src/share/vm/opto/library_call.cpp

Fri, 20 Aug 2010 23:40:30 -0700

author
jrose
date
Fri, 20 Aug 2010 23:40:30 -0700
changeset 2101
4b29a725c43c
parent 1964
4311f23817fd
child 2103
3e8fbc61cee8
permissions
-rw-r--r--

6912064: type profiles need to be exploited more for dynamic language support
Reviewed-by: kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_library_call.cpp.incl"
duke@435 27
duke@435 28 class LibraryIntrinsic : public InlineCallGenerator {
duke@435 29 // Extend the set of intrinsics known to the runtime:
duke@435 30 public:
duke@435 31 private:
duke@435 32 bool _is_virtual;
duke@435 33 vmIntrinsics::ID _intrinsic_id;
duke@435 34
duke@435 35 public:
duke@435 36 LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
duke@435 37 : InlineCallGenerator(m),
duke@435 38 _is_virtual(is_virtual),
duke@435 39 _intrinsic_id(id)
duke@435 40 {
duke@435 41 }
duke@435 42 virtual bool is_intrinsic() const { return true; }
duke@435 43 virtual bool is_virtual() const { return _is_virtual; }
duke@435 44 virtual JVMState* generate(JVMState* jvms);
duke@435 45 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
duke@435 46 };
duke@435 47
duke@435 48
duke@435 49 // Local helper class for LibraryIntrinsic:
duke@435 50 class LibraryCallKit : public GraphKit {
duke@435 51 private:
duke@435 52 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
duke@435 53
duke@435 54 public:
duke@435 55 LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
duke@435 56 : GraphKit(caller),
duke@435 57 _intrinsic(intrinsic)
duke@435 58 {
duke@435 59 }
duke@435 60
duke@435 61 ciMethod* caller() const { return jvms()->method(); }
duke@435 62 int bci() const { return jvms()->bci(); }
duke@435 63 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
duke@435 64 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
duke@435 65 ciMethod* callee() const { return _intrinsic->method(); }
duke@435 66 ciSignature* signature() const { return callee()->signature(); }
duke@435 67 int arg_size() const { return callee()->arg_size(); }
duke@435 68
duke@435 69 bool try_to_inline();
duke@435 70
duke@435 71 // Helper functions to inline natives
duke@435 72 void push_result(RegionNode* region, PhiNode* value);
duke@435 73 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
duke@435 74 Node* generate_slow_guard(Node* test, RegionNode* region);
duke@435 75 Node* generate_fair_guard(Node* test, RegionNode* region);
duke@435 76 Node* generate_negative_guard(Node* index, RegionNode* region,
duke@435 77 // resulting CastII of index:
duke@435 78 Node* *pos_index = NULL);
duke@435 79 Node* generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 80 // resulting CastII of index:
duke@435 81 Node* *pos_index = NULL);
duke@435 82 Node* generate_limit_guard(Node* offset, Node* subseq_length,
duke@435 83 Node* array_length,
duke@435 84 RegionNode* region);
duke@435 85 Node* generate_current_thread(Node* &tls_output);
duke@435 86 address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
duke@435 87 bool disjoint_bases, const char* &name);
duke@435 88 Node* load_mirror_from_klass(Node* klass);
duke@435 89 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
duke@435 90 int nargs,
duke@435 91 RegionNode* region, int null_path,
duke@435 92 int offset);
duke@435 93 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
duke@435 94 RegionNode* region, int null_path) {
duke@435 95 int offset = java_lang_Class::klass_offset_in_bytes();
duke@435 96 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 97 region, null_path,
duke@435 98 offset);
duke@435 99 }
duke@435 100 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 101 int nargs,
duke@435 102 RegionNode* region, int null_path) {
duke@435 103 int offset = java_lang_Class::array_klass_offset_in_bytes();
duke@435 104 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 105 region, null_path,
duke@435 106 offset);
duke@435 107 }
duke@435 108 Node* generate_access_flags_guard(Node* kls,
duke@435 109 int modifier_mask, int modifier_bits,
duke@435 110 RegionNode* region);
duke@435 111 Node* generate_interface_guard(Node* kls, RegionNode* region);
duke@435 112 Node* generate_array_guard(Node* kls, RegionNode* region) {
duke@435 113 return generate_array_guard_common(kls, region, false, false);
duke@435 114 }
duke@435 115 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
duke@435 116 return generate_array_guard_common(kls, region, false, true);
duke@435 117 }
duke@435 118 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
duke@435 119 return generate_array_guard_common(kls, region, true, false);
duke@435 120 }
duke@435 121 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
duke@435 122 return generate_array_guard_common(kls, region, true, true);
duke@435 123 }
duke@435 124 Node* generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 125 bool obj_array, bool not_array);
duke@435 126 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
duke@435 127 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
duke@435 128 bool is_virtual = false, bool is_static = false);
duke@435 129 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
duke@435 130 return generate_method_call(method_id, false, true);
duke@435 131 }
duke@435 132 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
duke@435 133 return generate_method_call(method_id, true, false);
duke@435 134 }
duke@435 135
kvn@1421 136 Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
duke@435 137 bool inline_string_compareTo();
duke@435 138 bool inline_string_indexOf();
duke@435 139 Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
cfang@1116 140 bool inline_string_equals();
duke@435 141 Node* pop_math_arg();
duke@435 142 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 143 bool inline_math_native(vmIntrinsics::ID id);
duke@435 144 bool inline_trig(vmIntrinsics::ID id);
duke@435 145 bool inline_trans(vmIntrinsics::ID id);
duke@435 146 bool inline_abs(vmIntrinsics::ID id);
duke@435 147 bool inline_sqrt(vmIntrinsics::ID id);
duke@435 148 bool inline_pow(vmIntrinsics::ID id);
duke@435 149 bool inline_exp(vmIntrinsics::ID id);
duke@435 150 bool inline_min_max(vmIntrinsics::ID id);
duke@435 151 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
duke@435 152 // This returns Type::AnyPtr, RawPtr, or OopPtr.
duke@435 153 int classify_unsafe_addr(Node* &base, Node* &offset);
duke@435 154 Node* make_unsafe_address(Node* base, Node* offset);
duke@435 155 bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
duke@435 156 bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
duke@435 157 bool inline_unsafe_allocate();
duke@435 158 bool inline_unsafe_copyMemory();
duke@435 159 bool inline_native_currentThread();
duke@435 160 bool inline_native_time_funcs(bool isNano);
duke@435 161 bool inline_native_isInterrupted();
duke@435 162 bool inline_native_Class_query(vmIntrinsics::ID id);
duke@435 163 bool inline_native_subtype_check();
duke@435 164
duke@435 165 bool inline_native_newArray();
duke@435 166 bool inline_native_getLength();
duke@435 167 bool inline_array_copyOf(bool is_copyOfRange);
rasbold@604 168 bool inline_array_equals();
kvn@1268 169 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
duke@435 170 bool inline_native_clone(bool is_virtual);
duke@435 171 bool inline_native_Reflection_getCallerClass();
duke@435 172 bool inline_native_AtomicLong_get();
duke@435 173 bool inline_native_AtomicLong_attemptUpdate();
duke@435 174 bool is_method_invoke_or_aux_frame(JVMState* jvms);
duke@435 175 // Helper function for inlining native object hash method
duke@435 176 bool inline_native_hashcode(bool is_virtual, bool is_static);
duke@435 177 bool inline_native_getClass();
duke@435 178
duke@435 179 // Helper functions for inlining arraycopy
duke@435 180 bool inline_arraycopy();
duke@435 181 void generate_arraycopy(const TypePtr* adr_type,
duke@435 182 BasicType basic_elem_type,
duke@435 183 Node* src, Node* src_offset,
duke@435 184 Node* dest, Node* dest_offset,
duke@435 185 Node* copy_length,
duke@435 186 bool disjoint_bases = false,
duke@435 187 bool length_never_negative = false,
duke@435 188 RegionNode* slow_region = NULL);
duke@435 189 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
duke@435 190 RegionNode* slow_region);
duke@435 191 void generate_clear_array(const TypePtr* adr_type,
duke@435 192 Node* dest,
duke@435 193 BasicType basic_elem_type,
duke@435 194 Node* slice_off,
duke@435 195 Node* slice_len,
duke@435 196 Node* slice_end);
duke@435 197 bool generate_block_arraycopy(const TypePtr* adr_type,
duke@435 198 BasicType basic_elem_type,
duke@435 199 AllocateNode* alloc,
duke@435 200 Node* src, Node* src_offset,
duke@435 201 Node* dest, Node* dest_offset,
duke@435 202 Node* dest_size);
duke@435 203 void generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 204 Node* src, Node* src_offset,
duke@435 205 Node* dest, Node* dest_offset,
kvn@1268 206 Node* copy_length);
duke@435 207 Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 208 Node* dest_elem_klass,
duke@435 209 Node* src, Node* src_offset,
duke@435 210 Node* dest, Node* dest_offset,
kvn@1268 211 Node* copy_length);
duke@435 212 Node* generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 213 Node* src, Node* src_offset,
duke@435 214 Node* dest, Node* dest_offset,
kvn@1268 215 Node* copy_length);
duke@435 216 void generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 217 BasicType basic_elem_type,
duke@435 218 bool disjoint_bases,
duke@435 219 Node* src, Node* src_offset,
duke@435 220 Node* dest, Node* dest_offset,
duke@435 221 Node* copy_length);
duke@435 222 bool inline_unsafe_CAS(BasicType type);
duke@435 223 bool inline_unsafe_ordered_store(BasicType type);
duke@435 224 bool inline_fp_conversions(vmIntrinsics::ID id);
twisti@1210 225 bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
twisti@1210 226 bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
twisti@1078 227 bool inline_bitCount(vmIntrinsics::ID id);
duke@435 228 bool inline_reverseBytes(vmIntrinsics::ID id);
duke@435 229 };
duke@435 230
duke@435 231
duke@435 232 //---------------------------make_vm_intrinsic----------------------------
duke@435 233 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 234 vmIntrinsics::ID id = m->intrinsic_id();
duke@435 235 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
duke@435 236
duke@435 237 if (DisableIntrinsic[0] != '\0'
duke@435 238 && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
duke@435 239 // disabled by a user request on the command line:
duke@435 240 // example: -XX:DisableIntrinsic=_hashCode,_getClass
duke@435 241 return NULL;
duke@435 242 }
duke@435 243
duke@435 244 if (!m->is_loaded()) {
duke@435 245 // do not attempt to inline unloaded methods
duke@435 246 return NULL;
duke@435 247 }
duke@435 248
duke@435 249 // Only a few intrinsics implement a virtual dispatch.
duke@435 250 // They are expensive calls which are also frequently overridden.
duke@435 251 if (is_virtual) {
duke@435 252 switch (id) {
duke@435 253 case vmIntrinsics::_hashCode:
duke@435 254 case vmIntrinsics::_clone:
duke@435 255 // OK, Object.hashCode and Object.clone intrinsics come in both flavors
duke@435 256 break;
duke@435 257 default:
duke@435 258 return NULL;
duke@435 259 }
duke@435 260 }
duke@435 261
duke@435 262 // -XX:-InlineNatives disables nearly all intrinsics:
duke@435 263 if (!InlineNatives) {
duke@435 264 switch (id) {
duke@435 265 case vmIntrinsics::_indexOf:
duke@435 266 case vmIntrinsics::_compareTo:
cfang@1116 267 case vmIntrinsics::_equals:
rasbold@604 268 case vmIntrinsics::_equalsC:
duke@435 269 break; // InlineNatives does not control String.compareTo
duke@435 270 default:
duke@435 271 return NULL;
duke@435 272 }
duke@435 273 }
duke@435 274
duke@435 275 switch (id) {
duke@435 276 case vmIntrinsics::_compareTo:
duke@435 277 if (!SpecialStringCompareTo) return NULL;
duke@435 278 break;
duke@435 279 case vmIntrinsics::_indexOf:
duke@435 280 if (!SpecialStringIndexOf) return NULL;
duke@435 281 break;
cfang@1116 282 case vmIntrinsics::_equals:
cfang@1116 283 if (!SpecialStringEquals) return NULL;
cfang@1116 284 break;
rasbold@604 285 case vmIntrinsics::_equalsC:
rasbold@604 286 if (!SpecialArraysEquals) return NULL;
rasbold@604 287 break;
duke@435 288 case vmIntrinsics::_arraycopy:
duke@435 289 if (!InlineArrayCopy) return NULL;
duke@435 290 break;
duke@435 291 case vmIntrinsics::_copyMemory:
duke@435 292 if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
duke@435 293 if (!InlineArrayCopy) return NULL;
duke@435 294 break;
duke@435 295 case vmIntrinsics::_hashCode:
duke@435 296 if (!InlineObjectHash) return NULL;
duke@435 297 break;
duke@435 298 case vmIntrinsics::_clone:
duke@435 299 case vmIntrinsics::_copyOf:
duke@435 300 case vmIntrinsics::_copyOfRange:
duke@435 301 if (!InlineObjectCopy) return NULL;
duke@435 302 // These also use the arraycopy intrinsic mechanism:
duke@435 303 if (!InlineArrayCopy) return NULL;
duke@435 304 break;
duke@435 305 case vmIntrinsics::_checkIndex:
duke@435 306 // We do not intrinsify this. The optimizer does fine with it.
duke@435 307 return NULL;
duke@435 308
duke@435 309 case vmIntrinsics::_get_AtomicLong:
duke@435 310 case vmIntrinsics::_attemptUpdate:
duke@435 311 if (!InlineAtomicLong) return NULL;
duke@435 312 break;
duke@435 313
duke@435 314 case vmIntrinsics::_getCallerClass:
duke@435 315 if (!UseNewReflection) return NULL;
duke@435 316 if (!InlineReflectionGetCallerClass) return NULL;
duke@435 317 if (!JDK_Version::is_gte_jdk14x_version()) return NULL;
duke@435 318 break;
duke@435 319
twisti@1078 320 case vmIntrinsics::_bitCount_i:
twisti@1078 321 case vmIntrinsics::_bitCount_l:
twisti@1078 322 if (!UsePopCountInstruction) return NULL;
twisti@1078 323 break;
twisti@1078 324
duke@435 325 default:
jrose@1291 326 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
jrose@1291 327 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
duke@435 328 break;
duke@435 329 }
duke@435 330
duke@435 331 // -XX:-InlineClassNatives disables natives from the Class class.
duke@435 332 // The flag applies to all reflective calls, notably Array.newArray
duke@435 333 // (visible to Java programmers as Array.newInstance).
duke@435 334 if (m->holder()->name() == ciSymbol::java_lang_Class() ||
duke@435 335 m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
duke@435 336 if (!InlineClassNatives) return NULL;
duke@435 337 }
duke@435 338
duke@435 339 // -XX:-InlineThreadNatives disables natives from the Thread class.
duke@435 340 if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
duke@435 341 if (!InlineThreadNatives) return NULL;
duke@435 342 }
duke@435 343
duke@435 344 // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
duke@435 345 if (m->holder()->name() == ciSymbol::java_lang_Math() ||
duke@435 346 m->holder()->name() == ciSymbol::java_lang_Float() ||
duke@435 347 m->holder()->name() == ciSymbol::java_lang_Double()) {
duke@435 348 if (!InlineMathNatives) return NULL;
duke@435 349 }
duke@435 350
duke@435 351 // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
duke@435 352 if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
duke@435 353 if (!InlineUnsafeOps) return NULL;
duke@435 354 }
duke@435 355
duke@435 356 return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
duke@435 357 }
duke@435 358
duke@435 359 //----------------------register_library_intrinsics-----------------------
duke@435 360 // Initialize this file's data structures, for each Compile instance.
duke@435 361 void Compile::register_library_intrinsics() {
duke@435 362 // Nothing to do here.
duke@435 363 }
duke@435 364
duke@435 365 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
duke@435 366 LibraryCallKit kit(jvms, this);
duke@435 367 Compile* C = kit.C;
duke@435 368 int nodes = C->unique();
duke@435 369 #ifndef PRODUCT
duke@435 370 if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
duke@435 371 char buf[1000];
duke@435 372 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
duke@435 373 tty->print_cr("Intrinsic %s", str);
duke@435 374 }
duke@435 375 #endif
duke@435 376 if (kit.try_to_inline()) {
duke@435 377 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
duke@435 378 tty->print("Inlining intrinsic %s%s at bci:%d in",
duke@435 379 vmIntrinsics::name_at(intrinsic_id()),
duke@435 380 (is_virtual() ? " (virtual)" : ""), kit.bci());
duke@435 381 kit.caller()->print_short_name(tty);
duke@435 382 tty->print_cr(" (%d bytes)", kit.caller()->code_size());
duke@435 383 }
duke@435 384 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
duke@435 385 if (C->log()) {
duke@435 386 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
duke@435 387 vmIntrinsics::name_at(intrinsic_id()),
duke@435 388 (is_virtual() ? " virtual='1'" : ""),
duke@435 389 C->unique() - nodes);
duke@435 390 }
duke@435 391 return kit.transfer_exceptions_into_jvms();
duke@435 392 }
duke@435 393
duke@435 394 if (PrintIntrinsics) {
jrose@1291 395 tty->print("Did not inline intrinsic %s%s at bci:%d in",
jrose@1291 396 vmIntrinsics::name_at(intrinsic_id()),
jrose@1291 397 (is_virtual() ? " (virtual)" : ""), kit.bci());
jrose@1291 398 kit.caller()->print_short_name(tty);
jrose@1291 399 tty->print_cr(" (%d bytes)", kit.caller()->code_size());
duke@435 400 }
duke@435 401 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
duke@435 402 return NULL;
duke@435 403 }
duke@435 404
duke@435 405 bool LibraryCallKit::try_to_inline() {
duke@435 406 // Handle symbolic names for otherwise undistinguished boolean switches:
duke@435 407 const bool is_store = true;
duke@435 408 const bool is_native_ptr = true;
duke@435 409 const bool is_static = true;
duke@435 410
duke@435 411 switch (intrinsic_id()) {
duke@435 412 case vmIntrinsics::_hashCode:
duke@435 413 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
duke@435 414 case vmIntrinsics::_identityHashCode:
duke@435 415 return inline_native_hashcode(/*!virtual*/ false, is_static);
duke@435 416 case vmIntrinsics::_getClass:
duke@435 417 return inline_native_getClass();
duke@435 418
duke@435 419 case vmIntrinsics::_dsin:
duke@435 420 case vmIntrinsics::_dcos:
duke@435 421 case vmIntrinsics::_dtan:
duke@435 422 case vmIntrinsics::_dabs:
duke@435 423 case vmIntrinsics::_datan2:
duke@435 424 case vmIntrinsics::_dsqrt:
duke@435 425 case vmIntrinsics::_dexp:
duke@435 426 case vmIntrinsics::_dlog:
duke@435 427 case vmIntrinsics::_dlog10:
duke@435 428 case vmIntrinsics::_dpow:
duke@435 429 return inline_math_native(intrinsic_id());
duke@435 430
duke@435 431 case vmIntrinsics::_min:
duke@435 432 case vmIntrinsics::_max:
duke@435 433 return inline_min_max(intrinsic_id());
duke@435 434
duke@435 435 case vmIntrinsics::_arraycopy:
duke@435 436 return inline_arraycopy();
duke@435 437
duke@435 438 case vmIntrinsics::_compareTo:
duke@435 439 return inline_string_compareTo();
duke@435 440 case vmIntrinsics::_indexOf:
duke@435 441 return inline_string_indexOf();
cfang@1116 442 case vmIntrinsics::_equals:
cfang@1116 443 return inline_string_equals();
duke@435 444
duke@435 445 case vmIntrinsics::_getObject:
duke@435 446 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
duke@435 447 case vmIntrinsics::_getBoolean:
duke@435 448 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
duke@435 449 case vmIntrinsics::_getByte:
duke@435 450 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
duke@435 451 case vmIntrinsics::_getShort:
duke@435 452 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
duke@435 453 case vmIntrinsics::_getChar:
duke@435 454 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
duke@435 455 case vmIntrinsics::_getInt:
duke@435 456 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
duke@435 457 case vmIntrinsics::_getLong:
duke@435 458 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
duke@435 459 case vmIntrinsics::_getFloat:
duke@435 460 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
duke@435 461 case vmIntrinsics::_getDouble:
duke@435 462 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 463
duke@435 464 case vmIntrinsics::_putObject:
duke@435 465 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
duke@435 466 case vmIntrinsics::_putBoolean:
duke@435 467 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
duke@435 468 case vmIntrinsics::_putByte:
duke@435 469 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
duke@435 470 case vmIntrinsics::_putShort:
duke@435 471 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
duke@435 472 case vmIntrinsics::_putChar:
duke@435 473 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
duke@435 474 case vmIntrinsics::_putInt:
duke@435 475 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
duke@435 476 case vmIntrinsics::_putLong:
duke@435 477 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
duke@435 478 case vmIntrinsics::_putFloat:
duke@435 479 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
duke@435 480 case vmIntrinsics::_putDouble:
duke@435 481 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
duke@435 482
duke@435 483 case vmIntrinsics::_getByte_raw:
duke@435 484 return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
duke@435 485 case vmIntrinsics::_getShort_raw:
duke@435 486 return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
duke@435 487 case vmIntrinsics::_getChar_raw:
duke@435 488 return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
duke@435 489 case vmIntrinsics::_getInt_raw:
duke@435 490 return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
duke@435 491 case vmIntrinsics::_getLong_raw:
duke@435 492 return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
duke@435 493 case vmIntrinsics::_getFloat_raw:
duke@435 494 return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
duke@435 495 case vmIntrinsics::_getDouble_raw:
duke@435 496 return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 497 case vmIntrinsics::_getAddress_raw:
duke@435 498 return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
duke@435 499
duke@435 500 case vmIntrinsics::_putByte_raw:
duke@435 501 return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
duke@435 502 case vmIntrinsics::_putShort_raw:
duke@435 503 return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
duke@435 504 case vmIntrinsics::_putChar_raw:
duke@435 505 return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
duke@435 506 case vmIntrinsics::_putInt_raw:
duke@435 507 return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
duke@435 508 case vmIntrinsics::_putLong_raw:
duke@435 509 return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
duke@435 510 case vmIntrinsics::_putFloat_raw:
duke@435 511 return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
duke@435 512 case vmIntrinsics::_putDouble_raw:
duke@435 513 return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
duke@435 514 case vmIntrinsics::_putAddress_raw:
duke@435 515 return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
duke@435 516
duke@435 517 case vmIntrinsics::_getObjectVolatile:
duke@435 518 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
duke@435 519 case vmIntrinsics::_getBooleanVolatile:
duke@435 520 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
duke@435 521 case vmIntrinsics::_getByteVolatile:
duke@435 522 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
duke@435 523 case vmIntrinsics::_getShortVolatile:
duke@435 524 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
duke@435 525 case vmIntrinsics::_getCharVolatile:
duke@435 526 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
duke@435 527 case vmIntrinsics::_getIntVolatile:
duke@435 528 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
duke@435 529 case vmIntrinsics::_getLongVolatile:
duke@435 530 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
duke@435 531 case vmIntrinsics::_getFloatVolatile:
duke@435 532 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
duke@435 533 case vmIntrinsics::_getDoubleVolatile:
duke@435 534 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
duke@435 535
duke@435 536 case vmIntrinsics::_putObjectVolatile:
duke@435 537 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
duke@435 538 case vmIntrinsics::_putBooleanVolatile:
duke@435 539 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
duke@435 540 case vmIntrinsics::_putByteVolatile:
duke@435 541 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
duke@435 542 case vmIntrinsics::_putShortVolatile:
duke@435 543 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
duke@435 544 case vmIntrinsics::_putCharVolatile:
duke@435 545 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
duke@435 546 case vmIntrinsics::_putIntVolatile:
duke@435 547 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
duke@435 548 case vmIntrinsics::_putLongVolatile:
duke@435 549 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
duke@435 550 case vmIntrinsics::_putFloatVolatile:
duke@435 551 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
duke@435 552 case vmIntrinsics::_putDoubleVolatile:
duke@435 553 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
duke@435 554
duke@435 555 case vmIntrinsics::_prefetchRead:
duke@435 556 return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
duke@435 557 case vmIntrinsics::_prefetchWrite:
duke@435 558 return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
duke@435 559 case vmIntrinsics::_prefetchReadStatic:
duke@435 560 return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
duke@435 561 case vmIntrinsics::_prefetchWriteStatic:
duke@435 562 return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
duke@435 563
duke@435 564 case vmIntrinsics::_compareAndSwapObject:
duke@435 565 return inline_unsafe_CAS(T_OBJECT);
duke@435 566 case vmIntrinsics::_compareAndSwapInt:
duke@435 567 return inline_unsafe_CAS(T_INT);
duke@435 568 case vmIntrinsics::_compareAndSwapLong:
duke@435 569 return inline_unsafe_CAS(T_LONG);
duke@435 570
duke@435 571 case vmIntrinsics::_putOrderedObject:
duke@435 572 return inline_unsafe_ordered_store(T_OBJECT);
duke@435 573 case vmIntrinsics::_putOrderedInt:
duke@435 574 return inline_unsafe_ordered_store(T_INT);
duke@435 575 case vmIntrinsics::_putOrderedLong:
duke@435 576 return inline_unsafe_ordered_store(T_LONG);
duke@435 577
duke@435 578 case vmIntrinsics::_currentThread:
duke@435 579 return inline_native_currentThread();
duke@435 580 case vmIntrinsics::_isInterrupted:
duke@435 581 return inline_native_isInterrupted();
duke@435 582
duke@435 583 case vmIntrinsics::_currentTimeMillis:
duke@435 584 return inline_native_time_funcs(false);
duke@435 585 case vmIntrinsics::_nanoTime:
duke@435 586 return inline_native_time_funcs(true);
duke@435 587 case vmIntrinsics::_allocateInstance:
duke@435 588 return inline_unsafe_allocate();
duke@435 589 case vmIntrinsics::_copyMemory:
duke@435 590 return inline_unsafe_copyMemory();
duke@435 591 case vmIntrinsics::_newArray:
duke@435 592 return inline_native_newArray();
duke@435 593 case vmIntrinsics::_getLength:
duke@435 594 return inline_native_getLength();
duke@435 595 case vmIntrinsics::_copyOf:
duke@435 596 return inline_array_copyOf(false);
duke@435 597 case vmIntrinsics::_copyOfRange:
duke@435 598 return inline_array_copyOf(true);
rasbold@604 599 case vmIntrinsics::_equalsC:
rasbold@604 600 return inline_array_equals();
duke@435 601 case vmIntrinsics::_clone:
duke@435 602 return inline_native_clone(intrinsic()->is_virtual());
duke@435 603
duke@435 604 case vmIntrinsics::_isAssignableFrom:
duke@435 605 return inline_native_subtype_check();
duke@435 606
duke@435 607 case vmIntrinsics::_isInstance:
duke@435 608 case vmIntrinsics::_getModifiers:
duke@435 609 case vmIntrinsics::_isInterface:
duke@435 610 case vmIntrinsics::_isArray:
duke@435 611 case vmIntrinsics::_isPrimitive:
duke@435 612 case vmIntrinsics::_getSuperclass:
duke@435 613 case vmIntrinsics::_getComponentType:
duke@435 614 case vmIntrinsics::_getClassAccessFlags:
duke@435 615 return inline_native_Class_query(intrinsic_id());
duke@435 616
duke@435 617 case vmIntrinsics::_floatToRawIntBits:
duke@435 618 case vmIntrinsics::_floatToIntBits:
duke@435 619 case vmIntrinsics::_intBitsToFloat:
duke@435 620 case vmIntrinsics::_doubleToRawLongBits:
duke@435 621 case vmIntrinsics::_doubleToLongBits:
duke@435 622 case vmIntrinsics::_longBitsToDouble:
duke@435 623 return inline_fp_conversions(intrinsic_id());
duke@435 624
twisti@1210 625 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 626 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 627 return inline_numberOfLeadingZeros(intrinsic_id());
twisti@1210 628
twisti@1210 629 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 630 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 631 return inline_numberOfTrailingZeros(intrinsic_id());
twisti@1210 632
twisti@1078 633 case vmIntrinsics::_bitCount_i:
twisti@1078 634 case vmIntrinsics::_bitCount_l:
twisti@1078 635 return inline_bitCount(intrinsic_id());
twisti@1078 636
duke@435 637 case vmIntrinsics::_reverseBytes_i:
duke@435 638 case vmIntrinsics::_reverseBytes_l:
never@1831 639 case vmIntrinsics::_reverseBytes_s:
never@1831 640 case vmIntrinsics::_reverseBytes_c:
duke@435 641 return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
duke@435 642
duke@435 643 case vmIntrinsics::_get_AtomicLong:
duke@435 644 return inline_native_AtomicLong_get();
duke@435 645 case vmIntrinsics::_attemptUpdate:
duke@435 646 return inline_native_AtomicLong_attemptUpdate();
duke@435 647
duke@435 648 case vmIntrinsics::_getCallerClass:
duke@435 649 return inline_native_Reflection_getCallerClass();
duke@435 650
duke@435 651 default:
duke@435 652 // If you get here, it may be that someone has added a new intrinsic
duke@435 653 // to the list in vmSymbols.hpp without implementing it here.
duke@435 654 #ifndef PRODUCT
duke@435 655 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
duke@435 656 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
duke@435 657 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
duke@435 658 }
duke@435 659 #endif
duke@435 660 return false;
duke@435 661 }
duke@435 662 }
duke@435 663
duke@435 664 //------------------------------push_result------------------------------
duke@435 665 // Helper function for finishing intrinsics.
duke@435 666 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
duke@435 667 record_for_igvn(region);
duke@435 668 set_control(_gvn.transform(region));
duke@435 669 BasicType value_type = value->type()->basic_type();
duke@435 670 push_node(value_type, _gvn.transform(value));
duke@435 671 }
duke@435 672
duke@435 673 //------------------------------generate_guard---------------------------
duke@435 674 // Helper function for generating guarded fast-slow graph structures.
duke@435 675 // The given 'test', if true, guards a slow path. If the test fails
duke@435 676 // then a fast path can be taken. (We generally hope it fails.)
duke@435 677 // In all cases, GraphKit::control() is updated to the fast path.
duke@435 678 // The returned value represents the control for the slow path.
duke@435 679 // The return value is never 'top'; it is either a valid control
duke@435 680 // or NULL if it is obvious that the slow path can never be taken.
duke@435 681 // Also, if region and the slow control are not NULL, the slow edge
duke@435 682 // is appended to the region.
duke@435 683 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
duke@435 684 if (stopped()) {
duke@435 685 // Already short circuited.
duke@435 686 return NULL;
duke@435 687 }
duke@435 688
duke@435 689 // Build an if node and its projections.
duke@435 690 // If test is true we take the slow path, which we assume is uncommon.
duke@435 691 if (_gvn.type(test) == TypeInt::ZERO) {
duke@435 692 // The slow branch is never taken. No need to build this guard.
duke@435 693 return NULL;
duke@435 694 }
duke@435 695
duke@435 696 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
duke@435 697
duke@435 698 Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
duke@435 699 if (if_slow == top()) {
duke@435 700 // The slow branch is never taken. No need to build this guard.
duke@435 701 return NULL;
duke@435 702 }
duke@435 703
duke@435 704 if (region != NULL)
duke@435 705 region->add_req(if_slow);
duke@435 706
duke@435 707 Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
duke@435 708 set_control(if_fast);
duke@435 709
duke@435 710 return if_slow;
duke@435 711 }
duke@435 712
duke@435 713 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
duke@435 714 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
duke@435 715 }
duke@435 716 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
duke@435 717 return generate_guard(test, region, PROB_FAIR);
duke@435 718 }
duke@435 719
duke@435 720 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
duke@435 721 Node* *pos_index) {
duke@435 722 if (stopped())
duke@435 723 return NULL; // already stopped
duke@435 724 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
duke@435 725 return NULL; // index is already adequately typed
duke@435 726 Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 727 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 728 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
duke@435 729 if (is_neg != NULL && pos_index != NULL) {
duke@435 730 // Emulate effect of Parse::adjust_map_after_if.
duke@435 731 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
duke@435 732 ccast->set_req(0, control());
duke@435 733 (*pos_index) = _gvn.transform(ccast);
duke@435 734 }
duke@435 735 return is_neg;
duke@435 736 }
duke@435 737
duke@435 738 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 739 Node* *pos_index) {
duke@435 740 if (stopped())
duke@435 741 return NULL; // already stopped
duke@435 742 if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
duke@435 743 return NULL; // index is already adequately typed
duke@435 744 Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 745 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
duke@435 746 Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
duke@435 747 Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
duke@435 748 if (is_notp != NULL && pos_index != NULL) {
duke@435 749 // Emulate effect of Parse::adjust_map_after_if.
duke@435 750 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
duke@435 751 ccast->set_req(0, control());
duke@435 752 (*pos_index) = _gvn.transform(ccast);
duke@435 753 }
duke@435 754 return is_notp;
duke@435 755 }
duke@435 756
duke@435 757 // Make sure that 'position' is a valid limit index, in [0..length].
duke@435 758 // There are two equivalent plans for checking this:
duke@435 759 // A. (offset + copyLength) unsigned<= arrayLength
duke@435 760 // B. offset <= (arrayLength - copyLength)
duke@435 761 // We require that all of the values above, except for the sum and
duke@435 762 // difference, are already known to be non-negative.
duke@435 763 // Plan A is robust in the face of overflow, if offset and copyLength
duke@435 764 // are both hugely positive.
duke@435 765 //
duke@435 766 // Plan B is less direct and intuitive, but it does not overflow at
duke@435 767 // all, since the difference of two non-negatives is always
duke@435 768 // representable. Whenever Java methods must perform the equivalent
duke@435 769 // check they generally use Plan B instead of Plan A.
duke@435 770 // For the moment we use Plan A.
duke@435 771 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
duke@435 772 Node* subseq_length,
duke@435 773 Node* array_length,
duke@435 774 RegionNode* region) {
duke@435 775 if (stopped())
duke@435 776 return NULL; // already stopped
duke@435 777 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
duke@435 778 if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
duke@435 779 return NULL; // common case of whole-array copy
duke@435 780 Node* last = subseq_length;
duke@435 781 if (!zero_offset) // last += offset
duke@435 782 last = _gvn.transform( new (C, 3) AddINode(last, offset));
duke@435 783 Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
duke@435 784 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 785 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
duke@435 786 return is_over;
duke@435 787 }
duke@435 788
duke@435 789
duke@435 790 //--------------------------generate_current_thread--------------------
duke@435 791 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
duke@435 792 ciKlass* thread_klass = env()->Thread_klass();
duke@435 793 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
duke@435 794 Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
duke@435 795 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
duke@435 796 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
duke@435 797 tls_output = thread;
duke@435 798 return threadObj;
duke@435 799 }
duke@435 800
duke@435 801
kvn@1421 802 //------------------------------make_string_method_node------------------------
kvn@1421 803 // Helper method for String intrinsic finctions.
kvn@1421 804 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
kvn@1421 805 const int value_offset = java_lang_String::value_offset_in_bytes();
kvn@1421 806 const int count_offset = java_lang_String::count_offset_in_bytes();
kvn@1421 807 const int offset_offset = java_lang_String::offset_offset_in_bytes();
kvn@1421 808
kvn@1421 809 Node* no_ctrl = NULL;
kvn@1421 810
kvn@1421 811 ciInstanceKlass* klass = env()->String_klass();
never@1851 812 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
kvn@1421 813
kvn@1421 814 const TypeAryPtr* value_type =
kvn@1421 815 TypeAryPtr::make(TypePtr::NotNull,
kvn@1421 816 TypeAry::make(TypeInt::CHAR,TypeInt::POS),
kvn@1421 817 ciTypeArrayKlass::make(T_CHAR), true, 0);
kvn@1421 818
kvn@1421 819 // Get start addr of string and substring
kvn@1421 820 Node* str1_valuea = basic_plus_adr(str1, str1, value_offset);
kvn@1421 821 Node* str1_value = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
kvn@1421 822 Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
kvn@1421 823 Node* str1_offset = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
kvn@1421 824 Node* str1_start = array_element_address(str1_value, str1_offset, T_CHAR);
kvn@1421 825
kvn@1421 826 // Pin loads from String::equals() argument since it could be NULL.
kvn@1421 827 Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
kvn@1421 828 Node* str2_valuea = basic_plus_adr(str2, str2, value_offset);
kvn@1421 829 Node* str2_value = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
kvn@1421 830 Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
kvn@1421 831 Node* str2_offset = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
kvn@1421 832 Node* str2_start = array_element_address(str2_value, str2_offset, T_CHAR);
kvn@1421 833
kvn@1421 834 Node* result = NULL;
kvn@1421 835 switch (opcode) {
kvn@1421 836 case Op_StrIndexOf:
kvn@1421 837 result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 838 str1_start, cnt1, str2_start, cnt2);
kvn@1421 839 break;
kvn@1421 840 case Op_StrComp:
kvn@1421 841 result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 842 str1_start, cnt1, str2_start, cnt2);
kvn@1421 843 break;
kvn@1421 844 case Op_StrEquals:
kvn@1421 845 result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 846 str1_start, str2_start, cnt1);
kvn@1421 847 break;
kvn@1421 848 default:
kvn@1421 849 ShouldNotReachHere();
kvn@1421 850 return NULL;
kvn@1421 851 }
kvn@1421 852
kvn@1421 853 // All these intrinsics have checks.
kvn@1421 854 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@1421 855
kvn@1421 856 return _gvn.transform(result);
kvn@1421 857 }
kvn@1421 858
duke@435 859 //------------------------------inline_string_compareTo------------------------
duke@435 860 bool LibraryCallKit::inline_string_compareTo() {
duke@435 861
cfang@1116 862 if (!Matcher::has_match_rule(Op_StrComp)) return false;
cfang@1116 863
duke@435 864 const int value_offset = java_lang_String::value_offset_in_bytes();
duke@435 865 const int count_offset = java_lang_String::count_offset_in_bytes();
duke@435 866 const int offset_offset = java_lang_String::offset_offset_in_bytes();
duke@435 867
duke@435 868 _sp += 2;
duke@435 869 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 870 Node *receiver = pop();
duke@435 871
duke@435 872 // Null check on self without removing any arguments. The argument
duke@435 873 // null check technically happens in the wrong place, which can lead to
duke@435 874 // invalid stack traces when string compare is inlined into a method
duke@435 875 // which handles NullPointerExceptions.
duke@435 876 _sp += 2;
duke@435 877 receiver = do_null_check(receiver, T_OBJECT);
duke@435 878 argument = do_null_check(argument, T_OBJECT);
duke@435 879 _sp -= 2;
duke@435 880 if (stopped()) {
duke@435 881 return true;
duke@435 882 }
duke@435 883
duke@435 884 ciInstanceKlass* klass = env()->String_klass();
never@1851 885 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
kvn@1421 886 Node* no_ctrl = NULL;
kvn@1421 887
kvn@1421 888 // Get counts for string and argument
kvn@1421 889 Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
kvn@1421 890 Node* receiver_cnt = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 891
kvn@1421 892 Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
kvn@1421 893 Node* argument_cnt = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 894
kvn@1421 895 Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
duke@435 896 push(compare);
duke@435 897 return true;
duke@435 898 }
duke@435 899
cfang@1116 900 //------------------------------inline_string_equals------------------------
cfang@1116 901 bool LibraryCallKit::inline_string_equals() {
cfang@1116 902
cfang@1116 903 if (!Matcher::has_match_rule(Op_StrEquals)) return false;
cfang@1116 904
cfang@1116 905 const int value_offset = java_lang_String::value_offset_in_bytes();
cfang@1116 906 const int count_offset = java_lang_String::count_offset_in_bytes();
cfang@1116 907 const int offset_offset = java_lang_String::offset_offset_in_bytes();
cfang@1116 908
jrose@2101 909 int nargs = 2;
jrose@2101 910 _sp += nargs;
cfang@1116 911 Node* argument = pop(); // pop non-receiver first: it was pushed second
cfang@1116 912 Node* receiver = pop();
cfang@1116 913
cfang@1116 914 // Null check on self without removing any arguments. The argument
cfang@1116 915 // null check technically happens in the wrong place, which can lead to
cfang@1116 916 // invalid stack traces when string compare is inlined into a method
cfang@1116 917 // which handles NullPointerExceptions.
jrose@2101 918 _sp += nargs;
cfang@1116 919 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 920 //should not do null check for argument for String.equals(), because spec
cfang@1116 921 //allows to specify NULL as argument.
jrose@2101 922 _sp -= nargs;
cfang@1116 923
cfang@1116 924 if (stopped()) {
cfang@1116 925 return true;
cfang@1116 926 }
cfang@1116 927
kvn@1421 928 // paths (plus control) merge
kvn@1421 929 RegionNode* region = new (C, 5) RegionNode(5);
kvn@1421 930 Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
kvn@1421 931
kvn@1421 932 // does source == target string?
kvn@1421 933 Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
kvn@1421 934 Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
kvn@1421 935
kvn@1421 936 Node* if_eq = generate_slow_guard(bol, NULL);
kvn@1421 937 if (if_eq != NULL) {
kvn@1421 938 // receiver == argument
kvn@1421 939 phi->init_req(2, intcon(1));
kvn@1421 940 region->init_req(2, if_eq);
kvn@1421 941 }
kvn@1421 942
cfang@1116 943 // get String klass for instanceOf
cfang@1116 944 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 945
kvn@1421 946 if (!stopped()) {
jrose@2101 947 _sp += nargs; // gen_instanceof might do an uncommon trap
kvn@1421 948 Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
jrose@2101 949 _sp -= nargs;
kvn@1421 950 Node* cmp = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
kvn@1421 951 Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
kvn@1421 952
kvn@1421 953 Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
kvn@1421 954 //instanceOf == true, fallthrough
kvn@1421 955
kvn@1421 956 if (inst_false != NULL) {
kvn@1421 957 phi->init_req(3, intcon(0));
kvn@1421 958 region->init_req(3, inst_false);
kvn@1421 959 }
kvn@1421 960 }
cfang@1116 961
never@1851 962 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
cfang@1116 963
kvn@1421 964 Node* no_ctrl = NULL;
kvn@1421 965 Node* receiver_cnt;
kvn@1421 966 Node* argument_cnt;
kvn@1421 967
kvn@1421 968 if (!stopped()) {
never@1851 969 // Properly cast the argument to String
never@1851 970 argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
never@1851 971
kvn@1421 972 // Get counts for string and argument
kvn@1421 973 Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
kvn@1421 974 receiver_cnt = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 975
kvn@1421 976 // Pin load from argument string since it could be NULL.
kvn@1421 977 Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
kvn@1421 978 argument_cnt = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 979
kvn@1421 980 // Check for receiver count != argument count
kvn@1421 981 Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
kvn@1421 982 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
kvn@1421 983 Node* if_ne = generate_slow_guard(bol, NULL);
kvn@1421 984 if (if_ne != NULL) {
kvn@1421 985 phi->init_req(4, intcon(0));
kvn@1421 986 region->init_req(4, if_ne);
kvn@1421 987 }
kvn@1421 988 }
kvn@1421 989
kvn@1421 990 // Check for count == 0 is done by mach node StrEquals.
kvn@1421 991
kvn@1421 992 if (!stopped()) {
kvn@1421 993 Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
kvn@1421 994 phi->init_req(1, equals);
kvn@1421 995 region->init_req(1, control());
kvn@1421 996 }
cfang@1116 997
cfang@1116 998 // post merge
cfang@1116 999 set_control(_gvn.transform(region));
cfang@1116 1000 record_for_igvn(region);
cfang@1116 1001
cfang@1116 1002 push(_gvn.transform(phi));
cfang@1116 1003
cfang@1116 1004 return true;
cfang@1116 1005 }
cfang@1116 1006
rasbold@604 1007 //------------------------------inline_array_equals----------------------------
rasbold@604 1008 bool LibraryCallKit::inline_array_equals() {
rasbold@604 1009
rasbold@609 1010 if (!Matcher::has_match_rule(Op_AryEq)) return false;
rasbold@609 1011
rasbold@604 1012 _sp += 2;
rasbold@604 1013 Node *argument2 = pop();
rasbold@604 1014 Node *argument1 = pop();
rasbold@604 1015
rasbold@604 1016 Node* equals =
kvn@1421 1017 _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 1018 argument1, argument2) );
rasbold@604 1019 push(equals);
rasbold@604 1020 return true;
rasbold@604 1021 }
rasbold@604 1022
duke@435 1023 // Java version of String.indexOf(constant string)
duke@435 1024 // class StringDecl {
duke@435 1025 // StringDecl(char[] ca) {
duke@435 1026 // offset = 0;
duke@435 1027 // count = ca.length;
duke@435 1028 // value = ca;
duke@435 1029 // }
duke@435 1030 // int offset;
duke@435 1031 // int count;
duke@435 1032 // char[] value;
duke@435 1033 // }
duke@435 1034 //
duke@435 1035 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
duke@435 1036 // int targetOffset, int cache_i, int md2) {
duke@435 1037 // int cache = cache_i;
duke@435 1038 // int sourceOffset = string_object.offset;
duke@435 1039 // int sourceCount = string_object.count;
duke@435 1040 // int targetCount = target_object.length;
duke@435 1041 //
duke@435 1042 // int targetCountLess1 = targetCount - 1;
duke@435 1043 // int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
duke@435 1044 //
duke@435 1045 // char[] source = string_object.value;
duke@435 1046 // char[] target = target_object;
duke@435 1047 // int lastChar = target[targetCountLess1];
duke@435 1048 //
duke@435 1049 // outer_loop:
duke@435 1050 // for (int i = sourceOffset; i < sourceEnd; ) {
duke@435 1051 // int src = source[i + targetCountLess1];
duke@435 1052 // if (src == lastChar) {
duke@435 1053 // // With random strings and a 4-character alphabet,
duke@435 1054 // // reverse matching at this point sets up 0.8% fewer
duke@435 1055 // // frames, but (paradoxically) makes 0.3% more probes.
duke@435 1056 // // Since those probes are nearer the lastChar probe,
duke@435 1057 // // there is may be a net D$ win with reverse matching.
duke@435 1058 // // But, reversing loop inhibits unroll of inner loop
duke@435 1059 // // for unknown reason. So, does running outer loop from
duke@435 1060 // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
duke@435 1061 // for (int j = 0; j < targetCountLess1; j++) {
duke@435 1062 // if (target[targetOffset + j] != source[i+j]) {
duke@435 1063 // if ((cache & (1 << source[i+j])) == 0) {
duke@435 1064 // if (md2 < j+1) {
duke@435 1065 // i += j+1;
duke@435 1066 // continue outer_loop;
duke@435 1067 // }
duke@435 1068 // }
duke@435 1069 // i += md2;
duke@435 1070 // continue outer_loop;
duke@435 1071 // }
duke@435 1072 // }
duke@435 1073 // return i - sourceOffset;
duke@435 1074 // }
duke@435 1075 // if ((cache & (1 << src)) == 0) {
duke@435 1076 // i += targetCountLess1;
duke@435 1077 // } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
duke@435 1078 // i++;
duke@435 1079 // }
duke@435 1080 // return -1;
duke@435 1081 // }
duke@435 1082
duke@435 1083 //------------------------------string_indexOf------------------------
duke@435 1084 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
duke@435 1085 jint cache_i, jint md2_i) {
duke@435 1086
duke@435 1087 Node* no_ctrl = NULL;
duke@435 1088 float likely = PROB_LIKELY(0.9);
duke@435 1089 float unlikely = PROB_UNLIKELY(0.9);
duke@435 1090
duke@435 1091 const int value_offset = java_lang_String::value_offset_in_bytes();
duke@435 1092 const int count_offset = java_lang_String::count_offset_in_bytes();
duke@435 1093 const int offset_offset = java_lang_String::offset_offset_in_bytes();
duke@435 1094
duke@435 1095 ciInstanceKlass* klass = env()->String_klass();
never@1851 1096 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
duke@435 1097 const TypeAryPtr* source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
duke@435 1098
duke@435 1099 Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
duke@435 1100 Node* sourceOffset = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
duke@435 1101 Node* sourceCounta = basic_plus_adr(string_object, string_object, count_offset);
duke@435 1102 Node* sourceCount = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
duke@435 1103 Node* sourcea = basic_plus_adr(string_object, string_object, value_offset);
duke@435 1104 Node* source = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
duke@435 1105
kvn@599 1106 Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
duke@435 1107 jint target_length = target_array->length();
duke@435 1108 const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
duke@435 1109 const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
duke@435 1110
kvn@1286 1111 IdealKit kit(gvn(), control(), merged_memory(), false, true);
duke@435 1112 #define __ kit.
duke@435 1113 Node* zero = __ ConI(0);
duke@435 1114 Node* one = __ ConI(1);
duke@435 1115 Node* cache = __ ConI(cache_i);
duke@435 1116 Node* md2 = __ ConI(md2_i);
duke@435 1117 Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
duke@435 1118 Node* targetCount = __ ConI(target_length);
duke@435 1119 Node* targetCountLess1 = __ ConI(target_length - 1);
duke@435 1120 Node* targetOffset = __ ConI(targetOffset_i);
duke@435 1121 Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
duke@435 1122
kvn@1286 1123 IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
duke@435 1124 Node* outer_loop = __ make_label(2 /* goto */);
duke@435 1125 Node* return_ = __ make_label(1);
duke@435 1126
duke@435 1127 __ set(rtn,__ ConI(-1));
duke@435 1128 __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
duke@435 1129 Node* i2 = __ AddI(__ value(i), targetCountLess1);
duke@435 1130 // pin to prohibit loading of "next iteration" value which may SEGV (rare)
duke@435 1131 Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
duke@435 1132 __ if_then(src, BoolTest::eq, lastChar, unlikely); {
duke@435 1133 __ loop(j, zero, BoolTest::lt, targetCountLess1); {
duke@435 1134 Node* tpj = __ AddI(targetOffset, __ value(j));
duke@435 1135 Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
duke@435 1136 Node* ipj = __ AddI(__ value(i), __ value(j));
duke@435 1137 Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
duke@435 1138 __ if_then(targ, BoolTest::ne, src2); {
duke@435 1139 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
duke@435 1140 __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
duke@435 1141 __ increment(i, __ AddI(__ value(j), one));
duke@435 1142 __ goto_(outer_loop);
duke@435 1143 } __ end_if(); __ dead(j);
duke@435 1144 }__ end_if(); __ dead(j);
duke@435 1145 __ increment(i, md2);
duke@435 1146 __ goto_(outer_loop);
duke@435 1147 }__ end_if();
duke@435 1148 __ increment(j, one);
duke@435 1149 }__ end_loop(); __ dead(j);
duke@435 1150 __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
duke@435 1151 __ goto_(return_);
duke@435 1152 }__ end_if();
duke@435 1153 __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
duke@435 1154 __ increment(i, targetCountLess1);
duke@435 1155 }__ end_if();
duke@435 1156 __ increment(i, one);
duke@435 1157 __ bind(outer_loop);
duke@435 1158 }__ end_loop(); __ dead(i);
duke@435 1159 __ bind(return_);
kvn@1286 1160
kvn@1286 1161 // Final sync IdealKit and GraphKit.
kvn@1286 1162 sync_kit(kit);
duke@435 1163 Node* result = __ value(rtn);
duke@435 1164 #undef __
duke@435 1165 C->set_has_loops(true);
duke@435 1166 return result;
duke@435 1167 }
duke@435 1168
duke@435 1169 //------------------------------inline_string_indexOf------------------------
duke@435 1170 bool LibraryCallKit::inline_string_indexOf() {
duke@435 1171
cfang@1116 1172 const int value_offset = java_lang_String::value_offset_in_bytes();
cfang@1116 1173 const int count_offset = java_lang_String::count_offset_in_bytes();
cfang@1116 1174 const int offset_offset = java_lang_String::offset_offset_in_bytes();
cfang@1116 1175
duke@435 1176 _sp += 2;
duke@435 1177 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 1178 Node *receiver = pop();
duke@435 1179
cfang@1116 1180 Node* result;
iveresov@1859 1181 // Disable the use of pcmpestri until it can be guaranteed that
iveresov@1859 1182 // the load doesn't cross into the uncommited space.
iveresov@1859 1183 if (false && Matcher::has_match_rule(Op_StrIndexOf) &&
cfang@1116 1184 UseSSE42Intrinsics) {
cfang@1116 1185 // Generate SSE4.2 version of indexOf
cfang@1116 1186 // We currently only have match rules that use SSE4.2
cfang@1116 1187
cfang@1116 1188 // Null check on self without removing any arguments. The argument
cfang@1116 1189 // null check technically happens in the wrong place, which can lead to
cfang@1116 1190 // invalid stack traces when string compare is inlined into a method
cfang@1116 1191 // which handles NullPointerExceptions.
cfang@1116 1192 _sp += 2;
cfang@1116 1193 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1194 argument = do_null_check(argument, T_OBJECT);
cfang@1116 1195 _sp -= 2;
cfang@1116 1196
cfang@1116 1197 if (stopped()) {
cfang@1116 1198 return true;
cfang@1116 1199 }
cfang@1116 1200
kvn@1421 1201 // Make the merge point
kvn@1421 1202 RegionNode* result_rgn = new (C, 3) RegionNode(3);
kvn@1421 1203 Node* result_phi = new (C, 3) PhiNode(result_rgn, TypeInt::INT);
kvn@1421 1204 Node* no_ctrl = NULL;
kvn@1421 1205
cfang@1116 1206 ciInstanceKlass* klass = env()->String_klass();
never@1851 1207 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
cfang@1116 1208
kvn@1421 1209 // Get counts for string and substr
kvn@1421 1210 Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
kvn@1421 1211 Node* source_cnt = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 1212
kvn@1421 1213 Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
kvn@1421 1214 Node* substr_cnt = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 1215
kvn@1421 1216 // Check for substr count > string count
kvn@1421 1217 Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
kvn@1421 1218 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
kvn@1421 1219 Node* if_gt = generate_slow_guard(bol, NULL);
kvn@1421 1220 if (if_gt != NULL) {
kvn@1421 1221 result_phi->init_req(2, intcon(-1));
kvn@1421 1222 result_rgn->init_req(2, if_gt);
kvn@1421 1223 }
kvn@1421 1224
kvn@1421 1225 if (!stopped()) {
kvn@1421 1226 result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
kvn@1421 1227 result_phi->init_req(1, result);
kvn@1421 1228 result_rgn->init_req(1, control());
kvn@1421 1229 }
kvn@1421 1230 set_control(_gvn.transform(result_rgn));
kvn@1421 1231 record_for_igvn(result_rgn);
kvn@1421 1232 result = _gvn.transform(result_phi);
kvn@1421 1233
cfang@1116 1234 } else { //Use LibraryCallKit::string_indexOf
cfang@1116 1235 // don't intrinsify is argument isn't a constant string.
cfang@1116 1236 if (!argument->is_Con()) {
cfang@1116 1237 return false;
cfang@1116 1238 }
cfang@1116 1239 const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
cfang@1116 1240 if (str_type == NULL) {
cfang@1116 1241 return false;
cfang@1116 1242 }
cfang@1116 1243 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1244 ciObject* str_const = str_type->const_oop();
cfang@1116 1245 if (str_const == NULL || str_const->klass() != klass) {
cfang@1116 1246 return false;
cfang@1116 1247 }
cfang@1116 1248 ciInstance* str = str_const->as_instance();
cfang@1116 1249 assert(str != NULL, "must be instance");
cfang@1116 1250
cfang@1116 1251 ciObject* v = str->field_value_by_offset(value_offset).as_object();
cfang@1116 1252 int o = str->field_value_by_offset(offset_offset).as_int();
cfang@1116 1253 int c = str->field_value_by_offset(count_offset).as_int();
cfang@1116 1254 ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
cfang@1116 1255
cfang@1116 1256 // constant strings have no offset and count == length which
cfang@1116 1257 // simplifies the resulting code somewhat so lets optimize for that.
cfang@1116 1258 if (o != 0 || c != pat->length()) {
cfang@1116 1259 return false;
cfang@1116 1260 }
cfang@1116 1261
cfang@1116 1262 // Null check on self without removing any arguments. The argument
cfang@1116 1263 // null check technically happens in the wrong place, which can lead to
cfang@1116 1264 // invalid stack traces when string compare is inlined into a method
cfang@1116 1265 // which handles NullPointerExceptions.
cfang@1116 1266 _sp += 2;
cfang@1116 1267 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1268 // No null check on the argument is needed since it's a constant String oop.
cfang@1116 1269 _sp -= 2;
cfang@1116 1270 if (stopped()) {
cfang@1116 1271 return true;
cfang@1116 1272 }
cfang@1116 1273
cfang@1116 1274 // The null string as a pattern always returns 0 (match at beginning of string)
cfang@1116 1275 if (c == 0) {
cfang@1116 1276 push(intcon(0));
cfang@1116 1277 return true;
cfang@1116 1278 }
cfang@1116 1279
cfang@1116 1280 // Generate default indexOf
cfang@1116 1281 jchar lastChar = pat->char_at(o + (c - 1));
cfang@1116 1282 int cache = 0;
cfang@1116 1283 int i;
cfang@1116 1284 for (i = 0; i < c - 1; i++) {
cfang@1116 1285 assert(i < pat->length(), "out of range");
cfang@1116 1286 cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
cfang@1116 1287 }
cfang@1116 1288
cfang@1116 1289 int md2 = c;
cfang@1116 1290 for (i = 0; i < c - 1; i++) {
cfang@1116 1291 assert(i < pat->length(), "out of range");
cfang@1116 1292 if (pat->char_at(o + i) == lastChar) {
cfang@1116 1293 md2 = (c - 1) - i;
cfang@1116 1294 }
cfang@1116 1295 }
cfang@1116 1296
cfang@1116 1297 result = string_indexOf(receiver, pat, o, cache, md2);
duke@435 1298 }
cfang@1116 1299
duke@435 1300 push(result);
duke@435 1301 return true;
duke@435 1302 }
duke@435 1303
duke@435 1304 //--------------------------pop_math_arg--------------------------------
duke@435 1305 // Pop a double argument to a math function from the stack
duke@435 1306 // rounding it if necessary.
duke@435 1307 Node * LibraryCallKit::pop_math_arg() {
duke@435 1308 Node *arg = pop_pair();
duke@435 1309 if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
duke@435 1310 arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
duke@435 1311 return arg;
duke@435 1312 }
duke@435 1313
duke@435 1314 //------------------------------inline_trig----------------------------------
duke@435 1315 // Inline sin/cos/tan instructions, if possible. If rounding is required, do
duke@435 1316 // argument reduction which will turn into a fast/slow diamond.
duke@435 1317 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
duke@435 1318 _sp += arg_size(); // restore stack pointer
duke@435 1319 Node* arg = pop_math_arg();
duke@435 1320 Node* trig = NULL;
duke@435 1321
duke@435 1322 switch (id) {
duke@435 1323 case vmIntrinsics::_dsin:
duke@435 1324 trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
duke@435 1325 break;
duke@435 1326 case vmIntrinsics::_dcos:
duke@435 1327 trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
duke@435 1328 break;
duke@435 1329 case vmIntrinsics::_dtan:
duke@435 1330 trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
duke@435 1331 break;
duke@435 1332 default:
duke@435 1333 assert(false, "bad intrinsic was passed in");
duke@435 1334 return false;
duke@435 1335 }
duke@435 1336
duke@435 1337 // Rounding required? Check for argument reduction!
duke@435 1338 if( Matcher::strict_fp_requires_explicit_rounding ) {
duke@435 1339
duke@435 1340 static const double pi_4 = 0.7853981633974483;
duke@435 1341 static const double neg_pi_4 = -0.7853981633974483;
duke@435 1342 // pi/2 in 80-bit extended precision
duke@435 1343 // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1344 // -pi/2 in 80-bit extended precision
duke@435 1345 // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1346 // Cutoff value for using this argument reduction technique
duke@435 1347 //static const double pi_2_minus_epsilon = 1.564660403643354;
duke@435 1348 //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
duke@435 1349
duke@435 1350 // Pseudocode for sin:
duke@435 1351 // if (x <= Math.PI / 4.0) {
duke@435 1352 // if (x >= -Math.PI / 4.0) return fsin(x);
duke@435 1353 // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
duke@435 1354 // } else {
duke@435 1355 // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
duke@435 1356 // }
duke@435 1357 // return StrictMath.sin(x);
duke@435 1358
duke@435 1359 // Pseudocode for cos:
duke@435 1360 // if (x <= Math.PI / 4.0) {
duke@435 1361 // if (x >= -Math.PI / 4.0) return fcos(x);
duke@435 1362 // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
duke@435 1363 // } else {
duke@435 1364 // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
duke@435 1365 // }
duke@435 1366 // return StrictMath.cos(x);
duke@435 1367
duke@435 1368 // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
duke@435 1369 // requires a special machine instruction to load it. Instead we'll try
duke@435 1370 // the 'easy' case. If we really need the extra range +/- PI/2 we'll
duke@435 1371 // probably do the math inside the SIN encoding.
duke@435 1372
duke@435 1373 // Make the merge point
duke@435 1374 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 1375 Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
duke@435 1376
duke@435 1377 // Flatten arg so we need only 1 test
duke@435 1378 Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
duke@435 1379 // Node for PI/4 constant
duke@435 1380 Node *pi4 = makecon(TypeD::make(pi_4));
duke@435 1381 // Check PI/4 : abs(arg)
duke@435 1382 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
duke@435 1383 // Check: If PI/4 < abs(arg) then go slow
duke@435 1384 Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
duke@435 1385 // Branch either way
duke@435 1386 IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 1387 set_control(opt_iff(r,iff));
duke@435 1388
duke@435 1389 // Set fast path result
duke@435 1390 phi->init_req(2,trig);
duke@435 1391
duke@435 1392 // Slow path - non-blocking leaf call
duke@435 1393 Node* call = NULL;
duke@435 1394 switch (id) {
duke@435 1395 case vmIntrinsics::_dsin:
duke@435 1396 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1397 CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
duke@435 1398 "Sin", NULL, arg, top());
duke@435 1399 break;
duke@435 1400 case vmIntrinsics::_dcos:
duke@435 1401 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1402 CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
duke@435 1403 "Cos", NULL, arg, top());
duke@435 1404 break;
duke@435 1405 case vmIntrinsics::_dtan:
duke@435 1406 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1407 CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
duke@435 1408 "Tan", NULL, arg, top());
duke@435 1409 break;
duke@435 1410 }
duke@435 1411 assert(control()->in(0) == call, "");
duke@435 1412 Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
duke@435 1413 r->init_req(1,control());
duke@435 1414 phi->init_req(1,slow_result);
duke@435 1415
duke@435 1416 // Post-merge
duke@435 1417 set_control(_gvn.transform(r));
duke@435 1418 record_for_igvn(r);
duke@435 1419 trig = _gvn.transform(phi);
duke@435 1420
duke@435 1421 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1422 }
duke@435 1423 // Push result back on JVM stack
duke@435 1424 push_pair(trig);
duke@435 1425 return true;
duke@435 1426 }
duke@435 1427
duke@435 1428 //------------------------------inline_sqrt-------------------------------------
duke@435 1429 // Inline square root instruction, if possible.
duke@435 1430 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
duke@435 1431 assert(id == vmIntrinsics::_dsqrt, "Not square root");
duke@435 1432 _sp += arg_size(); // restore stack pointer
duke@435 1433 push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
duke@435 1434 return true;
duke@435 1435 }
duke@435 1436
duke@435 1437 //------------------------------inline_abs-------------------------------------
duke@435 1438 // Inline absolute value instruction, if possible.
duke@435 1439 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
duke@435 1440 assert(id == vmIntrinsics::_dabs, "Not absolute value");
duke@435 1441 _sp += arg_size(); // restore stack pointer
duke@435 1442 push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
duke@435 1443 return true;
duke@435 1444 }
duke@435 1445
duke@435 1446 //------------------------------inline_exp-------------------------------------
duke@435 1447 // Inline exp instructions, if possible. The Intel hardware only misses
duke@435 1448 // really odd corner cases (+/- Infinity). Just uncommon-trap them.
duke@435 1449 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
duke@435 1450 assert(id == vmIntrinsics::_dexp, "Not exp");
duke@435 1451
duke@435 1452 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1453 // every again. NaN results requires StrictMath.exp handling.
duke@435 1454 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1455
duke@435 1456 // Do not intrinsify on older platforms which lack cmove.
duke@435 1457 if (ConditionalMoveLimit == 0) return false;
duke@435 1458
duke@435 1459 _sp += arg_size(); // restore stack pointer
duke@435 1460 Node *x = pop_math_arg();
duke@435 1461 Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
duke@435 1462
duke@435 1463 //-------------------
duke@435 1464 //result=(result.isNaN())? StrictMath::exp():result;
duke@435 1465 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1466 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1467 // Build the boolean node
duke@435 1468 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1469
duke@435 1470 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1471 // End the current control-flow path
duke@435 1472 push_pair(x);
duke@435 1473 // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
duke@435 1474 // to handle. Recompile without intrinsifying Math.exp
duke@435 1475 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1476 Deoptimization::Action_make_not_entrant);
duke@435 1477 }
duke@435 1478
duke@435 1479 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1480
duke@435 1481 push_pair(result);
duke@435 1482
duke@435 1483 return true;
duke@435 1484 }
duke@435 1485
duke@435 1486 //------------------------------inline_pow-------------------------------------
duke@435 1487 // Inline power instructions, if possible.
duke@435 1488 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
duke@435 1489 assert(id == vmIntrinsics::_dpow, "Not pow");
duke@435 1490
duke@435 1491 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1492 // every again. NaN results requires StrictMath.pow handling.
duke@435 1493 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1494
duke@435 1495 // Do not intrinsify on older platforms which lack cmove.
duke@435 1496 if (ConditionalMoveLimit == 0) return false;
duke@435 1497
duke@435 1498 // Pseudocode for pow
duke@435 1499 // if (x <= 0.0) {
duke@435 1500 // if ((double)((int)y)==y) { // if y is int
duke@435 1501 // result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1502 // } else {
duke@435 1503 // result = NaN;
duke@435 1504 // }
duke@435 1505 // } else {
duke@435 1506 // result = DPow(x,y);
duke@435 1507 // }
duke@435 1508 // if (result != result)? {
twisti@1040 1509 // uncommon_trap();
duke@435 1510 // }
duke@435 1511 // return result;
duke@435 1512
duke@435 1513 _sp += arg_size(); // restore stack pointer
duke@435 1514 Node* y = pop_math_arg();
duke@435 1515 Node* x = pop_math_arg();
duke@435 1516
duke@435 1517 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
duke@435 1518
duke@435 1519 // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
duke@435 1520 // inside of something) then skip the fancy tests and just check for
duke@435 1521 // NaN result.
duke@435 1522 Node *result = NULL;
duke@435 1523 if( jvms()->depth() >= 1 ) {
duke@435 1524 result = fast_result;
duke@435 1525 } else {
duke@435 1526
duke@435 1527 // Set the merge point for If node with condition of (x <= 0.0)
duke@435 1528 // There are four possible paths to region node and phi node
duke@435 1529 RegionNode *r = new (C, 4) RegionNode(4);
duke@435 1530 Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
duke@435 1531
duke@435 1532 // Build the first if node: if (x <= 0.0)
duke@435 1533 // Node for 0 constant
duke@435 1534 Node *zeronode = makecon(TypeD::ZERO);
duke@435 1535 // Check x:0
duke@435 1536 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
duke@435 1537 // Check: If (x<=0) then go complex path
duke@435 1538 Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
duke@435 1539 // Branch either way
duke@435 1540 IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1541 Node *opt_test = _gvn.transform(if1);
duke@435 1542 //assert( opt_test->is_If(), "Expect an IfNode");
duke@435 1543 IfNode *opt_if1 = (IfNode*)opt_test;
duke@435 1544 // Fast path taken; set region slot 3
duke@435 1545 Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
duke@435 1546 r->init_req(3,fast_taken); // Capture fast-control
duke@435 1547
duke@435 1548 // Fast path not-taken, i.e. slow path
duke@435 1549 Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
duke@435 1550
duke@435 1551 // Set fast path result
duke@435 1552 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
duke@435 1553 phi->init_req(3, fast_result);
duke@435 1554
duke@435 1555 // Complex path
duke@435 1556 // Build the second if node (if y is int)
duke@435 1557 // Node for (int)y
duke@435 1558 Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
duke@435 1559 // Node for (double)((int) y)
duke@435 1560 Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
duke@435 1561 // Check (double)((int) y) : y
duke@435 1562 Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
duke@435 1563 // Check if (y isn't int) then go to slow path
duke@435 1564
duke@435 1565 Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
twisti@1040 1566 // Branch either way
duke@435 1567 IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1568 Node *slow_path = opt_iff(r,if2); // Set region path 2
duke@435 1569
duke@435 1570 // Calculate DPow(abs(x), y)*(1 & (int)y)
duke@435 1571 // Node for constant 1
duke@435 1572 Node *conone = intcon(1);
duke@435 1573 // 1& (int)y
duke@435 1574 Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
duke@435 1575 // zero node
duke@435 1576 Node *conzero = intcon(0);
duke@435 1577 // Check (1&(int)y)==0?
duke@435 1578 Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
duke@435 1579 // Check if (1&(int)y)!=0?, if so the result is negative
duke@435 1580 Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
duke@435 1581 // abs(x)
duke@435 1582 Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
duke@435 1583 // abs(x)^y
duke@435 1584 Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
duke@435 1585 // -abs(x)^y
duke@435 1586 Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
duke@435 1587 // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1588 Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
duke@435 1589 // Set complex path fast result
duke@435 1590 phi->init_req(2, signresult);
duke@435 1591
duke@435 1592 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 1593 Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
duke@435 1594 r->init_req(1,slow_path);
duke@435 1595 phi->init_req(1,slow_result);
duke@435 1596
duke@435 1597 // Post merge
duke@435 1598 set_control(_gvn.transform(r));
duke@435 1599 record_for_igvn(r);
duke@435 1600 result=_gvn.transform(phi);
duke@435 1601 }
duke@435 1602
duke@435 1603 //-------------------
duke@435 1604 //result=(result.isNaN())? uncommon_trap():result;
duke@435 1605 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1606 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1607 // Build the boolean node
duke@435 1608 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1609
duke@435 1610 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1611 // End the current control-flow path
duke@435 1612 push_pair(x);
duke@435 1613 push_pair(y);
duke@435 1614 // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
duke@435 1615 // to handle. Recompile without intrinsifying Math.pow.
duke@435 1616 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1617 Deoptimization::Action_make_not_entrant);
duke@435 1618 }
duke@435 1619
duke@435 1620 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1621
duke@435 1622 push_pair(result);
duke@435 1623
duke@435 1624 return true;
duke@435 1625 }
duke@435 1626
duke@435 1627 //------------------------------inline_trans-------------------------------------
duke@435 1628 // Inline transcendental instructions, if possible. The Intel hardware gets
duke@435 1629 // these right, no funny corner cases missed.
duke@435 1630 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
duke@435 1631 _sp += arg_size(); // restore stack pointer
duke@435 1632 Node* arg = pop_math_arg();
duke@435 1633 Node* trans = NULL;
duke@435 1634
duke@435 1635 switch (id) {
duke@435 1636 case vmIntrinsics::_dlog:
duke@435 1637 trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
duke@435 1638 break;
duke@435 1639 case vmIntrinsics::_dlog10:
duke@435 1640 trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
duke@435 1641 break;
duke@435 1642 default:
duke@435 1643 assert(false, "bad intrinsic was passed in");
duke@435 1644 return false;
duke@435 1645 }
duke@435 1646
duke@435 1647 // Push result back on JVM stack
duke@435 1648 push_pair(trans);
duke@435 1649 return true;
duke@435 1650 }
duke@435 1651
duke@435 1652 //------------------------------runtime_math-----------------------------
duke@435 1653 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
duke@435 1654 Node* a = NULL;
duke@435 1655 Node* b = NULL;
duke@435 1656
duke@435 1657 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
duke@435 1658 "must be (DD)D or (D)D type");
duke@435 1659
duke@435 1660 // Inputs
duke@435 1661 _sp += arg_size(); // restore stack pointer
duke@435 1662 if (call_type == OptoRuntime::Math_DD_D_Type()) {
duke@435 1663 b = pop_math_arg();
duke@435 1664 }
duke@435 1665 a = pop_math_arg();
duke@435 1666
duke@435 1667 const TypePtr* no_memory_effects = NULL;
duke@435 1668 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
duke@435 1669 no_memory_effects,
duke@435 1670 a, top(), b, b ? top() : NULL);
duke@435 1671 Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
duke@435 1672 #ifdef ASSERT
duke@435 1673 Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
duke@435 1674 assert(value_top == top(), "second value must be top");
duke@435 1675 #endif
duke@435 1676
duke@435 1677 push_pair(value);
duke@435 1678 return true;
duke@435 1679 }
duke@435 1680
duke@435 1681 //------------------------------inline_math_native-----------------------------
duke@435 1682 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
duke@435 1683 switch (id) {
duke@435 1684 // These intrinsics are not properly supported on all hardware
duke@435 1685 case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
duke@435 1686 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
duke@435 1687 case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
duke@435 1688 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
duke@435 1689 case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
duke@435 1690 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
duke@435 1691
duke@435 1692 case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
duke@435 1693 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
duke@435 1694 case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
duke@435 1695 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
duke@435 1696
duke@435 1697 // These intrinsics are supported on all hardware
duke@435 1698 case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
duke@435 1699 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_abs(id) : false;
duke@435 1700
duke@435 1701 // These intrinsics don't work on X86. The ad implementation doesn't
duke@435 1702 // handle NaN's properly. Instead of returning infinity, the ad
duke@435 1703 // implementation returns a NaN on overflow. See bug: 6304089
duke@435 1704 // Once the ad implementations are fixed, change the code below
duke@435 1705 // to match the intrinsics above
duke@435 1706
duke@435 1707 case vmIntrinsics::_dexp: return
duke@435 1708 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
duke@435 1709 case vmIntrinsics::_dpow: return
duke@435 1710 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
duke@435 1711
duke@435 1712 // These intrinsics are not yet correctly implemented
duke@435 1713 case vmIntrinsics::_datan2:
duke@435 1714 return false;
duke@435 1715
duke@435 1716 default:
duke@435 1717 ShouldNotReachHere();
duke@435 1718 return false;
duke@435 1719 }
duke@435 1720 }
duke@435 1721
duke@435 1722 static bool is_simple_name(Node* n) {
duke@435 1723 return (n->req() == 1 // constant
duke@435 1724 || (n->is_Type() && n->as_Type()->type()->singleton())
duke@435 1725 || n->is_Proj() // parameter or return value
duke@435 1726 || n->is_Phi() // local of some sort
duke@435 1727 );
duke@435 1728 }
duke@435 1729
duke@435 1730 //----------------------------inline_min_max-----------------------------------
duke@435 1731 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
duke@435 1732 push(generate_min_max(id, argument(0), argument(1)));
duke@435 1733
duke@435 1734 return true;
duke@435 1735 }
duke@435 1736
duke@435 1737 Node*
duke@435 1738 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
duke@435 1739 // These are the candidate return value:
duke@435 1740 Node* xvalue = x0;
duke@435 1741 Node* yvalue = y0;
duke@435 1742
duke@435 1743 if (xvalue == yvalue) {
duke@435 1744 return xvalue;
duke@435 1745 }
duke@435 1746
duke@435 1747 bool want_max = (id == vmIntrinsics::_max);
duke@435 1748
duke@435 1749 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
duke@435 1750 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
duke@435 1751 if (txvalue == NULL || tyvalue == NULL) return top();
duke@435 1752 // This is not really necessary, but it is consistent with a
duke@435 1753 // hypothetical MaxINode::Value method:
duke@435 1754 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
duke@435 1755
duke@435 1756 // %%% This folding logic should (ideally) be in a different place.
duke@435 1757 // Some should be inside IfNode, and there to be a more reliable
duke@435 1758 // transformation of ?: style patterns into cmoves. We also want
duke@435 1759 // more powerful optimizations around cmove and min/max.
duke@435 1760
duke@435 1761 // Try to find a dominating comparison of these guys.
duke@435 1762 // It can simplify the index computation for Arrays.copyOf
duke@435 1763 // and similar uses of System.arraycopy.
duke@435 1764 // First, compute the normalized version of CmpI(x, y).
duke@435 1765 int cmp_op = Op_CmpI;
duke@435 1766 Node* xkey = xvalue;
duke@435 1767 Node* ykey = yvalue;
duke@435 1768 Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
duke@435 1769 if (ideal_cmpxy->is_Cmp()) {
duke@435 1770 // E.g., if we have CmpI(length - offset, count),
duke@435 1771 // it might idealize to CmpI(length, count + offset)
duke@435 1772 cmp_op = ideal_cmpxy->Opcode();
duke@435 1773 xkey = ideal_cmpxy->in(1);
duke@435 1774 ykey = ideal_cmpxy->in(2);
duke@435 1775 }
duke@435 1776
duke@435 1777 // Start by locating any relevant comparisons.
duke@435 1778 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
duke@435 1779 Node* cmpxy = NULL;
duke@435 1780 Node* cmpyx = NULL;
duke@435 1781 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
duke@435 1782 Node* cmp = start_from->fast_out(k);
duke@435 1783 if (cmp->outcnt() > 0 && // must have prior uses
duke@435 1784 cmp->in(0) == NULL && // must be context-independent
duke@435 1785 cmp->Opcode() == cmp_op) { // right kind of compare
duke@435 1786 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
duke@435 1787 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
duke@435 1788 }
duke@435 1789 }
duke@435 1790
duke@435 1791 const int NCMPS = 2;
duke@435 1792 Node* cmps[NCMPS] = { cmpxy, cmpyx };
duke@435 1793 int cmpn;
duke@435 1794 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1795 if (cmps[cmpn] != NULL) break; // find a result
duke@435 1796 }
duke@435 1797 if (cmpn < NCMPS) {
duke@435 1798 // Look for a dominating test that tells us the min and max.
duke@435 1799 int depth = 0; // Limit search depth for speed
duke@435 1800 Node* dom = control();
duke@435 1801 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
duke@435 1802 if (++depth >= 100) break;
duke@435 1803 Node* ifproj = dom;
duke@435 1804 if (!ifproj->is_Proj()) continue;
duke@435 1805 Node* iff = ifproj->in(0);
duke@435 1806 if (!iff->is_If()) continue;
duke@435 1807 Node* bol = iff->in(1);
duke@435 1808 if (!bol->is_Bool()) continue;
duke@435 1809 Node* cmp = bol->in(1);
duke@435 1810 if (cmp == NULL) continue;
duke@435 1811 for (cmpn = 0; cmpn < NCMPS; cmpn++)
duke@435 1812 if (cmps[cmpn] == cmp) break;
duke@435 1813 if (cmpn == NCMPS) continue;
duke@435 1814 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1815 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
duke@435 1816 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1817 // At this point, we know that 'x btest y' is true.
duke@435 1818 switch (btest) {
duke@435 1819 case BoolTest::eq:
duke@435 1820 // They are proven equal, so we can collapse the min/max.
duke@435 1821 // Either value is the answer. Choose the simpler.
duke@435 1822 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
duke@435 1823 return yvalue;
duke@435 1824 return xvalue;
duke@435 1825 case BoolTest::lt: // x < y
duke@435 1826 case BoolTest::le: // x <= y
duke@435 1827 return (want_max ? yvalue : xvalue);
duke@435 1828 case BoolTest::gt: // x > y
duke@435 1829 case BoolTest::ge: // x >= y
duke@435 1830 return (want_max ? xvalue : yvalue);
duke@435 1831 }
duke@435 1832 }
duke@435 1833 }
duke@435 1834
duke@435 1835 // We failed to find a dominating test.
duke@435 1836 // Let's pick a test that might GVN with prior tests.
duke@435 1837 Node* best_bol = NULL;
duke@435 1838 BoolTest::mask best_btest = BoolTest::illegal;
duke@435 1839 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1840 Node* cmp = cmps[cmpn];
duke@435 1841 if (cmp == NULL) continue;
duke@435 1842 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
duke@435 1843 Node* bol = cmp->fast_out(j);
duke@435 1844 if (!bol->is_Bool()) continue;
duke@435 1845 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1846 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
duke@435 1847 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1848 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
duke@435 1849 best_bol = bol->as_Bool();
duke@435 1850 best_btest = btest;
duke@435 1851 }
duke@435 1852 }
duke@435 1853 }
duke@435 1854
duke@435 1855 Node* answer_if_true = NULL;
duke@435 1856 Node* answer_if_false = NULL;
duke@435 1857 switch (best_btest) {
duke@435 1858 default:
duke@435 1859 if (cmpxy == NULL)
duke@435 1860 cmpxy = ideal_cmpxy;
duke@435 1861 best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
duke@435 1862 // and fall through:
duke@435 1863 case BoolTest::lt: // x < y
duke@435 1864 case BoolTest::le: // x <= y
duke@435 1865 answer_if_true = (want_max ? yvalue : xvalue);
duke@435 1866 answer_if_false = (want_max ? xvalue : yvalue);
duke@435 1867 break;
duke@435 1868 case BoolTest::gt: // x > y
duke@435 1869 case BoolTest::ge: // x >= y
duke@435 1870 answer_if_true = (want_max ? xvalue : yvalue);
duke@435 1871 answer_if_false = (want_max ? yvalue : xvalue);
duke@435 1872 break;
duke@435 1873 }
duke@435 1874
duke@435 1875 jint hi, lo;
duke@435 1876 if (want_max) {
duke@435 1877 // We can sharpen the minimum.
duke@435 1878 hi = MAX2(txvalue->_hi, tyvalue->_hi);
duke@435 1879 lo = MAX2(txvalue->_lo, tyvalue->_lo);
duke@435 1880 } else {
duke@435 1881 // We can sharpen the maximum.
duke@435 1882 hi = MIN2(txvalue->_hi, tyvalue->_hi);
duke@435 1883 lo = MIN2(txvalue->_lo, tyvalue->_lo);
duke@435 1884 }
duke@435 1885
duke@435 1886 // Use a flow-free graph structure, to avoid creating excess control edges
duke@435 1887 // which could hinder other optimizations.
duke@435 1888 // Since Math.min/max is often used with arraycopy, we want
duke@435 1889 // tightly_coupled_allocation to be able to see beyond min/max expressions.
duke@435 1890 Node* cmov = CMoveNode::make(C, NULL, best_bol,
duke@435 1891 answer_if_false, answer_if_true,
duke@435 1892 TypeInt::make(lo, hi, widen));
duke@435 1893
duke@435 1894 return _gvn.transform(cmov);
duke@435 1895
duke@435 1896 /*
duke@435 1897 // This is not as desirable as it may seem, since Min and Max
duke@435 1898 // nodes do not have a full set of optimizations.
duke@435 1899 // And they would interfere, anyway, with 'if' optimizations
duke@435 1900 // and with CMoveI canonical forms.
duke@435 1901 switch (id) {
duke@435 1902 case vmIntrinsics::_min:
duke@435 1903 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
duke@435 1904 case vmIntrinsics::_max:
duke@435 1905 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
duke@435 1906 default:
duke@435 1907 ShouldNotReachHere();
duke@435 1908 }
duke@435 1909 */
duke@435 1910 }
duke@435 1911
duke@435 1912 inline int
duke@435 1913 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
duke@435 1914 const TypePtr* base_type = TypePtr::NULL_PTR;
duke@435 1915 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
duke@435 1916 if (base_type == NULL) {
duke@435 1917 // Unknown type.
duke@435 1918 return Type::AnyPtr;
duke@435 1919 } else if (base_type == TypePtr::NULL_PTR) {
duke@435 1920 // Since this is a NULL+long form, we have to switch to a rawptr.
duke@435 1921 base = _gvn.transform( new (C, 2) CastX2PNode(offset) );
duke@435 1922 offset = MakeConX(0);
duke@435 1923 return Type::RawPtr;
duke@435 1924 } else if (base_type->base() == Type::RawPtr) {
duke@435 1925 return Type::RawPtr;
duke@435 1926 } else if (base_type->isa_oopptr()) {
duke@435 1927 // Base is never null => always a heap address.
duke@435 1928 if (base_type->ptr() == TypePtr::NotNull) {
duke@435 1929 return Type::OopPtr;
duke@435 1930 }
duke@435 1931 // Offset is small => always a heap address.
duke@435 1932 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
duke@435 1933 if (offset_type != NULL &&
duke@435 1934 base_type->offset() == 0 && // (should always be?)
duke@435 1935 offset_type->_lo >= 0 &&
duke@435 1936 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
duke@435 1937 return Type::OopPtr;
duke@435 1938 }
duke@435 1939 // Otherwise, it might either be oop+off or NULL+addr.
duke@435 1940 return Type::AnyPtr;
duke@435 1941 } else {
duke@435 1942 // No information:
duke@435 1943 return Type::AnyPtr;
duke@435 1944 }
duke@435 1945 }
duke@435 1946
duke@435 1947 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
duke@435 1948 int kind = classify_unsafe_addr(base, offset);
duke@435 1949 if (kind == Type::RawPtr) {
duke@435 1950 return basic_plus_adr(top(), base, offset);
duke@435 1951 } else {
duke@435 1952 return basic_plus_adr(base, offset);
duke@435 1953 }
duke@435 1954 }
duke@435 1955
twisti@1210 1956 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
twisti@1210 1957 // inline int Integer.numberOfLeadingZeros(int)
twisti@1210 1958 // inline int Long.numberOfLeadingZeros(long)
twisti@1210 1959 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
twisti@1210 1960 assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
twisti@1210 1961 if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
twisti@1210 1962 if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
twisti@1210 1963 _sp += arg_size(); // restore stack pointer
twisti@1210 1964 switch (id) {
twisti@1210 1965 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 1966 push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
twisti@1210 1967 break;
twisti@1210 1968 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 1969 push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
twisti@1210 1970 break;
twisti@1210 1971 default:
twisti@1210 1972 ShouldNotReachHere();
twisti@1210 1973 }
twisti@1210 1974 return true;
twisti@1210 1975 }
twisti@1210 1976
twisti@1210 1977 //-------------------inline_numberOfTrailingZeros_int/long----------------------
twisti@1210 1978 // inline int Integer.numberOfTrailingZeros(int)
twisti@1210 1979 // inline int Long.numberOfTrailingZeros(long)
twisti@1210 1980 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
twisti@1210 1981 assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
twisti@1210 1982 if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
twisti@1210 1983 if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
twisti@1210 1984 _sp += arg_size(); // restore stack pointer
twisti@1210 1985 switch (id) {
twisti@1210 1986 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 1987 push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
twisti@1210 1988 break;
twisti@1210 1989 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 1990 push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
twisti@1210 1991 break;
twisti@1210 1992 default:
twisti@1210 1993 ShouldNotReachHere();
twisti@1210 1994 }
twisti@1210 1995 return true;
twisti@1210 1996 }
twisti@1210 1997
twisti@1078 1998 //----------------------------inline_bitCount_int/long-----------------------
twisti@1078 1999 // inline int Integer.bitCount(int)
twisti@1078 2000 // inline int Long.bitCount(long)
twisti@1078 2001 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
twisti@1078 2002 assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
twisti@1078 2003 if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
twisti@1078 2004 if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
twisti@1078 2005 _sp += arg_size(); // restore stack pointer
twisti@1078 2006 switch (id) {
twisti@1078 2007 case vmIntrinsics::_bitCount_i:
twisti@1078 2008 push(_gvn.transform(new (C, 2) PopCountINode(pop())));
twisti@1078 2009 break;
twisti@1078 2010 case vmIntrinsics::_bitCount_l:
twisti@1078 2011 push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
twisti@1078 2012 break;
twisti@1078 2013 default:
twisti@1078 2014 ShouldNotReachHere();
twisti@1078 2015 }
twisti@1078 2016 return true;
twisti@1078 2017 }
twisti@1078 2018
never@1831 2019 //----------------------------inline_reverseBytes_int/long/char/short-------------------
twisti@1040 2020 // inline Integer.reverseBytes(int)
twisti@1040 2021 // inline Long.reverseBytes(long)
never@1831 2022 // inline Character.reverseBytes(char)
never@1831 2023 // inline Short.reverseBytes(short)
duke@435 2024 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
never@1831 2025 assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
never@1831 2026 id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
never@1831 2027 "not reverse Bytes");
never@1831 2028 if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
never@1831 2029 if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
never@1831 2030 if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
never@1831 2031 if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS)) return false;
duke@435 2032 _sp += arg_size(); // restore stack pointer
duke@435 2033 switch (id) {
duke@435 2034 case vmIntrinsics::_reverseBytes_i:
duke@435 2035 push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
duke@435 2036 break;
duke@435 2037 case vmIntrinsics::_reverseBytes_l:
duke@435 2038 push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
duke@435 2039 break;
never@1831 2040 case vmIntrinsics::_reverseBytes_c:
never@1831 2041 push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
never@1831 2042 break;
never@1831 2043 case vmIntrinsics::_reverseBytes_s:
never@1831 2044 push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
never@1831 2045 break;
duke@435 2046 default:
duke@435 2047 ;
duke@435 2048 }
duke@435 2049 return true;
duke@435 2050 }
duke@435 2051
duke@435 2052 //----------------------------inline_unsafe_access----------------------------
duke@435 2053
duke@435 2054 const static BasicType T_ADDRESS_HOLDER = T_LONG;
duke@435 2055
duke@435 2056 // Interpret Unsafe.fieldOffset cookies correctly:
duke@435 2057 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
duke@435 2058
duke@435 2059 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
duke@435 2060 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2061
duke@435 2062 #ifndef PRODUCT
duke@435 2063 {
duke@435 2064 ResourceMark rm;
duke@435 2065 // Check the signatures.
duke@435 2066 ciSignature* sig = signature();
duke@435 2067 #ifdef ASSERT
duke@435 2068 if (!is_store) {
duke@435 2069 // Object getObject(Object base, int/long offset), etc.
duke@435 2070 BasicType rtype = sig->return_type()->basic_type();
duke@435 2071 if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
duke@435 2072 rtype = T_ADDRESS; // it is really a C void*
duke@435 2073 assert(rtype == type, "getter must return the expected value");
duke@435 2074 if (!is_native_ptr) {
duke@435 2075 assert(sig->count() == 2, "oop getter has 2 arguments");
duke@435 2076 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
duke@435 2077 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
duke@435 2078 } else {
duke@435 2079 assert(sig->count() == 1, "native getter has 1 argument");
duke@435 2080 assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
duke@435 2081 }
duke@435 2082 } else {
duke@435 2083 // void putObject(Object base, int/long offset, Object x), etc.
duke@435 2084 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
duke@435 2085 if (!is_native_ptr) {
duke@435 2086 assert(sig->count() == 3, "oop putter has 3 arguments");
duke@435 2087 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
duke@435 2088 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
duke@435 2089 } else {
duke@435 2090 assert(sig->count() == 2, "native putter has 2 arguments");
duke@435 2091 assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
duke@435 2092 }
duke@435 2093 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
duke@435 2094 if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
duke@435 2095 vtype = T_ADDRESS; // it is really a C void*
duke@435 2096 assert(vtype == type, "putter must accept the expected value");
duke@435 2097 }
duke@435 2098 #endif // ASSERT
duke@435 2099 }
duke@435 2100 #endif //PRODUCT
duke@435 2101
duke@435 2102 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2103
duke@435 2104 int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
duke@435 2105
duke@435 2106 // Argument words: "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
duke@435 2107 int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
duke@435 2108
duke@435 2109 debug_only(int saved_sp = _sp);
duke@435 2110 _sp += nargs;
duke@435 2111
duke@435 2112 Node* val;
duke@435 2113 debug_only(val = (Node*)(uintptr_t)-1);
duke@435 2114
duke@435 2115
duke@435 2116 if (is_store) {
duke@435 2117 // Get the value being stored. (Pop it first; it was pushed last.)
duke@435 2118 switch (type) {
duke@435 2119 case T_DOUBLE:
duke@435 2120 case T_LONG:
duke@435 2121 case T_ADDRESS:
duke@435 2122 val = pop_pair();
duke@435 2123 break;
duke@435 2124 default:
duke@435 2125 val = pop();
duke@435 2126 }
duke@435 2127 }
duke@435 2128
duke@435 2129 // Build address expression. See the code in inline_unsafe_prefetch.
duke@435 2130 Node *adr;
duke@435 2131 Node *heap_base_oop = top();
duke@435 2132 if (!is_native_ptr) {
duke@435 2133 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
duke@435 2134 Node* offset = pop_pair();
duke@435 2135 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2136 Node* base = pop();
duke@435 2137 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2138 // to be plain byte offsets, which are also the same as those accepted
duke@435 2139 // by oopDesc::field_base.
duke@435 2140 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2141 "fieldOffset must be byte-scaled");
duke@435 2142 // 32-bit machines ignore the high half!
duke@435 2143 offset = ConvL2X(offset);
duke@435 2144 adr = make_unsafe_address(base, offset);
duke@435 2145 heap_base_oop = base;
duke@435 2146 } else {
duke@435 2147 Node* ptr = pop_pair();
duke@435 2148 // Adjust Java long to machine word:
duke@435 2149 ptr = ConvL2X(ptr);
duke@435 2150 adr = make_unsafe_address(NULL, ptr);
duke@435 2151 }
duke@435 2152
duke@435 2153 // Pop receiver last: it was pushed first.
duke@435 2154 Node *receiver = pop();
duke@435 2155
duke@435 2156 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2157
duke@435 2158 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2159
duke@435 2160 // First guess at the value type.
duke@435 2161 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2162
duke@435 2163 // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
duke@435 2164 // there was not enough information to nail it down.
duke@435 2165 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2166 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2167
duke@435 2168 // We will need memory barriers unless we can determine a unique
duke@435 2169 // alias category for this reference. (Note: If for some reason
duke@435 2170 // the barriers get omitted and the unsafe reference begins to "pollute"
duke@435 2171 // the alias analysis of the rest of the graph, either Compile::can_alias
duke@435 2172 // or Compile::must_alias will throw a diagnostic assert.)
duke@435 2173 bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
duke@435 2174
duke@435 2175 if (!is_store && type == T_OBJECT) {
duke@435 2176 // Attempt to infer a sharper value type from the offset and base type.
duke@435 2177 ciKlass* sharpened_klass = NULL;
duke@435 2178
duke@435 2179 // See if it is an instance field, with an object type.
duke@435 2180 if (alias_type->field() != NULL) {
duke@435 2181 assert(!is_native_ptr, "native pointer op cannot use a java address");
duke@435 2182 if (alias_type->field()->type()->is_klass()) {
duke@435 2183 sharpened_klass = alias_type->field()->type()->as_klass();
duke@435 2184 }
duke@435 2185 }
duke@435 2186
duke@435 2187 // See if it is a narrow oop array.
duke@435 2188 if (adr_type->isa_aryptr()) {
twisti@1330 2189 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
duke@435 2190 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
duke@435 2191 if (elem_type != NULL) {
duke@435 2192 sharpened_klass = elem_type->klass();
duke@435 2193 }
duke@435 2194 }
duke@435 2195 }
duke@435 2196
duke@435 2197 if (sharpened_klass != NULL) {
duke@435 2198 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
duke@435 2199
duke@435 2200 // Sharpen the value type.
duke@435 2201 value_type = tjp;
duke@435 2202
duke@435 2203 #ifndef PRODUCT
duke@435 2204 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 2205 tty->print(" from base type: "); adr_type->dump();
duke@435 2206 tty->print(" sharpened value: "); value_type->dump();
duke@435 2207 }
duke@435 2208 #endif
duke@435 2209 }
duke@435 2210 }
duke@435 2211
duke@435 2212 // Null check on self without removing any arguments. The argument
duke@435 2213 // null check technically happens in the wrong place, which can lead to
duke@435 2214 // invalid stack traces when the primitive is inlined into a method
duke@435 2215 // which handles NullPointerExceptions.
duke@435 2216 _sp += nargs;
duke@435 2217 do_null_check(receiver, T_OBJECT);
duke@435 2218 _sp -= nargs;
duke@435 2219 if (stopped()) {
duke@435 2220 return true;
duke@435 2221 }
duke@435 2222 // Heap pointers get a null-check from the interpreter,
duke@435 2223 // as a courtesy. However, this is not guaranteed by Unsafe,
duke@435 2224 // and it is not possible to fully distinguish unintended nulls
duke@435 2225 // from intended ones in this API.
duke@435 2226
duke@435 2227 if (is_volatile) {
duke@435 2228 // We need to emit leading and trailing CPU membars (see below) in
duke@435 2229 // addition to memory membars when is_volatile. This is a little
duke@435 2230 // too strong, but avoids the need to insert per-alias-type
duke@435 2231 // volatile membars (for stores; compare Parse::do_put_xxx), which
twisti@1040 2232 // we cannot do effectively here because we probably only have a
duke@435 2233 // rough approximation of type.
duke@435 2234 need_mem_bar = true;
duke@435 2235 // For Stores, place a memory ordering barrier now.
duke@435 2236 if (is_store)
duke@435 2237 insert_mem_bar(Op_MemBarRelease);
duke@435 2238 }
duke@435 2239
duke@435 2240 // Memory barrier to prevent normal and 'unsafe' accesses from
duke@435 2241 // bypassing each other. Happens after null checks, so the
duke@435 2242 // exception paths do not take memory state from the memory barrier,
duke@435 2243 // so there's no problems making a strong assert about mixing users
duke@435 2244 // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
duke@435 2245 // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
duke@435 2246 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2247
duke@435 2248 if (!is_store) {
duke@435 2249 Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
duke@435 2250 // load value and push onto stack
duke@435 2251 switch (type) {
duke@435 2252 case T_BOOLEAN:
duke@435 2253 case T_CHAR:
duke@435 2254 case T_BYTE:
duke@435 2255 case T_SHORT:
duke@435 2256 case T_INT:
duke@435 2257 case T_FLOAT:
duke@435 2258 case T_OBJECT:
duke@435 2259 push( p );
duke@435 2260 break;
duke@435 2261 case T_ADDRESS:
duke@435 2262 // Cast to an int type.
duke@435 2263 p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
duke@435 2264 p = ConvX2L(p);
duke@435 2265 push_pair(p);
duke@435 2266 break;
duke@435 2267 case T_DOUBLE:
duke@435 2268 case T_LONG:
duke@435 2269 push_pair( p );
duke@435 2270 break;
duke@435 2271 default: ShouldNotReachHere();
duke@435 2272 }
duke@435 2273 } else {
duke@435 2274 // place effect of store into memory
duke@435 2275 switch (type) {
duke@435 2276 case T_DOUBLE:
duke@435 2277 val = dstore_rounding(val);
duke@435 2278 break;
duke@435 2279 case T_ADDRESS:
duke@435 2280 // Repackage the long as a pointer.
duke@435 2281 val = ConvL2X(val);
duke@435 2282 val = _gvn.transform( new (C, 2) CastX2PNode(val) );
duke@435 2283 break;
duke@435 2284 }
duke@435 2285
duke@435 2286 if (type != T_OBJECT ) {
duke@435 2287 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
duke@435 2288 } else {
duke@435 2289 // Possibly an oop being stored to Java heap or native memory
duke@435 2290 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
duke@435 2291 // oop to Java heap.
never@1260 2292 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
duke@435 2293 } else {
duke@435 2294 // We can't tell at compile time if we are storing in the Java heap or outside
duke@435 2295 // of it. So we need to emit code to conditionally do the proper type of
duke@435 2296 // store.
duke@435 2297
kvn@1286 2298 IdealKit ideal(gvn(), control(), merged_memory());
kvn@1286 2299 #define __ ideal.
duke@435 2300 // QQQ who knows what probability is here??
kvn@1286 2301 __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
kvn@1286 2302 // Sync IdealKit and graphKit.
kvn@1286 2303 set_all_memory( __ merged_memory());
kvn@1286 2304 set_control(__ ctrl());
kvn@1286 2305 Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
kvn@1286 2306 // Update IdealKit memory.
kvn@1286 2307 __ set_all_memory(merged_memory());
kvn@1286 2308 __ set_ctrl(control());
kvn@1286 2309 } __ else_(); {
kvn@1286 2310 __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
kvn@1286 2311 } __ end_if();
kvn@1286 2312 // Final sync IdealKit and GraphKit.
kvn@1286 2313 sync_kit(ideal);
kvn@1286 2314 #undef __
duke@435 2315 }
duke@435 2316 }
duke@435 2317 }
duke@435 2318
duke@435 2319 if (is_volatile) {
duke@435 2320 if (!is_store)
duke@435 2321 insert_mem_bar(Op_MemBarAcquire);
duke@435 2322 else
duke@435 2323 insert_mem_bar(Op_MemBarVolatile);
duke@435 2324 }
duke@435 2325
duke@435 2326 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2327
duke@435 2328 return true;
duke@435 2329 }
duke@435 2330
duke@435 2331 //----------------------------inline_unsafe_prefetch----------------------------
duke@435 2332
duke@435 2333 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
duke@435 2334 #ifndef PRODUCT
duke@435 2335 {
duke@435 2336 ResourceMark rm;
duke@435 2337 // Check the signatures.
duke@435 2338 ciSignature* sig = signature();
duke@435 2339 #ifdef ASSERT
duke@435 2340 // Object getObject(Object base, int/long offset), etc.
duke@435 2341 BasicType rtype = sig->return_type()->basic_type();
duke@435 2342 if (!is_native_ptr) {
duke@435 2343 assert(sig->count() == 2, "oop prefetch has 2 arguments");
duke@435 2344 assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
duke@435 2345 assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
duke@435 2346 } else {
duke@435 2347 assert(sig->count() == 1, "native prefetch has 1 argument");
duke@435 2348 assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
duke@435 2349 }
duke@435 2350 #endif // ASSERT
duke@435 2351 }
duke@435 2352 #endif // !PRODUCT
duke@435 2353
duke@435 2354 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2355
duke@435 2356 // Argument words: "this" if not static, plus (oop/offset) or (lo/hi) args
duke@435 2357 int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
duke@435 2358
duke@435 2359 debug_only(int saved_sp = _sp);
duke@435 2360 _sp += nargs;
duke@435 2361
duke@435 2362 // Build address expression. See the code in inline_unsafe_access.
duke@435 2363 Node *adr;
duke@435 2364 if (!is_native_ptr) {
duke@435 2365 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
duke@435 2366 Node* offset = pop_pair();
duke@435 2367 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2368 Node* base = pop();
duke@435 2369 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2370 // to be plain byte offsets, which are also the same as those accepted
duke@435 2371 // by oopDesc::field_base.
duke@435 2372 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2373 "fieldOffset must be byte-scaled");
duke@435 2374 // 32-bit machines ignore the high half!
duke@435 2375 offset = ConvL2X(offset);
duke@435 2376 adr = make_unsafe_address(base, offset);
duke@435 2377 } else {
duke@435 2378 Node* ptr = pop_pair();
duke@435 2379 // Adjust Java long to machine word:
duke@435 2380 ptr = ConvL2X(ptr);
duke@435 2381 adr = make_unsafe_address(NULL, ptr);
duke@435 2382 }
duke@435 2383
duke@435 2384 if (is_static) {
duke@435 2385 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2386 } else {
duke@435 2387 // Pop receiver last: it was pushed first.
duke@435 2388 Node *receiver = pop();
duke@435 2389 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2390
duke@435 2391 // Null check on self without removing any arguments. The argument
duke@435 2392 // null check technically happens in the wrong place, which can lead to
duke@435 2393 // invalid stack traces when the primitive is inlined into a method
duke@435 2394 // which handles NullPointerExceptions.
duke@435 2395 _sp += nargs;
duke@435 2396 do_null_check(receiver, T_OBJECT);
duke@435 2397 _sp -= nargs;
duke@435 2398 if (stopped()) {
duke@435 2399 return true;
duke@435 2400 }
duke@435 2401 }
duke@435 2402
duke@435 2403 // Generate the read or write prefetch
duke@435 2404 Node *prefetch;
duke@435 2405 if (is_store) {
duke@435 2406 prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
duke@435 2407 } else {
duke@435 2408 prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
duke@435 2409 }
duke@435 2410 prefetch->init_req(0, control());
duke@435 2411 set_i_o(_gvn.transform(prefetch));
duke@435 2412
duke@435 2413 return true;
duke@435 2414 }
duke@435 2415
duke@435 2416 //----------------------------inline_unsafe_CAS----------------------------
duke@435 2417
duke@435 2418 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
duke@435 2419 // This basic scheme here is the same as inline_unsafe_access, but
duke@435 2420 // differs in enough details that combining them would make the code
duke@435 2421 // overly confusing. (This is a true fact! I originally combined
duke@435 2422 // them, but even I was confused by it!) As much code/comments as
duke@435 2423 // possible are retained from inline_unsafe_access though to make
twisti@1040 2424 // the correspondences clearer. - dl
duke@435 2425
duke@435 2426 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2427
duke@435 2428 #ifndef PRODUCT
duke@435 2429 {
duke@435 2430 ResourceMark rm;
duke@435 2431 // Check the signatures.
duke@435 2432 ciSignature* sig = signature();
duke@435 2433 #ifdef ASSERT
duke@435 2434 BasicType rtype = sig->return_type()->basic_type();
duke@435 2435 assert(rtype == T_BOOLEAN, "CAS must return boolean");
duke@435 2436 assert(sig->count() == 4, "CAS has 4 arguments");
duke@435 2437 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
duke@435 2438 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
duke@435 2439 #endif // ASSERT
duke@435 2440 }
duke@435 2441 #endif //PRODUCT
duke@435 2442
duke@435 2443 // number of stack slots per value argument (1 or 2)
duke@435 2444 int type_words = type2size[type];
duke@435 2445
duke@435 2446 // Cannot inline wide CAS on machines that don't support it natively
kvn@464 2447 if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
duke@435 2448 return false;
duke@435 2449
duke@435 2450 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2451
duke@435 2452 // Argument words: "this" plus oop plus offset plus oldvalue plus newvalue;
duke@435 2453 int nargs = 1 + 1 + 2 + type_words + type_words;
duke@435 2454
duke@435 2455 // pop arguments: newval, oldval, offset, base, and receiver
duke@435 2456 debug_only(int saved_sp = _sp);
duke@435 2457 _sp += nargs;
duke@435 2458 Node* newval = (type_words == 1) ? pop() : pop_pair();
duke@435 2459 Node* oldval = (type_words == 1) ? pop() : pop_pair();
duke@435 2460 Node *offset = pop_pair();
duke@435 2461 Node *base = pop();
duke@435 2462 Node *receiver = pop();
duke@435 2463 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2464
duke@435 2465 // Null check receiver.
duke@435 2466 _sp += nargs;
duke@435 2467 do_null_check(receiver, T_OBJECT);
duke@435 2468 _sp -= nargs;
duke@435 2469 if (stopped()) {
duke@435 2470 return true;
duke@435 2471 }
duke@435 2472
duke@435 2473 // Build field offset expression.
duke@435 2474 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2475 // to be plain byte offsets, which are also the same as those accepted
duke@435 2476 // by oopDesc::field_base.
duke@435 2477 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2478 // 32-bit machines ignore the high half of long offsets
duke@435 2479 offset = ConvL2X(offset);
duke@435 2480 Node* adr = make_unsafe_address(base, offset);
duke@435 2481 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2482
duke@435 2483 // (Unlike inline_unsafe_access, there seems no point in trying
duke@435 2484 // to refine types. Just use the coarse types here.
duke@435 2485 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2486 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2487 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2488 int alias_idx = C->get_alias_index(adr_type);
duke@435 2489
duke@435 2490 // Memory-model-wise, a CAS acts like a little synchronized block,
twisti@1040 2491 // so needs barriers on each side. These don't translate into
duke@435 2492 // actual barriers on most machines, but we still need rest of
duke@435 2493 // compiler to respect ordering.
duke@435 2494
duke@435 2495 insert_mem_bar(Op_MemBarRelease);
duke@435 2496 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2497
duke@435 2498 // 4984716: MemBars must be inserted before this
duke@435 2499 // memory node in order to avoid a false
duke@435 2500 // dependency which will confuse the scheduler.
duke@435 2501 Node *mem = memory(alias_idx);
duke@435 2502
duke@435 2503 // For now, we handle only those cases that actually exist: ints,
duke@435 2504 // longs, and Object. Adding others should be straightforward.
duke@435 2505 Node* cas;
duke@435 2506 switch(type) {
duke@435 2507 case T_INT:
duke@435 2508 cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
duke@435 2509 break;
duke@435 2510 case T_LONG:
duke@435 2511 cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
duke@435 2512 break;
duke@435 2513 case T_OBJECT:
coleenp@548 2514 // reference stores need a store barrier.
duke@435 2515 // (They don't if CAS fails, but it isn't worth checking.)
never@1262 2516 pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
coleenp@548 2517 #ifdef _LP64
kvn@598 2518 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@656 2519 Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
kvn@656 2520 Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
coleenp@548 2521 cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
kvn@656 2522 newval_enc, oldval_enc));
coleenp@548 2523 } else
coleenp@548 2524 #endif
kvn@656 2525 {
kvn@656 2526 cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
kvn@656 2527 }
duke@435 2528 post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
duke@435 2529 break;
duke@435 2530 default:
duke@435 2531 ShouldNotReachHere();
duke@435 2532 break;
duke@435 2533 }
duke@435 2534
duke@435 2535 // SCMemProjNodes represent the memory state of CAS. Their main
duke@435 2536 // role is to prevent CAS nodes from being optimized away when their
duke@435 2537 // results aren't used.
duke@435 2538 Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
duke@435 2539 set_memory(proj, alias_idx);
duke@435 2540
duke@435 2541 // Add the trailing membar surrounding the access
duke@435 2542 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2543 insert_mem_bar(Op_MemBarAcquire);
duke@435 2544
duke@435 2545 push(cas);
duke@435 2546 return true;
duke@435 2547 }
duke@435 2548
duke@435 2549 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
duke@435 2550 // This is another variant of inline_unsafe_access, differing in
duke@435 2551 // that it always issues store-store ("release") barrier and ensures
duke@435 2552 // store-atomicity (which only matters for "long").
duke@435 2553
duke@435 2554 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2555
duke@435 2556 #ifndef PRODUCT
duke@435 2557 {
duke@435 2558 ResourceMark rm;
duke@435 2559 // Check the signatures.
duke@435 2560 ciSignature* sig = signature();
duke@435 2561 #ifdef ASSERT
duke@435 2562 BasicType rtype = sig->return_type()->basic_type();
duke@435 2563 assert(rtype == T_VOID, "must return void");
duke@435 2564 assert(sig->count() == 3, "has 3 arguments");
duke@435 2565 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
duke@435 2566 assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
duke@435 2567 #endif // ASSERT
duke@435 2568 }
duke@435 2569 #endif //PRODUCT
duke@435 2570
duke@435 2571 // number of stack slots per value argument (1 or 2)
duke@435 2572 int type_words = type2size[type];
duke@435 2573
duke@435 2574 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2575
duke@435 2576 // Argument words: "this" plus oop plus offset plus value;
duke@435 2577 int nargs = 1 + 1 + 2 + type_words;
duke@435 2578
duke@435 2579 // pop arguments: val, offset, base, and receiver
duke@435 2580 debug_only(int saved_sp = _sp);
duke@435 2581 _sp += nargs;
duke@435 2582 Node* val = (type_words == 1) ? pop() : pop_pair();
duke@435 2583 Node *offset = pop_pair();
duke@435 2584 Node *base = pop();
duke@435 2585 Node *receiver = pop();
duke@435 2586 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2587
duke@435 2588 // Null check receiver.
duke@435 2589 _sp += nargs;
duke@435 2590 do_null_check(receiver, T_OBJECT);
duke@435 2591 _sp -= nargs;
duke@435 2592 if (stopped()) {
duke@435 2593 return true;
duke@435 2594 }
duke@435 2595
duke@435 2596 // Build field offset expression.
duke@435 2597 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2598 // 32-bit machines ignore the high half of long offsets
duke@435 2599 offset = ConvL2X(offset);
duke@435 2600 Node* adr = make_unsafe_address(base, offset);
duke@435 2601 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2602 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2603 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2604
duke@435 2605 insert_mem_bar(Op_MemBarRelease);
duke@435 2606 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2607 // Ensure that the store is atomic for longs:
duke@435 2608 bool require_atomic_access = true;
duke@435 2609 Node* store;
duke@435 2610 if (type == T_OBJECT) // reference stores need a store barrier.
never@1260 2611 store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
duke@435 2612 else {
duke@435 2613 store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
duke@435 2614 }
duke@435 2615 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2616 return true;
duke@435 2617 }
duke@435 2618
duke@435 2619 bool LibraryCallKit::inline_unsafe_allocate() {
duke@435 2620 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2621 int nargs = 1 + 1;
duke@435 2622 assert(signature()->size() == nargs-1, "alloc has 1 argument");
duke@435 2623 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 2624 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2625 Node* cls = do_null_check(argument(1), T_OBJECT);
duke@435 2626 _sp -= nargs;
duke@435 2627 if (stopped()) return true;
duke@435 2628
duke@435 2629 Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
duke@435 2630 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2631 kls = do_null_check(kls, T_OBJECT);
duke@435 2632 _sp -= nargs;
duke@435 2633 if (stopped()) return true; // argument was like int.class
duke@435 2634
duke@435 2635 // Note: The argument might still be an illegal value like
duke@435 2636 // Serializable.class or Object[].class. The runtime will handle it.
duke@435 2637 // But we must make an explicit check for initialization.
duke@435 2638 Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
duke@435 2639 Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
duke@435 2640 Node* bits = intcon(instanceKlass::fully_initialized);
duke@435 2641 Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
duke@435 2642 // The 'test' is non-zero if we need to take a slow path.
duke@435 2643
duke@435 2644 Node* obj = new_instance(kls, test);
duke@435 2645 push(obj);
duke@435 2646
duke@435 2647 return true;
duke@435 2648 }
duke@435 2649
duke@435 2650 //------------------------inline_native_time_funcs--------------
duke@435 2651 // inline code for System.currentTimeMillis() and System.nanoTime()
duke@435 2652 // these have the same type and signature
duke@435 2653 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
duke@435 2654 address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
duke@435 2655 CAST_FROM_FN_PTR(address, os::javaTimeMillis);
duke@435 2656 const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
duke@435 2657 const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
duke@435 2658 const TypePtr* no_memory_effects = NULL;
duke@435 2659 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
duke@435 2660 Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
duke@435 2661 #ifdef ASSERT
duke@435 2662 Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
duke@435 2663 assert(value_top == top(), "second value must be top");
duke@435 2664 #endif
duke@435 2665 push_pair(value);
duke@435 2666 return true;
duke@435 2667 }
duke@435 2668
duke@435 2669 //------------------------inline_native_currentThread------------------
duke@435 2670 bool LibraryCallKit::inline_native_currentThread() {
duke@435 2671 Node* junk = NULL;
duke@435 2672 push(generate_current_thread(junk));
duke@435 2673 return true;
duke@435 2674 }
duke@435 2675
duke@435 2676 //------------------------inline_native_isInterrupted------------------
duke@435 2677 bool LibraryCallKit::inline_native_isInterrupted() {
duke@435 2678 const int nargs = 1+1; // receiver + boolean
duke@435 2679 assert(nargs == arg_size(), "sanity");
duke@435 2680 // Add a fast path to t.isInterrupted(clear_int):
duke@435 2681 // (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
duke@435 2682 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
duke@435 2683 // So, in the common case that the interrupt bit is false,
duke@435 2684 // we avoid making a call into the VM. Even if the interrupt bit
duke@435 2685 // is true, if the clear_int argument is false, we avoid the VM call.
duke@435 2686 // However, if the receiver is not currentThread, we must call the VM,
duke@435 2687 // because there must be some locking done around the operation.
duke@435 2688
duke@435 2689 // We only go to the fast case code if we pass two guards.
duke@435 2690 // Paths which do not pass are accumulated in the slow_region.
duke@435 2691 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 2692 record_for_igvn(slow_region);
duke@435 2693 RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
duke@435 2694 PhiNode* result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
duke@435 2695 enum { no_int_result_path = 1,
duke@435 2696 no_clear_result_path = 2,
duke@435 2697 slow_result_path = 3
duke@435 2698 };
duke@435 2699
duke@435 2700 // (a) Receiving thread must be the current thread.
duke@435 2701 Node* rec_thr = argument(0);
duke@435 2702 Node* tls_ptr = NULL;
duke@435 2703 Node* cur_thr = generate_current_thread(tls_ptr);
duke@435 2704 Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
duke@435 2705 Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
duke@435 2706
duke@435 2707 bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
duke@435 2708 if (!known_current_thread)
duke@435 2709 generate_slow_guard(bol_thr, slow_region);
duke@435 2710
duke@435 2711 // (b) Interrupt bit on TLS must be false.
duke@435 2712 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
duke@435 2713 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
duke@435 2714 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
kvn@1222 2715 // Set the control input on the field _interrupted read to prevent it floating up.
kvn@1222 2716 Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
duke@435 2717 Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
duke@435 2718 Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
duke@435 2719
duke@435 2720 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
duke@435 2721
duke@435 2722 // First fast path: if (!TLS._interrupted) return false;
duke@435 2723 Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
duke@435 2724 result_rgn->init_req(no_int_result_path, false_bit);
duke@435 2725 result_val->init_req(no_int_result_path, intcon(0));
duke@435 2726
duke@435 2727 // drop through to next case
duke@435 2728 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
duke@435 2729
duke@435 2730 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
duke@435 2731 Node* clr_arg = argument(1);
duke@435 2732 Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
duke@435 2733 Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
duke@435 2734 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
duke@435 2735
duke@435 2736 // Second fast path: ... else if (!clear_int) return true;
duke@435 2737 Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
duke@435 2738 result_rgn->init_req(no_clear_result_path, false_arg);
duke@435 2739 result_val->init_req(no_clear_result_path, intcon(1));
duke@435 2740
duke@435 2741 // drop through to next case
duke@435 2742 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
duke@435 2743
duke@435 2744 // (d) Otherwise, go to the slow path.
duke@435 2745 slow_region->add_req(control());
duke@435 2746 set_control( _gvn.transform(slow_region) );
duke@435 2747
duke@435 2748 if (stopped()) {
duke@435 2749 // There is no slow path.
duke@435 2750 result_rgn->init_req(slow_result_path, top());
duke@435 2751 result_val->init_req(slow_result_path, top());
duke@435 2752 } else {
duke@435 2753 // non-virtual because it is a private non-static
duke@435 2754 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
duke@435 2755
duke@435 2756 Node* slow_val = set_results_for_java_call(slow_call);
duke@435 2757 // this->control() comes from set_results_for_java_call
duke@435 2758
duke@435 2759 // If we know that the result of the slow call will be true, tell the optimizer!
duke@435 2760 if (known_current_thread) slow_val = intcon(1);
duke@435 2761
duke@435 2762 Node* fast_io = slow_call->in(TypeFunc::I_O);
duke@435 2763 Node* fast_mem = slow_call->in(TypeFunc::Memory);
duke@435 2764 // These two phis are pre-filled with copies of of the fast IO and Memory
duke@435 2765 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
duke@435 2766 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
duke@435 2767
duke@435 2768 result_rgn->init_req(slow_result_path, control());
duke@435 2769 io_phi ->init_req(slow_result_path, i_o());
duke@435 2770 mem_phi ->init_req(slow_result_path, reset_memory());
duke@435 2771 result_val->init_req(slow_result_path, slow_val);
duke@435 2772
duke@435 2773 set_all_memory( _gvn.transform(mem_phi) );
duke@435 2774 set_i_o( _gvn.transform(io_phi) );
duke@435 2775 }
duke@435 2776
duke@435 2777 push_result(result_rgn, result_val);
duke@435 2778 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 2779
duke@435 2780 return true;
duke@435 2781 }
duke@435 2782
duke@435 2783 //---------------------------load_mirror_from_klass----------------------------
duke@435 2784 // Given a klass oop, load its java mirror (a java.lang.Class oop).
duke@435 2785 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
duke@435 2786 Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
duke@435 2787 return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 2788 }
duke@435 2789
duke@435 2790 //-----------------------load_klass_from_mirror_common-------------------------
duke@435 2791 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
duke@435 2792 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
duke@435 2793 // and branch to the given path on the region.
duke@435 2794 // If never_see_null, take an uncommon trap on null, so we can optimistically
duke@435 2795 // compile for the non-null case.
duke@435 2796 // If the region is NULL, force never_see_null = true.
duke@435 2797 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
duke@435 2798 bool never_see_null,
duke@435 2799 int nargs,
duke@435 2800 RegionNode* region,
duke@435 2801 int null_path,
duke@435 2802 int offset) {
duke@435 2803 if (region == NULL) never_see_null = true;
duke@435 2804 Node* p = basic_plus_adr(mirror, offset);
duke@435 2805 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
kvn@599 2806 Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
duke@435 2807 _sp += nargs; // any deopt will start just before call to enclosing method
duke@435 2808 Node* null_ctl = top();
duke@435 2809 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 2810 if (region != NULL) {
duke@435 2811 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
duke@435 2812 region->init_req(null_path, null_ctl);
duke@435 2813 } else {
duke@435 2814 assert(null_ctl == top(), "no loose ends");
duke@435 2815 }
duke@435 2816 _sp -= nargs;
duke@435 2817 return kls;
duke@435 2818 }
duke@435 2819
duke@435 2820 //--------------------(inline_native_Class_query helpers)---------------------
duke@435 2821 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
duke@435 2822 // Fall through if (mods & mask) == bits, take the guard otherwise.
duke@435 2823 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
duke@435 2824 // Branch around if the given klass has the given modifier bit set.
duke@435 2825 // Like generate_guard, adds a new path onto the region.
duke@435 2826 Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
duke@435 2827 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
duke@435 2828 Node* mask = intcon(modifier_mask);
duke@435 2829 Node* bits = intcon(modifier_bits);
duke@435 2830 Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
duke@435 2831 Node* cmp = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
duke@435 2832 Node* bol = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
duke@435 2833 return generate_fair_guard(bol, region);
duke@435 2834 }
duke@435 2835 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
duke@435 2836 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
duke@435 2837 }
duke@435 2838
duke@435 2839 //-------------------------inline_native_Class_query-------------------
duke@435 2840 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
duke@435 2841 int nargs = 1+0; // just the Class mirror, in most cases
duke@435 2842 const Type* return_type = TypeInt::BOOL;
duke@435 2843 Node* prim_return_value = top(); // what happens if it's a primitive class?
duke@435 2844 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 2845 bool expect_prim = false; // most of these guys expect to work on refs
duke@435 2846
duke@435 2847 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
duke@435 2848
duke@435 2849 switch (id) {
duke@435 2850 case vmIntrinsics::_isInstance:
duke@435 2851 nargs = 1+1; // the Class mirror, plus the object getting queried about
duke@435 2852 // nothing is an instance of a primitive type
duke@435 2853 prim_return_value = intcon(0);
duke@435 2854 break;
duke@435 2855 case vmIntrinsics::_getModifiers:
duke@435 2856 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 2857 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
duke@435 2858 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
duke@435 2859 break;
duke@435 2860 case vmIntrinsics::_isInterface:
duke@435 2861 prim_return_value = intcon(0);
duke@435 2862 break;
duke@435 2863 case vmIntrinsics::_isArray:
duke@435 2864 prim_return_value = intcon(0);
duke@435 2865 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
duke@435 2866 break;
duke@435 2867 case vmIntrinsics::_isPrimitive:
duke@435 2868 prim_return_value = intcon(1);
duke@435 2869 expect_prim = true; // obviously
duke@435 2870 break;
duke@435 2871 case vmIntrinsics::_getSuperclass:
duke@435 2872 prim_return_value = null();
duke@435 2873 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 2874 break;
duke@435 2875 case vmIntrinsics::_getComponentType:
duke@435 2876 prim_return_value = null();
duke@435 2877 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 2878 break;
duke@435 2879 case vmIntrinsics::_getClassAccessFlags:
duke@435 2880 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 2881 return_type = TypeInt::INT; // not bool! 6297094
duke@435 2882 break;
duke@435 2883 default:
duke@435 2884 ShouldNotReachHere();
duke@435 2885 }
duke@435 2886
duke@435 2887 Node* mirror = argument(0);
duke@435 2888 Node* obj = (nargs <= 1)? top(): argument(1);
duke@435 2889
duke@435 2890 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
duke@435 2891 if (mirror_con == NULL) return false; // cannot happen?
duke@435 2892
duke@435 2893 #ifndef PRODUCT
duke@435 2894 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 2895 ciType* k = mirror_con->java_mirror_type();
duke@435 2896 if (k) {
duke@435 2897 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
duke@435 2898 k->print_name();
duke@435 2899 tty->cr();
duke@435 2900 }
duke@435 2901 }
duke@435 2902 #endif
duke@435 2903
duke@435 2904 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
duke@435 2905 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 2906 record_for_igvn(region);
duke@435 2907 PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
duke@435 2908
duke@435 2909 // The mirror will never be null of Reflection.getClassAccessFlags, however
duke@435 2910 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
duke@435 2911 // if it is. See bug 4774291.
duke@435 2912
duke@435 2913 // For Reflection.getClassAccessFlags(), the null check occurs in
duke@435 2914 // the wrong place; see inline_unsafe_access(), above, for a similar
duke@435 2915 // situation.
duke@435 2916 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2917 mirror = do_null_check(mirror, T_OBJECT);
duke@435 2918 _sp -= nargs;
duke@435 2919 // If mirror or obj is dead, only null-path is taken.
duke@435 2920 if (stopped()) return true;
duke@435 2921
duke@435 2922 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
duke@435 2923
duke@435 2924 // Now load the mirror's klass metaobject, and null-check it.
duke@435 2925 // Side-effects region with the control path if the klass is null.
duke@435 2926 Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
duke@435 2927 region, _prim_path);
duke@435 2928 // If kls is null, we have a primitive mirror.
duke@435 2929 phi->init_req(_prim_path, prim_return_value);
duke@435 2930 if (stopped()) { push_result(region, phi); return true; }
duke@435 2931
duke@435 2932 Node* p; // handy temp
duke@435 2933 Node* null_ctl;
duke@435 2934
duke@435 2935 // Now that we have the non-null klass, we can perform the real query.
duke@435 2936 // For constant classes, the query will constant-fold in LoadNode::Value.
duke@435 2937 Node* query_value = top();
duke@435 2938 switch (id) {
duke@435 2939 case vmIntrinsics::_isInstance:
duke@435 2940 // nothing is an instance of a primitive type
jrose@2101 2941 _sp += nargs; // gen_instanceof might do an uncommon trap
duke@435 2942 query_value = gen_instanceof(obj, kls);
jrose@2101 2943 _sp -= nargs;
duke@435 2944 break;
duke@435 2945
duke@435 2946 case vmIntrinsics::_getModifiers:
duke@435 2947 p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
duke@435 2948 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 2949 break;
duke@435 2950
duke@435 2951 case vmIntrinsics::_isInterface:
duke@435 2952 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 2953 if (generate_interface_guard(kls, region) != NULL)
duke@435 2954 // A guard was added. If the guard is taken, it was an interface.
duke@435 2955 phi->add_req(intcon(1));
duke@435 2956 // If we fall through, it's a plain class.
duke@435 2957 query_value = intcon(0);
duke@435 2958 break;
duke@435 2959
duke@435 2960 case vmIntrinsics::_isArray:
duke@435 2961 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
duke@435 2962 if (generate_array_guard(kls, region) != NULL)
duke@435 2963 // A guard was added. If the guard is taken, it was an array.
duke@435 2964 phi->add_req(intcon(1));
duke@435 2965 // If we fall through, it's a plain class.
duke@435 2966 query_value = intcon(0);
duke@435 2967 break;
duke@435 2968
duke@435 2969 case vmIntrinsics::_isPrimitive:
duke@435 2970 query_value = intcon(0); // "normal" path produces false
duke@435 2971 break;
duke@435 2972
duke@435 2973 case vmIntrinsics::_getSuperclass:
duke@435 2974 // The rules here are somewhat unfortunate, but we can still do better
duke@435 2975 // with random logic than with a JNI call.
duke@435 2976 // Interfaces store null or Object as _super, but must report null.
duke@435 2977 // Arrays store an intermediate super as _super, but must report Object.
duke@435 2978 // Other types can report the actual _super.
duke@435 2979 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 2980 if (generate_interface_guard(kls, region) != NULL)
duke@435 2981 // A guard was added. If the guard is taken, it was an interface.
duke@435 2982 phi->add_req(null());
duke@435 2983 if (generate_array_guard(kls, region) != NULL)
duke@435 2984 // A guard was added. If the guard is taken, it was an array.
duke@435 2985 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
duke@435 2986 // If we fall through, it's a plain class. Get its _super.
duke@435 2987 p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
kvn@599 2988 kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
duke@435 2989 null_ctl = top();
duke@435 2990 kls = null_check_oop(kls, &null_ctl);
duke@435 2991 if (null_ctl != top()) {
duke@435 2992 // If the guard is taken, Object.superClass is null (both klass and mirror).
duke@435 2993 region->add_req(null_ctl);
duke@435 2994 phi ->add_req(null());
duke@435 2995 }
duke@435 2996 if (!stopped()) {
duke@435 2997 query_value = load_mirror_from_klass(kls);
duke@435 2998 }
duke@435 2999 break;
duke@435 3000
duke@435 3001 case vmIntrinsics::_getComponentType:
duke@435 3002 if (generate_array_guard(kls, region) != NULL) {
duke@435 3003 // Be sure to pin the oop load to the guard edge just created:
duke@435 3004 Node* is_array_ctrl = region->in(region->req()-1);
duke@435 3005 Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
duke@435 3006 Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3007 phi->add_req(cmo);
duke@435 3008 }
duke@435 3009 query_value = null(); // non-array case is null
duke@435 3010 break;
duke@435 3011
duke@435 3012 case vmIntrinsics::_getClassAccessFlags:
duke@435 3013 p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
duke@435 3014 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3015 break;
duke@435 3016
duke@435 3017 default:
duke@435 3018 ShouldNotReachHere();
duke@435 3019 }
duke@435 3020
duke@435 3021 // Fall-through is the normal case of a query to a real class.
duke@435 3022 phi->init_req(1, query_value);
duke@435 3023 region->init_req(1, control());
duke@435 3024
duke@435 3025 push_result(region, phi);
duke@435 3026 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3027
duke@435 3028 return true;
duke@435 3029 }
duke@435 3030
duke@435 3031 //--------------------------inline_native_subtype_check------------------------
duke@435 3032 // This intrinsic takes the JNI calls out of the heart of
duke@435 3033 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
duke@435 3034 bool LibraryCallKit::inline_native_subtype_check() {
duke@435 3035 int nargs = 1+1; // the Class mirror, plus the other class getting examined
duke@435 3036
duke@435 3037 // Pull both arguments off the stack.
duke@435 3038 Node* args[2]; // two java.lang.Class mirrors: superc, subc
duke@435 3039 args[0] = argument(0);
duke@435 3040 args[1] = argument(1);
duke@435 3041 Node* klasses[2]; // corresponding Klasses: superk, subk
duke@435 3042 klasses[0] = klasses[1] = top();
duke@435 3043
duke@435 3044 enum {
duke@435 3045 // A full decision tree on {superc is prim, subc is prim}:
duke@435 3046 _prim_0_path = 1, // {P,N} => false
duke@435 3047 // {P,P} & superc!=subc => false
duke@435 3048 _prim_same_path, // {P,P} & superc==subc => true
duke@435 3049 _prim_1_path, // {N,P} => false
duke@435 3050 _ref_subtype_path, // {N,N} & subtype check wins => true
duke@435 3051 _both_ref_path, // {N,N} & subtype check loses => false
duke@435 3052 PATH_LIMIT
duke@435 3053 };
duke@435 3054
duke@435 3055 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3056 Node* phi = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
duke@435 3057 record_for_igvn(region);
duke@435 3058
duke@435 3059 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
duke@435 3060 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3061 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
duke@435 3062
duke@435 3063 // First null-check both mirrors and load each mirror's klass metaobject.
duke@435 3064 int which_arg;
duke@435 3065 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3066 Node* arg = args[which_arg];
duke@435 3067 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3068 arg = do_null_check(arg, T_OBJECT);
duke@435 3069 _sp -= nargs;
duke@435 3070 if (stopped()) break;
duke@435 3071 args[which_arg] = _gvn.transform(arg);
duke@435 3072
duke@435 3073 Node* p = basic_plus_adr(arg, class_klass_offset);
kvn@599 3074 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
duke@435 3075 klasses[which_arg] = _gvn.transform(kls);
duke@435 3076 }
duke@435 3077
duke@435 3078 // Having loaded both klasses, test each for null.
duke@435 3079 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3080 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3081 Node* kls = klasses[which_arg];
duke@435 3082 Node* null_ctl = top();
duke@435 3083 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3084 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3085 _sp -= nargs;
duke@435 3086 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
duke@435 3087 region->init_req(prim_path, null_ctl);
duke@435 3088 if (stopped()) break;
duke@435 3089 klasses[which_arg] = kls;
duke@435 3090 }
duke@435 3091
duke@435 3092 if (!stopped()) {
duke@435 3093 // now we have two reference types, in klasses[0..1]
duke@435 3094 Node* subk = klasses[1]; // the argument to isAssignableFrom
duke@435 3095 Node* superk = klasses[0]; // the receiver
duke@435 3096 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
duke@435 3097 // now we have a successful reference subtype check
duke@435 3098 region->set_req(_ref_subtype_path, control());
duke@435 3099 }
duke@435 3100
duke@435 3101 // If both operands are primitive (both klasses null), then
duke@435 3102 // we must return true when they are identical primitives.
duke@435 3103 // It is convenient to test this after the first null klass check.
duke@435 3104 set_control(region->in(_prim_0_path)); // go back to first null check
duke@435 3105 if (!stopped()) {
duke@435 3106 // Since superc is primitive, make a guard for the superc==subc case.
duke@435 3107 Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
duke@435 3108 Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
duke@435 3109 generate_guard(bol_eq, region, PROB_FAIR);
duke@435 3110 if (region->req() == PATH_LIMIT+1) {
duke@435 3111 // A guard was added. If the added guard is taken, superc==subc.
duke@435 3112 region->swap_edges(PATH_LIMIT, _prim_same_path);
duke@435 3113 region->del_req(PATH_LIMIT);
duke@435 3114 }
duke@435 3115 region->set_req(_prim_0_path, control()); // Not equal after all.
duke@435 3116 }
duke@435 3117
duke@435 3118 // these are the only paths that produce 'true':
duke@435 3119 phi->set_req(_prim_same_path, intcon(1));
duke@435 3120 phi->set_req(_ref_subtype_path, intcon(1));
duke@435 3121
duke@435 3122 // pull together the cases:
duke@435 3123 assert(region->req() == PATH_LIMIT, "sane region");
duke@435 3124 for (uint i = 1; i < region->req(); i++) {
duke@435 3125 Node* ctl = region->in(i);
duke@435 3126 if (ctl == NULL || ctl == top()) {
duke@435 3127 region->set_req(i, top());
duke@435 3128 phi ->set_req(i, top());
duke@435 3129 } else if (phi->in(i) == NULL) {
duke@435 3130 phi->set_req(i, intcon(0)); // all other paths produce 'false'
duke@435 3131 }
duke@435 3132 }
duke@435 3133
duke@435 3134 set_control(_gvn.transform(region));
duke@435 3135 push(_gvn.transform(phi));
duke@435 3136
duke@435 3137 return true;
duke@435 3138 }
duke@435 3139
duke@435 3140 //---------------------generate_array_guard_common------------------------
duke@435 3141 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 3142 bool obj_array, bool not_array) {
duke@435 3143 // If obj_array/non_array==false/false:
duke@435 3144 // Branch around if the given klass is in fact an array (either obj or prim).
duke@435 3145 // If obj_array/non_array==false/true:
duke@435 3146 // Branch around if the given klass is not an array klass of any kind.
duke@435 3147 // If obj_array/non_array==true/true:
duke@435 3148 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
duke@435 3149 // If obj_array/non_array==true/false:
duke@435 3150 // Branch around if the kls is an oop array (Object[] or subtype)
duke@435 3151 //
duke@435 3152 // Like generate_guard, adds a new path onto the region.
duke@435 3153 jint layout_con = 0;
duke@435 3154 Node* layout_val = get_layout_helper(kls, layout_con);
duke@435 3155 if (layout_val == NULL) {
duke@435 3156 bool query = (obj_array
duke@435 3157 ? Klass::layout_helper_is_objArray(layout_con)
duke@435 3158 : Klass::layout_helper_is_javaArray(layout_con));
duke@435 3159 if (query == not_array) {
duke@435 3160 return NULL; // never a branch
duke@435 3161 } else { // always a branch
duke@435 3162 Node* always_branch = control();
duke@435 3163 if (region != NULL)
duke@435 3164 region->add_req(always_branch);
duke@435 3165 set_control(top());
duke@435 3166 return always_branch;
duke@435 3167 }
duke@435 3168 }
duke@435 3169 // Now test the correct condition.
duke@435 3170 jint nval = (obj_array
duke@435 3171 ? ((jint)Klass::_lh_array_tag_type_value
duke@435 3172 << Klass::_lh_array_tag_shift)
duke@435 3173 : Klass::_lh_neutral_value);
duke@435 3174 Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
duke@435 3175 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
duke@435 3176 // invert the test if we are looking for a non-array
duke@435 3177 if (not_array) btest = BoolTest(btest).negate();
duke@435 3178 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
duke@435 3179 return generate_fair_guard(bol, region);
duke@435 3180 }
duke@435 3181
duke@435 3182
duke@435 3183 //-----------------------inline_native_newArray--------------------------
duke@435 3184 bool LibraryCallKit::inline_native_newArray() {
duke@435 3185 int nargs = 2;
duke@435 3186 Node* mirror = argument(0);
duke@435 3187 Node* count_val = argument(1);
duke@435 3188
duke@435 3189 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3190 mirror = do_null_check(mirror, T_OBJECT);
duke@435 3191 _sp -= nargs;
kvn@598 3192 // If mirror or obj is dead, only null-path is taken.
kvn@598 3193 if (stopped()) return true;
duke@435 3194
duke@435 3195 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
duke@435 3196 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3197 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3198 TypeInstPtr::NOTNULL);
duke@435 3199 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3200 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3201 TypePtr::BOTTOM);
duke@435 3202
duke@435 3203 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3204 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
duke@435 3205 nargs,
duke@435 3206 result_reg, _slow_path);
duke@435 3207 Node* normal_ctl = control();
duke@435 3208 Node* no_array_ctl = result_reg->in(_slow_path);
duke@435 3209
duke@435 3210 // Generate code for the slow case. We make a call to newArray().
duke@435 3211 set_control(no_array_ctl);
duke@435 3212 if (!stopped()) {
duke@435 3213 // Either the input type is void.class, or else the
duke@435 3214 // array klass has not yet been cached. Either the
duke@435 3215 // ensuing call will throw an exception, or else it
duke@435 3216 // will cache the array klass for next time.
duke@435 3217 PreserveJVMState pjvms(this);
duke@435 3218 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
duke@435 3219 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3220 // this->control() comes from set_results_for_java_call
duke@435 3221 result_reg->set_req(_slow_path, control());
duke@435 3222 result_val->set_req(_slow_path, slow_result);
duke@435 3223 result_io ->set_req(_slow_path, i_o());
duke@435 3224 result_mem->set_req(_slow_path, reset_memory());
duke@435 3225 }
duke@435 3226
duke@435 3227 set_control(normal_ctl);
duke@435 3228 if (!stopped()) {
duke@435 3229 // Normal case: The array type has been cached in the java.lang.Class.
duke@435 3230 // The following call works fine even if the array type is polymorphic.
duke@435 3231 // It could be a dynamic mix of int[], boolean[], Object[], etc.
cfang@1165 3232 Node* obj = new_array(klass_node, count_val, nargs);
duke@435 3233 result_reg->init_req(_normal_path, control());
duke@435 3234 result_val->init_req(_normal_path, obj);
duke@435 3235 result_io ->init_req(_normal_path, i_o());
duke@435 3236 result_mem->init_req(_normal_path, reset_memory());
duke@435 3237 }
duke@435 3238
duke@435 3239 // Return the combined state.
duke@435 3240 set_i_o( _gvn.transform(result_io) );
duke@435 3241 set_all_memory( _gvn.transform(result_mem) );
duke@435 3242 push_result(result_reg, result_val);
duke@435 3243 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3244
duke@435 3245 return true;
duke@435 3246 }
duke@435 3247
duke@435 3248 //----------------------inline_native_getLength--------------------------
duke@435 3249 bool LibraryCallKit::inline_native_getLength() {
duke@435 3250 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3251
duke@435 3252 int nargs = 1;
duke@435 3253 Node* array = argument(0);
duke@435 3254
duke@435 3255 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3256 array = do_null_check(array, T_OBJECT);
duke@435 3257 _sp -= nargs;
duke@435 3258
duke@435 3259 // If array is dead, only null-path is taken.
duke@435 3260 if (stopped()) return true;
duke@435 3261
duke@435 3262 // Deoptimize if it is a non-array.
duke@435 3263 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
duke@435 3264
duke@435 3265 if (non_array != NULL) {
duke@435 3266 PreserveJVMState pjvms(this);
duke@435 3267 set_control(non_array);
duke@435 3268 _sp += nargs; // push the arguments back on the stack
duke@435 3269 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 3270 Deoptimization::Action_maybe_recompile);
duke@435 3271 }
duke@435 3272
duke@435 3273 // If control is dead, only non-array-path is taken.
duke@435 3274 if (stopped()) return true;
duke@435 3275
duke@435 3276 // The works fine even if the array type is polymorphic.
duke@435 3277 // It could be a dynamic mix of int[], boolean[], Object[], etc.
duke@435 3278 push( load_array_length(array) );
duke@435 3279
duke@435 3280 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3281
duke@435 3282 return true;
duke@435 3283 }
duke@435 3284
duke@435 3285 //------------------------inline_array_copyOf----------------------------
duke@435 3286 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
duke@435 3287 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3288
duke@435 3289 // Restore the stack and pop off the arguments.
duke@435 3290 int nargs = 3 + (is_copyOfRange? 1: 0);
duke@435 3291 Node* original = argument(0);
duke@435 3292 Node* start = is_copyOfRange? argument(1): intcon(0);
duke@435 3293 Node* end = is_copyOfRange? argument(2): argument(1);
duke@435 3294 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
duke@435 3295
cfang@1337 3296 Node* newcopy;
cfang@1337 3297
cfang@1337 3298 //set the original stack and the reexecute bit for the interpreter to reexecute
cfang@1337 3299 //the bytecode that invokes Arrays.copyOf if deoptimization happens
cfang@1337 3300 { PreserveReexecuteState preexecs(this);
cfang@1337 3301 _sp += nargs;
cfang@1337 3302 jvms()->set_should_reexecute(true);
cfang@1337 3303
cfang@1337 3304 array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
cfang@1337 3305 original = do_null_check(original, T_OBJECT);
cfang@1337 3306
cfang@1337 3307 // Check if a null path was taken unconditionally.
cfang@1337 3308 if (stopped()) return true;
cfang@1337 3309
cfang@1337 3310 Node* orig_length = load_array_length(original);
cfang@1337 3311
cfang@1337 3312 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
cfang@1337 3313 NULL, 0);
cfang@1337 3314 klass_node = do_null_check(klass_node, T_OBJECT);
cfang@1337 3315
cfang@1337 3316 RegionNode* bailout = new (C, 1) RegionNode(1);
cfang@1337 3317 record_for_igvn(bailout);
cfang@1337 3318
cfang@1337 3319 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
cfang@1337 3320 // Bail out if that is so.
cfang@1337 3321 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
cfang@1337 3322 if (not_objArray != NULL) {
cfang@1337 3323 // Improve the klass node's type from the new optimistic assumption:
cfang@1337 3324 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
cfang@1337 3325 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
cfang@1337 3326 Node* cast = new (C, 2) CastPPNode(klass_node, akls);
cfang@1337 3327 cast->init_req(0, control());
cfang@1337 3328 klass_node = _gvn.transform(cast);
cfang@1337 3329 }
cfang@1337 3330
cfang@1337 3331 // Bail out if either start or end is negative.
cfang@1337 3332 generate_negative_guard(start, bailout, &start);
cfang@1337 3333 generate_negative_guard(end, bailout, &end);
cfang@1337 3334
cfang@1337 3335 Node* length = end;
cfang@1337 3336 if (_gvn.type(start) != TypeInt::ZERO) {
cfang@1337 3337 length = _gvn.transform( new (C, 3) SubINode(end, start) );
cfang@1337 3338 }
cfang@1337 3339
cfang@1337 3340 // Bail out if length is negative.
cfang@1337 3341 // ...Not needed, since the new_array will throw the right exception.
cfang@1337 3342 //generate_negative_guard(length, bailout, &length);
cfang@1337 3343
cfang@1337 3344 if (bailout->req() > 1) {
cfang@1337 3345 PreserveJVMState pjvms(this);
cfang@1337 3346 set_control( _gvn.transform(bailout) );
cfang@1337 3347 uncommon_trap(Deoptimization::Reason_intrinsic,
cfang@1337 3348 Deoptimization::Action_maybe_recompile);
cfang@1337 3349 }
cfang@1337 3350
cfang@1337 3351 if (!stopped()) {
cfang@1335 3352
cfang@1335 3353 // How many elements will we copy from the original?
cfang@1335 3354 // The answer is MinI(orig_length - start, length).
cfang@1335 3355 Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
cfang@1335 3356 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
cfang@1335 3357
cfang@1335 3358 const bool raw_mem_only = true;
cfang@1335 3359 newcopy = new_array(klass_node, length, 0, raw_mem_only);
cfang@1335 3360
cfang@1335 3361 // Generate a direct call to the right arraycopy function(s).
cfang@1335 3362 // We know the copy is disjoint but we might not know if the
cfang@1335 3363 // oop stores need checking.
cfang@1335 3364 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
cfang@1335 3365 // This will fail a store-check if x contains any non-nulls.
cfang@1335 3366 bool disjoint_bases = true;
cfang@1335 3367 bool length_never_negative = true;
cfang@1335 3368 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 3369 original, start, newcopy, intcon(0), moved,
cfang@1335 3370 disjoint_bases, length_never_negative);
cfang@1337 3371 }
cfang@1337 3372 } //original reexecute and sp are set back here
cfang@1337 3373
cfang@1337 3374 if(!stopped()) {
duke@435 3375 push(newcopy);
duke@435 3376 }
duke@435 3377
duke@435 3378 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3379
duke@435 3380 return true;
duke@435 3381 }
duke@435 3382
duke@435 3383
duke@435 3384 //----------------------generate_virtual_guard---------------------------
duke@435 3385 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
duke@435 3386 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
duke@435 3387 RegionNode* slow_region) {
duke@435 3388 ciMethod* method = callee();
duke@435 3389 int vtable_index = method->vtable_index();
duke@435 3390 // Get the methodOop out of the appropriate vtable entry.
duke@435 3391 int entry_offset = (instanceKlass::vtable_start_offset() +
duke@435 3392 vtable_index*vtableEntry::size()) * wordSize +
duke@435 3393 vtableEntry::method_offset_in_bytes();
duke@435 3394 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
duke@435 3395 Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
duke@435 3396
duke@435 3397 // Compare the target method with the expected method (e.g., Object.hashCode).
duke@435 3398 const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
duke@435 3399
duke@435 3400 Node* native_call = makecon(native_call_addr);
duke@435 3401 Node* chk_native = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
duke@435 3402 Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
duke@435 3403
duke@435 3404 return generate_slow_guard(test_native, slow_region);
duke@435 3405 }
duke@435 3406
duke@435 3407 //-----------------------generate_method_call----------------------------
duke@435 3408 // Use generate_method_call to make a slow-call to the real
duke@435 3409 // method if the fast path fails. An alternative would be to
duke@435 3410 // use a stub like OptoRuntime::slow_arraycopy_Java.
duke@435 3411 // This only works for expanding the current library call,
duke@435 3412 // not another intrinsic. (E.g., don't use this for making an
duke@435 3413 // arraycopy call inside of the copyOf intrinsic.)
duke@435 3414 CallJavaNode*
duke@435 3415 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
duke@435 3416 // When compiling the intrinsic method itself, do not use this technique.
duke@435 3417 guarantee(callee() != C->method(), "cannot make slow-call to self");
duke@435 3418
duke@435 3419 ciMethod* method = callee();
duke@435 3420 // ensure the JVMS we have will be correct for this call
duke@435 3421 guarantee(method_id == method->intrinsic_id(), "must match");
duke@435 3422
duke@435 3423 const TypeFunc* tf = TypeFunc::make(method);
duke@435 3424 int tfdc = tf->domain()->cnt();
duke@435 3425 CallJavaNode* slow_call;
duke@435 3426 if (is_static) {
duke@435 3427 assert(!is_virtual, "");
duke@435 3428 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3429 SharedRuntime::get_resolve_static_call_stub(),
duke@435 3430 method, bci());
duke@435 3431 } else if (is_virtual) {
duke@435 3432 null_check_receiver(method);
duke@435 3433 int vtable_index = methodOopDesc::invalid_vtable_index;
duke@435 3434 if (UseInlineCaches) {
duke@435 3435 // Suppress the vtable call
duke@435 3436 } else {
duke@435 3437 // hashCode and clone are not a miranda methods,
duke@435 3438 // so the vtable index is fixed.
duke@435 3439 // No need to use the linkResolver to get it.
duke@435 3440 vtable_index = method->vtable_index();
duke@435 3441 }
duke@435 3442 slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
duke@435 3443 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 3444 method, vtable_index, bci());
duke@435 3445 } else { // neither virtual nor static: opt_virtual
duke@435 3446 null_check_receiver(method);
duke@435 3447 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3448 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 3449 method, bci());
duke@435 3450 slow_call->set_optimized_virtual(true);
duke@435 3451 }
duke@435 3452 set_arguments_for_java_call(slow_call);
duke@435 3453 set_edges_for_java_call(slow_call);
duke@435 3454 return slow_call;
duke@435 3455 }
duke@435 3456
duke@435 3457
duke@435 3458 //------------------------------inline_native_hashcode--------------------
duke@435 3459 // Build special case code for calls to hashCode on an object.
duke@435 3460 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
duke@435 3461 assert(is_static == callee()->is_static(), "correct intrinsic selection");
duke@435 3462 assert(!(is_virtual && is_static), "either virtual, special, or static");
duke@435 3463
duke@435 3464 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
duke@435 3465
duke@435 3466 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3467 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3468 TypeInt::INT);
duke@435 3469 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3470 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3471 TypePtr::BOTTOM);
duke@435 3472 Node* obj = NULL;
duke@435 3473 if (!is_static) {
duke@435 3474 // Check for hashing null object
duke@435 3475 obj = null_check_receiver(callee());
duke@435 3476 if (stopped()) return true; // unconditionally null
duke@435 3477 result_reg->init_req(_null_path, top());
duke@435 3478 result_val->init_req(_null_path, top());
duke@435 3479 } else {
duke@435 3480 // Do a null check, and return zero if null.
duke@435 3481 // System.identityHashCode(null) == 0
duke@435 3482 obj = argument(0);
duke@435 3483 Node* null_ctl = top();
duke@435 3484 obj = null_check_oop(obj, &null_ctl);
duke@435 3485 result_reg->init_req(_null_path, null_ctl);
duke@435 3486 result_val->init_req(_null_path, _gvn.intcon(0));
duke@435 3487 }
duke@435 3488
duke@435 3489 // Unconditionally null? Then return right away.
duke@435 3490 if (stopped()) {
duke@435 3491 set_control( result_reg->in(_null_path) );
duke@435 3492 if (!stopped())
duke@435 3493 push( result_val ->in(_null_path) );
duke@435 3494 return true;
duke@435 3495 }
duke@435 3496
duke@435 3497 // After null check, get the object's klass.
duke@435 3498 Node* obj_klass = load_object_klass(obj);
duke@435 3499
duke@435 3500 // This call may be virtual (invokevirtual) or bound (invokespecial).
duke@435 3501 // For each case we generate slightly different code.
duke@435 3502
duke@435 3503 // We only go to the fast case code if we pass a number of guards. The
duke@435 3504 // paths which do not pass are accumulated in the slow_region.
duke@435 3505 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 3506 record_for_igvn(slow_region);
duke@435 3507
duke@435 3508 // If this is a virtual call, we generate a funny guard. We pull out
duke@435 3509 // the vtable entry corresponding to hashCode() from the target object.
duke@435 3510 // If the target method which we are calling happens to be the native
duke@435 3511 // Object hashCode() method, we pass the guard. We do not need this
duke@435 3512 // guard for non-virtual calls -- the caller is known to be the native
duke@435 3513 // Object hashCode().
duke@435 3514 if (is_virtual) {
duke@435 3515 generate_virtual_guard(obj_klass, slow_region);
duke@435 3516 }
duke@435 3517
duke@435 3518 // Get the header out of the object, use LoadMarkNode when available
duke@435 3519 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@1964 3520 Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
duke@435 3521
duke@435 3522 // Test the header to see if it is unlocked.
duke@435 3523 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
duke@435 3524 Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
duke@435 3525 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
duke@435 3526 Node *chk_unlocked = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
duke@435 3527 Node *test_unlocked = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
duke@435 3528
duke@435 3529 generate_slow_guard(test_unlocked, slow_region);
duke@435 3530
duke@435 3531 // Get the hash value and check to see that it has been properly assigned.
duke@435 3532 // We depend on hash_mask being at most 32 bits and avoid the use of
duke@435 3533 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
duke@435 3534 // vm: see markOop.hpp.
duke@435 3535 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
duke@435 3536 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
duke@435 3537 Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
duke@435 3538 // This hack lets the hash bits live anywhere in the mark object now, as long
twisti@1040 3539 // as the shift drops the relevant bits into the low 32 bits. Note that
duke@435 3540 // Java spec says that HashCode is an int so there's no point in capturing
duke@435 3541 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
duke@435 3542 hshifted_header = ConvX2I(hshifted_header);
duke@435 3543 Node *hash_val = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
duke@435 3544
duke@435 3545 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
duke@435 3546 Node *chk_assigned = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
duke@435 3547 Node *test_assigned = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
duke@435 3548
duke@435 3549 generate_slow_guard(test_assigned, slow_region);
duke@435 3550
duke@435 3551 Node* init_mem = reset_memory();
duke@435 3552 // fill in the rest of the null path:
duke@435 3553 result_io ->init_req(_null_path, i_o());
duke@435 3554 result_mem->init_req(_null_path, init_mem);
duke@435 3555
duke@435 3556 result_val->init_req(_fast_path, hash_val);
duke@435 3557 result_reg->init_req(_fast_path, control());
duke@435 3558 result_io ->init_req(_fast_path, i_o());
duke@435 3559 result_mem->init_req(_fast_path, init_mem);
duke@435 3560
duke@435 3561 // Generate code for the slow case. We make a call to hashCode().
duke@435 3562 set_control(_gvn.transform(slow_region));
duke@435 3563 if (!stopped()) {
duke@435 3564 // No need for PreserveJVMState, because we're using up the present state.
duke@435 3565 set_all_memory(init_mem);
duke@435 3566 vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
duke@435 3567 if (is_static) hashCode_id = vmIntrinsics::_identityHashCode;
duke@435 3568 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
duke@435 3569 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3570 // this->control() comes from set_results_for_java_call
duke@435 3571 result_reg->init_req(_slow_path, control());
duke@435 3572 result_val->init_req(_slow_path, slow_result);
duke@435 3573 result_io ->set_req(_slow_path, i_o());
duke@435 3574 result_mem ->set_req(_slow_path, reset_memory());
duke@435 3575 }
duke@435 3576
duke@435 3577 // Return the combined state.
duke@435 3578 set_i_o( _gvn.transform(result_io) );
duke@435 3579 set_all_memory( _gvn.transform(result_mem) );
duke@435 3580 push_result(result_reg, result_val);
duke@435 3581
duke@435 3582 return true;
duke@435 3583 }
duke@435 3584
duke@435 3585 //---------------------------inline_native_getClass----------------------------
twisti@1040 3586 // Build special case code for calls to getClass on an object.
duke@435 3587 bool LibraryCallKit::inline_native_getClass() {
duke@435 3588 Node* obj = null_check_receiver(callee());
duke@435 3589 if (stopped()) return true;
duke@435 3590 push( load_mirror_from_klass(load_object_klass(obj)) );
duke@435 3591 return true;
duke@435 3592 }
duke@435 3593
duke@435 3594 //-----------------inline_native_Reflection_getCallerClass---------------------
duke@435 3595 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
duke@435 3596 //
duke@435 3597 // NOTE that this code must perform the same logic as
duke@435 3598 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3599 // Method.invoke() and auxiliary frames.
duke@435 3600
duke@435 3601
duke@435 3602
duke@435 3603
duke@435 3604 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
duke@435 3605 ciMethod* method = callee();
duke@435 3606
duke@435 3607 #ifndef PRODUCT
duke@435 3608 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3609 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
duke@435 3610 }
duke@435 3611 #endif
duke@435 3612
duke@435 3613 debug_only(int saved_sp = _sp);
duke@435 3614
duke@435 3615 // Argument words: (int depth)
duke@435 3616 int nargs = 1;
duke@435 3617
duke@435 3618 _sp += nargs;
duke@435 3619 Node* caller_depth_node = pop();
duke@435 3620
duke@435 3621 assert(saved_sp == _sp, "must have correct argument count");
duke@435 3622
duke@435 3623 // The depth value must be a constant in order for the runtime call
duke@435 3624 // to be eliminated.
duke@435 3625 const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
duke@435 3626 if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
duke@435 3627 #ifndef PRODUCT
duke@435 3628 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3629 tty->print_cr(" Bailing out because caller depth was not a constant");
duke@435 3630 }
duke@435 3631 #endif
duke@435 3632 return false;
duke@435 3633 }
duke@435 3634 // Note that the JVM state at this point does not include the
duke@435 3635 // getCallerClass() frame which we are trying to inline. The
duke@435 3636 // semantics of getCallerClass(), however, are that the "first"
duke@435 3637 // frame is the getCallerClass() frame, so we subtract one from the
duke@435 3638 // requested depth before continuing. We don't inline requests of
duke@435 3639 // getCallerClass(0).
duke@435 3640 int caller_depth = caller_depth_type->get_con() - 1;
duke@435 3641 if (caller_depth < 0) {
duke@435 3642 #ifndef PRODUCT
duke@435 3643 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3644 tty->print_cr(" Bailing out because caller depth was %d", caller_depth);
duke@435 3645 }
duke@435 3646 #endif
duke@435 3647 return false;
duke@435 3648 }
duke@435 3649
duke@435 3650 if (!jvms()->has_method()) {
duke@435 3651 #ifndef PRODUCT
duke@435 3652 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3653 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
duke@435 3654 }
duke@435 3655 #endif
duke@435 3656 return false;
duke@435 3657 }
duke@435 3658 int _depth = jvms()->depth(); // cache call chain depth
duke@435 3659
duke@435 3660 // Walk back up the JVM state to find the caller at the required
duke@435 3661 // depth. NOTE that this code must perform the same logic as
duke@435 3662 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3663 // Method.invoke() and auxiliary frames. Note also that depth is
duke@435 3664 // 1-based (1 is the bottom of the inlining).
duke@435 3665 int inlining_depth = _depth;
duke@435 3666 JVMState* caller_jvms = NULL;
duke@435 3667
duke@435 3668 if (inlining_depth > 0) {
duke@435 3669 caller_jvms = jvms();
duke@435 3670 assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
duke@435 3671 do {
duke@435 3672 // The following if-tests should be performed in this order
duke@435 3673 if (is_method_invoke_or_aux_frame(caller_jvms)) {
duke@435 3674 // Skip a Method.invoke() or auxiliary frame
duke@435 3675 } else if (caller_depth > 0) {
duke@435 3676 // Skip real frame
duke@435 3677 --caller_depth;
duke@435 3678 } else {
duke@435 3679 // We're done: reached desired caller after skipping.
duke@435 3680 break;
duke@435 3681 }
duke@435 3682 caller_jvms = caller_jvms->caller();
duke@435 3683 --inlining_depth;
duke@435 3684 } while (inlining_depth > 0);
duke@435 3685 }
duke@435 3686
duke@435 3687 if (inlining_depth == 0) {
duke@435 3688 #ifndef PRODUCT
duke@435 3689 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3690 tty->print_cr(" Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
duke@435 3691 tty->print_cr(" JVM state at this point:");
duke@435 3692 for (int i = _depth; i >= 1; i--) {
duke@435 3693 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3694 }
duke@435 3695 }
duke@435 3696 #endif
duke@435 3697 return false; // Reached end of inlining
duke@435 3698 }
duke@435 3699
duke@435 3700 // Acquire method holder as java.lang.Class
duke@435 3701 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
duke@435 3702 ciInstance* caller_mirror = caller_klass->java_mirror();
duke@435 3703 // Push this as a constant
duke@435 3704 push(makecon(TypeInstPtr::make(caller_mirror)));
duke@435 3705 #ifndef PRODUCT
duke@435 3706 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3707 tty->print_cr(" Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
duke@435 3708 tty->print_cr(" JVM state at this point:");
duke@435 3709 for (int i = _depth; i >= 1; i--) {
duke@435 3710 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3711 }
duke@435 3712 }
duke@435 3713 #endif
duke@435 3714 return true;
duke@435 3715 }
duke@435 3716
duke@435 3717 // Helper routine for above
duke@435 3718 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
twisti@1587 3719 ciMethod* method = jvms->method();
twisti@1587 3720
duke@435 3721 // Is this the Method.invoke method itself?
twisti@1587 3722 if (method->intrinsic_id() == vmIntrinsics::_invoke)
duke@435 3723 return true;
duke@435 3724
duke@435 3725 // Is this a helper, defined somewhere underneath MethodAccessorImpl.
twisti@1587 3726 ciKlass* k = method->holder();
duke@435 3727 if (k->is_instance_klass()) {
duke@435 3728 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3729 for (; ik != NULL; ik = ik->super()) {
duke@435 3730 if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
duke@435 3731 ik == env()->find_system_klass(ik->name())) {
duke@435 3732 return true;
duke@435 3733 }
duke@435 3734 }
duke@435 3735 }
twisti@1587 3736 else if (method->is_method_handle_adapter()) {
twisti@1587 3737 // This is an internal adapter frame from the MethodHandleCompiler -- skip it
twisti@1587 3738 return true;
twisti@1587 3739 }
duke@435 3740
duke@435 3741 return false;
duke@435 3742 }
duke@435 3743
duke@435 3744 static int value_field_offset = -1; // offset of the "value" field of AtomicLongCSImpl. This is needed by
duke@435 3745 // inline_native_AtomicLong_attemptUpdate() but it has no way of
duke@435 3746 // computing it since there is no lookup field by name function in the
duke@435 3747 // CI interface. This is computed and set by inline_native_AtomicLong_get().
duke@435 3748 // Using a static variable here is safe even if we have multiple compilation
duke@435 3749 // threads because the offset is constant. At worst the same offset will be
duke@435 3750 // computed and stored multiple
duke@435 3751
duke@435 3752 bool LibraryCallKit::inline_native_AtomicLong_get() {
duke@435 3753 // Restore the stack and pop off the argument
duke@435 3754 _sp+=1;
duke@435 3755 Node *obj = pop();
duke@435 3756
duke@435 3757 // get the offset of the "value" field. Since the CI interfaces
duke@435 3758 // does not provide a way to look up a field by name, we scan the bytecodes
duke@435 3759 // to get the field index. We expect the first 2 instructions of the method
duke@435 3760 // to be:
duke@435 3761 // 0 aload_0
duke@435 3762 // 1 getfield "value"
duke@435 3763 ciMethod* method = callee();
duke@435 3764 if (value_field_offset == -1)
duke@435 3765 {
duke@435 3766 ciField* value_field;
duke@435 3767 ciBytecodeStream iter(method);
duke@435 3768 Bytecodes::Code bc = iter.next();
duke@435 3769
duke@435 3770 if ((bc != Bytecodes::_aload_0) &&
duke@435 3771 ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
duke@435 3772 return false;
duke@435 3773 bc = iter.next();
duke@435 3774 if (bc != Bytecodes::_getfield)
duke@435 3775 return false;
duke@435 3776 bool ignore;
duke@435 3777 value_field = iter.get_field(ignore);
duke@435 3778 value_field_offset = value_field->offset_in_bytes();
duke@435 3779 }
duke@435 3780
duke@435 3781 // Null check without removing any arguments.
duke@435 3782 _sp++;
duke@435 3783 obj = do_null_check(obj, T_OBJECT);
duke@435 3784 _sp--;
duke@435 3785 // Check for locking null object
duke@435 3786 if (stopped()) return true;
duke@435 3787
duke@435 3788 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
duke@435 3789 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
duke@435 3790 int alias_idx = C->get_alias_index(adr_type);
duke@435 3791
duke@435 3792 Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
duke@435 3793
duke@435 3794 push_pair(result);
duke@435 3795
duke@435 3796 return true;
duke@435 3797 }
duke@435 3798
duke@435 3799 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
duke@435 3800 // Restore the stack and pop off the arguments
duke@435 3801 _sp+=5;
duke@435 3802 Node *newVal = pop_pair();
duke@435 3803 Node *oldVal = pop_pair();
duke@435 3804 Node *obj = pop();
duke@435 3805
duke@435 3806 // we need the offset of the "value" field which was computed when
duke@435 3807 // inlining the get() method. Give up if we don't have it.
duke@435 3808 if (value_field_offset == -1)
duke@435 3809 return false;
duke@435 3810
duke@435 3811 // Null check without removing any arguments.
duke@435 3812 _sp+=5;
duke@435 3813 obj = do_null_check(obj, T_OBJECT);
duke@435 3814 _sp-=5;
duke@435 3815 // Check for locking null object
duke@435 3816 if (stopped()) return true;
duke@435 3817
duke@435 3818 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
duke@435 3819 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
duke@435 3820 int alias_idx = C->get_alias_index(adr_type);
duke@435 3821
kvn@855 3822 Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
kvn@855 3823 Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
duke@435 3824 set_memory(store_proj, alias_idx);
kvn@855 3825 Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
kvn@855 3826
kvn@855 3827 Node *result;
kvn@855 3828 // CMove node is not used to be able fold a possible check code
kvn@855 3829 // after attemptUpdate() call. This code could be transformed
kvn@855 3830 // into CMove node by loop optimizations.
kvn@855 3831 {
kvn@855 3832 RegionNode *r = new (C, 3) RegionNode(3);
kvn@855 3833 result = new (C, 3) PhiNode(r, TypeInt::BOOL);
kvn@855 3834
kvn@855 3835 Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
kvn@855 3836 Node *iftrue = opt_iff(r, iff);
kvn@855 3837 r->init_req(1, iftrue);
kvn@855 3838 result->init_req(1, intcon(1));
kvn@855 3839 result->init_req(2, intcon(0));
kvn@855 3840
kvn@855 3841 set_control(_gvn.transform(r));
kvn@855 3842 record_for_igvn(r);
kvn@855 3843
kvn@855 3844 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@855 3845 }
kvn@855 3846
kvn@855 3847 push(_gvn.transform(result));
duke@435 3848 return true;
duke@435 3849 }
duke@435 3850
duke@435 3851 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
duke@435 3852 // restore the arguments
duke@435 3853 _sp += arg_size();
duke@435 3854
duke@435 3855 switch (id) {
duke@435 3856 case vmIntrinsics::_floatToRawIntBits:
duke@435 3857 push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
duke@435 3858 break;
duke@435 3859
duke@435 3860 case vmIntrinsics::_intBitsToFloat:
duke@435 3861 push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
duke@435 3862 break;
duke@435 3863
duke@435 3864 case vmIntrinsics::_doubleToRawLongBits:
duke@435 3865 push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
duke@435 3866 break;
duke@435 3867
duke@435 3868 case vmIntrinsics::_longBitsToDouble:
duke@435 3869 push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
duke@435 3870 break;
duke@435 3871
duke@435 3872 case vmIntrinsics::_doubleToLongBits: {
duke@435 3873 Node* value = pop_pair();
duke@435 3874
duke@435 3875 // two paths (plus control) merge in a wood
duke@435 3876 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 3877 Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
duke@435 3878
duke@435 3879 Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
duke@435 3880 // Build the boolean node
duke@435 3881 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 3882
duke@435 3883 // Branch either way.
duke@435 3884 // NaN case is less traveled, which makes all the difference.
duke@435 3885 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 3886 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 3887 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 3888 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 3889 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 3890
duke@435 3891 set_control(iftrue);
duke@435 3892
duke@435 3893 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 3894 Node *slow_result = longcon(nan_bits); // return NaN
duke@435 3895 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 3896 r->init_req(1, iftrue);
duke@435 3897
duke@435 3898 // Else fall through
duke@435 3899 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 3900 set_control(iffalse);
duke@435 3901
duke@435 3902 phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
duke@435 3903 r->init_req(2, iffalse);
duke@435 3904
duke@435 3905 // Post merge
duke@435 3906 set_control(_gvn.transform(r));
duke@435 3907 record_for_igvn(r);
duke@435 3908
duke@435 3909 Node* result = _gvn.transform(phi);
duke@435 3910 assert(result->bottom_type()->isa_long(), "must be");
duke@435 3911 push_pair(result);
duke@435 3912
duke@435 3913 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3914
duke@435 3915 break;
duke@435 3916 }
duke@435 3917
duke@435 3918 case vmIntrinsics::_floatToIntBits: {
duke@435 3919 Node* value = pop();
duke@435 3920
duke@435 3921 // two paths (plus control) merge in a wood
duke@435 3922 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 3923 Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
duke@435 3924
duke@435 3925 Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
duke@435 3926 // Build the boolean node
duke@435 3927 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 3928
duke@435 3929 // Branch either way.
duke@435 3930 // NaN case is less traveled, which makes all the difference.
duke@435 3931 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 3932 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 3933 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 3934 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 3935 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 3936
duke@435 3937 set_control(iftrue);
duke@435 3938
duke@435 3939 static const jint nan_bits = 0x7fc00000;
duke@435 3940 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
duke@435 3941 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 3942 r->init_req(1, iftrue);
duke@435 3943
duke@435 3944 // Else fall through
duke@435 3945 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 3946 set_control(iffalse);
duke@435 3947
duke@435 3948 phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
duke@435 3949 r->init_req(2, iffalse);
duke@435 3950
duke@435 3951 // Post merge
duke@435 3952 set_control(_gvn.transform(r));
duke@435 3953 record_for_igvn(r);
duke@435 3954
duke@435 3955 Node* result = _gvn.transform(phi);
duke@435 3956 assert(result->bottom_type()->isa_int(), "must be");
duke@435 3957 push(result);
duke@435 3958
duke@435 3959 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3960
duke@435 3961 break;
duke@435 3962 }
duke@435 3963
duke@435 3964 default:
duke@435 3965 ShouldNotReachHere();
duke@435 3966 }
duke@435 3967
duke@435 3968 return true;
duke@435 3969 }
duke@435 3970
duke@435 3971 #ifdef _LP64
duke@435 3972 #define XTOP ,top() /*additional argument*/
duke@435 3973 #else //_LP64
duke@435 3974 #define XTOP /*no additional argument*/
duke@435 3975 #endif //_LP64
duke@435 3976
duke@435 3977 //----------------------inline_unsafe_copyMemory-------------------------
duke@435 3978 bool LibraryCallKit::inline_unsafe_copyMemory() {
duke@435 3979 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 3980 int nargs = 1 + 5 + 3; // 5 args: (src: ptr,off, dst: ptr,off, size)
duke@435 3981 assert(signature()->size() == nargs-1, "copy has 5 arguments");
duke@435 3982 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 3983 if (stopped()) return true;
duke@435 3984
duke@435 3985 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 3986
duke@435 3987 Node* src_ptr = argument(1);
duke@435 3988 Node* src_off = ConvL2X(argument(2));
duke@435 3989 assert(argument(3)->is_top(), "2nd half of long");
duke@435 3990 Node* dst_ptr = argument(4);
duke@435 3991 Node* dst_off = ConvL2X(argument(5));
duke@435 3992 assert(argument(6)->is_top(), "2nd half of long");
duke@435 3993 Node* size = ConvL2X(argument(7));
duke@435 3994 assert(argument(8)->is_top(), "2nd half of long");
duke@435 3995
duke@435 3996 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 3997 "fieldOffset must be byte-scaled");
duke@435 3998
duke@435 3999 Node* src = make_unsafe_address(src_ptr, src_off);
duke@435 4000 Node* dst = make_unsafe_address(dst_ptr, dst_off);
duke@435 4001
duke@435 4002 // Conservatively insert a memory barrier on all memory slices.
duke@435 4003 // Do not let writes of the copy source or destination float below the copy.
duke@435 4004 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4005
duke@435 4006 // Call it. Note that the length argument is not scaled.
duke@435 4007 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 4008 OptoRuntime::fast_arraycopy_Type(),
duke@435 4009 StubRoutines::unsafe_arraycopy(),
duke@435 4010 "unsafe_arraycopy",
duke@435 4011 TypeRawPtr::BOTTOM,
duke@435 4012 src, dst, size XTOP);
duke@435 4013
duke@435 4014 // Do not let reads of the copy destination float above the copy.
duke@435 4015 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4016
duke@435 4017 return true;
duke@435 4018 }
duke@435 4019
kvn@1268 4020 //------------------------clone_coping-----------------------------------
kvn@1268 4021 // Helper function for inline_native_clone.
kvn@1268 4022 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
kvn@1268 4023 assert(obj_size != NULL, "");
kvn@1268 4024 Node* raw_obj = alloc_obj->in(1);
kvn@1268 4025 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
kvn@1268 4026
kvn@1268 4027 if (ReduceBulkZeroing) {
kvn@1268 4028 // We will be completely responsible for initializing this object -
kvn@1268 4029 // mark Initialize node as complete.
kvn@1268 4030 AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
kvn@1268 4031 // The object was just allocated - there should be no any stores!
kvn@1268 4032 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
kvn@1268 4033 }
kvn@1268 4034
kvn@1268 4035 // Copy the fastest available way.
kvn@1268 4036 // TODO: generate fields copies for small objects instead.
kvn@1268 4037 Node* src = obj;
kvn@1393 4038 Node* dest = alloc_obj;
kvn@1268 4039 Node* size = _gvn.transform(obj_size);
kvn@1268 4040
kvn@1268 4041 // Exclude the header but include array length to copy by 8 bytes words.
kvn@1268 4042 // Can't use base_offset_in_bytes(bt) since basic type is unknown.
kvn@1268 4043 int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
kvn@1268 4044 instanceOopDesc::base_offset_in_bytes();
kvn@1268 4045 // base_off:
kvn@1268 4046 // 8 - 32-bit VM
kvn@1268 4047 // 12 - 64-bit VM, compressed oops
kvn@1268 4048 // 16 - 64-bit VM, normal oops
kvn@1268 4049 if (base_off % BytesPerLong != 0) {
kvn@1268 4050 assert(UseCompressedOops, "");
kvn@1268 4051 if (is_array) {
kvn@1268 4052 // Exclude length to copy by 8 bytes words.
kvn@1268 4053 base_off += sizeof(int);
kvn@1268 4054 } else {
kvn@1268 4055 // Include klass to copy by 8 bytes words.
kvn@1268 4056 base_off = instanceOopDesc::klass_offset_in_bytes();
kvn@1268 4057 }
kvn@1268 4058 assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
kvn@1268 4059 }
kvn@1268 4060 src = basic_plus_adr(src, base_off);
kvn@1268 4061 dest = basic_plus_adr(dest, base_off);
kvn@1268 4062
kvn@1268 4063 // Compute the length also, if needed:
kvn@1268 4064 Node* countx = size;
kvn@1268 4065 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
kvn@1268 4066 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
kvn@1268 4067
kvn@1268 4068 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
kvn@1268 4069 bool disjoint_bases = true;
kvn@1268 4070 generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
kvn@1268 4071 src, NULL, dest, NULL, countx);
kvn@1268 4072
kvn@1268 4073 // If necessary, emit some card marks afterwards. (Non-arrays only.)
kvn@1268 4074 if (card_mark) {
kvn@1268 4075 assert(!is_array, "");
kvn@1268 4076 // Put in store barrier for any and all oops we are sticking
kvn@1268 4077 // into this object. (We could avoid this if we could prove
kvn@1268 4078 // that the object type contains no oop fields at all.)
kvn@1268 4079 Node* no_particular_value = NULL;
kvn@1268 4080 Node* no_particular_field = NULL;
kvn@1268 4081 int raw_adr_idx = Compile::AliasIdxRaw;
kvn@1268 4082 post_barrier(control(),
kvn@1268 4083 memory(raw_adr_type),
kvn@1393 4084 alloc_obj,
kvn@1268 4085 no_particular_field,
kvn@1268 4086 raw_adr_idx,
kvn@1268 4087 no_particular_value,
kvn@1268 4088 T_OBJECT,
kvn@1268 4089 false);
kvn@1268 4090 }
kvn@1268 4091
kvn@1393 4092 // Do not let reads from the cloned object float above the arraycopy.
kvn@1393 4093 insert_mem_bar(Op_MemBarCPUOrder);
kvn@1268 4094 }
duke@435 4095
duke@435 4096 //------------------------inline_native_clone----------------------------
duke@435 4097 // Here are the simple edge cases:
duke@435 4098 // null receiver => normal trap
duke@435 4099 // virtual and clone was overridden => slow path to out-of-line clone
duke@435 4100 // not cloneable or finalizer => slow path to out-of-line Object.clone
duke@435 4101 //
duke@435 4102 // The general case has two steps, allocation and copying.
duke@435 4103 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
duke@435 4104 //
duke@435 4105 // Copying also has two cases, oop arrays and everything else.
duke@435 4106 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
duke@435 4107 // Everything else uses the tight inline loop supplied by CopyArrayNode.
duke@435 4108 //
duke@435 4109 // These steps fold up nicely if and when the cloned object's klass
duke@435 4110 // can be sharply typed as an object array, a type array, or an instance.
duke@435 4111 //
duke@435 4112 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
duke@435 4113 int nargs = 1;
cfang@1337 4114 PhiNode* result_val;
duke@435 4115
cfang@1335 4116 //set the original stack and the reexecute bit for the interpreter to reexecute
cfang@1335 4117 //the bytecode that invokes Object.clone if deoptimization happens
cfang@1335 4118 { PreserveReexecuteState preexecs(this);
cfang@1337 4119 jvms()->set_should_reexecute(true);
cfang@1337 4120
cfang@1337 4121 //null_check_receiver will adjust _sp (push and pop)
cfang@1337 4122 Node* obj = null_check_receiver(callee());
cfang@1337 4123 if (stopped()) return true;
cfang@1337 4124
cfang@1335 4125 _sp += nargs;
cfang@1337 4126
cfang@1337 4127 Node* obj_klass = load_object_klass(obj);
cfang@1337 4128 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
cfang@1337 4129 const TypeOopPtr* toop = ((tklass != NULL)
cfang@1337 4130 ? tklass->as_instance_type()
cfang@1337 4131 : TypeInstPtr::NOTNULL);
cfang@1337 4132
cfang@1337 4133 // Conservatively insert a memory barrier on all memory slices.
cfang@1337 4134 // Do not let writes into the original float below the clone.
cfang@1337 4135 insert_mem_bar(Op_MemBarCPUOrder);
cfang@1337 4136
cfang@1337 4137 // paths into result_reg:
cfang@1337 4138 enum {
cfang@1337 4139 _slow_path = 1, // out-of-line call to clone method (virtual or not)
cfang@1337 4140 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
cfang@1337 4141 _array_path, // plain array allocation, plus arrayof_long_arraycopy
cfang@1337 4142 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy
cfang@1337 4143 PATH_LIMIT
cfang@1337 4144 };
cfang@1337 4145 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
cfang@1337 4146 result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
cfang@1337 4147 TypeInstPtr::NOTNULL);
cfang@1337 4148 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
cfang@1337 4149 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
cfang@1337 4150 TypePtr::BOTTOM);
cfang@1337 4151 record_for_igvn(result_reg);
cfang@1337 4152
cfang@1337 4153 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
cfang@1337 4154 int raw_adr_idx = Compile::AliasIdxRaw;
cfang@1337 4155 const bool raw_mem_only = true;
cfang@1337 4156
cfang@1335 4157
cfang@1335 4158 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4159 if (array_ctl != NULL) {
cfang@1335 4160 // It's an array.
cfang@1335 4161 PreserveJVMState pjvms(this);
cfang@1335 4162 set_control(array_ctl);
cfang@1335 4163 Node* obj_length = load_array_length(obj);
cfang@1335 4164 Node* obj_size = NULL;
cfang@1335 4165 Node* alloc_obj = new_array(obj_klass, obj_length, 0,
cfang@1335 4166 raw_mem_only, &obj_size);
cfang@1335 4167
cfang@1335 4168 if (!use_ReduceInitialCardMarks()) {
cfang@1335 4169 // If it is an oop array, it requires very special treatment,
cfang@1335 4170 // because card marking is required on each card of the array.
cfang@1335 4171 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4172 if (is_obja != NULL) {
cfang@1335 4173 PreserveJVMState pjvms2(this);
cfang@1335 4174 set_control(is_obja);
cfang@1335 4175 // Generate a direct call to the right arraycopy function(s).
cfang@1335 4176 bool disjoint_bases = true;
cfang@1335 4177 bool length_never_negative = true;
cfang@1335 4178 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 4179 obj, intcon(0), alloc_obj, intcon(0),
cfang@1335 4180 obj_length,
cfang@1335 4181 disjoint_bases, length_never_negative);
cfang@1335 4182 result_reg->init_req(_objArray_path, control());
cfang@1335 4183 result_val->init_req(_objArray_path, alloc_obj);
cfang@1335 4184 result_i_o ->set_req(_objArray_path, i_o());
cfang@1335 4185 result_mem ->set_req(_objArray_path, reset_memory());
cfang@1335 4186 }
cfang@1335 4187 }
cfang@1335 4188 // Otherwise, there are no card marks to worry about.
ysr@1462 4189 // (We can dispense with card marks if we know the allocation
ysr@1462 4190 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
ysr@1462 4191 // causes the non-eden paths to take compensating steps to
ysr@1462 4192 // simulate a fresh allocation, so that no further
ysr@1462 4193 // card marks are required in compiled code to initialize
ysr@1462 4194 // the object.)
cfang@1335 4195
cfang@1335 4196 if (!stopped()) {
cfang@1335 4197 copy_to_clone(obj, alloc_obj, obj_size, true, false);
cfang@1335 4198
cfang@1335 4199 // Present the results of the copy.
cfang@1335 4200 result_reg->init_req(_array_path, control());
cfang@1335 4201 result_val->init_req(_array_path, alloc_obj);
cfang@1335 4202 result_i_o ->set_req(_array_path, i_o());
cfang@1335 4203 result_mem ->set_req(_array_path, reset_memory());
duke@435 4204 }
duke@435 4205 }
cfang@1335 4206
cfang@1335 4207 // We only go to the instance fast case code if we pass a number of guards.
cfang@1335 4208 // The paths which do not pass are accumulated in the slow_region.
cfang@1335 4209 RegionNode* slow_region = new (C, 1) RegionNode(1);
cfang@1335 4210 record_for_igvn(slow_region);
kvn@1268 4211 if (!stopped()) {
cfang@1335 4212 // It's an instance (we did array above). Make the slow-path tests.
cfang@1335 4213 // If this is a virtual call, we generate a funny guard. We grab
cfang@1335 4214 // the vtable entry corresponding to clone() from the target object.
cfang@1335 4215 // If the target method which we are calling happens to be the
cfang@1335 4216 // Object clone() method, we pass the guard. We do not need this
cfang@1335 4217 // guard for non-virtual calls; the caller is known to be the native
cfang@1335 4218 // Object clone().
cfang@1335 4219 if (is_virtual) {
cfang@1335 4220 generate_virtual_guard(obj_klass, slow_region);
cfang@1335 4221 }
cfang@1335 4222
cfang@1335 4223 // The object must be cloneable and must not have a finalizer.
cfang@1335 4224 // Both of these conditions may be checked in a single test.
cfang@1335 4225 // We could optimize the cloneable test further, but we don't care.
cfang@1335 4226 generate_access_flags_guard(obj_klass,
cfang@1335 4227 // Test both conditions:
cfang@1335 4228 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
cfang@1335 4229 // Must be cloneable but not finalizer:
cfang@1335 4230 JVM_ACC_IS_CLONEABLE,
cfang@1335 4231 slow_region);
kvn@1268 4232 }
cfang@1335 4233
cfang@1335 4234 if (!stopped()) {
cfang@1335 4235 // It's an instance, and it passed the slow-path tests.
cfang@1335 4236 PreserveJVMState pjvms(this);
cfang@1335 4237 Node* obj_size = NULL;
cfang@1335 4238 Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
cfang@1335 4239
cfang@1335 4240 copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
cfang@1335 4241
cfang@1335 4242 // Present the results of the slow call.
cfang@1335 4243 result_reg->init_req(_instance_path, control());
cfang@1335 4244 result_val->init_req(_instance_path, alloc_obj);
cfang@1335 4245 result_i_o ->set_req(_instance_path, i_o());
cfang@1335 4246 result_mem ->set_req(_instance_path, reset_memory());
duke@435 4247 }
duke@435 4248
cfang@1335 4249 // Generate code for the slow case. We make a call to clone().
cfang@1335 4250 set_control(_gvn.transform(slow_region));
cfang@1335 4251 if (!stopped()) {
cfang@1335 4252 PreserveJVMState pjvms(this);
cfang@1335 4253 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
cfang@1335 4254 Node* slow_result = set_results_for_java_call(slow_call);
cfang@1335 4255 // this->control() comes from set_results_for_java_call
cfang@1335 4256 result_reg->init_req(_slow_path, control());
cfang@1335 4257 result_val->init_req(_slow_path, slow_result);
cfang@1335 4258 result_i_o ->set_req(_slow_path, i_o());
cfang@1335 4259 result_mem ->set_req(_slow_path, reset_memory());
cfang@1335 4260 }
cfang@1337 4261
cfang@1337 4262 // Return the combined state.
cfang@1337 4263 set_control( _gvn.transform(result_reg) );
cfang@1337 4264 set_i_o( _gvn.transform(result_i_o) );
cfang@1337 4265 set_all_memory( _gvn.transform(result_mem) );
cfang@1335 4266 } //original reexecute and sp are set back here
duke@435 4267
kvn@1268 4268 push(_gvn.transform(result_val));
duke@435 4269
duke@435 4270 return true;
duke@435 4271 }
duke@435 4272
duke@435 4273
duke@435 4274 // constants for computing the copy function
duke@435 4275 enum {
duke@435 4276 COPYFUNC_UNALIGNED = 0,
duke@435 4277 COPYFUNC_ALIGNED = 1, // src, dest aligned to HeapWordSize
duke@435 4278 COPYFUNC_CONJOINT = 0,
duke@435 4279 COPYFUNC_DISJOINT = 2 // src != dest, or transfer can descend
duke@435 4280 };
duke@435 4281
duke@435 4282 // Note: The condition "disjoint" applies also for overlapping copies
duke@435 4283 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
duke@435 4284 static address
duke@435 4285 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
duke@435 4286 int selector =
duke@435 4287 (aligned ? COPYFUNC_ALIGNED : COPYFUNC_UNALIGNED) +
duke@435 4288 (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
duke@435 4289
duke@435 4290 #define RETURN_STUB(xxx_arraycopy) { \
duke@435 4291 name = #xxx_arraycopy; \
duke@435 4292 return StubRoutines::xxx_arraycopy(); }
duke@435 4293
duke@435 4294 switch (t) {
duke@435 4295 case T_BYTE:
duke@435 4296 case T_BOOLEAN:
duke@435 4297 switch (selector) {
duke@435 4298 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jbyte_arraycopy);
duke@435 4299 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jbyte_arraycopy);
duke@435 4300 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jbyte_disjoint_arraycopy);
duke@435 4301 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
duke@435 4302 }
duke@435 4303 case T_CHAR:
duke@435 4304 case T_SHORT:
duke@435 4305 switch (selector) {
duke@435 4306 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jshort_arraycopy);
duke@435 4307 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jshort_arraycopy);
duke@435 4308 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jshort_disjoint_arraycopy);
duke@435 4309 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
duke@435 4310 }
duke@435 4311 case T_INT:
duke@435 4312 case T_FLOAT:
duke@435 4313 switch (selector) {
duke@435 4314 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jint_arraycopy);
duke@435 4315 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jint_arraycopy);
duke@435 4316 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jint_disjoint_arraycopy);
duke@435 4317 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jint_disjoint_arraycopy);
duke@435 4318 }
duke@435 4319 case T_DOUBLE:
duke@435 4320 case T_LONG:
duke@435 4321 switch (selector) {
duke@435 4322 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jlong_arraycopy);
duke@435 4323 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jlong_arraycopy);
duke@435 4324 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jlong_disjoint_arraycopy);
duke@435 4325 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
duke@435 4326 }
duke@435 4327 case T_ARRAY:
duke@435 4328 case T_OBJECT:
duke@435 4329 switch (selector) {
duke@435 4330 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(oop_arraycopy);
duke@435 4331 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_oop_arraycopy);
duke@435 4332 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(oop_disjoint_arraycopy);
duke@435 4333 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_oop_disjoint_arraycopy);
duke@435 4334 }
duke@435 4335 default:
duke@435 4336 ShouldNotReachHere();
duke@435 4337 return NULL;
duke@435 4338 }
duke@435 4339
duke@435 4340 #undef RETURN_STUB
duke@435 4341 }
duke@435 4342
duke@435 4343 //------------------------------basictype2arraycopy----------------------------
duke@435 4344 address LibraryCallKit::basictype2arraycopy(BasicType t,
duke@435 4345 Node* src_offset,
duke@435 4346 Node* dest_offset,
duke@435 4347 bool disjoint_bases,
duke@435 4348 const char* &name) {
duke@435 4349 const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
duke@435 4350 const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
duke@435 4351
duke@435 4352 bool aligned = false;
duke@435 4353 bool disjoint = disjoint_bases;
duke@435 4354
duke@435 4355 // if the offsets are the same, we can treat the memory regions as
duke@435 4356 // disjoint, because either the memory regions are in different arrays,
duke@435 4357 // or they are identical (which we can treat as disjoint.) We can also
duke@435 4358 // treat a copy with a destination index less that the source index
duke@435 4359 // as disjoint since a low->high copy will work correctly in this case.
duke@435 4360 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
duke@435 4361 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
duke@435 4362 // both indices are constants
duke@435 4363 int s_offs = src_offset_inttype->get_con();
duke@435 4364 int d_offs = dest_offset_inttype->get_con();
kvn@464 4365 int element_size = type2aelembytes(t);
duke@435 4366 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
duke@435 4367 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
duke@435 4368 if (s_offs >= d_offs) disjoint = true;
duke@435 4369 } else if (src_offset == dest_offset && src_offset != NULL) {
duke@435 4370 // This can occur if the offsets are identical non-constants.
duke@435 4371 disjoint = true;
duke@435 4372 }
duke@435 4373
duke@435 4374 return select_arraycopy_function(t, aligned, disjoint, name);
duke@435 4375 }
duke@435 4376
duke@435 4377
duke@435 4378 //------------------------------inline_arraycopy-----------------------
duke@435 4379 bool LibraryCallKit::inline_arraycopy() {
duke@435 4380 // Restore the stack and pop off the arguments.
duke@435 4381 int nargs = 5; // 2 oops, 3 ints, no size_t or long
duke@435 4382 assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
duke@435 4383
duke@435 4384 Node *src = argument(0);
duke@435 4385 Node *src_offset = argument(1);
duke@435 4386 Node *dest = argument(2);
duke@435 4387 Node *dest_offset = argument(3);
duke@435 4388 Node *length = argument(4);
duke@435 4389
duke@435 4390 // Compile time checks. If any of these checks cannot be verified at compile time,
duke@435 4391 // we do not make a fast path for this call. Instead, we let the call remain as it
duke@435 4392 // is. The checks we choose to mandate at compile time are:
duke@435 4393 //
duke@435 4394 // (1) src and dest are arrays.
duke@435 4395 const Type* src_type = src->Value(&_gvn);
duke@435 4396 const Type* dest_type = dest->Value(&_gvn);
duke@435 4397 const TypeAryPtr* top_src = src_type->isa_aryptr();
duke@435 4398 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
duke@435 4399 if (top_src == NULL || top_src->klass() == NULL ||
duke@435 4400 top_dest == NULL || top_dest->klass() == NULL) {
duke@435 4401 // Conservatively insert a memory barrier on all memory slices.
duke@435 4402 // Do not let writes into the source float below the arraycopy.
duke@435 4403 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4404
duke@435 4405 // Call StubRoutines::generic_arraycopy stub.
duke@435 4406 generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
kvn@1268 4407 src, src_offset, dest, dest_offset, length);
duke@435 4408
duke@435 4409 // Do not let reads from the destination float above the arraycopy.
duke@435 4410 // Since we cannot type the arrays, we don't know which slices
duke@435 4411 // might be affected. We could restrict this barrier only to those
duke@435 4412 // memory slices which pertain to array elements--but don't bother.
duke@435 4413 if (!InsertMemBarAfterArraycopy)
duke@435 4414 // (If InsertMemBarAfterArraycopy, there is already one in place.)
duke@435 4415 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4416 return true;
duke@435 4417 }
duke@435 4418
duke@435 4419 // (2) src and dest arrays must have elements of the same BasicType
duke@435 4420 // Figure out the size and type of the elements we will be copying.
duke@435 4421 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4422 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4423 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
duke@435 4424 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
duke@435 4425
duke@435 4426 if (src_elem != dest_elem || dest_elem == T_VOID) {
duke@435 4427 // The component types are not the same or are not recognized. Punt.
duke@435 4428 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
duke@435 4429 generate_slow_arraycopy(TypePtr::BOTTOM,
kvn@1268 4430 src, src_offset, dest, dest_offset, length);
duke@435 4431 return true;
duke@435 4432 }
duke@435 4433
duke@435 4434 //---------------------------------------------------------------------------
duke@435 4435 // We will make a fast path for this call to arraycopy.
duke@435 4436
duke@435 4437 // We have the following tests left to perform:
duke@435 4438 //
duke@435 4439 // (3) src and dest must not be null.
duke@435 4440 // (4) src_offset must not be negative.
duke@435 4441 // (5) dest_offset must not be negative.
duke@435 4442 // (6) length must not be negative.
duke@435 4443 // (7) src_offset + length must not exceed length of src.
duke@435 4444 // (8) dest_offset + length must not exceed length of dest.
duke@435 4445 // (9) each element of an oop array must be assignable
duke@435 4446
duke@435 4447 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 4448 record_for_igvn(slow_region);
duke@435 4449
duke@435 4450 // (3) operands must not be null
duke@435 4451 // We currently perform our null checks with the do_null_check routine.
duke@435 4452 // This means that the null exceptions will be reported in the caller
duke@435 4453 // rather than (correctly) reported inside of the native arraycopy call.
duke@435 4454 // This should be corrected, given time. We do our null check with the
duke@435 4455 // stack pointer restored.
duke@435 4456 _sp += nargs;
duke@435 4457 src = do_null_check(src, T_ARRAY);
duke@435 4458 dest = do_null_check(dest, T_ARRAY);
duke@435 4459 _sp -= nargs;
duke@435 4460
duke@435 4461 // (4) src_offset must not be negative.
duke@435 4462 generate_negative_guard(src_offset, slow_region);
duke@435 4463
duke@435 4464 // (5) dest_offset must not be negative.
duke@435 4465 generate_negative_guard(dest_offset, slow_region);
duke@435 4466
duke@435 4467 // (6) length must not be negative (moved to generate_arraycopy()).
duke@435 4468 // generate_negative_guard(length, slow_region);
duke@435 4469
duke@435 4470 // (7) src_offset + length must not exceed length of src.
duke@435 4471 generate_limit_guard(src_offset, length,
duke@435 4472 load_array_length(src),
duke@435 4473 slow_region);
duke@435 4474
duke@435 4475 // (8) dest_offset + length must not exceed length of dest.
duke@435 4476 generate_limit_guard(dest_offset, length,
duke@435 4477 load_array_length(dest),
duke@435 4478 slow_region);
duke@435 4479
duke@435 4480 // (9) each element of an oop array must be assignable
duke@435 4481 // The generate_arraycopy subroutine checks this.
duke@435 4482
duke@435 4483 // This is where the memory effects are placed:
duke@435 4484 const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
duke@435 4485 generate_arraycopy(adr_type, dest_elem,
duke@435 4486 src, src_offset, dest, dest_offset, length,
kvn@1268 4487 false, false, slow_region);
duke@435 4488
duke@435 4489 return true;
duke@435 4490 }
duke@435 4491
duke@435 4492 //-----------------------------generate_arraycopy----------------------
duke@435 4493 // Generate an optimized call to arraycopy.
duke@435 4494 // Caller must guard against non-arrays.
duke@435 4495 // Caller must determine a common array basic-type for both arrays.
duke@435 4496 // Caller must validate offsets against array bounds.
duke@435 4497 // The slow_region has already collected guard failure paths
duke@435 4498 // (such as out of bounds length or non-conformable array types).
duke@435 4499 // The generated code has this shape, in general:
duke@435 4500 //
duke@435 4501 // if (length == 0) return // via zero_path
duke@435 4502 // slowval = -1
duke@435 4503 // if (types unknown) {
duke@435 4504 // slowval = call generic copy loop
duke@435 4505 // if (slowval == 0) return // via checked_path
duke@435 4506 // } else if (indexes in bounds) {
duke@435 4507 // if ((is object array) && !(array type check)) {
duke@435 4508 // slowval = call checked copy loop
duke@435 4509 // if (slowval == 0) return // via checked_path
duke@435 4510 // } else {
duke@435 4511 // call bulk copy loop
duke@435 4512 // return // via fast_path
duke@435 4513 // }
duke@435 4514 // }
duke@435 4515 // // adjust params for remaining work:
duke@435 4516 // if (slowval != -1) {
duke@435 4517 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n
duke@435 4518 // }
duke@435 4519 // slow_region:
duke@435 4520 // call slow arraycopy(src, src_offset, dest, dest_offset, length)
duke@435 4521 // return // via slow_call_path
duke@435 4522 //
duke@435 4523 // This routine is used from several intrinsics: System.arraycopy,
duke@435 4524 // Object.clone (the array subcase), and Arrays.copyOf[Range].
duke@435 4525 //
duke@435 4526 void
duke@435 4527 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
duke@435 4528 BasicType basic_elem_type,
duke@435 4529 Node* src, Node* src_offset,
duke@435 4530 Node* dest, Node* dest_offset,
duke@435 4531 Node* copy_length,
duke@435 4532 bool disjoint_bases,
duke@435 4533 bool length_never_negative,
duke@435 4534 RegionNode* slow_region) {
duke@435 4535
duke@435 4536 if (slow_region == NULL) {
duke@435 4537 slow_region = new(C,1) RegionNode(1);
duke@435 4538 record_for_igvn(slow_region);
duke@435 4539 }
duke@435 4540
duke@435 4541 Node* original_dest = dest;
duke@435 4542 AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
duke@435 4543 bool must_clear_dest = false;
duke@435 4544
duke@435 4545 // See if this is the initialization of a newly-allocated array.
duke@435 4546 // If so, we will take responsibility here for initializing it to zero.
duke@435 4547 // (Note: Because tightly_coupled_allocation performs checks on the
duke@435 4548 // out-edges of the dest, we need to avoid making derived pointers
duke@435 4549 // from it until we have checked its uses.)
duke@435 4550 if (ReduceBulkZeroing
duke@435 4551 && !ZeroTLAB // pointless if already zeroed
duke@435 4552 && basic_elem_type != T_CONFLICT // avoid corner case
duke@435 4553 && !_gvn.eqv_uncast(src, dest)
duke@435 4554 && ((alloc = tightly_coupled_allocation(dest, slow_region))
duke@435 4555 != NULL)
kvn@469 4556 && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
duke@435 4557 && alloc->maybe_set_complete(&_gvn)) {
duke@435 4558 // "You break it, you buy it."
duke@435 4559 InitializeNode* init = alloc->initialization();
duke@435 4560 assert(init->is_complete(), "we just did this");
kvn@1268 4561 assert(dest->is_CheckCastPP(), "sanity");
duke@435 4562 assert(dest->in(0)->in(0) == init, "dest pinned");
duke@435 4563 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
duke@435 4564 // From this point on, every exit path is responsible for
duke@435 4565 // initializing any non-copied parts of the object to zero.
duke@435 4566 must_clear_dest = true;
duke@435 4567 } else {
duke@435 4568 // No zeroing elimination here.
duke@435 4569 alloc = NULL;
duke@435 4570 //original_dest = dest;
duke@435 4571 //must_clear_dest = false;
duke@435 4572 }
duke@435 4573
duke@435 4574 // Results are placed here:
duke@435 4575 enum { fast_path = 1, // normal void-returning assembly stub
duke@435 4576 checked_path = 2, // special assembly stub with cleanup
duke@435 4577 slow_call_path = 3, // something went wrong; call the VM
duke@435 4578 zero_path = 4, // bypass when length of copy is zero
duke@435 4579 bcopy_path = 5, // copy primitive array by 64-bit blocks
duke@435 4580 PATH_LIMIT = 6
duke@435 4581 };
duke@435 4582 RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 4583 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
duke@435 4584 PhiNode* result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
duke@435 4585 record_for_igvn(result_region);
duke@435 4586 _gvn.set_type_bottom(result_i_o);
duke@435 4587 _gvn.set_type_bottom(result_memory);
duke@435 4588 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
duke@435 4589
duke@435 4590 // The slow_control path:
duke@435 4591 Node* slow_control;
duke@435 4592 Node* slow_i_o = i_o();
duke@435 4593 Node* slow_mem = memory(adr_type);
duke@435 4594 debug_only(slow_control = (Node*) badAddress);
duke@435 4595
duke@435 4596 // Checked control path:
duke@435 4597 Node* checked_control = top();
duke@435 4598 Node* checked_mem = NULL;
duke@435 4599 Node* checked_i_o = NULL;
duke@435 4600 Node* checked_value = NULL;
duke@435 4601
duke@435 4602 if (basic_elem_type == T_CONFLICT) {
duke@435 4603 assert(!must_clear_dest, "");
duke@435 4604 Node* cv = generate_generic_arraycopy(adr_type,
duke@435 4605 src, src_offset, dest, dest_offset,
kvn@1268 4606 copy_length);
duke@435 4607 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4608 checked_control = control();
duke@435 4609 checked_i_o = i_o();
duke@435 4610 checked_mem = memory(adr_type);
duke@435 4611 checked_value = cv;
duke@435 4612 set_control(top()); // no fast path
duke@435 4613 }
duke@435 4614
duke@435 4615 Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
duke@435 4616 if (not_pos != NULL) {
duke@435 4617 PreserveJVMState pjvms(this);
duke@435 4618 set_control(not_pos);
duke@435 4619
duke@435 4620 // (6) length must not be negative.
duke@435 4621 if (!length_never_negative) {
duke@435 4622 generate_negative_guard(copy_length, slow_region);
duke@435 4623 }
duke@435 4624
kvn@1271 4625 // copy_length is 0.
duke@435 4626 if (!stopped() && must_clear_dest) {
duke@435 4627 Node* dest_length = alloc->in(AllocateNode::ALength);
duke@435 4628 if (_gvn.eqv_uncast(copy_length, dest_length)
duke@435 4629 || _gvn.find_int_con(dest_length, 1) <= 0) {
kvn@1271 4630 // There is no zeroing to do. No need for a secondary raw memory barrier.
duke@435 4631 } else {
duke@435 4632 // Clear the whole thing since there are no source elements to copy.
duke@435 4633 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4634 intcon(0), NULL,
duke@435 4635 alloc->in(AllocateNode::AllocSize));
kvn@1271 4636 // Use a secondary InitializeNode as raw memory barrier.
kvn@1271 4637 // Currently it is needed only on this path since other
kvn@1271 4638 // paths have stub or runtime calls as raw memory barriers.
kvn@1271 4639 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
kvn@1271 4640 Compile::AliasIdxRaw,
kvn@1271 4641 top())->as_Initialize();
kvn@1271 4642 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
duke@435 4643 }
duke@435 4644 }
duke@435 4645
duke@435 4646 // Present the results of the fast call.
duke@435 4647 result_region->init_req(zero_path, control());
duke@435 4648 result_i_o ->init_req(zero_path, i_o());
duke@435 4649 result_memory->init_req(zero_path, memory(adr_type));
duke@435 4650 }
duke@435 4651
duke@435 4652 if (!stopped() && must_clear_dest) {
duke@435 4653 // We have to initialize the *uncopied* part of the array to zero.
duke@435 4654 // The copy destination is the slice dest[off..off+len]. The other slices
duke@435 4655 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
duke@435 4656 Node* dest_size = alloc->in(AllocateNode::AllocSize);
duke@435 4657 Node* dest_length = alloc->in(AllocateNode::ALength);
duke@435 4658 Node* dest_tail = _gvn.transform( new(C,3) AddINode(dest_offset,
duke@435 4659 copy_length) );
duke@435 4660
duke@435 4661 // If there is a head section that needs zeroing, do it now.
duke@435 4662 if (find_int_con(dest_offset, -1) != 0) {
duke@435 4663 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4664 intcon(0), dest_offset,
duke@435 4665 NULL);
duke@435 4666 }
duke@435 4667
duke@435 4668 // Next, perform a dynamic check on the tail length.
duke@435 4669 // It is often zero, and we can win big if we prove this.
duke@435 4670 // There are two wins: Avoid generating the ClearArray
duke@435 4671 // with its attendant messy index arithmetic, and upgrade
duke@435 4672 // the copy to a more hardware-friendly word size of 64 bits.
duke@435 4673 Node* tail_ctl = NULL;
duke@435 4674 if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
duke@435 4675 Node* cmp_lt = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
duke@435 4676 Node* bol_lt = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 4677 tail_ctl = generate_slow_guard(bol_lt, NULL);
duke@435 4678 assert(tail_ctl != NULL || !stopped(), "must be an outcome");
duke@435 4679 }
duke@435 4680
duke@435 4681 // At this point, let's assume there is no tail.
duke@435 4682 if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
duke@435 4683 // There is no tail. Try an upgrade to a 64-bit copy.
duke@435 4684 bool didit = false;
duke@435 4685 { PreserveJVMState pjvms(this);
duke@435 4686 didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
duke@435 4687 src, src_offset, dest, dest_offset,
duke@435 4688 dest_size);
duke@435 4689 if (didit) {
duke@435 4690 // Present the results of the block-copying fast call.
duke@435 4691 result_region->init_req(bcopy_path, control());
duke@435 4692 result_i_o ->init_req(bcopy_path, i_o());
duke@435 4693 result_memory->init_req(bcopy_path, memory(adr_type));
duke@435 4694 }
duke@435 4695 }
duke@435 4696 if (didit)
duke@435 4697 set_control(top()); // no regular fast path
duke@435 4698 }
duke@435 4699
duke@435 4700 // Clear the tail, if any.
duke@435 4701 if (tail_ctl != NULL) {
duke@435 4702 Node* notail_ctl = stopped() ? NULL : control();
duke@435 4703 set_control(tail_ctl);
duke@435 4704 if (notail_ctl == NULL) {
duke@435 4705 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4706 dest_tail, NULL,
duke@435 4707 dest_size);
duke@435 4708 } else {
duke@435 4709 // Make a local merge.
duke@435 4710 Node* done_ctl = new(C,3) RegionNode(3);
duke@435 4711 Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
duke@435 4712 done_ctl->init_req(1, notail_ctl);
duke@435 4713 done_mem->init_req(1, memory(adr_type));
duke@435 4714 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4715 dest_tail, NULL,
duke@435 4716 dest_size);
duke@435 4717 done_ctl->init_req(2, control());
duke@435 4718 done_mem->init_req(2, memory(adr_type));
duke@435 4719 set_control( _gvn.transform(done_ctl) );
duke@435 4720 set_memory( _gvn.transform(done_mem), adr_type );
duke@435 4721 }
duke@435 4722 }
duke@435 4723 }
duke@435 4724
duke@435 4725 BasicType copy_type = basic_elem_type;
duke@435 4726 assert(basic_elem_type != T_ARRAY, "caller must fix this");
duke@435 4727 if (!stopped() && copy_type == T_OBJECT) {
duke@435 4728 // If src and dest have compatible element types, we can copy bits.
duke@435 4729 // Types S[] and D[] are compatible if D is a supertype of S.
duke@435 4730 //
duke@435 4731 // If they are not, we will use checked_oop_disjoint_arraycopy,
duke@435 4732 // which performs a fast optimistic per-oop check, and backs off
duke@435 4733 // further to JVM_ArrayCopy on the first per-oop check that fails.
duke@435 4734 // (Actually, we don't move raw bits only; the GC requires card marks.)
duke@435 4735
duke@435 4736 // Get the klassOop for both src and dest
duke@435 4737 Node* src_klass = load_object_klass(src);
duke@435 4738 Node* dest_klass = load_object_klass(dest);
duke@435 4739
duke@435 4740 // Generate the subtype check.
duke@435 4741 // This might fold up statically, or then again it might not.
duke@435 4742 //
duke@435 4743 // Non-static example: Copying List<String>.elements to a new String[].
duke@435 4744 // The backing store for a List<String> is always an Object[],
duke@435 4745 // but its elements are always type String, if the generic types
duke@435 4746 // are correct at the source level.
duke@435 4747 //
duke@435 4748 // Test S[] against D[], not S against D, because (probably)
duke@435 4749 // the secondary supertype cache is less busy for S[] than S.
duke@435 4750 // This usually only matters when D is an interface.
duke@435 4751 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
duke@435 4752 // Plug failing path into checked_oop_disjoint_arraycopy
duke@435 4753 if (not_subtype_ctrl != top()) {
duke@435 4754 PreserveJVMState pjvms(this);
duke@435 4755 set_control(not_subtype_ctrl);
duke@435 4756 // (At this point we can assume disjoint_bases, since types differ.)
duke@435 4757 int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
duke@435 4758 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
kvn@599 4759 Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
duke@435 4760 Node* dest_elem_klass = _gvn.transform(n1);
duke@435 4761 Node* cv = generate_checkcast_arraycopy(adr_type,
duke@435 4762 dest_elem_klass,
duke@435 4763 src, src_offset, dest, dest_offset,
kvn@1268 4764 copy_length);
duke@435 4765 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4766 checked_control = control();
duke@435 4767 checked_i_o = i_o();
duke@435 4768 checked_mem = memory(adr_type);
duke@435 4769 checked_value = cv;
duke@435 4770 }
duke@435 4771 // At this point we know we do not need type checks on oop stores.
duke@435 4772
duke@435 4773 // Let's see if we need card marks:
duke@435 4774 if (alloc != NULL && use_ReduceInitialCardMarks()) {
duke@435 4775 // If we do not need card marks, copy using the jint or jlong stub.
coleenp@548 4776 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
kvn@464 4777 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
duke@435 4778 "sizes agree");
duke@435 4779 }
duke@435 4780 }
duke@435 4781
duke@435 4782 if (!stopped()) {
duke@435 4783 // Generate the fast path, if possible.
duke@435 4784 PreserveJVMState pjvms(this);
duke@435 4785 generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
duke@435 4786 src, src_offset, dest, dest_offset,
duke@435 4787 ConvI2X(copy_length));
duke@435 4788
duke@435 4789 // Present the results of the fast call.
duke@435 4790 result_region->init_req(fast_path, control());
duke@435 4791 result_i_o ->init_req(fast_path, i_o());
duke@435 4792 result_memory->init_req(fast_path, memory(adr_type));
duke@435 4793 }
duke@435 4794
duke@435 4795 // Here are all the slow paths up to this point, in one bundle:
duke@435 4796 slow_control = top();
duke@435 4797 if (slow_region != NULL)
duke@435 4798 slow_control = _gvn.transform(slow_region);
duke@435 4799 debug_only(slow_region = (RegionNode*)badAddress);
duke@435 4800
duke@435 4801 set_control(checked_control);
duke@435 4802 if (!stopped()) {
duke@435 4803 // Clean up after the checked call.
duke@435 4804 // The returned value is either 0 or -1^K,
duke@435 4805 // where K = number of partially transferred array elements.
duke@435 4806 Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
duke@435 4807 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
duke@435 4808 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
duke@435 4809
duke@435 4810 // If it is 0, we are done, so transfer to the end.
duke@435 4811 Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
duke@435 4812 result_region->init_req(checked_path, checks_done);
duke@435 4813 result_i_o ->init_req(checked_path, checked_i_o);
duke@435 4814 result_memory->init_req(checked_path, checked_mem);
duke@435 4815
duke@435 4816 // If it is not zero, merge into the slow call.
duke@435 4817 set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
duke@435 4818 RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
duke@435 4819 PhiNode* slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
duke@435 4820 PhiNode* slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
duke@435 4821 record_for_igvn(slow_reg2);
duke@435 4822 slow_reg2 ->init_req(1, slow_control);
duke@435 4823 slow_i_o2 ->init_req(1, slow_i_o);
duke@435 4824 slow_mem2 ->init_req(1, slow_mem);
duke@435 4825 slow_reg2 ->init_req(2, control());
kvn@1268 4826 slow_i_o2 ->init_req(2, checked_i_o);
kvn@1268 4827 slow_mem2 ->init_req(2, checked_mem);
duke@435 4828
duke@435 4829 slow_control = _gvn.transform(slow_reg2);
duke@435 4830 slow_i_o = _gvn.transform(slow_i_o2);
duke@435 4831 slow_mem = _gvn.transform(slow_mem2);
duke@435 4832
duke@435 4833 if (alloc != NULL) {
duke@435 4834 // We'll restart from the very beginning, after zeroing the whole thing.
duke@435 4835 // This can cause double writes, but that's OK since dest is brand new.
duke@435 4836 // So we ignore the low 31 bits of the value returned from the stub.
duke@435 4837 } else {
duke@435 4838 // We must continue the copy exactly where it failed, or else
duke@435 4839 // another thread might see the wrong number of writes to dest.
duke@435 4840 Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
duke@435 4841 Node* slow_offset = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
duke@435 4842 slow_offset->init_req(1, intcon(0));
duke@435 4843 slow_offset->init_req(2, checked_offset);
duke@435 4844 slow_offset = _gvn.transform(slow_offset);
duke@435 4845
duke@435 4846 // Adjust the arguments by the conditionally incoming offset.
duke@435 4847 Node* src_off_plus = _gvn.transform( new(C, 3) AddINode(src_offset, slow_offset) );
duke@435 4848 Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
duke@435 4849 Node* length_minus = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
duke@435 4850
duke@435 4851 // Tweak the node variables to adjust the code produced below:
duke@435 4852 src_offset = src_off_plus;
duke@435 4853 dest_offset = dest_off_plus;
duke@435 4854 copy_length = length_minus;
duke@435 4855 }
duke@435 4856 }
duke@435 4857
duke@435 4858 set_control(slow_control);
duke@435 4859 if (!stopped()) {
duke@435 4860 // Generate the slow path, if needed.
duke@435 4861 PreserveJVMState pjvms(this); // replace_in_map may trash the map
duke@435 4862
duke@435 4863 set_memory(slow_mem, adr_type);
duke@435 4864 set_i_o(slow_i_o);
duke@435 4865
duke@435 4866 if (must_clear_dest) {
duke@435 4867 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4868 intcon(0), NULL,
duke@435 4869 alloc->in(AllocateNode::AllocSize));
duke@435 4870 }
duke@435 4871
duke@435 4872 generate_slow_arraycopy(adr_type,
duke@435 4873 src, src_offset, dest, dest_offset,
kvn@1268 4874 copy_length);
duke@435 4875
duke@435 4876 result_region->init_req(slow_call_path, control());
duke@435 4877 result_i_o ->init_req(slow_call_path, i_o());
duke@435 4878 result_memory->init_req(slow_call_path, memory(adr_type));
duke@435 4879 }
duke@435 4880
duke@435 4881 // Remove unused edges.
duke@435 4882 for (uint i = 1; i < result_region->req(); i++) {
duke@435 4883 if (result_region->in(i) == NULL)
duke@435 4884 result_region->init_req(i, top());
duke@435 4885 }
duke@435 4886
duke@435 4887 // Finished; return the combined state.
duke@435 4888 set_control( _gvn.transform(result_region) );
duke@435 4889 set_i_o( _gvn.transform(result_i_o) );
duke@435 4890 set_memory( _gvn.transform(result_memory), adr_type );
duke@435 4891
duke@435 4892 // The memory edges above are precise in order to model effects around
twisti@1040 4893 // array copies accurately to allow value numbering of field loads around
duke@435 4894 // arraycopy. Such field loads, both before and after, are common in Java
duke@435 4895 // collections and similar classes involving header/array data structures.
duke@435 4896 //
duke@435 4897 // But with low number of register or when some registers are used or killed
duke@435 4898 // by arraycopy calls it causes registers spilling on stack. See 6544710.
duke@435 4899 // The next memory barrier is added to avoid it. If the arraycopy can be
duke@435 4900 // optimized away (which it can, sometimes) then we can manually remove
duke@435 4901 // the membar also.
kvn@1393 4902 //
kvn@1393 4903 // Do not let reads from the cloned object float above the arraycopy.
kvn@1393 4904 if (InsertMemBarAfterArraycopy || alloc != NULL)
duke@435 4905 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4906 }
duke@435 4907
duke@435 4908
duke@435 4909 // Helper function which determines if an arraycopy immediately follows
duke@435 4910 // an allocation, with no intervening tests or other escapes for the object.
duke@435 4911 AllocateArrayNode*
duke@435 4912 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
duke@435 4913 RegionNode* slow_region) {
duke@435 4914 if (stopped()) return NULL; // no fast path
duke@435 4915 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
duke@435 4916
duke@435 4917 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
duke@435 4918 if (alloc == NULL) return NULL;
duke@435 4919
duke@435 4920 Node* rawmem = memory(Compile::AliasIdxRaw);
duke@435 4921 // Is the allocation's memory state untouched?
duke@435 4922 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
duke@435 4923 // Bail out if there have been raw-memory effects since the allocation.
duke@435 4924 // (Example: There might have been a call or safepoint.)
duke@435 4925 return NULL;
duke@435 4926 }
duke@435 4927 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
duke@435 4928 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
duke@435 4929 return NULL;
duke@435 4930 }
duke@435 4931
duke@435 4932 // There must be no unexpected observers of this allocation.
duke@435 4933 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
duke@435 4934 Node* obs = ptr->fast_out(i);
duke@435 4935 if (obs != this->map()) {
duke@435 4936 return NULL;
duke@435 4937 }
duke@435 4938 }
duke@435 4939
duke@435 4940 // This arraycopy must unconditionally follow the allocation of the ptr.
duke@435 4941 Node* alloc_ctl = ptr->in(0);
duke@435 4942 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
duke@435 4943
duke@435 4944 Node* ctl = control();
duke@435 4945 while (ctl != alloc_ctl) {
duke@435 4946 // There may be guards which feed into the slow_region.
duke@435 4947 // Any other control flow means that we might not get a chance
duke@435 4948 // to finish initializing the allocated object.
duke@435 4949 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
duke@435 4950 IfNode* iff = ctl->in(0)->as_If();
duke@435 4951 Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
duke@435 4952 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
duke@435 4953 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
duke@435 4954 ctl = iff->in(0); // This test feeds the known slow_region.
duke@435 4955 continue;
duke@435 4956 }
duke@435 4957 // One more try: Various low-level checks bottom out in
duke@435 4958 // uncommon traps. If the debug-info of the trap omits
duke@435 4959 // any reference to the allocation, as we've already
duke@435 4960 // observed, then there can be no objection to the trap.
duke@435 4961 bool found_trap = false;
duke@435 4962 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
duke@435 4963 Node* obs = not_ctl->fast_out(j);
duke@435 4964 if (obs->in(0) == not_ctl && obs->is_Call() &&
duke@435 4965 (obs->as_Call()->entry_point() ==
duke@435 4966 SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
duke@435 4967 found_trap = true; break;
duke@435 4968 }
duke@435 4969 }
duke@435 4970 if (found_trap) {
duke@435 4971 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
duke@435 4972 continue;
duke@435 4973 }
duke@435 4974 }
duke@435 4975 return NULL;
duke@435 4976 }
duke@435 4977
duke@435 4978 // If we get this far, we have an allocation which immediately
duke@435 4979 // precedes the arraycopy, and we can take over zeroing the new object.
duke@435 4980 // The arraycopy will finish the initialization, and provide
duke@435 4981 // a new control state to which we will anchor the destination pointer.
duke@435 4982
duke@435 4983 return alloc;
duke@435 4984 }
duke@435 4985
duke@435 4986 // Helper for initialization of arrays, creating a ClearArray.
duke@435 4987 // It writes zero bits in [start..end), within the body of an array object.
duke@435 4988 // The memory effects are all chained onto the 'adr_type' alias category.
duke@435 4989 //
duke@435 4990 // Since the object is otherwise uninitialized, we are free
duke@435 4991 // to put a little "slop" around the edges of the cleared area,
duke@435 4992 // as long as it does not go back into the array's header,
duke@435 4993 // or beyond the array end within the heap.
duke@435 4994 //
duke@435 4995 // The lower edge can be rounded down to the nearest jint and the
duke@435 4996 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
duke@435 4997 //
duke@435 4998 // Arguments:
duke@435 4999 // adr_type memory slice where writes are generated
duke@435 5000 // dest oop of the destination array
duke@435 5001 // basic_elem_type element type of the destination
duke@435 5002 // slice_idx array index of first element to store
duke@435 5003 // slice_len number of elements to store (or NULL)
duke@435 5004 // dest_size total size in bytes of the array object
duke@435 5005 //
duke@435 5006 // Exactly one of slice_len or dest_size must be non-NULL.
duke@435 5007 // If dest_size is non-NULL, zeroing extends to the end of the object.
duke@435 5008 // If slice_len is non-NULL, the slice_idx value must be a constant.
duke@435 5009 void
duke@435 5010 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
duke@435 5011 Node* dest,
duke@435 5012 BasicType basic_elem_type,
duke@435 5013 Node* slice_idx,
duke@435 5014 Node* slice_len,
duke@435 5015 Node* dest_size) {
duke@435 5016 // one or the other but not both of slice_len and dest_size:
duke@435 5017 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
duke@435 5018 if (slice_len == NULL) slice_len = top();
duke@435 5019 if (dest_size == NULL) dest_size = top();
duke@435 5020
duke@435 5021 // operate on this memory slice:
duke@435 5022 Node* mem = memory(adr_type); // memory slice to operate on
duke@435 5023
duke@435 5024 // scaling and rounding of indexes:
kvn@464 5025 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5026 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 5027 int clear_low = (-1 << scale) & (BytesPerInt - 1);
duke@435 5028 int bump_bit = (-1 << scale) & BytesPerInt;
duke@435 5029
duke@435 5030 // determine constant starts and ends
duke@435 5031 const intptr_t BIG_NEG = -128;
duke@435 5032 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 5033 intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
duke@435 5034 intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
duke@435 5035 if (slice_len_con == 0) {
duke@435 5036 return; // nothing to do here
duke@435 5037 }
duke@435 5038 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
duke@435 5039 intptr_t end_con = find_intptr_t_con(dest_size, -1);
duke@435 5040 if (slice_idx_con >= 0 && slice_len_con >= 0) {
duke@435 5041 assert(end_con < 0, "not two cons");
duke@435 5042 end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
duke@435 5043 BytesPerLong);
duke@435 5044 }
duke@435 5045
duke@435 5046 if (start_con >= 0 && end_con >= 0) {
duke@435 5047 // Constant start and end. Simple.
duke@435 5048 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5049 start_con, end_con, &_gvn);
duke@435 5050 } else if (start_con >= 0 && dest_size != top()) {
duke@435 5051 // Constant start, pre-rounded end after the tail of the array.
duke@435 5052 Node* end = dest_size;
duke@435 5053 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5054 start_con, end, &_gvn);
duke@435 5055 } else if (start_con >= 0 && slice_len != top()) {
duke@435 5056 // Constant start, non-constant end. End needs rounding up.
duke@435 5057 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
duke@435 5058 intptr_t end_base = abase + (slice_idx_con << scale);
duke@435 5059 int end_round = (-1 << scale) & (BytesPerLong - 1);
duke@435 5060 Node* end = ConvI2X(slice_len);
duke@435 5061 if (scale != 0)
duke@435 5062 end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
duke@435 5063 end_base += end_round;
duke@435 5064 end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
duke@435 5065 end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
duke@435 5066 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5067 start_con, end, &_gvn);
duke@435 5068 } else if (start_con < 0 && dest_size != top()) {
duke@435 5069 // Non-constant start, pre-rounded end after the tail of the array.
duke@435 5070 // This is almost certainly a "round-to-end" operation.
duke@435 5071 Node* start = slice_idx;
duke@435 5072 start = ConvI2X(start);
duke@435 5073 if (scale != 0)
duke@435 5074 start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
duke@435 5075 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
duke@435 5076 if ((bump_bit | clear_low) != 0) {
duke@435 5077 int to_clear = (bump_bit | clear_low);
duke@435 5078 // Align up mod 8, then store a jint zero unconditionally
duke@435 5079 // just before the mod-8 boundary.
coleenp@548 5080 if (((abase + bump_bit) & ~to_clear) - bump_bit
coleenp@548 5081 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
coleenp@548 5082 bump_bit = 0;
coleenp@548 5083 assert((abase & to_clear) == 0, "array base must be long-aligned");
coleenp@548 5084 } else {
coleenp@548 5085 // Bump 'start' up to (or past) the next jint boundary:
coleenp@548 5086 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
coleenp@548 5087 assert((abase & clear_low) == 0, "array base must be int-aligned");
coleenp@548 5088 }
duke@435 5089 // Round bumped 'start' down to jlong boundary in body of array.
duke@435 5090 start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
coleenp@548 5091 if (bump_bit != 0) {
coleenp@548 5092 // Store a zero to the immediately preceding jint:
coleenp@548 5093 Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
coleenp@548 5094 Node* p1 = basic_plus_adr(dest, x1);
coleenp@548 5095 mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
coleenp@548 5096 mem = _gvn.transform(mem);
coleenp@548 5097 }
duke@435 5098 }
duke@435 5099 Node* end = dest_size; // pre-rounded
duke@435 5100 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5101 start, end, &_gvn);
duke@435 5102 } else {
duke@435 5103 // Non-constant start, unrounded non-constant end.
duke@435 5104 // (Nobody zeroes a random midsection of an array using this routine.)
duke@435 5105 ShouldNotReachHere(); // fix caller
duke@435 5106 }
duke@435 5107
duke@435 5108 // Done.
duke@435 5109 set_memory(mem, adr_type);
duke@435 5110 }
duke@435 5111
duke@435 5112
duke@435 5113 bool
duke@435 5114 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
duke@435 5115 BasicType basic_elem_type,
duke@435 5116 AllocateNode* alloc,
duke@435 5117 Node* src, Node* src_offset,
duke@435 5118 Node* dest, Node* dest_offset,
duke@435 5119 Node* dest_size) {
duke@435 5120 // See if there is an advantage from block transfer.
kvn@464 5121 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5122 if (scale >= LogBytesPerLong)
duke@435 5123 return false; // it is already a block transfer
duke@435 5124
duke@435 5125 // Look at the alignment of the starting offsets.
duke@435 5126 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 5127 const intptr_t BIG_NEG = -128;
duke@435 5128 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 5129
duke@435 5130 intptr_t src_off = abase + ((intptr_t) find_int_con(src_offset, -1) << scale);
duke@435 5131 intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
duke@435 5132 if (src_off < 0 || dest_off < 0)
duke@435 5133 // At present, we can only understand constants.
duke@435 5134 return false;
duke@435 5135
duke@435 5136 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
duke@435 5137 // Non-aligned; too bad.
duke@435 5138 // One more chance: Pick off an initial 32-bit word.
duke@435 5139 // This is a common case, since abase can be odd mod 8.
duke@435 5140 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
duke@435 5141 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
duke@435 5142 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5143 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5144 Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
duke@435 5145 store_to_memory(control(), dptr, sval, T_INT, adr_type);
duke@435 5146 src_off += BytesPerInt;
duke@435 5147 dest_off += BytesPerInt;
duke@435 5148 } else {
duke@435 5149 return false;
duke@435 5150 }
duke@435 5151 }
duke@435 5152 assert(src_off % BytesPerLong == 0, "");
duke@435 5153 assert(dest_off % BytesPerLong == 0, "");
duke@435 5154
duke@435 5155 // Do this copy by giant steps.
duke@435 5156 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5157 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5158 Node* countx = dest_size;
duke@435 5159 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
duke@435 5160 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
duke@435 5161
duke@435 5162 bool disjoint_bases = true; // since alloc != NULL
duke@435 5163 generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
duke@435 5164 sptr, NULL, dptr, NULL, countx);
duke@435 5165
duke@435 5166 return true;
duke@435 5167 }
duke@435 5168
duke@435 5169
duke@435 5170 // Helper function; generates code for the slow case.
duke@435 5171 // We make a call to a runtime method which emulates the native method,
duke@435 5172 // but without the native wrapper overhead.
duke@435 5173 void
duke@435 5174 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 5175 Node* src, Node* src_offset,
duke@435 5176 Node* dest, Node* dest_offset,
kvn@1268 5177 Node* copy_length) {
duke@435 5178 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
duke@435 5179 OptoRuntime::slow_arraycopy_Type(),
duke@435 5180 OptoRuntime::slow_arraycopy_Java(),
duke@435 5181 "slow_arraycopy", adr_type,
duke@435 5182 src, src_offset, dest, dest_offset,
duke@435 5183 copy_length);
duke@435 5184
duke@435 5185 // Handle exceptions thrown by this fellow:
duke@435 5186 make_slow_call_ex(call, env()->Throwable_klass(), false);
duke@435 5187 }
duke@435 5188
duke@435 5189 // Helper function; generates code for cases requiring runtime checks.
duke@435 5190 Node*
duke@435 5191 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 5192 Node* dest_elem_klass,
duke@435 5193 Node* src, Node* src_offset,
duke@435 5194 Node* dest, Node* dest_offset,
kvn@1268 5195 Node* copy_length) {
duke@435 5196 if (stopped()) return NULL;
duke@435 5197
duke@435 5198 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
duke@435 5199 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5200 return NULL;
duke@435 5201 }
duke@435 5202
duke@435 5203 // Pick out the parameters required to perform a store-check
duke@435 5204 // for the target array. This is an optimistic check. It will
duke@435 5205 // look in each non-null element's class, at the desired klass's
duke@435 5206 // super_check_offset, for the desired klass.
duke@435 5207 int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
duke@435 5208 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
kvn@1964 5209 Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
duke@435 5210 Node* check_offset = _gvn.transform(n3);
duke@435 5211 Node* check_value = dest_elem_klass;
duke@435 5212
duke@435 5213 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
duke@435 5214 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
duke@435 5215
duke@435 5216 // (We know the arrays are never conjoint, because their types differ.)
duke@435 5217 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5218 OptoRuntime::checkcast_arraycopy_Type(),
duke@435 5219 copyfunc_addr, "checkcast_arraycopy", adr_type,
duke@435 5220 // five arguments, of which two are
duke@435 5221 // intptr_t (jlong in LP64)
duke@435 5222 src_start, dest_start,
duke@435 5223 copy_length XTOP,
duke@435 5224 check_offset XTOP,
duke@435 5225 check_value);
duke@435 5226
duke@435 5227 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5228 }
duke@435 5229
duke@435 5230
duke@435 5231 // Helper function; generates code for cases requiring runtime checks.
duke@435 5232 Node*
duke@435 5233 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 5234 Node* src, Node* src_offset,
duke@435 5235 Node* dest, Node* dest_offset,
kvn@1268 5236 Node* copy_length) {
duke@435 5237 if (stopped()) return NULL;
duke@435 5238
duke@435 5239 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 5240 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5241 return NULL;
duke@435 5242 }
duke@435 5243
duke@435 5244 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5245 OptoRuntime::generic_arraycopy_Type(),
duke@435 5246 copyfunc_addr, "generic_arraycopy", adr_type,
duke@435 5247 src, src_offset, dest, dest_offset, copy_length);
duke@435 5248
duke@435 5249 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5250 }
duke@435 5251
duke@435 5252 // Helper function; generates the fast out-of-line call to an arraycopy stub.
duke@435 5253 void
duke@435 5254 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 5255 BasicType basic_elem_type,
duke@435 5256 bool disjoint_bases,
duke@435 5257 Node* src, Node* src_offset,
duke@435 5258 Node* dest, Node* dest_offset,
duke@435 5259 Node* copy_length) {
duke@435 5260 if (stopped()) return; // nothing to do
duke@435 5261
duke@435 5262 Node* src_start = src;
duke@435 5263 Node* dest_start = dest;
duke@435 5264 if (src_offset != NULL || dest_offset != NULL) {
duke@435 5265 assert(src_offset != NULL && dest_offset != NULL, "");
duke@435 5266 src_start = array_element_address(src, src_offset, basic_elem_type);
duke@435 5267 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
duke@435 5268 }
duke@435 5269
duke@435 5270 // Figure out which arraycopy runtime method to call.
duke@435 5271 const char* copyfunc_name = "arraycopy";
duke@435 5272 address copyfunc_addr =
duke@435 5273 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
duke@435 5274 disjoint_bases, copyfunc_name);
duke@435 5275
duke@435 5276 // Call it. Note that the count_ix value is not scaled to a byte-size.
duke@435 5277 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5278 OptoRuntime::fast_arraycopy_Type(),
duke@435 5279 copyfunc_addr, copyfunc_name, adr_type,
duke@435 5280 src_start, dest_start, copy_length XTOP);
duke@435 5281 }

mercurial