline_native_hashcode(/*!virtual*/ false, is_static);
duke@435 472 case vmIntrinsics::_getClass:
duke@435 473 return inline_native_getClass();
duke@435 474
duke@435 475 case vmIntrinsics::_dsin:
duke@435 476 case vmIntrinsics::_dcos:
duke@435 477 case vmIntrinsics::_dtan:
duke@435 478 case vmIntrinsics::_dabs:
duke@435 479 case vmIntrinsics::_datan2:
duke@435 480 case vmIntrinsics::_dsqrt:
duke@435 481 case vmIntrinsics::_dexp:
duke@435 482 case vmIntrinsics::_dlog:
duke@435 483 case vmIntrinsics::_dlog10:
duke@435 484 case vmIntrinsics::_dpow:
duke@435 485 return inline_math_native(intrinsic_id());
duke@435 486
duke@435 487 case vmIntrinsics::_min:
duke@435 488 case vmIntrinsics::_max:
duke@435 489 return inline_min_max(intrinsic_id());
duke@435 490
duke@435 491 case vmIntrinsics::_arraycopy:
duke@435 492 return inline_arraycopy();
duke@435 493
duke@435 494 case vmIntrinsics::_compareTo:
duke@435 495 return inline_string_compareTo();
duke@435 496 case vmIntrinsics::_indexOf:
duke@435 497 return inline_string_indexOf();
cfang@1116 498 case vmIntrinsics::_equals:
cfang@1116 499 return inline_string_equals();
duke@435 500
duke@435 501 case vmIntrinsics::_getObject:
duke@435 502 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
duke@435 503 case vmIntrinsics::_getBoolean:
duke@435 504 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
duke@435 505 case vmIntrinsics::_getByte:
duke@435 506 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
duke@435 507 case vmIntrinsics::_getShort:
duke@435 508 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
duke@435 509 case vmIntrinsics::_getChar:
duke@435 510 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
duke@435 511 case vmIntrinsics::_getInt:
duke@435 512 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
duke@435 513 case vmIntrinsics::_getLong:
duke@435 514 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
duke@435 515 case vmIntrinsics::_getFloat:
duke@435 516 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
duke@435 517 case vmIntrinsics::_getDouble:
duke@435 518 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 519
duke@435 520 case vmIntrinsics::_putObject:
duke@435 521 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
duke@435 522 case vmIntrinsics::_putBoolean:
duke@435 523 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
duke@435 524 case vmIntrinsics::_putByte:
duke@435 525 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
duke@435 526 case vmIntrinsics::_putShort:
duke@435 527 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
duke@435 528 case vmIntrinsics::_putChar:
duke@435 529 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
duke@435 530 case vmIntrinsics::_putInt:
duke@435 531 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
duke@435 532 case vmIntrinsics::_putLong:
duke@435 533 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
duke@435 534 case vmIntrinsics::_putFloat:
duke@435 535 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
duke@435 536 case vmIntrinsics::_putDouble:
duke@435 537 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
duke@435 538
duke@435 539 case vmIntrinsics::_getByte_raw:
duke@435 540 return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
duke@435 541 case vmIntrinsics::_getShort_raw:
duke@435 542 return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
duke@435 543 case vmIntrinsics::_getChar_raw:
duke@435 544 return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
duke@435 545 case vmIntrinsics::_getInt_raw:
duke@435 546 return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
duke@435 547 case vmIntrinsics::_getLong_raw:
duke@435 548 return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
duke@435 549 case vmIntrinsics::_getFloat_raw:
duke@435 550 return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
duke@435 551 case vmIntrinsics::_getDouble_raw:
duke@435 552 return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 553 case vmIntrinsics::_getAddress_raw:
duke@435 554 return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
duke@435 555
duke@435 556 case vmIntrinsics::_putByte_raw:
duke@435 557 return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
duke@435 558 case vmIntrinsics::_putShort_raw:
duke@435 559 return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
duke@435 560 case vmIntrinsics::_putChar_raw:
duke@435 561 return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
duke@435 562 case vmIntrinsics::_putInt_raw:
duke@435 563 return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
duke@435 564 case vmIntrinsics::_putLong_raw:
duke@435 565 return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
duke@435 566 case vmIntrinsics::_putFloat_raw:
duke@435 567 return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
duke@435 568 case vmIntrinsics::_putDouble_raw:
duke@435 569 return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
duke@435 570 case vmIntrinsics::_putAddress_raw:
duke@435 571 return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
duke@435 572
duke@435 573 case vmIntrinsics::_getObjectVolatile:
duke@435 574 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
duke@435 575 case vmIntrinsics::_getBooleanVolatile:
duke@435 576 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
duke@435 577 case vmIntrinsics::_getByteVolatile:
duke@435 578 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
duke@435 579 case vmIntrinsics::_getShortVolatile:
duke@435 580 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
duke@435 581 case vmIntrinsics::_getCharVolatile:
duke@435 582 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
duke@435 583 case vmIntrinsics::_getIntVolatile:
duke@435 584 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
duke@435 585 case vmIntrinsics::_getLongVolatile:
duke@435 586 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
duke@435 587 case vmIntrinsics::_getFloatVolatile:
duke@435 588 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
duke@435 589 case vmIntrinsics::_getDoubleVolatile:
duke@435 590 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
duke@435 591
duke@435 592 case vmIntrinsics::_putObjectVolatile:
duke@435 593 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
duke@435 594 case vmIntrinsics::_putBooleanVolatile:
duke@435 595 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
duke@435 596 case vmIntrinsics::_putByteVolatile:
duke@435 597 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
duke@435 598 case vmIntrinsics::_putShortVolatile:
duke@435 599 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
duke@435 600 case vmIntrinsics::_putCharVolatile:
duke@435 601 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
duke@435 602 case vmIntrinsics::_putIntVolatile:
duke@435 603 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
duke@435 604 case vmIntrinsics::_putLongVolatile:
duke@435 605 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
duke@435 606 case vmIntrinsics::_putFloatVolatile:
duke@435 607 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
duke@435 608 case vmIntrinsics::_putDoubleVolatile:
duke@435 609 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
duke@435 610
duke@435 611 case vmIntrinsics::_prefetchRead:
duke@435 612 return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
duke@435 613 case vmIntrinsics::_prefetchWrite:
duke@435 614 return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
duke@435 615 case vmIntrinsics::_prefetchReadStatic:
duke@435 616 return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
duke@435 617 case vmIntrinsics::_prefetchWriteStatic:
duke@435 618 return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
duke@435 619
duke@435 620 case vmIntrinsics::_compareAndSwapObject:
duke@435 621 return inline_unsafe_CAS(T_OBJECT);
duke@435 622 case vmIntrinsics::_compareAndSwapInt:
duke@435 623 return inline_unsafe_CAS(T_INT);
duke@435 624 case vmIntrinsics::_compareAndSwapLong:
duke@435 625 return inline_unsafe_CAS(T_LONG);
duke@435 626
duke@435 627 case vmIntrinsics::_putOrderedObject:
duke@435 628 return inline_unsafe_ordered_store(T_OBJECT);
duke@435 629 case vmIntrinsics::_putOrderedInt:
duke@435 630 return inline_unsafe_ordered_store(T_INT);
duke@435 631 case vmIntrinsics::_putOrderedLong:
duke@435 632 return inline_unsafe_ordered_store(T_LONG);
duke@435 633
duke@435 634 case vmIntrinsics::_currentThread:
duke@435 635 return inline_native_currentThread();
duke@435 636 case vmIntrinsics::_isInterrupted:
duke@435 637 return inline_native_isInterrupted();
duke@435 638
rbackman@3709 639 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 640 case vmIntrinsics::_classID:
rbackman@3709 641 return inline_native_classID();
rbackman@3709 642 case vmIntrinsics::_threadID:
rbackman@3709 643 return inline_native_threadID();
rbackman@3709 644 case vmIntrinsics::_counterTime:
rbackman@3709 645 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
rbackman@3709 646 #endif
duke@435 647 case vmIntrinsics::_currentTimeMillis:
rbackman@3709 648 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
duke@435 649 case vmIntrinsics::_nanoTime:
rbackman@3709 650 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
duke@435 651 case vmIntrinsics::_allocateInstance:
duke@435 652 return inline_unsafe_allocate();
duke@435 653 case vmIntrinsics::_copyMemory:
duke@435 654 return inline_unsafe_copyMemory();
duke@435 655 case vmIntrinsics::_newArray:
duke@435 656 return inline_native_newArray();
duke@435 657 case vmIntrinsics::_getLength:
duke@435 658 return inline_native_getLength();
duke@435 659 case vmIntrinsics::_copyOf:
duke@435 660 return inline_array_copyOf(false);
duke@435 661 case vmIntrinsics::_copyOfRange:
duke@435 662 return inline_array_copyOf(true);
rasbold@604 663 case vmIntrinsics::_equalsC:
rasbold@604 664 return inline_array_equals();
duke@435 665 case vmIntrinsics::_clone:
duke@435 666 return inline_native_clone(intrinsic()->is_virtual());
duke@435 667
duke@435 668 case vmIntrinsics::_isAssignableFrom:
duke@435 669 return inline_native_subtype_check();
duke@435 670
duke@435 671 case vmIntrinsics::_isInstance:
duke@435 672 case vmIntrinsics::_getModifiers:
duke@435 673 case vmIntrinsics::_isInterface:
duke@435 674 case vmIntrinsics::_isArray:
duke@435 675 case vmIntrinsics::_isPrimitive:
duke@435 676 case vmIntrinsics::_getSuperclass:
duke@435 677 case vmIntrinsics::_getComponentType:
duke@435 678 case vmIntrinsics::_getClassAccessFlags:
duke@435 679 return inline_native_Class_query(intrinsic_id());
duke@435 680
duke@435 681 case vmIntrinsics::_floatToRawIntBits:
duke@435 682 case vmIntrinsics::_floatToIntBits:
duke@435 683 case vmIntrinsics::_intBitsToFloat:
duke@435 684 case vmIntrinsics::_doubleToRawLongBits:
duke@435 685 case vmIntrinsics::_doubleToLongBits:
duke@435 686 case vmIntrinsics::_longBitsToDouble:
duke@435 687 return inline_fp_conversions(intrinsic_id());
duke@435 688
twisti@1210 689 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 690 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 691 return inline_numberOfLeadingZeros(intrinsic_id());
twisti@1210 692
twisti@1210 693 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 694 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 695 return inline_numberOfTrailingZeros(intrinsic_id());
twisti@1210 696
twisti@1078 697 case vmIntrinsics::_bitCount_i:
twisti@1078 698 case vmIntrinsics::_bitCount_l:
twisti@1078 699 return inline_bitCount(intrinsic_id());
twisti@1078 700
duke@435 701 case vmIntrinsics::_reverseBytes_i:
duke@435 702 case vmIntrinsics::_reverseBytes_l:
never@1831 703 case vmIntrinsics::_reverseBytes_s:
never@1831 704 case vmIntrinsics::_reverseBytes_c:
duke@435 705 return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
duke@435 706
duke@435 707 case vmIntrinsics::_getCallerClass:
duke@435 708 return inline_native_Reflection_getCallerClass();
duke@435 709
johnc@2781 710 case vmIntrinsics::_Reference_get:
johnc@2781 711 return inline_reference_get();
johnc@2781 712
duke@435 713 default:
duke@435 714 // If you get here, it may be that someone has added a new intrinsic
duke@435 715 // to the list in vmSymbols.hpp without implementing it here.
duke@435 716 #ifndef PRODUCT
duke@435 717 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
duke@435 718 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
duke@435 719 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
duke@435 720 }
duke@435 721 #endif
duke@435 722 return false;
duke@435 723 }
duke@435 724 }
duke@435 725
duke@435 726 //------------------------------push_result------------------------------
duke@435 727 // Helper function for finishing intrinsics.
duke@435 728 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
duke@435 729 record_for_igvn(region);
duke@435 730 set_control(_gvn.transform(region));
duke@435 731 BasicType value_type = value->type()->basic_type();
duke@435 732 push_node(value_type, _gvn.transform(value));
duke@435 733 }
duke@435 734
duke@435 735 //------------------------------generate_guard---------------------------
duke@435 736 // Helper function for generating guarded fast-slow graph structures.
duke@435 737 // The given 'test', if true, guards a slow path. If the test fails
duke@435 738 // then a fast path can be taken. (We generally hope it fails.)
duke@435 739 // In all cases, GraphKit::control() is updated to the fast path.
duke@435 740 // The returned value represents the control for the slow path.
duke@435 741 // The return value is never 'top'; it is either a valid control
duke@435 742 // or NULL if it is obvious that the slow path can never be taken.
duke@435 743 // Also, if region and the slow control are not NULL, the slow edge
duke@435 744 // is appended to the region.
duke@435 745 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
duke@435 746 if (stopped()) {
duke@435 747 // Already short circuited.
duke@435 748 return NULL;
duke@435 749 }
duke@435 750
duke@435 751 // Build an if node and its projections.
duke@435 752 // If test is true we take the slow path, which we assume is uncommon.
duke@435 753 if (_gvn.type(test) == TypeInt::ZERO) {
duke@435 754 // The slow branch is never taken. No need to build this guard.
duke@435 755 return NULL;
duke@435 756 }
duke@435 757
duke@435 758 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
duke@435 759
duke@435 760 Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
duke@435 761 if (if_slow == top()) {
duke@435 762 // The slow branch is never taken. No need to build this guard.
duke@435 763 return NULL;
duke@435 764 }
duke@435 765
duke@435 766 if (region != NULL)
duke@435 767 region->add_req(if_slow);
duke@435 768
duke@435 769 Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
duke@435 770 set_control(if_fast);
duke@435 771
duke@435 772 return if_slow;
duke@435 773 }
duke@435 774
duke@435 775 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
duke@435 776 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
duke@435 777 }
duke@435 778 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
duke@435 779 return generate_guard(test, region, PROB_FAIR);
duke@435 780 }
duke@435 781
duke@435 782 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
duke@435 783 Node* *pos_index) {
duke@435 784 if (stopped())
duke@435 785 return NULL; // already stopped
duke@435 786 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
duke@435 787 return NULL; // index is already adequately typed
duke@435 788 Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 789 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 790 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
duke@435 791 if (is_neg != NULL && pos_index != NULL) {
duke@435 792 // Emulate effect of Parse::adjust_map_after_if.
duke@435 793 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
duke@435 794 ccast->set_req(0, control());
duke@435 795 (*pos_index) = _gvn.transform(ccast);
duke@435 796 }
duke@435 797 return is_neg;
duke@435 798 }
duke@435 799
duke@435 800 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 801 Node* *pos_index) {
duke@435 802 if (stopped())
duke@435 803 return NULL; // already stopped
duke@435 804 if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
duke@435 805 return NULL; // index is already adequately typed
duke@435 806 Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 807 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
duke@435 808 Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
duke@435 809 Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
duke@435 810 if (is_notp != NULL && pos_index != NULL) {
duke@435 811 // Emulate effect of Parse::adjust_map_after_if.
duke@435 812 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
duke@435 813 ccast->set_req(0, control());
duke@435 814 (*pos_index) = _gvn.transform(ccast);
duke@435 815 }
duke@435 816 return is_notp;
duke@435 817 }
duke@435 818
duke@435 819 // Make sure that 'position' is a valid limit index, in [0..length].
duke@435 820 // There are two equivalent plans for checking this:
duke@435 821 // A. (offset + copyLength) unsigned<= arrayLength
duke@435 822 // B. offset <= (arrayLength - copyLength)
duke@435 823 // We require that all of the values above, except for the sum and
duke@435 824 // difference, are already known to be non-negative.
duke@435 825 // Plan A is robust in the face of overflow, if offset and copyLength
duke@435 826 // are both hugely positive.
duke@435 827 //
duke@435 828 // Plan B is less direct and intuitive, but it does not overflow at
duke@435 829 // all, since the difference of two non-negatives is always
duke@435 830 // representable. Whenever Java methods must perform the equivalent
duke@435 831 // check they generally use Plan B instead of Plan A.
duke@435 832 // For the moment we use Plan A.
duke@435 833 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
duke@435 834 Node* subseq_length,
duke@435 835 Node* array_length,
duke@435 836 RegionNode* region) {
duke@435 837 if (stopped())
duke@435 838 return NULL; // already stopped
duke@435 839 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
kvn@3407 840 if (zero_offset && subseq_length->eqv_uncast(array_length))
duke@435 841 return NULL; // common case of whole-array copy
duke@435 842 Node* last = subseq_length;
duke@435 843 if (!zero_offset) // last += offset
duke@435 844 last = _gvn.transform( new (C, 3) AddINode(last, offset));
duke@435 845 Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
duke@435 846 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 847 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
duke@435 848 return is_over;
duke@435 849 }
duke@435 850
duke@435 851
duke@435 852 //--------------------------generate_current_thread--------------------
duke@435 853 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
duke@435 854 ciKlass* thread_klass = env()->Thread_klass();
duke@435 855 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
duke@435 856 Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
duke@435 857 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
duke@435 858 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
duke@435 859 tls_output = thread;
duke@435 860 return threadObj;
duke@435 861 }
duke@435 862
duke@435 863
kvn@1421 864 //------------------------------make_string_method_node------------------------
kvn@3760 865 // Helper method for String intrinsic functions. This version is called
kvn@3760 866 // with str1 and str2 pointing to String object nodes.
kvn@3760 867 //
kvn@3760 868 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
kvn@1421 869 Node* no_ctrl = NULL;
kvn@1421 870
kvn@3760 871 // Get start addr of string
kvn@3760 872 Node* str1_value = load_String_value(no_ctrl, str1);
kvn@3760 873 Node* str1_offset = load_String_offset(no_ctrl, str1);
kvn@1421 874 Node* str1_start = array_element_address(str1_value, str1_offset, T_CHAR);
kvn@1421 875
kvn@3760 876 // Get length of string 1
kvn@3760 877 Node* str1_len = load_String_length(no_ctrl, str1);
kvn@3760 878
kvn@3760 879 Node* str2_value = load_String_value(no_ctrl, str2);
kvn@3760 880 Node* str2_offset = load_String_offset(no_ctrl, str2);
kvn@1421 881 Node* str2_start = array_element_address(str2_value, str2_offset, T_CHAR);
kvn@1421 882
kvn@3760 883 Node* str2_len = NULL;
kvn@1421 884 Node* result = NULL;
kvn@3760 885
kvn@1421 886 switch (opcode) {
kvn@1421 887 case Op_StrIndexOf:
kvn@3760 888 // Get length of string 2
kvn@3760 889 str2_len = load_String_length(no_ctrl, str2);
kvn@3760 890
kvn@1421 891 result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 892 str1_start, str1_len, str2_start, str2_len);
kvn@1421 893 break;
kvn@1421 894 case Op_StrComp:
kvn@3760 895 // Get length of string 2
kvn@3760 896 str2_len = load_String_length(no_ctrl, str2);
kvn@3760 897
kvn@1421 898 result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 899 str1_start, str1_len, str2_start, str2_len);
kvn@1421 900 break;
kvn@1421 901 case Op_StrEquals:
kvn@1421 902 result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 903 str1_start, str2_start, str1_len);
kvn@1421 904 break;
kvn@1421 905 default:
kvn@1421 906 ShouldNotReachHere();
kvn@1421 907 return NULL;
kvn@1421 908 }
kvn@1421 909
kvn@1421 910 // All these intrinsics have checks.
kvn@1421 911 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@1421 912
kvn@1421 913 return _gvn.transform(result);
kvn@1421 914 }
kvn@1421 915
kvn@3760 916 // Helper method for String intrinsic functions. This version is called
kvn@3760 917 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
kvn@3760 918 // to Int nodes containing the lenghts of str1 and str2.
kvn@3760 919 //
kvn@3760 920 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
kvn@3760 921
kvn@3760 922 Node* result = NULL;
kvn@3760 923 switch (opcode) {
kvn@3760 924 case Op_StrIndexOf:
kvn@3760 925 result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 926 str1_start, cnt1, str2_start, cnt2);
kvn@3760 927 break;
kvn@3760 928 case Op_StrComp:
kvn@3760 929 result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 930 str1_start, cnt1, str2_start, cnt2);
kvn@3760 931 break;
kvn@3760 932 case Op_StrEquals:
kvn@3760 933 result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 934 str1_start, str2_start, cnt1);
kvn@3760 935 break;
kvn@3760 936 default:
kvn@3760 937 ShouldNotReachHere();
kvn@3760 938 return NULL;
kvn@3760 939 }
kvn@3760 940
kvn@3760 941 // All these intrinsics have checks.
kvn@3760 942 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@3760 943
kvn@3760 944 return _gvn.transform(result);
kvn@3760 945 }
kvn@3760 946
duke@435 947 //------------------------------inline_string_compareTo------------------------
duke@435 948 bool LibraryCallKit::inline_string_compareTo() {
duke@435 949
cfang@1116 950 if (!Matcher::has_match_rule(Op_StrComp)) return false;
cfang@1116 951
duke@435 952 _sp += 2;
duke@435 953 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 954 Node *receiver = pop();
duke@435 955
duke@435 956 // Null check on self without removing any arguments. The argument
duke@435 957 // null check technically happens in the wrong place, which can lead to
duke@435 958 // invalid stack traces when string compare is inlined into a method
duke@435 959 // which handles NullPointerExceptions.
duke@435 960 _sp += 2;
duke@435 961 receiver = do_null_check(receiver, T_OBJECT);
duke@435 962 argument = do_null_check(argument, T_OBJECT);
duke@435 963 _sp -= 2;
duke@435 964 if (stopped()) {
duke@435 965 return true;
duke@435 966 }
duke@435 967
kvn@3760 968 Node* compare = make_string_method_node(Op_StrComp, receiver, argument);
duke@435 969 push(compare);
duke@435 970 return true;
duke@435 971 }
duke@435 972
cfang@1116 973 //------------------------------inline_string_equals------------------------
cfang@1116 974 bool LibraryCallKit::inline_string_equals() {
cfang@1116 975
cfang@1116 976 if (!Matcher::has_match_rule(Op_StrEquals)) return false;
cfang@1116 977
jrose@2101 978 int nargs = 2;
jrose@2101 979 _sp += nargs;
cfang@1116 980 Node* argument = pop(); // pop non-receiver first: it was pushed second
cfang@1116 981 Node* receiver = pop();
cfang@1116 982
cfang@1116 983 // Null check on self without removing any arguments. The argument
cfang@1116 984 // null check technically happens in the wrong place, which can lead to
cfang@1116 985 // invalid stack traces when string compare is inlined into a method
cfang@1116 986 // which handles NullPointerExceptions.
jrose@2101 987 _sp += nargs;
cfang@1116 988 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 989 //should not do null check for argument for String.equals(), because spec
cfang@1116 990 //allows to specify NULL as argument.
jrose@2101 991 _sp -= nargs;
cfang@1116 992
cfang@1116 993 if (stopped()) {
cfang@1116 994 return true;
cfang@1116 995 }
cfang@1116 996
kvn@1421 997 // paths (plus control) merge
kvn@1421 998 RegionNode* region = new (C, 5) RegionNode(5);
kvn@1421 999 Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
kvn@1421 1000
kvn@1421 1001 // does source == target string?
kvn@1421 1002 Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
kvn@1421 1003 Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
kvn@1421 1004
kvn@1421 1005 Node* if_eq = generate_slow_guard(bol, NULL);
kvn@1421 1006 if (if_eq != NULL) {
kvn@1421 1007 // receiver == argument
kvn@1421 1008 phi->init_req(2, intcon(1));
kvn@1421 1009 region->init_req(2, if_eq);
kvn@1421 1010 }
kvn@1421 1011
cfang@1116 1012 // get String klass for instanceOf
cfang@1116 1013 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1014
kvn@1421 1015 if (!stopped()) {
jrose@2101 1016 _sp += nargs; // gen_instanceof might do an uncommon trap
kvn@1421 1017 Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
jrose@2101 1018 _sp -= nargs;
kvn@1421 1019 Node* cmp = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
kvn@1421 1020 Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
kvn@1421 1021
kvn@1421 1022 Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
kvn@1421 1023 //instanceOf == true, fallthrough
kvn@1421 1024
kvn@1421 1025 if (inst_false != NULL) {
kvn@1421 1026 phi->init_req(3, intcon(0));
kvn@1421 1027 region->init_req(3, inst_false);
kvn@1421 1028 }
kvn@1421 1029 }
cfang@1116 1030
kvn@1421 1031 if (!stopped()) {
kvn@3760 1032 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
kvn@3760 1033
never@1851 1034 // Properly cast the argument to String
never@1851 1035 argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
kvn@2869 1036 // This path is taken only when argument's type is String:NotNull.
kvn@2869 1037 argument = cast_not_null(argument, false);
never@1851 1038
kvn@3760 1039 Node* no_ctrl = NULL;
kvn@3760 1040
kvn@3760 1041 // Get start addr of receiver
kvn@3760 1042 Node* receiver_val = load_String_value(no_ctrl, receiver);
kvn@3760 1043 Node* receiver_offset = load_String_offset(no_ctrl, receiver);
kvn@3760 1044 Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
kvn@3760 1045
kvn@3760 1046 // Get length of receiver
kvn@3760 1047 Node* receiver_cnt = load_String_length(no_ctrl, receiver);
kvn@3760 1048
kvn@3760 1049 // Get start addr of argument
kvn@3760 1050 Node* argument_val = load_String_value(no_ctrl, argument);
kvn@3760 1051 Node* argument_offset = load_String_offset(no_ctrl, argument);
kvn@3760 1052 Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
kvn@3760 1053
kvn@3760 1054 // Get length of argument
kvn@3760 1055 Node* argument_cnt = load_String_length(no_ctrl, argument);
kvn@1421 1056
kvn@1421 1057 // Check for receiver count != argument count
kvn@1421 1058 Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
kvn@1421 1059 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
kvn@1421 1060 Node* if_ne = generate_slow_guard(bol, NULL);
kvn@1421 1061 if (if_ne != NULL) {
kvn@1421 1062 phi->init_req(4, intcon(0));
kvn@1421 1063 region->init_req(4, if_ne);
kvn@1421 1064 }
kvn@3760 1065
kvn@3760 1066 // Check for count == 0 is done by assembler code for StrEquals.
kvn@3760 1067
kvn@3760 1068 if (!stopped()) {
kvn@3760 1069 Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
kvn@3760 1070 phi->init_req(1, equals);
kvn@3760 1071 region->init_req(1, control());
kvn@3760 1072 }
kvn@1421 1073 }
cfang@1116 1074
cfang@1116 1075 // post merge
cfang@1116 1076 set_control(_gvn.transform(region));
cfang@1116 1077 record_for_igvn(region);
cfang@1116 1078
cfang@1116 1079 push(_gvn.transform(phi));
cfang@1116 1080
cfang@1116 1081 return true;
cfang@1116 1082 }
cfang@1116 1083
rasbold@604 1084 //------------------------------inline_array_equals----------------------------
rasbold@604 1085 bool LibraryCallKit::inline_array_equals() {
rasbold@604 1086
rasbold@609 1087 if (!Matcher::has_match_rule(Op_AryEq)) return false;
rasbold@609 1088
rasbold@604 1089 _sp += 2;
rasbold@604 1090 Node *argument2 = pop();
rasbold@604 1091 Node *argument1 = pop();
rasbold@604 1092
rasbold@604 1093 Node* equals =
kvn@1421 1094 _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 1095 argument1, argument2) );
rasbold@604 1096 push(equals);
rasbold@604 1097 return true;
rasbold@604 1098 }
rasbold@604 1099
duke@435 1100 // Java version of String.indexOf(constant string)
duke@435 1101 // class StringDecl {
duke@435 1102 // StringDecl(char[] ca) {
duke@435 1103 // offset = 0;
duke@435 1104 // count = ca.length;
duke@435 1105 // value = ca;
duke@435 1106 // }
duke@435 1107 // int offset;
duke@435 1108 // int count;
duke@435 1109 // char[] value;
duke@435 1110 // }
duke@435 1111 //
duke@435 1112 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
duke@435 1113 // int targetOffset, int cache_i, int md2) {
duke@435 1114 // int cache = cache_i;
duke@435 1115 // int sourceOffset = string_object.offset;
duke@435 1116 // int sourceCount = string_object.count;
duke@435 1117 // int targetCount = target_object.length;
duke@435 1118 //
duke@435 1119 // int targetCountLess1 = targetCount - 1;
duke@435 1120 // int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
duke@435 1121 //
duke@435 1122 // char[] source = string_object.value;
duke@435 1123 // char[] target = target_object;
duke@435 1124 // int lastChar = target[targetCountLess1];
duke@435 1125 //
duke@435 1126 // outer_loop:
duke@435 1127 // for (int i = sourceOffset; i < sourceEnd; ) {
duke@435 1128 // int src = source[i + targetCountLess1];
duke@435 1129 // if (src == lastChar) {
duke@435 1130 // // With random strings and a 4-character alphabet,
duke@435 1131 // // reverse matching at this point sets up 0.8% fewer
duke@435 1132 // // frames, but (paradoxically) makes 0.3% more probes.
duke@435 1133 // // Since those probes are nearer the lastChar probe,
duke@435 1134 // // there is may be a net D$ win with reverse matching.
duke@435 1135 // // But, reversing loop inhibits unroll of inner loop
duke@435 1136 // // for unknown reason. So, does running outer loop from
duke@435 1137 // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
duke@435 1138 // for (int j = 0; j < targetCountLess1; j++) {
duke@435 1139 // if (target[targetOffset + j] != source[i+j]) {
duke@435 1140 // if ((cache & (1 << source[i+j])) == 0) {
duke@435 1141 // if (md2 < j+1) {
duke@435 1142 // i += j+1;
duke@435 1143 // continue outer_loop;
duke@435 1144 // }
duke@435 1145 // }
duke@435 1146 // i += md2;
duke@435 1147 // continue outer_loop;
duke@435 1148 // }
duke@435 1149 // }
duke@435 1150 // return i - sourceOffset;
duke@435 1151 // }
duke@435 1152 // if ((cache & (1 << src)) == 0) {
duke@435 1153 // i += targetCountLess1;
duke@435 1154 // } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
duke@435 1155 // i++;
duke@435 1156 // }
duke@435 1157 // return -1;
duke@435 1158 // }
duke@435 1159
duke@435 1160 //------------------------------string_indexOf------------------------
duke@435 1161 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
duke@435 1162 jint cache_i, jint md2_i) {
duke@435 1163
duke@435 1164 Node* no_ctrl = NULL;
duke@435 1165 float likely = PROB_LIKELY(0.9);
duke@435 1166 float unlikely = PROB_UNLIKELY(0.9);
duke@435 1167
kvn@2665 1168 const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
kvn@2665 1169
kvn@3760 1170 Node* source = load_String_value(no_ctrl, string_object);
kvn@3760 1171 Node* sourceOffset = load_String_offset(no_ctrl, string_object);
kvn@3760 1172 Node* sourceCount = load_String_length(no_ctrl, string_object);
duke@435 1173
jcoomes@2661 1174 Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
duke@435 1175 jint target_length = target_array->length();
duke@435 1176 const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
duke@435 1177 const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
duke@435 1178
kvn@2726 1179 IdealKit kit(this, false, true);
duke@435 1180 #define __ kit.
duke@435 1181 Node* zero = __ ConI(0);
duke@435 1182 Node* one = __ ConI(1);
duke@435 1183 Node* cache = __ ConI(cache_i);
duke@435 1184 Node* md2 = __ ConI(md2_i);
duke@435 1185 Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
duke@435 1186 Node* targetCount = __ ConI(target_length);
duke@435 1187 Node* targetCountLess1 = __ ConI(target_length - 1);
duke@435 1188 Node* targetOffset = __ ConI(targetOffset_i);
duke@435 1189 Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
duke@435 1190
kvn@1286 1191 IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
duke@435 1192 Node* outer_loop = __ make_label(2 /* goto */);
duke@435 1193 Node* return_ = __ make_label(1);
duke@435 1194
duke@435 1195 __ set(rtn,__ ConI(-1));
kvn@2665 1196 __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
duke@435 1197 Node* i2 = __ AddI(__ value(i), targetCountLess1);
duke@435 1198 // pin to prohibit loading of "next iteration" value which may SEGV (rare)
duke@435 1199 Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
duke@435 1200 __ if_then(src, BoolTest::eq, lastChar, unlikely); {
kvn@2665 1201 __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
duke@435 1202 Node* tpj = __ AddI(targetOffset, __ value(j));
duke@435 1203 Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
duke@435 1204 Node* ipj = __ AddI(__ value(i), __ value(j));
duke@435 1205 Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
duke@435 1206 __ if_then(targ, BoolTest::ne, src2); {
duke@435 1207 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
duke@435 1208 __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
duke@435 1209 __ increment(i, __ AddI(__ value(j), one));
duke@435 1210 __ goto_(outer_loop);
duke@435 1211 } __ end_if(); __ dead(j);
duke@435 1212 }__ end_if(); __ dead(j);
duke@435 1213 __ increment(i, md2);
duke@435 1214 __ goto_(outer_loop);
duke@435 1215 }__ end_if();
duke@435 1216 __ increment(j, one);
duke@435 1217 }__ end_loop(); __ dead(j);
duke@435 1218 __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
duke@435 1219 __ goto_(return_);
duke@435 1220 }__ end_if();
duke@435 1221 __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
duke@435 1222 __ increment(i, targetCountLess1);
duke@435 1223 }__ end_if();
duke@435 1224 __ increment(i, one);
duke@435 1225 __ bind(outer_loop);
duke@435 1226 }__ end_loop(); __ dead(i);
duke@435 1227 __ bind(return_);
kvn@1286 1228
kvn@1286 1229 // Final sync IdealKit and GraphKit.
kvn@2726 1230 final_sync(kit);
duke@435 1231 Node* result = __ value(rtn);
duke@435 1232 #undef __
duke@435 1233 C->set_has_loops(true);
duke@435 1234 return result;
duke@435 1235 }
duke@435 1236
duke@435 1237 //------------------------------inline_string_indexOf------------------------
duke@435 1238 bool LibraryCallKit::inline_string_indexOf() {
duke@435 1239
duke@435 1240 _sp += 2;
duke@435 1241 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 1242 Node *receiver = pop();
duke@435 1243
cfang@1116 1244 Node* result;
iveresov@1859 1245 // Disable the use of pcmpestri until it can be guaranteed that
iveresov@1859 1246 // the load doesn't cross into the uncommited space.
kvn@2602 1247 if (Matcher::has_match_rule(Op_StrIndexOf) &&
cfang@1116 1248 UseSSE42Intrinsics) {
cfang@1116 1249 // Generate SSE4.2 version of indexOf
cfang@1116 1250 // We currently only have match rules that use SSE4.2
cfang@1116 1251
cfang@1116 1252 // Null check on self without removing any arguments. The argument
cfang@1116 1253 // null check technically happens in the wrong place, which can lead to
cfang@1116 1254 // invalid stack traces when string compare is inlined into a method
cfang@1116 1255 // which handles NullPointerExceptions.
cfang@1116 1256 _sp += 2;
cfang@1116 1257 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1258 argument = do_null_check(argument, T_OBJECT);
cfang@1116 1259 _sp -= 2;
cfang@1116 1260
cfang@1116 1261 if (stopped()) {
cfang@1116 1262 return true;
cfang@1116 1263 }
cfang@1116 1264
kvn@2602 1265 ciInstanceKlass* str_klass = env()->String_klass();
kvn@2602 1266 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
kvn@2602 1267
kvn@1421 1268 // Make the merge point
kvn@2602 1269 RegionNode* result_rgn = new (C, 4) RegionNode(4);
kvn@2602 1270 Node* result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
kvn@1421 1271 Node* no_ctrl = NULL;
kvn@1421 1272
kvn@3760 1273 // Get start addr of source string
kvn@3760 1274 Node* source = load_String_value(no_ctrl, receiver);
kvn@3760 1275 Node* source_offset = load_String_offset(no_ctrl, receiver);
kvn@3760 1276 Node* source_start = array_element_address(source, source_offset, T_CHAR);
kvn@3760 1277
kvn@3760 1278 // Get length of source string
kvn@3760 1279 Node* source_cnt = load_String_length(no_ctrl, receiver);
kvn@3760 1280
kvn@3760 1281 // Get start addr of substring
kvn@3760 1282 Node* substr = load_String_value(no_ctrl, argument);
kvn@3760 1283 Node* substr_offset = load_String_offset(no_ctrl, argument);
kvn@3760 1284 Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
kvn@3760 1285
kvn@3760 1286 // Get length of source string
kvn@3760 1287 Node* substr_cnt = load_String_length(no_ctrl, argument);
kvn@1421 1288
kvn@1421 1289 // Check for substr count > string count
kvn@1421 1290 Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
kvn@1421 1291 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
kvn@1421 1292 Node* if_gt = generate_slow_guard(bol, NULL);
kvn@1421 1293 if (if_gt != NULL) {
kvn@1421 1294 result_phi->init_req(2, intcon(-1));
kvn@1421 1295 result_rgn->init_req(2, if_gt);
kvn@1421 1296 }
kvn@1421 1297
kvn@1421 1298 if (!stopped()) {
kvn@2602 1299 // Check for substr count == 0
kvn@2602 1300 cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
kvn@2602 1301 bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
kvn@2602 1302 Node* if_zero = generate_slow_guard(bol, NULL);
kvn@2602 1303 if (if_zero != NULL) {
kvn@2602 1304 result_phi->init_req(3, intcon(0));
kvn@2602 1305 result_rgn->init_req(3, if_zero);
kvn@2602 1306 }
kvn@2602 1307 }
kvn@2602 1308
kvn@2602 1309 if (!stopped()) {
kvn@3760 1310 result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
kvn@1421 1311 result_phi->init_req(1, result);
kvn@1421 1312 result_rgn->init_req(1, control());
kvn@1421 1313 }
kvn@1421 1314 set_control(_gvn.transform(result_rgn));
kvn@1421 1315 record_for_igvn(result_rgn);
kvn@1421 1316 result = _gvn.transform(result_phi);
kvn@1421 1317
kvn@2602 1318 } else { // Use LibraryCallKit::string_indexOf
kvn@2602 1319 // don't intrinsify if argument isn't a constant string.
cfang@1116 1320 if (!argument->is_Con()) {
cfang@1116 1321 return false;
cfang@1116 1322 }
cfang@1116 1323 const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
cfang@1116 1324 if (str_type == NULL) {
cfang@1116 1325 return false;
cfang@1116 1326 }
cfang@1116 1327 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1328 ciObject* str_const = str_type->const_oop();
cfang@1116 1329 if (str_const == NULL || str_const->klass() != klass) {
cfang@1116 1330 return false;
cfang@1116 1331 }
cfang@1116 1332 ciInstance* str = str_const->as_instance();
cfang@1116 1333 assert(str != NULL, "must be instance");
cfang@1116 1334
kvn@3760 1335 ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
cfang@1116 1336 ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
cfang@1116 1337
kvn@3760 1338 int o;
kvn@3760 1339 int c;
kvn@3760 1340 if (java_lang_String::has_offset_field()) {
kvn@3760 1341 o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
kvn@3760 1342 c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
kvn@3760 1343 } else {
kvn@3760 1344 o = 0;
kvn@3760 1345 c = pat->length();
kvn@3760 1346 }
kvn@3760 1347
cfang@1116 1348 // constant strings have no offset and count == length which
cfang@1116 1349 // simplifies the resulting code somewhat so lets optimize for that.
cfang@1116 1350 if (o != 0 || c != pat->length()) {
cfang@1116 1351 return false;
cfang@1116 1352 }
cfang@1116 1353
cfang@1116 1354 // Null check on self without removing any arguments. The argument
cfang@1116 1355 // null check technically happens in the wrong place, which can lead to
cfang@1116 1356 // invalid stack traces when string compare is inlined into a method
cfang@1116 1357 // which handles NullPointerExceptions.
cfang@1116 1358 _sp += 2;
cfang@1116 1359 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1360 // No null check on the argument is needed since it's a constant String oop.
cfang@1116 1361 _sp -= 2;
cfang@1116 1362 if (stopped()) {
kvn@2602 1363 return true;
cfang@1116 1364 }
cfang@1116 1365
cfang@1116 1366 // The null string as a pattern always returns 0 (match at beginning of string)
cfang@1116 1367 if (c == 0) {
cfang@1116 1368 push(intcon(0));
cfang@1116 1369 return true;
cfang@1116 1370 }
cfang@1116 1371
cfang@1116 1372 // Generate default indexOf
cfang@1116 1373 jchar lastChar = pat->char_at(o + (c - 1));
cfang@1116 1374 int cache = 0;
cfang@1116 1375 int i;
cfang@1116 1376 for (i = 0; i < c - 1; i++) {
cfang@1116 1377 assert(i < pat->length(), "out of range");
cfang@1116 1378 cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
cfang@1116 1379 }
cfang@1116 1380
cfang@1116 1381 int md2 = c;
cfang@1116 1382 for (i = 0; i < c - 1; i++) {
cfang@1116 1383 assert(i < pat->length(), "out of range");
cfang@1116 1384 if (pat->char_at(o + i) == lastChar) {
cfang@1116 1385 md2 = (c - 1) - i;
cfang@1116 1386 }
cfang@1116 1387 }
cfang@1116 1388
cfang@1116 1389 result = string_indexOf(receiver, pat, o, cache, md2);
duke@435 1390 }
cfang@1116 1391
duke@435 1392 push(result);
duke@435 1393 return true;
duke@435 1394 }
duke@435 1395
duke@435 1396 //--------------------------pop_math_arg--------------------------------
duke@435 1397 // Pop a double argument to a math function from the stack
duke@435 1398 // rounding it if necessary.
duke@435 1399 Node * LibraryCallKit::pop_math_arg() {
duke@435 1400 Node *arg = pop_pair();
duke@435 1401 if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
duke@435 1402 arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
duke@435 1403 return arg;
duke@435 1404 }
duke@435 1405
duke@435 1406 //------------------------------inline_trig----------------------------------
duke@435 1407 // Inline sin/cos/tan instructions, if possible. If rounding is required, do
duke@435 1408 // argument reduction which will turn into a fast/slow diamond.
duke@435 1409 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
duke@435 1410 _sp += arg_size(); // restore stack pointer
duke@435 1411 Node* arg = pop_math_arg();
duke@435 1412 Node* trig = NULL;
duke@435 1413
duke@435 1414 switch (id) {
duke@435 1415 case vmIntrinsics::_dsin:
duke@435 1416 trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
duke@435 1417 break;
duke@435 1418 case vmIntrinsics::_dcos:
duke@435 1419 trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
duke@435 1420 break;
duke@435 1421 case vmIntrinsics::_dtan:
duke@435 1422 trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
duke@435 1423 break;
duke@435 1424 default:
duke@435 1425 assert(false, "bad intrinsic was passed in");
duke@435 1426 return false;
duke@435 1427 }
duke@435 1428
duke@435 1429 // Rounding required? Check for argument reduction!
duke@435 1430 if( Matcher::strict_fp_requires_explicit_rounding ) {
duke@435 1431
duke@435 1432 static const double pi_4 = 0.7853981633974483;
duke@435 1433 static const double neg_pi_4 = -0.7853981633974483;
duke@435 1434 // pi/2 in 80-bit extended precision
duke@435 1435 // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1436 // -pi/2 in 80-bit extended precision
duke@435 1437 // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1438 // Cutoff value for using this argument reduction technique
duke@435 1439 //static const double pi_2_minus_epsilon = 1.564660403643354;
duke@435 1440 //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
duke@435 1441
duke@435 1442 // Pseudocode for sin:
duke@435 1443 // if (x <= Math.PI / 4.0) {
duke@435 1444 // if (x >= -Math.PI / 4.0) return fsin(x);
duke@435 1445 // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
duke@435 1446 // } else {
duke@435 1447 // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
duke@435 1448 // }
duke@435 1449 // return StrictMath.sin(x);
duke@435 1450
duke@435 1451 // Pseudocode for cos:
duke@435 1452 // if (x <= Math.PI / 4.0) {
duke@435 1453 // if (x >= -Math.PI / 4.0) return fcos(x);
duke@435 1454 // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
duke@435 1455 // } else {
duke@435 1456 // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
duke@435 1457 // }
duke@435 1458 // return StrictMath.cos(x);
duke@435 1459
duke@435 1460 // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
duke@435 1461 // requires a special machine instruction to load it. Instead we'll try
duke@435 1462 // the 'easy' case. If we really need the extra range +/- PI/2 we'll
duke@435 1463 // probably do the math inside the SIN encoding.
duke@435 1464
duke@435 1465 // Make the merge point
duke@435 1466 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 1467 Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
duke@435 1468
duke@435 1469 // Flatten arg so we need only 1 test
duke@435 1470 Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
duke@435 1471 // Node for PI/4 constant
duke@435 1472 Node *pi4 = makecon(TypeD::make(pi_4));
duke@435 1473 // Check PI/4 : abs(arg)
duke@435 1474 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
duke@435 1475 // Check: If PI/4 < abs(arg) then go slow
duke@435 1476 Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
duke@435 1477 // Branch either way
duke@435 1478 IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 1479 set_control(opt_iff(r,iff));
duke@435 1480
duke@435 1481 // Set fast path result
duke@435 1482 phi->init_req(2,trig);
duke@435 1483
duke@435 1484 // Slow path - non-blocking leaf call
duke@435 1485 Node* call = NULL;
duke@435 1486 switch (id) {
duke@435 1487 case vmIntrinsics::_dsin:
duke@435 1488 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1489 CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
duke@435 1490 "Sin", NULL, arg, top());
duke@435 1491 break;
duke@435 1492 case vmIntrinsics::_dcos:
duke@435 1493 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1494 CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
duke@435 1495 "Cos", NULL, arg, top());
duke@435 1496 break;
duke@435 1497 case vmIntrinsics::_dtan:
duke@435 1498 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1499 CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
duke@435 1500 "Tan", NULL, arg, top());
duke@435 1501 break;
duke@435 1502 }
duke@435 1503 assert(control()->in(0) == call, "");
duke@435 1504 Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
duke@435 1505 r->init_req(1,control());
duke@435 1506 phi->init_req(1,slow_result);
duke@435 1507
duke@435 1508 // Post-merge
duke@435 1509 set_control(_gvn.transform(r));
duke@435 1510 record_for_igvn(r);
duke@435 1511 trig = _gvn.transform(phi);
duke@435 1512
duke@435 1513 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1514 }
duke@435 1515 // Push result back on JVM stack
duke@435 1516 push_pair(trig);
duke@435 1517 return true;
duke@435 1518 }
duke@435 1519
duke@435 1520 //------------------------------inline_sqrt-------------------------------------
duke@435 1521 // Inline square root instruction, if possible.
duke@435 1522 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
duke@435 1523 assert(id == vmIntrinsics::_dsqrt, "Not square root");
duke@435 1524 _sp += arg_size(); // restore stack pointer
duke@435 1525 push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
duke@435 1526 return true;
duke@435 1527 }
duke@435 1528
duke@435 1529 //------------------------------inline_abs-------------------------------------
duke@435 1530 // Inline absolute value instruction, if possible.
duke@435 1531 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
duke@435 1532 assert(id == vmIntrinsics::_dabs, "Not absolute value");
duke@435 1533 _sp += arg_size(); // restore stack pointer
duke@435 1534 push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
duke@435 1535 return true;
duke@435 1536 }
duke@435 1537
duke@435 1538 //------------------------------inline_exp-------------------------------------
duke@435 1539 // Inline exp instructions, if possible. The Intel hardware only misses
duke@435 1540 // really odd corner cases (+/- Infinity). Just uncommon-trap them.
duke@435 1541 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
duke@435 1542 assert(id == vmIntrinsics::_dexp, "Not exp");
duke@435 1543
duke@435 1544 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1545 // every again. NaN results requires StrictMath.exp handling.
duke@435 1546 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1547
duke@435 1548 _sp += arg_size(); // restore stack pointer
duke@435 1549 Node *x = pop_math_arg();
duke@435 1550 Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
duke@435 1551
duke@435 1552 //-------------------
duke@435 1553 //result=(result.isNaN())? StrictMath::exp():result;
duke@435 1554 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1555 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1556 // Build the boolean node
duke@435 1557 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1558
duke@435 1559 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1560 // End the current control-flow path
duke@435 1561 push_pair(x);
duke@435 1562 // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
duke@435 1563 // to handle. Recompile without intrinsifying Math.exp
duke@435 1564 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1565 Deoptimization::Action_make_not_entrant);
duke@435 1566 }
duke@435 1567
duke@435 1568 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1569
duke@435 1570 push_pair(result);
duke@435 1571
duke@435 1572 return true;
duke@435 1573 }
duke@435 1574
duke@435 1575 //------------------------------inline_pow-------------------------------------
duke@435 1576 // Inline power instructions, if possible.
duke@435 1577 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
duke@435 1578 assert(id == vmIntrinsics::_dpow, "Not pow");
duke@435 1579
duke@435 1580 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1581 // every again. NaN results requires StrictMath.pow handling.
duke@435 1582 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1583
duke@435 1584 // Do not intrinsify on older platforms which lack cmove.
duke@435 1585 if (ConditionalMoveLimit == 0) return false;
duke@435 1586
duke@435 1587 // Pseudocode for pow
duke@435 1588 // if (x <= 0.0) {
duke@435 1589 // if ((double)((int)y)==y) { // if y is int
duke@435 1590 // result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1591 // } else {
duke@435 1592 // result = NaN;
duke@435 1593 // }
duke@435 1594 // } else {
duke@435 1595 // result = DPow(x,y);
duke@435 1596 // }
duke@435 1597 // if (result != result)? {
twisti@1040 1598 // uncommon_trap();
duke@435 1599 // }
duke@435 1600 // return result;
duke@435 1601
duke@435 1602 _sp += arg_size(); // restore stack pointer
duke@435 1603 Node* y = pop_math_arg();
duke@435 1604 Node* x = pop_math_arg();
duke@435 1605
duke@435 1606 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
duke@435 1607
duke@435 1608 // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
duke@435 1609 // inside of something) then skip the fancy tests and just check for
duke@435 1610 // NaN result.
duke@435 1611 Node *result = NULL;
duke@435 1612 if( jvms()->depth() >= 1 ) {
duke@435 1613 result = fast_result;
duke@435 1614 } else {
duke@435 1615
duke@435 1616 // Set the merge point for If node with condition of (x <= 0.0)
duke@435 1617 // There are four possible paths to region node and phi node
duke@435 1618 RegionNode *r = new (C, 4) RegionNode(4);
duke@435 1619 Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
duke@435 1620
duke@435 1621 // Build the first if node: if (x <= 0.0)
duke@435 1622 // Node for 0 constant
duke@435 1623 Node *zeronode = makecon(TypeD::ZERO);
duke@435 1624 // Check x:0
duke@435 1625 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
duke@435 1626 // Check: If (x<=0) then go complex path
duke@435 1627 Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
duke@435 1628 // Branch either way
duke@435 1629 IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1630 Node *opt_test = _gvn.transform(if1);
duke@435 1631 //assert( opt_test->is_If(), "Expect an IfNode");
duke@435 1632 IfNode *opt_if1 = (IfNode*)opt_test;
duke@435 1633 // Fast path taken; set region slot 3
duke@435 1634 Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
duke@435 1635 r->init_req(3,fast_taken); // Capture fast-control
duke@435 1636
duke@435 1637 // Fast path not-taken, i.e. slow path
duke@435 1638 Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
duke@435 1639
duke@435 1640 // Set fast path result
duke@435 1641 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
duke@435 1642 phi->init_req(3, fast_result);
duke@435 1643
duke@435 1644 // Complex path
duke@435 1645 // Build the second if node (if y is int)
duke@435 1646 // Node for (int)y
duke@435 1647 Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
duke@435 1648 // Node for (double)((int) y)
duke@435 1649 Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
duke@435 1650 // Check (double)((int) y) : y
duke@435 1651 Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
duke@435 1652 // Check if (y isn't int) then go to slow path
duke@435 1653
duke@435 1654 Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
twisti@1040 1655 // Branch either way
duke@435 1656 IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1657 Node *slow_path = opt_iff(r,if2); // Set region path 2
duke@435 1658
duke@435 1659 // Calculate DPow(abs(x), y)*(1 & (int)y)
duke@435 1660 // Node for constant 1
duke@435 1661 Node *conone = intcon(1);
duke@435 1662 // 1& (int)y
duke@435 1663 Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
duke@435 1664 // zero node
duke@435 1665 Node *conzero = intcon(0);
duke@435 1666 // Check (1&(int)y)==0?
duke@435 1667 Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
duke@435 1668 // Check if (1&(int)y)!=0?, if so the result is negative
duke@435 1669 Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
duke@435 1670 // abs(x)
duke@435 1671 Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
duke@435 1672 // abs(x)^y
duke@435 1673 Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
duke@435 1674 // -abs(x)^y
duke@435 1675 Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
duke@435 1676 // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1677 Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
duke@435 1678 // Set complex path fast result
duke@435 1679 phi->init_req(2, signresult);
duke@435 1680
duke@435 1681 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 1682 Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
duke@435 1683 r->init_req(1,slow_path);
duke@435 1684 phi->init_req(1,slow_result);
duke@435 1685
duke@435 1686 // Post merge
duke@435 1687 set_control(_gvn.transform(r));
duke@435 1688 record_for_igvn(r);
duke@435 1689 result=_gvn.transform(phi);
duke@435 1690 }
duke@435 1691
duke@435 1692 //-------------------
duke@435 1693 //result=(result.isNaN())? uncommon_trap():result;
duke@435 1694 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1695 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1696 // Build the boolean node
duke@435 1697 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1698
duke@435 1699 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1700 // End the current control-flow path
duke@435 1701 push_pair(x);
duke@435 1702 push_pair(y);
duke@435 1703 // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
duke@435 1704 // to handle. Recompile without intrinsifying Math.pow.
duke@435 1705 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1706 Deoptimization::Action_make_not_entrant);
duke@435 1707 }
duke@435 1708
duke@435 1709 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1710
duke@435 1711 push_pair(result);
duke@435 1712
duke@435 1713 return true;
duke@435 1714 }
duke@435 1715
duke@435 1716 //------------------------------inline_trans-------------------------------------
duke@435 1717 // Inline transcendental instructions, if possible. The Intel hardware gets
duke@435 1718 // these right, no funny corner cases missed.
duke@435 1719 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
duke@435 1720 _sp += arg_size(); // restore stack pointer
duke@435 1721 Node* arg = pop_math_arg();
duke@435 1722 Node* trans = NULL;
duke@435 1723
duke@435 1724 switch (id) {
duke@435 1725 case vmIntrinsics::_dlog:
duke@435 1726 trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
duke@435 1727 break;
duke@435 1728 case vmIntrinsics::_dlog10:
duke@435 1729 trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
duke@435 1730 break;
duke@435 1731 default:
duke@435 1732 assert(false, "bad intrinsic was passed in");
duke@435 1733 return false;
duke@435 1734 }
duke@435 1735
duke@435 1736 // Push result back on JVM stack
duke@435 1737 push_pair(trans);
duke@435 1738 return true;
duke@435 1739 }
duke@435 1740
duke@435 1741 //------------------------------runtime_math-----------------------------
duke@435 1742 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
duke@435 1743 Node* a = NULL;
duke@435 1744 Node* b = NULL;
duke@435 1745
duke@435 1746 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
duke@435 1747 "must be (DD)D or (D)D type");
duke@435 1748
duke@435 1749 // Inputs
duke@435 1750 _sp += arg_size(); // restore stack pointer
duke@435 1751 if (call_type == OptoRuntime::Math_DD_D_Type()) {
duke@435 1752 b = pop_math_arg();
duke@435 1753 }
duke@435 1754 a = pop_math_arg();
duke@435 1755
duke@435 1756 const TypePtr* no_memory_effects = NULL;
duke@435 1757 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
duke@435 1758 no_memory_effects,
duke@435 1759 a, top(), b, b ? top() : NULL);
duke@435 1760 Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
duke@435 1761 #ifdef ASSERT
duke@435 1762 Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
duke@435 1763 assert(value_top == top(), "second value must be top");
duke@435 1764 #endif
duke@435 1765
duke@435 1766 push_pair(value);
duke@435 1767 return true;
duke@435 1768 }
duke@435 1769
duke@435 1770 //------------------------------inline_math_native-----------------------------
duke@435 1771 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
duke@435 1772 switch (id) {
duke@435 1773 // These intrinsics are not properly supported on all hardware
duke@435 1774 case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
duke@435 1775 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
duke@435 1776 case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
duke@435 1777 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
duke@435 1778 case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
duke@435 1779 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
duke@435 1780
duke@435 1781 case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
duke@435 1782 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
duke@435 1783 case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
duke@435 1784 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
duke@435 1785
duke@435 1786 // These intrinsics are supported on all hardware
duke@435 1787 case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
duke@435 1788 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_abs(id) : false;
duke@435 1789
duke@435 1790 case vmIntrinsics::_dexp: return
roland@3787 1791 Matcher::has_match_rule(Op_ExpD) ? inline_exp(id) :
duke@435 1792 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
duke@435 1793 case vmIntrinsics::_dpow: return
roland@3787 1794 Matcher::has_match_rule(Op_PowD) ? inline_pow(id) :
duke@435 1795 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
duke@435 1796
duke@435 1797 // These intrinsics are not yet correctly implemented
duke@435 1798 case vmIntrinsics::_datan2:
duke@435 1799 return false;
duke@435 1800
duke@435 1801 default:
duke@435 1802 ShouldNotReachHere();
duke@435 1803 return false;
duke@435 1804 }
duke@435 1805 }
duke@435 1806
duke@435 1807 static bool is_simple_name(Node* n) {
duke@435 1808 return (n->req() == 1 // constant
duke@435 1809 || (n->is_Type() && n->as_Type()->type()->singleton())
duke@435 1810 || n->is_Proj() // parameter or return value
duke@435 1811 || n->is_Phi() // local of some sort
duke@435 1812 );
duke@435 1813 }
duke@435 1814
duke@435 1815 //----------------------------inline_min_max-----------------------------------
duke@435 1816 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
duke@435 1817 push(generate_min_max(id, argument(0), argument(1)));
duke@435 1818
duke@435 1819 return true;
duke@435 1820 }
duke@435 1821
duke@435 1822 Node*
duke@435 1823 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
duke@435 1824 // These are the candidate return value:
duke@435 1825 Node* xvalue = x0;
duke@435 1826 Node* yvalue = y0;
duke@435 1827
duke@435 1828 if (xvalue == yvalue) {
duke@435 1829 return xvalue;
duke@435 1830 }
duke@435 1831
duke@435 1832 bool want_max = (id == vmIntrinsics::_max);
duke@435 1833
duke@435 1834 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
duke@435 1835 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
duke@435 1836 if (txvalue == NULL || tyvalue == NULL) return top();
duke@435 1837 // This is not really necessary, but it is consistent with a
duke@435 1838 // hypothetical MaxINode::Value method:
duke@435 1839 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
duke@435 1840
duke@435 1841 // %%% This folding logic should (ideally) be in a different place.
duke@435 1842 // Some should be inside IfNode, and there to be a more reliable
duke@435 1843 // transformation of ?: style patterns into cmoves. We also want
duke@435 1844 // more powerful optimizations around cmove and min/max.
duke@435 1845
duke@435 1846 // Try to find a dominating comparison of these guys.
duke@435 1847 // It can simplify the index computation for Arrays.copyOf
duke@435 1848 // and similar uses of System.arraycopy.
duke@435 1849 // First, compute the normalized version of CmpI(x, y).
duke@435 1850 int cmp_op = Op_CmpI;
duke@435 1851 Node* xkey = xvalue;
duke@435 1852 Node* ykey = yvalue;
duke@435 1853 Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
duke@435 1854 if (ideal_cmpxy->is_Cmp()) {
duke@435 1855 // E.g., if we have CmpI(length - offset, count),
duke@435 1856 // it might idealize to CmpI(length, count + offset)
duke@435 1857 cmp_op = ideal_cmpxy->Opcode();
duke@435 1858 xkey = ideal_cmpxy->in(1);
duke@435 1859 ykey = ideal_cmpxy->in(2);
duke@435 1860 }
duke@435 1861
duke@435 1862 // Start by locating any relevant comparisons.
duke@435 1863 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
duke@435 1864 Node* cmpxy = NULL;
duke@435 1865 Node* cmpyx = NULL;
duke@435 1866 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
duke@435 1867 Node* cmp = start_from->fast_out(k);
duke@435 1868 if (cmp->outcnt() > 0 && // must have prior uses
duke@435 1869 cmp->in(0) == NULL && // must be context-independent
duke@435 1870 cmp->Opcode() == cmp_op) { // right kind of compare
duke@435 1871 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
duke@435 1872 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
duke@435 1873 }
duke@435 1874 }
duke@435 1875
duke@435 1876 const int NCMPS = 2;
duke@435 1877 Node* cmps[NCMPS] = { cmpxy, cmpyx };
duke@435 1878 int cmpn;
duke@435 1879 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1880 if (cmps[cmpn] != NULL) break; // find a result
duke@435 1881 }
duke@435 1882 if (cmpn < NCMPS) {
duke@435 1883 // Look for a dominating test that tells us the min and max.
duke@435 1884 int depth = 0; // Limit search depth for speed
duke@435 1885 Node* dom = control();
duke@435 1886 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
duke@435 1887 if (++depth >= 100) break;
duke@435 1888 Node* ifproj = dom;
duke@435 1889 if (!ifproj->is_Proj()) continue;
duke@435 1890 Node* iff = ifproj->in(0);
duke@435 1891 if (!iff->is_If()) continue;
duke@435 1892 Node* bol = iff->in(1);
duke@435 1893 if (!bol->is_Bool()) continue;
duke@435 1894 Node* cmp = bol->in(1);
duke@435 1895 if (cmp == NULL) continue;
duke@435 1896 for (cmpn = 0; cmpn < NCMPS; cmpn++)
duke@435 1897 if (cmps[cmpn] == cmp) break;
duke@435 1898 if (cmpn == NCMPS) continue;
duke@435 1899 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1900 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
duke@435 1901 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1902 // At this point, we know that 'x btest y' is true.
duke@435 1903 switch (btest) {
duke@435 1904 case BoolTest::eq:
duke@435 1905 // They are proven equal, so we can collapse the min/max.
duke@435 1906 // Either value is the answer. Choose the simpler.
duke@435 1907 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
duke@435 1908 return yvalue;
duke@435 1909 return xvalue;
duke@435 1910 case BoolTest::lt: // x < y
duke@435 1911 case BoolTest::le: // x <= y
duke@435 1912 return (want_max ? yvalue : xvalue);
duke@435 1913 case BoolTest::gt: // x > y
duke@435 1914 case BoolTest::ge: // x >= y
duke@435 1915 return (want_max ? xvalue : yvalue);
duke@435 1916 }
duke@435 1917 }
duke@435 1918 }
duke@435 1919
duke@435 1920 // We failed to find a dominating test.
duke@435 1921 // Let's pick a test that might GVN with prior tests.
duke@435 1922 Node* best_bol = NULL;
duke@435 1923 BoolTest::mask best_btest = BoolTest::illegal;
duke@435 1924 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1925 Node* cmp = cmps[cmpn];
duke@435 1926 if (cmp == NULL) continue;
duke@435 1927 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
duke@435 1928 Node* bol = cmp->fast_out(j);
duke@435 1929 if (!bol->is_Bool()) continue;
duke@435 1930 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1931 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
duke@435 1932 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1933 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
duke@435 1934 best_bol = bol->as_Bool();
duke@435 1935 best_btest = btest;
duke@435 1936 }
duke@435 1937 }
duke@435 1938 }
duke@435 1939
duke@435 1940 Node* answer_if_true = NULL;
duke@435 1941 Node* answer_if_false = NULL;
duke@435 1942 switch (best_btest) {
duke@435 1943 default:
duke@435 1944 if (cmpxy == NULL)
duke@435 1945 cmpxy = ideal_cmpxy;
duke@435 1946 best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
duke@435 1947 // and fall through:
duke@435 1948 case BoolTest::lt: // x < y
duke@435 1949 case BoolTest::le: // x <= y
duke@435 1950 answer_if_true = (want_max ? yvalue : xvalue);
duke@435 1951 answer_if_false = (want_max ? xvalue : yvalue);
duke@435 1952 break;
duke@435 1953 case BoolTest::gt: // x > y
duke@435 1954 case BoolTest::ge: // x >= y
duke@435 1955 answer_if_true = (want_max ? xvalue : yvalue);
duke@435 1956 answer_if_false = (want_max ? yvalue : xvalue);
duke@435 1957 break;
duke@435 1958 }
duke@435 1959
duke@435 1960 jint hi, lo;
duke@435 1961 if (want_max) {
duke@435 1962 // We can sharpen the minimum.
duke@435 1963 hi = MAX2(txvalue->_hi, tyvalue->_hi);
duke@435 1964 lo = MAX2(txvalue->_lo, tyvalue->_lo);
duke@435 1965 } else {
duke@435 1966 // We can sharpen the maximum.
duke@435 1967 hi = MIN2(txvalue->_hi, tyvalue->_hi);
duke@435 1968 lo = MIN2(txvalue->_lo, tyvalue->_lo);
duke@435 1969 }
duke@435 1970
duke@435 1971 // Use a flow-free graph structure, to avoid creating excess control edges
duke@435 1972 // which could hinder other optimizations.
duke@435 1973 // Since Math.min/max is often used with arraycopy, we want
duke@435 1974 // tightly_coupled_allocation to be able to see beyond min/max expressions.
duke@435 1975 Node* cmov = CMoveNode::make(C, NULL, best_bol,
duke@435 1976 answer_if_false, answer_if_true,
duke@435 1977 TypeInt::make(lo, hi, widen));
duke@435 1978
duke@435 1979 return _gvn.transform(cmov);
duke@435 1980
duke@435 1981 /*
duke@435 1982 // This is not as desirable as it may seem, since Min and Max
duke@435 1983 // nodes do not have a full set of optimizations.
duke@435 1984 // And they would interfere, anyway, with 'if' optimizations
duke@435 1985 // and with CMoveI canonical forms.
duke@435 1986 switch (id) {
duke@435 1987 case vmIntrinsics::_min:
duke@435 1988 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
duke@435 1989 case vmIntrinsics::_max:
duke@435 1990 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
duke@435 1991 default:
duke@435 1992 ShouldNotReachHere();
duke@435 1993 }
duke@435 1994 */
duke@435 1995 }
duke@435 1996
duke@435 1997 inline int
duke@435 1998 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
duke@435 1999 const TypePtr* base_type = TypePtr::NULL_PTR;
duke@435 2000 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
duke@435 2001 if (base_type == NULL) {
duke@435 2002 // Unknown type.
duke@435 2003 return Type::AnyPtr;
duke@435 2004 } else if (base_type == TypePtr::NULL_PTR) {
duke@435 2005 // Since this is a NULL+long form, we have to switch to a rawptr.
duke@435 2006 base = _gvn.transform( new (C, 2) CastX2PNode(offset) );
duke@435 2007 offset = MakeConX(0);
duke@435 2008 return Type::RawPtr;
duke@435 2009 } else if (base_type->base() == Type::RawPtr) {
duke@435 2010 return Type::RawPtr;
duke@435 2011 } else if (base_type->isa_oopptr()) {
duke@435 2012 // Base is never null => always a heap address.
duke@435 2013 if (base_type->ptr() == TypePtr::NotNull) {
duke@435 2014 return Type::OopPtr;
duke@435 2015 }
duke@435 2016 // Offset is small => always a heap address.
duke@435 2017 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
duke@435 2018 if (offset_type != NULL &&
duke@435 2019 base_type->offset() == 0 && // (should always be?)
duke@435 2020 offset_type->_lo >= 0 &&
duke@435 2021 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
duke@435 2022 return Type::OopPtr;
duke@435 2023 }
duke@435 2024 // Otherwise, it might either be oop+off or NULL+addr.
duke@435 2025 return Type::AnyPtr;
duke@435 2026 } else {
duke@435 2027 // No information:
duke@435 2028 return Type::AnyPtr;
duke@435 2029 }
duke@435 2030 }
duke@435 2031
duke@435 2032 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
duke@435 2033 int kind = classify_unsafe_addr(base, offset);
duke@435 2034 if (kind == Type::RawPtr) {
duke@435 2035 return basic_plus_adr(top(), base, offset);
duke@435 2036 } else {
duke@435 2037 return basic_plus_adr(base, offset);
duke@435 2038 }
duke@435 2039 }
duke@435 2040
twisti@1210 2041 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
twisti@1210 2042 // inline int Integer.numberOfLeadingZeros(int)
twisti@1210 2043 // inline int Long.numberOfLeadingZeros(long)
twisti@1210 2044 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
twisti@1210 2045 assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
twisti@1210 2046 if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
twisti@1210 2047 if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
twisti@1210 2048 _sp += arg_size(); // restore stack pointer
twisti@1210 2049 switch (id) {
twisti@1210 2050 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 2051 push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
twisti@1210 2052 break;
twisti@1210 2053 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 2054 push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
twisti@1210 2055 break;
twisti@1210 2056 default:
twisti@1210 2057 ShouldNotReachHere();
twisti@1210 2058 }
twisti@1210 2059 return true;
twisti@1210 2060 }
twisti@1210 2061
twisti@1210 2062 //-------------------inline_numberOfTrailingZeros_int/long----------------------
twisti@1210 2063 // inline int Integer.numberOfTrailingZeros(int)
twisti@1210 2064 // inline int Long.numberOfTrailingZeros(long)
twisti@1210 2065 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
twisti@1210 2066 assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
twisti@1210 2067 if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
twisti@1210 2068 if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
twisti@1210 2069 _sp += arg_size(); // restore stack pointer
twisti@1210 2070 switch (id) {
twisti@1210 2071 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 2072 push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
twisti@1210 2073 break;
twisti@1210 2074 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 2075 push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
twisti@1210 2076 break;
twisti@1210 2077 default:
twisti@1210 2078 ShouldNotReachHere();
twisti@1210 2079 }
twisti@1210 2080 return true;
twisti@1210 2081 }
twisti@1210 2082
twisti@1078 2083 //----------------------------inline_bitCount_int/long-----------------------
twisti@1078 2084 // inline int Integer.bitCount(int)
twisti@1078 2085 // inline int Long.bitCount(long)
twisti@1078 2086 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
twisti@1078 2087 assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
twisti@1078 2088 if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
twisti@1078 2089 if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
twisti@1078 2090 _sp += arg_size(); // restore stack pointer
twisti@1078 2091 switch (id) {
twisti@1078 2092 case vmIntrinsics::_bitCount_i:
twisti@1078 2093 push(_gvn.transform(new (C, 2) PopCountINode(pop())));
twisti@1078 2094 break;
twisti@1078 2095 case vmIntrinsics::_bitCount_l:
twisti@1078 2096 push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
twisti@1078 2097 break;
twisti@1078 2098 default:
twisti@1078 2099 ShouldNotReachHere();
twisti@1078 2100 }
twisti@1078 2101 return true;
twisti@1078 2102 }
twisti@1078 2103
never@1831 2104 //----------------------------inline_reverseBytes_int/long/char/short-------------------
twisti@1040 2105 // inline Integer.reverseBytes(int)
twisti@1040 2106 // inline Long.reverseBytes(long)
never@1831 2107 // inline Character.reverseBytes(char)
never@1831 2108 // inline Short.reverseBytes(short)
duke@435 2109 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
never@1831 2110 assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
never@1831 2111 id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
never@1831 2112 "not reverse Bytes");
never@1831 2113 if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
never@1831 2114 if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
never@1831 2115 if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
never@1831 2116 if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS)) return false;
duke@435 2117 _sp += arg_size(); // restore stack pointer
duke@435 2118 switch (id) {
duke@435 2119 case vmIntrinsics::_reverseBytes_i:
duke@435 2120 push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
duke@435 2121 break;
duke@435 2122 case vmIntrinsics::_reverseBytes_l:
duke@435 2123 push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
duke@435 2124 break;
never@1831 2125 case vmIntrinsics::_reverseBytes_c:
never@1831 2126 push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
never@1831 2127 break;
never@1831 2128 case vmIntrinsics::_reverseBytes_s:
never@1831 2129 push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
never@1831 2130 break;
duke@435 2131 default:
duke@435 2132 ;
duke@435 2133 }
duke@435 2134 return true;
duke@435 2135 }
duke@435 2136
duke@435 2137 //----------------------------inline_unsafe_access----------------------------
duke@435 2138
duke@435 2139 const static BasicType T_ADDRESS_HOLDER = T_LONG;
duke@435 2140
johnc@2781 2141 // Helper that guards and inserts a G1 pre-barrier.
johnc@2781 2142 void LibraryCallKit::insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val) {
johnc@2781 2143 assert(UseG1GC, "should not call this otherwise");
johnc@2781 2144
johnc@2781 2145 // We could be accessing the referent field of a reference object. If so, when G1
johnc@2781 2146 // is enabled, we need to log the value in the referent field in an SATB buffer.
johnc@2781 2147 // This routine performs some compile time filters and generates suitable
johnc@2781 2148 // runtime filters that guard the pre-barrier code.
johnc@2781 2149
johnc@2781 2150 // Some compile time checks.
johnc@2781 2151
johnc@2781 2152 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
johnc@2781 2153 const TypeX* otype = offset->find_intptr_t_type();
johnc@2781 2154 if (otype != NULL && otype->is_con() &&
johnc@2781 2155 otype->get_con() != java_lang_ref_Reference::referent_offset) {
johnc@2781 2156 // Constant offset but not the reference_offset so just return
johnc@2781 2157 return;
johnc@2781 2158 }
johnc@2781 2159
johnc@2781 2160 // We only need to generate the runtime guards for instances.
johnc@2781 2161 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
johnc@2781 2162 if (btype != NULL) {
johnc@2781 2163 if (btype->isa_aryptr()) {
johnc@2781 2164 // Array type so nothing to do
johnc@2781 2165 return;
johnc@2781 2166 }
johnc@2781 2167
johnc@2781 2168 const TypeInstPtr* itype = btype->isa_instptr();
johnc@2781 2169 if (itype != NULL) {
johnc@2781 2170 // Can the klass of base_oop be statically determined
johnc@2781 2171 // to be _not_ a sub-class of Reference?
johnc@2781 2172 ciKlass* klass = itype->klass();
johnc@2781 2173 if (klass->is_subtype_of(env()->Reference_klass()) &&
johnc@2781 2174 !env()->Reference_klass()->is_subtype_of(klass)) {
johnc@2781 2175 return;
johnc@2781 2176 }
johnc@2781 2177 }
johnc@2781 2178 }
johnc@2781 2179
johnc@2781 2180 // The compile time filters did not reject base_oop/offset so
johnc@2781 2181 // we need to generate the following runtime filters
johnc@2781 2182 //
johnc@2781 2183 // if (offset == java_lang_ref_Reference::_reference_offset) {
johnc@2781 2184 // if (base != null) {
jiangli@3526 2185 // if (instance_of(base, java.lang.ref.Reference)) {
johnc@2781 2186 // pre_barrier(_, pre_val, ...);
johnc@2781 2187 // }
johnc@2781 2188 // }
johnc@2781 2189 // }
johnc@2781 2190
johnc@2781 2191 float likely = PROB_LIKELY(0.999);
johnc@2781 2192 float unlikely = PROB_UNLIKELY(0.999);
johnc@2781 2193
johnc@2787 2194 IdealKit ideal(this);
johnc@2781 2195 #define __ ideal.
johnc@2781 2196
johnc@2786 2197 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
johnc@2781 2198
johnc@2781 2199 __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
johnc@2781 2200 __ if_then(base_oop, BoolTest::ne, null(), likely); {
johnc@2781 2201
johnc@2781 2202 // Update graphKit memory and control from IdealKit.
johnc@2787 2203 sync_kit(ideal);
johnc@2781 2204
johnc@2781 2205 Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
johnc@2781 2206 Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
johnc@2781 2207
johnc@2781 2208 // Update IdealKit memory and control from graphKit.
johnc@2787 2209 __ sync_kit(this);
johnc@2781 2210
johnc@2781 2211 Node* one = __ ConI(1);
johnc@2781 2212
johnc@2781 2213 __ if_then(is_instof, BoolTest::eq, one, unlikely); {
johnc@2781 2214
johnc@2781 2215 // Update graphKit from IdeakKit.
johnc@2787 2216 sync_kit(ideal);
johnc@2781 2217
johnc@2781 2218 // Use the pre-barrier to record the value in the referent field
johnc@2781 2219 pre_barrier(false /* do_load */,
johnc@2781 2220 __ ctrl(),
johnc@2790 2221 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 2222 pre_val /* pre_val */,
johnc@2781 2223 T_OBJECT);
johnc@2781 2224
johnc@2781 2225 // Update IdealKit from graphKit.
johnc@2787 2226 __ sync_kit(this);
johnc@2781 2227
johnc@2781 2228 } __ end_if(); // _ref_type != ref_none
johnc@2781 2229 } __ end_if(); // base != NULL
johnc@2781 2230 } __ end_if(); // offset == referent_offset
johnc@2781 2231
johnc@2781 2232 // Final sync IdealKit and GraphKit.
johnc@2787 2233 final_sync(ideal);
johnc@2781 2234 #undef __
johnc@2781 2235 }
johnc@2781 2236
johnc@2781 2237
duke@435 2238 // Interpret Unsafe.fieldOffset cookies correctly:
duke@435 2239 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
duke@435 2240
duke@435 2241 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
duke@435 2242 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2243
duke@435 2244 #ifndef PRODUCT
duke@435 2245 {
duke@435 2246 ResourceMark rm;
duke@435 2247 // Check the signatures.
duke@435 2248 ciSignature* sig = signature();
duke@435 2249 #ifdef ASSERT
duke@435 2250 if (!is_store) {
duke@435 2251 // Object getObject(Object base, int/long offset), etc.
duke@435 2252 BasicType rtype = sig->return_type()->basic_type();
duke@435 2253 if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
duke@435 2254 rtype = T_ADDRESS; // it is really a C void*
duke@435 2255 assert(rtype == type, "getter must return the expected value");
duke@435 2256 if (!is_native_ptr) {
duke@435 2257 assert(sig->count() == 2, "oop getter has 2 arguments");
duke@435 2258 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
duke@435 2259 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
duke@435 2260 } else {
duke@435 2261 assert(sig->count() == 1, "native getter has 1 argument");
duke@435 2262 assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
duke@435 2263 }
duke@435 2264 } else {
duke@435 2265 // void putObject(Object base, int/long offset, Object x), etc.
duke@435 2266 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
duke@435 2267 if (!is_native_ptr) {
duke@435 2268 assert(sig->count() == 3, "oop putter has 3 arguments");
duke@435 2269 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
duke@435 2270 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
duke@435 2271 } else {
duke@435 2272 assert(sig->count() == 2, "native putter has 2 arguments");
duke@435 2273 assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
duke@435 2274 }
duke@435 2275 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
duke@435 2276 if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
duke@435 2277 vtype = T_ADDRESS; // it is really a C void*
duke@435 2278 assert(vtype == type, "putter must accept the expected value");
duke@435 2279 }
duke@435 2280 #endif // ASSERT
duke@435 2281 }
duke@435 2282 #endif //PRODUCT
duke@435 2283
duke@435 2284 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2285
duke@435 2286 int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
duke@435 2287
duke@435 2288 // Argument words: "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
duke@435 2289 int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
duke@435 2290
duke@435 2291 debug_only(int saved_sp = _sp);
duke@435 2292 _sp += nargs;
duke@435 2293
duke@435 2294 Node* val;
duke@435 2295 debug_only(val = (Node*)(uintptr_t)-1);
duke@435 2296
duke@435 2297
duke@435 2298 if (is_store) {
duke@435 2299 // Get the value being stored. (Pop it first; it was pushed last.)
duke@435 2300 switch (type) {
duke@435 2301 case T_DOUBLE:
duke@435 2302 case T_LONG:
duke@435 2303 case T_ADDRESS:
duke@435 2304 val = pop_pair();
duke@435 2305 break;
duke@435 2306 default:
duke@435 2307 val = pop();
duke@435 2308 }
duke@435 2309 }
duke@435 2310
duke@435 2311 // Build address expression. See the code in inline_unsafe_prefetch.
duke@435 2312 Node *adr;
duke@435 2313 Node *heap_base_oop = top();
johnc@2781 2314 Node* offset = top();
johnc@2781 2315
duke@435 2316 if (!is_native_ptr) {
duke@435 2317 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
johnc@2781 2318 offset = pop_pair();
duke@435 2319 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2320 Node* base = pop();
duke@435 2321 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2322 // to be plain byte offsets, which are also the same as those accepted
duke@435 2323 // by oopDesc::field_base.
duke@435 2324 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2325 "fieldOffset must be byte-scaled");
duke@435 2326 // 32-bit machines ignore the high half!
duke@435 2327 offset = ConvL2X(offset);
duke@435 2328 adr = make_unsafe_address(base, offset);
duke@435 2329 heap_base_oop = base;
duke@435 2330 } else {
duke@435 2331 Node* ptr = pop_pair();
duke@435 2332 // Adjust Java long to machine word:
duke@435 2333 ptr = ConvL2X(ptr);
duke@435 2334 adr = make_unsafe_address(NULL, ptr);
duke@435 2335 }
duke@435 2336
duke@435 2337 // Pop receiver last: it was pushed first.
duke@435 2338 Node *receiver = pop();
duke@435 2339
duke@435 2340 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2341
duke@435 2342 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2343
duke@435 2344 // First guess at the value type.
duke@435 2345 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2346
duke@435 2347 // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
duke@435 2348 // there was not enough information to nail it down.
duke@435 2349 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2350 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2351
duke@435 2352 // We will need memory barriers unless we can determine a unique
duke@435 2353 // alias category for this reference. (Note: If for some reason
duke@435 2354 // the barriers get omitted and the unsafe reference begins to "pollute"
duke@435 2355 // the alias analysis of the rest of the graph, either Compile::can_alias
duke@435 2356 // or Compile::must_alias will throw a diagnostic assert.)
duke@435 2357 bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
duke@435 2358
johnc@2781 2359 // If we are reading the value of the referent field of a Reference
johnc@2781 2360 // object (either by using Unsafe directly or through reflection)
johnc@2781 2361 // then, if G1 is enabled, we need to record the referent in an
johnc@2781 2362 // SATB log buffer using the pre-barrier mechanism.
johnc@2781 2363 bool need_read_barrier = UseG1GC && !is_native_ptr && !is_store &&
johnc@2781 2364 offset != top() && heap_base_oop != top();
johnc@2781 2365
duke@435 2366 if (!is_store && type == T_OBJECT) {
duke@435 2367 // Attempt to infer a sharper value type from the offset and base type.
duke@435 2368 ciKlass* sharpened_klass = NULL;
duke@435 2369
duke@435 2370 // See if it is an instance field, with an object type.
duke@435 2371 if (alias_type->field() != NULL) {
duke@435 2372 assert(!is_native_ptr, "native pointer op cannot use a java address");
duke@435 2373 if (alias_type->field()->type()->is_klass()) {
duke@435 2374 sharpened_klass = alias_type->field()->type()->as_klass();
duke@435 2375 }
duke@435 2376 }
duke@435 2377
duke@435 2378 // See if it is a narrow oop array.
duke@435 2379 if (adr_type->isa_aryptr()) {
twisti@1330 2380 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
duke@435 2381 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
duke@435 2382 if (elem_type != NULL) {
duke@435 2383 sharpened_klass = elem_type->klass();
duke@435 2384 }
duke@435 2385 }
duke@435 2386 }
duke@435 2387
duke@435 2388 if (sharpened_klass != NULL) {
duke@435 2389 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
duke@435 2390
duke@435 2391 // Sharpen the value type.
duke@435 2392 value_type = tjp;
duke@435 2393
duke@435 2394 #ifndef PRODUCT
duke@435 2395 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 2396 tty->print(" from base type: "); adr_type->dump();
duke@435 2397 tty->print(" sharpened value: "); value_type->dump();
duke@435 2398 }
duke@435 2399 #endif
duke@435 2400 }
duke@435 2401 }
duke@435 2402
duke@435 2403 // Null check on self without removing any arguments. The argument
duke@435 2404 // null check technically happens in the wrong place, which can lead to
duke@435 2405 // invalid stack traces when the primitive is inlined into a method
duke@435 2406 // which handles NullPointerExceptions.
duke@435 2407 _sp += nargs;
duke@435 2408 do_null_check(receiver, T_OBJECT);
duke@435 2409 _sp -= nargs;
duke@435 2410 if (stopped()) {
duke@435 2411 return true;
duke@435 2412 }
duke@435 2413 // Heap pointers get a null-check from the interpreter,
duke@435 2414 // as a courtesy. However, this is not guaranteed by Unsafe,
duke@435 2415 // and it is not possible to fully distinguish unintended nulls
duke@435 2416 // from intended ones in this API.
duke@435 2417
duke@435 2418 if (is_volatile) {
duke@435 2419 // We need to emit leading and trailing CPU membars (see below) in
duke@435 2420 // addition to memory membars when is_volatile. This is a little
duke@435 2421 // too strong, but avoids the need to insert per-alias-type
duke@435 2422 // volatile membars (for stores; compare Parse::do_put_xxx), which
twisti@1040 2423 // we cannot do effectively here because we probably only have a
duke@435 2424 // rough approximation of type.
duke@435 2425 need_mem_bar = true;
duke@435 2426 // For Stores, place a memory ordering barrier now.
duke@435 2427 if (is_store)
duke@435 2428 insert_mem_bar(Op_MemBarRelease);
duke@435 2429 }
duke@435 2430
duke@435 2431 // Memory barrier to prevent normal and 'unsafe' accesses from
duke@435 2432 // bypassing each other. Happens after null checks, so the
duke@435 2433 // exception paths do not take memory state from the memory barrier,
duke@435 2434 // so there's no problems making a strong assert about mixing users
duke@435 2435 // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
duke@435 2436 // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
duke@435 2437 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2438
duke@435 2439 if (!is_store) {
duke@435 2440 Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
duke@435 2441 // load value and push onto stack
duke@435 2442 switch (type) {
duke@435 2443 case T_BOOLEAN:
duke@435 2444 case T_CHAR:
duke@435 2445 case T_BYTE:
duke@435 2446 case T_SHORT:
duke@435 2447 case T_INT:
duke@435 2448 case T_FLOAT:
johnc@2781 2449 push(p);
johnc@2781 2450 break;
duke@435 2451 case T_OBJECT:
johnc@2781 2452 if (need_read_barrier) {
johnc@2781 2453 insert_g1_pre_barrier(heap_base_oop, offset, p);
johnc@2781 2454 }
johnc@2781 2455 push(p);
duke@435 2456 break;
duke@435 2457 case T_ADDRESS:
duke@435 2458 // Cast to an int type.
duke@435 2459 p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
duke@435 2460 p = ConvX2L(p);
duke@435 2461 push_pair(p);
duke@435 2462 break;
duke@435 2463 case T_DOUBLE:
duke@435 2464 case T_LONG:
duke@435 2465 push_pair( p );
duke@435 2466 break;
duke@435 2467 default: ShouldNotReachHere();
duke@435 2468 }
duke@435 2469 } else {
duke@435 2470 // place effect of store into memory
duke@435 2471 switch (type) {
duke@435 2472 case T_DOUBLE:
duke@435 2473 val = dstore_rounding(val);
duke@435 2474 break;
duke@435 2475 case T_ADDRESS:
duke@435 2476 // Repackage the long as a pointer.
duke@435 2477 val = ConvL2X(val);
duke@435 2478 val = _gvn.transform( new (C, 2) CastX2PNode(val) );
duke@435 2479 break;
duke@435 2480 }
duke@435 2481
duke@435 2482 if (type != T_OBJECT ) {
duke@435 2483 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
duke@435 2484 } else {
duke@435 2485 // Possibly an oop being stored to Java heap or native memory
duke@435 2486 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
duke@435 2487 // oop to Java heap.
never@1260 2488 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
duke@435 2489 } else {
duke@435 2490 // We can't tell at compile time if we are storing in the Java heap or outside
duke@435 2491 // of it. So we need to emit code to conditionally do the proper type of
duke@435 2492 // store.
duke@435 2493
kvn@2726 2494 IdealKit ideal(this);
kvn@1286 2495 #define __ ideal.
duke@435 2496 // QQQ who knows what probability is here??
kvn@1286 2497 __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
kvn@1286 2498 // Sync IdealKit and graphKit.
kvn@2726 2499 sync_kit(ideal);
kvn@1286 2500 Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
kvn@1286 2501 // Update IdealKit memory.
kvn@2726 2502 __ sync_kit(this);
kvn@1286 2503 } __ else_(); {
kvn@1286 2504 __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
kvn@1286 2505 } __ end_if();
kvn@1286 2506 // Final sync IdealKit and GraphKit.
kvn@2726 2507 final_sync(ideal);
kvn@1286 2508 #undef __
duke@435 2509 }
duke@435 2510 }
duke@435 2511 }
duke@435 2512
duke@435 2513 if (is_volatile) {
duke@435 2514 if (!is_store)
duke@435 2515 insert_mem_bar(Op_MemBarAcquire);
duke@435 2516 else
duke@435 2517 insert_mem_bar(Op_MemBarVolatile);
duke@435 2518 }
duke@435 2519
duke@435 2520 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2521
duke@435 2522 return true;
duke@435 2523 }
duke@435 2524
duke@435 2525 //----------------------------inline_unsafe_prefetch----------------------------
duke@435 2526
duke@435 2527 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
duke@435 2528 #ifndef PRODUCT
duke@435 2529 {
duke@435 2530 ResourceMark rm;
duke@435 2531 // Check the signatures.
duke@435 2532 ciSignature* sig = signature();
duke@435 2533 #ifdef ASSERT
duke@435 2534 // Object getObject(Object base, int/long offset), etc.
duke@435 2535 BasicType rtype = sig->return_type()->basic_type();
duke@435 2536 if (!is_native_ptr) {
duke@435 2537 assert(sig->count() == 2, "oop prefetch has 2 arguments");
duke@435 2538 assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
duke@435 2539 assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
duke@435 2540 } else {
duke@435 2541 assert(sig->count() == 1, "native prefetch has 1 argument");
duke@435 2542 assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
duke@435 2543 }
duke@435 2544 #endif // ASSERT
duke@435 2545 }
duke@435 2546 #endif // !PRODUCT
duke@435 2547
duke@435 2548 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2549
duke@435 2550 // Argument words: "this" if not static, plus (oop/offset) or (lo/hi) args
duke@435 2551 int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
duke@435 2552
duke@435 2553 debug_only(int saved_sp = _sp);
duke@435 2554 _sp += nargs;
duke@435 2555
duke@435 2556 // Build address expression. See the code in inline_unsafe_access.
duke@435 2557 Node *adr;
duke@435 2558 if (!is_native_ptr) {
duke@435 2559 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
duke@435 2560 Node* offset = pop_pair();
duke@435 2561 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2562 Node* base = pop();
duke@435 2563 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2564 // to be plain byte offsets, which are also the same as those accepted
duke@435 2565 // by oopDesc::field_base.
duke@435 2566 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2567 "fieldOffset must be byte-scaled");
duke@435 2568 // 32-bit machines ignore the high half!
duke@435 2569 offset = ConvL2X(offset);
duke@435 2570 adr = make_unsafe_address(base, offset);
duke@435 2571 } else {
duke@435 2572 Node* ptr = pop_pair();
duke@435 2573 // Adjust Java long to machine word:
duke@435 2574 ptr = ConvL2X(ptr);
duke@435 2575 adr = make_unsafe_address(NULL, ptr);
duke@435 2576 }
duke@435 2577
duke@435 2578 if (is_static) {
duke@435 2579 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2580 } else {
duke@435 2581 // Pop receiver last: it was pushed first.
duke@435 2582 Node *receiver = pop();
duke@435 2583 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2584
duke@435 2585 // Null check on self without removing any arguments. The argument
duke@435 2586 // null check technically happens in the wrong place, which can lead to
duke@435 2587 // invalid stack traces when the primitive is inlined into a method
duke@435 2588 // which handles NullPointerExceptions.
duke@435 2589 _sp += nargs;
duke@435 2590 do_null_check(receiver, T_OBJECT);
duke@435 2591 _sp -= nargs;
duke@435 2592 if (stopped()) {
duke@435 2593 return true;
duke@435 2594 }
duke@435 2595 }
duke@435 2596
duke@435 2597 // Generate the read or write prefetch
duke@435 2598 Node *prefetch;
duke@435 2599 if (is_store) {
duke@435 2600 prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
duke@435 2601 } else {
duke@435 2602 prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
duke@435 2603 }
duke@435 2604 prefetch->init_req(0, control());
duke@435 2605 set_i_o(_gvn.transform(prefetch));
duke@435 2606
duke@435 2607 return true;
duke@435 2608 }
duke@435 2609
duke@435 2610 //----------------------------inline_unsafe_CAS----------------------------
duke@435 2611
duke@435 2612 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
duke@435 2613 // This basic scheme here is the same as inline_unsafe_access, but
duke@435 2614 // differs in enough details that combining them would make the code
duke@435 2615 // overly confusing. (This is a true fact! I originally combined
duke@435 2616 // them, but even I was confused by it!) As much code/comments as
duke@435 2617 // possible are retained from inline_unsafe_access though to make
twisti@1040 2618 // the correspondences clearer. - dl
duke@435 2619
duke@435 2620 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2621
duke@435 2622 #ifndef PRODUCT
duke@435 2623 {
duke@435 2624 ResourceMark rm;
duke@435 2625 // Check the signatures.
duke@435 2626 ciSignature* sig = signature();
duke@435 2627 #ifdef ASSERT
duke@435 2628 BasicType rtype = sig->return_type()->basic_type();
duke@435 2629 assert(rtype == T_BOOLEAN, "CAS must return boolean");
duke@435 2630 assert(sig->count() == 4, "CAS has 4 arguments");
duke@435 2631 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
duke@435 2632 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
duke@435 2633 #endif // ASSERT
duke@435 2634 }
duke@435 2635 #endif //PRODUCT
duke@435 2636
duke@435 2637 // number of stack slots per value argument (1 or 2)
duke@435 2638 int type_words = type2size[type];
duke@435 2639
duke@435 2640 // Cannot inline wide CAS on machines that don't support it natively
kvn@464 2641 if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
duke@435 2642 return false;
duke@435 2643
duke@435 2644 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2645
duke@435 2646 // Argument words: "this" plus oop plus offset plus oldvalue plus newvalue;
duke@435 2647 int nargs = 1 + 1 + 2 + type_words + type_words;
duke@435 2648
duke@435 2649 // pop arguments: newval, oldval, offset, base, and receiver
duke@435 2650 debug_only(int saved_sp = _sp);
duke@435 2651 _sp += nargs;
duke@435 2652 Node* newval = (type_words == 1) ? pop() : pop_pair();
duke@435 2653 Node* oldval = (type_words == 1) ? pop() : pop_pair();
duke@435 2654 Node *offset = pop_pair();
duke@435 2655 Node *base = pop();
duke@435 2656 Node *receiver = pop();
duke@435 2657 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2658
duke@435 2659 // Null check receiver.
duke@435 2660 _sp += nargs;
duke@435 2661 do_null_check(receiver, T_OBJECT);
duke@435 2662 _sp -= nargs;
duke@435 2663 if (stopped()) {
duke@435 2664 return true;
duke@435 2665 }
duke@435 2666
duke@435 2667 // Build field offset expression.
duke@435 2668 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2669 // to be plain byte offsets, which are also the same as those accepted
duke@435 2670 // by oopDesc::field_base.
duke@435 2671 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2672 // 32-bit machines ignore the high half of long offsets
duke@435 2673 offset = ConvL2X(offset);
duke@435 2674 Node* adr = make_unsafe_address(base, offset);
duke@435 2675 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2676
duke@435 2677 // (Unlike inline_unsafe_access, there seems no point in trying
duke@435 2678 // to refine types. Just use the coarse types here.
duke@435 2679 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2680 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2681 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2682 int alias_idx = C->get_alias_index(adr_type);
duke@435 2683
duke@435 2684 // Memory-model-wise, a CAS acts like a little synchronized block,
twisti@1040 2685 // so needs barriers on each side. These don't translate into
duke@435 2686 // actual barriers on most machines, but we still need rest of
duke@435 2687 // compiler to respect ordering.
duke@435 2688
duke@435 2689 insert_mem_bar(Op_MemBarRelease);
duke@435 2690 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2691
duke@435 2692 // 4984716: MemBars must be inserted before this
duke@435 2693 // memory node in order to avoid a false
duke@435 2694 // dependency which will confuse the scheduler.
duke@435 2695 Node *mem = memory(alias_idx);
duke@435 2696
duke@435 2697 // For now, we handle only those cases that actually exist: ints,
duke@435 2698 // longs, and Object. Adding others should be straightforward.
duke@435 2699 Node* cas;
duke@435 2700 switch(type) {
duke@435 2701 case T_INT:
duke@435 2702 cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
duke@435 2703 break;
duke@435 2704 case T_LONG:
duke@435 2705 cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
duke@435 2706 break;
duke@435 2707 case T_OBJECT:
kvn@3521 2708 // Transformation of a value which could be NULL pointer (CastPP #NULL)
kvn@3521 2709 // could be delayed during Parse (for example, in adjust_map_after_if()).
kvn@3521 2710 // Execute transformation here to avoid barrier generation in such case.
kvn@3521 2711 if (_gvn.type(newval) == TypePtr::NULL_PTR)
kvn@3521 2712 newval = _gvn.makecon(TypePtr::NULL_PTR);
kvn@3521 2713
kvn@3521 2714 // Reference stores need a store barrier.
duke@435 2715 // (They don't if CAS fails, but it isn't worth checking.)
johnc@2781 2716 pre_barrier(true /* do_load*/,
johnc@2781 2717 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
johnc@2781 2718 NULL /* pre_val*/,
johnc@2781 2719 T_OBJECT);
coleenp@548 2720 #ifdef _LP64
kvn@598 2721 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@656 2722 Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
kvn@656 2723 Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
coleenp@548 2724 cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
kvn@656 2725 newval_enc, oldval_enc));
coleenp@548 2726 } else
coleenp@548 2727 #endif
kvn@656 2728 {
kvn@656 2729 cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
kvn@656 2730 }
duke@435 2731 post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
duke@435 2732 break;
duke@435 2733 default:
duke@435 2734 ShouldNotReachHere();
duke@435 2735 break;
duke@435 2736 }
duke@435 2737
duke@435 2738 // SCMemProjNodes represent the memory state of CAS. Their main
duke@435 2739 // role is to prevent CAS nodes from being optimized away when their
duke@435 2740 // results aren't used.
duke@435 2741 Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
duke@435 2742 set_memory(proj, alias_idx);
duke@435 2743
duke@435 2744 // Add the trailing membar surrounding the access
duke@435 2745 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2746 insert_mem_bar(Op_MemBarAcquire);
duke@435 2747
duke@435 2748 push(cas);
duke@435 2749 return true;
duke@435 2750 }
duke@435 2751
duke@435 2752 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
duke@435 2753 // This is another variant of inline_unsafe_access, differing in
duke@435 2754 // that it always issues store-store ("release") barrier and ensures
duke@435 2755 // store-atomicity (which only matters for "long").
duke@435 2756
duke@435 2757 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2758
duke@435 2759 #ifndef PRODUCT
duke@435 2760 {
duke@435 2761 ResourceMark rm;
duke@435 2762 // Check the signatures.
duke@435 2763 ciSignature* sig = signature();
duke@435 2764 #ifdef ASSERT
duke@435 2765 BasicType rtype = sig->return_type()->basic_type();
duke@435 2766 assert(rtype == T_VOID, "must return void");
duke@435 2767 assert(sig->count() == 3, "has 3 arguments");
duke@435 2768 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
duke@435 2769 assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
duke@435 2770 #endif // ASSERT
duke@435 2771 }
duke@435 2772 #endif //PRODUCT
duke@435 2773
duke@435 2774 // number of stack slots per value argument (1 or 2)
duke@435 2775 int type_words = type2size[type];
duke@435 2776
duke@435 2777 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2778
duke@435 2779 // Argument words: "this" plus oop plus offset plus value;
duke@435 2780 int nargs = 1 + 1 + 2 + type_words;
duke@435 2781
duke@435 2782 // pop arguments: val, offset, base, and receiver
duke@435 2783 debug_only(int saved_sp = _sp);
duke@435 2784 _sp += nargs;
duke@435 2785 Node* val = (type_words == 1) ? pop() : pop_pair();
duke@435 2786 Node *offset = pop_pair();
duke@435 2787 Node *base = pop();
duke@435 2788 Node *receiver = pop();
duke@435 2789 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2790
duke@435 2791 // Null check receiver.
duke@435 2792 _sp += nargs;
duke@435 2793 do_null_check(receiver, T_OBJECT);
duke@435 2794 _sp -= nargs;
duke@435 2795 if (stopped()) {
duke@435 2796 return true;
duke@435 2797 }
duke@435 2798
duke@435 2799 // Build field offset expression.
duke@435 2800 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2801 // 32-bit machines ignore the high half of long offsets
duke@435 2802 offset = ConvL2X(offset);
duke@435 2803 Node* adr = make_unsafe_address(base, offset);
duke@435 2804 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2805 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2806 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2807
duke@435 2808 insert_mem_bar(Op_MemBarRelease);
duke@435 2809 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2810 // Ensure that the store is atomic for longs:
duke@435 2811 bool require_atomic_access = true;
duke@435 2812 Node* store;
duke@435 2813 if (type == T_OBJECT) // reference stores need a store barrier.
never@1260 2814 store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
duke@435 2815 else {
duke@435 2816 store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
duke@435 2817 }
duke@435 2818 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2819 return true;
duke@435 2820 }
duke@435 2821
duke@435 2822 bool LibraryCallKit::inline_unsafe_allocate() {
duke@435 2823 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2824 int nargs = 1 + 1;
duke@435 2825 assert(signature()->size() == nargs-1, "alloc has 1 argument");
duke@435 2826 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 2827 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2828 Node* cls = do_null_check(argument(1), T_OBJECT);
duke@435 2829 _sp -= nargs;
duke@435 2830 if (stopped()) return true;
duke@435 2831
duke@435 2832 Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
duke@435 2833 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2834 kls = do_null_check(kls, T_OBJECT);
duke@435 2835 _sp -= nargs;
duke@435 2836 if (stopped()) return true; // argument was like int.class
duke@435 2837
duke@435 2838 // Note: The argument might still be an illegal value like
duke@435 2839 // Serializable.class or Object[].class. The runtime will handle it.
duke@435 2840 // But we must make an explicit check for initialization.
stefank@3391 2841 Node* insp = basic_plus_adr(kls, in_bytes(instanceKlass::init_state_offset()));
coleenp@3368 2842 // Use T_BOOLEAN for instanceKlass::_init_state so the compiler
coleenp@3368 2843 // can generate code to load it as unsigned byte.
coleenp@3368 2844 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
duke@435 2845 Node* bits = intcon(instanceKlass::fully_initialized);
duke@435 2846 Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
duke@435 2847 // The 'test' is non-zero if we need to take a slow path.
duke@435 2848
duke@435 2849 Node* obj = new_instance(kls, test);
duke@435 2850 push(obj);
duke@435 2851
duke@435 2852 return true;
duke@435 2853 }
duke@435 2854
rbackman@3709 2855 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 2856 /*
rbackman@3709 2857 * oop -> myklass
rbackman@3709 2858 * myklass->trace_id |= USED
rbackman@3709 2859 * return myklass->trace_id & ~0x3
rbackman@3709 2860 */
rbackman@3709 2861 bool LibraryCallKit::inline_native_classID() {
rbackman@3709 2862 int nargs = 1 + 1;
rbackman@3709 2863 null_check_receiver(callee()); // check then ignore argument(0)
rbackman@3709 2864 _sp += nargs;
rbackman@3709 2865 Node* cls = do_null_check(argument(1), T_OBJECT);
rbackman@3709 2866 _sp -= nargs;
rbackman@3709 2867 Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
rbackman@3709 2868 _sp += nargs;
rbackman@3709 2869 kls = do_null_check(kls, T_OBJECT);
rbackman@3709 2870 _sp -= nargs;
rbackman@3709 2871 ByteSize offset = TRACE_ID_OFFSET;
rbackman@3709 2872 Node* insp = basic_plus_adr(kls, in_bytes(offset));
rbackman@3709 2873 Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
rbackman@3709 2874 Node* bits = longcon(~0x03l); // ignore bit 0 & 1
rbackman@3709 2875 Node* andl = _gvn.transform(new (C, 3) AndLNode(tvalue, bits));
rbackman@3709 2876 Node* clsused = longcon(0x01l); // set the class bit
rbackman@3709 2877 Node* orl = _gvn.transform(new (C, 3) OrLNode(tvalue, clsused));
rbackman@3709 2878
rbackman@3709 2879 const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
rbackman@3709 2880 store_to_memory(control(), insp, orl, T_LONG, adr_type);
rbackman@3709 2881 push_pair(andl);
rbackman@3709 2882 return true;
rbackman@3709 2883 }
rbackman@3709 2884
rbackman@3709 2885 bool LibraryCallKit::inline_native_threadID() {
rbackman@3709 2886 Node* tls_ptr = NULL;
rbackman@3709 2887 Node* cur_thr = generate_current_thread(tls_ptr);
rbackman@3709 2888 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
rbackman@3709 2889 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
rbackman@3709 2890 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
rbackman@3709 2891
rbackman@3709 2892 Node* threadid = NULL;
rbackman@3709 2893 size_t thread_id_size = OSThread::thread_id_size();
rbackman@3709 2894 if (thread_id_size == (size_t) BytesPerLong) {
rbackman@3709 2895 threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
rbackman@3709 2896 push(threadid);
rbackman@3709 2897 } else if (thread_id_size == (size_t) BytesPerInt) {
rbackman@3709 2898 threadid = make_load(control(), p, TypeInt::INT, T_INT);
rbackman@3709 2899 push(threadid);
rbackman@3709 2900 } else {
rbackman@3709 2901 ShouldNotReachHere();
rbackman@3709 2902 }
rbackman@3709 2903 return true;
rbackman@3709 2904 }
rbackman@3709 2905 #endif
rbackman@3709 2906
duke@435 2907 //------------------------inline_native_time_funcs--------------
duke@435 2908 // inline code for System.currentTimeMillis() and System.nanoTime()
duke@435 2909 // these have the same type and signature
rbackman@3709 2910 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
rbackman@3709 2911 const TypeFunc *tf = OptoRuntime::void_long_Type();
duke@435 2912 const TypePtr* no_memory_effects = NULL;
duke@435 2913 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
duke@435 2914 Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
duke@435 2915 #ifdef ASSERT
duke@435 2916 Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
duke@435 2917 assert(value_top == top(), "second value must be top");
duke@435 2918 #endif
duke@435 2919 push_pair(value);
duke@435 2920 return true;
duke@435 2921 }
duke@435 2922
duke@435 2923 //------------------------inline_native_currentThread------------------
duke@435 2924 bool LibraryCallKit::inline_native_currentThread() {
duke@435 2925 Node* junk = NULL;
duke@435 2926 push(generate_current_thread(junk));
duke@435 2927 return true;
duke@435 2928 }
duke@435 2929
duke@435 2930 //------------------------inline_native_isInterrupted------------------
duke@435 2931 bool LibraryCallKit::inline_native_isInterrupted() {
duke@435 2932 const int nargs = 1+1; // receiver + boolean
duke@435 2933 assert(nargs == arg_size(), "sanity");
duke@435 2934 // Add a fast path to t.isInterrupted(clear_int):
duke@435 2935 // (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
duke@435 2936 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
duke@435 2937 // So, in the common case that the interrupt bit is false,
duke@435 2938 // we avoid making a call into the VM. Even if the interrupt bit
duke@435 2939 // is true, if the clear_int argument is false, we avoid the VM call.
duke@435 2940 // However, if the receiver is not currentThread, we must call the VM,
duke@435 2941 // because there must be some locking done around the operation.
duke@435 2942
duke@435 2943 // We only go to the fast case code if we pass two guards.
duke@435 2944 // Paths which do not pass are accumulated in the slow_region.
duke@435 2945 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 2946 record_for_igvn(slow_region);
duke@435 2947 RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
duke@435 2948 PhiNode* result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
duke@435 2949 enum { no_int_result_path = 1,
duke@435 2950 no_clear_result_path = 2,
duke@435 2951 slow_result_path = 3
duke@435 2952 };
duke@435 2953
duke@435 2954 // (a) Receiving thread must be the current thread.
duke@435 2955 Node* rec_thr = argument(0);
duke@435 2956 Node* tls_ptr = NULL;
duke@435 2957 Node* cur_thr = generate_current_thread(tls_ptr);
duke@435 2958 Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
duke@435 2959 Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
duke@435 2960
duke@435 2961 bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
duke@435 2962 if (!known_current_thread)
duke@435 2963 generate_slow_guard(bol_thr, slow_region);
duke@435 2964
duke@435 2965 // (b) Interrupt bit on TLS must be false.
duke@435 2966 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
duke@435 2967 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
duke@435 2968 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
kvn@1222 2969 // Set the control input on the field _interrupted read to prevent it floating up.
kvn@1222 2970 Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
duke@435 2971 Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
duke@435 2972 Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
duke@435 2973
duke@435 2974 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
duke@435 2975
duke@435 2976 // First fast path: if (!TLS._interrupted) return false;
duke@435 2977 Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
duke@435 2978 result_rgn->init_req(no_int_result_path, false_bit);
duke@435 2979 result_val->init_req(no_int_result_path, intcon(0));
duke@435 2980
duke@435 2981 // drop through to next case
duke@435 2982 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
duke@435 2983
duke@435 2984 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
duke@435 2985 Node* clr_arg = argument(1);
duke@435 2986 Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
duke@435 2987 Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
duke@435 2988 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
duke@435 2989
duke@435 2990 // Second fast path: ... else if (!clear_int) return true;
duke@435 2991 Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
duke@435 2992 result_rgn->init_req(no_clear_result_path, false_arg);
duke@435 2993 result_val->init_req(no_clear_result_path, intcon(1));
duke@435 2994
duke@435 2995 // drop through to next case
duke@435 2996 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
duke@435 2997
duke@435 2998 // (d) Otherwise, go to the slow path.
duke@435 2999 slow_region->add_req(control());
duke@435 3000 set_control( _gvn.transform(slow_region) );
duke@435 3001
duke@435 3002 if (stopped()) {
duke@435 3003 // There is no slow path.
duke@435 3004 result_rgn->init_req(slow_result_path, top());
duke@435 3005 result_val->init_req(slow_result_path, top());
duke@435 3006 } else {
duke@435 3007 // non-virtual because it is a private non-static
duke@435 3008 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
duke@435 3009
duke@435 3010 Node* slow_val = set_results_for_java_call(slow_call);
duke@435 3011 // this->control() comes from set_results_for_java_call
duke@435 3012
duke@435 3013 // If we know that the result of the slow call will be true, tell the optimizer!
duke@435 3014 if (known_current_thread) slow_val = intcon(1);
duke@435 3015
duke@435 3016 Node* fast_io = slow_call->in(TypeFunc::I_O);
duke@435 3017 Node* fast_mem = slow_call->in(TypeFunc::Memory);
duke@435 3018 // These two phis are pre-filled with copies of of the fast IO and Memory
duke@435 3019 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
duke@435 3020 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
duke@435 3021
duke@435 3022 result_rgn->init_req(slow_result_path, control());
duke@435 3023 io_phi ->init_req(slow_result_path, i_o());
duke@435 3024 mem_phi ->init_req(slow_result_path, reset_memory());
duke@435 3025 result_val->init_req(slow_result_path, slow_val);
duke@435 3026
duke@435 3027 set_all_memory( _gvn.transform(mem_phi) );
duke@435 3028 set_i_o( _gvn.transform(io_phi) );
duke@435 3029 }
duke@435 3030
duke@435 3031 push_result(result_rgn, result_val);
duke@435 3032 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3033
duke@435 3034 return true;
duke@435 3035 }
duke@435 3036
duke@435 3037 //---------------------------load_mirror_from_klass----------------------------
duke@435 3038 // Given a klass oop, load its java mirror (a java.lang.Class oop).
duke@435 3039 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
stefank@3391 3040 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
duke@435 3041 return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3042 }
duke@435 3043
duke@435 3044 //-----------------------load_klass_from_mirror_common-------------------------
duke@435 3045 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
duke@435 3046 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
duke@435 3047 // and branch to the given path on the region.
duke@435 3048 // If never_see_null, take an uncommon trap on null, so we can optimistically
duke@435 3049 // compile for the non-null case.
duke@435 3050 // If the region is NULL, force never_see_null = true.
duke@435 3051 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
duke@435 3052 bool never_see_null,
duke@435 3053 int nargs,
duke@435 3054 RegionNode* region,
duke@435 3055 int null_path,
duke@435 3056 int offset) {
duke@435 3057 if (region == NULL) never_see_null = true;
duke@435 3058 Node* p = basic_plus_adr(mirror, offset);
duke@435 3059 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
kvn@599 3060 Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
duke@435 3061 _sp += nargs; // any deopt will start just before call to enclosing method
duke@435 3062 Node* null_ctl = top();
duke@435 3063 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3064 if (region != NULL) {
duke@435 3065 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
duke@435 3066 region->init_req(null_path, null_ctl);
duke@435 3067 } else {
duke@435 3068 assert(null_ctl == top(), "no loose ends");
duke@435 3069 }
duke@435 3070 _sp -= nargs;
duke@435 3071 return kls;
duke@435 3072 }
duke@435 3073
duke@435 3074 //--------------------(inline_native_Class_query helpers)---------------------
duke@435 3075 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
duke@435 3076 // Fall through if (mods & mask) == bits, take the guard otherwise.
duke@435 3077 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
duke@435 3078 // Branch around if the given klass has the given modifier bit set.
duke@435 3079 // Like generate_guard, adds a new path onto the region.
stefank@3391 3080 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3081 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
duke@435 3082 Node* mask = intcon(modifier_mask);
duke@435 3083 Node* bits = intcon(modifier_bits);
duke@435 3084 Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
duke@435 3085 Node* cmp = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
duke@435 3086 Node* bol = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
duke@435 3087 return generate_fair_guard(bol, region);
duke@435 3088 }
duke@435 3089 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
duke@435 3090 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
duke@435 3091 }
duke@435 3092
duke@435 3093 //-------------------------inline_native_Class_query-------------------
duke@435 3094 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
duke@435 3095 int nargs = 1+0; // just the Class mirror, in most cases
duke@435 3096 const Type* return_type = TypeInt::BOOL;
duke@435 3097 Node* prim_return_value = top(); // what happens if it's a primitive class?
duke@435 3098 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3099 bool expect_prim = false; // most of these guys expect to work on refs
duke@435 3100
duke@435 3101 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
duke@435 3102
duke@435 3103 switch (id) {
duke@435 3104 case vmIntrinsics::_isInstance:
duke@435 3105 nargs = 1+1; // the Class mirror, plus the object getting queried about
duke@435 3106 // nothing is an instance of a primitive type
duke@435 3107 prim_return_value = intcon(0);
duke@435 3108 break;
duke@435 3109 case vmIntrinsics::_getModifiers:
duke@435 3110 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3111 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
duke@435 3112 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
duke@435 3113 break;
duke@435 3114 case vmIntrinsics::_isInterface:
duke@435 3115 prim_return_value = intcon(0);
duke@435 3116 break;
duke@435 3117 case vmIntrinsics::_isArray:
duke@435 3118 prim_return_value = intcon(0);
duke@435 3119 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
duke@435 3120 break;
duke@435 3121 case vmIntrinsics::_isPrimitive:
duke@435 3122 prim_return_value = intcon(1);
duke@435 3123 expect_prim = true; // obviously
duke@435 3124 break;
duke@435 3125 case vmIntrinsics::_getSuperclass:
duke@435 3126 prim_return_value = null();
duke@435 3127 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3128 break;
duke@435 3129 case vmIntrinsics::_getComponentType:
duke@435 3130 prim_return_value = null();
duke@435 3131 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3132 break;
duke@435 3133 case vmIntrinsics::_getClassAccessFlags:
duke@435 3134 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3135 return_type = TypeInt::INT; // not bool! 6297094
duke@435 3136 break;
duke@435 3137 default:
duke@435 3138 ShouldNotReachHere();
duke@435 3139 }
duke@435 3140
duke@435 3141 Node* mirror = argument(0);
duke@435 3142 Node* obj = (nargs <= 1)? top(): argument(1);
duke@435 3143
duke@435 3144 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
duke@435 3145 if (mirror_con == NULL) return false; // cannot happen?
duke@435 3146
duke@435 3147 #ifndef PRODUCT
duke@435 3148 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 3149 ciType* k = mirror_con->java_mirror_type();
duke@435 3150 if (k) {
duke@435 3151 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
duke@435 3152 k->print_name();
duke@435 3153 tty->cr();
duke@435 3154 }
duke@435 3155 }
duke@435 3156 #endif
duke@435 3157
duke@435 3158 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
duke@435 3159 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3160 record_for_igvn(region);
duke@435 3161 PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
duke@435 3162
duke@435 3163 // The mirror will never be null of Reflection.getClassAccessFlags, however
duke@435 3164 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
duke@435 3165 // if it is. See bug 4774291.
duke@435 3166
duke@435 3167 // For Reflection.getClassAccessFlags(), the null check occurs in
duke@435 3168 // the wrong place; see inline_unsafe_access(), above, for a similar
duke@435 3169 // situation.
duke@435 3170 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3171 mirror = do_null_check(mirror, T_OBJECT);
duke@435 3172 _sp -= nargs;
duke@435 3173 // If mirror or obj is dead, only null-path is taken.
duke@435 3174 if (stopped()) return true;
duke@435 3175
duke@435 3176 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
duke@435 3177
duke@435 3178 // Now load the mirror's klass metaobject, and null-check it.
duke@435 3179 // Side-effects region with the control path if the klass is null.
duke@435 3180 Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
duke@435 3181 region, _prim_path);
duke@435 3182 // If kls is null, we have a primitive mirror.
duke@435 3183 phi->init_req(_prim_path, prim_return_value);
duke@435 3184 if (stopped()) { push_result(region, phi); return true; }
duke@435 3185
duke@435 3186 Node* p; // handy temp
duke@435 3187 Node* null_ctl;
duke@435 3188
duke@435 3189 // Now that we have the non-null klass, we can perform the real query.
duke@435 3190 // For constant classes, the query will constant-fold in LoadNode::Value.
duke@435 3191 Node* query_value = top();
duke@435 3192 switch (id) {
duke@435 3193 case vmIntrinsics::_isInstance:
duke@435 3194 // nothing is an instance of a primitive type
jrose@2101 3195 _sp += nargs; // gen_instanceof might do an uncommon trap
duke@435 3196 query_value = gen_instanceof(obj, kls);
jrose@2101 3197 _sp -= nargs;
duke@435 3198 break;
duke@435 3199
duke@435 3200 case vmIntrinsics::_getModifiers:
stefank@3391 3201 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
duke@435 3202 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3203 break;
duke@435 3204
duke@435 3205 case vmIntrinsics::_isInterface:
duke@435 3206 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3207 if (generate_interface_guard(kls, region) != NULL)
duke@435 3208 // A guard was added. If the guard is taken, it was an interface.
duke@435 3209 phi->add_req(intcon(1));
duke@435 3210 // If we fall through, it's a plain class.
duke@435 3211 query_value = intcon(0);
duke@435 3212 break;
duke@435 3213
duke@435 3214 case vmIntrinsics::_isArray:
duke@435 3215 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
duke@435 3216 if (generate_array_guard(kls, region) != NULL)
duke@435 3217 // A guard was added. If the guard is taken, it was an array.
duke@435 3218 phi->add_req(intcon(1));
duke@435 3219 // If we fall through, it's a plain class.
duke@435 3220 query_value = intcon(0);
duke@435 3221 break;
duke@435 3222
duke@435 3223 case vmIntrinsics::_isPrimitive:
duke@435 3224 query_value = intcon(0); // "normal" path produces false
duke@435 3225 break;
duke@435 3226
duke@435 3227 case vmIntrinsics::_getSuperclass:
duke@435 3228 // The rules here are somewhat unfortunate, but we can still do better
duke@435 3229 // with random logic than with a JNI call.
duke@435 3230 // Interfaces store null or Object as _super, but must report null.
duke@435 3231 // Arrays store an intermediate super as _super, but must report Object.
duke@435 3232 // Other types can report the actual _super.
duke@435 3233 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3234 if (generate_interface_guard(kls, region) != NULL)
duke@435 3235 // A guard was added. If the guard is taken, it was an interface.
duke@435 3236 phi->add_req(null());
duke@435 3237 if (generate_array_guard(kls, region) != NULL)
duke@435 3238 // A guard was added. If the guard is taken, it was an array.
duke@435 3239 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
duke@435 3240 // If we fall through, it's a plain class. Get its _super.
stefank@3391 3241 p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
kvn@599 3242 kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
duke@435 3243 null_ctl = top();
duke@435 3244 kls = null_check_oop(kls, &null_ctl);
duke@435 3245 if (null_ctl != top()) {
duke@435 3246 // If the guard is taken, Object.superClass is null (both klass and mirror).
duke@435 3247 region->add_req(null_ctl);
duke@435 3248 phi ->add_req(null());
duke@435 3249 }
duke@435 3250 if (!stopped()) {
duke@435 3251 query_value = load_mirror_from_klass(kls);
duke@435 3252 }
duke@435 3253 break;
duke@435 3254
duke@435 3255 case vmIntrinsics::_getComponentType:
duke@435 3256 if (generate_array_guard(kls, region) != NULL) {
duke@435 3257 // Be sure to pin the oop load to the guard edge just created:
duke@435 3258 Node* is_array_ctrl = region->in(region->req()-1);
stefank@3391 3259 Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
duke@435 3260 Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3261 phi->add_req(cmo);
duke@435 3262 }
duke@435 3263 query_value = null(); // non-array case is null
duke@435 3264 break;
duke@435 3265
duke@435 3266 case vmIntrinsics::_getClassAccessFlags:
stefank@3391 3267 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3268 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3269 break;
duke@435 3270
duke@435 3271 default:
duke@435 3272 ShouldNotReachHere();
duke@435 3273 }
duke@435 3274
duke@435 3275 // Fall-through is the normal case of a query to a real class.
duke@435 3276 phi->init_req(1, query_value);
duke@435 3277 region->init_req(1, control());
duke@435 3278
duke@435 3279 push_result(region, phi);
duke@435 3280 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3281
duke@435 3282 return true;
duke@435 3283 }
duke@435 3284
duke@435 3285 //--------------------------inline_native_subtype_check------------------------
duke@435 3286 // This intrinsic takes the JNI calls out of the heart of
duke@435 3287 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
duke@435 3288 bool LibraryCallKit::inline_native_subtype_check() {
duke@435 3289 int nargs = 1+1; // the Class mirror, plus the other class getting examined
duke@435 3290
duke@435 3291 // Pull both arguments off the stack.
duke@435 3292 Node* args[2]; // two java.lang.Class mirrors: superc, subc
duke@435 3293 args[0] = argument(0);
duke@435 3294 args[1] = argument(1);
duke@435 3295 Node* klasses[2]; // corresponding Klasses: superk, subk
duke@435 3296 klasses[0] = klasses[1] = top();
duke@435 3297
duke@435 3298 enum {
duke@435 3299 // A full decision tree on {superc is prim, subc is prim}:
duke@435 3300 _prim_0_path = 1, // {P,N} => false
duke@435 3301 // {P,P} & superc!=subc => false
duke@435 3302 _prim_same_path, // {P,P} & superc==subc => true
duke@435 3303 _prim_1_path, // {N,P} => false
duke@435 3304 _ref_subtype_path, // {N,N} & subtype check wins => true
duke@435 3305 _both_ref_path, // {N,N} & subtype check loses => false
duke@435 3306 PATH_LIMIT
duke@435 3307 };
duke@435 3308
duke@435 3309 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3310 Node* phi = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
duke@435 3311 record_for_igvn(region);
duke@435 3312
duke@435 3313 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
duke@435 3314 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3315 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
duke@435 3316
duke@435 3317 // First null-check both mirrors and load each mirror's klass metaobject.
duke@435 3318 int which_arg;
duke@435 3319 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3320 Node* arg = args[which_arg];
duke@435 3321 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3322 arg = do_null_check(arg, T_OBJECT);
duke@435 3323 _sp -= nargs;
duke@435 3324 if (stopped()) break;
duke@435 3325 args[which_arg] = _gvn.transform(arg);
duke@435 3326
duke@435 3327 Node* p = basic_plus_adr(arg, class_klass_offset);
kvn@599 3328 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
duke@435 3329 klasses[which_arg] = _gvn.transform(kls);
duke@435 3330 }
duke@435 3331
duke@435 3332 // Having loaded both klasses, test each for null.
duke@435 3333 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3334 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3335 Node* kls = klasses[which_arg];
duke@435 3336 Node* null_ctl = top();
duke@435 3337 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3338 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3339 _sp -= nargs;
duke@435 3340 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
duke@435 3341 region->init_req(prim_path, null_ctl);
duke@435 3342 if (stopped()) break;
duke@435 3343 klasses[which_arg] = kls;
duke@435 3344 }
duke@435 3345
duke@435 3346 if (!stopped()) {
duke@435 3347 // now we have two reference types, in klasses[0..1]
duke@435 3348 Node* subk = klasses[1]; // the argument to isAssignableFrom
duke@435 3349 Node* superk = klasses[0]; // the receiver
duke@435 3350 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
duke@435 3351 // now we have a successful reference subtype check
duke@435 3352 region->set_req(_ref_subtype_path, control());
duke@435 3353 }
duke@435 3354
duke@435 3355 // If both operands are primitive (both klasses null), then
duke@435 3356 // we must return true when they are identical primitives.
duke@435 3357 // It is convenient to test this after the first null klass check.
duke@435 3358 set_control(region->in(_prim_0_path)); // go back to first null check
duke@435 3359 if (!stopped()) {
duke@435 3360 // Since superc is primitive, make a guard for the superc==subc case.
duke@435 3361 Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
duke@435 3362 Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
duke@435 3363 generate_guard(bol_eq, region, PROB_FAIR);
duke@435 3364 if (region->req() == PATH_LIMIT+1) {
duke@435 3365 // A guard was added. If the added guard is taken, superc==subc.
duke@435 3366 region->swap_edges(PATH_LIMIT, _prim_same_path);
duke@435 3367 region->del_req(PATH_LIMIT);
duke@435 3368 }
duke@435 3369 region->set_req(_prim_0_path, control()); // Not equal after all.
duke@435 3370 }
duke@435 3371
duke@435 3372 // these are the only paths that produce 'true':
duke@435 3373 phi->set_req(_prim_same_path, intcon(1));
duke@435 3374 phi->set_req(_ref_subtype_path, intcon(1));
duke@435 3375
duke@435 3376 // pull together the cases:
duke@435 3377 assert(region->req() == PATH_LIMIT, "sane region");
duke@435 3378 for (uint i = 1; i < region->req(); i++) {
duke@435 3379 Node* ctl = region->in(i);
duke@435 3380 if (ctl == NULL || ctl == top()) {
duke@435 3381 region->set_req(i, top());
duke@435 3382 phi ->set_req(i, top());
duke@435 3383 } else if (phi->in(i) == NULL) {
duke@435 3384 phi->set_req(i, intcon(0)); // all other paths produce 'false'
duke@435 3385 }
duke@435 3386 }
duke@435 3387
duke@435 3388 set_control(_gvn.transform(region));
duke@435 3389 push(_gvn.transform(phi));
duke@435 3390
duke@435 3391 return true;
duke@435 3392 }
duke@435 3393
duke@435 3394 //---------------------generate_array_guard_common------------------------
duke@435 3395 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 3396 bool obj_array, bool not_array) {
duke@435 3397 // If obj_array/non_array==false/false:
duke@435 3398 // Branch around if the given klass is in fact an array (either obj or prim).
duke@435 3399 // If obj_array/non_array==false/true:
duke@435 3400 // Branch around if the given klass is not an array klass of any kind.
duke@435 3401 // If obj_array/non_array==true/true:
duke@435 3402 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
duke@435 3403 // If obj_array/non_array==true/false:
duke@435 3404 // Branch around if the kls is an oop array (Object[] or subtype)
duke@435 3405 //
duke@435 3406 // Like generate_guard, adds a new path onto the region.
duke@435 3407 jint layout_con = 0;
duke@435 3408 Node* layout_val = get_layout_helper(kls, layout_con);
duke@435 3409 if (layout_val == NULL) {
duke@435 3410 bool query = (obj_array
duke@435 3411 ? Klass::layout_helper_is_objArray(layout_con)
duke@435 3412 : Klass::layout_helper_is_javaArray(layout_con));
duke@435 3413 if (query == not_array) {
duke@435 3414 return NULL; // never a branch
duke@435 3415 } else { // always a branch
duke@435 3416 Node* always_branch = control();
duke@435 3417 if (region != NULL)
duke@435 3418 region->add_req(always_branch);
duke@435 3419 set_control(top());
duke@435 3420 return always_branch;
duke@435 3421 }
duke@435 3422 }
duke@435 3423 // Now test the correct condition.
duke@435 3424 jint nval = (obj_array
duke@435 3425 ? ((jint)Klass::_lh_array_tag_type_value
duke@435 3426 << Klass::_lh_array_tag_shift)
duke@435 3427 : Klass::_lh_neutral_value);
duke@435 3428 Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
duke@435 3429 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
duke@435 3430 // invert the test if we are looking for a non-array
duke@435 3431 if (not_array) btest = BoolTest(btest).negate();
duke@435 3432 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
duke@435 3433 return generate_fair_guard(bol, region);
duke@435 3434 }
duke@435 3435
duke@435 3436
duke@435 3437 //-----------------------inline_native_newArray--------------------------
duke@435 3438 bool LibraryCallKit::inline_native_newArray() {
duke@435 3439 int nargs = 2;
duke@435 3440 Node* mirror = argument(0);
duke@435 3441 Node* count_val = argument(1);
duke@435 3442
duke@435 3443 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3444 mirror = do_null_check(mirror, T_OBJECT);
duke@435 3445 _sp -= nargs;
kvn@598 3446 // If mirror or obj is dead, only null-path is taken.
kvn@598 3447 if (stopped()) return true;
duke@435 3448
duke@435 3449 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
duke@435 3450 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3451 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3452 TypeInstPtr::NOTNULL);
duke@435 3453 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3454 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3455 TypePtr::BOTTOM);
duke@435 3456
duke@435 3457 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3458 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
duke@435 3459 nargs,
duke@435 3460 result_reg, _slow_path);
duke@435 3461 Node* normal_ctl = control();
duke@435 3462 Node* no_array_ctl = result_reg->in(_slow_path);
duke@435 3463
duke@435 3464 // Generate code for the slow case. We make a call to newArray().
duke@435 3465 set_control(no_array_ctl);
duke@435 3466 if (!stopped()) {
duke@435 3467 // Either the input type is void.class, or else the
duke@435 3468 // array klass has not yet been cached. Either the
duke@435 3469 // ensuing call will throw an exception, or else it
duke@435 3470 // will cache the array klass for next time.
duke@435 3471 PreserveJVMState pjvms(this);
duke@435 3472 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
duke@435 3473 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3474 // this->control() comes from set_results_for_java_call
duke@435 3475 result_reg->set_req(_slow_path, control());
duke@435 3476 result_val->set_req(_slow_path, slow_result);
duke@435 3477 result_io ->set_req(_slow_path, i_o());
duke@435 3478 result_mem->set_req(_slow_path, reset_memory());
duke@435 3479 }
duke@435 3480
duke@435 3481 set_control(normal_ctl);
duke@435 3482 if (!stopped()) {
duke@435 3483 // Normal case: The array type has been cached in the java.lang.Class.
duke@435 3484 // The following call works fine even if the array type is polymorphic.
duke@435 3485 // It could be a dynamic mix of int[], boolean[], Object[], etc.
cfang@1165 3486 Node* obj = new_array(klass_node, count_val, nargs);
duke@435 3487 result_reg->init_req(_normal_path, control());
duke@435 3488 result_val->init_req(_normal_path, obj);
duke@435 3489 result_io ->init_req(_normal_path, i_o());
duke@435 3490 result_mem->init_req(_normal_path, reset_memory());
duke@435 3491 }
duke@435 3492
duke@435 3493 // Return the combined state.
duke@435 3494 set_i_o( _gvn.transform(result_io) );
duke@435 3495 set_all_memory( _gvn.transform(result_mem) );
duke@435 3496 push_result(result_reg, result_val);
duke@435 3497 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3498
duke@435 3499 return true;
duke@435 3500 }
duke@435 3501
duke@435 3502 //----------------------inline_native_getLength--------------------------
duke@435 3503 bool LibraryCallKit::inline_native_getLength() {
duke@435 3504 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3505
duke@435 3506 int nargs = 1;
duke@435 3507 Node* array = argument(0);
duke@435 3508
duke@435 3509 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3510 array = do_null_check(array, T_OBJECT);
duke@435 3511 _sp -= nargs;
duke@435 3512
duke@435 3513 // If array is dead, only null-path is taken.
duke@435 3514 if (stopped()) return true;
duke@435 3515
duke@435 3516 // Deoptimize if it is a non-array.
duke@435 3517 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
duke@435 3518
duke@435 3519 if (non_array != NULL) {
duke@435 3520 PreserveJVMState pjvms(this);
duke@435 3521 set_control(non_array);
duke@435 3522 _sp += nargs; // push the arguments back on the stack
duke@435 3523 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 3524 Deoptimization::Action_maybe_recompile);
duke@435 3525 }
duke@435 3526
duke@435 3527 // If control is dead, only non-array-path is taken.
duke@435 3528 if (stopped()) return true;
duke@435 3529
duke@435 3530 // The works fine even if the array type is polymorphic.
duke@435 3531 // It could be a dynamic mix of int[], boolean[], Object[], etc.
duke@435 3532 push( load_array_length(array) );
duke@435 3533
duke@435 3534 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3535
duke@435 3536 return true;
duke@435 3537 }
duke@435 3538
duke@435 3539 //------------------------inline_array_copyOf----------------------------
duke@435 3540 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
duke@435 3541 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3542
duke@435 3543 // Restore the stack and pop off the arguments.
duke@435 3544 int nargs = 3 + (is_copyOfRange? 1: 0);
duke@435 3545 Node* original = argument(0);
duke@435 3546 Node* start = is_copyOfRange? argument(1): intcon(0);
duke@435 3547 Node* end = is_copyOfRange? argument(2): argument(1);
duke@435 3548 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
duke@435 3549
cfang@1337 3550 Node* newcopy;
cfang@1337 3551
cfang@1337 3552 //set the original stack and the reexecute bit for the interpreter to reexecute
cfang@1337 3553 //the bytecode that invokes Arrays.copyOf if deoptimization happens
cfang@1337 3554 { PreserveReexecuteState preexecs(this);
cfang@1337 3555 _sp += nargs;
cfang@1337 3556 jvms()->set_should_reexecute(true);
cfang@1337 3557
cfang@1337 3558 array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
cfang@1337 3559 original = do_null_check(original, T_OBJECT);
cfang@1337 3560
cfang@1337 3561 // Check if a null path was taken unconditionally.
cfang@1337 3562 if (stopped()) return true;
cfang@1337 3563
cfang@1337 3564 Node* orig_length = load_array_length(original);
cfang@1337 3565
cfang@1337 3566 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
cfang@1337 3567 NULL, 0);
cfang@1337 3568 klass_node = do_null_check(klass_node, T_OBJECT);
cfang@1337 3569
cfang@1337 3570 RegionNode* bailout = new (C, 1) RegionNode(1);
cfang@1337 3571 record_for_igvn(bailout);
cfang@1337 3572
cfang@1337 3573 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
cfang@1337 3574 // Bail out if that is so.
cfang@1337 3575 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
cfang@1337 3576 if (not_objArray != NULL) {
cfang@1337 3577 // Improve the klass node's type from the new optimistic assumption:
cfang@1337 3578 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
cfang@1337 3579 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
cfang@1337 3580 Node* cast = new (C, 2) CastPPNode(klass_node, akls);
cfang@1337 3581 cast->init_req(0, control());
cfang@1337 3582 klass_node = _gvn.transform(cast);
cfang@1337 3583 }
cfang@1337 3584
cfang@1337 3585 // Bail out if either start or end is negative.
cfang@1337 3586 generate_negative_guard(start, bailout, &start);
cfang@1337 3587 generate_negative_guard(end, bailout, &end);
cfang@1337 3588
cfang@1337 3589 Node* length = end;
cfang@1337 3590 if (_gvn.type(start) != TypeInt::ZERO) {
cfang@1337 3591 length = _gvn.transform( new (C, 3) SubINode(end, start) );
cfang@1337 3592 }
cfang@1337 3593
cfang@1337 3594 // Bail out if length is negative.
cfang@1337 3595 // ...Not needed, since the new_array will throw the right exception.
cfang@1337 3596 //generate_negative_guard(length, bailout, &length);
cfang@1337 3597
cfang@1337 3598 if (bailout->req() > 1) {
cfang@1337 3599 PreserveJVMState pjvms(this);
cfang@1337 3600 set_control( _gvn.transform(bailout) );
cfang@1337 3601 uncommon_trap(Deoptimization::Reason_intrinsic,
cfang@1337 3602 Deoptimization::Action_maybe_recompile);
cfang@1337 3603 }
cfang@1337 3604
cfang@1337 3605 if (!stopped()) {
cfang@1335 3606
cfang@1335 3607 // How many elements will we copy from the original?
cfang@1335 3608 // The answer is MinI(orig_length - start, length).
cfang@1335 3609 Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
cfang@1335 3610 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
cfang@1335 3611
kvn@2810 3612 newcopy = new_array(klass_node, length, 0);
cfang@1335 3613
cfang@1335 3614 // Generate a direct call to the right arraycopy function(s).
cfang@1335 3615 // We know the copy is disjoint but we might not know if the
cfang@1335 3616 // oop stores need checking.
cfang@1335 3617 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
cfang@1335 3618 // This will fail a store-check if x contains any non-nulls.
cfang@1335 3619 bool disjoint_bases = true;
cfang@1335 3620 bool length_never_negative = true;
cfang@1335 3621 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 3622 original, start, newcopy, intcon(0), moved,
cfang@1335 3623 disjoint_bases, length_never_negative);
cfang@1337 3624 }
cfang@1337 3625 } //original reexecute and sp are set back here
cfang@1337 3626
cfang@1337 3627 if(!stopped()) {
duke@435 3628 push(newcopy);
duke@435 3629 }
duke@435 3630
duke@435 3631 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3632
duke@435 3633 return true;
duke@435 3634 }
duke@435 3635
duke@435 3636
duke@435 3637 //----------------------generate_virtual_guard---------------------------
duke@435 3638 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
duke@435 3639 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
duke@435 3640 RegionNode* slow_region) {
duke@435 3641 ciMethod* method = callee();
duke@435 3642 int vtable_index = method->vtable_index();
duke@435 3643 // Get the methodOop out of the appropriate vtable entry.
duke@435 3644 int entry_offset = (instanceKlass::vtable_start_offset() +
duke@435 3645 vtable_index*vtableEntry::size()) * wordSize +
duke@435 3646 vtableEntry::method_offset_in_bytes();
duke@435 3647 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
duke@435 3648 Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
duke@435 3649
duke@435 3650 // Compare the target method with the expected method (e.g., Object.hashCode).
duke@435 3651 const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
duke@435 3652
duke@435 3653 Node* native_call = makecon(native_call_addr);
duke@435 3654 Node* chk_native = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
duke@435 3655 Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
duke@435 3656
duke@435 3657 return generate_slow_guard(test_native, slow_region);
duke@435 3658 }
duke@435 3659
duke@435 3660 //-----------------------generate_method_call----------------------------
duke@435 3661 // Use generate_method_call to make a slow-call to the real
duke@435 3662 // method if the fast path fails. An alternative would be to
duke@435 3663 // use a stub like OptoRuntime::slow_arraycopy_Java.
duke@435 3664 // This only works for expanding the current library call,
duke@435 3665 // not another intrinsic. (E.g., don't use this for making an
duke@435 3666 // arraycopy call inside of the copyOf intrinsic.)
duke@435 3667 CallJavaNode*
duke@435 3668 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
duke@435 3669 // When compiling the intrinsic method itself, do not use this technique.
duke@435 3670 guarantee(callee() != C->method(), "cannot make slow-call to self");
duke@435 3671
duke@435 3672 ciMethod* method = callee();
duke@435 3673 // ensure the JVMS we have will be correct for this call
duke@435 3674 guarantee(method_id == method->intrinsic_id(), "must match");
duke@435 3675
duke@435 3676 const TypeFunc* tf = TypeFunc::make(method);
duke@435 3677 int tfdc = tf->domain()->cnt();
duke@435 3678 CallJavaNode* slow_call;
duke@435 3679 if (is_static) {
duke@435 3680 assert(!is_virtual, "");
duke@435 3681 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3682 SharedRuntime::get_resolve_static_call_stub(),
duke@435 3683 method, bci());
duke@435 3684 } else if (is_virtual) {
duke@435 3685 null_check_receiver(method);
duke@435 3686 int vtable_index = methodOopDesc::invalid_vtable_index;
duke@435 3687 if (UseInlineCaches) {
duke@435 3688 // Suppress the vtable call
duke@435 3689 } else {
duke@435 3690 // hashCode and clone are not a miranda methods,
duke@435 3691 // so the vtable index is fixed.
duke@435 3692 // No need to use the linkResolver to get it.
duke@435 3693 vtable_index = method->vtable_index();
duke@435 3694 }
duke@435 3695 slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
duke@435 3696 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 3697 method, vtable_index, bci());
duke@435 3698 } else { // neither virtual nor static: opt_virtual
duke@435 3699 null_check_receiver(method);
duke@435 3700 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3701 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 3702 method, bci());
duke@435 3703 slow_call->set_optimized_virtual(true);
duke@435 3704 }
duke@435 3705 set_arguments_for_java_call(slow_call);
duke@435 3706 set_edges_for_java_call(slow_call);
duke@435 3707 return slow_call;
duke@435 3708 }
duke@435 3709
duke@435 3710
duke@435 3711 //------------------------------inline_native_hashcode--------------------
duke@435 3712 // Build special case code for calls to hashCode on an object.
duke@435 3713 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
duke@435 3714 assert(is_static == callee()->is_static(), "correct intrinsic selection");
duke@435 3715 assert(!(is_virtual && is_static), "either virtual, special, or static");
duke@435 3716
duke@435 3717 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
duke@435 3718
duke@435 3719 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3720 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3721 TypeInt::INT);
duke@435 3722 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3723 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3724 TypePtr::BOTTOM);
duke@435 3725 Node* obj = NULL;
duke@435 3726 if (!is_static) {
duke@435 3727 // Check for hashing null object
duke@435 3728 obj = null_check_receiver(callee());
duke@435 3729 if (stopped()) return true; // unconditionally null
duke@435 3730 result_reg->init_req(_null_path, top());
duke@435 3731 result_val->init_req(_null_path, top());
duke@435 3732 } else {
duke@435 3733 // Do a null check, and return zero if null.
duke@435 3734 // System.identityHashCode(null) == 0
duke@435 3735 obj = argument(0);
duke@435 3736 Node* null_ctl = top();
duke@435 3737 obj = null_check_oop(obj, &null_ctl);
duke@435 3738 result_reg->init_req(_null_path, null_ctl);
duke@435 3739 result_val->init_req(_null_path, _gvn.intcon(0));
duke@435 3740 }
duke@435 3741
duke@435 3742 // Unconditionally null? Then return right away.
duke@435 3743 if (stopped()) {
duke@435 3744 set_control( result_reg->in(_null_path) );
duke@435 3745 if (!stopped())
duke@435 3746 push( result_val ->in(_null_path) );
duke@435 3747 return true;
duke@435 3748 }
duke@435 3749
duke@435 3750 // After null check, get the object's klass.
duke@435 3751 Node* obj_klass = load_object_klass(obj);
duke@435 3752
duke@435 3753 // This call may be virtual (invokevirtual) or bound (invokespecial).
duke@435 3754 // For each case we generate slightly different code.
duke@435 3755
duke@435 3756 // We only go to the fast case code if we pass a number of guards. The
duke@435 3757 // paths which do not pass are accumulated in the slow_region.
duke@435 3758 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 3759 record_for_igvn(slow_region);
duke@435 3760
duke@435 3761 // If this is a virtual call, we generate a funny guard. We pull out
duke@435 3762 // the vtable entry corresponding to hashCode() from the target object.
duke@435 3763 // If the target method which we are calling happens to be the native
duke@435 3764 // Object hashCode() method, we pass the guard. We do not need this
duke@435 3765 // guard for non-virtual calls -- the caller is known to be the native
duke@435 3766 // Object hashCode().
duke@435 3767 if (is_virtual) {
duke@435 3768 generate_virtual_guard(obj_klass, slow_region);
duke@435 3769 }
duke@435 3770
duke@435 3771 // Get the header out of the object, use LoadMarkNode when available
duke@435 3772 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@1964 3773 Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
duke@435 3774
duke@435 3775 // Test the header to see if it is unlocked.
duke@435 3776 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
duke@435 3777 Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
duke@435 3778 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
duke@435 3779 Node *chk_unlocked = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
duke@435 3780 Node *test_unlocked = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
duke@435 3781
duke@435 3782 generate_slow_guard(test_unlocked, slow_region);
duke@435 3783
duke@435 3784 // Get the hash value and check to see that it has been properly assigned.
duke@435 3785 // We depend on hash_mask being at most 32 bits and avoid the use of
duke@435 3786 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
duke@435 3787 // vm: see markOop.hpp.
duke@435 3788 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
duke@435 3789 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
duke@435 3790 Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
duke@435 3791 // This hack lets the hash bits live anywhere in the mark object now, as long
twisti@1040 3792 // as the shift drops the relevant bits into the low 32 bits. Note that
duke@435 3793 // Java spec says that HashCode is an int so there's no point in capturing
duke@435 3794 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
duke@435 3795 hshifted_header = ConvX2I(hshifted_header);
duke@435 3796 Node *hash_val = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
duke@435 3797
duke@435 3798 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
duke@435 3799 Node *chk_assigned = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
duke@435 3800 Node *test_assigned = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
duke@435 3801
duke@435 3802 generate_slow_guard(test_assigned, slow_region);
duke@435 3803
duke@435 3804 Node* init_mem = reset_memory();
duke@435 3805 // fill in the rest of the null path:
duke@435 3806 result_io ->init_req(_null_path, i_o());
duke@435 3807 result_mem->init_req(_null_path, init_mem);
duke@435 3808
duke@435 3809 result_val->init_req(_fast_path, hash_val);
duke@435 3810 result_reg->init_req(_fast_path, control());
duke@435 3811 result_io ->init_req(_fast_path, i_o());
duke@435 3812 result_mem->init_req(_fast_path, init_mem);
duke@435 3813
duke@435 3814 // Generate code for the slow case. We make a call to hashCode().
duke@435 3815 set_control(_gvn.transform(slow_region));
duke@435 3816 if (!stopped()) {
duke@435 3817 // No need for PreserveJVMState, because we're using up the present state.
duke@435 3818 set_all_memory(init_mem);
duke@435 3819 vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
duke@435 3820 if (is_static) hashCode_id = vmIntrinsics::_identityHashCode;
duke@435 3821 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
duke@435 3822 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3823 // this->control() comes from set_results_for_java_call
duke@435 3824 result_reg->init_req(_slow_path, control());
duke@435 3825 result_val->init_req(_slow_path, slow_result);
duke@435 3826 result_io ->set_req(_slow_path, i_o());
duke@435 3827 result_mem ->set_req(_slow_path, reset_memory());
duke@435 3828 }
duke@435 3829
duke@435 3830 // Return the combined state.
duke@435 3831 set_i_o( _gvn.transform(result_io) );
duke@435 3832 set_all_memory( _gvn.transform(result_mem) );
duke@435 3833 push_result(result_reg, result_val);
duke@435 3834
duke@435 3835 return true;
duke@435 3836 }
duke@435 3837
duke@435 3838 //---------------------------inline_native_getClass----------------------------
twisti@1040 3839 // Build special case code for calls to getClass on an object.
duke@435 3840 bool LibraryCallKit::inline_native_getClass() {
duke@435 3841 Node* obj = null_check_receiver(callee());
duke@435 3842 if (stopped()) return true;
duke@435 3843 push( load_mirror_from_klass(load_object_klass(obj)) );
duke@435 3844 return true;
duke@435 3845 }
duke@435 3846
duke@435 3847 //-----------------inline_native_Reflection_getCallerClass---------------------
duke@435 3848 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
duke@435 3849 //
duke@435 3850 // NOTE that this code must perform the same logic as
duke@435 3851 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3852 // Method.invoke() and auxiliary frames.
duke@435 3853
duke@435 3854
duke@435 3855
duke@435 3856
duke@435 3857 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
duke@435 3858 ciMethod* method = callee();
duke@435 3859
duke@435 3860 #ifndef PRODUCT
duke@435 3861 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3862 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
duke@435 3863 }
duke@435 3864 #endif
duke@435 3865
duke@435 3866 debug_only(int saved_sp = _sp);
duke@435 3867
duke@435 3868 // Argument words: (int depth)
duke@435 3869 int nargs = 1;
duke@435 3870
duke@435 3871 _sp += nargs;
duke@435 3872 Node* caller_depth_node = pop();
duke@435 3873
duke@435 3874 assert(saved_sp == _sp, "must have correct argument count");
duke@435 3875
duke@435 3876 // The depth value must be a constant in order for the runtime call
duke@435 3877 // to be eliminated.
duke@435 3878 const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
duke@435 3879 if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
duke@435 3880 #ifndef PRODUCT
duke@435 3881 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3882 tty->print_cr(" Bailing out because caller depth was not a constant");
duke@435 3883 }
duke@435 3884 #endif
duke@435 3885 return false;
duke@435 3886 }
duke@435 3887 // Note that the JVM state at this point does not include the
duke@435 3888 // getCallerClass() frame which we are trying to inline. The
duke@435 3889 // semantics of getCallerClass(), however, are that the "first"
duke@435 3890 // frame is the getCallerClass() frame, so we subtract one from the
duke@435 3891 // requested depth before continuing. We don't inline requests of
duke@435 3892 // getCallerClass(0).
duke@435 3893 int caller_depth = caller_depth_type->get_con() - 1;
duke@435 3894 if (caller_depth < 0) {
duke@435 3895 #ifndef PRODUCT
duke@435 3896 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3897 tty->print_cr(" Bailing out because caller depth was %d", caller_depth);
duke@435 3898 }
duke@435 3899 #endif
duke@435 3900 return false;
duke@435 3901 }
duke@435 3902
duke@435 3903 if (!jvms()->has_method()) {
duke@435 3904 #ifndef PRODUCT
duke@435 3905 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3906 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
duke@435 3907 }
duke@435 3908 #endif
duke@435 3909 return false;
duke@435 3910 }
duke@435 3911 int _depth = jvms()->depth(); // cache call chain depth
duke@435 3912
duke@435 3913 // Walk back up the JVM state to find the caller at the required
duke@435 3914 // depth. NOTE that this code must perform the same logic as
duke@435 3915 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3916 // Method.invoke() and auxiliary frames. Note also that depth is
duke@435 3917 // 1-based (1 is the bottom of the inlining).
duke@435 3918 int inlining_depth = _depth;
duke@435 3919 JVMState* caller_jvms = NULL;
duke@435 3920
duke@435 3921 if (inlining_depth > 0) {
duke@435 3922 caller_jvms = jvms();
duke@435 3923 assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
duke@435 3924 do {
duke@435 3925 // The following if-tests should be performed in this order
duke@435 3926 if (is_method_invoke_or_aux_frame(caller_jvms)) {
duke@435 3927 // Skip a Method.invoke() or auxiliary frame
duke@435 3928 } else if (caller_depth > 0) {
duke@435 3929 // Skip real frame
duke@435 3930 --caller_depth;
duke@435 3931 } else {
duke@435 3932 // We're done: reached desired caller after skipping.
duke@435 3933 break;
duke@435 3934 }
duke@435 3935 caller_jvms = caller_jvms->caller();
duke@435 3936 --inlining_depth;
duke@435 3937 } while (inlining_depth > 0);
duke@435 3938 }
duke@435 3939
duke@435 3940 if (inlining_depth == 0) {
duke@435 3941 #ifndef PRODUCT
duke@435 3942 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3943 tty->print_cr(" Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
duke@435 3944 tty->print_cr(" JVM state at this point:");
duke@435 3945 for (int i = _depth; i >= 1; i--) {
duke@435 3946 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3947 }
duke@435 3948 }
duke@435 3949 #endif
duke@435 3950 return false; // Reached end of inlining
duke@435 3951 }
duke@435 3952
duke@435 3953 // Acquire method holder as java.lang.Class
duke@435 3954 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
duke@435 3955 ciInstance* caller_mirror = caller_klass->java_mirror();
duke@435 3956 // Push this as a constant
duke@435 3957 push(makecon(TypeInstPtr::make(caller_mirror)));
duke@435 3958 #ifndef PRODUCT
duke@435 3959 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3960 tty->print_cr(" Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
duke@435 3961 tty->print_cr(" JVM state at this point:");
duke@435 3962 for (int i = _depth; i >= 1; i--) {
duke@435 3963 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3964 }
duke@435 3965 }
duke@435 3966 #endif
duke@435 3967 return true;
duke@435 3968 }
duke@435 3969
duke@435 3970 // Helper routine for above
duke@435 3971 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
twisti@1587 3972 ciMethod* method = jvms->method();
twisti@1587 3973
duke@435 3974 // Is this the Method.invoke method itself?
twisti@1587 3975 if (method->intrinsic_id() == vmIntrinsics::_invoke)
duke@435 3976 return true;
duke@435 3977
duke@435 3978 // Is this a helper, defined somewhere underneath MethodAccessorImpl.
twisti@1587 3979 ciKlass* k = method->holder();
duke@435 3980 if (k->is_instance_klass()) {
duke@435 3981 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3982 for (; ik != NULL; ik = ik->super()) {
duke@435 3983 if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
duke@435 3984 ik == env()->find_system_klass(ik->name())) {
duke@435 3985 return true;
duke@435 3986 }
duke@435 3987 }
duke@435 3988 }
twisti@1587 3989 else if (method->is_method_handle_adapter()) {
twisti@1587 3990 // This is an internal adapter frame from the MethodHandleCompiler -- skip it
twisti@1587 3991 return true;
twisti@1587 3992 }
duke@435 3993
duke@435 3994 return false;
duke@435 3995 }
duke@435 3996
duke@435 3997 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
duke@435 3998 // restore the arguments
duke@435 3999 _sp += arg_size();
duke@435 4000
duke@435 4001 switch (id) {
duke@435 4002 case vmIntrinsics::_floatToRawIntBits:
duke@435 4003 push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
duke@435 4004 break;
duke@435 4005
duke@435 4006 case vmIntrinsics::_intBitsToFloat:
duke@435 4007 push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
duke@435 4008 break;
duke@435 4009
duke@435 4010 case vmIntrinsics::_doubleToRawLongBits:
duke@435 4011 push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
duke@435 4012 break;
duke@435 4013
duke@435 4014 case vmIntrinsics::_longBitsToDouble:
duke@435 4015 push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
duke@435 4016 break;
duke@435 4017
duke@435 4018 case vmIntrinsics::_doubleToLongBits: {
duke@435 4019 Node* value = pop_pair();
duke@435 4020
duke@435 4021 // two paths (plus control) merge in a wood
duke@435 4022 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 4023 Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
duke@435 4024
duke@435 4025 Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
duke@435 4026 // Build the boolean node
duke@435 4027 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 4028
duke@435 4029 // Branch either way.
duke@435 4030 // NaN case is less traveled, which makes all the difference.
duke@435 4031 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 4032 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 4033 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 4034 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 4035 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 4036
duke@435 4037 set_control(iftrue);
duke@435 4038
duke@435 4039 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 4040 Node *slow_result = longcon(nan_bits); // return NaN
duke@435 4041 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 4042 r->init_req(1, iftrue);
duke@435 4043
duke@435 4044 // Else fall through
duke@435 4045 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 4046 set_control(iffalse);
duke@435 4047
duke@435 4048 phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
duke@435 4049 r->init_req(2, iffalse);
duke@435 4050
duke@435 4051 // Post merge
duke@435 4052 set_control(_gvn.transform(r));
duke@435 4053 record_for_igvn(r);
duke@435 4054
duke@435 4055 Node* result = _gvn.transform(phi);
duke@435 4056 assert(result->bottom_type()->isa_long(), "must be");
duke@435 4057 push_pair(result);
duke@435 4058
duke@435 4059 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 4060
duke@435 4061 break;
duke@435 4062 }
duke@435 4063
duke@435 4064 case vmIntrinsics::_floatToIntBits: {
duke@435 4065 Node* value = pop();
duke@435 4066
duke@435 4067 // two paths (plus control) merge in a wood
duke@435 4068 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 4069 Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
duke@435 4070
duke@435 4071 Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
duke@435 4072 // Build the boolean node
duke@435 4073 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 4074
duke@435 4075 // Branch either way.
duke@435 4076 // NaN case is less traveled, which makes all the difference.
duke@435 4077 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 4078 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 4079 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 4080 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 4081 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 4082
duke@435 4083 set_control(iftrue);
duke@435 4084
duke@435 4085 static const jint nan_bits = 0x7fc00000;
duke@435 4086 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
duke@435 4087 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 4088 r->init_req(1, iftrue);
duke@435 4089
duke@435 4090 // Else fall through
duke@435 4091 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 4092 set_control(iffalse);
duke@435 4093
duke@435 4094 phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
duke@435 4095 r->init_req(2, iffalse);
duke@435 4096
duke@435 4097 // Post merge
duke@435 4098 set_control(_gvn.transform(r));
duke@435 4099 record_for_igvn(r);
duke@435 4100
duke@435 4101 Node* result = _gvn.transform(phi);
duke@435 4102 assert(result->bottom_type()->isa_int(), "must be");
duke@435 4103 push(result);
duke@435 4104
duke@435 4105 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 4106
duke@435 4107 break;
duke@435 4108 }
duke@435 4109
duke@435 4110 default:
duke@435 4111 ShouldNotReachHere();
duke@435 4112 }
duke@435 4113
duke@435 4114 return true;
duke@435 4115 }
duke@435 4116
duke@435 4117 #ifdef _LP64
duke@435 4118 #define XTOP ,top() /*additional argument*/
duke@435 4119 #else //_LP64
duke@435 4120 #define XTOP /*no additional argument*/
duke@435 4121 #endif //_LP64
duke@435 4122
duke@435 4123 //----------------------inline_unsafe_copyMemory-------------------------
duke@435 4124 bool LibraryCallKit::inline_unsafe_copyMemory() {
duke@435 4125 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 4126 int nargs = 1 + 5 + 3; // 5 args: (src: ptr,off, dst: ptr,off, size)
duke@435 4127 assert(signature()->size() == nargs-1, "copy has 5 arguments");
duke@435 4128 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 4129 if (stopped()) return true;
duke@435 4130
duke@435 4131 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 4132
duke@435 4133 Node* src_ptr = argument(1);
duke@435 4134 Node* src_off = ConvL2X(argument(2));
duke@435 4135 assert(argument(3)->is_top(), "2nd half of long");
duke@435 4136 Node* dst_ptr = argument(4);
duke@435 4137 Node* dst_off = ConvL2X(argument(5));
duke@435 4138 assert(argument(6)->is_top(), "2nd half of long");
duke@435 4139 Node* size = ConvL2X(argument(7));
duke@435 4140 assert(argument(8)->is_top(), "2nd half of long");
duke@435 4141
duke@435 4142 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 4143 "fieldOffset must be byte-scaled");
duke@435 4144
duke@435 4145 Node* src = make_unsafe_address(src_ptr, src_off);
duke@435 4146 Node* dst = make_unsafe_address(dst_ptr, dst_off);
duke@435 4147
duke@435 4148 // Conservatively insert a memory barrier on all memory slices.
duke@435 4149 // Do not let writes of the copy source or destination float below the copy.
duke@435 4150 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4151
duke@435 4152 // Call it. Note that the length argument is not scaled.
duke@435 4153 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 4154 OptoRuntime::fast_arraycopy_Type(),
duke@435 4155 StubRoutines::unsafe_arraycopy(),
duke@435 4156 "unsafe_arraycopy",
duke@435 4157 TypeRawPtr::BOTTOM,
duke@435 4158 src, dst, size XTOP);
duke@435 4159
duke@435 4160 // Do not let reads of the copy destination float above the copy.
duke@435 4161 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4162
duke@435 4163 return true;
duke@435 4164 }
duke@435 4165
kvn@1268 4166 //------------------------clone_coping-----------------------------------
kvn@1268 4167 // Helper function for inline_native_clone.
kvn@1268 4168 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
kvn@1268 4169 assert(obj_size != NULL, "");
kvn@1268 4170 Node* raw_obj = alloc_obj->in(1);
kvn@1268 4171 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
kvn@1268 4172
roland@3392 4173 AllocateNode* alloc = NULL;
kvn@1268 4174 if (ReduceBulkZeroing) {
kvn@1268 4175 // We will be completely responsible for initializing this object -
kvn@1268 4176 // mark Initialize node as complete.
roland@3392 4177 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
kvn@1268 4178 // The object was just allocated - there should be no any stores!
kvn@1268 4179 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
roland@3392 4180 // Mark as complete_with_arraycopy so that on AllocateNode
roland@3392 4181 // expansion, we know this AllocateNode is initialized by an array
roland@3392 4182 // copy and a StoreStore barrier exists after the array copy.
roland@3392 4183 alloc->initialization()->set_complete_with_arraycopy();
kvn@1268 4184 }
kvn@1268 4185
kvn@1268 4186 // Copy the fastest available way.
kvn@1268 4187 // TODO: generate fields copies for small objects instead.
kvn@1268 4188 Node* src = obj;
kvn@1393 4189 Node* dest = alloc_obj;
kvn@1268 4190 Node* size = _gvn.transform(obj_size);
kvn@1268 4191
kvn@1268 4192 // Exclude the header but include array length to copy by 8 bytes words.
kvn@1268 4193 // Can't use base_offset_in_bytes(bt) since basic type is unknown.
kvn@1268 4194 int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
kvn@1268 4195 instanceOopDesc::base_offset_in_bytes();
kvn@1268 4196 // base_off:
kvn@1268 4197 // 8 - 32-bit VM
kvn@1268 4198 // 12 - 64-bit VM, compressed oops
kvn@1268 4199 // 16 - 64-bit VM, normal oops
kvn@1268 4200 if (base_off % BytesPerLong != 0) {
kvn@1268 4201 assert(UseCompressedOops, "");
kvn@1268 4202 if (is_array) {
kvn@1268 4203 // Exclude length to copy by 8 bytes words.
kvn@1268 4204 base_off += sizeof(int);
kvn@1268 4205 } else {
kvn@1268 4206 // Include klass to copy by 8 bytes words.
kvn@1268 4207 base_off = instanceOopDesc::klass_offset_in_bytes();
kvn@1268 4208 }
kvn@1268 4209 assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
kvn@1268 4210 }
kvn@1268 4211 src = basic_plus_adr(src, base_off);
kvn@1268 4212 dest = basic_plus_adr(dest, base_off);
kvn@1268 4213
kvn@1268 4214 // Compute the length also, if needed:
kvn@1268 4215 Node* countx = size;
kvn@1268 4216 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
kvn@1268 4217 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
kvn@1268 4218
kvn@1268 4219 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
kvn@1268 4220 bool disjoint_bases = true;
kvn@1268 4221 generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
iveresov@2606 4222 src, NULL, dest, NULL, countx,
iveresov@2606 4223 /*dest_uninitialized*/true);
kvn@1268 4224
kvn@1268 4225 // If necessary, emit some card marks afterwards. (Non-arrays only.)
kvn@1268 4226 if (card_mark) {
kvn@1268 4227 assert(!is_array, "");
kvn@1268 4228 // Put in store barrier for any and all oops we are sticking
kvn@1268 4229 // into this object. (We could avoid this if we could prove
kvn@1268 4230 // that the object type contains no oop fields at all.)
kvn@1268 4231 Node* no_particular_value = NULL;
kvn@1268 4232 Node* no_particular_field = NULL;
kvn@1268 4233 int raw_adr_idx = Compile::AliasIdxRaw;
kvn@1268 4234 post_barrier(control(),
kvn@1268 4235 memory(raw_adr_type),
kvn@1393 4236 alloc_obj,
kvn@1268 4237 no_particular_field,
kvn@1268 4238 raw_adr_idx,
kvn@1268 4239 no_particular_value,
kvn@1268 4240 T_OBJECT,
kvn@1268 4241 false);
kvn@1268 4242 }
kvn@1268 4243
kvn@1393 4244 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 4245 if (alloc != NULL) {
roland@3392 4246 // Do not let stores that initialize this object be reordered with
roland@3392 4247 // a subsequent store that would make this object accessible by
roland@3392 4248 // other threads.
roland@3392 4249 // Record what AllocateNode this StoreStore protects so that
roland@3392 4250 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 4251 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 4252 // based on the escape status of the AllocateNode.
roland@3392 4253 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 4254 } else {
roland@3392 4255 insert_mem_bar(Op_MemBarCPUOrder);
roland@3392 4256 }
kvn@1268 4257 }
duke@435 4258
duke@435 4259 //------------------------inline_native_clone----------------------------
duke@435 4260 // Here are the simple edge cases:
duke@435 4261 // null receiver => normal trap
duke@435 4262 // virtual and clone was overridden => slow path to out-of-line clone
duke@435 4263 // not cloneable or finalizer => slow path to out-of-line Object.clone
duke@435 4264 //
duke@435 4265 // The general case has two steps, allocation and copying.
duke@435 4266 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
duke@435 4267 //
duke@435 4268 // Copying also has two cases, oop arrays and everything else.
duke@435 4269 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
duke@435 4270 // Everything else uses the tight inline loop supplied by CopyArrayNode.
duke@435 4271 //
duke@435 4272 // These steps fold up nicely if and when the cloned object's klass
duke@435 4273 // can be sharply typed as an object array, a type array, or an instance.
duke@435 4274 //
duke@435 4275 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
duke@435 4276 int nargs = 1;
cfang@1337 4277 PhiNode* result_val;
duke@435 4278
cfang@1335 4279 //set the original stack and the reexecute bit for the interpreter to reexecute
cfang@1335 4280 //the bytecode that invokes Object.clone if deoptimization happens
cfang@1335 4281 { PreserveReexecuteState preexecs(this);
cfang@1337 4282 jvms()->set_should_reexecute(true);
cfang@1337 4283
cfang@1337 4284 //null_check_receiver will adjust _sp (push and pop)
cfang@1337 4285 Node* obj = null_check_receiver(callee());
cfang@1337 4286 if (stopped()) return true;
cfang@1337 4287
cfang@1335 4288 _sp += nargs;
cfang@1337 4289
cfang@1337 4290 Node* obj_klass = load_object_klass(obj);
cfang@1337 4291 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
cfang@1337 4292 const TypeOopPtr* toop = ((tklass != NULL)
cfang@1337 4293 ? tklass->as_instance_type()
cfang@1337 4294 : TypeInstPtr::NOTNULL);
cfang@1337 4295
cfang@1337 4296 // Conservatively insert a memory barrier on all memory slices.
cfang@1337 4297 // Do not let writes into the original float below the clone.
cfang@1337 4298 insert_mem_bar(Op_MemBarCPUOrder);
cfang@1337 4299
cfang@1337 4300 // paths into result_reg:
cfang@1337 4301 enum {
cfang@1337 4302 _slow_path = 1, // out-of-line call to clone method (virtual or not)
cfang@1337 4303 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
cfang@1337 4304 _array_path, // plain array allocation, plus arrayof_long_arraycopy
cfang@1337 4305 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy
cfang@1337 4306 PATH_LIMIT
cfang@1337 4307 };
cfang@1337 4308 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
cfang@1337 4309 result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
cfang@1337 4310 TypeInstPtr::NOTNULL);
cfang@1337 4311 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
cfang@1337 4312 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
cfang@1337 4313 TypePtr::BOTTOM);
cfang@1337 4314 record_for_igvn(result_reg);
cfang@1337 4315
cfang@1337 4316 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
cfang@1337 4317 int raw_adr_idx = Compile::AliasIdxRaw;
cfang@1335 4318
cfang@1335 4319 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4320 if (array_ctl != NULL) {
cfang@1335 4321 // It's an array.
cfang@1335 4322 PreserveJVMState pjvms(this);
cfang@1335 4323 set_control(array_ctl);
cfang@1335 4324 Node* obj_length = load_array_length(obj);
cfang@1335 4325 Node* obj_size = NULL;
kvn@2810 4326 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
cfang@1335 4327
cfang@1335 4328 if (!use_ReduceInitialCardMarks()) {
cfang@1335 4329 // If it is an oop array, it requires very special treatment,
cfang@1335 4330 // because card marking is required on each card of the array.
cfang@1335 4331 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4332 if (is_obja != NULL) {
cfang@1335 4333 PreserveJVMState pjvms2(this);
cfang@1335 4334 set_control(is_obja);
cfang@1335 4335 // Generate a direct call to the right arraycopy function(s).
cfang@1335 4336 bool disjoint_bases = true;
cfang@1335 4337 bool length_never_negative = true;
cfang@1335 4338 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 4339 obj, intcon(0), alloc_obj, intcon(0),
cfang@1335 4340 obj_length,
cfang@1335 4341 disjoint_bases, length_never_negative);
cfang@1335 4342 result_reg->init_req(_objArray_path, control());
cfang@1335 4343 result_val->init_req(_objArray_path, alloc_obj);
cfang@1335 4344 result_i_o ->set_req(_objArray_path, i_o());
cfang@1335 4345 result_mem ->set_req(_objArray_path, reset_memory());
cfang@1335 4346 }
cfang@1335 4347 }
cfang@1335 4348 // Otherwise, there are no card marks to worry about.
ysr@1462 4349 // (We can dispense with card marks if we know the allocation
ysr@1462 4350 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
ysr@1462 4351 // causes the non-eden paths to take compensating steps to
ysr@1462 4352 // simulate a fresh allocation, so that no further
ysr@1462 4353 // card marks are required in compiled code to initialize
ysr@1462 4354 // the object.)
cfang@1335 4355
cfang@1335 4356 if (!stopped()) {
cfang@1335 4357 copy_to_clone(obj, alloc_obj, obj_size, true, false);
cfang@1335 4358
cfang@1335 4359 // Present the results of the copy.
cfang@1335 4360 result_reg->init_req(_array_path, control());
cfang@1335 4361 result_val->init_req(_array_path, alloc_obj);
cfang@1335 4362 result_i_o ->set_req(_array_path, i_o());
cfang@1335 4363 result_mem ->set_req(_array_path, reset_memory());
duke@435 4364 }
duke@435 4365 }
cfang@1335 4366
cfang@1335 4367 // We only go to the instance fast case code if we pass a number of guards.
cfang@1335 4368 // The paths which do not pass are accumulated in the slow_region.
cfang@1335 4369 RegionNode* slow_region = new (C, 1) RegionNode(1);
cfang@1335 4370 record_for_igvn(slow_region);
kvn@1268 4371 if (!stopped()) {
cfang@1335 4372 // It's an instance (we did array above). Make the slow-path tests.
cfang@1335 4373 // If this is a virtual call, we generate a funny guard. We grab
cfang@1335 4374 // the vtable entry corresponding to clone() from the target object.
cfang@1335 4375 // If the target method which we are calling happens to be the
cfang@1335 4376 // Object clone() method, we pass the guard. We do not need this
cfang@1335 4377 // guard for non-virtual calls; the caller is known to be the native
cfang@1335 4378 // Object clone().
cfang@1335 4379 if (is_virtual) {
cfang@1335 4380 generate_virtual_guard(obj_klass, slow_region);
cfang@1335 4381 }
cfang@1335 4382
cfang@1335 4383 // The object must be cloneable and must not have a finalizer.
cfang@1335 4384 // Both of these conditions may be checked in a single test.
cfang@1335 4385 // We could optimize the cloneable test further, but we don't care.
cfang@1335 4386 generate_access_flags_guard(obj_klass,
cfang@1335 4387 // Test both conditions:
cfang@1335 4388 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
cfang@1335 4389 // Must be cloneable but not finalizer:
cfang@1335 4390 JVM_ACC_IS_CLONEABLE,
cfang@1335 4391 slow_region);
kvn@1268 4392 }
cfang@1335 4393
cfang@1335 4394 if (!stopped()) {
cfang@1335 4395 // It's an instance, and it passed the slow-path tests.
cfang@1335 4396 PreserveJVMState pjvms(this);
cfang@1335 4397 Node* obj_size = NULL;
kvn@2810 4398 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
cfang@1335 4399
cfang@1335 4400 copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
cfang@1335 4401
cfang@1335 4402 // Present the results of the slow call.
cfang@1335 4403 result_reg->init_req(_instance_path, control());
cfang@1335 4404 result_val->init_req(_instance_path, alloc_obj);
cfang@1335 4405 result_i_o ->set_req(_instance_path, i_o());
cfang@1335 4406 result_mem ->set_req(_instance_path, reset_memory());
duke@435 4407 }
duke@435 4408
cfang@1335 4409 // Generate code for the slow case. We make a call to clone().
cfang@1335 4410 set_control(_gvn.transform(slow_region));
cfang@1335 4411 if (!stopped()) {
cfang@1335 4412 PreserveJVMState pjvms(this);
cfang@1335 4413 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
cfang@1335 4414 Node* slow_result = set_results_for_java_call(slow_call);
cfang@1335 4415 // this->control() comes from set_results_for_java_call
cfang@1335 4416 result_reg->init_req(_slow_path, control());
cfang@1335 4417 result_val->init_req(_slow_path, slow_result);
cfang@1335 4418 result_i_o ->set_req(_slow_path, i_o());
cfang@1335 4419 result_mem ->set_req(_slow_path, reset_memory());
cfang@1335 4420 }
cfang@1337 4421
cfang@1337 4422 // Return the combined state.
cfang@1337 4423 set_control( _gvn.transform(result_reg) );
cfang@1337 4424 set_i_o( _gvn.transform(result_i_o) );
cfang@1337 4425 set_all_memory( _gvn.transform(result_mem) );
cfang@1335 4426 } //original reexecute and sp are set back here
duke@435 4427
kvn@1268 4428 push(_gvn.transform(result_val));
duke@435 4429
duke@435 4430 return true;
duke@435 4431 }
duke@435 4432
duke@435 4433 //------------------------------basictype2arraycopy----------------------------
duke@435 4434 address LibraryCallKit::basictype2arraycopy(BasicType t,
duke@435 4435 Node* src_offset,
duke@435 4436 Node* dest_offset,
duke@435 4437 bool disjoint_bases,
iveresov@2606 4438 const char* &name,
iveresov@2606 4439 bool dest_uninitialized) {
duke@435 4440 const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
duke@435 4441 const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
duke@435 4442
duke@435 4443 bool aligned = false;
duke@435 4444 bool disjoint = disjoint_bases;
duke@435 4445
duke@435 4446 // if the offsets are the same, we can treat the memory regions as
duke@435 4447 // disjoint, because either the memory regions are in different arrays,
duke@435 4448 // or they are identical (which we can treat as disjoint.) We can also
duke@435 4449 // treat a copy with a destination index less that the source index
duke@435 4450 // as disjoint since a low->high copy will work correctly in this case.
duke@435 4451 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
duke@435 4452 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
duke@435 4453 // both indices are constants
duke@435 4454 int s_offs = src_offset_inttype->get_con();
duke@435 4455 int d_offs = dest_offset_inttype->get_con();
kvn@464 4456 int element_size = type2aelembytes(t);
duke@435 4457 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
duke@435 4458 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
duke@435 4459 if (s_offs >= d_offs) disjoint = true;
duke@435 4460 } else if (src_offset == dest_offset && src_offset != NULL) {
duke@435 4461 // This can occur if the offsets are identical non-constants.
duke@435 4462 disjoint = true;
duke@435 4463 }
duke@435 4464
roland@2728 4465 return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
duke@435 4466 }
duke@435 4467
duke@435 4468
duke@435 4469 //------------------------------inline_arraycopy-----------------------
duke@435 4470 bool LibraryCallKit::inline_arraycopy() {
duke@435 4471 // Restore the stack and pop off the arguments.
duke@435 4472 int nargs = 5; // 2 oops, 3 ints, no size_t or long
duke@435 4473 assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
duke@435 4474
duke@435 4475 Node *src = argument(0);
duke@435 4476 Node *src_offset = argument(1);
duke@435 4477 Node *dest = argument(2);
duke@435 4478 Node *dest_offset = argument(3);
duke@435 4479 Node *length = argument(4);
duke@435 4480
duke@435 4481 // Compile time checks. If any of these checks cannot be verified at compile time,
duke@435 4482 // we do not make a fast path for this call. Instead, we let the call remain as it
duke@435 4483 // is. The checks we choose to mandate at compile time are:
duke@435 4484 //
duke@435 4485 // (1) src and dest are arrays.
duke@435 4486 const Type* src_type = src->Value(&_gvn);
duke@435 4487 const Type* dest_type = dest->Value(&_gvn);
duke@435 4488 const TypeAryPtr* top_src = src_type->isa_aryptr();
duke@435 4489 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
duke@435 4490 if (top_src == NULL || top_src->klass() == NULL ||
duke@435 4491 top_dest == NULL || top_dest->klass() == NULL) {
duke@435 4492 // Conservatively insert a memory barrier on all memory slices.
duke@435 4493 // Do not let writes into the source float below the arraycopy.
duke@435 4494 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4495
duke@435 4496 // Call StubRoutines::generic_arraycopy stub.
duke@435 4497 generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
kvn@1268 4498 src, src_offset, dest, dest_offset, length);
duke@435 4499
duke@435 4500 // Do not let reads from the destination float above the arraycopy.
duke@435 4501 // Since we cannot type the arrays, we don't know which slices
duke@435 4502 // might be affected. We could restrict this barrier only to those
duke@435 4503 // memory slices which pertain to array elements--but don't bother.
duke@435 4504 if (!InsertMemBarAfterArraycopy)
duke@435 4505 // (If InsertMemBarAfterArraycopy, there is already one in place.)
duke@435 4506 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4507 return true;
duke@435 4508 }
duke@435 4509
duke@435 4510 // (2) src and dest arrays must have elements of the same BasicType
duke@435 4511 // Figure out the size and type of the elements we will be copying.
duke@435 4512 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4513 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4514 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
duke@435 4515 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
duke@435 4516
duke@435 4517 if (src_elem != dest_elem || dest_elem == T_VOID) {
duke@435 4518 // The component types are not the same or are not recognized. Punt.
duke@435 4519 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
duke@435 4520 generate_slow_arraycopy(TypePtr::BOTTOM,
iveresov@2606 4521 src, src_offset, dest, dest_offset, length,
iveresov@2606 4522 /*dest_uninitialized*/false);
duke@435 4523 return true;
duke@435 4524 }
duke@435 4525
duke@435 4526 //---------------------------------------------------------------------------
duke@435 4527 // We will make a fast path for this call to arraycopy.
duke@435 4528
duke@435 4529 // We have the following tests left to perform:
duke@435 4530 //
duke@435 4531 // (3) src and dest must not be null.
duke@435 4532 // (4) src_offset must not be negative.
duke@435 4533 // (5) dest_offset must not be negative.
duke@435 4534 // (6) length must not be negative.
duke@435 4535 // (7) src_offset + length must not exceed length of src.
duke@435 4536 // (8) dest_offset + length must not exceed length of dest.
duke@435 4537 // (9) each element of an oop array must be assignable
duke@435 4538
duke@435 4539 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 4540 record_for_igvn(slow_region);
duke@435 4541
duke@435 4542 // (3) operands must not be null
duke@435 4543 // We currently perform our null checks with the do_null_check routine.
duke@435 4544 // This means that the null exceptions will be reported in the caller
duke@435 4545 // rather than (correctly) reported inside of the native arraycopy call.
duke@435 4546 // This should be corrected, given time. We do our null check with the
duke@435 4547 // stack pointer restored.
duke@435 4548 _sp += nargs;
duke@435 4549 src = do_null_check(src, T_ARRAY);
duke@435 4550 dest = do_null_check(dest, T_ARRAY);
duke@435 4551 _sp -= nargs;
duke@435 4552
duke@435 4553 // (4) src_offset must not be negative.
duke@435 4554 generate_negative_guard(src_offset, slow_region);
duke@435 4555
duke@435 4556 // (5) dest_offset must not be negative.
duke@435 4557 generate_negative_guard(dest_offset, slow_region);
duke@435 4558
duke@435 4559 // (6) length must not be negative (moved to generate_arraycopy()).
duke@435 4560 // generate_negative_guard(length, slow_region);
duke@435 4561
duke@435 4562 // (7) src_offset + length must not exceed length of src.
duke@435 4563 generate_limit_guard(src_offset, length,
duke@435 4564 load_array_length(src),
duke@435 4565 slow_region);
duke@435 4566
duke@435 4567 // (8) dest_offset + length must not exceed length of dest.
duke@435 4568 generate_limit_guard(dest_offset, length,
duke@435 4569 load_array_length(dest),
duke@435 4570 slow_region);
duke@435 4571
duke@435 4572 // (9) each element of an oop array must be assignable
duke@435 4573 // The generate_arraycopy subroutine checks this.
duke@435 4574
duke@435 4575 // This is where the memory effects are placed:
duke@435 4576 const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
duke@435 4577 generate_arraycopy(adr_type, dest_elem,
duke@435 4578 src, src_offset, dest, dest_offset, length,
kvn@1268 4579 false, false, slow_region);
duke@435 4580
duke@435 4581 return true;
duke@435 4582 }
duke@435 4583
duke@435 4584 //-----------------------------generate_arraycopy----------------------
duke@435 4585 // Generate an optimized call to arraycopy.
duke@435 4586 // Caller must guard against non-arrays.
duke@435 4587 // Caller must determine a common array basic-type for both arrays.
duke@435 4588 // Caller must validate offsets against array bounds.
duke@435 4589 // The slow_region has already collected guard failure paths
duke@435 4590 // (such as out of bounds length or non-conformable array types).
duke@435 4591 // The generated code has this shape, in general:
duke@435 4592 //
duke@435 4593 // if (length == 0) return // via zero_path
duke@435 4594 // slowval = -1
duke@435 4595 // if (types unknown) {
duke@435 4596 // slowval = call generic copy loop
duke@435 4597 // if (slowval == 0) return // via checked_path
duke@435 4598 // } else if (indexes in bounds) {
duke@435 4599 // if ((is object array) && !(array type check)) {
duke@435 4600 // slowval = call checked copy loop
duke@435 4601 // if (slowval == 0) return // via checked_path
duke@435 4602 // } else {
duke@435 4603 // call bulk copy loop
duke@435 4604 // return // via fast_path
duke@435 4605 // }
duke@435 4606 // }
duke@435 4607 // // adjust params for remaining work:
duke@435 4608 // if (slowval != -1) {
duke@435 4609 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n
duke@435 4610 // }
duke@435 4611 // slow_region:
duke@435 4612 // call slow arraycopy(src, src_offset, dest, dest_offset, length)
duke@435 4613 // return // via slow_call_path
duke@435 4614 //
duke@435 4615 // This routine is used from several intrinsics: System.arraycopy,
duke@435 4616 // Object.clone (the array subcase), and Arrays.copyOf[Range].
duke@435 4617 //
duke@435 4618 void
duke@435 4619 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
duke@435 4620 BasicType basic_elem_type,
duke@435 4621 Node* src, Node* src_offset,
duke@435 4622 Node* dest, Node* dest_offset,
duke@435 4623 Node* copy_length,
duke@435 4624 bool disjoint_bases,
duke@435 4625 bool length_never_negative,
duke@435 4626 RegionNode* slow_region) {
duke@435 4627
duke@435 4628 if (slow_region == NULL) {
duke@435 4629 slow_region = new(C,1) RegionNode(1);
duke@435 4630 record_for_igvn(slow_region);
duke@435 4631 }
duke@435 4632
duke@435 4633 Node* original_dest = dest;
duke@435 4634 AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
iveresov@2606 4635 bool dest_uninitialized = false;
duke@435 4636
duke@435 4637 // See if this is the initialization of a newly-allocated array.
duke@435 4638 // If so, we will take responsibility here for initializing it to zero.
duke@435 4639 // (Note: Because tightly_coupled_allocation performs checks on the
duke@435 4640 // out-edges of the dest, we need to avoid making derived pointers
duke@435 4641 // from it until we have checked its uses.)
duke@435 4642 if (ReduceBulkZeroing
duke@435 4643 && !ZeroTLAB // pointless if already zeroed
duke@435 4644 && basic_elem_type != T_CONFLICT // avoid corner case
kvn@3407 4645 && !src->eqv_uncast(dest)
duke@435 4646 && ((alloc = tightly_coupled_allocation(dest, slow_region))
duke@435 4647 != NULL)
kvn@469 4648 && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
duke@435 4649 && alloc->maybe_set_complete(&_gvn)) {
duke@435 4650 // "You break it, you buy it."
duke@435 4651 InitializeNode* init = alloc->initialization();
duke@435 4652 assert(init->is_complete(), "we just did this");
kvn@3157 4653 init->set_complete_with_arraycopy();
kvn@1268 4654 assert(dest->is_CheckCastPP(), "sanity");
duke@435 4655 assert(dest->in(0)->in(0) == init, "dest pinned");
duke@435 4656 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
duke@435 4657 // From this point on, every exit path is responsible for
duke@435 4658 // initializing any non-copied parts of the object to zero.
iveresov@2606 4659 // Also, if this flag is set we make sure that arraycopy interacts properly
iveresov@2606 4660 // with G1, eliding pre-barriers. See CR 6627983.
iveresov@2606 4661 dest_uninitialized = true;
duke@435 4662 } else {
duke@435 4663 // No zeroing elimination here.
duke@435 4664 alloc = NULL;
duke@435 4665 //original_dest = dest;
iveresov@2606 4666 //dest_uninitialized = false;
duke@435 4667 }
duke@435 4668
duke@435 4669 // Results are placed here:
duke@435 4670 enum { fast_path = 1, // normal void-returning assembly stub
duke@435 4671 checked_path = 2, // special assembly stub with cleanup
duke@435 4672 slow_call_path = 3, // something went wrong; call the VM
duke@435 4673 zero_path = 4, // bypass when length of copy is zero
duke@435 4674 bcopy_path = 5, // copy primitive array by 64-bit blocks
duke@435 4675 PATH_LIMIT = 6
duke@435 4676 };
duke@435 4677 RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 4678 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
duke@435 4679 PhiNode* result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
duke@435 4680 record_for_igvn(result_region);
duke@435 4681 _gvn.set_type_bottom(result_i_o);
duke@435 4682 _gvn.set_type_bottom(result_memory);
duke@435 4683 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
duke@435 4684
duke@435 4685 // The slow_control path:
duke@435 4686 Node* slow_control;
duke@435 4687 Node* slow_i_o = i_o();
duke@435 4688 Node* slow_mem = memory(adr_type);
duke@435 4689 debug_only(slow_control = (Node*) badAddress);
duke@435 4690
duke@435 4691 // Checked control path:
duke@435 4692 Node* checked_control = top();
duke@435 4693 Node* checked_mem = NULL;
duke@435 4694 Node* checked_i_o = NULL;
duke@435 4695 Node* checked_value = NULL;
duke@435 4696
duke@435 4697 if (basic_elem_type == T_CONFLICT) {
iveresov@2606 4698 assert(!dest_uninitialized, "");
duke@435 4699 Node* cv = generate_generic_arraycopy(adr_type,
duke@435 4700 src, src_offset, dest, dest_offset,
iveresov@2606 4701 copy_length, dest_uninitialized);
duke@435 4702 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4703 checked_control = control();
duke@435 4704 checked_i_o = i_o();
duke@435 4705 checked_mem = memory(adr_type);
duke@435 4706 checked_value = cv;
duke@435 4707 set_control(top()); // no fast path
duke@435 4708 }
duke@435 4709
duke@435 4710 Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
duke@435 4711 if (not_pos != NULL) {
duke@435 4712 PreserveJVMState pjvms(this);
duke@435 4713 set_control(not_pos);
duke@435 4714
duke@435 4715 // (6) length must not be negative.
duke@435 4716 if (!length_never_negative) {
duke@435 4717 generate_negative_guard(copy_length, slow_region);
duke@435 4718 }
duke@435 4719
kvn@1271 4720 // copy_length is 0.
iveresov@2606 4721 if (!stopped() && dest_uninitialized) {
duke@435 4722 Node* dest_length = alloc->in(AllocateNode::ALength);
kvn@3407 4723 if (copy_length->eqv_uncast(dest_length)
duke@435 4724 || _gvn.find_int_con(dest_length, 1) <= 0) {
kvn@1271 4725 // There is no zeroing to do. No need for a secondary raw memory barrier.
duke@435 4726 } else {
duke@435 4727 // Clear the whole thing since there are no source elements to copy.
duke@435 4728 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4729 intcon(0), NULL,
duke@435 4730 alloc->in(AllocateNode::AllocSize));
kvn@1271 4731 // Use a secondary InitializeNode as raw memory barrier.
kvn@1271 4732 // Currently it is needed only on this path since other
kvn@1271 4733 // paths have stub or runtime calls as raw memory barriers.
kvn@1271 4734 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
kvn@1271 4735 Compile::AliasIdxRaw,
kvn@1271 4736 top())->as_Initialize();
kvn@1271 4737 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
duke@435 4738 }
duke@435 4739 }
duke@435 4740
duke@435 4741 // Present the results of the fast call.
duke@435 4742 result_region->init_req(zero_path, control());
duke@435 4743 result_i_o ->init_req(zero_path, i_o());
duke@435 4744 result_memory->init_req(zero_path, memory(adr_type));
duke@435 4745 }
duke@435 4746
iveresov@2606 4747 if (!stopped() && dest_uninitialized) {
duke@435 4748 // We have to initialize the *uncopied* part of the array to zero.
duke@435 4749 // The copy destination is the slice dest[off..off+len]. The other slices
duke@435 4750 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
duke@435 4751 Node* dest_size = alloc->in(AllocateNode::AllocSize);
duke@435 4752 Node* dest_length = alloc->in(AllocateNode::ALength);
duke@435 4753 Node* dest_tail = _gvn.transform( new(C,3) AddINode(dest_offset,
duke@435 4754 copy_length) );
duke@435 4755
duke@435 4756 // If there is a head section that needs zeroing, do it now.
duke@435 4757 if (find_int_con(dest_offset, -1) != 0) {
duke@435 4758 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4759 intcon(0), dest_offset,
duke@435 4760 NULL);
duke@435 4761 }
duke@435 4762
duke@435 4763 // Next, perform a dynamic check on the tail length.
duke@435 4764 // It is often zero, and we can win big if we prove this.
duke@435 4765 // There are two wins: Avoid generating the ClearArray
duke@435 4766 // with its attendant messy index arithmetic, and upgrade
duke@435 4767 // the copy to a more hardware-friendly word size of 64 bits.
duke@435 4768 Node* tail_ctl = NULL;
kvn@3407 4769 if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
duke@435 4770 Node* cmp_lt = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
duke@435 4771 Node* bol_lt = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 4772 tail_ctl = generate_slow_guard(bol_lt, NULL);
duke@435 4773 assert(tail_ctl != NULL || !stopped(), "must be an outcome");
duke@435 4774 }
duke@435 4775
duke@435 4776 // At this point, let's assume there is no tail.
duke@435 4777 if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
duke@435 4778 // There is no tail. Try an upgrade to a 64-bit copy.
duke@435 4779 bool didit = false;
duke@435 4780 { PreserveJVMState pjvms(this);
duke@435 4781 didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
duke@435 4782 src, src_offset, dest, dest_offset,
iveresov@2606 4783 dest_size, dest_uninitialized);
duke@435 4784 if (didit) {
duke@435 4785 // Present the results of the block-copying fast call.
duke@435 4786 result_region->init_req(bcopy_path, control());
duke@435 4787 result_i_o ->init_req(bcopy_path, i_o());
duke@435 4788 result_memory->init_req(bcopy_path, memory(adr_type));
duke@435 4789 }
duke@435 4790 }
duke@435 4791 if (didit)
duke@435 4792 set_control(top()); // no regular fast path
duke@435 4793 }
duke@435 4794
duke@435 4795 // Clear the tail, if any.
duke@435 4796 if (tail_ctl != NULL) {
duke@435 4797 Node* notail_ctl = stopped() ? NULL : control();
duke@435 4798 set_control(tail_ctl);
duke@435 4799 if (notail_ctl == NULL) {
duke@435 4800 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4801 dest_tail, NULL,
duke@435 4802 dest_size);
duke@435 4803 } else {
duke@435 4804 // Make a local merge.
duke@435 4805 Node* done_ctl = new(C,3) RegionNode(3);
duke@435 4806 Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
duke@435 4807 done_ctl->init_req(1, notail_ctl);
duke@435 4808 done_mem->init_req(1, memory(adr_type));
duke@435 4809 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4810 dest_tail, NULL,
duke@435 4811 dest_size);
duke@435 4812 done_ctl->init_req(2, control());
duke@435 4813 done_mem->init_req(2, memory(adr_type));
duke@435 4814 set_control( _gvn.transform(done_ctl) );
duke@435 4815 set_memory( _gvn.transform(done_mem), adr_type );
duke@435 4816 }
duke@435 4817 }
duke@435 4818 }
duke@435 4819
duke@435 4820 BasicType copy_type = basic_elem_type;
duke@435 4821 assert(basic_elem_type != T_ARRAY, "caller must fix this");
duke@435 4822 if (!stopped() && copy_type == T_OBJECT) {
duke@435 4823 // If src and dest have compatible element types, we can copy bits.
duke@435 4824 // Types S[] and D[] are compatible if D is a supertype of S.
duke@435 4825 //
duke@435 4826 // If they are not, we will use checked_oop_disjoint_arraycopy,
duke@435 4827 // which performs a fast optimistic per-oop check, and backs off
duke@435 4828 // further to JVM_ArrayCopy on the first per-oop check that fails.
duke@435 4829 // (Actually, we don't move raw bits only; the GC requires card marks.)
duke@435 4830
duke@435 4831 // Get the klassOop for both src and dest
duke@435 4832 Node* src_klass = load_object_klass(src);
duke@435 4833 Node* dest_klass = load_object_klass(dest);
duke@435 4834
duke@435 4835 // Generate the subtype check.
duke@435 4836 // This might fold up statically, or then again it might not.
duke@435 4837 //
duke@435 4838 // Non-static example: Copying List<String>.elements to a new String[].
duke@435 4839 // The backing store for a List<String> is always an Object[],
duke@435 4840 // but its elements are always type String, if the generic types
duke@435 4841 // are correct at the source level.
duke@435 4842 //
duke@435 4843 // Test S[] against D[], not S against D, because (probably)
duke@435 4844 // the secondary supertype cache is less busy for S[] than S.
duke@435 4845 // This usually only matters when D is an interface.
duke@435 4846 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
duke@435 4847 // Plug failing path into checked_oop_disjoint_arraycopy
duke@435 4848 if (not_subtype_ctrl != top()) {
duke@435 4849 PreserveJVMState pjvms(this);
duke@435 4850 set_control(not_subtype_ctrl);
duke@435 4851 // (At this point we can assume disjoint_bases, since types differ.)
stefank@3391 4852 int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
duke@435 4853 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
kvn@599 4854 Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
duke@435 4855 Node* dest_elem_klass = _gvn.transform(n1);
duke@435 4856 Node* cv = generate_checkcast_arraycopy(adr_type,
duke@435 4857 dest_elem_klass,
duke@435 4858 src, src_offset, dest, dest_offset,
iveresov@2606 4859 ConvI2X(copy_length), dest_uninitialized);
duke@435 4860 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4861 checked_control = control();
duke@435 4862 checked_i_o = i_o();
duke@435 4863 checked_mem = memory(adr_type);
duke@435 4864 checked_value = cv;
duke@435 4865 }
duke@435 4866 // At this point we know we do not need type checks on oop stores.
duke@435 4867
duke@435 4868 // Let's see if we need card marks:
duke@435 4869 if (alloc != NULL && use_ReduceInitialCardMarks()) {
duke@435 4870 // If we do not need card marks, copy using the jint or jlong stub.
coleenp@548 4871 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
kvn@464 4872 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
duke@435 4873 "sizes agree");
duke@435 4874 }
duke@435 4875 }
duke@435 4876
duke@435 4877 if (!stopped()) {
duke@435 4878 // Generate the fast path, if possible.
duke@435 4879 PreserveJVMState pjvms(this);
duke@435 4880 generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
duke@435 4881 src, src_offset, dest, dest_offset,
iveresov@2606 4882 ConvI2X(copy_length), dest_uninitialized);
duke@435 4883
duke@435 4884 // Present the results of the fast call.
duke@435 4885 result_region->init_req(fast_path, control());
duke@435 4886 result_i_o ->init_req(fast_path, i_o());
duke@435 4887 result_memory->init_req(fast_path, memory(adr_type));
duke@435 4888 }
duke@435 4889
duke@435 4890 // Here are all the slow paths up to this point, in one bundle:
duke@435 4891 slow_control = top();
duke@435 4892 if (slow_region != NULL)
duke@435 4893 slow_control = _gvn.transform(slow_region);
duke@435 4894 debug_only(slow_region = (RegionNode*)badAddress);
duke@435 4895
duke@435 4896 set_control(checked_control);
duke@435 4897 if (!stopped()) {
duke@435 4898 // Clean up after the checked call.
duke@435 4899 // The returned value is either 0 or -1^K,
duke@435 4900 // where K = number of partially transferred array elements.
duke@435 4901 Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
duke@435 4902 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
duke@435 4903 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
duke@435 4904
duke@435 4905 // If it is 0, we are done, so transfer to the end.
duke@435 4906 Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
duke@435 4907 result_region->init_req(checked_path, checks_done);
duke@435 4908 result_i_o ->init_req(checked_path, checked_i_o);
duke@435 4909 result_memory->init_req(checked_path, checked_mem);
duke@435 4910
duke@435 4911 // If it is not zero, merge into the slow call.
duke@435 4912 set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
duke@435 4913 RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
duke@435 4914 PhiNode* slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
duke@435 4915 PhiNode* slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
duke@435 4916 record_for_igvn(slow_reg2);
duke@435 4917 slow_reg2 ->init_req(1, slow_control);
duke@435 4918 slow_i_o2 ->init_req(1, slow_i_o);
duke@435 4919 slow_mem2 ->init_req(1, slow_mem);
duke@435 4920 slow_reg2 ->init_req(2, control());
kvn@1268 4921 slow_i_o2 ->init_req(2, checked_i_o);
kvn@1268 4922 slow_mem2 ->init_req(2, checked_mem);
duke@435 4923
duke@435 4924 slow_control = _gvn.transform(slow_reg2);
duke@435 4925 slow_i_o = _gvn.transform(slow_i_o2);
duke@435 4926 slow_mem = _gvn.transform(slow_mem2);
duke@435 4927
duke@435 4928 if (alloc != NULL) {
duke@435 4929 // We'll restart from the very beginning, after zeroing the whole thing.
duke@435 4930 // This can cause double writes, but that's OK since dest is brand new.
duke@435 4931 // So we ignore the low 31 bits of the value returned from the stub.
duke@435 4932 } else {
duke@435 4933 // We must continue the copy exactly where it failed, or else
duke@435 4934 // another thread might see the wrong number of writes to dest.
duke@435 4935 Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
duke@435 4936 Node* slow_offset = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
duke@435 4937 slow_offset->init_req(1, intcon(0));
duke@435 4938 slow_offset->init_req(2, checked_offset);
duke@435 4939 slow_offset = _gvn.transform(slow_offset);
duke@435 4940
duke@435 4941 // Adjust the arguments by the conditionally incoming offset.
duke@435 4942 Node* src_off_plus = _gvn.transform( new(C, 3) AddINode(src_offset, slow_offset) );
duke@435 4943 Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
duke@435 4944 Node* length_minus = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
duke@435 4945
duke@435 4946 // Tweak the node variables to adjust the code produced below:
duke@435 4947 src_offset = src_off_plus;
duke@435 4948 dest_offset = dest_off_plus;
duke@435 4949 copy_length = length_minus;
duke@435 4950 }
duke@435 4951 }
duke@435 4952
duke@435 4953 set_control(slow_control);
duke@435 4954 if (!stopped()) {
duke@435 4955 // Generate the slow path, if needed.
duke@435 4956 PreserveJVMState pjvms(this); // replace_in_map may trash the map
duke@435 4957
duke@435 4958 set_memory(slow_mem, adr_type);
duke@435 4959 set_i_o(slow_i_o);
duke@435 4960
iveresov@2606 4961 if (dest_uninitialized) {
duke@435 4962 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4963 intcon(0), NULL,
duke@435 4964 alloc->in(AllocateNode::AllocSize));
duke@435 4965 }
duke@435 4966
duke@435 4967 generate_slow_arraycopy(adr_type,
duke@435 4968 src, src_offset, dest, dest_offset,
iveresov@2606 4969 copy_length, /*dest_uninitialized*/false);
duke@435 4970
duke@435 4971 result_region->init_req(slow_call_path, control());
duke@435 4972 result_i_o ->init_req(slow_call_path, i_o());
duke@435 4973 result_memory->init_req(slow_call_path, memory(adr_type));
duke@435 4974 }
duke@435 4975
duke@435 4976 // Remove unused edges.
duke@435 4977 for (uint i = 1; i < result_region->req(); i++) {
duke@435 4978 if (result_region->in(i) == NULL)
duke@435 4979 result_region->init_req(i, top());
duke@435 4980 }
duke@435 4981
duke@435 4982 // Finished; return the combined state.
duke@435 4983 set_control( _gvn.transform(result_region) );
duke@435 4984 set_i_o( _gvn.transform(result_i_o) );
duke@435 4985 set_memory( _gvn.transform(result_memory), adr_type );
duke@435 4986
duke@435 4987 // The memory edges above are precise in order to model effects around
twisti@1040 4988 // array copies accurately to allow value numbering of field loads around
duke@435 4989 // arraycopy. Such field loads, both before and after, are common in Java
duke@435 4990 // collections and similar classes involving header/array data structures.
duke@435 4991 //
duke@435 4992 // But with low number of register or when some registers are used or killed
duke@435 4993 // by arraycopy calls it causes registers spilling on stack. See 6544710.
duke@435 4994 // The next memory barrier is added to avoid it. If the arraycopy can be
duke@435 4995 // optimized away (which it can, sometimes) then we can manually remove
duke@435 4996 // the membar also.
kvn@1393 4997 //
kvn@1393 4998 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 4999 if (alloc != NULL) {
roland@3392 5000 // Do not let stores that initialize this object be reordered with
roland@3392 5001 // a subsequent store that would make this object accessible by
roland@3392 5002 // other threads.
roland@3392 5003 // Record what AllocateNode this StoreStore protects so that
roland@3392 5004 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 5005 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 5006 // based on the escape status of the AllocateNode.
roland@3392 5007 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 5008 } else if (InsertMemBarAfterArraycopy)
duke@435 5009 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 5010 }
duke@435 5011
duke@435 5012
duke@435 5013 // Helper function which determines if an arraycopy immediately follows
duke@435 5014 // an allocation, with no intervening tests or other escapes for the object.
duke@435 5015 AllocateArrayNode*
duke@435 5016 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
duke@435 5017 RegionNode* slow_region) {
duke@435 5018 if (stopped()) return NULL; // no fast path
duke@435 5019 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
duke@435 5020
duke@435 5021 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
duke@435 5022 if (alloc == NULL) return NULL;
duke@435 5023
duke@435 5024 Node* rawmem = memory(Compile::AliasIdxRaw);
duke@435 5025 // Is the allocation's memory state untouched?
duke@435 5026 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
duke@435 5027 // Bail out if there have been raw-memory effects since the allocation.
duke@435 5028 // (Example: There might have been a call or safepoint.)
duke@435 5029 return NULL;
duke@435 5030 }
duke@435 5031 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
duke@435 5032 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
duke@435 5033 return NULL;
duke@435 5034 }
duke@435 5035
duke@435 5036 // There must be no unexpected observers of this allocation.
duke@435 5037 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
duke@435 5038 Node* obs = ptr->fast_out(i);
duke@435 5039 if (obs != this->map()) {
duke@435 5040 return NULL;
duke@435 5041 }
duke@435 5042 }
duke@435 5043
duke@435 5044 // This arraycopy must unconditionally follow the allocation of the ptr.
duke@435 5045 Node* alloc_ctl = ptr->in(0);
duke@435 5046 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
duke@435 5047
duke@435 5048 Node* ctl = control();
duke@435 5049 while (ctl != alloc_ctl) {
duke@435 5050 // There may be guards which feed into the slow_region.
duke@435 5051 // Any other control flow means that we might not get a chance
duke@435 5052 // to finish initializing the allocated object.
duke@435 5053 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
duke@435 5054 IfNode* iff = ctl->in(0)->as_If();
duke@435 5055 Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
duke@435 5056 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
duke@435 5057 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
duke@435 5058 ctl = iff->in(0); // This test feeds the known slow_region.
duke@435 5059 continue;
duke@435 5060 }
duke@435 5061 // One more try: Various low-level checks bottom out in
duke@435 5062 // uncommon traps. If the debug-info of the trap omits
duke@435 5063 // any reference to the allocation, as we've already
duke@435 5064 // observed, then there can be no objection to the trap.
duke@435 5065 bool found_trap = false;
duke@435 5066 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
duke@435 5067 Node* obs = not_ctl->fast_out(j);
duke@435 5068 if (obs->in(0) == not_ctl && obs->is_Call() &&
twisti@2103 5069 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
duke@435 5070 found_trap = true; break;
duke@435 5071 }
duke@435 5072 }
duke@435 5073 if (found_trap) {
duke@435 5074 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
duke@435 5075 continue;
duke@435 5076 }
duke@435 5077 }
duke@435 5078 return NULL;
duke@435 5079 }
duke@435 5080
duke@435 5081 // If we get this far, we have an allocation which immediately
duke@435 5082 // precedes the arraycopy, and we can take over zeroing the new object.
duke@435 5083 // The arraycopy will finish the initialization, and provide
duke@435 5084 // a new control state to which we will anchor the destination pointer.
duke@435 5085
duke@435 5086 return alloc;
duke@435 5087 }
duke@435 5088
duke@435 5089 // Helper for initialization of arrays, creating a ClearArray.
duke@435 5090 // It writes zero bits in [start..end), within the body of an array object.
duke@435 5091 // The memory effects are all chained onto the 'adr_type' alias category.
duke@435 5092 //
duke@435 5093 // Since the object is otherwise uninitialized, we are free
duke@435 5094 // to put a little "slop" around the edges of the cleared area,
duke@435 5095 // as long as it does not go back into the array's header,
duke@435 5096 // or beyond the array end within the heap.
duke@435 5097 //
duke@435 5098 // The lower edge can be rounded down to the nearest jint and the
duke@435 5099 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
duke@435 5100 //
duke@435 5101 // Arguments:
duke@435 5102 // adr_type memory slice where writes are generated
duke@435 5103 // dest oop of the destination array
duke@435 5104 // basic_elem_type element type of the destination
duke@435 5105 // slice_idx array index of first element to store
duke@435 5106 // slice_len number of elements to store (or NULL)
duke@435 5107 // dest_size total size in bytes of the array object
duke@435 5108 //
duke@435 5109 // Exactly one of slice_len or dest_size must be non-NULL.
duke@435 5110 // If dest_size is non-NULL, zeroing extends to the end of the object.
duke@435 5111 // If slice_len is non-NULL, the slice_idx value must be a constant.
duke@435 5112 void
duke@435 5113 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
duke@435 5114 Node* dest,
duke@435 5115 BasicType basic_elem_type,
duke@435 5116 Node* slice_idx,
duke@435 5117 Node* slice_len,
duke@435 5118 Node* dest_size) {
duke@435 5119 // one or the other but not both of slice_len and dest_size:
duke@435 5120 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
duke@435 5121 if (slice_len == NULL) slice_len = top();
duke@435 5122 if (dest_size == NULL) dest_size = top();
duke@435 5123
duke@435 5124 // operate on this memory slice:
duke@435 5125 Node* mem = memory(adr_type); // memory slice to operate on
duke@435 5126
duke@435 5127 // scaling and rounding of indexes:
kvn@464 5128 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5129 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 5130 int clear_low = (-1 << scale) & (BytesPerInt - 1);
duke@435 5131 int bump_bit = (-1 << scale) & BytesPerInt;
duke@435 5132
duke@435 5133 // determine constant starts and ends
duke@435 5134 const intptr_t BIG_NEG = -128;
duke@435 5135 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 5136 intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
duke@435 5137 intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
duke@435 5138 if (slice_len_con == 0) {
duke@435 5139 return; // nothing to do here
duke@435 5140 }
duke@435 5141 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
duke@435 5142 intptr_t end_con = find_intptr_t_con(dest_size, -1);
duke@435 5143 if (slice_idx_con >= 0 && slice_len_con >= 0) {
duke@435 5144 assert(end_con < 0, "not two cons");
duke@435 5145 end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
duke@435 5146 BytesPerLong);
duke@435 5147 }
duke@435 5148
duke@435 5149 if (start_con >= 0 && end_con >= 0) {
duke@435 5150 // Constant start and end. Simple.
duke@435 5151 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5152 start_con, end_con, &_gvn);
duke@435 5153 } else if (start_con >= 0 && dest_size != top()) {
duke@435 5154 // Constant start, pre-rounded end after the tail of the array.
duke@435 5155 Node* end = dest_size;
duke@435 5156 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5157 start_con, end, &_gvn);
duke@435 5158 } else if (start_con >= 0 && slice_len != top()) {
duke@435 5159 // Constant start, non-constant end. End needs rounding up.
duke@435 5160 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
duke@435 5161 intptr_t end_base = abase + (slice_idx_con << scale);
duke@435 5162 int end_round = (-1 << scale) & (BytesPerLong - 1);
duke@435 5163 Node* end = ConvI2X(slice_len);
duke@435 5164 if (scale != 0)
duke@435 5165 end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
duke@435 5166 end_base += end_round;
duke@435 5167 end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
duke@435 5168 end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
duke@435 5169 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5170 start_con, end, &_gvn);
duke@435 5171 } else if (start_con < 0 && dest_size != top()) {
duke@435 5172 // Non-constant start, pre-rounded end after the tail of the array.
duke@435 5173 // This is almost certainly a "round-to-end" operation.
duke@435 5174 Node* start = slice_idx;
duke@435 5175 start = ConvI2X(start);
duke@435 5176 if (scale != 0)
duke@435 5177 start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
duke@435 5178 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
duke@435 5179 if ((bump_bit | clear_low) != 0) {
duke@435 5180 int to_clear = (bump_bit | clear_low);
duke@435 5181 // Align up mod 8, then store a jint zero unconditionally
duke@435 5182 // just before the mod-8 boundary.
coleenp@548 5183 if (((abase + bump_bit) & ~to_clear) - bump_bit
coleenp@548 5184 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
coleenp@548 5185 bump_bit = 0;
coleenp@548 5186 assert((abase & to_clear) == 0, "array base must be long-aligned");
coleenp@548 5187 } else {
coleenp@548 5188 // Bump 'start' up to (or past) the next jint boundary:
coleenp@548 5189 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
coleenp@548 5190 assert((abase & clear_low) == 0, "array base must be int-aligned");
coleenp@548 5191 }
duke@435 5192 // Round bumped 'start' down to jlong boundary in body of array.
duke@435 5193 start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
coleenp@548 5194 if (bump_bit != 0) {
coleenp@548 5195 // Store a zero to the immediately preceding jint:
coleenp@548 5196 Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
coleenp@548 5197 Node* p1 = basic_plus_adr(dest, x1);
coleenp@548 5198 mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
coleenp@548 5199 mem = _gvn.transform(mem);
coleenp@548 5200 }
duke@435 5201 }
duke@435 5202 Node* end = dest_size; // pre-rounded
duke@435 5203 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5204 start, end, &_gvn);
duke@435 5205 } else {
duke@435 5206 // Non-constant start, unrounded non-constant end.
duke@435 5207 // (Nobody zeroes a random midsection of an array using this routine.)
duke@435 5208 ShouldNotReachHere(); // fix caller
duke@435 5209 }
duke@435 5210
duke@435 5211 // Done.
duke@435 5212 set_memory(mem, adr_type);
duke@435 5213 }
duke@435 5214
duke@435 5215
duke@435 5216 bool
duke@435 5217 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
duke@435 5218 BasicType basic_elem_type,
duke@435 5219 AllocateNode* alloc,
duke@435 5220 Node* src, Node* src_offset,
duke@435 5221 Node* dest, Node* dest_offset,
iveresov@2606 5222 Node* dest_size, bool dest_uninitialized) {
duke@435 5223 // See if there is an advantage from block transfer.
kvn@464 5224 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5225 if (scale >= LogBytesPerLong)
duke@435 5226 return false; // it is already a block transfer
duke@435 5227
duke@435 5228 // Look at the alignment of the starting offsets.
duke@435 5229 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@2939 5230
kvn@2939 5231 intptr_t src_off_con = (intptr_t) find_int_con(src_offset, -1);
kvn@2939 5232 intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
kvn@2939 5233 if (src_off_con < 0 || dest_off_con < 0)
duke@435 5234 // At present, we can only understand constants.
duke@435 5235 return false;
duke@435 5236
kvn@2939 5237 intptr_t src_off = abase + (src_off_con << scale);
kvn@2939 5238 intptr_t dest_off = abase + (dest_off_con << scale);
kvn@2939 5239
duke@435 5240 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
duke@435 5241 // Non-aligned; too bad.
duke@435 5242 // One more chance: Pick off an initial 32-bit word.
duke@435 5243 // This is a common case, since abase can be odd mod 8.
duke@435 5244 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
duke@435 5245 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
duke@435 5246 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5247 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5248 Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
duke@435 5249 store_to_memory(control(), dptr, sval, T_INT, adr_type);
duke@435 5250 src_off += BytesPerInt;
duke@435 5251 dest_off += BytesPerInt;
duke@435 5252 } else {
duke@435 5253 return false;
duke@435 5254 }
duke@435 5255 }
duke@435 5256 assert(src_off % BytesPerLong == 0, "");
duke@435 5257 assert(dest_off % BytesPerLong == 0, "");
duke@435 5258
duke@435 5259 // Do this copy by giant steps.
duke@435 5260 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5261 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5262 Node* countx = dest_size;
duke@435 5263 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
duke@435 5264 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
duke@435 5265
duke@435 5266 bool disjoint_bases = true; // since alloc != NULL
duke@435 5267 generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
iveresov@2606 5268 sptr, NULL, dptr, NULL, countx, dest_uninitialized);
duke@435 5269
duke@435 5270 return true;
duke@435 5271 }
duke@435 5272
duke@435 5273
duke@435 5274 // Helper function; generates code for the slow case.
duke@435 5275 // We make a call to a runtime method which emulates the native method,
duke@435 5276 // but without the native wrapper overhead.
duke@435 5277 void
duke@435 5278 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 5279 Node* src, Node* src_offset,
duke@435 5280 Node* dest, Node* dest_offset,
iveresov@2606 5281 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5282 assert(!dest_uninitialized, "Invariant");
duke@435 5283 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
duke@435 5284 OptoRuntime::slow_arraycopy_Type(),
duke@435 5285 OptoRuntime::slow_arraycopy_Java(),
duke@435 5286 "slow_arraycopy", adr_type,
duke@435 5287 src, src_offset, dest, dest_offset,
duke@435 5288 copy_length);
duke@435 5289
duke@435 5290 // Handle exceptions thrown by this fellow:
duke@435 5291 make_slow_call_ex(call, env()->Throwable_klass(), false);
duke@435 5292 }
duke@435 5293
duke@435 5294 // Helper function; generates code for cases requiring runtime checks.
duke@435 5295 Node*
duke@435 5296 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 5297 Node* dest_elem_klass,
duke@435 5298 Node* src, Node* src_offset,
duke@435 5299 Node* dest, Node* dest_offset,
iveresov@2606 5300 Node* copy_length, bool dest_uninitialized) {
duke@435 5301 if (stopped()) return NULL;
duke@435 5302
iveresov@2606 5303 address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
duke@435 5304 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5305 return NULL;
duke@435 5306 }
duke@435 5307
duke@435 5308 // Pick out the parameters required to perform a store-check
duke@435 5309 // for the target array. This is an optimistic check. It will
duke@435 5310 // look in each non-null element's class, at the desired klass's
duke@435 5311 // super_check_offset, for the desired klass.
stefank@3391 5312 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 5313 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
kvn@1964 5314 Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
never@2199 5315 Node* check_offset = ConvI2X(_gvn.transform(n3));
duke@435 5316 Node* check_value = dest_elem_klass;
duke@435 5317
duke@435 5318 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
duke@435 5319 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
duke@435 5320
duke@435 5321 // (We know the arrays are never conjoint, because their types differ.)
duke@435 5322 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5323 OptoRuntime::checkcast_arraycopy_Type(),
duke@435 5324 copyfunc_addr, "checkcast_arraycopy", adr_type,
duke@435 5325 // five arguments, of which two are
duke@435 5326 // intptr_t (jlong in LP64)
duke@435 5327 src_start, dest_start,
duke@435 5328 copy_length XTOP,
duke@435 5329 check_offset XTOP,
duke@435 5330 check_value);
duke@435 5331
duke@435 5332 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5333 }
duke@435 5334
duke@435 5335
duke@435 5336 // Helper function; generates code for cases requiring runtime checks.
duke@435 5337 Node*
duke@435 5338 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 5339 Node* src, Node* src_offset,
duke@435 5340 Node* dest, Node* dest_offset,
iveresov@2606 5341 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5342 assert(!dest_uninitialized, "Invariant");
duke@435 5343 if (stopped()) return NULL;
duke@435 5344 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 5345 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5346 return NULL;
duke@435 5347 }
duke@435 5348
duke@435 5349 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5350 OptoRuntime::generic_arraycopy_Type(),
duke@435 5351 copyfunc_addr, "generic_arraycopy", adr_type,
duke@435 5352 src, src_offset, dest, dest_offset, copy_length);
duke@435 5353
duke@435 5354 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5355 }
duke@435 5356
duke@435 5357 // Helper function; generates the fast out-of-line call to an arraycopy stub.
duke@435 5358 void
duke@435 5359 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 5360 BasicType basic_elem_type,
duke@435 5361 bool disjoint_bases,
duke@435 5362 Node* src, Node* src_offset,
duke@435 5363 Node* dest, Node* dest_offset,
iveresov@2606 5364 Node* copy_length, bool dest_uninitialized) {
duke@435 5365 if (stopped()) return; // nothing to do
duke@435 5366
duke@435 5367 Node* src_start = src;
duke@435 5368 Node* dest_start = dest;
duke@435 5369 if (src_offset != NULL || dest_offset != NULL) {
duke@435 5370 assert(src_offset != NULL && dest_offset != NULL, "");
duke@435 5371 src_start = array_element_address(src, src_offset, basic_elem_type);
duke@435 5372 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
duke@435 5373 }
duke@435 5374
duke@435 5375 // Figure out which arraycopy runtime method to call.
duke@435 5376 const char* copyfunc_name = "arraycopy";
duke@435 5377 address copyfunc_addr =
duke@435 5378 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
iveresov@2606 5379 disjoint_bases, copyfunc_name, dest_uninitialized);
duke@435 5380
duke@435 5381 // Call it. Note that the count_ix value is not scaled to a byte-size.
duke@435 5382 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5383 OptoRuntime::fast_arraycopy_Type(),
duke@435 5384 copyfunc_addr, copyfunc_name, adr_type,
duke@435 5385 src_start, dest_start, copy_length XTOP);
duke@435 5386 }
johnc@2781 5387
johnc@2781 5388 //----------------------------inline_reference_get----------------------------
johnc@2781 5389
johnc@2781 5390 bool LibraryCallKit::inline_reference_get() {
johnc@2781 5391 const int nargs = 1; // self
johnc@2781 5392
johnc@2781 5393 guarantee(java_lang_ref_Reference::referent_offset > 0,
johnc@2781 5394 "should have already been set");
johnc@2781 5395
johnc@2781 5396 int referent_offset = java_lang_ref_Reference::referent_offset;
johnc@2781 5397
johnc@2781 5398 // Restore the stack and pop off the argument
johnc@2781 5399 _sp += nargs;
johnc@2781 5400 Node *reference_obj = pop();
johnc@2781 5401
johnc@2781 5402 // Null check on self without removing any arguments.
johnc@2781 5403 _sp += nargs;
johnc@2781 5404 reference_obj = do_null_check(reference_obj, T_OBJECT);
johnc@2781 5405 _sp -= nargs;;
johnc@2781 5406
johnc@2781 5407 if (stopped()) return true;
johnc@2781 5408
johnc@2781 5409 Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
johnc@2781 5410
johnc@2781 5411 ciInstanceKlass* klass = env()->Object_klass();
johnc@2781 5412 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
johnc@2781 5413
johnc@2781 5414 Node* no_ctrl = NULL;
johnc@2781 5415 Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
johnc@2781 5416
johnc@2781 5417 // Use the pre-barrier to record the value in the referent field
johnc@2781 5418 pre_barrier(false /* do_load */,
johnc@2781 5419 control(),
johnc@2790 5420 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 5421 result /* pre_val */,
johnc@2781 5422 T_OBJECT);
johnc@2781 5423
johnc@2781 5424 push(result);
johnc@2781 5425 return true;
johnc@2781 5426 }

mercurial