src/share/vm/opto/library_call.cpp

Thu, 16 Jul 2009 14:10:42 -0700

author
kvn
date
Thu, 16 Jul 2009 14:10:42 -0700
changeset 1286
fc4be448891f
parent 1271
4325cdaa78ad
child 1291
75596850f863
child 1330
94b6d06fd759
permissions
-rw-r--r--

6851742: (EA) allocation elimination doesn't work with UseG1GC
Summary: Fix eliminate_card_mark() to eliminate G1 pre/post barriers.
Reviewed-by: never

duke@435 1 /*
twisti@1078 2 * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_library_call.cpp.incl"
duke@435 27
duke@435 28 class LibraryIntrinsic : public InlineCallGenerator {
duke@435 29 // Extend the set of intrinsics known to the runtime:
duke@435 30 public:
duke@435 31 private:
duke@435 32 bool _is_virtual;
duke@435 33 vmIntrinsics::ID _intrinsic_id;
duke@435 34
duke@435 35 public:
duke@435 36 LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
duke@435 37 : InlineCallGenerator(m),
duke@435 38 _is_virtual(is_virtual),
duke@435 39 _intrinsic_id(id)
duke@435 40 {
duke@435 41 }
duke@435 42 virtual bool is_intrinsic() const { return true; }
duke@435 43 virtual bool is_virtual() const { return _is_virtual; }
duke@435 44 virtual JVMState* generate(JVMState* jvms);
duke@435 45 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
duke@435 46 };
duke@435 47
duke@435 48
duke@435 49 // Local helper class for LibraryIntrinsic:
duke@435 50 class LibraryCallKit : public GraphKit {
duke@435 51 private:
duke@435 52 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
duke@435 53
duke@435 54 public:
duke@435 55 LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
duke@435 56 : GraphKit(caller),
duke@435 57 _intrinsic(intrinsic)
duke@435 58 {
duke@435 59 }
duke@435 60
duke@435 61 ciMethod* caller() const { return jvms()->method(); }
duke@435 62 int bci() const { return jvms()->bci(); }
duke@435 63 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
duke@435 64 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
duke@435 65 ciMethod* callee() const { return _intrinsic->method(); }
duke@435 66 ciSignature* signature() const { return callee()->signature(); }
duke@435 67 int arg_size() const { return callee()->arg_size(); }
duke@435 68
duke@435 69 bool try_to_inline();
duke@435 70
duke@435 71 // Helper functions to inline natives
duke@435 72 void push_result(RegionNode* region, PhiNode* value);
duke@435 73 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
duke@435 74 Node* generate_slow_guard(Node* test, RegionNode* region);
duke@435 75 Node* generate_fair_guard(Node* test, RegionNode* region);
duke@435 76 Node* generate_negative_guard(Node* index, RegionNode* region,
duke@435 77 // resulting CastII of index:
duke@435 78 Node* *pos_index = NULL);
duke@435 79 Node* generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 80 // resulting CastII of index:
duke@435 81 Node* *pos_index = NULL);
duke@435 82 Node* generate_limit_guard(Node* offset, Node* subseq_length,
duke@435 83 Node* array_length,
duke@435 84 RegionNode* region);
duke@435 85 Node* generate_current_thread(Node* &tls_output);
duke@435 86 address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
duke@435 87 bool disjoint_bases, const char* &name);
duke@435 88 Node* load_mirror_from_klass(Node* klass);
duke@435 89 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
duke@435 90 int nargs,
duke@435 91 RegionNode* region, int null_path,
duke@435 92 int offset);
duke@435 93 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
duke@435 94 RegionNode* region, int null_path) {
duke@435 95 int offset = java_lang_Class::klass_offset_in_bytes();
duke@435 96 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 97 region, null_path,
duke@435 98 offset);
duke@435 99 }
duke@435 100 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 101 int nargs,
duke@435 102 RegionNode* region, int null_path) {
duke@435 103 int offset = java_lang_Class::array_klass_offset_in_bytes();
duke@435 104 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 105 region, null_path,
duke@435 106 offset);
duke@435 107 }
duke@435 108 Node* generate_access_flags_guard(Node* kls,
duke@435 109 int modifier_mask, int modifier_bits,
duke@435 110 RegionNode* region);
duke@435 111 Node* generate_interface_guard(Node* kls, RegionNode* region);
duke@435 112 Node* generate_array_guard(Node* kls, RegionNode* region) {
duke@435 113 return generate_array_guard_common(kls, region, false, false);
duke@435 114 }
duke@435 115 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
duke@435 116 return generate_array_guard_common(kls, region, false, true);
duke@435 117 }
duke@435 118 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
duke@435 119 return generate_array_guard_common(kls, region, true, false);
duke@435 120 }
duke@435 121 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
duke@435 122 return generate_array_guard_common(kls, region, true, true);
duke@435 123 }
duke@435 124 Node* generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 125 bool obj_array, bool not_array);
duke@435 126 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
duke@435 127 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
duke@435 128 bool is_virtual = false, bool is_static = false);
duke@435 129 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
duke@435 130 return generate_method_call(method_id, false, true);
duke@435 131 }
duke@435 132 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
duke@435 133 return generate_method_call(method_id, true, false);
duke@435 134 }
duke@435 135
duke@435 136 bool inline_string_compareTo();
duke@435 137 bool inline_string_indexOf();
duke@435 138 Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
cfang@1116 139 bool inline_string_equals();
duke@435 140 Node* pop_math_arg();
duke@435 141 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 142 bool inline_math_native(vmIntrinsics::ID id);
duke@435 143 bool inline_trig(vmIntrinsics::ID id);
duke@435 144 bool inline_trans(vmIntrinsics::ID id);
duke@435 145 bool inline_abs(vmIntrinsics::ID id);
duke@435 146 bool inline_sqrt(vmIntrinsics::ID id);
duke@435 147 bool inline_pow(vmIntrinsics::ID id);
duke@435 148 bool inline_exp(vmIntrinsics::ID id);
duke@435 149 bool inline_min_max(vmIntrinsics::ID id);
duke@435 150 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
duke@435 151 // This returns Type::AnyPtr, RawPtr, or OopPtr.
duke@435 152 int classify_unsafe_addr(Node* &base, Node* &offset);
duke@435 153 Node* make_unsafe_address(Node* base, Node* offset);
duke@435 154 bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
duke@435 155 bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
duke@435 156 bool inline_unsafe_allocate();
duke@435 157 bool inline_unsafe_copyMemory();
duke@435 158 bool inline_native_currentThread();
duke@435 159 bool inline_native_time_funcs(bool isNano);
duke@435 160 bool inline_native_isInterrupted();
duke@435 161 bool inline_native_Class_query(vmIntrinsics::ID id);
duke@435 162 bool inline_native_subtype_check();
duke@435 163
duke@435 164 bool inline_native_newArray();
duke@435 165 bool inline_native_getLength();
duke@435 166 bool inline_array_copyOf(bool is_copyOfRange);
rasbold@604 167 bool inline_array_equals();
kvn@1268 168 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
duke@435 169 bool inline_native_clone(bool is_virtual);
duke@435 170 bool inline_native_Reflection_getCallerClass();
duke@435 171 bool inline_native_AtomicLong_get();
duke@435 172 bool inline_native_AtomicLong_attemptUpdate();
duke@435 173 bool is_method_invoke_or_aux_frame(JVMState* jvms);
duke@435 174 // Helper function for inlining native object hash method
duke@435 175 bool inline_native_hashcode(bool is_virtual, bool is_static);
duke@435 176 bool inline_native_getClass();
duke@435 177
duke@435 178 // Helper functions for inlining arraycopy
duke@435 179 bool inline_arraycopy();
duke@435 180 void generate_arraycopy(const TypePtr* adr_type,
duke@435 181 BasicType basic_elem_type,
duke@435 182 Node* src, Node* src_offset,
duke@435 183 Node* dest, Node* dest_offset,
duke@435 184 Node* copy_length,
duke@435 185 bool disjoint_bases = false,
duke@435 186 bool length_never_negative = false,
duke@435 187 RegionNode* slow_region = NULL);
duke@435 188 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
duke@435 189 RegionNode* slow_region);
duke@435 190 void generate_clear_array(const TypePtr* adr_type,
duke@435 191 Node* dest,
duke@435 192 BasicType basic_elem_type,
duke@435 193 Node* slice_off,
duke@435 194 Node* slice_len,
duke@435 195 Node* slice_end);
duke@435 196 bool generate_block_arraycopy(const TypePtr* adr_type,
duke@435 197 BasicType basic_elem_type,
duke@435 198 AllocateNode* alloc,
duke@435 199 Node* src, Node* src_offset,
duke@435 200 Node* dest, Node* dest_offset,
duke@435 201 Node* dest_size);
duke@435 202 void generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 203 Node* src, Node* src_offset,
duke@435 204 Node* dest, Node* dest_offset,
kvn@1268 205 Node* copy_length);
duke@435 206 Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 207 Node* dest_elem_klass,
duke@435 208 Node* src, Node* src_offset,
duke@435 209 Node* dest, Node* dest_offset,
kvn@1268 210 Node* copy_length);
duke@435 211 Node* generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 212 Node* src, Node* src_offset,
duke@435 213 Node* dest, Node* dest_offset,
kvn@1268 214 Node* copy_length);
duke@435 215 void generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 216 BasicType basic_elem_type,
duke@435 217 bool disjoint_bases,
duke@435 218 Node* src, Node* src_offset,
duke@435 219 Node* dest, Node* dest_offset,
duke@435 220 Node* copy_length);
duke@435 221 bool inline_unsafe_CAS(BasicType type);
duke@435 222 bool inline_unsafe_ordered_store(BasicType type);
duke@435 223 bool inline_fp_conversions(vmIntrinsics::ID id);
twisti@1210 224 bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
twisti@1210 225 bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
twisti@1078 226 bool inline_bitCount(vmIntrinsics::ID id);
duke@435 227 bool inline_reverseBytes(vmIntrinsics::ID id);
duke@435 228 };
duke@435 229
duke@435 230
duke@435 231 //---------------------------make_vm_intrinsic----------------------------
duke@435 232 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 233 vmIntrinsics::ID id = m->intrinsic_id();
duke@435 234 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
duke@435 235
duke@435 236 if (DisableIntrinsic[0] != '\0'
duke@435 237 && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
duke@435 238 // disabled by a user request on the command line:
duke@435 239 // example: -XX:DisableIntrinsic=_hashCode,_getClass
duke@435 240 return NULL;
duke@435 241 }
duke@435 242
duke@435 243 if (!m->is_loaded()) {
duke@435 244 // do not attempt to inline unloaded methods
duke@435 245 return NULL;
duke@435 246 }
duke@435 247
duke@435 248 // Only a few intrinsics implement a virtual dispatch.
duke@435 249 // They are expensive calls which are also frequently overridden.
duke@435 250 if (is_virtual) {
duke@435 251 switch (id) {
duke@435 252 case vmIntrinsics::_hashCode:
duke@435 253 case vmIntrinsics::_clone:
duke@435 254 // OK, Object.hashCode and Object.clone intrinsics come in both flavors
duke@435 255 break;
duke@435 256 default:
duke@435 257 return NULL;
duke@435 258 }
duke@435 259 }
duke@435 260
duke@435 261 // -XX:-InlineNatives disables nearly all intrinsics:
duke@435 262 if (!InlineNatives) {
duke@435 263 switch (id) {
duke@435 264 case vmIntrinsics::_indexOf:
duke@435 265 case vmIntrinsics::_compareTo:
cfang@1116 266 case vmIntrinsics::_equals:
rasbold@604 267 case vmIntrinsics::_equalsC:
duke@435 268 break; // InlineNatives does not control String.compareTo
duke@435 269 default:
duke@435 270 return NULL;
duke@435 271 }
duke@435 272 }
duke@435 273
duke@435 274 switch (id) {
duke@435 275 case vmIntrinsics::_compareTo:
duke@435 276 if (!SpecialStringCompareTo) return NULL;
duke@435 277 break;
duke@435 278 case vmIntrinsics::_indexOf:
duke@435 279 if (!SpecialStringIndexOf) return NULL;
duke@435 280 break;
cfang@1116 281 case vmIntrinsics::_equals:
cfang@1116 282 if (!SpecialStringEquals) return NULL;
cfang@1116 283 break;
rasbold@604 284 case vmIntrinsics::_equalsC:
rasbold@604 285 if (!SpecialArraysEquals) return NULL;
rasbold@604 286 break;
duke@435 287 case vmIntrinsics::_arraycopy:
duke@435 288 if (!InlineArrayCopy) return NULL;
duke@435 289 break;
duke@435 290 case vmIntrinsics::_copyMemory:
duke@435 291 if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
duke@435 292 if (!InlineArrayCopy) return NULL;
duke@435 293 break;
duke@435 294 case vmIntrinsics::_hashCode:
duke@435 295 if (!InlineObjectHash) return NULL;
duke@435 296 break;
duke@435 297 case vmIntrinsics::_clone:
duke@435 298 case vmIntrinsics::_copyOf:
duke@435 299 case vmIntrinsics::_copyOfRange:
duke@435 300 if (!InlineObjectCopy) return NULL;
duke@435 301 // These also use the arraycopy intrinsic mechanism:
duke@435 302 if (!InlineArrayCopy) return NULL;
duke@435 303 break;
duke@435 304 case vmIntrinsics::_checkIndex:
duke@435 305 // We do not intrinsify this. The optimizer does fine with it.
duke@435 306 return NULL;
duke@435 307
duke@435 308 case vmIntrinsics::_get_AtomicLong:
duke@435 309 case vmIntrinsics::_attemptUpdate:
duke@435 310 if (!InlineAtomicLong) return NULL;
duke@435 311 break;
duke@435 312
duke@435 313 case vmIntrinsics::_Object_init:
duke@435 314 case vmIntrinsics::_invoke:
duke@435 315 // We do not intrinsify these; they are marked for other purposes.
duke@435 316 return NULL;
duke@435 317
duke@435 318 case vmIntrinsics::_getCallerClass:
duke@435 319 if (!UseNewReflection) return NULL;
duke@435 320 if (!InlineReflectionGetCallerClass) return NULL;
duke@435 321 if (!JDK_Version::is_gte_jdk14x_version()) return NULL;
duke@435 322 break;
duke@435 323
twisti@1078 324 case vmIntrinsics::_bitCount_i:
twisti@1078 325 case vmIntrinsics::_bitCount_l:
twisti@1078 326 if (!UsePopCountInstruction) return NULL;
twisti@1078 327 break;
twisti@1078 328
duke@435 329 default:
duke@435 330 break;
duke@435 331 }
duke@435 332
duke@435 333 // -XX:-InlineClassNatives disables natives from the Class class.
duke@435 334 // The flag applies to all reflective calls, notably Array.newArray
duke@435 335 // (visible to Java programmers as Array.newInstance).
duke@435 336 if (m->holder()->name() == ciSymbol::java_lang_Class() ||
duke@435 337 m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
duke@435 338 if (!InlineClassNatives) return NULL;
duke@435 339 }
duke@435 340
duke@435 341 // -XX:-InlineThreadNatives disables natives from the Thread class.
duke@435 342 if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
duke@435 343 if (!InlineThreadNatives) return NULL;
duke@435 344 }
duke@435 345
duke@435 346 // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
duke@435 347 if (m->holder()->name() == ciSymbol::java_lang_Math() ||
duke@435 348 m->holder()->name() == ciSymbol::java_lang_Float() ||
duke@435 349 m->holder()->name() == ciSymbol::java_lang_Double()) {
duke@435 350 if (!InlineMathNatives) return NULL;
duke@435 351 }
duke@435 352
duke@435 353 // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
duke@435 354 if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
duke@435 355 if (!InlineUnsafeOps) return NULL;
duke@435 356 }
duke@435 357
duke@435 358 return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
duke@435 359 }
duke@435 360
duke@435 361 //----------------------register_library_intrinsics-----------------------
duke@435 362 // Initialize this file's data structures, for each Compile instance.
duke@435 363 void Compile::register_library_intrinsics() {
duke@435 364 // Nothing to do here.
duke@435 365 }
duke@435 366
duke@435 367 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
duke@435 368 LibraryCallKit kit(jvms, this);
duke@435 369 Compile* C = kit.C;
duke@435 370 int nodes = C->unique();
duke@435 371 #ifndef PRODUCT
duke@435 372 if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
duke@435 373 char buf[1000];
duke@435 374 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
duke@435 375 tty->print_cr("Intrinsic %s", str);
duke@435 376 }
duke@435 377 #endif
duke@435 378 if (kit.try_to_inline()) {
duke@435 379 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
duke@435 380 tty->print("Inlining intrinsic %s%s at bci:%d in",
duke@435 381 vmIntrinsics::name_at(intrinsic_id()),
duke@435 382 (is_virtual() ? " (virtual)" : ""), kit.bci());
duke@435 383 kit.caller()->print_short_name(tty);
duke@435 384 tty->print_cr(" (%d bytes)", kit.caller()->code_size());
duke@435 385 }
duke@435 386 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
duke@435 387 if (C->log()) {
duke@435 388 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
duke@435 389 vmIntrinsics::name_at(intrinsic_id()),
duke@435 390 (is_virtual() ? " virtual='1'" : ""),
duke@435 391 C->unique() - nodes);
duke@435 392 }
duke@435 393 return kit.transfer_exceptions_into_jvms();
duke@435 394 }
duke@435 395
duke@435 396 if (PrintIntrinsics) {
duke@435 397 switch (intrinsic_id()) {
duke@435 398 case vmIntrinsics::_invoke:
duke@435 399 case vmIntrinsics::_Object_init:
duke@435 400 // We do not expect to inline these, so do not produce any noise about them.
duke@435 401 break;
duke@435 402 default:
duke@435 403 tty->print("Did not inline intrinsic %s%s at bci:%d in",
duke@435 404 vmIntrinsics::name_at(intrinsic_id()),
duke@435 405 (is_virtual() ? " (virtual)" : ""), kit.bci());
duke@435 406 kit.caller()->print_short_name(tty);
duke@435 407 tty->print_cr(" (%d bytes)", kit.caller()->code_size());
duke@435 408 }
duke@435 409 }
duke@435 410 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
duke@435 411 return NULL;
duke@435 412 }
duke@435 413
duke@435 414 bool LibraryCallKit::try_to_inline() {
duke@435 415 // Handle symbolic names for otherwise undistinguished boolean switches:
duke@435 416 const bool is_store = true;
duke@435 417 const bool is_native_ptr = true;
duke@435 418 const bool is_static = true;
duke@435 419
duke@435 420 switch (intrinsic_id()) {
duke@435 421 case vmIntrinsics::_hashCode:
duke@435 422 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
duke@435 423 case vmIntrinsics::_identityHashCode:
duke@435 424 return inline_native_hashcode(/*!virtual*/ false, is_static);
duke@435 425 case vmIntrinsics::_getClass:
duke@435 426 return inline_native_getClass();
duke@435 427
duke@435 428 case vmIntrinsics::_dsin:
duke@435 429 case vmIntrinsics::_dcos:
duke@435 430 case vmIntrinsics::_dtan:
duke@435 431 case vmIntrinsics::_dabs:
duke@435 432 case vmIntrinsics::_datan2:
duke@435 433 case vmIntrinsics::_dsqrt:
duke@435 434 case vmIntrinsics::_dexp:
duke@435 435 case vmIntrinsics::_dlog:
duke@435 436 case vmIntrinsics::_dlog10:
duke@435 437 case vmIntrinsics::_dpow:
duke@435 438 return inline_math_native(intrinsic_id());
duke@435 439
duke@435 440 case vmIntrinsics::_min:
duke@435 441 case vmIntrinsics::_max:
duke@435 442 return inline_min_max(intrinsic_id());
duke@435 443
duke@435 444 case vmIntrinsics::_arraycopy:
duke@435 445 return inline_arraycopy();
duke@435 446
duke@435 447 case vmIntrinsics::_compareTo:
duke@435 448 return inline_string_compareTo();
duke@435 449 case vmIntrinsics::_indexOf:
duke@435 450 return inline_string_indexOf();
cfang@1116 451 case vmIntrinsics::_equals:
cfang@1116 452 return inline_string_equals();
duke@435 453
duke@435 454 case vmIntrinsics::_getObject:
duke@435 455 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
duke@435 456 case vmIntrinsics::_getBoolean:
duke@435 457 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
duke@435 458 case vmIntrinsics::_getByte:
duke@435 459 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
duke@435 460 case vmIntrinsics::_getShort:
duke@435 461 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
duke@435 462 case vmIntrinsics::_getChar:
duke@435 463 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
duke@435 464 case vmIntrinsics::_getInt:
duke@435 465 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
duke@435 466 case vmIntrinsics::_getLong:
duke@435 467 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
duke@435 468 case vmIntrinsics::_getFloat:
duke@435 469 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
duke@435 470 case vmIntrinsics::_getDouble:
duke@435 471 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 472
duke@435 473 case vmIntrinsics::_putObject:
duke@435 474 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
duke@435 475 case vmIntrinsics::_putBoolean:
duke@435 476 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
duke@435 477 case vmIntrinsics::_putByte:
duke@435 478 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
duke@435 479 case vmIntrinsics::_putShort:
duke@435 480 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
duke@435 481 case vmIntrinsics::_putChar:
duke@435 482 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
duke@435 483 case vmIntrinsics::_putInt:
duke@435 484 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
duke@435 485 case vmIntrinsics::_putLong:
duke@435 486 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
duke@435 487 case vmIntrinsics::_putFloat:
duke@435 488 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
duke@435 489 case vmIntrinsics::_putDouble:
duke@435 490 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
duke@435 491
duke@435 492 case vmIntrinsics::_getByte_raw:
duke@435 493 return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
duke@435 494 case vmIntrinsics::_getShort_raw:
duke@435 495 return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
duke@435 496 case vmIntrinsics::_getChar_raw:
duke@435 497 return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
duke@435 498 case vmIntrinsics::_getInt_raw:
duke@435 499 return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
duke@435 500 case vmIntrinsics::_getLong_raw:
duke@435 501 return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
duke@435 502 case vmIntrinsics::_getFloat_raw:
duke@435 503 return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
duke@435 504 case vmIntrinsics::_getDouble_raw:
duke@435 505 return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 506 case vmIntrinsics::_getAddress_raw:
duke@435 507 return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
duke@435 508
duke@435 509 case vmIntrinsics::_putByte_raw:
duke@435 510 return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
duke@435 511 case vmIntrinsics::_putShort_raw:
duke@435 512 return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
duke@435 513 case vmIntrinsics::_putChar_raw:
duke@435 514 return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
duke@435 515 case vmIntrinsics::_putInt_raw:
duke@435 516 return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
duke@435 517 case vmIntrinsics::_putLong_raw:
duke@435 518 return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
duke@435 519 case vmIntrinsics::_putFloat_raw:
duke@435 520 return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
duke@435 521 case vmIntrinsics::_putDouble_raw:
duke@435 522 return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
duke@435 523 case vmIntrinsics::_putAddress_raw:
duke@435 524 return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
duke@435 525
duke@435 526 case vmIntrinsics::_getObjectVolatile:
duke@435 527 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
duke@435 528 case vmIntrinsics::_getBooleanVolatile:
duke@435 529 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
duke@435 530 case vmIntrinsics::_getByteVolatile:
duke@435 531 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
duke@435 532 case vmIntrinsics::_getShortVolatile:
duke@435 533 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
duke@435 534 case vmIntrinsics::_getCharVolatile:
duke@435 535 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
duke@435 536 case vmIntrinsics::_getIntVolatile:
duke@435 537 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
duke@435 538 case vmIntrinsics::_getLongVolatile:
duke@435 539 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
duke@435 540 case vmIntrinsics::_getFloatVolatile:
duke@435 541 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
duke@435 542 case vmIntrinsics::_getDoubleVolatile:
duke@435 543 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
duke@435 544
duke@435 545 case vmIntrinsics::_putObjectVolatile:
duke@435 546 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
duke@435 547 case vmIntrinsics::_putBooleanVolatile:
duke@435 548 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
duke@435 549 case vmIntrinsics::_putByteVolatile:
duke@435 550 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
duke@435 551 case vmIntrinsics::_putShortVolatile:
duke@435 552 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
duke@435 553 case vmIntrinsics::_putCharVolatile:
duke@435 554 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
duke@435 555 case vmIntrinsics::_putIntVolatile:
duke@435 556 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
duke@435 557 case vmIntrinsics::_putLongVolatile:
duke@435 558 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
duke@435 559 case vmIntrinsics::_putFloatVolatile:
duke@435 560 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
duke@435 561 case vmIntrinsics::_putDoubleVolatile:
duke@435 562 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
duke@435 563
duke@435 564 case vmIntrinsics::_prefetchRead:
duke@435 565 return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
duke@435 566 case vmIntrinsics::_prefetchWrite:
duke@435 567 return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
duke@435 568 case vmIntrinsics::_prefetchReadStatic:
duke@435 569 return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
duke@435 570 case vmIntrinsics::_prefetchWriteStatic:
duke@435 571 return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
duke@435 572
duke@435 573 case vmIntrinsics::_compareAndSwapObject:
duke@435 574 return inline_unsafe_CAS(T_OBJECT);
duke@435 575 case vmIntrinsics::_compareAndSwapInt:
duke@435 576 return inline_unsafe_CAS(T_INT);
duke@435 577 case vmIntrinsics::_compareAndSwapLong:
duke@435 578 return inline_unsafe_CAS(T_LONG);
duke@435 579
duke@435 580 case vmIntrinsics::_putOrderedObject:
duke@435 581 return inline_unsafe_ordered_store(T_OBJECT);
duke@435 582 case vmIntrinsics::_putOrderedInt:
duke@435 583 return inline_unsafe_ordered_store(T_INT);
duke@435 584 case vmIntrinsics::_putOrderedLong:
duke@435 585 return inline_unsafe_ordered_store(T_LONG);
duke@435 586
duke@435 587 case vmIntrinsics::_currentThread:
duke@435 588 return inline_native_currentThread();
duke@435 589 case vmIntrinsics::_isInterrupted:
duke@435 590 return inline_native_isInterrupted();
duke@435 591
duke@435 592 case vmIntrinsics::_currentTimeMillis:
duke@435 593 return inline_native_time_funcs(false);
duke@435 594 case vmIntrinsics::_nanoTime:
duke@435 595 return inline_native_time_funcs(true);
duke@435 596 case vmIntrinsics::_allocateInstance:
duke@435 597 return inline_unsafe_allocate();
duke@435 598 case vmIntrinsics::_copyMemory:
duke@435 599 return inline_unsafe_copyMemory();
duke@435 600 case vmIntrinsics::_newArray:
duke@435 601 return inline_native_newArray();
duke@435 602 case vmIntrinsics::_getLength:
duke@435 603 return inline_native_getLength();
duke@435 604 case vmIntrinsics::_copyOf:
duke@435 605 return inline_array_copyOf(false);
duke@435 606 case vmIntrinsics::_copyOfRange:
duke@435 607 return inline_array_copyOf(true);
rasbold@604 608 case vmIntrinsics::_equalsC:
rasbold@604 609 return inline_array_equals();
duke@435 610 case vmIntrinsics::_clone:
duke@435 611 return inline_native_clone(intrinsic()->is_virtual());
duke@435 612
duke@435 613 case vmIntrinsics::_isAssignableFrom:
duke@435 614 return inline_native_subtype_check();
duke@435 615
duke@435 616 case vmIntrinsics::_isInstance:
duke@435 617 case vmIntrinsics::_getModifiers:
duke@435 618 case vmIntrinsics::_isInterface:
duke@435 619 case vmIntrinsics::_isArray:
duke@435 620 case vmIntrinsics::_isPrimitive:
duke@435 621 case vmIntrinsics::_getSuperclass:
duke@435 622 case vmIntrinsics::_getComponentType:
duke@435 623 case vmIntrinsics::_getClassAccessFlags:
duke@435 624 return inline_native_Class_query(intrinsic_id());
duke@435 625
duke@435 626 case vmIntrinsics::_floatToRawIntBits:
duke@435 627 case vmIntrinsics::_floatToIntBits:
duke@435 628 case vmIntrinsics::_intBitsToFloat:
duke@435 629 case vmIntrinsics::_doubleToRawLongBits:
duke@435 630 case vmIntrinsics::_doubleToLongBits:
duke@435 631 case vmIntrinsics::_longBitsToDouble:
duke@435 632 return inline_fp_conversions(intrinsic_id());
duke@435 633
twisti@1210 634 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 635 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 636 return inline_numberOfLeadingZeros(intrinsic_id());
twisti@1210 637
twisti@1210 638 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 639 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 640 return inline_numberOfTrailingZeros(intrinsic_id());
twisti@1210 641
twisti@1078 642 case vmIntrinsics::_bitCount_i:
twisti@1078 643 case vmIntrinsics::_bitCount_l:
twisti@1078 644 return inline_bitCount(intrinsic_id());
twisti@1078 645
duke@435 646 case vmIntrinsics::_reverseBytes_i:
duke@435 647 case vmIntrinsics::_reverseBytes_l:
duke@435 648 return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
duke@435 649
duke@435 650 case vmIntrinsics::_get_AtomicLong:
duke@435 651 return inline_native_AtomicLong_get();
duke@435 652 case vmIntrinsics::_attemptUpdate:
duke@435 653 return inline_native_AtomicLong_attemptUpdate();
duke@435 654
duke@435 655 case vmIntrinsics::_getCallerClass:
duke@435 656 return inline_native_Reflection_getCallerClass();
duke@435 657
duke@435 658 default:
duke@435 659 // If you get here, it may be that someone has added a new intrinsic
duke@435 660 // to the list in vmSymbols.hpp without implementing it here.
duke@435 661 #ifndef PRODUCT
duke@435 662 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
duke@435 663 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
duke@435 664 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
duke@435 665 }
duke@435 666 #endif
duke@435 667 return false;
duke@435 668 }
duke@435 669 }
duke@435 670
duke@435 671 //------------------------------push_result------------------------------
duke@435 672 // Helper function for finishing intrinsics.
duke@435 673 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
duke@435 674 record_for_igvn(region);
duke@435 675 set_control(_gvn.transform(region));
duke@435 676 BasicType value_type = value->type()->basic_type();
duke@435 677 push_node(value_type, _gvn.transform(value));
duke@435 678 }
duke@435 679
duke@435 680 //------------------------------generate_guard---------------------------
duke@435 681 // Helper function for generating guarded fast-slow graph structures.
duke@435 682 // The given 'test', if true, guards a slow path. If the test fails
duke@435 683 // then a fast path can be taken. (We generally hope it fails.)
duke@435 684 // In all cases, GraphKit::control() is updated to the fast path.
duke@435 685 // The returned value represents the control for the slow path.
duke@435 686 // The return value is never 'top'; it is either a valid control
duke@435 687 // or NULL if it is obvious that the slow path can never be taken.
duke@435 688 // Also, if region and the slow control are not NULL, the slow edge
duke@435 689 // is appended to the region.
duke@435 690 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
duke@435 691 if (stopped()) {
duke@435 692 // Already short circuited.
duke@435 693 return NULL;
duke@435 694 }
duke@435 695
duke@435 696 // Build an if node and its projections.
duke@435 697 // If test is true we take the slow path, which we assume is uncommon.
duke@435 698 if (_gvn.type(test) == TypeInt::ZERO) {
duke@435 699 // The slow branch is never taken. No need to build this guard.
duke@435 700 return NULL;
duke@435 701 }
duke@435 702
duke@435 703 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
duke@435 704
duke@435 705 Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
duke@435 706 if (if_slow == top()) {
duke@435 707 // The slow branch is never taken. No need to build this guard.
duke@435 708 return NULL;
duke@435 709 }
duke@435 710
duke@435 711 if (region != NULL)
duke@435 712 region->add_req(if_slow);
duke@435 713
duke@435 714 Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
duke@435 715 set_control(if_fast);
duke@435 716
duke@435 717 return if_slow;
duke@435 718 }
duke@435 719
duke@435 720 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
duke@435 721 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
duke@435 722 }
duke@435 723 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
duke@435 724 return generate_guard(test, region, PROB_FAIR);
duke@435 725 }
duke@435 726
duke@435 727 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
duke@435 728 Node* *pos_index) {
duke@435 729 if (stopped())
duke@435 730 return NULL; // already stopped
duke@435 731 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
duke@435 732 return NULL; // index is already adequately typed
duke@435 733 Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 734 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 735 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
duke@435 736 if (is_neg != NULL && pos_index != NULL) {
duke@435 737 // Emulate effect of Parse::adjust_map_after_if.
duke@435 738 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
duke@435 739 ccast->set_req(0, control());
duke@435 740 (*pos_index) = _gvn.transform(ccast);
duke@435 741 }
duke@435 742 return is_neg;
duke@435 743 }
duke@435 744
duke@435 745 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 746 Node* *pos_index) {
duke@435 747 if (stopped())
duke@435 748 return NULL; // already stopped
duke@435 749 if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
duke@435 750 return NULL; // index is already adequately typed
duke@435 751 Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 752 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
duke@435 753 Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
duke@435 754 Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
duke@435 755 if (is_notp != NULL && pos_index != NULL) {
duke@435 756 // Emulate effect of Parse::adjust_map_after_if.
duke@435 757 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
duke@435 758 ccast->set_req(0, control());
duke@435 759 (*pos_index) = _gvn.transform(ccast);
duke@435 760 }
duke@435 761 return is_notp;
duke@435 762 }
duke@435 763
duke@435 764 // Make sure that 'position' is a valid limit index, in [0..length].
duke@435 765 // There are two equivalent plans for checking this:
duke@435 766 // A. (offset + copyLength) unsigned<= arrayLength
duke@435 767 // B. offset <= (arrayLength - copyLength)
duke@435 768 // We require that all of the values above, except for the sum and
duke@435 769 // difference, are already known to be non-negative.
duke@435 770 // Plan A is robust in the face of overflow, if offset and copyLength
duke@435 771 // are both hugely positive.
duke@435 772 //
duke@435 773 // Plan B is less direct and intuitive, but it does not overflow at
duke@435 774 // all, since the difference of two non-negatives is always
duke@435 775 // representable. Whenever Java methods must perform the equivalent
duke@435 776 // check they generally use Plan B instead of Plan A.
duke@435 777 // For the moment we use Plan A.
duke@435 778 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
duke@435 779 Node* subseq_length,
duke@435 780 Node* array_length,
duke@435 781 RegionNode* region) {
duke@435 782 if (stopped())
duke@435 783 return NULL; // already stopped
duke@435 784 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
duke@435 785 if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
duke@435 786 return NULL; // common case of whole-array copy
duke@435 787 Node* last = subseq_length;
duke@435 788 if (!zero_offset) // last += offset
duke@435 789 last = _gvn.transform( new (C, 3) AddINode(last, offset));
duke@435 790 Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
duke@435 791 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 792 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
duke@435 793 return is_over;
duke@435 794 }
duke@435 795
duke@435 796
duke@435 797 //--------------------------generate_current_thread--------------------
duke@435 798 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
duke@435 799 ciKlass* thread_klass = env()->Thread_klass();
duke@435 800 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
duke@435 801 Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
duke@435 802 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
duke@435 803 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
duke@435 804 tls_output = thread;
duke@435 805 return threadObj;
duke@435 806 }
duke@435 807
duke@435 808
duke@435 809 //------------------------------inline_string_compareTo------------------------
duke@435 810 bool LibraryCallKit::inline_string_compareTo() {
duke@435 811
cfang@1116 812 if (!Matcher::has_match_rule(Op_StrComp)) return false;
cfang@1116 813
duke@435 814 const int value_offset = java_lang_String::value_offset_in_bytes();
duke@435 815 const int count_offset = java_lang_String::count_offset_in_bytes();
duke@435 816 const int offset_offset = java_lang_String::offset_offset_in_bytes();
duke@435 817
duke@435 818 _sp += 2;
duke@435 819 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 820 Node *receiver = pop();
duke@435 821
duke@435 822 // Null check on self without removing any arguments. The argument
duke@435 823 // null check technically happens in the wrong place, which can lead to
duke@435 824 // invalid stack traces when string compare is inlined into a method
duke@435 825 // which handles NullPointerExceptions.
duke@435 826 _sp += 2;
duke@435 827 receiver = do_null_check(receiver, T_OBJECT);
duke@435 828 argument = do_null_check(argument, T_OBJECT);
duke@435 829 _sp -= 2;
duke@435 830 if (stopped()) {
duke@435 831 return true;
duke@435 832 }
duke@435 833
duke@435 834 ciInstanceKlass* klass = env()->String_klass();
duke@435 835 const TypeInstPtr* string_type =
duke@435 836 TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
duke@435 837
duke@435 838 Node* compare =
duke@435 839 _gvn.transform(new (C, 7) StrCompNode(
duke@435 840 control(),
duke@435 841 memory(TypeAryPtr::CHARS),
duke@435 842 memory(string_type->add_offset(value_offset)),
duke@435 843 memory(string_type->add_offset(count_offset)),
duke@435 844 memory(string_type->add_offset(offset_offset)),
duke@435 845 receiver,
duke@435 846 argument));
duke@435 847 push(compare);
duke@435 848 return true;
duke@435 849 }
duke@435 850
cfang@1116 851 //------------------------------inline_string_equals------------------------
cfang@1116 852 bool LibraryCallKit::inline_string_equals() {
cfang@1116 853
cfang@1116 854 if (!Matcher::has_match_rule(Op_StrEquals)) return false;
cfang@1116 855
cfang@1116 856 const int value_offset = java_lang_String::value_offset_in_bytes();
cfang@1116 857 const int count_offset = java_lang_String::count_offset_in_bytes();
cfang@1116 858 const int offset_offset = java_lang_String::offset_offset_in_bytes();
cfang@1116 859
cfang@1116 860 _sp += 2;
cfang@1116 861 Node* argument = pop(); // pop non-receiver first: it was pushed second
cfang@1116 862 Node* receiver = pop();
cfang@1116 863
cfang@1116 864 // Null check on self without removing any arguments. The argument
cfang@1116 865 // null check technically happens in the wrong place, which can lead to
cfang@1116 866 // invalid stack traces when string compare is inlined into a method
cfang@1116 867 // which handles NullPointerExceptions.
cfang@1116 868 _sp += 2;
cfang@1116 869 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 870 //should not do null check for argument for String.equals(), because spec
cfang@1116 871 //allows to specify NULL as argument.
cfang@1116 872 _sp -= 2;
cfang@1116 873
cfang@1116 874 if (stopped()) {
cfang@1116 875 return true;
cfang@1116 876 }
cfang@1116 877
cfang@1116 878 // get String klass for instanceOf
cfang@1116 879 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 880
cfang@1116 881 // two paths (plus control) merge
cfang@1116 882 RegionNode* region = new (C, 3) RegionNode(3);
cfang@1116 883 Node* phi = new (C, 3) PhiNode(region, TypeInt::BOOL);
cfang@1116 884
cfang@1116 885 Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
cfang@1116 886 Node* cmp = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
cfang@1116 887 Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
cfang@1116 888
cfang@1116 889 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
cfang@1116 890
cfang@1116 891 Node* if_true = _gvn.transform(new (C, 1) IfTrueNode(iff));
cfang@1116 892 set_control(if_true);
cfang@1116 893
cfang@1116 894 const TypeInstPtr* string_type =
cfang@1116 895 TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
cfang@1116 896
cfang@1116 897 // instanceOf == true
cfang@1116 898 Node* equals =
cfang@1116 899 _gvn.transform(new (C, 7) StrEqualsNode(
cfang@1116 900 control(),
cfang@1116 901 memory(TypeAryPtr::CHARS),
cfang@1116 902 memory(string_type->add_offset(value_offset)),
cfang@1116 903 memory(string_type->add_offset(count_offset)),
cfang@1116 904 memory(string_type->add_offset(offset_offset)),
cfang@1116 905 receiver,
cfang@1116 906 argument));
cfang@1116 907
cfang@1116 908 phi->init_req(1, _gvn.transform(equals));
cfang@1116 909 region->init_req(1, if_true);
cfang@1116 910
cfang@1116 911 //instanceOf == false, fallthrough
cfang@1116 912 Node* if_false = _gvn.transform(new (C, 1) IfFalseNode(iff));
cfang@1116 913 set_control(if_false);
cfang@1116 914
cfang@1116 915 phi->init_req(2, _gvn.transform(intcon(0)));
cfang@1116 916 region->init_req(2, if_false);
cfang@1116 917
cfang@1116 918 // post merge
cfang@1116 919 set_control(_gvn.transform(region));
cfang@1116 920 record_for_igvn(region);
cfang@1116 921
cfang@1116 922 push(_gvn.transform(phi));
cfang@1116 923
cfang@1116 924 return true;
cfang@1116 925 }
cfang@1116 926
rasbold@604 927 //------------------------------inline_array_equals----------------------------
rasbold@604 928 bool LibraryCallKit::inline_array_equals() {
rasbold@604 929
rasbold@609 930 if (!Matcher::has_match_rule(Op_AryEq)) return false;
rasbold@609 931
rasbold@604 932 _sp += 2;
rasbold@604 933 Node *argument2 = pop();
rasbold@604 934 Node *argument1 = pop();
rasbold@604 935
rasbold@604 936 Node* equals =
rasbold@604 937 _gvn.transform(new (C, 3) AryEqNode(control(),
rasbold@604 938 argument1,
rasbold@604 939 argument2)
rasbold@604 940 );
rasbold@604 941 push(equals);
rasbold@604 942 return true;
rasbold@604 943 }
rasbold@604 944
duke@435 945 // Java version of String.indexOf(constant string)
duke@435 946 // class StringDecl {
duke@435 947 // StringDecl(char[] ca) {
duke@435 948 // offset = 0;
duke@435 949 // count = ca.length;
duke@435 950 // value = ca;
duke@435 951 // }
duke@435 952 // int offset;
duke@435 953 // int count;
duke@435 954 // char[] value;
duke@435 955 // }
duke@435 956 //
duke@435 957 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
duke@435 958 // int targetOffset, int cache_i, int md2) {
duke@435 959 // int cache = cache_i;
duke@435 960 // int sourceOffset = string_object.offset;
duke@435 961 // int sourceCount = string_object.count;
duke@435 962 // int targetCount = target_object.length;
duke@435 963 //
duke@435 964 // int targetCountLess1 = targetCount - 1;
duke@435 965 // int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
duke@435 966 //
duke@435 967 // char[] source = string_object.value;
duke@435 968 // char[] target = target_object;
duke@435 969 // int lastChar = target[targetCountLess1];
duke@435 970 //
duke@435 971 // outer_loop:
duke@435 972 // for (int i = sourceOffset; i < sourceEnd; ) {
duke@435 973 // int src = source[i + targetCountLess1];
duke@435 974 // if (src == lastChar) {
duke@435 975 // // With random strings and a 4-character alphabet,
duke@435 976 // // reverse matching at this point sets up 0.8% fewer
duke@435 977 // // frames, but (paradoxically) makes 0.3% more probes.
duke@435 978 // // Since those probes are nearer the lastChar probe,
duke@435 979 // // there is may be a net D$ win with reverse matching.
duke@435 980 // // But, reversing loop inhibits unroll of inner loop
duke@435 981 // // for unknown reason. So, does running outer loop from
duke@435 982 // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
duke@435 983 // for (int j = 0; j < targetCountLess1; j++) {
duke@435 984 // if (target[targetOffset + j] != source[i+j]) {
duke@435 985 // if ((cache & (1 << source[i+j])) == 0) {
duke@435 986 // if (md2 < j+1) {
duke@435 987 // i += j+1;
duke@435 988 // continue outer_loop;
duke@435 989 // }
duke@435 990 // }
duke@435 991 // i += md2;
duke@435 992 // continue outer_loop;
duke@435 993 // }
duke@435 994 // }
duke@435 995 // return i - sourceOffset;
duke@435 996 // }
duke@435 997 // if ((cache & (1 << src)) == 0) {
duke@435 998 // i += targetCountLess1;
duke@435 999 // } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
duke@435 1000 // i++;
duke@435 1001 // }
duke@435 1002 // return -1;
duke@435 1003 // }
duke@435 1004
duke@435 1005 //------------------------------string_indexOf------------------------
duke@435 1006 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
duke@435 1007 jint cache_i, jint md2_i) {
duke@435 1008
duke@435 1009 Node* no_ctrl = NULL;
duke@435 1010 float likely = PROB_LIKELY(0.9);
duke@435 1011 float unlikely = PROB_UNLIKELY(0.9);
duke@435 1012
duke@435 1013 const int value_offset = java_lang_String::value_offset_in_bytes();
duke@435 1014 const int count_offset = java_lang_String::count_offset_in_bytes();
duke@435 1015 const int offset_offset = java_lang_String::offset_offset_in_bytes();
duke@435 1016
duke@435 1017 ciInstanceKlass* klass = env()->String_klass();
duke@435 1018 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
duke@435 1019 const TypeAryPtr* source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
duke@435 1020
duke@435 1021 Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
duke@435 1022 Node* sourceOffset = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
duke@435 1023 Node* sourceCounta = basic_plus_adr(string_object, string_object, count_offset);
duke@435 1024 Node* sourceCount = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
duke@435 1025 Node* sourcea = basic_plus_adr(string_object, string_object, value_offset);
duke@435 1026 Node* source = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
duke@435 1027
kvn@599 1028 Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
duke@435 1029 jint target_length = target_array->length();
duke@435 1030 const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
duke@435 1031 const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
duke@435 1032
kvn@1286 1033 IdealKit kit(gvn(), control(), merged_memory(), false, true);
duke@435 1034 #define __ kit.
duke@435 1035 Node* zero = __ ConI(0);
duke@435 1036 Node* one = __ ConI(1);
duke@435 1037 Node* cache = __ ConI(cache_i);
duke@435 1038 Node* md2 = __ ConI(md2_i);
duke@435 1039 Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
duke@435 1040 Node* targetCount = __ ConI(target_length);
duke@435 1041 Node* targetCountLess1 = __ ConI(target_length - 1);
duke@435 1042 Node* targetOffset = __ ConI(targetOffset_i);
duke@435 1043 Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
duke@435 1044
kvn@1286 1045 IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
duke@435 1046 Node* outer_loop = __ make_label(2 /* goto */);
duke@435 1047 Node* return_ = __ make_label(1);
duke@435 1048
duke@435 1049 __ set(rtn,__ ConI(-1));
duke@435 1050 __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
duke@435 1051 Node* i2 = __ AddI(__ value(i), targetCountLess1);
duke@435 1052 // pin to prohibit loading of "next iteration" value which may SEGV (rare)
duke@435 1053 Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
duke@435 1054 __ if_then(src, BoolTest::eq, lastChar, unlikely); {
duke@435 1055 __ loop(j, zero, BoolTest::lt, targetCountLess1); {
duke@435 1056 Node* tpj = __ AddI(targetOffset, __ value(j));
duke@435 1057 Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
duke@435 1058 Node* ipj = __ AddI(__ value(i), __ value(j));
duke@435 1059 Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
duke@435 1060 __ if_then(targ, BoolTest::ne, src2); {
duke@435 1061 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
duke@435 1062 __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
duke@435 1063 __ increment(i, __ AddI(__ value(j), one));
duke@435 1064 __ goto_(outer_loop);
duke@435 1065 } __ end_if(); __ dead(j);
duke@435 1066 }__ end_if(); __ dead(j);
duke@435 1067 __ increment(i, md2);
duke@435 1068 __ goto_(outer_loop);
duke@435 1069 }__ end_if();
duke@435 1070 __ increment(j, one);
duke@435 1071 }__ end_loop(); __ dead(j);
duke@435 1072 __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
duke@435 1073 __ goto_(return_);
duke@435 1074 }__ end_if();
duke@435 1075 __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
duke@435 1076 __ increment(i, targetCountLess1);
duke@435 1077 }__ end_if();
duke@435 1078 __ increment(i, one);
duke@435 1079 __ bind(outer_loop);
duke@435 1080 }__ end_loop(); __ dead(i);
duke@435 1081 __ bind(return_);
kvn@1286 1082
kvn@1286 1083 // Final sync IdealKit and GraphKit.
kvn@1286 1084 sync_kit(kit);
duke@435 1085 Node* result = __ value(rtn);
duke@435 1086 #undef __
duke@435 1087 C->set_has_loops(true);
duke@435 1088 return result;
duke@435 1089 }
duke@435 1090
duke@435 1091 //------------------------------inline_string_indexOf------------------------
duke@435 1092 bool LibraryCallKit::inline_string_indexOf() {
duke@435 1093
cfang@1116 1094 const int value_offset = java_lang_String::value_offset_in_bytes();
cfang@1116 1095 const int count_offset = java_lang_String::count_offset_in_bytes();
cfang@1116 1096 const int offset_offset = java_lang_String::offset_offset_in_bytes();
cfang@1116 1097
duke@435 1098 _sp += 2;
duke@435 1099 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 1100 Node *receiver = pop();
duke@435 1101
cfang@1116 1102 Node* result;
cfang@1116 1103 if (Matcher::has_match_rule(Op_StrIndexOf) &&
cfang@1116 1104 UseSSE42Intrinsics) {
cfang@1116 1105 // Generate SSE4.2 version of indexOf
cfang@1116 1106 // We currently only have match rules that use SSE4.2
cfang@1116 1107
cfang@1116 1108 // Null check on self without removing any arguments. The argument
cfang@1116 1109 // null check technically happens in the wrong place, which can lead to
cfang@1116 1110 // invalid stack traces when string compare is inlined into a method
cfang@1116 1111 // which handles NullPointerExceptions.
cfang@1116 1112 _sp += 2;
cfang@1116 1113 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1114 argument = do_null_check(argument, T_OBJECT);
cfang@1116 1115 _sp -= 2;
cfang@1116 1116
cfang@1116 1117 if (stopped()) {
cfang@1116 1118 return true;
cfang@1116 1119 }
cfang@1116 1120
cfang@1116 1121 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1122 const TypeInstPtr* string_type =
cfang@1116 1123 TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
cfang@1116 1124
cfang@1116 1125 result =
cfang@1116 1126 _gvn.transform(new (C, 7)
cfang@1116 1127 StrIndexOfNode(control(),
cfang@1116 1128 memory(TypeAryPtr::CHARS),
cfang@1116 1129 memory(string_type->add_offset(value_offset)),
cfang@1116 1130 memory(string_type->add_offset(count_offset)),
cfang@1116 1131 memory(string_type->add_offset(offset_offset)),
cfang@1116 1132 receiver,
cfang@1116 1133 argument));
cfang@1116 1134 } else { //Use LibraryCallKit::string_indexOf
cfang@1116 1135 // don't intrinsify is argument isn't a constant string.
cfang@1116 1136 if (!argument->is_Con()) {
cfang@1116 1137 return false;
cfang@1116 1138 }
cfang@1116 1139 const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
cfang@1116 1140 if (str_type == NULL) {
cfang@1116 1141 return false;
cfang@1116 1142 }
cfang@1116 1143 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1144 ciObject* str_const = str_type->const_oop();
cfang@1116 1145 if (str_const == NULL || str_const->klass() != klass) {
cfang@1116 1146 return false;
cfang@1116 1147 }
cfang@1116 1148 ciInstance* str = str_const->as_instance();
cfang@1116 1149 assert(str != NULL, "must be instance");
cfang@1116 1150
cfang@1116 1151 ciObject* v = str->field_value_by_offset(value_offset).as_object();
cfang@1116 1152 int o = str->field_value_by_offset(offset_offset).as_int();
cfang@1116 1153 int c = str->field_value_by_offset(count_offset).as_int();
cfang@1116 1154 ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
cfang@1116 1155
cfang@1116 1156 // constant strings have no offset and count == length which
cfang@1116 1157 // simplifies the resulting code somewhat so lets optimize for that.
cfang@1116 1158 if (o != 0 || c != pat->length()) {
cfang@1116 1159 return false;
cfang@1116 1160 }
cfang@1116 1161
cfang@1116 1162 // Null check on self without removing any arguments. The argument
cfang@1116 1163 // null check technically happens in the wrong place, which can lead to
cfang@1116 1164 // invalid stack traces when string compare is inlined into a method
cfang@1116 1165 // which handles NullPointerExceptions.
cfang@1116 1166 _sp += 2;
cfang@1116 1167 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1168 // No null check on the argument is needed since it's a constant String oop.
cfang@1116 1169 _sp -= 2;
cfang@1116 1170 if (stopped()) {
cfang@1116 1171 return true;
cfang@1116 1172 }
cfang@1116 1173
cfang@1116 1174 // The null string as a pattern always returns 0 (match at beginning of string)
cfang@1116 1175 if (c == 0) {
cfang@1116 1176 push(intcon(0));
cfang@1116 1177 return true;
cfang@1116 1178 }
cfang@1116 1179
cfang@1116 1180 // Generate default indexOf
cfang@1116 1181 jchar lastChar = pat->char_at(o + (c - 1));
cfang@1116 1182 int cache = 0;
cfang@1116 1183 int i;
cfang@1116 1184 for (i = 0; i < c - 1; i++) {
cfang@1116 1185 assert(i < pat->length(), "out of range");
cfang@1116 1186 cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
cfang@1116 1187 }
cfang@1116 1188
cfang@1116 1189 int md2 = c;
cfang@1116 1190 for (i = 0; i < c - 1; i++) {
cfang@1116 1191 assert(i < pat->length(), "out of range");
cfang@1116 1192 if (pat->char_at(o + i) == lastChar) {
cfang@1116 1193 md2 = (c - 1) - i;
cfang@1116 1194 }
cfang@1116 1195 }
cfang@1116 1196
cfang@1116 1197 result = string_indexOf(receiver, pat, o, cache, md2);
duke@435 1198 }
cfang@1116 1199
duke@435 1200 push(result);
duke@435 1201 return true;
duke@435 1202 }
duke@435 1203
duke@435 1204 //--------------------------pop_math_arg--------------------------------
duke@435 1205 // Pop a double argument to a math function from the stack
duke@435 1206 // rounding it if necessary.
duke@435 1207 Node * LibraryCallKit::pop_math_arg() {
duke@435 1208 Node *arg = pop_pair();
duke@435 1209 if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
duke@435 1210 arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
duke@435 1211 return arg;
duke@435 1212 }
duke@435 1213
duke@435 1214 //------------------------------inline_trig----------------------------------
duke@435 1215 // Inline sin/cos/tan instructions, if possible. If rounding is required, do
duke@435 1216 // argument reduction which will turn into a fast/slow diamond.
duke@435 1217 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
duke@435 1218 _sp += arg_size(); // restore stack pointer
duke@435 1219 Node* arg = pop_math_arg();
duke@435 1220 Node* trig = NULL;
duke@435 1221
duke@435 1222 switch (id) {
duke@435 1223 case vmIntrinsics::_dsin:
duke@435 1224 trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
duke@435 1225 break;
duke@435 1226 case vmIntrinsics::_dcos:
duke@435 1227 trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
duke@435 1228 break;
duke@435 1229 case vmIntrinsics::_dtan:
duke@435 1230 trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
duke@435 1231 break;
duke@435 1232 default:
duke@435 1233 assert(false, "bad intrinsic was passed in");
duke@435 1234 return false;
duke@435 1235 }
duke@435 1236
duke@435 1237 // Rounding required? Check for argument reduction!
duke@435 1238 if( Matcher::strict_fp_requires_explicit_rounding ) {
duke@435 1239
duke@435 1240 static const double pi_4 = 0.7853981633974483;
duke@435 1241 static const double neg_pi_4 = -0.7853981633974483;
duke@435 1242 // pi/2 in 80-bit extended precision
duke@435 1243 // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1244 // -pi/2 in 80-bit extended precision
duke@435 1245 // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1246 // Cutoff value for using this argument reduction technique
duke@435 1247 //static const double pi_2_minus_epsilon = 1.564660403643354;
duke@435 1248 //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
duke@435 1249
duke@435 1250 // Pseudocode for sin:
duke@435 1251 // if (x <= Math.PI / 4.0) {
duke@435 1252 // if (x >= -Math.PI / 4.0) return fsin(x);
duke@435 1253 // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
duke@435 1254 // } else {
duke@435 1255 // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
duke@435 1256 // }
duke@435 1257 // return StrictMath.sin(x);
duke@435 1258
duke@435 1259 // Pseudocode for cos:
duke@435 1260 // if (x <= Math.PI / 4.0) {
duke@435 1261 // if (x >= -Math.PI / 4.0) return fcos(x);
duke@435 1262 // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
duke@435 1263 // } else {
duke@435 1264 // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
duke@435 1265 // }
duke@435 1266 // return StrictMath.cos(x);
duke@435 1267
duke@435 1268 // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
duke@435 1269 // requires a special machine instruction to load it. Instead we'll try
duke@435 1270 // the 'easy' case. If we really need the extra range +/- PI/2 we'll
duke@435 1271 // probably do the math inside the SIN encoding.
duke@435 1272
duke@435 1273 // Make the merge point
duke@435 1274 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 1275 Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
duke@435 1276
duke@435 1277 // Flatten arg so we need only 1 test
duke@435 1278 Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
duke@435 1279 // Node for PI/4 constant
duke@435 1280 Node *pi4 = makecon(TypeD::make(pi_4));
duke@435 1281 // Check PI/4 : abs(arg)
duke@435 1282 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
duke@435 1283 // Check: If PI/4 < abs(arg) then go slow
duke@435 1284 Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
duke@435 1285 // Branch either way
duke@435 1286 IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 1287 set_control(opt_iff(r,iff));
duke@435 1288
duke@435 1289 // Set fast path result
duke@435 1290 phi->init_req(2,trig);
duke@435 1291
duke@435 1292 // Slow path - non-blocking leaf call
duke@435 1293 Node* call = NULL;
duke@435 1294 switch (id) {
duke@435 1295 case vmIntrinsics::_dsin:
duke@435 1296 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1297 CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
duke@435 1298 "Sin", NULL, arg, top());
duke@435 1299 break;
duke@435 1300 case vmIntrinsics::_dcos:
duke@435 1301 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1302 CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
duke@435 1303 "Cos", NULL, arg, top());
duke@435 1304 break;
duke@435 1305 case vmIntrinsics::_dtan:
duke@435 1306 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1307 CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
duke@435 1308 "Tan", NULL, arg, top());
duke@435 1309 break;
duke@435 1310 }
duke@435 1311 assert(control()->in(0) == call, "");
duke@435 1312 Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
duke@435 1313 r->init_req(1,control());
duke@435 1314 phi->init_req(1,slow_result);
duke@435 1315
duke@435 1316 // Post-merge
duke@435 1317 set_control(_gvn.transform(r));
duke@435 1318 record_for_igvn(r);
duke@435 1319 trig = _gvn.transform(phi);
duke@435 1320
duke@435 1321 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1322 }
duke@435 1323 // Push result back on JVM stack
duke@435 1324 push_pair(trig);
duke@435 1325 return true;
duke@435 1326 }
duke@435 1327
duke@435 1328 //------------------------------inline_sqrt-------------------------------------
duke@435 1329 // Inline square root instruction, if possible.
duke@435 1330 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
duke@435 1331 assert(id == vmIntrinsics::_dsqrt, "Not square root");
duke@435 1332 _sp += arg_size(); // restore stack pointer
duke@435 1333 push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
duke@435 1334 return true;
duke@435 1335 }
duke@435 1336
duke@435 1337 //------------------------------inline_abs-------------------------------------
duke@435 1338 // Inline absolute value instruction, if possible.
duke@435 1339 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
duke@435 1340 assert(id == vmIntrinsics::_dabs, "Not absolute value");
duke@435 1341 _sp += arg_size(); // restore stack pointer
duke@435 1342 push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
duke@435 1343 return true;
duke@435 1344 }
duke@435 1345
duke@435 1346 //------------------------------inline_exp-------------------------------------
duke@435 1347 // Inline exp instructions, if possible. The Intel hardware only misses
duke@435 1348 // really odd corner cases (+/- Infinity). Just uncommon-trap them.
duke@435 1349 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
duke@435 1350 assert(id == vmIntrinsics::_dexp, "Not exp");
duke@435 1351
duke@435 1352 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1353 // every again. NaN results requires StrictMath.exp handling.
duke@435 1354 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1355
duke@435 1356 // Do not intrinsify on older platforms which lack cmove.
duke@435 1357 if (ConditionalMoveLimit == 0) return false;
duke@435 1358
duke@435 1359 _sp += arg_size(); // restore stack pointer
duke@435 1360 Node *x = pop_math_arg();
duke@435 1361 Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
duke@435 1362
duke@435 1363 //-------------------
duke@435 1364 //result=(result.isNaN())? StrictMath::exp():result;
duke@435 1365 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1366 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1367 // Build the boolean node
duke@435 1368 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1369
duke@435 1370 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1371 // End the current control-flow path
duke@435 1372 push_pair(x);
duke@435 1373 // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
duke@435 1374 // to handle. Recompile without intrinsifying Math.exp
duke@435 1375 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1376 Deoptimization::Action_make_not_entrant);
duke@435 1377 }
duke@435 1378
duke@435 1379 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1380
duke@435 1381 push_pair(result);
duke@435 1382
duke@435 1383 return true;
duke@435 1384 }
duke@435 1385
duke@435 1386 //------------------------------inline_pow-------------------------------------
duke@435 1387 // Inline power instructions, if possible.
duke@435 1388 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
duke@435 1389 assert(id == vmIntrinsics::_dpow, "Not pow");
duke@435 1390
duke@435 1391 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1392 // every again. NaN results requires StrictMath.pow handling.
duke@435 1393 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1394
duke@435 1395 // Do not intrinsify on older platforms which lack cmove.
duke@435 1396 if (ConditionalMoveLimit == 0) return false;
duke@435 1397
duke@435 1398 // Pseudocode for pow
duke@435 1399 // if (x <= 0.0) {
duke@435 1400 // if ((double)((int)y)==y) { // if y is int
duke@435 1401 // result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1402 // } else {
duke@435 1403 // result = NaN;
duke@435 1404 // }
duke@435 1405 // } else {
duke@435 1406 // result = DPow(x,y);
duke@435 1407 // }
duke@435 1408 // if (result != result)? {
twisti@1040 1409 // uncommon_trap();
duke@435 1410 // }
duke@435 1411 // return result;
duke@435 1412
duke@435 1413 _sp += arg_size(); // restore stack pointer
duke@435 1414 Node* y = pop_math_arg();
duke@435 1415 Node* x = pop_math_arg();
duke@435 1416
duke@435 1417 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
duke@435 1418
duke@435 1419 // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
duke@435 1420 // inside of something) then skip the fancy tests and just check for
duke@435 1421 // NaN result.
duke@435 1422 Node *result = NULL;
duke@435 1423 if( jvms()->depth() >= 1 ) {
duke@435 1424 result = fast_result;
duke@435 1425 } else {
duke@435 1426
duke@435 1427 // Set the merge point for If node with condition of (x <= 0.0)
duke@435 1428 // There are four possible paths to region node and phi node
duke@435 1429 RegionNode *r = new (C, 4) RegionNode(4);
duke@435 1430 Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
duke@435 1431
duke@435 1432 // Build the first if node: if (x <= 0.0)
duke@435 1433 // Node for 0 constant
duke@435 1434 Node *zeronode = makecon(TypeD::ZERO);
duke@435 1435 // Check x:0
duke@435 1436 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
duke@435 1437 // Check: If (x<=0) then go complex path
duke@435 1438 Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
duke@435 1439 // Branch either way
duke@435 1440 IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1441 Node *opt_test = _gvn.transform(if1);
duke@435 1442 //assert( opt_test->is_If(), "Expect an IfNode");
duke@435 1443 IfNode *opt_if1 = (IfNode*)opt_test;
duke@435 1444 // Fast path taken; set region slot 3
duke@435 1445 Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
duke@435 1446 r->init_req(3,fast_taken); // Capture fast-control
duke@435 1447
duke@435 1448 // Fast path not-taken, i.e. slow path
duke@435 1449 Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
duke@435 1450
duke@435 1451 // Set fast path result
duke@435 1452 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
duke@435 1453 phi->init_req(3, fast_result);
duke@435 1454
duke@435 1455 // Complex path
duke@435 1456 // Build the second if node (if y is int)
duke@435 1457 // Node for (int)y
duke@435 1458 Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
duke@435 1459 // Node for (double)((int) y)
duke@435 1460 Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
duke@435 1461 // Check (double)((int) y) : y
duke@435 1462 Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
duke@435 1463 // Check if (y isn't int) then go to slow path
duke@435 1464
duke@435 1465 Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
twisti@1040 1466 // Branch either way
duke@435 1467 IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1468 Node *slow_path = opt_iff(r,if2); // Set region path 2
duke@435 1469
duke@435 1470 // Calculate DPow(abs(x), y)*(1 & (int)y)
duke@435 1471 // Node for constant 1
duke@435 1472 Node *conone = intcon(1);
duke@435 1473 // 1& (int)y
duke@435 1474 Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
duke@435 1475 // zero node
duke@435 1476 Node *conzero = intcon(0);
duke@435 1477 // Check (1&(int)y)==0?
duke@435 1478 Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
duke@435 1479 // Check if (1&(int)y)!=0?, if so the result is negative
duke@435 1480 Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
duke@435 1481 // abs(x)
duke@435 1482 Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
duke@435 1483 // abs(x)^y
duke@435 1484 Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
duke@435 1485 // -abs(x)^y
duke@435 1486 Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
duke@435 1487 // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1488 Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
duke@435 1489 // Set complex path fast result
duke@435 1490 phi->init_req(2, signresult);
duke@435 1491
duke@435 1492 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 1493 Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
duke@435 1494 r->init_req(1,slow_path);
duke@435 1495 phi->init_req(1,slow_result);
duke@435 1496
duke@435 1497 // Post merge
duke@435 1498 set_control(_gvn.transform(r));
duke@435 1499 record_for_igvn(r);
duke@435 1500 result=_gvn.transform(phi);
duke@435 1501 }
duke@435 1502
duke@435 1503 //-------------------
duke@435 1504 //result=(result.isNaN())? uncommon_trap():result;
duke@435 1505 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1506 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1507 // Build the boolean node
duke@435 1508 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1509
duke@435 1510 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1511 // End the current control-flow path
duke@435 1512 push_pair(x);
duke@435 1513 push_pair(y);
duke@435 1514 // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
duke@435 1515 // to handle. Recompile without intrinsifying Math.pow.
duke@435 1516 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1517 Deoptimization::Action_make_not_entrant);
duke@435 1518 }
duke@435 1519
duke@435 1520 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1521
duke@435 1522 push_pair(result);
duke@435 1523
duke@435 1524 return true;
duke@435 1525 }
duke@435 1526
duke@435 1527 //------------------------------inline_trans-------------------------------------
duke@435 1528 // Inline transcendental instructions, if possible. The Intel hardware gets
duke@435 1529 // these right, no funny corner cases missed.
duke@435 1530 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
duke@435 1531 _sp += arg_size(); // restore stack pointer
duke@435 1532 Node* arg = pop_math_arg();
duke@435 1533 Node* trans = NULL;
duke@435 1534
duke@435 1535 switch (id) {
duke@435 1536 case vmIntrinsics::_dlog:
duke@435 1537 trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
duke@435 1538 break;
duke@435 1539 case vmIntrinsics::_dlog10:
duke@435 1540 trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
duke@435 1541 break;
duke@435 1542 default:
duke@435 1543 assert(false, "bad intrinsic was passed in");
duke@435 1544 return false;
duke@435 1545 }
duke@435 1546
duke@435 1547 // Push result back on JVM stack
duke@435 1548 push_pair(trans);
duke@435 1549 return true;
duke@435 1550 }
duke@435 1551
duke@435 1552 //------------------------------runtime_math-----------------------------
duke@435 1553 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
duke@435 1554 Node* a = NULL;
duke@435 1555 Node* b = NULL;
duke@435 1556
duke@435 1557 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
duke@435 1558 "must be (DD)D or (D)D type");
duke@435 1559
duke@435 1560 // Inputs
duke@435 1561 _sp += arg_size(); // restore stack pointer
duke@435 1562 if (call_type == OptoRuntime::Math_DD_D_Type()) {
duke@435 1563 b = pop_math_arg();
duke@435 1564 }
duke@435 1565 a = pop_math_arg();
duke@435 1566
duke@435 1567 const TypePtr* no_memory_effects = NULL;
duke@435 1568 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
duke@435 1569 no_memory_effects,
duke@435 1570 a, top(), b, b ? top() : NULL);
duke@435 1571 Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
duke@435 1572 #ifdef ASSERT
duke@435 1573 Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
duke@435 1574 assert(value_top == top(), "second value must be top");
duke@435 1575 #endif
duke@435 1576
duke@435 1577 push_pair(value);
duke@435 1578 return true;
duke@435 1579 }
duke@435 1580
duke@435 1581 //------------------------------inline_math_native-----------------------------
duke@435 1582 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
duke@435 1583 switch (id) {
duke@435 1584 // These intrinsics are not properly supported on all hardware
duke@435 1585 case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
duke@435 1586 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
duke@435 1587 case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
duke@435 1588 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
duke@435 1589 case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
duke@435 1590 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
duke@435 1591
duke@435 1592 case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
duke@435 1593 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
duke@435 1594 case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
duke@435 1595 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
duke@435 1596
duke@435 1597 // These intrinsics are supported on all hardware
duke@435 1598 case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
duke@435 1599 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_abs(id) : false;
duke@435 1600
duke@435 1601 // These intrinsics don't work on X86. The ad implementation doesn't
duke@435 1602 // handle NaN's properly. Instead of returning infinity, the ad
duke@435 1603 // implementation returns a NaN on overflow. See bug: 6304089
duke@435 1604 // Once the ad implementations are fixed, change the code below
duke@435 1605 // to match the intrinsics above
duke@435 1606
duke@435 1607 case vmIntrinsics::_dexp: return
duke@435 1608 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
duke@435 1609 case vmIntrinsics::_dpow: return
duke@435 1610 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
duke@435 1611
duke@435 1612 // These intrinsics are not yet correctly implemented
duke@435 1613 case vmIntrinsics::_datan2:
duke@435 1614 return false;
duke@435 1615
duke@435 1616 default:
duke@435 1617 ShouldNotReachHere();
duke@435 1618 return false;
duke@435 1619 }
duke@435 1620 }
duke@435 1621
duke@435 1622 static bool is_simple_name(Node* n) {
duke@435 1623 return (n->req() == 1 // constant
duke@435 1624 || (n->is_Type() && n->as_Type()->type()->singleton())
duke@435 1625 || n->is_Proj() // parameter or return value
duke@435 1626 || n->is_Phi() // local of some sort
duke@435 1627 );
duke@435 1628 }
duke@435 1629
duke@435 1630 //----------------------------inline_min_max-----------------------------------
duke@435 1631 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
duke@435 1632 push(generate_min_max(id, argument(0), argument(1)));
duke@435 1633
duke@435 1634 return true;
duke@435 1635 }
duke@435 1636
duke@435 1637 Node*
duke@435 1638 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
duke@435 1639 // These are the candidate return value:
duke@435 1640 Node* xvalue = x0;
duke@435 1641 Node* yvalue = y0;
duke@435 1642
duke@435 1643 if (xvalue == yvalue) {
duke@435 1644 return xvalue;
duke@435 1645 }
duke@435 1646
duke@435 1647 bool want_max = (id == vmIntrinsics::_max);
duke@435 1648
duke@435 1649 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
duke@435 1650 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
duke@435 1651 if (txvalue == NULL || tyvalue == NULL) return top();
duke@435 1652 // This is not really necessary, but it is consistent with a
duke@435 1653 // hypothetical MaxINode::Value method:
duke@435 1654 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
duke@435 1655
duke@435 1656 // %%% This folding logic should (ideally) be in a different place.
duke@435 1657 // Some should be inside IfNode, and there to be a more reliable
duke@435 1658 // transformation of ?: style patterns into cmoves. We also want
duke@435 1659 // more powerful optimizations around cmove and min/max.
duke@435 1660
duke@435 1661 // Try to find a dominating comparison of these guys.
duke@435 1662 // It can simplify the index computation for Arrays.copyOf
duke@435 1663 // and similar uses of System.arraycopy.
duke@435 1664 // First, compute the normalized version of CmpI(x, y).
duke@435 1665 int cmp_op = Op_CmpI;
duke@435 1666 Node* xkey = xvalue;
duke@435 1667 Node* ykey = yvalue;
duke@435 1668 Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
duke@435 1669 if (ideal_cmpxy->is_Cmp()) {
duke@435 1670 // E.g., if we have CmpI(length - offset, count),
duke@435 1671 // it might idealize to CmpI(length, count + offset)
duke@435 1672 cmp_op = ideal_cmpxy->Opcode();
duke@435 1673 xkey = ideal_cmpxy->in(1);
duke@435 1674 ykey = ideal_cmpxy->in(2);
duke@435 1675 }
duke@435 1676
duke@435 1677 // Start by locating any relevant comparisons.
duke@435 1678 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
duke@435 1679 Node* cmpxy = NULL;
duke@435 1680 Node* cmpyx = NULL;
duke@435 1681 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
duke@435 1682 Node* cmp = start_from->fast_out(k);
duke@435 1683 if (cmp->outcnt() > 0 && // must have prior uses
duke@435 1684 cmp->in(0) == NULL && // must be context-independent
duke@435 1685 cmp->Opcode() == cmp_op) { // right kind of compare
duke@435 1686 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
duke@435 1687 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
duke@435 1688 }
duke@435 1689 }
duke@435 1690
duke@435 1691 const int NCMPS = 2;
duke@435 1692 Node* cmps[NCMPS] = { cmpxy, cmpyx };
duke@435 1693 int cmpn;
duke@435 1694 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1695 if (cmps[cmpn] != NULL) break; // find a result
duke@435 1696 }
duke@435 1697 if (cmpn < NCMPS) {
duke@435 1698 // Look for a dominating test that tells us the min and max.
duke@435 1699 int depth = 0; // Limit search depth for speed
duke@435 1700 Node* dom = control();
duke@435 1701 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
duke@435 1702 if (++depth >= 100) break;
duke@435 1703 Node* ifproj = dom;
duke@435 1704 if (!ifproj->is_Proj()) continue;
duke@435 1705 Node* iff = ifproj->in(0);
duke@435 1706 if (!iff->is_If()) continue;
duke@435 1707 Node* bol = iff->in(1);
duke@435 1708 if (!bol->is_Bool()) continue;
duke@435 1709 Node* cmp = bol->in(1);
duke@435 1710 if (cmp == NULL) continue;
duke@435 1711 for (cmpn = 0; cmpn < NCMPS; cmpn++)
duke@435 1712 if (cmps[cmpn] == cmp) break;
duke@435 1713 if (cmpn == NCMPS) continue;
duke@435 1714 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1715 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
duke@435 1716 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1717 // At this point, we know that 'x btest y' is true.
duke@435 1718 switch (btest) {
duke@435 1719 case BoolTest::eq:
duke@435 1720 // They are proven equal, so we can collapse the min/max.
duke@435 1721 // Either value is the answer. Choose the simpler.
duke@435 1722 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
duke@435 1723 return yvalue;
duke@435 1724 return xvalue;
duke@435 1725 case BoolTest::lt: // x < y
duke@435 1726 case BoolTest::le: // x <= y
duke@435 1727 return (want_max ? yvalue : xvalue);
duke@435 1728 case BoolTest::gt: // x > y
duke@435 1729 case BoolTest::ge: // x >= y
duke@435 1730 return (want_max ? xvalue : yvalue);
duke@435 1731 }
duke@435 1732 }
duke@435 1733 }
duke@435 1734
duke@435 1735 // We failed to find a dominating test.
duke@435 1736 // Let's pick a test that might GVN with prior tests.
duke@435 1737 Node* best_bol = NULL;
duke@435 1738 BoolTest::mask best_btest = BoolTest::illegal;
duke@435 1739 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1740 Node* cmp = cmps[cmpn];
duke@435 1741 if (cmp == NULL) continue;
duke@435 1742 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
duke@435 1743 Node* bol = cmp->fast_out(j);
duke@435 1744 if (!bol->is_Bool()) continue;
duke@435 1745 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1746 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
duke@435 1747 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1748 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
duke@435 1749 best_bol = bol->as_Bool();
duke@435 1750 best_btest = btest;
duke@435 1751 }
duke@435 1752 }
duke@435 1753 }
duke@435 1754
duke@435 1755 Node* answer_if_true = NULL;
duke@435 1756 Node* answer_if_false = NULL;
duke@435 1757 switch (best_btest) {
duke@435 1758 default:
duke@435 1759 if (cmpxy == NULL)
duke@435 1760 cmpxy = ideal_cmpxy;
duke@435 1761 best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
duke@435 1762 // and fall through:
duke@435 1763 case BoolTest::lt: // x < y
duke@435 1764 case BoolTest::le: // x <= y
duke@435 1765 answer_if_true = (want_max ? yvalue : xvalue);
duke@435 1766 answer_if_false = (want_max ? xvalue : yvalue);
duke@435 1767 break;
duke@435 1768 case BoolTest::gt: // x > y
duke@435 1769 case BoolTest::ge: // x >= y
duke@435 1770 answer_if_true = (want_max ? xvalue : yvalue);
duke@435 1771 answer_if_false = (want_max ? yvalue : xvalue);
duke@435 1772 break;
duke@435 1773 }
duke@435 1774
duke@435 1775 jint hi, lo;
duke@435 1776 if (want_max) {
duke@435 1777 // We can sharpen the minimum.
duke@435 1778 hi = MAX2(txvalue->_hi, tyvalue->_hi);
duke@435 1779 lo = MAX2(txvalue->_lo, tyvalue->_lo);
duke@435 1780 } else {
duke@435 1781 // We can sharpen the maximum.
duke@435 1782 hi = MIN2(txvalue->_hi, tyvalue->_hi);
duke@435 1783 lo = MIN2(txvalue->_lo, tyvalue->_lo);
duke@435 1784 }
duke@435 1785
duke@435 1786 // Use a flow-free graph structure, to avoid creating excess control edges
duke@435 1787 // which could hinder other optimizations.
duke@435 1788 // Since Math.min/max is often used with arraycopy, we want
duke@435 1789 // tightly_coupled_allocation to be able to see beyond min/max expressions.
duke@435 1790 Node* cmov = CMoveNode::make(C, NULL, best_bol,
duke@435 1791 answer_if_false, answer_if_true,
duke@435 1792 TypeInt::make(lo, hi, widen));
duke@435 1793
duke@435 1794 return _gvn.transform(cmov);
duke@435 1795
duke@435 1796 /*
duke@435 1797 // This is not as desirable as it may seem, since Min and Max
duke@435 1798 // nodes do not have a full set of optimizations.
duke@435 1799 // And they would interfere, anyway, with 'if' optimizations
duke@435 1800 // and with CMoveI canonical forms.
duke@435 1801 switch (id) {
duke@435 1802 case vmIntrinsics::_min:
duke@435 1803 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
duke@435 1804 case vmIntrinsics::_max:
duke@435 1805 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
duke@435 1806 default:
duke@435 1807 ShouldNotReachHere();
duke@435 1808 }
duke@435 1809 */
duke@435 1810 }
duke@435 1811
duke@435 1812 inline int
duke@435 1813 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
duke@435 1814 const TypePtr* base_type = TypePtr::NULL_PTR;
duke@435 1815 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
duke@435 1816 if (base_type == NULL) {
duke@435 1817 // Unknown type.
duke@435 1818 return Type::AnyPtr;
duke@435 1819 } else if (base_type == TypePtr::NULL_PTR) {
duke@435 1820 // Since this is a NULL+long form, we have to switch to a rawptr.
duke@435 1821 base = _gvn.transform( new (C, 2) CastX2PNode(offset) );
duke@435 1822 offset = MakeConX(0);
duke@435 1823 return Type::RawPtr;
duke@435 1824 } else if (base_type->base() == Type::RawPtr) {
duke@435 1825 return Type::RawPtr;
duke@435 1826 } else if (base_type->isa_oopptr()) {
duke@435 1827 // Base is never null => always a heap address.
duke@435 1828 if (base_type->ptr() == TypePtr::NotNull) {
duke@435 1829 return Type::OopPtr;
duke@435 1830 }
duke@435 1831 // Offset is small => always a heap address.
duke@435 1832 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
duke@435 1833 if (offset_type != NULL &&
duke@435 1834 base_type->offset() == 0 && // (should always be?)
duke@435 1835 offset_type->_lo >= 0 &&
duke@435 1836 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
duke@435 1837 return Type::OopPtr;
duke@435 1838 }
duke@435 1839 // Otherwise, it might either be oop+off or NULL+addr.
duke@435 1840 return Type::AnyPtr;
duke@435 1841 } else {
duke@435 1842 // No information:
duke@435 1843 return Type::AnyPtr;
duke@435 1844 }
duke@435 1845 }
duke@435 1846
duke@435 1847 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
duke@435 1848 int kind = classify_unsafe_addr(base, offset);
duke@435 1849 if (kind == Type::RawPtr) {
duke@435 1850 return basic_plus_adr(top(), base, offset);
duke@435 1851 } else {
duke@435 1852 return basic_plus_adr(base, offset);
duke@435 1853 }
duke@435 1854 }
duke@435 1855
twisti@1210 1856 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
twisti@1210 1857 // inline int Integer.numberOfLeadingZeros(int)
twisti@1210 1858 // inline int Long.numberOfLeadingZeros(long)
twisti@1210 1859 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
twisti@1210 1860 assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
twisti@1210 1861 if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
twisti@1210 1862 if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
twisti@1210 1863 _sp += arg_size(); // restore stack pointer
twisti@1210 1864 switch (id) {
twisti@1210 1865 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 1866 push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
twisti@1210 1867 break;
twisti@1210 1868 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 1869 push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
twisti@1210 1870 break;
twisti@1210 1871 default:
twisti@1210 1872 ShouldNotReachHere();
twisti@1210 1873 }
twisti@1210 1874 return true;
twisti@1210 1875 }
twisti@1210 1876
twisti@1210 1877 //-------------------inline_numberOfTrailingZeros_int/long----------------------
twisti@1210 1878 // inline int Integer.numberOfTrailingZeros(int)
twisti@1210 1879 // inline int Long.numberOfTrailingZeros(long)
twisti@1210 1880 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
twisti@1210 1881 assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
twisti@1210 1882 if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
twisti@1210 1883 if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
twisti@1210 1884 _sp += arg_size(); // restore stack pointer
twisti@1210 1885 switch (id) {
twisti@1210 1886 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 1887 push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
twisti@1210 1888 break;
twisti@1210 1889 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 1890 push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
twisti@1210 1891 break;
twisti@1210 1892 default:
twisti@1210 1893 ShouldNotReachHere();
twisti@1210 1894 }
twisti@1210 1895 return true;
twisti@1210 1896 }
twisti@1210 1897
twisti@1078 1898 //----------------------------inline_bitCount_int/long-----------------------
twisti@1078 1899 // inline int Integer.bitCount(int)
twisti@1078 1900 // inline int Long.bitCount(long)
twisti@1078 1901 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
twisti@1078 1902 assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
twisti@1078 1903 if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
twisti@1078 1904 if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
twisti@1078 1905 _sp += arg_size(); // restore stack pointer
twisti@1078 1906 switch (id) {
twisti@1078 1907 case vmIntrinsics::_bitCount_i:
twisti@1078 1908 push(_gvn.transform(new (C, 2) PopCountINode(pop())));
twisti@1078 1909 break;
twisti@1078 1910 case vmIntrinsics::_bitCount_l:
twisti@1078 1911 push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
twisti@1078 1912 break;
twisti@1078 1913 default:
twisti@1078 1914 ShouldNotReachHere();
twisti@1078 1915 }
twisti@1078 1916 return true;
twisti@1078 1917 }
twisti@1078 1918
duke@435 1919 //----------------------------inline_reverseBytes_int/long-------------------
twisti@1040 1920 // inline Integer.reverseBytes(int)
twisti@1040 1921 // inline Long.reverseBytes(long)
duke@435 1922 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
duke@435 1923 assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
duke@435 1924 if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
duke@435 1925 if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
duke@435 1926 _sp += arg_size(); // restore stack pointer
duke@435 1927 switch (id) {
duke@435 1928 case vmIntrinsics::_reverseBytes_i:
duke@435 1929 push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
duke@435 1930 break;
duke@435 1931 case vmIntrinsics::_reverseBytes_l:
duke@435 1932 push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
duke@435 1933 break;
duke@435 1934 default:
duke@435 1935 ;
duke@435 1936 }
duke@435 1937 return true;
duke@435 1938 }
duke@435 1939
duke@435 1940 //----------------------------inline_unsafe_access----------------------------
duke@435 1941
duke@435 1942 const static BasicType T_ADDRESS_HOLDER = T_LONG;
duke@435 1943
duke@435 1944 // Interpret Unsafe.fieldOffset cookies correctly:
duke@435 1945 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
duke@435 1946
duke@435 1947 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
duke@435 1948 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 1949
duke@435 1950 #ifndef PRODUCT
duke@435 1951 {
duke@435 1952 ResourceMark rm;
duke@435 1953 // Check the signatures.
duke@435 1954 ciSignature* sig = signature();
duke@435 1955 #ifdef ASSERT
duke@435 1956 if (!is_store) {
duke@435 1957 // Object getObject(Object base, int/long offset), etc.
duke@435 1958 BasicType rtype = sig->return_type()->basic_type();
duke@435 1959 if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
duke@435 1960 rtype = T_ADDRESS; // it is really a C void*
duke@435 1961 assert(rtype == type, "getter must return the expected value");
duke@435 1962 if (!is_native_ptr) {
duke@435 1963 assert(sig->count() == 2, "oop getter has 2 arguments");
duke@435 1964 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
duke@435 1965 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
duke@435 1966 } else {
duke@435 1967 assert(sig->count() == 1, "native getter has 1 argument");
duke@435 1968 assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
duke@435 1969 }
duke@435 1970 } else {
duke@435 1971 // void putObject(Object base, int/long offset, Object x), etc.
duke@435 1972 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
duke@435 1973 if (!is_native_ptr) {
duke@435 1974 assert(sig->count() == 3, "oop putter has 3 arguments");
duke@435 1975 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
duke@435 1976 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
duke@435 1977 } else {
duke@435 1978 assert(sig->count() == 2, "native putter has 2 arguments");
duke@435 1979 assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
duke@435 1980 }
duke@435 1981 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
duke@435 1982 if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
duke@435 1983 vtype = T_ADDRESS; // it is really a C void*
duke@435 1984 assert(vtype == type, "putter must accept the expected value");
duke@435 1985 }
duke@435 1986 #endif // ASSERT
duke@435 1987 }
duke@435 1988 #endif //PRODUCT
duke@435 1989
duke@435 1990 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 1991
duke@435 1992 int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
duke@435 1993
duke@435 1994 // Argument words: "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
duke@435 1995 int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
duke@435 1996
duke@435 1997 debug_only(int saved_sp = _sp);
duke@435 1998 _sp += nargs;
duke@435 1999
duke@435 2000 Node* val;
duke@435 2001 debug_only(val = (Node*)(uintptr_t)-1);
duke@435 2002
duke@435 2003
duke@435 2004 if (is_store) {
duke@435 2005 // Get the value being stored. (Pop it first; it was pushed last.)
duke@435 2006 switch (type) {
duke@435 2007 case T_DOUBLE:
duke@435 2008 case T_LONG:
duke@435 2009 case T_ADDRESS:
duke@435 2010 val = pop_pair();
duke@435 2011 break;
duke@435 2012 default:
duke@435 2013 val = pop();
duke@435 2014 }
duke@435 2015 }
duke@435 2016
duke@435 2017 // Build address expression. See the code in inline_unsafe_prefetch.
duke@435 2018 Node *adr;
duke@435 2019 Node *heap_base_oop = top();
duke@435 2020 if (!is_native_ptr) {
duke@435 2021 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
duke@435 2022 Node* offset = pop_pair();
duke@435 2023 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2024 Node* base = pop();
duke@435 2025 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2026 // to be plain byte offsets, which are also the same as those accepted
duke@435 2027 // by oopDesc::field_base.
duke@435 2028 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2029 "fieldOffset must be byte-scaled");
duke@435 2030 // 32-bit machines ignore the high half!
duke@435 2031 offset = ConvL2X(offset);
duke@435 2032 adr = make_unsafe_address(base, offset);
duke@435 2033 heap_base_oop = base;
duke@435 2034 } else {
duke@435 2035 Node* ptr = pop_pair();
duke@435 2036 // Adjust Java long to machine word:
duke@435 2037 ptr = ConvL2X(ptr);
duke@435 2038 adr = make_unsafe_address(NULL, ptr);
duke@435 2039 }
duke@435 2040
duke@435 2041 // Pop receiver last: it was pushed first.
duke@435 2042 Node *receiver = pop();
duke@435 2043
duke@435 2044 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2045
duke@435 2046 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2047
duke@435 2048 // First guess at the value type.
duke@435 2049 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2050
duke@435 2051 // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
duke@435 2052 // there was not enough information to nail it down.
duke@435 2053 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2054 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2055
duke@435 2056 // We will need memory barriers unless we can determine a unique
duke@435 2057 // alias category for this reference. (Note: If for some reason
duke@435 2058 // the barriers get omitted and the unsafe reference begins to "pollute"
duke@435 2059 // the alias analysis of the rest of the graph, either Compile::can_alias
duke@435 2060 // or Compile::must_alias will throw a diagnostic assert.)
duke@435 2061 bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
duke@435 2062
duke@435 2063 if (!is_store && type == T_OBJECT) {
duke@435 2064 // Attempt to infer a sharper value type from the offset and base type.
duke@435 2065 ciKlass* sharpened_klass = NULL;
duke@435 2066
duke@435 2067 // See if it is an instance field, with an object type.
duke@435 2068 if (alias_type->field() != NULL) {
duke@435 2069 assert(!is_native_ptr, "native pointer op cannot use a java address");
duke@435 2070 if (alias_type->field()->type()->is_klass()) {
duke@435 2071 sharpened_klass = alias_type->field()->type()->as_klass();
duke@435 2072 }
duke@435 2073 }
duke@435 2074
duke@435 2075 // See if it is a narrow oop array.
duke@435 2076 if (adr_type->isa_aryptr()) {
coleenp@548 2077 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes(type)) {
duke@435 2078 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
duke@435 2079 if (elem_type != NULL) {
duke@435 2080 sharpened_klass = elem_type->klass();
duke@435 2081 }
duke@435 2082 }
duke@435 2083 }
duke@435 2084
duke@435 2085 if (sharpened_klass != NULL) {
duke@435 2086 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
duke@435 2087
duke@435 2088 // Sharpen the value type.
duke@435 2089 value_type = tjp;
duke@435 2090
duke@435 2091 #ifndef PRODUCT
duke@435 2092 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 2093 tty->print(" from base type: "); adr_type->dump();
duke@435 2094 tty->print(" sharpened value: "); value_type->dump();
duke@435 2095 }
duke@435 2096 #endif
duke@435 2097 }
duke@435 2098 }
duke@435 2099
duke@435 2100 // Null check on self without removing any arguments. The argument
duke@435 2101 // null check technically happens in the wrong place, which can lead to
duke@435 2102 // invalid stack traces when the primitive is inlined into a method
duke@435 2103 // which handles NullPointerExceptions.
duke@435 2104 _sp += nargs;
duke@435 2105 do_null_check(receiver, T_OBJECT);
duke@435 2106 _sp -= nargs;
duke@435 2107 if (stopped()) {
duke@435 2108 return true;
duke@435 2109 }
duke@435 2110 // Heap pointers get a null-check from the interpreter,
duke@435 2111 // as a courtesy. However, this is not guaranteed by Unsafe,
duke@435 2112 // and it is not possible to fully distinguish unintended nulls
duke@435 2113 // from intended ones in this API.
duke@435 2114
duke@435 2115 if (is_volatile) {
duke@435 2116 // We need to emit leading and trailing CPU membars (see below) in
duke@435 2117 // addition to memory membars when is_volatile. This is a little
duke@435 2118 // too strong, but avoids the need to insert per-alias-type
duke@435 2119 // volatile membars (for stores; compare Parse::do_put_xxx), which
twisti@1040 2120 // we cannot do effectively here because we probably only have a
duke@435 2121 // rough approximation of type.
duke@435 2122 need_mem_bar = true;
duke@435 2123 // For Stores, place a memory ordering barrier now.
duke@435 2124 if (is_store)
duke@435 2125 insert_mem_bar(Op_MemBarRelease);
duke@435 2126 }
duke@435 2127
duke@435 2128 // Memory barrier to prevent normal and 'unsafe' accesses from
duke@435 2129 // bypassing each other. Happens after null checks, so the
duke@435 2130 // exception paths do not take memory state from the memory barrier,
duke@435 2131 // so there's no problems making a strong assert about mixing users
duke@435 2132 // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
duke@435 2133 // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
duke@435 2134 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2135
duke@435 2136 if (!is_store) {
duke@435 2137 Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
duke@435 2138 // load value and push onto stack
duke@435 2139 switch (type) {
duke@435 2140 case T_BOOLEAN:
duke@435 2141 case T_CHAR:
duke@435 2142 case T_BYTE:
duke@435 2143 case T_SHORT:
duke@435 2144 case T_INT:
duke@435 2145 case T_FLOAT:
duke@435 2146 case T_OBJECT:
duke@435 2147 push( p );
duke@435 2148 break;
duke@435 2149 case T_ADDRESS:
duke@435 2150 // Cast to an int type.
duke@435 2151 p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
duke@435 2152 p = ConvX2L(p);
duke@435 2153 push_pair(p);
duke@435 2154 break;
duke@435 2155 case T_DOUBLE:
duke@435 2156 case T_LONG:
duke@435 2157 push_pair( p );
duke@435 2158 break;
duke@435 2159 default: ShouldNotReachHere();
duke@435 2160 }
duke@435 2161 } else {
duke@435 2162 // place effect of store into memory
duke@435 2163 switch (type) {
duke@435 2164 case T_DOUBLE:
duke@435 2165 val = dstore_rounding(val);
duke@435 2166 break;
duke@435 2167 case T_ADDRESS:
duke@435 2168 // Repackage the long as a pointer.
duke@435 2169 val = ConvL2X(val);
duke@435 2170 val = _gvn.transform( new (C, 2) CastX2PNode(val) );
duke@435 2171 break;
duke@435 2172 }
duke@435 2173
duke@435 2174 if (type != T_OBJECT ) {
duke@435 2175 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
duke@435 2176 } else {
duke@435 2177 // Possibly an oop being stored to Java heap or native memory
duke@435 2178 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
duke@435 2179 // oop to Java heap.
never@1260 2180 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
duke@435 2181 } else {
duke@435 2182 // We can't tell at compile time if we are storing in the Java heap or outside
duke@435 2183 // of it. So we need to emit code to conditionally do the proper type of
duke@435 2184 // store.
duke@435 2185
kvn@1286 2186 IdealKit ideal(gvn(), control(), merged_memory());
kvn@1286 2187 #define __ ideal.
duke@435 2188 // QQQ who knows what probability is here??
kvn@1286 2189 __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
kvn@1286 2190 // Sync IdealKit and graphKit.
kvn@1286 2191 set_all_memory( __ merged_memory());
kvn@1286 2192 set_control(__ ctrl());
kvn@1286 2193 Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
kvn@1286 2194 // Update IdealKit memory.
kvn@1286 2195 __ set_all_memory(merged_memory());
kvn@1286 2196 __ set_ctrl(control());
kvn@1286 2197 } __ else_(); {
kvn@1286 2198 __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
kvn@1286 2199 } __ end_if();
kvn@1286 2200 // Final sync IdealKit and GraphKit.
kvn@1286 2201 sync_kit(ideal);
kvn@1286 2202 #undef __
duke@435 2203 }
duke@435 2204 }
duke@435 2205 }
duke@435 2206
duke@435 2207 if (is_volatile) {
duke@435 2208 if (!is_store)
duke@435 2209 insert_mem_bar(Op_MemBarAcquire);
duke@435 2210 else
duke@435 2211 insert_mem_bar(Op_MemBarVolatile);
duke@435 2212 }
duke@435 2213
duke@435 2214 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2215
duke@435 2216 return true;
duke@435 2217 }
duke@435 2218
duke@435 2219 //----------------------------inline_unsafe_prefetch----------------------------
duke@435 2220
duke@435 2221 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
duke@435 2222 #ifndef PRODUCT
duke@435 2223 {
duke@435 2224 ResourceMark rm;
duke@435 2225 // Check the signatures.
duke@435 2226 ciSignature* sig = signature();
duke@435 2227 #ifdef ASSERT
duke@435 2228 // Object getObject(Object base, int/long offset), etc.
duke@435 2229 BasicType rtype = sig->return_type()->basic_type();
duke@435 2230 if (!is_native_ptr) {
duke@435 2231 assert(sig->count() == 2, "oop prefetch has 2 arguments");
duke@435 2232 assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
duke@435 2233 assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
duke@435 2234 } else {
duke@435 2235 assert(sig->count() == 1, "native prefetch has 1 argument");
duke@435 2236 assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
duke@435 2237 }
duke@435 2238 #endif // ASSERT
duke@435 2239 }
duke@435 2240 #endif // !PRODUCT
duke@435 2241
duke@435 2242 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2243
duke@435 2244 // Argument words: "this" if not static, plus (oop/offset) or (lo/hi) args
duke@435 2245 int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
duke@435 2246
duke@435 2247 debug_only(int saved_sp = _sp);
duke@435 2248 _sp += nargs;
duke@435 2249
duke@435 2250 // Build address expression. See the code in inline_unsafe_access.
duke@435 2251 Node *adr;
duke@435 2252 if (!is_native_ptr) {
duke@435 2253 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
duke@435 2254 Node* offset = pop_pair();
duke@435 2255 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2256 Node* base = pop();
duke@435 2257 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2258 // to be plain byte offsets, which are also the same as those accepted
duke@435 2259 // by oopDesc::field_base.
duke@435 2260 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2261 "fieldOffset must be byte-scaled");
duke@435 2262 // 32-bit machines ignore the high half!
duke@435 2263 offset = ConvL2X(offset);
duke@435 2264 adr = make_unsafe_address(base, offset);
duke@435 2265 } else {
duke@435 2266 Node* ptr = pop_pair();
duke@435 2267 // Adjust Java long to machine word:
duke@435 2268 ptr = ConvL2X(ptr);
duke@435 2269 adr = make_unsafe_address(NULL, ptr);
duke@435 2270 }
duke@435 2271
duke@435 2272 if (is_static) {
duke@435 2273 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2274 } else {
duke@435 2275 // Pop receiver last: it was pushed first.
duke@435 2276 Node *receiver = pop();
duke@435 2277 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2278
duke@435 2279 // Null check on self without removing any arguments. The argument
duke@435 2280 // null check technically happens in the wrong place, which can lead to
duke@435 2281 // invalid stack traces when the primitive is inlined into a method
duke@435 2282 // which handles NullPointerExceptions.
duke@435 2283 _sp += nargs;
duke@435 2284 do_null_check(receiver, T_OBJECT);
duke@435 2285 _sp -= nargs;
duke@435 2286 if (stopped()) {
duke@435 2287 return true;
duke@435 2288 }
duke@435 2289 }
duke@435 2290
duke@435 2291 // Generate the read or write prefetch
duke@435 2292 Node *prefetch;
duke@435 2293 if (is_store) {
duke@435 2294 prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
duke@435 2295 } else {
duke@435 2296 prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
duke@435 2297 }
duke@435 2298 prefetch->init_req(0, control());
duke@435 2299 set_i_o(_gvn.transform(prefetch));
duke@435 2300
duke@435 2301 return true;
duke@435 2302 }
duke@435 2303
duke@435 2304 //----------------------------inline_unsafe_CAS----------------------------
duke@435 2305
duke@435 2306 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
duke@435 2307 // This basic scheme here is the same as inline_unsafe_access, but
duke@435 2308 // differs in enough details that combining them would make the code
duke@435 2309 // overly confusing. (This is a true fact! I originally combined
duke@435 2310 // them, but even I was confused by it!) As much code/comments as
duke@435 2311 // possible are retained from inline_unsafe_access though to make
twisti@1040 2312 // the correspondences clearer. - dl
duke@435 2313
duke@435 2314 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2315
duke@435 2316 #ifndef PRODUCT
duke@435 2317 {
duke@435 2318 ResourceMark rm;
duke@435 2319 // Check the signatures.
duke@435 2320 ciSignature* sig = signature();
duke@435 2321 #ifdef ASSERT
duke@435 2322 BasicType rtype = sig->return_type()->basic_type();
duke@435 2323 assert(rtype == T_BOOLEAN, "CAS must return boolean");
duke@435 2324 assert(sig->count() == 4, "CAS has 4 arguments");
duke@435 2325 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
duke@435 2326 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
duke@435 2327 #endif // ASSERT
duke@435 2328 }
duke@435 2329 #endif //PRODUCT
duke@435 2330
duke@435 2331 // number of stack slots per value argument (1 or 2)
duke@435 2332 int type_words = type2size[type];
duke@435 2333
duke@435 2334 // Cannot inline wide CAS on machines that don't support it natively
kvn@464 2335 if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
duke@435 2336 return false;
duke@435 2337
duke@435 2338 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2339
duke@435 2340 // Argument words: "this" plus oop plus offset plus oldvalue plus newvalue;
duke@435 2341 int nargs = 1 + 1 + 2 + type_words + type_words;
duke@435 2342
duke@435 2343 // pop arguments: newval, oldval, offset, base, and receiver
duke@435 2344 debug_only(int saved_sp = _sp);
duke@435 2345 _sp += nargs;
duke@435 2346 Node* newval = (type_words == 1) ? pop() : pop_pair();
duke@435 2347 Node* oldval = (type_words == 1) ? pop() : pop_pair();
duke@435 2348 Node *offset = pop_pair();
duke@435 2349 Node *base = pop();
duke@435 2350 Node *receiver = pop();
duke@435 2351 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2352
duke@435 2353 // Null check receiver.
duke@435 2354 _sp += nargs;
duke@435 2355 do_null_check(receiver, T_OBJECT);
duke@435 2356 _sp -= nargs;
duke@435 2357 if (stopped()) {
duke@435 2358 return true;
duke@435 2359 }
duke@435 2360
duke@435 2361 // Build field offset expression.
duke@435 2362 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2363 // to be plain byte offsets, which are also the same as those accepted
duke@435 2364 // by oopDesc::field_base.
duke@435 2365 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2366 // 32-bit machines ignore the high half of long offsets
duke@435 2367 offset = ConvL2X(offset);
duke@435 2368 Node* adr = make_unsafe_address(base, offset);
duke@435 2369 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2370
duke@435 2371 // (Unlike inline_unsafe_access, there seems no point in trying
duke@435 2372 // to refine types. Just use the coarse types here.
duke@435 2373 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2374 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2375 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2376 int alias_idx = C->get_alias_index(adr_type);
duke@435 2377
duke@435 2378 // Memory-model-wise, a CAS acts like a little synchronized block,
twisti@1040 2379 // so needs barriers on each side. These don't translate into
duke@435 2380 // actual barriers on most machines, but we still need rest of
duke@435 2381 // compiler to respect ordering.
duke@435 2382
duke@435 2383 insert_mem_bar(Op_MemBarRelease);
duke@435 2384 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2385
duke@435 2386 // 4984716: MemBars must be inserted before this
duke@435 2387 // memory node in order to avoid a false
duke@435 2388 // dependency which will confuse the scheduler.
duke@435 2389 Node *mem = memory(alias_idx);
duke@435 2390
duke@435 2391 // For now, we handle only those cases that actually exist: ints,
duke@435 2392 // longs, and Object. Adding others should be straightforward.
duke@435 2393 Node* cas;
duke@435 2394 switch(type) {
duke@435 2395 case T_INT:
duke@435 2396 cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
duke@435 2397 break;
duke@435 2398 case T_LONG:
duke@435 2399 cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
duke@435 2400 break;
duke@435 2401 case T_OBJECT:
coleenp@548 2402 // reference stores need a store barrier.
duke@435 2403 // (They don't if CAS fails, but it isn't worth checking.)
never@1262 2404 pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
coleenp@548 2405 #ifdef _LP64
kvn@598 2406 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@656 2407 Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
kvn@656 2408 Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
coleenp@548 2409 cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
kvn@656 2410 newval_enc, oldval_enc));
coleenp@548 2411 } else
coleenp@548 2412 #endif
kvn@656 2413 {
kvn@656 2414 cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
kvn@656 2415 }
duke@435 2416 post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
duke@435 2417 break;
duke@435 2418 default:
duke@435 2419 ShouldNotReachHere();
duke@435 2420 break;
duke@435 2421 }
duke@435 2422
duke@435 2423 // SCMemProjNodes represent the memory state of CAS. Their main
duke@435 2424 // role is to prevent CAS nodes from being optimized away when their
duke@435 2425 // results aren't used.
duke@435 2426 Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
duke@435 2427 set_memory(proj, alias_idx);
duke@435 2428
duke@435 2429 // Add the trailing membar surrounding the access
duke@435 2430 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2431 insert_mem_bar(Op_MemBarAcquire);
duke@435 2432
duke@435 2433 push(cas);
duke@435 2434 return true;
duke@435 2435 }
duke@435 2436
duke@435 2437 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
duke@435 2438 // This is another variant of inline_unsafe_access, differing in
duke@435 2439 // that it always issues store-store ("release") barrier and ensures
duke@435 2440 // store-atomicity (which only matters for "long").
duke@435 2441
duke@435 2442 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2443
duke@435 2444 #ifndef PRODUCT
duke@435 2445 {
duke@435 2446 ResourceMark rm;
duke@435 2447 // Check the signatures.
duke@435 2448 ciSignature* sig = signature();
duke@435 2449 #ifdef ASSERT
duke@435 2450 BasicType rtype = sig->return_type()->basic_type();
duke@435 2451 assert(rtype == T_VOID, "must return void");
duke@435 2452 assert(sig->count() == 3, "has 3 arguments");
duke@435 2453 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
duke@435 2454 assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
duke@435 2455 #endif // ASSERT
duke@435 2456 }
duke@435 2457 #endif //PRODUCT
duke@435 2458
duke@435 2459 // number of stack slots per value argument (1 or 2)
duke@435 2460 int type_words = type2size[type];
duke@435 2461
duke@435 2462 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2463
duke@435 2464 // Argument words: "this" plus oop plus offset plus value;
duke@435 2465 int nargs = 1 + 1 + 2 + type_words;
duke@435 2466
duke@435 2467 // pop arguments: val, offset, base, and receiver
duke@435 2468 debug_only(int saved_sp = _sp);
duke@435 2469 _sp += nargs;
duke@435 2470 Node* val = (type_words == 1) ? pop() : pop_pair();
duke@435 2471 Node *offset = pop_pair();
duke@435 2472 Node *base = pop();
duke@435 2473 Node *receiver = pop();
duke@435 2474 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2475
duke@435 2476 // Null check receiver.
duke@435 2477 _sp += nargs;
duke@435 2478 do_null_check(receiver, T_OBJECT);
duke@435 2479 _sp -= nargs;
duke@435 2480 if (stopped()) {
duke@435 2481 return true;
duke@435 2482 }
duke@435 2483
duke@435 2484 // Build field offset expression.
duke@435 2485 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2486 // 32-bit machines ignore the high half of long offsets
duke@435 2487 offset = ConvL2X(offset);
duke@435 2488 Node* adr = make_unsafe_address(base, offset);
duke@435 2489 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2490 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2491 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2492
duke@435 2493 insert_mem_bar(Op_MemBarRelease);
duke@435 2494 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2495 // Ensure that the store is atomic for longs:
duke@435 2496 bool require_atomic_access = true;
duke@435 2497 Node* store;
duke@435 2498 if (type == T_OBJECT) // reference stores need a store barrier.
never@1260 2499 store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
duke@435 2500 else {
duke@435 2501 store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
duke@435 2502 }
duke@435 2503 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2504 return true;
duke@435 2505 }
duke@435 2506
duke@435 2507 bool LibraryCallKit::inline_unsafe_allocate() {
duke@435 2508 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2509 int nargs = 1 + 1;
duke@435 2510 assert(signature()->size() == nargs-1, "alloc has 1 argument");
duke@435 2511 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 2512 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2513 Node* cls = do_null_check(argument(1), T_OBJECT);
duke@435 2514 _sp -= nargs;
duke@435 2515 if (stopped()) return true;
duke@435 2516
duke@435 2517 Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
duke@435 2518 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2519 kls = do_null_check(kls, T_OBJECT);
duke@435 2520 _sp -= nargs;
duke@435 2521 if (stopped()) return true; // argument was like int.class
duke@435 2522
duke@435 2523 // Note: The argument might still be an illegal value like
duke@435 2524 // Serializable.class or Object[].class. The runtime will handle it.
duke@435 2525 // But we must make an explicit check for initialization.
duke@435 2526 Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
duke@435 2527 Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
duke@435 2528 Node* bits = intcon(instanceKlass::fully_initialized);
duke@435 2529 Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
duke@435 2530 // The 'test' is non-zero if we need to take a slow path.
duke@435 2531
duke@435 2532 Node* obj = new_instance(kls, test);
duke@435 2533 push(obj);
duke@435 2534
duke@435 2535 return true;
duke@435 2536 }
duke@435 2537
duke@435 2538 //------------------------inline_native_time_funcs--------------
duke@435 2539 // inline code for System.currentTimeMillis() and System.nanoTime()
duke@435 2540 // these have the same type and signature
duke@435 2541 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
duke@435 2542 address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
duke@435 2543 CAST_FROM_FN_PTR(address, os::javaTimeMillis);
duke@435 2544 const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
duke@435 2545 const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
duke@435 2546 const TypePtr* no_memory_effects = NULL;
duke@435 2547 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
duke@435 2548 Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
duke@435 2549 #ifdef ASSERT
duke@435 2550 Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
duke@435 2551 assert(value_top == top(), "second value must be top");
duke@435 2552 #endif
duke@435 2553 push_pair(value);
duke@435 2554 return true;
duke@435 2555 }
duke@435 2556
duke@435 2557 //------------------------inline_native_currentThread------------------
duke@435 2558 bool LibraryCallKit::inline_native_currentThread() {
duke@435 2559 Node* junk = NULL;
duke@435 2560 push(generate_current_thread(junk));
duke@435 2561 return true;
duke@435 2562 }
duke@435 2563
duke@435 2564 //------------------------inline_native_isInterrupted------------------
duke@435 2565 bool LibraryCallKit::inline_native_isInterrupted() {
duke@435 2566 const int nargs = 1+1; // receiver + boolean
duke@435 2567 assert(nargs == arg_size(), "sanity");
duke@435 2568 // Add a fast path to t.isInterrupted(clear_int):
duke@435 2569 // (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
duke@435 2570 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
duke@435 2571 // So, in the common case that the interrupt bit is false,
duke@435 2572 // we avoid making a call into the VM. Even if the interrupt bit
duke@435 2573 // is true, if the clear_int argument is false, we avoid the VM call.
duke@435 2574 // However, if the receiver is not currentThread, we must call the VM,
duke@435 2575 // because there must be some locking done around the operation.
duke@435 2576
duke@435 2577 // We only go to the fast case code if we pass two guards.
duke@435 2578 // Paths which do not pass are accumulated in the slow_region.
duke@435 2579 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 2580 record_for_igvn(slow_region);
duke@435 2581 RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
duke@435 2582 PhiNode* result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
duke@435 2583 enum { no_int_result_path = 1,
duke@435 2584 no_clear_result_path = 2,
duke@435 2585 slow_result_path = 3
duke@435 2586 };
duke@435 2587
duke@435 2588 // (a) Receiving thread must be the current thread.
duke@435 2589 Node* rec_thr = argument(0);
duke@435 2590 Node* tls_ptr = NULL;
duke@435 2591 Node* cur_thr = generate_current_thread(tls_ptr);
duke@435 2592 Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
duke@435 2593 Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
duke@435 2594
duke@435 2595 bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
duke@435 2596 if (!known_current_thread)
duke@435 2597 generate_slow_guard(bol_thr, slow_region);
duke@435 2598
duke@435 2599 // (b) Interrupt bit on TLS must be false.
duke@435 2600 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
duke@435 2601 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
duke@435 2602 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
kvn@1222 2603 // Set the control input on the field _interrupted read to prevent it floating up.
kvn@1222 2604 Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
duke@435 2605 Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
duke@435 2606 Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
duke@435 2607
duke@435 2608 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
duke@435 2609
duke@435 2610 // First fast path: if (!TLS._interrupted) return false;
duke@435 2611 Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
duke@435 2612 result_rgn->init_req(no_int_result_path, false_bit);
duke@435 2613 result_val->init_req(no_int_result_path, intcon(0));
duke@435 2614
duke@435 2615 // drop through to next case
duke@435 2616 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
duke@435 2617
duke@435 2618 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
duke@435 2619 Node* clr_arg = argument(1);
duke@435 2620 Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
duke@435 2621 Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
duke@435 2622 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
duke@435 2623
duke@435 2624 // Second fast path: ... else if (!clear_int) return true;
duke@435 2625 Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
duke@435 2626 result_rgn->init_req(no_clear_result_path, false_arg);
duke@435 2627 result_val->init_req(no_clear_result_path, intcon(1));
duke@435 2628
duke@435 2629 // drop through to next case
duke@435 2630 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
duke@435 2631
duke@435 2632 // (d) Otherwise, go to the slow path.
duke@435 2633 slow_region->add_req(control());
duke@435 2634 set_control( _gvn.transform(slow_region) );
duke@435 2635
duke@435 2636 if (stopped()) {
duke@435 2637 // There is no slow path.
duke@435 2638 result_rgn->init_req(slow_result_path, top());
duke@435 2639 result_val->init_req(slow_result_path, top());
duke@435 2640 } else {
duke@435 2641 // non-virtual because it is a private non-static
duke@435 2642 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
duke@435 2643
duke@435 2644 Node* slow_val = set_results_for_java_call(slow_call);
duke@435 2645 // this->control() comes from set_results_for_java_call
duke@435 2646
duke@435 2647 // If we know that the result of the slow call will be true, tell the optimizer!
duke@435 2648 if (known_current_thread) slow_val = intcon(1);
duke@435 2649
duke@435 2650 Node* fast_io = slow_call->in(TypeFunc::I_O);
duke@435 2651 Node* fast_mem = slow_call->in(TypeFunc::Memory);
duke@435 2652 // These two phis are pre-filled with copies of of the fast IO and Memory
duke@435 2653 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
duke@435 2654 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
duke@435 2655
duke@435 2656 result_rgn->init_req(slow_result_path, control());
duke@435 2657 io_phi ->init_req(slow_result_path, i_o());
duke@435 2658 mem_phi ->init_req(slow_result_path, reset_memory());
duke@435 2659 result_val->init_req(slow_result_path, slow_val);
duke@435 2660
duke@435 2661 set_all_memory( _gvn.transform(mem_phi) );
duke@435 2662 set_i_o( _gvn.transform(io_phi) );
duke@435 2663 }
duke@435 2664
duke@435 2665 push_result(result_rgn, result_val);
duke@435 2666 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 2667
duke@435 2668 return true;
duke@435 2669 }
duke@435 2670
duke@435 2671 //---------------------------load_mirror_from_klass----------------------------
duke@435 2672 // Given a klass oop, load its java mirror (a java.lang.Class oop).
duke@435 2673 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
duke@435 2674 Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
duke@435 2675 return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 2676 }
duke@435 2677
duke@435 2678 //-----------------------load_klass_from_mirror_common-------------------------
duke@435 2679 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
duke@435 2680 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
duke@435 2681 // and branch to the given path on the region.
duke@435 2682 // If never_see_null, take an uncommon trap on null, so we can optimistically
duke@435 2683 // compile for the non-null case.
duke@435 2684 // If the region is NULL, force never_see_null = true.
duke@435 2685 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
duke@435 2686 bool never_see_null,
duke@435 2687 int nargs,
duke@435 2688 RegionNode* region,
duke@435 2689 int null_path,
duke@435 2690 int offset) {
duke@435 2691 if (region == NULL) never_see_null = true;
duke@435 2692 Node* p = basic_plus_adr(mirror, offset);
duke@435 2693 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
kvn@599 2694 Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
duke@435 2695 _sp += nargs; // any deopt will start just before call to enclosing method
duke@435 2696 Node* null_ctl = top();
duke@435 2697 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 2698 if (region != NULL) {
duke@435 2699 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
duke@435 2700 region->init_req(null_path, null_ctl);
duke@435 2701 } else {
duke@435 2702 assert(null_ctl == top(), "no loose ends");
duke@435 2703 }
duke@435 2704 _sp -= nargs;
duke@435 2705 return kls;
duke@435 2706 }
duke@435 2707
duke@435 2708 //--------------------(inline_native_Class_query helpers)---------------------
duke@435 2709 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
duke@435 2710 // Fall through if (mods & mask) == bits, take the guard otherwise.
duke@435 2711 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
duke@435 2712 // Branch around if the given klass has the given modifier bit set.
duke@435 2713 // Like generate_guard, adds a new path onto the region.
duke@435 2714 Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
duke@435 2715 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
duke@435 2716 Node* mask = intcon(modifier_mask);
duke@435 2717 Node* bits = intcon(modifier_bits);
duke@435 2718 Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
duke@435 2719 Node* cmp = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
duke@435 2720 Node* bol = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
duke@435 2721 return generate_fair_guard(bol, region);
duke@435 2722 }
duke@435 2723 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
duke@435 2724 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
duke@435 2725 }
duke@435 2726
duke@435 2727 //-------------------------inline_native_Class_query-------------------
duke@435 2728 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
duke@435 2729 int nargs = 1+0; // just the Class mirror, in most cases
duke@435 2730 const Type* return_type = TypeInt::BOOL;
duke@435 2731 Node* prim_return_value = top(); // what happens if it's a primitive class?
duke@435 2732 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 2733 bool expect_prim = false; // most of these guys expect to work on refs
duke@435 2734
duke@435 2735 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
duke@435 2736
duke@435 2737 switch (id) {
duke@435 2738 case vmIntrinsics::_isInstance:
duke@435 2739 nargs = 1+1; // the Class mirror, plus the object getting queried about
duke@435 2740 // nothing is an instance of a primitive type
duke@435 2741 prim_return_value = intcon(0);
duke@435 2742 break;
duke@435 2743 case vmIntrinsics::_getModifiers:
duke@435 2744 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 2745 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
duke@435 2746 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
duke@435 2747 break;
duke@435 2748 case vmIntrinsics::_isInterface:
duke@435 2749 prim_return_value = intcon(0);
duke@435 2750 break;
duke@435 2751 case vmIntrinsics::_isArray:
duke@435 2752 prim_return_value = intcon(0);
duke@435 2753 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
duke@435 2754 break;
duke@435 2755 case vmIntrinsics::_isPrimitive:
duke@435 2756 prim_return_value = intcon(1);
duke@435 2757 expect_prim = true; // obviously
duke@435 2758 break;
duke@435 2759 case vmIntrinsics::_getSuperclass:
duke@435 2760 prim_return_value = null();
duke@435 2761 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 2762 break;
duke@435 2763 case vmIntrinsics::_getComponentType:
duke@435 2764 prim_return_value = null();
duke@435 2765 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 2766 break;
duke@435 2767 case vmIntrinsics::_getClassAccessFlags:
duke@435 2768 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 2769 return_type = TypeInt::INT; // not bool! 6297094
duke@435 2770 break;
duke@435 2771 default:
duke@435 2772 ShouldNotReachHere();
duke@435 2773 }
duke@435 2774
duke@435 2775 Node* mirror = argument(0);
duke@435 2776 Node* obj = (nargs <= 1)? top(): argument(1);
duke@435 2777
duke@435 2778 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
duke@435 2779 if (mirror_con == NULL) return false; // cannot happen?
duke@435 2780
duke@435 2781 #ifndef PRODUCT
duke@435 2782 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 2783 ciType* k = mirror_con->java_mirror_type();
duke@435 2784 if (k) {
duke@435 2785 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
duke@435 2786 k->print_name();
duke@435 2787 tty->cr();
duke@435 2788 }
duke@435 2789 }
duke@435 2790 #endif
duke@435 2791
duke@435 2792 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
duke@435 2793 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 2794 record_for_igvn(region);
duke@435 2795 PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
duke@435 2796
duke@435 2797 // The mirror will never be null of Reflection.getClassAccessFlags, however
duke@435 2798 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
duke@435 2799 // if it is. See bug 4774291.
duke@435 2800
duke@435 2801 // For Reflection.getClassAccessFlags(), the null check occurs in
duke@435 2802 // the wrong place; see inline_unsafe_access(), above, for a similar
duke@435 2803 // situation.
duke@435 2804 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2805 mirror = do_null_check(mirror, T_OBJECT);
duke@435 2806 _sp -= nargs;
duke@435 2807 // If mirror or obj is dead, only null-path is taken.
duke@435 2808 if (stopped()) return true;
duke@435 2809
duke@435 2810 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
duke@435 2811
duke@435 2812 // Now load the mirror's klass metaobject, and null-check it.
duke@435 2813 // Side-effects region with the control path if the klass is null.
duke@435 2814 Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
duke@435 2815 region, _prim_path);
duke@435 2816 // If kls is null, we have a primitive mirror.
duke@435 2817 phi->init_req(_prim_path, prim_return_value);
duke@435 2818 if (stopped()) { push_result(region, phi); return true; }
duke@435 2819
duke@435 2820 Node* p; // handy temp
duke@435 2821 Node* null_ctl;
duke@435 2822
duke@435 2823 // Now that we have the non-null klass, we can perform the real query.
duke@435 2824 // For constant classes, the query will constant-fold in LoadNode::Value.
duke@435 2825 Node* query_value = top();
duke@435 2826 switch (id) {
duke@435 2827 case vmIntrinsics::_isInstance:
duke@435 2828 // nothing is an instance of a primitive type
duke@435 2829 query_value = gen_instanceof(obj, kls);
duke@435 2830 break;
duke@435 2831
duke@435 2832 case vmIntrinsics::_getModifiers:
duke@435 2833 p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
duke@435 2834 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 2835 break;
duke@435 2836
duke@435 2837 case vmIntrinsics::_isInterface:
duke@435 2838 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 2839 if (generate_interface_guard(kls, region) != NULL)
duke@435 2840 // A guard was added. If the guard is taken, it was an interface.
duke@435 2841 phi->add_req(intcon(1));
duke@435 2842 // If we fall through, it's a plain class.
duke@435 2843 query_value = intcon(0);
duke@435 2844 break;
duke@435 2845
duke@435 2846 case vmIntrinsics::_isArray:
duke@435 2847 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
duke@435 2848 if (generate_array_guard(kls, region) != NULL)
duke@435 2849 // A guard was added. If the guard is taken, it was an array.
duke@435 2850 phi->add_req(intcon(1));
duke@435 2851 // If we fall through, it's a plain class.
duke@435 2852 query_value = intcon(0);
duke@435 2853 break;
duke@435 2854
duke@435 2855 case vmIntrinsics::_isPrimitive:
duke@435 2856 query_value = intcon(0); // "normal" path produces false
duke@435 2857 break;
duke@435 2858
duke@435 2859 case vmIntrinsics::_getSuperclass:
duke@435 2860 // The rules here are somewhat unfortunate, but we can still do better
duke@435 2861 // with random logic than with a JNI call.
duke@435 2862 // Interfaces store null or Object as _super, but must report null.
duke@435 2863 // Arrays store an intermediate super as _super, but must report Object.
duke@435 2864 // Other types can report the actual _super.
duke@435 2865 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 2866 if (generate_interface_guard(kls, region) != NULL)
duke@435 2867 // A guard was added. If the guard is taken, it was an interface.
duke@435 2868 phi->add_req(null());
duke@435 2869 if (generate_array_guard(kls, region) != NULL)
duke@435 2870 // A guard was added. If the guard is taken, it was an array.
duke@435 2871 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
duke@435 2872 // If we fall through, it's a plain class. Get its _super.
duke@435 2873 p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
kvn@599 2874 kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
duke@435 2875 null_ctl = top();
duke@435 2876 kls = null_check_oop(kls, &null_ctl);
duke@435 2877 if (null_ctl != top()) {
duke@435 2878 // If the guard is taken, Object.superClass is null (both klass and mirror).
duke@435 2879 region->add_req(null_ctl);
duke@435 2880 phi ->add_req(null());
duke@435 2881 }
duke@435 2882 if (!stopped()) {
duke@435 2883 query_value = load_mirror_from_klass(kls);
duke@435 2884 }
duke@435 2885 break;
duke@435 2886
duke@435 2887 case vmIntrinsics::_getComponentType:
duke@435 2888 if (generate_array_guard(kls, region) != NULL) {
duke@435 2889 // Be sure to pin the oop load to the guard edge just created:
duke@435 2890 Node* is_array_ctrl = region->in(region->req()-1);
duke@435 2891 Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
duke@435 2892 Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 2893 phi->add_req(cmo);
duke@435 2894 }
duke@435 2895 query_value = null(); // non-array case is null
duke@435 2896 break;
duke@435 2897
duke@435 2898 case vmIntrinsics::_getClassAccessFlags:
duke@435 2899 p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
duke@435 2900 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 2901 break;
duke@435 2902
duke@435 2903 default:
duke@435 2904 ShouldNotReachHere();
duke@435 2905 }
duke@435 2906
duke@435 2907 // Fall-through is the normal case of a query to a real class.
duke@435 2908 phi->init_req(1, query_value);
duke@435 2909 region->init_req(1, control());
duke@435 2910
duke@435 2911 push_result(region, phi);
duke@435 2912 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 2913
duke@435 2914 return true;
duke@435 2915 }
duke@435 2916
duke@435 2917 //--------------------------inline_native_subtype_check------------------------
duke@435 2918 // This intrinsic takes the JNI calls out of the heart of
duke@435 2919 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
duke@435 2920 bool LibraryCallKit::inline_native_subtype_check() {
duke@435 2921 int nargs = 1+1; // the Class mirror, plus the other class getting examined
duke@435 2922
duke@435 2923 // Pull both arguments off the stack.
duke@435 2924 Node* args[2]; // two java.lang.Class mirrors: superc, subc
duke@435 2925 args[0] = argument(0);
duke@435 2926 args[1] = argument(1);
duke@435 2927 Node* klasses[2]; // corresponding Klasses: superk, subk
duke@435 2928 klasses[0] = klasses[1] = top();
duke@435 2929
duke@435 2930 enum {
duke@435 2931 // A full decision tree on {superc is prim, subc is prim}:
duke@435 2932 _prim_0_path = 1, // {P,N} => false
duke@435 2933 // {P,P} & superc!=subc => false
duke@435 2934 _prim_same_path, // {P,P} & superc==subc => true
duke@435 2935 _prim_1_path, // {N,P} => false
duke@435 2936 _ref_subtype_path, // {N,N} & subtype check wins => true
duke@435 2937 _both_ref_path, // {N,N} & subtype check loses => false
duke@435 2938 PATH_LIMIT
duke@435 2939 };
duke@435 2940
duke@435 2941 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 2942 Node* phi = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
duke@435 2943 record_for_igvn(region);
duke@435 2944
duke@435 2945 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
duke@435 2946 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
duke@435 2947 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
duke@435 2948
duke@435 2949 // First null-check both mirrors and load each mirror's klass metaobject.
duke@435 2950 int which_arg;
duke@435 2951 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 2952 Node* arg = args[which_arg];
duke@435 2953 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2954 arg = do_null_check(arg, T_OBJECT);
duke@435 2955 _sp -= nargs;
duke@435 2956 if (stopped()) break;
duke@435 2957 args[which_arg] = _gvn.transform(arg);
duke@435 2958
duke@435 2959 Node* p = basic_plus_adr(arg, class_klass_offset);
kvn@599 2960 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
duke@435 2961 klasses[which_arg] = _gvn.transform(kls);
duke@435 2962 }
duke@435 2963
duke@435 2964 // Having loaded both klasses, test each for null.
duke@435 2965 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 2966 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 2967 Node* kls = klasses[which_arg];
duke@435 2968 Node* null_ctl = top();
duke@435 2969 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2970 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 2971 _sp -= nargs;
duke@435 2972 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
duke@435 2973 region->init_req(prim_path, null_ctl);
duke@435 2974 if (stopped()) break;
duke@435 2975 klasses[which_arg] = kls;
duke@435 2976 }
duke@435 2977
duke@435 2978 if (!stopped()) {
duke@435 2979 // now we have two reference types, in klasses[0..1]
duke@435 2980 Node* subk = klasses[1]; // the argument to isAssignableFrom
duke@435 2981 Node* superk = klasses[0]; // the receiver
duke@435 2982 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
duke@435 2983 // now we have a successful reference subtype check
duke@435 2984 region->set_req(_ref_subtype_path, control());
duke@435 2985 }
duke@435 2986
duke@435 2987 // If both operands are primitive (both klasses null), then
duke@435 2988 // we must return true when they are identical primitives.
duke@435 2989 // It is convenient to test this after the first null klass check.
duke@435 2990 set_control(region->in(_prim_0_path)); // go back to first null check
duke@435 2991 if (!stopped()) {
duke@435 2992 // Since superc is primitive, make a guard for the superc==subc case.
duke@435 2993 Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
duke@435 2994 Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
duke@435 2995 generate_guard(bol_eq, region, PROB_FAIR);
duke@435 2996 if (region->req() == PATH_LIMIT+1) {
duke@435 2997 // A guard was added. If the added guard is taken, superc==subc.
duke@435 2998 region->swap_edges(PATH_LIMIT, _prim_same_path);
duke@435 2999 region->del_req(PATH_LIMIT);
duke@435 3000 }
duke@435 3001 region->set_req(_prim_0_path, control()); // Not equal after all.
duke@435 3002 }
duke@435 3003
duke@435 3004 // these are the only paths that produce 'true':
duke@435 3005 phi->set_req(_prim_same_path, intcon(1));
duke@435 3006 phi->set_req(_ref_subtype_path, intcon(1));
duke@435 3007
duke@435 3008 // pull together the cases:
duke@435 3009 assert(region->req() == PATH_LIMIT, "sane region");
duke@435 3010 for (uint i = 1; i < region->req(); i++) {
duke@435 3011 Node* ctl = region->in(i);
duke@435 3012 if (ctl == NULL || ctl == top()) {
duke@435 3013 region->set_req(i, top());
duke@435 3014 phi ->set_req(i, top());
duke@435 3015 } else if (phi->in(i) == NULL) {
duke@435 3016 phi->set_req(i, intcon(0)); // all other paths produce 'false'
duke@435 3017 }
duke@435 3018 }
duke@435 3019
duke@435 3020 set_control(_gvn.transform(region));
duke@435 3021 push(_gvn.transform(phi));
duke@435 3022
duke@435 3023 return true;
duke@435 3024 }
duke@435 3025
duke@435 3026 //---------------------generate_array_guard_common------------------------
duke@435 3027 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 3028 bool obj_array, bool not_array) {
duke@435 3029 // If obj_array/non_array==false/false:
duke@435 3030 // Branch around if the given klass is in fact an array (either obj or prim).
duke@435 3031 // If obj_array/non_array==false/true:
duke@435 3032 // Branch around if the given klass is not an array klass of any kind.
duke@435 3033 // If obj_array/non_array==true/true:
duke@435 3034 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
duke@435 3035 // If obj_array/non_array==true/false:
duke@435 3036 // Branch around if the kls is an oop array (Object[] or subtype)
duke@435 3037 //
duke@435 3038 // Like generate_guard, adds a new path onto the region.
duke@435 3039 jint layout_con = 0;
duke@435 3040 Node* layout_val = get_layout_helper(kls, layout_con);
duke@435 3041 if (layout_val == NULL) {
duke@435 3042 bool query = (obj_array
duke@435 3043 ? Klass::layout_helper_is_objArray(layout_con)
duke@435 3044 : Klass::layout_helper_is_javaArray(layout_con));
duke@435 3045 if (query == not_array) {
duke@435 3046 return NULL; // never a branch
duke@435 3047 } else { // always a branch
duke@435 3048 Node* always_branch = control();
duke@435 3049 if (region != NULL)
duke@435 3050 region->add_req(always_branch);
duke@435 3051 set_control(top());
duke@435 3052 return always_branch;
duke@435 3053 }
duke@435 3054 }
duke@435 3055 // Now test the correct condition.
duke@435 3056 jint nval = (obj_array
duke@435 3057 ? ((jint)Klass::_lh_array_tag_type_value
duke@435 3058 << Klass::_lh_array_tag_shift)
duke@435 3059 : Klass::_lh_neutral_value);
duke@435 3060 Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
duke@435 3061 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
duke@435 3062 // invert the test if we are looking for a non-array
duke@435 3063 if (not_array) btest = BoolTest(btest).negate();
duke@435 3064 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
duke@435 3065 return generate_fair_guard(bol, region);
duke@435 3066 }
duke@435 3067
duke@435 3068
duke@435 3069 //-----------------------inline_native_newArray--------------------------
duke@435 3070 bool LibraryCallKit::inline_native_newArray() {
duke@435 3071 int nargs = 2;
duke@435 3072 Node* mirror = argument(0);
duke@435 3073 Node* count_val = argument(1);
duke@435 3074
duke@435 3075 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3076 mirror = do_null_check(mirror, T_OBJECT);
duke@435 3077 _sp -= nargs;
kvn@598 3078 // If mirror or obj is dead, only null-path is taken.
kvn@598 3079 if (stopped()) return true;
duke@435 3080
duke@435 3081 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
duke@435 3082 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3083 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3084 TypeInstPtr::NOTNULL);
duke@435 3085 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3086 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3087 TypePtr::BOTTOM);
duke@435 3088
duke@435 3089 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3090 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
duke@435 3091 nargs,
duke@435 3092 result_reg, _slow_path);
duke@435 3093 Node* normal_ctl = control();
duke@435 3094 Node* no_array_ctl = result_reg->in(_slow_path);
duke@435 3095
duke@435 3096 // Generate code for the slow case. We make a call to newArray().
duke@435 3097 set_control(no_array_ctl);
duke@435 3098 if (!stopped()) {
duke@435 3099 // Either the input type is void.class, or else the
duke@435 3100 // array klass has not yet been cached. Either the
duke@435 3101 // ensuing call will throw an exception, or else it
duke@435 3102 // will cache the array klass for next time.
duke@435 3103 PreserveJVMState pjvms(this);
duke@435 3104 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
duke@435 3105 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3106 // this->control() comes from set_results_for_java_call
duke@435 3107 result_reg->set_req(_slow_path, control());
duke@435 3108 result_val->set_req(_slow_path, slow_result);
duke@435 3109 result_io ->set_req(_slow_path, i_o());
duke@435 3110 result_mem->set_req(_slow_path, reset_memory());
duke@435 3111 }
duke@435 3112
duke@435 3113 set_control(normal_ctl);
duke@435 3114 if (!stopped()) {
duke@435 3115 // Normal case: The array type has been cached in the java.lang.Class.
duke@435 3116 // The following call works fine even if the array type is polymorphic.
duke@435 3117 // It could be a dynamic mix of int[], boolean[], Object[], etc.
cfang@1165 3118 Node* obj = new_array(klass_node, count_val, nargs);
duke@435 3119 result_reg->init_req(_normal_path, control());
duke@435 3120 result_val->init_req(_normal_path, obj);
duke@435 3121 result_io ->init_req(_normal_path, i_o());
duke@435 3122 result_mem->init_req(_normal_path, reset_memory());
duke@435 3123 }
duke@435 3124
duke@435 3125 // Return the combined state.
duke@435 3126 set_i_o( _gvn.transform(result_io) );
duke@435 3127 set_all_memory( _gvn.transform(result_mem) );
duke@435 3128 push_result(result_reg, result_val);
duke@435 3129 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3130
duke@435 3131 return true;
duke@435 3132 }
duke@435 3133
duke@435 3134 //----------------------inline_native_getLength--------------------------
duke@435 3135 bool LibraryCallKit::inline_native_getLength() {
duke@435 3136 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3137
duke@435 3138 int nargs = 1;
duke@435 3139 Node* array = argument(0);
duke@435 3140
duke@435 3141 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3142 array = do_null_check(array, T_OBJECT);
duke@435 3143 _sp -= nargs;
duke@435 3144
duke@435 3145 // If array is dead, only null-path is taken.
duke@435 3146 if (stopped()) return true;
duke@435 3147
duke@435 3148 // Deoptimize if it is a non-array.
duke@435 3149 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
duke@435 3150
duke@435 3151 if (non_array != NULL) {
duke@435 3152 PreserveJVMState pjvms(this);
duke@435 3153 set_control(non_array);
duke@435 3154 _sp += nargs; // push the arguments back on the stack
duke@435 3155 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 3156 Deoptimization::Action_maybe_recompile);
duke@435 3157 }
duke@435 3158
duke@435 3159 // If control is dead, only non-array-path is taken.
duke@435 3160 if (stopped()) return true;
duke@435 3161
duke@435 3162 // The works fine even if the array type is polymorphic.
duke@435 3163 // It could be a dynamic mix of int[], boolean[], Object[], etc.
duke@435 3164 push( load_array_length(array) );
duke@435 3165
duke@435 3166 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3167
duke@435 3168 return true;
duke@435 3169 }
duke@435 3170
duke@435 3171 //------------------------inline_array_copyOf----------------------------
duke@435 3172 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
duke@435 3173 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3174
duke@435 3175 // Restore the stack and pop off the arguments.
duke@435 3176 int nargs = 3 + (is_copyOfRange? 1: 0);
duke@435 3177 Node* original = argument(0);
duke@435 3178 Node* start = is_copyOfRange? argument(1): intcon(0);
duke@435 3179 Node* end = is_copyOfRange? argument(2): argument(1);
duke@435 3180 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
duke@435 3181
duke@435 3182 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3183 array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
duke@435 3184 original = do_null_check(original, T_OBJECT);
duke@435 3185 _sp -= nargs;
duke@435 3186
duke@435 3187 // Check if a null path was taken unconditionally.
duke@435 3188 if (stopped()) return true;
duke@435 3189
duke@435 3190 Node* orig_length = load_array_length(original);
duke@435 3191
duke@435 3192 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
duke@435 3193 NULL, 0);
duke@435 3194 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3195 klass_node = do_null_check(klass_node, T_OBJECT);
duke@435 3196 _sp -= nargs;
duke@435 3197
duke@435 3198 RegionNode* bailout = new (C, 1) RegionNode(1);
duke@435 3199 record_for_igvn(bailout);
duke@435 3200
duke@435 3201 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
duke@435 3202 // Bail out if that is so.
duke@435 3203 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
duke@435 3204 if (not_objArray != NULL) {
duke@435 3205 // Improve the klass node's type from the new optimistic assumption:
duke@435 3206 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
duke@435 3207 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
duke@435 3208 Node* cast = new (C, 2) CastPPNode(klass_node, akls);
duke@435 3209 cast->init_req(0, control());
duke@435 3210 klass_node = _gvn.transform(cast);
duke@435 3211 }
duke@435 3212
duke@435 3213 // Bail out if either start or end is negative.
duke@435 3214 generate_negative_guard(start, bailout, &start);
duke@435 3215 generate_negative_guard(end, bailout, &end);
duke@435 3216
duke@435 3217 Node* length = end;
duke@435 3218 if (_gvn.type(start) != TypeInt::ZERO) {
duke@435 3219 length = _gvn.transform( new (C, 3) SubINode(end, start) );
duke@435 3220 }
duke@435 3221
duke@435 3222 // Bail out if length is negative.
duke@435 3223 // ...Not needed, since the new_array will throw the right exception.
duke@435 3224 //generate_negative_guard(length, bailout, &length);
duke@435 3225
duke@435 3226 if (bailout->req() > 1) {
duke@435 3227 PreserveJVMState pjvms(this);
duke@435 3228 set_control( _gvn.transform(bailout) );
duke@435 3229 _sp += nargs; // push the arguments back on the stack
duke@435 3230 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 3231 Deoptimization::Action_maybe_recompile);
duke@435 3232 }
duke@435 3233
duke@435 3234 if (!stopped()) {
duke@435 3235 // How many elements will we copy from the original?
duke@435 3236 // The answer is MinI(orig_length - start, length).
duke@435 3237 Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
duke@435 3238 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
duke@435 3239
kvn@1268 3240 const bool raw_mem_only = true;
kvn@1268 3241 Node* newcopy = new_array(klass_node, length, nargs, raw_mem_only);
duke@435 3242
duke@435 3243 // Generate a direct call to the right arraycopy function(s).
duke@435 3244 // We know the copy is disjoint but we might not know if the
duke@435 3245 // oop stores need checking.
duke@435 3246 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
duke@435 3247 // This will fail a store-check if x contains any non-nulls.
duke@435 3248 bool disjoint_bases = true;
duke@435 3249 bool length_never_negative = true;
duke@435 3250 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
duke@435 3251 original, start, newcopy, intcon(0), moved,
kvn@1268 3252 disjoint_bases, length_never_negative);
duke@435 3253
duke@435 3254 push(newcopy);
duke@435 3255 }
duke@435 3256
duke@435 3257 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3258
duke@435 3259 return true;
duke@435 3260 }
duke@435 3261
duke@435 3262
duke@435 3263 //----------------------generate_virtual_guard---------------------------
duke@435 3264 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
duke@435 3265 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
duke@435 3266 RegionNode* slow_region) {
duke@435 3267 ciMethod* method = callee();
duke@435 3268 int vtable_index = method->vtable_index();
duke@435 3269 // Get the methodOop out of the appropriate vtable entry.
duke@435 3270 int entry_offset = (instanceKlass::vtable_start_offset() +
duke@435 3271 vtable_index*vtableEntry::size()) * wordSize +
duke@435 3272 vtableEntry::method_offset_in_bytes();
duke@435 3273 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
duke@435 3274 Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
duke@435 3275
duke@435 3276 // Compare the target method with the expected method (e.g., Object.hashCode).
duke@435 3277 const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
duke@435 3278
duke@435 3279 Node* native_call = makecon(native_call_addr);
duke@435 3280 Node* chk_native = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
duke@435 3281 Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
duke@435 3282
duke@435 3283 return generate_slow_guard(test_native, slow_region);
duke@435 3284 }
duke@435 3285
duke@435 3286 //-----------------------generate_method_call----------------------------
duke@435 3287 // Use generate_method_call to make a slow-call to the real
duke@435 3288 // method if the fast path fails. An alternative would be to
duke@435 3289 // use a stub like OptoRuntime::slow_arraycopy_Java.
duke@435 3290 // This only works for expanding the current library call,
duke@435 3291 // not another intrinsic. (E.g., don't use this for making an
duke@435 3292 // arraycopy call inside of the copyOf intrinsic.)
duke@435 3293 CallJavaNode*
duke@435 3294 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
duke@435 3295 // When compiling the intrinsic method itself, do not use this technique.
duke@435 3296 guarantee(callee() != C->method(), "cannot make slow-call to self");
duke@435 3297
duke@435 3298 ciMethod* method = callee();
duke@435 3299 // ensure the JVMS we have will be correct for this call
duke@435 3300 guarantee(method_id == method->intrinsic_id(), "must match");
duke@435 3301
duke@435 3302 const TypeFunc* tf = TypeFunc::make(method);
duke@435 3303 int tfdc = tf->domain()->cnt();
duke@435 3304 CallJavaNode* slow_call;
duke@435 3305 if (is_static) {
duke@435 3306 assert(!is_virtual, "");
duke@435 3307 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3308 SharedRuntime::get_resolve_static_call_stub(),
duke@435 3309 method, bci());
duke@435 3310 } else if (is_virtual) {
duke@435 3311 null_check_receiver(method);
duke@435 3312 int vtable_index = methodOopDesc::invalid_vtable_index;
duke@435 3313 if (UseInlineCaches) {
duke@435 3314 // Suppress the vtable call
duke@435 3315 } else {
duke@435 3316 // hashCode and clone are not a miranda methods,
duke@435 3317 // so the vtable index is fixed.
duke@435 3318 // No need to use the linkResolver to get it.
duke@435 3319 vtable_index = method->vtable_index();
duke@435 3320 }
duke@435 3321 slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
duke@435 3322 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 3323 method, vtable_index, bci());
duke@435 3324 } else { // neither virtual nor static: opt_virtual
duke@435 3325 null_check_receiver(method);
duke@435 3326 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3327 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 3328 method, bci());
duke@435 3329 slow_call->set_optimized_virtual(true);
duke@435 3330 }
duke@435 3331 set_arguments_for_java_call(slow_call);
duke@435 3332 set_edges_for_java_call(slow_call);
duke@435 3333 return slow_call;
duke@435 3334 }
duke@435 3335
duke@435 3336
duke@435 3337 //------------------------------inline_native_hashcode--------------------
duke@435 3338 // Build special case code for calls to hashCode on an object.
duke@435 3339 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
duke@435 3340 assert(is_static == callee()->is_static(), "correct intrinsic selection");
duke@435 3341 assert(!(is_virtual && is_static), "either virtual, special, or static");
duke@435 3342
duke@435 3343 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
duke@435 3344
duke@435 3345 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3346 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3347 TypeInt::INT);
duke@435 3348 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3349 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3350 TypePtr::BOTTOM);
duke@435 3351 Node* obj = NULL;
duke@435 3352 if (!is_static) {
duke@435 3353 // Check for hashing null object
duke@435 3354 obj = null_check_receiver(callee());
duke@435 3355 if (stopped()) return true; // unconditionally null
duke@435 3356 result_reg->init_req(_null_path, top());
duke@435 3357 result_val->init_req(_null_path, top());
duke@435 3358 } else {
duke@435 3359 // Do a null check, and return zero if null.
duke@435 3360 // System.identityHashCode(null) == 0
duke@435 3361 obj = argument(0);
duke@435 3362 Node* null_ctl = top();
duke@435 3363 obj = null_check_oop(obj, &null_ctl);
duke@435 3364 result_reg->init_req(_null_path, null_ctl);
duke@435 3365 result_val->init_req(_null_path, _gvn.intcon(0));
duke@435 3366 }
duke@435 3367
duke@435 3368 // Unconditionally null? Then return right away.
duke@435 3369 if (stopped()) {
duke@435 3370 set_control( result_reg->in(_null_path) );
duke@435 3371 if (!stopped())
duke@435 3372 push( result_val ->in(_null_path) );
duke@435 3373 return true;
duke@435 3374 }
duke@435 3375
duke@435 3376 // After null check, get the object's klass.
duke@435 3377 Node* obj_klass = load_object_klass(obj);
duke@435 3378
duke@435 3379 // This call may be virtual (invokevirtual) or bound (invokespecial).
duke@435 3380 // For each case we generate slightly different code.
duke@435 3381
duke@435 3382 // We only go to the fast case code if we pass a number of guards. The
duke@435 3383 // paths which do not pass are accumulated in the slow_region.
duke@435 3384 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 3385 record_for_igvn(slow_region);
duke@435 3386
duke@435 3387 // If this is a virtual call, we generate a funny guard. We pull out
duke@435 3388 // the vtable entry corresponding to hashCode() from the target object.
duke@435 3389 // If the target method which we are calling happens to be the native
duke@435 3390 // Object hashCode() method, we pass the guard. We do not need this
duke@435 3391 // guard for non-virtual calls -- the caller is known to be the native
duke@435 3392 // Object hashCode().
duke@435 3393 if (is_virtual) {
duke@435 3394 generate_virtual_guard(obj_klass, slow_region);
duke@435 3395 }
duke@435 3396
duke@435 3397 // Get the header out of the object, use LoadMarkNode when available
duke@435 3398 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
duke@435 3399 Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 3400 header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
duke@435 3401
duke@435 3402 // Test the header to see if it is unlocked.
duke@435 3403 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
duke@435 3404 Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
duke@435 3405 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
duke@435 3406 Node *chk_unlocked = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
duke@435 3407 Node *test_unlocked = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
duke@435 3408
duke@435 3409 generate_slow_guard(test_unlocked, slow_region);
duke@435 3410
duke@435 3411 // Get the hash value and check to see that it has been properly assigned.
duke@435 3412 // We depend on hash_mask being at most 32 bits and avoid the use of
duke@435 3413 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
duke@435 3414 // vm: see markOop.hpp.
duke@435 3415 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
duke@435 3416 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
duke@435 3417 Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
duke@435 3418 // This hack lets the hash bits live anywhere in the mark object now, as long
twisti@1040 3419 // as the shift drops the relevant bits into the low 32 bits. Note that
duke@435 3420 // Java spec says that HashCode is an int so there's no point in capturing
duke@435 3421 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
duke@435 3422 hshifted_header = ConvX2I(hshifted_header);
duke@435 3423 Node *hash_val = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
duke@435 3424
duke@435 3425 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
duke@435 3426 Node *chk_assigned = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
duke@435 3427 Node *test_assigned = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
duke@435 3428
duke@435 3429 generate_slow_guard(test_assigned, slow_region);
duke@435 3430
duke@435 3431 Node* init_mem = reset_memory();
duke@435 3432 // fill in the rest of the null path:
duke@435 3433 result_io ->init_req(_null_path, i_o());
duke@435 3434 result_mem->init_req(_null_path, init_mem);
duke@435 3435
duke@435 3436 result_val->init_req(_fast_path, hash_val);
duke@435 3437 result_reg->init_req(_fast_path, control());
duke@435 3438 result_io ->init_req(_fast_path, i_o());
duke@435 3439 result_mem->init_req(_fast_path, init_mem);
duke@435 3440
duke@435 3441 // Generate code for the slow case. We make a call to hashCode().
duke@435 3442 set_control(_gvn.transform(slow_region));
duke@435 3443 if (!stopped()) {
duke@435 3444 // No need for PreserveJVMState, because we're using up the present state.
duke@435 3445 set_all_memory(init_mem);
duke@435 3446 vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
duke@435 3447 if (is_static) hashCode_id = vmIntrinsics::_identityHashCode;
duke@435 3448 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
duke@435 3449 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3450 // this->control() comes from set_results_for_java_call
duke@435 3451 result_reg->init_req(_slow_path, control());
duke@435 3452 result_val->init_req(_slow_path, slow_result);
duke@435 3453 result_io ->set_req(_slow_path, i_o());
duke@435 3454 result_mem ->set_req(_slow_path, reset_memory());
duke@435 3455 }
duke@435 3456
duke@435 3457 // Return the combined state.
duke@435 3458 set_i_o( _gvn.transform(result_io) );
duke@435 3459 set_all_memory( _gvn.transform(result_mem) );
duke@435 3460 push_result(result_reg, result_val);
duke@435 3461
duke@435 3462 return true;
duke@435 3463 }
duke@435 3464
duke@435 3465 //---------------------------inline_native_getClass----------------------------
twisti@1040 3466 // Build special case code for calls to getClass on an object.
duke@435 3467 bool LibraryCallKit::inline_native_getClass() {
duke@435 3468 Node* obj = null_check_receiver(callee());
duke@435 3469 if (stopped()) return true;
duke@435 3470 push( load_mirror_from_klass(load_object_klass(obj)) );
duke@435 3471 return true;
duke@435 3472 }
duke@435 3473
duke@435 3474 //-----------------inline_native_Reflection_getCallerClass---------------------
duke@435 3475 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
duke@435 3476 //
duke@435 3477 // NOTE that this code must perform the same logic as
duke@435 3478 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3479 // Method.invoke() and auxiliary frames.
duke@435 3480
duke@435 3481
duke@435 3482
duke@435 3483
duke@435 3484 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
duke@435 3485 ciMethod* method = callee();
duke@435 3486
duke@435 3487 #ifndef PRODUCT
duke@435 3488 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3489 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
duke@435 3490 }
duke@435 3491 #endif
duke@435 3492
duke@435 3493 debug_only(int saved_sp = _sp);
duke@435 3494
duke@435 3495 // Argument words: (int depth)
duke@435 3496 int nargs = 1;
duke@435 3497
duke@435 3498 _sp += nargs;
duke@435 3499 Node* caller_depth_node = pop();
duke@435 3500
duke@435 3501 assert(saved_sp == _sp, "must have correct argument count");
duke@435 3502
duke@435 3503 // The depth value must be a constant in order for the runtime call
duke@435 3504 // to be eliminated.
duke@435 3505 const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
duke@435 3506 if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
duke@435 3507 #ifndef PRODUCT
duke@435 3508 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3509 tty->print_cr(" Bailing out because caller depth was not a constant");
duke@435 3510 }
duke@435 3511 #endif
duke@435 3512 return false;
duke@435 3513 }
duke@435 3514 // Note that the JVM state at this point does not include the
duke@435 3515 // getCallerClass() frame which we are trying to inline. The
duke@435 3516 // semantics of getCallerClass(), however, are that the "first"
duke@435 3517 // frame is the getCallerClass() frame, so we subtract one from the
duke@435 3518 // requested depth before continuing. We don't inline requests of
duke@435 3519 // getCallerClass(0).
duke@435 3520 int caller_depth = caller_depth_type->get_con() - 1;
duke@435 3521 if (caller_depth < 0) {
duke@435 3522 #ifndef PRODUCT
duke@435 3523 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3524 tty->print_cr(" Bailing out because caller depth was %d", caller_depth);
duke@435 3525 }
duke@435 3526 #endif
duke@435 3527 return false;
duke@435 3528 }
duke@435 3529
duke@435 3530 if (!jvms()->has_method()) {
duke@435 3531 #ifndef PRODUCT
duke@435 3532 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3533 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
duke@435 3534 }
duke@435 3535 #endif
duke@435 3536 return false;
duke@435 3537 }
duke@435 3538 int _depth = jvms()->depth(); // cache call chain depth
duke@435 3539
duke@435 3540 // Walk back up the JVM state to find the caller at the required
duke@435 3541 // depth. NOTE that this code must perform the same logic as
duke@435 3542 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3543 // Method.invoke() and auxiliary frames. Note also that depth is
duke@435 3544 // 1-based (1 is the bottom of the inlining).
duke@435 3545 int inlining_depth = _depth;
duke@435 3546 JVMState* caller_jvms = NULL;
duke@435 3547
duke@435 3548 if (inlining_depth > 0) {
duke@435 3549 caller_jvms = jvms();
duke@435 3550 assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
duke@435 3551 do {
duke@435 3552 // The following if-tests should be performed in this order
duke@435 3553 if (is_method_invoke_or_aux_frame(caller_jvms)) {
duke@435 3554 // Skip a Method.invoke() or auxiliary frame
duke@435 3555 } else if (caller_depth > 0) {
duke@435 3556 // Skip real frame
duke@435 3557 --caller_depth;
duke@435 3558 } else {
duke@435 3559 // We're done: reached desired caller after skipping.
duke@435 3560 break;
duke@435 3561 }
duke@435 3562 caller_jvms = caller_jvms->caller();
duke@435 3563 --inlining_depth;
duke@435 3564 } while (inlining_depth > 0);
duke@435 3565 }
duke@435 3566
duke@435 3567 if (inlining_depth == 0) {
duke@435 3568 #ifndef PRODUCT
duke@435 3569 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3570 tty->print_cr(" Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
duke@435 3571 tty->print_cr(" JVM state at this point:");
duke@435 3572 for (int i = _depth; i >= 1; i--) {
duke@435 3573 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3574 }
duke@435 3575 }
duke@435 3576 #endif
duke@435 3577 return false; // Reached end of inlining
duke@435 3578 }
duke@435 3579
duke@435 3580 // Acquire method holder as java.lang.Class
duke@435 3581 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
duke@435 3582 ciInstance* caller_mirror = caller_klass->java_mirror();
duke@435 3583 // Push this as a constant
duke@435 3584 push(makecon(TypeInstPtr::make(caller_mirror)));
duke@435 3585 #ifndef PRODUCT
duke@435 3586 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3587 tty->print_cr(" Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
duke@435 3588 tty->print_cr(" JVM state at this point:");
duke@435 3589 for (int i = _depth; i >= 1; i--) {
duke@435 3590 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3591 }
duke@435 3592 }
duke@435 3593 #endif
duke@435 3594 return true;
duke@435 3595 }
duke@435 3596
duke@435 3597 // Helper routine for above
duke@435 3598 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
duke@435 3599 // Is this the Method.invoke method itself?
duke@435 3600 if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
duke@435 3601 return true;
duke@435 3602
duke@435 3603 // Is this a helper, defined somewhere underneath MethodAccessorImpl.
duke@435 3604 ciKlass* k = jvms->method()->holder();
duke@435 3605 if (k->is_instance_klass()) {
duke@435 3606 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3607 for (; ik != NULL; ik = ik->super()) {
duke@435 3608 if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
duke@435 3609 ik == env()->find_system_klass(ik->name())) {
duke@435 3610 return true;
duke@435 3611 }
duke@435 3612 }
duke@435 3613 }
duke@435 3614
duke@435 3615 return false;
duke@435 3616 }
duke@435 3617
duke@435 3618 static int value_field_offset = -1; // offset of the "value" field of AtomicLongCSImpl. This is needed by
duke@435 3619 // inline_native_AtomicLong_attemptUpdate() but it has no way of
duke@435 3620 // computing it since there is no lookup field by name function in the
duke@435 3621 // CI interface. This is computed and set by inline_native_AtomicLong_get().
duke@435 3622 // Using a static variable here is safe even if we have multiple compilation
duke@435 3623 // threads because the offset is constant. At worst the same offset will be
duke@435 3624 // computed and stored multiple
duke@435 3625
duke@435 3626 bool LibraryCallKit::inline_native_AtomicLong_get() {
duke@435 3627 // Restore the stack and pop off the argument
duke@435 3628 _sp+=1;
duke@435 3629 Node *obj = pop();
duke@435 3630
duke@435 3631 // get the offset of the "value" field. Since the CI interfaces
duke@435 3632 // does not provide a way to look up a field by name, we scan the bytecodes
duke@435 3633 // to get the field index. We expect the first 2 instructions of the method
duke@435 3634 // to be:
duke@435 3635 // 0 aload_0
duke@435 3636 // 1 getfield "value"
duke@435 3637 ciMethod* method = callee();
duke@435 3638 if (value_field_offset == -1)
duke@435 3639 {
duke@435 3640 ciField* value_field;
duke@435 3641 ciBytecodeStream iter(method);
duke@435 3642 Bytecodes::Code bc = iter.next();
duke@435 3643
duke@435 3644 if ((bc != Bytecodes::_aload_0) &&
duke@435 3645 ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
duke@435 3646 return false;
duke@435 3647 bc = iter.next();
duke@435 3648 if (bc != Bytecodes::_getfield)
duke@435 3649 return false;
duke@435 3650 bool ignore;
duke@435 3651 value_field = iter.get_field(ignore);
duke@435 3652 value_field_offset = value_field->offset_in_bytes();
duke@435 3653 }
duke@435 3654
duke@435 3655 // Null check without removing any arguments.
duke@435 3656 _sp++;
duke@435 3657 obj = do_null_check(obj, T_OBJECT);
duke@435 3658 _sp--;
duke@435 3659 // Check for locking null object
duke@435 3660 if (stopped()) return true;
duke@435 3661
duke@435 3662 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
duke@435 3663 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
duke@435 3664 int alias_idx = C->get_alias_index(adr_type);
duke@435 3665
duke@435 3666 Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
duke@435 3667
duke@435 3668 push_pair(result);
duke@435 3669
duke@435 3670 return true;
duke@435 3671 }
duke@435 3672
duke@435 3673 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
duke@435 3674 // Restore the stack and pop off the arguments
duke@435 3675 _sp+=5;
duke@435 3676 Node *newVal = pop_pair();
duke@435 3677 Node *oldVal = pop_pair();
duke@435 3678 Node *obj = pop();
duke@435 3679
duke@435 3680 // we need the offset of the "value" field which was computed when
duke@435 3681 // inlining the get() method. Give up if we don't have it.
duke@435 3682 if (value_field_offset == -1)
duke@435 3683 return false;
duke@435 3684
duke@435 3685 // Null check without removing any arguments.
duke@435 3686 _sp+=5;
duke@435 3687 obj = do_null_check(obj, T_OBJECT);
duke@435 3688 _sp-=5;
duke@435 3689 // Check for locking null object
duke@435 3690 if (stopped()) return true;
duke@435 3691
duke@435 3692 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
duke@435 3693 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
duke@435 3694 int alias_idx = C->get_alias_index(adr_type);
duke@435 3695
kvn@855 3696 Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
kvn@855 3697 Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
duke@435 3698 set_memory(store_proj, alias_idx);
kvn@855 3699 Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
kvn@855 3700
kvn@855 3701 Node *result;
kvn@855 3702 // CMove node is not used to be able fold a possible check code
kvn@855 3703 // after attemptUpdate() call. This code could be transformed
kvn@855 3704 // into CMove node by loop optimizations.
kvn@855 3705 {
kvn@855 3706 RegionNode *r = new (C, 3) RegionNode(3);
kvn@855 3707 result = new (C, 3) PhiNode(r, TypeInt::BOOL);
kvn@855 3708
kvn@855 3709 Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
kvn@855 3710 Node *iftrue = opt_iff(r, iff);
kvn@855 3711 r->init_req(1, iftrue);
kvn@855 3712 result->init_req(1, intcon(1));
kvn@855 3713 result->init_req(2, intcon(0));
kvn@855 3714
kvn@855 3715 set_control(_gvn.transform(r));
kvn@855 3716 record_for_igvn(r);
kvn@855 3717
kvn@855 3718 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@855 3719 }
kvn@855 3720
kvn@855 3721 push(_gvn.transform(result));
duke@435 3722 return true;
duke@435 3723 }
duke@435 3724
duke@435 3725 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
duke@435 3726 // restore the arguments
duke@435 3727 _sp += arg_size();
duke@435 3728
duke@435 3729 switch (id) {
duke@435 3730 case vmIntrinsics::_floatToRawIntBits:
duke@435 3731 push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
duke@435 3732 break;
duke@435 3733
duke@435 3734 case vmIntrinsics::_intBitsToFloat:
duke@435 3735 push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
duke@435 3736 break;
duke@435 3737
duke@435 3738 case vmIntrinsics::_doubleToRawLongBits:
duke@435 3739 push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
duke@435 3740 break;
duke@435 3741
duke@435 3742 case vmIntrinsics::_longBitsToDouble:
duke@435 3743 push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
duke@435 3744 break;
duke@435 3745
duke@435 3746 case vmIntrinsics::_doubleToLongBits: {
duke@435 3747 Node* value = pop_pair();
duke@435 3748
duke@435 3749 // two paths (plus control) merge in a wood
duke@435 3750 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 3751 Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
duke@435 3752
duke@435 3753 Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
duke@435 3754 // Build the boolean node
duke@435 3755 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 3756
duke@435 3757 // Branch either way.
duke@435 3758 // NaN case is less traveled, which makes all the difference.
duke@435 3759 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 3760 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 3761 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 3762 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 3763 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 3764
duke@435 3765 set_control(iftrue);
duke@435 3766
duke@435 3767 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 3768 Node *slow_result = longcon(nan_bits); // return NaN
duke@435 3769 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 3770 r->init_req(1, iftrue);
duke@435 3771
duke@435 3772 // Else fall through
duke@435 3773 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 3774 set_control(iffalse);
duke@435 3775
duke@435 3776 phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
duke@435 3777 r->init_req(2, iffalse);
duke@435 3778
duke@435 3779 // Post merge
duke@435 3780 set_control(_gvn.transform(r));
duke@435 3781 record_for_igvn(r);
duke@435 3782
duke@435 3783 Node* result = _gvn.transform(phi);
duke@435 3784 assert(result->bottom_type()->isa_long(), "must be");
duke@435 3785 push_pair(result);
duke@435 3786
duke@435 3787 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3788
duke@435 3789 break;
duke@435 3790 }
duke@435 3791
duke@435 3792 case vmIntrinsics::_floatToIntBits: {
duke@435 3793 Node* value = pop();
duke@435 3794
duke@435 3795 // two paths (plus control) merge in a wood
duke@435 3796 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 3797 Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
duke@435 3798
duke@435 3799 Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
duke@435 3800 // Build the boolean node
duke@435 3801 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 3802
duke@435 3803 // Branch either way.
duke@435 3804 // NaN case is less traveled, which makes all the difference.
duke@435 3805 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 3806 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 3807 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 3808 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 3809 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 3810
duke@435 3811 set_control(iftrue);
duke@435 3812
duke@435 3813 static const jint nan_bits = 0x7fc00000;
duke@435 3814 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
duke@435 3815 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 3816 r->init_req(1, iftrue);
duke@435 3817
duke@435 3818 // Else fall through
duke@435 3819 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 3820 set_control(iffalse);
duke@435 3821
duke@435 3822 phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
duke@435 3823 r->init_req(2, iffalse);
duke@435 3824
duke@435 3825 // Post merge
duke@435 3826 set_control(_gvn.transform(r));
duke@435 3827 record_for_igvn(r);
duke@435 3828
duke@435 3829 Node* result = _gvn.transform(phi);
duke@435 3830 assert(result->bottom_type()->isa_int(), "must be");
duke@435 3831 push(result);
duke@435 3832
duke@435 3833 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3834
duke@435 3835 break;
duke@435 3836 }
duke@435 3837
duke@435 3838 default:
duke@435 3839 ShouldNotReachHere();
duke@435 3840 }
duke@435 3841
duke@435 3842 return true;
duke@435 3843 }
duke@435 3844
duke@435 3845 #ifdef _LP64
duke@435 3846 #define XTOP ,top() /*additional argument*/
duke@435 3847 #else //_LP64
duke@435 3848 #define XTOP /*no additional argument*/
duke@435 3849 #endif //_LP64
duke@435 3850
duke@435 3851 //----------------------inline_unsafe_copyMemory-------------------------
duke@435 3852 bool LibraryCallKit::inline_unsafe_copyMemory() {
duke@435 3853 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 3854 int nargs = 1 + 5 + 3; // 5 args: (src: ptr,off, dst: ptr,off, size)
duke@435 3855 assert(signature()->size() == nargs-1, "copy has 5 arguments");
duke@435 3856 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 3857 if (stopped()) return true;
duke@435 3858
duke@435 3859 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 3860
duke@435 3861 Node* src_ptr = argument(1);
duke@435 3862 Node* src_off = ConvL2X(argument(2));
duke@435 3863 assert(argument(3)->is_top(), "2nd half of long");
duke@435 3864 Node* dst_ptr = argument(4);
duke@435 3865 Node* dst_off = ConvL2X(argument(5));
duke@435 3866 assert(argument(6)->is_top(), "2nd half of long");
duke@435 3867 Node* size = ConvL2X(argument(7));
duke@435 3868 assert(argument(8)->is_top(), "2nd half of long");
duke@435 3869
duke@435 3870 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 3871 "fieldOffset must be byte-scaled");
duke@435 3872
duke@435 3873 Node* src = make_unsafe_address(src_ptr, src_off);
duke@435 3874 Node* dst = make_unsafe_address(dst_ptr, dst_off);
duke@435 3875
duke@435 3876 // Conservatively insert a memory barrier on all memory slices.
duke@435 3877 // Do not let writes of the copy source or destination float below the copy.
duke@435 3878 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 3879
duke@435 3880 // Call it. Note that the length argument is not scaled.
duke@435 3881 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 3882 OptoRuntime::fast_arraycopy_Type(),
duke@435 3883 StubRoutines::unsafe_arraycopy(),
duke@435 3884 "unsafe_arraycopy",
duke@435 3885 TypeRawPtr::BOTTOM,
duke@435 3886 src, dst, size XTOP);
duke@435 3887
duke@435 3888 // Do not let reads of the copy destination float above the copy.
duke@435 3889 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 3890
duke@435 3891 return true;
duke@435 3892 }
duke@435 3893
kvn@1268 3894 //------------------------clone_coping-----------------------------------
kvn@1268 3895 // Helper function for inline_native_clone.
kvn@1268 3896 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
kvn@1268 3897 assert(obj_size != NULL, "");
kvn@1268 3898 Node* raw_obj = alloc_obj->in(1);
kvn@1268 3899 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
kvn@1268 3900
kvn@1268 3901 if (ReduceBulkZeroing) {
kvn@1268 3902 // We will be completely responsible for initializing this object -
kvn@1268 3903 // mark Initialize node as complete.
kvn@1268 3904 AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
kvn@1268 3905 // The object was just allocated - there should be no any stores!
kvn@1268 3906 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
kvn@1268 3907 }
kvn@1268 3908
kvn@1268 3909 // Cast to Object for arraycopy.
kvn@1268 3910 // We can't use the original CheckCastPP since it should be moved
kvn@1268 3911 // after the arraycopy to prevent stores flowing above it.
kvn@1268 3912 Node* new_obj = new(C, 2) CheckCastPPNode(alloc_obj->in(0), raw_obj,
kvn@1268 3913 TypeInstPtr::NOTNULL);
kvn@1268 3914 new_obj = _gvn.transform(new_obj);
kvn@1268 3915 // Substitute in the locally valid dest_oop.
kvn@1268 3916 replace_in_map(alloc_obj, new_obj);
kvn@1268 3917
kvn@1268 3918 // Copy the fastest available way.
kvn@1268 3919 // TODO: generate fields copies for small objects instead.
kvn@1268 3920 Node* src = obj;
kvn@1268 3921 Node* dest = new_obj;
kvn@1268 3922 Node* size = _gvn.transform(obj_size);
kvn@1268 3923
kvn@1268 3924 // Exclude the header but include array length to copy by 8 bytes words.
kvn@1268 3925 // Can't use base_offset_in_bytes(bt) since basic type is unknown.
kvn@1268 3926 int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
kvn@1268 3927 instanceOopDesc::base_offset_in_bytes();
kvn@1268 3928 // base_off:
kvn@1268 3929 // 8 - 32-bit VM
kvn@1268 3930 // 12 - 64-bit VM, compressed oops
kvn@1268 3931 // 16 - 64-bit VM, normal oops
kvn@1268 3932 if (base_off % BytesPerLong != 0) {
kvn@1268 3933 assert(UseCompressedOops, "");
kvn@1268 3934 if (is_array) {
kvn@1268 3935 // Exclude length to copy by 8 bytes words.
kvn@1268 3936 base_off += sizeof(int);
kvn@1268 3937 } else {
kvn@1268 3938 // Include klass to copy by 8 bytes words.
kvn@1268 3939 base_off = instanceOopDesc::klass_offset_in_bytes();
kvn@1268 3940 }
kvn@1268 3941 assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
kvn@1268 3942 }
kvn@1268 3943 src = basic_plus_adr(src, base_off);
kvn@1268 3944 dest = basic_plus_adr(dest, base_off);
kvn@1268 3945
kvn@1268 3946 // Compute the length also, if needed:
kvn@1268 3947 Node* countx = size;
kvn@1268 3948 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
kvn@1268 3949 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
kvn@1268 3950
kvn@1268 3951 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
kvn@1268 3952 bool disjoint_bases = true;
kvn@1268 3953 generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
kvn@1268 3954 src, NULL, dest, NULL, countx);
kvn@1268 3955
kvn@1268 3956 // If necessary, emit some card marks afterwards. (Non-arrays only.)
kvn@1268 3957 if (card_mark) {
kvn@1268 3958 assert(!is_array, "");
kvn@1268 3959 // Put in store barrier for any and all oops we are sticking
kvn@1268 3960 // into this object. (We could avoid this if we could prove
kvn@1268 3961 // that the object type contains no oop fields at all.)
kvn@1268 3962 Node* no_particular_value = NULL;
kvn@1268 3963 Node* no_particular_field = NULL;
kvn@1268 3964 int raw_adr_idx = Compile::AliasIdxRaw;
kvn@1268 3965 post_barrier(control(),
kvn@1268 3966 memory(raw_adr_type),
kvn@1268 3967 new_obj,
kvn@1268 3968 no_particular_field,
kvn@1268 3969 raw_adr_idx,
kvn@1268 3970 no_particular_value,
kvn@1268 3971 T_OBJECT,
kvn@1268 3972 false);
kvn@1268 3973 }
kvn@1268 3974
kvn@1268 3975 // Move the original CheckCastPP after arraycopy.
kvn@1268 3976 _gvn.hash_delete(alloc_obj);
kvn@1268 3977 alloc_obj->set_req(0, control());
kvn@1268 3978 // Replace raw memory edge with new CheckCastPP to have a live oop
kvn@1268 3979 // at safepoints instead of raw value.
kvn@1268 3980 assert(new_obj->is_CheckCastPP() && new_obj->in(1) == alloc_obj->in(1), "sanity");
kvn@1268 3981 alloc_obj->set_req(1, new_obj); // cast to the original type
kvn@1268 3982 _gvn.hash_find_insert(alloc_obj); // put back into GVN table
kvn@1268 3983 // Restore in the locally valid dest_oop.
kvn@1268 3984 replace_in_map(new_obj, alloc_obj);
kvn@1268 3985 }
duke@435 3986
duke@435 3987 //------------------------inline_native_clone----------------------------
duke@435 3988 // Here are the simple edge cases:
duke@435 3989 // null receiver => normal trap
duke@435 3990 // virtual and clone was overridden => slow path to out-of-line clone
duke@435 3991 // not cloneable or finalizer => slow path to out-of-line Object.clone
duke@435 3992 //
duke@435 3993 // The general case has two steps, allocation and copying.
duke@435 3994 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
duke@435 3995 //
duke@435 3996 // Copying also has two cases, oop arrays and everything else.
duke@435 3997 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
duke@435 3998 // Everything else uses the tight inline loop supplied by CopyArrayNode.
duke@435 3999 //
duke@435 4000 // These steps fold up nicely if and when the cloned object's klass
duke@435 4001 // can be sharply typed as an object array, a type array, or an instance.
duke@435 4002 //
duke@435 4003 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
duke@435 4004 int nargs = 1;
duke@435 4005 Node* obj = null_check_receiver(callee());
duke@435 4006 if (stopped()) return true;
duke@435 4007 Node* obj_klass = load_object_klass(obj);
duke@435 4008 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
duke@435 4009 const TypeOopPtr* toop = ((tklass != NULL)
duke@435 4010 ? tklass->as_instance_type()
duke@435 4011 : TypeInstPtr::NOTNULL);
duke@435 4012
duke@435 4013 // Conservatively insert a memory barrier on all memory slices.
duke@435 4014 // Do not let writes into the original float below the clone.
duke@435 4015 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4016
duke@435 4017 // paths into result_reg:
duke@435 4018 enum {
duke@435 4019 _slow_path = 1, // out-of-line call to clone method (virtual or not)
kvn@1268 4020 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
kvn@1268 4021 _array_path, // plain array allocation, plus arrayof_long_arraycopy
kvn@1268 4022 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy
duke@435 4023 PATH_LIMIT
duke@435 4024 };
duke@435 4025 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 4026 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 4027 TypeInstPtr::NOTNULL);
duke@435 4028 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 4029 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 4030 TypePtr::BOTTOM);
duke@435 4031 record_for_igvn(result_reg);
duke@435 4032
duke@435 4033 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
duke@435 4034 int raw_adr_idx = Compile::AliasIdxRaw;
duke@435 4035 const bool raw_mem_only = true;
duke@435 4036
duke@435 4037 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
duke@435 4038 if (array_ctl != NULL) {
duke@435 4039 // It's an array.
duke@435 4040 PreserveJVMState pjvms(this);
duke@435 4041 set_control(array_ctl);
duke@435 4042 Node* obj_length = load_array_length(obj);
duke@435 4043 Node* obj_size = NULL;
cfang@1165 4044 Node* alloc_obj = new_array(obj_klass, obj_length, nargs,
duke@435 4045 raw_mem_only, &obj_size);
duke@435 4046
duke@435 4047 if (!use_ReduceInitialCardMarks()) {
duke@435 4048 // If it is an oop array, it requires very special treatment,
duke@435 4049 // because card marking is required on each card of the array.
duke@435 4050 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
duke@435 4051 if (is_obja != NULL) {
duke@435 4052 PreserveJVMState pjvms2(this);
duke@435 4053 set_control(is_obja);
duke@435 4054 // Generate a direct call to the right arraycopy function(s).
duke@435 4055 bool disjoint_bases = true;
duke@435 4056 bool length_never_negative = true;
duke@435 4057 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
duke@435 4058 obj, intcon(0), alloc_obj, intcon(0),
kvn@1268 4059 obj_length,
duke@435 4060 disjoint_bases, length_never_negative);
duke@435 4061 result_reg->init_req(_objArray_path, control());
duke@435 4062 result_val->init_req(_objArray_path, alloc_obj);
duke@435 4063 result_i_o ->set_req(_objArray_path, i_o());
duke@435 4064 result_mem ->set_req(_objArray_path, reset_memory());
duke@435 4065 }
duke@435 4066 }
duke@435 4067 // We can dispense with card marks if we know the allocation
duke@435 4068 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
duke@435 4069 // causes the non-eden paths to simulate a fresh allocation,
duke@435 4070 // insofar that no further card marks are required to initialize
duke@435 4071 // the object.
duke@435 4072
duke@435 4073 // Otherwise, there are no card marks to worry about.
kvn@1268 4074
kvn@1268 4075 if (!stopped()) {
kvn@1268 4076 copy_to_clone(obj, alloc_obj, obj_size, true, false);
kvn@1268 4077
kvn@1268 4078 // Present the results of the copy.
kvn@1268 4079 result_reg->init_req(_array_path, control());
kvn@1268 4080 result_val->init_req(_array_path, alloc_obj);
kvn@1268 4081 result_i_o ->set_req(_array_path, i_o());
kvn@1268 4082 result_mem ->set_req(_array_path, reset_memory());
kvn@1268 4083 }
duke@435 4084 }
duke@435 4085
kvn@1268 4086 // We only go to the instance fast case code if we pass a number of guards.
duke@435 4087 // The paths which do not pass are accumulated in the slow_region.
duke@435 4088 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 4089 record_for_igvn(slow_region);
duke@435 4090 if (!stopped()) {
kvn@1268 4091 // It's an instance (we did array above). Make the slow-path tests.
duke@435 4092 // If this is a virtual call, we generate a funny guard. We grab
duke@435 4093 // the vtable entry corresponding to clone() from the target object.
duke@435 4094 // If the target method which we are calling happens to be the
duke@435 4095 // Object clone() method, we pass the guard. We do not need this
duke@435 4096 // guard for non-virtual calls; the caller is known to be the native
duke@435 4097 // Object clone().
duke@435 4098 if (is_virtual) {
duke@435 4099 generate_virtual_guard(obj_klass, slow_region);
duke@435 4100 }
duke@435 4101
duke@435 4102 // The object must be cloneable and must not have a finalizer.
duke@435 4103 // Both of these conditions may be checked in a single test.
duke@435 4104 // We could optimize the cloneable test further, but we don't care.
duke@435 4105 generate_access_flags_guard(obj_klass,
duke@435 4106 // Test both conditions:
duke@435 4107 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
duke@435 4108 // Must be cloneable but not finalizer:
duke@435 4109 JVM_ACC_IS_CLONEABLE,
duke@435 4110 slow_region);
duke@435 4111 }
duke@435 4112
duke@435 4113 if (!stopped()) {
duke@435 4114 // It's an instance, and it passed the slow-path tests.
duke@435 4115 PreserveJVMState pjvms(this);
duke@435 4116 Node* obj_size = NULL;
duke@435 4117 Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
kvn@1268 4118
kvn@1268 4119 copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
kvn@1268 4120
kvn@1268 4121 // Present the results of the slow call.
kvn@1268 4122 result_reg->init_req(_instance_path, control());
kvn@1268 4123 result_val->init_req(_instance_path, alloc_obj);
kvn@1268 4124 result_i_o ->set_req(_instance_path, i_o());
kvn@1268 4125 result_mem ->set_req(_instance_path, reset_memory());
duke@435 4126 }
duke@435 4127
duke@435 4128 // Generate code for the slow case. We make a call to clone().
duke@435 4129 set_control(_gvn.transform(slow_region));
duke@435 4130 if (!stopped()) {
duke@435 4131 PreserveJVMState pjvms(this);
duke@435 4132 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
duke@435 4133 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 4134 // this->control() comes from set_results_for_java_call
duke@435 4135 result_reg->init_req(_slow_path, control());
duke@435 4136 result_val->init_req(_slow_path, slow_result);
duke@435 4137 result_i_o ->set_req(_slow_path, i_o());
duke@435 4138 result_mem ->set_req(_slow_path, reset_memory());
duke@435 4139 }
duke@435 4140
duke@435 4141 // Return the combined state.
duke@435 4142 set_control( _gvn.transform(result_reg) );
duke@435 4143 set_i_o( _gvn.transform(result_i_o) );
duke@435 4144 set_all_memory( _gvn.transform(result_mem) );
duke@435 4145
kvn@1268 4146 push(_gvn.transform(result_val));
duke@435 4147
duke@435 4148 return true;
duke@435 4149 }
duke@435 4150
duke@435 4151
duke@435 4152 // constants for computing the copy function
duke@435 4153 enum {
duke@435 4154 COPYFUNC_UNALIGNED = 0,
duke@435 4155 COPYFUNC_ALIGNED = 1, // src, dest aligned to HeapWordSize
duke@435 4156 COPYFUNC_CONJOINT = 0,
duke@435 4157 COPYFUNC_DISJOINT = 2 // src != dest, or transfer can descend
duke@435 4158 };
duke@435 4159
duke@435 4160 // Note: The condition "disjoint" applies also for overlapping copies
duke@435 4161 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
duke@435 4162 static address
duke@435 4163 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
duke@435 4164 int selector =
duke@435 4165 (aligned ? COPYFUNC_ALIGNED : COPYFUNC_UNALIGNED) +
duke@435 4166 (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
duke@435 4167
duke@435 4168 #define RETURN_STUB(xxx_arraycopy) { \
duke@435 4169 name = #xxx_arraycopy; \
duke@435 4170 return StubRoutines::xxx_arraycopy(); }
duke@435 4171
duke@435 4172 switch (t) {
duke@435 4173 case T_BYTE:
duke@435 4174 case T_BOOLEAN:
duke@435 4175 switch (selector) {
duke@435 4176 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jbyte_arraycopy);
duke@435 4177 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jbyte_arraycopy);
duke@435 4178 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jbyte_disjoint_arraycopy);
duke@435 4179 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
duke@435 4180 }
duke@435 4181 case T_CHAR:
duke@435 4182 case T_SHORT:
duke@435 4183 switch (selector) {
duke@435 4184 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jshort_arraycopy);
duke@435 4185 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jshort_arraycopy);
duke@435 4186 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jshort_disjoint_arraycopy);
duke@435 4187 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
duke@435 4188 }
duke@435 4189 case T_INT:
duke@435 4190 case T_FLOAT:
duke@435 4191 switch (selector) {
duke@435 4192 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jint_arraycopy);
duke@435 4193 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jint_arraycopy);
duke@435 4194 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jint_disjoint_arraycopy);
duke@435 4195 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jint_disjoint_arraycopy);
duke@435 4196 }
duke@435 4197 case T_DOUBLE:
duke@435 4198 case T_LONG:
duke@435 4199 switch (selector) {
duke@435 4200 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jlong_arraycopy);
duke@435 4201 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jlong_arraycopy);
duke@435 4202 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jlong_disjoint_arraycopy);
duke@435 4203 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
duke@435 4204 }
duke@435 4205 case T_ARRAY:
duke@435 4206 case T_OBJECT:
duke@435 4207 switch (selector) {
duke@435 4208 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(oop_arraycopy);
duke@435 4209 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_oop_arraycopy);
duke@435 4210 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(oop_disjoint_arraycopy);
duke@435 4211 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_oop_disjoint_arraycopy);
duke@435 4212 }
duke@435 4213 default:
duke@435 4214 ShouldNotReachHere();
duke@435 4215 return NULL;
duke@435 4216 }
duke@435 4217
duke@435 4218 #undef RETURN_STUB
duke@435 4219 }
duke@435 4220
duke@435 4221 //------------------------------basictype2arraycopy----------------------------
duke@435 4222 address LibraryCallKit::basictype2arraycopy(BasicType t,
duke@435 4223 Node* src_offset,
duke@435 4224 Node* dest_offset,
duke@435 4225 bool disjoint_bases,
duke@435 4226 const char* &name) {
duke@435 4227 const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
duke@435 4228 const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
duke@435 4229
duke@435 4230 bool aligned = false;
duke@435 4231 bool disjoint = disjoint_bases;
duke@435 4232
duke@435 4233 // if the offsets are the same, we can treat the memory regions as
duke@435 4234 // disjoint, because either the memory regions are in different arrays,
duke@435 4235 // or they are identical (which we can treat as disjoint.) We can also
duke@435 4236 // treat a copy with a destination index less that the source index
duke@435 4237 // as disjoint since a low->high copy will work correctly in this case.
duke@435 4238 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
duke@435 4239 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
duke@435 4240 // both indices are constants
duke@435 4241 int s_offs = src_offset_inttype->get_con();
duke@435 4242 int d_offs = dest_offset_inttype->get_con();
kvn@464 4243 int element_size = type2aelembytes(t);
duke@435 4244 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
duke@435 4245 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
duke@435 4246 if (s_offs >= d_offs) disjoint = true;
duke@435 4247 } else if (src_offset == dest_offset && src_offset != NULL) {
duke@435 4248 // This can occur if the offsets are identical non-constants.
duke@435 4249 disjoint = true;
duke@435 4250 }
duke@435 4251
duke@435 4252 return select_arraycopy_function(t, aligned, disjoint, name);
duke@435 4253 }
duke@435 4254
duke@435 4255
duke@435 4256 //------------------------------inline_arraycopy-----------------------
duke@435 4257 bool LibraryCallKit::inline_arraycopy() {
duke@435 4258 // Restore the stack and pop off the arguments.
duke@435 4259 int nargs = 5; // 2 oops, 3 ints, no size_t or long
duke@435 4260 assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
duke@435 4261
duke@435 4262 Node *src = argument(0);
duke@435 4263 Node *src_offset = argument(1);
duke@435 4264 Node *dest = argument(2);
duke@435 4265 Node *dest_offset = argument(3);
duke@435 4266 Node *length = argument(4);
duke@435 4267
duke@435 4268 // Compile time checks. If any of these checks cannot be verified at compile time,
duke@435 4269 // we do not make a fast path for this call. Instead, we let the call remain as it
duke@435 4270 // is. The checks we choose to mandate at compile time are:
duke@435 4271 //
duke@435 4272 // (1) src and dest are arrays.
duke@435 4273 const Type* src_type = src->Value(&_gvn);
duke@435 4274 const Type* dest_type = dest->Value(&_gvn);
duke@435 4275 const TypeAryPtr* top_src = src_type->isa_aryptr();
duke@435 4276 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
duke@435 4277 if (top_src == NULL || top_src->klass() == NULL ||
duke@435 4278 top_dest == NULL || top_dest->klass() == NULL) {
duke@435 4279 // Conservatively insert a memory barrier on all memory slices.
duke@435 4280 // Do not let writes into the source float below the arraycopy.
duke@435 4281 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4282
duke@435 4283 // Call StubRoutines::generic_arraycopy stub.
duke@435 4284 generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
kvn@1268 4285 src, src_offset, dest, dest_offset, length);
duke@435 4286
duke@435 4287 // Do not let reads from the destination float above the arraycopy.
duke@435 4288 // Since we cannot type the arrays, we don't know which slices
duke@435 4289 // might be affected. We could restrict this barrier only to those
duke@435 4290 // memory slices which pertain to array elements--but don't bother.
duke@435 4291 if (!InsertMemBarAfterArraycopy)
duke@435 4292 // (If InsertMemBarAfterArraycopy, there is already one in place.)
duke@435 4293 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4294 return true;
duke@435 4295 }
duke@435 4296
duke@435 4297 // (2) src and dest arrays must have elements of the same BasicType
duke@435 4298 // Figure out the size and type of the elements we will be copying.
duke@435 4299 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4300 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4301 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
duke@435 4302 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
duke@435 4303
duke@435 4304 if (src_elem != dest_elem || dest_elem == T_VOID) {
duke@435 4305 // The component types are not the same or are not recognized. Punt.
duke@435 4306 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
duke@435 4307 generate_slow_arraycopy(TypePtr::BOTTOM,
kvn@1268 4308 src, src_offset, dest, dest_offset, length);
duke@435 4309 return true;
duke@435 4310 }
duke@435 4311
duke@435 4312 //---------------------------------------------------------------------------
duke@435 4313 // We will make a fast path for this call to arraycopy.
duke@435 4314
duke@435 4315 // We have the following tests left to perform:
duke@435 4316 //
duke@435 4317 // (3) src and dest must not be null.
duke@435 4318 // (4) src_offset must not be negative.
duke@435 4319 // (5) dest_offset must not be negative.
duke@435 4320 // (6) length must not be negative.
duke@435 4321 // (7) src_offset + length must not exceed length of src.
duke@435 4322 // (8) dest_offset + length must not exceed length of dest.
duke@435 4323 // (9) each element of an oop array must be assignable
duke@435 4324
duke@435 4325 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 4326 record_for_igvn(slow_region);
duke@435 4327
duke@435 4328 // (3) operands must not be null
duke@435 4329 // We currently perform our null checks with the do_null_check routine.
duke@435 4330 // This means that the null exceptions will be reported in the caller
duke@435 4331 // rather than (correctly) reported inside of the native arraycopy call.
duke@435 4332 // This should be corrected, given time. We do our null check with the
duke@435 4333 // stack pointer restored.
duke@435 4334 _sp += nargs;
duke@435 4335 src = do_null_check(src, T_ARRAY);
duke@435 4336 dest = do_null_check(dest, T_ARRAY);
duke@435 4337 _sp -= nargs;
duke@435 4338
duke@435 4339 // (4) src_offset must not be negative.
duke@435 4340 generate_negative_guard(src_offset, slow_region);
duke@435 4341
duke@435 4342 // (5) dest_offset must not be negative.
duke@435 4343 generate_negative_guard(dest_offset, slow_region);
duke@435 4344
duke@435 4345 // (6) length must not be negative (moved to generate_arraycopy()).
duke@435 4346 // generate_negative_guard(length, slow_region);
duke@435 4347
duke@435 4348 // (7) src_offset + length must not exceed length of src.
duke@435 4349 generate_limit_guard(src_offset, length,
duke@435 4350 load_array_length(src),
duke@435 4351 slow_region);
duke@435 4352
duke@435 4353 // (8) dest_offset + length must not exceed length of dest.
duke@435 4354 generate_limit_guard(dest_offset, length,
duke@435 4355 load_array_length(dest),
duke@435 4356 slow_region);
duke@435 4357
duke@435 4358 // (9) each element of an oop array must be assignable
duke@435 4359 // The generate_arraycopy subroutine checks this.
duke@435 4360
duke@435 4361 // This is where the memory effects are placed:
duke@435 4362 const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
duke@435 4363 generate_arraycopy(adr_type, dest_elem,
duke@435 4364 src, src_offset, dest, dest_offset, length,
kvn@1268 4365 false, false, slow_region);
duke@435 4366
duke@435 4367 return true;
duke@435 4368 }
duke@435 4369
duke@435 4370 //-----------------------------generate_arraycopy----------------------
duke@435 4371 // Generate an optimized call to arraycopy.
duke@435 4372 // Caller must guard against non-arrays.
duke@435 4373 // Caller must determine a common array basic-type for both arrays.
duke@435 4374 // Caller must validate offsets against array bounds.
duke@435 4375 // The slow_region has already collected guard failure paths
duke@435 4376 // (such as out of bounds length or non-conformable array types).
duke@435 4377 // The generated code has this shape, in general:
duke@435 4378 //
duke@435 4379 // if (length == 0) return // via zero_path
duke@435 4380 // slowval = -1
duke@435 4381 // if (types unknown) {
duke@435 4382 // slowval = call generic copy loop
duke@435 4383 // if (slowval == 0) return // via checked_path
duke@435 4384 // } else if (indexes in bounds) {
duke@435 4385 // if ((is object array) && !(array type check)) {
duke@435 4386 // slowval = call checked copy loop
duke@435 4387 // if (slowval == 0) return // via checked_path
duke@435 4388 // } else {
duke@435 4389 // call bulk copy loop
duke@435 4390 // return // via fast_path
duke@435 4391 // }
duke@435 4392 // }
duke@435 4393 // // adjust params for remaining work:
duke@435 4394 // if (slowval != -1) {
duke@435 4395 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n
duke@435 4396 // }
duke@435 4397 // slow_region:
duke@435 4398 // call slow arraycopy(src, src_offset, dest, dest_offset, length)
duke@435 4399 // return // via slow_call_path
duke@435 4400 //
duke@435 4401 // This routine is used from several intrinsics: System.arraycopy,
duke@435 4402 // Object.clone (the array subcase), and Arrays.copyOf[Range].
duke@435 4403 //
duke@435 4404 void
duke@435 4405 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
duke@435 4406 BasicType basic_elem_type,
duke@435 4407 Node* src, Node* src_offset,
duke@435 4408 Node* dest, Node* dest_offset,
duke@435 4409 Node* copy_length,
duke@435 4410 bool disjoint_bases,
duke@435 4411 bool length_never_negative,
duke@435 4412 RegionNode* slow_region) {
duke@435 4413
duke@435 4414 if (slow_region == NULL) {
duke@435 4415 slow_region = new(C,1) RegionNode(1);
duke@435 4416 record_for_igvn(slow_region);
duke@435 4417 }
duke@435 4418
duke@435 4419 Node* original_dest = dest;
duke@435 4420 AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
duke@435 4421 bool must_clear_dest = false;
duke@435 4422
duke@435 4423 // See if this is the initialization of a newly-allocated array.
duke@435 4424 // If so, we will take responsibility here for initializing it to zero.
duke@435 4425 // (Note: Because tightly_coupled_allocation performs checks on the
duke@435 4426 // out-edges of the dest, we need to avoid making derived pointers
duke@435 4427 // from it until we have checked its uses.)
duke@435 4428 if (ReduceBulkZeroing
duke@435 4429 && !ZeroTLAB // pointless if already zeroed
duke@435 4430 && basic_elem_type != T_CONFLICT // avoid corner case
duke@435 4431 && !_gvn.eqv_uncast(src, dest)
duke@435 4432 && ((alloc = tightly_coupled_allocation(dest, slow_region))
duke@435 4433 != NULL)
kvn@469 4434 && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
duke@435 4435 && alloc->maybe_set_complete(&_gvn)) {
duke@435 4436 // "You break it, you buy it."
duke@435 4437 InitializeNode* init = alloc->initialization();
duke@435 4438 assert(init->is_complete(), "we just did this");
kvn@1268 4439 assert(dest->is_CheckCastPP(), "sanity");
duke@435 4440 assert(dest->in(0)->in(0) == init, "dest pinned");
kvn@1268 4441
kvn@1268 4442 // Cast to Object for arraycopy.
kvn@1268 4443 // We can't use the original CheckCastPP since it should be moved
kvn@1268 4444 // after the arraycopy to prevent stores flowing above it.
kvn@1268 4445 Node* new_obj = new(C, 2) CheckCastPPNode(dest->in(0), dest->in(1),
kvn@1268 4446 TypeInstPtr::NOTNULL);
kvn@1268 4447 dest = _gvn.transform(new_obj);
kvn@1268 4448 // Substitute in the locally valid dest_oop.
kvn@1268 4449 replace_in_map(original_dest, dest);
duke@435 4450 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
duke@435 4451 // From this point on, every exit path is responsible for
duke@435 4452 // initializing any non-copied parts of the object to zero.
duke@435 4453 must_clear_dest = true;
duke@435 4454 } else {
duke@435 4455 // No zeroing elimination here.
duke@435 4456 alloc = NULL;
duke@435 4457 //original_dest = dest;
duke@435 4458 //must_clear_dest = false;
duke@435 4459 }
duke@435 4460
duke@435 4461 // Results are placed here:
duke@435 4462 enum { fast_path = 1, // normal void-returning assembly stub
duke@435 4463 checked_path = 2, // special assembly stub with cleanup
duke@435 4464 slow_call_path = 3, // something went wrong; call the VM
duke@435 4465 zero_path = 4, // bypass when length of copy is zero
duke@435 4466 bcopy_path = 5, // copy primitive array by 64-bit blocks
duke@435 4467 PATH_LIMIT = 6
duke@435 4468 };
duke@435 4469 RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 4470 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
duke@435 4471 PhiNode* result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
duke@435 4472 record_for_igvn(result_region);
duke@435 4473 _gvn.set_type_bottom(result_i_o);
duke@435 4474 _gvn.set_type_bottom(result_memory);
duke@435 4475 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
duke@435 4476
duke@435 4477 // The slow_control path:
duke@435 4478 Node* slow_control;
duke@435 4479 Node* slow_i_o = i_o();
duke@435 4480 Node* slow_mem = memory(adr_type);
duke@435 4481 debug_only(slow_control = (Node*) badAddress);
duke@435 4482
duke@435 4483 // Checked control path:
duke@435 4484 Node* checked_control = top();
duke@435 4485 Node* checked_mem = NULL;
duke@435 4486 Node* checked_i_o = NULL;
duke@435 4487 Node* checked_value = NULL;
duke@435 4488
duke@435 4489 if (basic_elem_type == T_CONFLICT) {
duke@435 4490 assert(!must_clear_dest, "");
duke@435 4491 Node* cv = generate_generic_arraycopy(adr_type,
duke@435 4492 src, src_offset, dest, dest_offset,
kvn@1268 4493 copy_length);
duke@435 4494 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4495 checked_control = control();
duke@435 4496 checked_i_o = i_o();
duke@435 4497 checked_mem = memory(adr_type);
duke@435 4498 checked_value = cv;
duke@435 4499 set_control(top()); // no fast path
duke@435 4500 }
duke@435 4501
duke@435 4502 Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
duke@435 4503 if (not_pos != NULL) {
duke@435 4504 PreserveJVMState pjvms(this);
duke@435 4505 set_control(not_pos);
duke@435 4506
duke@435 4507 // (6) length must not be negative.
duke@435 4508 if (!length_never_negative) {
duke@435 4509 generate_negative_guard(copy_length, slow_region);
duke@435 4510 }
duke@435 4511
kvn@1271 4512 // copy_length is 0.
duke@435 4513 if (!stopped() && must_clear_dest) {
duke@435 4514 Node* dest_length = alloc->in(AllocateNode::ALength);
duke@435 4515 if (_gvn.eqv_uncast(copy_length, dest_length)
duke@435 4516 || _gvn.find_int_con(dest_length, 1) <= 0) {
kvn@1271 4517 // There is no zeroing to do. No need for a secondary raw memory barrier.
duke@435 4518 } else {
duke@435 4519 // Clear the whole thing since there are no source elements to copy.
duke@435 4520 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4521 intcon(0), NULL,
duke@435 4522 alloc->in(AllocateNode::AllocSize));
kvn@1271 4523 // Use a secondary InitializeNode as raw memory barrier.
kvn@1271 4524 // Currently it is needed only on this path since other
kvn@1271 4525 // paths have stub or runtime calls as raw memory barriers.
kvn@1271 4526 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
kvn@1271 4527 Compile::AliasIdxRaw,
kvn@1271 4528 top())->as_Initialize();
kvn@1271 4529 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
duke@435 4530 }
duke@435 4531 }
duke@435 4532
duke@435 4533 // Present the results of the fast call.
duke@435 4534 result_region->init_req(zero_path, control());
duke@435 4535 result_i_o ->init_req(zero_path, i_o());
duke@435 4536 result_memory->init_req(zero_path, memory(adr_type));
duke@435 4537 }
duke@435 4538
duke@435 4539 if (!stopped() && must_clear_dest) {
duke@435 4540 // We have to initialize the *uncopied* part of the array to zero.
duke@435 4541 // The copy destination is the slice dest[off..off+len]. The other slices
duke@435 4542 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
duke@435 4543 Node* dest_size = alloc->in(AllocateNode::AllocSize);
duke@435 4544 Node* dest_length = alloc->in(AllocateNode::ALength);
duke@435 4545 Node* dest_tail = _gvn.transform( new(C,3) AddINode(dest_offset,
duke@435 4546 copy_length) );
duke@435 4547
duke@435 4548 // If there is a head section that needs zeroing, do it now.
duke@435 4549 if (find_int_con(dest_offset, -1) != 0) {
duke@435 4550 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4551 intcon(0), dest_offset,
duke@435 4552 NULL);
duke@435 4553 }
duke@435 4554
duke@435 4555 // Next, perform a dynamic check on the tail length.
duke@435 4556 // It is often zero, and we can win big if we prove this.
duke@435 4557 // There are two wins: Avoid generating the ClearArray
duke@435 4558 // with its attendant messy index arithmetic, and upgrade
duke@435 4559 // the copy to a more hardware-friendly word size of 64 bits.
duke@435 4560 Node* tail_ctl = NULL;
duke@435 4561 if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
duke@435 4562 Node* cmp_lt = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
duke@435 4563 Node* bol_lt = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 4564 tail_ctl = generate_slow_guard(bol_lt, NULL);
duke@435 4565 assert(tail_ctl != NULL || !stopped(), "must be an outcome");
duke@435 4566 }
duke@435 4567
duke@435 4568 // At this point, let's assume there is no tail.
duke@435 4569 if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
duke@435 4570 // There is no tail. Try an upgrade to a 64-bit copy.
duke@435 4571 bool didit = false;
duke@435 4572 { PreserveJVMState pjvms(this);
duke@435 4573 didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
duke@435 4574 src, src_offset, dest, dest_offset,
duke@435 4575 dest_size);
duke@435 4576 if (didit) {
duke@435 4577 // Present the results of the block-copying fast call.
duke@435 4578 result_region->init_req(bcopy_path, control());
duke@435 4579 result_i_o ->init_req(bcopy_path, i_o());
duke@435 4580 result_memory->init_req(bcopy_path, memory(adr_type));
duke@435 4581 }
duke@435 4582 }
duke@435 4583 if (didit)
duke@435 4584 set_control(top()); // no regular fast path
duke@435 4585 }
duke@435 4586
duke@435 4587 // Clear the tail, if any.
duke@435 4588 if (tail_ctl != NULL) {
duke@435 4589 Node* notail_ctl = stopped() ? NULL : control();
duke@435 4590 set_control(tail_ctl);
duke@435 4591 if (notail_ctl == NULL) {
duke@435 4592 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4593 dest_tail, NULL,
duke@435 4594 dest_size);
duke@435 4595 } else {
duke@435 4596 // Make a local merge.
duke@435 4597 Node* done_ctl = new(C,3) RegionNode(3);
duke@435 4598 Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
duke@435 4599 done_ctl->init_req(1, notail_ctl);
duke@435 4600 done_mem->init_req(1, memory(adr_type));
duke@435 4601 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4602 dest_tail, NULL,
duke@435 4603 dest_size);
duke@435 4604 done_ctl->init_req(2, control());
duke@435 4605 done_mem->init_req(2, memory(adr_type));
duke@435 4606 set_control( _gvn.transform(done_ctl) );
duke@435 4607 set_memory( _gvn.transform(done_mem), adr_type );
duke@435 4608 }
duke@435 4609 }
duke@435 4610 }
duke@435 4611
duke@435 4612 BasicType copy_type = basic_elem_type;
duke@435 4613 assert(basic_elem_type != T_ARRAY, "caller must fix this");
duke@435 4614 if (!stopped() && copy_type == T_OBJECT) {
duke@435 4615 // If src and dest have compatible element types, we can copy bits.
duke@435 4616 // Types S[] and D[] are compatible if D is a supertype of S.
duke@435 4617 //
duke@435 4618 // If they are not, we will use checked_oop_disjoint_arraycopy,
duke@435 4619 // which performs a fast optimistic per-oop check, and backs off
duke@435 4620 // further to JVM_ArrayCopy on the first per-oop check that fails.
duke@435 4621 // (Actually, we don't move raw bits only; the GC requires card marks.)
duke@435 4622
duke@435 4623 // Get the klassOop for both src and dest
duke@435 4624 Node* src_klass = load_object_klass(src);
duke@435 4625 Node* dest_klass = load_object_klass(dest);
duke@435 4626
duke@435 4627 // Generate the subtype check.
duke@435 4628 // This might fold up statically, or then again it might not.
duke@435 4629 //
duke@435 4630 // Non-static example: Copying List<String>.elements to a new String[].
duke@435 4631 // The backing store for a List<String> is always an Object[],
duke@435 4632 // but its elements are always type String, if the generic types
duke@435 4633 // are correct at the source level.
duke@435 4634 //
duke@435 4635 // Test S[] against D[], not S against D, because (probably)
duke@435 4636 // the secondary supertype cache is less busy for S[] than S.
duke@435 4637 // This usually only matters when D is an interface.
duke@435 4638 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
duke@435 4639 // Plug failing path into checked_oop_disjoint_arraycopy
duke@435 4640 if (not_subtype_ctrl != top()) {
duke@435 4641 PreserveJVMState pjvms(this);
duke@435 4642 set_control(not_subtype_ctrl);
duke@435 4643 // (At this point we can assume disjoint_bases, since types differ.)
duke@435 4644 int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
duke@435 4645 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
kvn@599 4646 Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
duke@435 4647 Node* dest_elem_klass = _gvn.transform(n1);
duke@435 4648 Node* cv = generate_checkcast_arraycopy(adr_type,
duke@435 4649 dest_elem_klass,
duke@435 4650 src, src_offset, dest, dest_offset,
kvn@1268 4651 copy_length);
duke@435 4652 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4653 checked_control = control();
duke@435 4654 checked_i_o = i_o();
duke@435 4655 checked_mem = memory(adr_type);
duke@435 4656 checked_value = cv;
duke@435 4657 }
duke@435 4658 // At this point we know we do not need type checks on oop stores.
duke@435 4659
duke@435 4660 // Let's see if we need card marks:
duke@435 4661 if (alloc != NULL && use_ReduceInitialCardMarks()) {
duke@435 4662 // If we do not need card marks, copy using the jint or jlong stub.
coleenp@548 4663 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
kvn@464 4664 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
duke@435 4665 "sizes agree");
duke@435 4666 }
duke@435 4667 }
duke@435 4668
duke@435 4669 if (!stopped()) {
duke@435 4670 // Generate the fast path, if possible.
duke@435 4671 PreserveJVMState pjvms(this);
duke@435 4672 generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
duke@435 4673 src, src_offset, dest, dest_offset,
duke@435 4674 ConvI2X(copy_length));
duke@435 4675
duke@435 4676 // Present the results of the fast call.
duke@435 4677 result_region->init_req(fast_path, control());
duke@435 4678 result_i_o ->init_req(fast_path, i_o());
duke@435 4679 result_memory->init_req(fast_path, memory(adr_type));
duke@435 4680 }
duke@435 4681
duke@435 4682 // Here are all the slow paths up to this point, in one bundle:
duke@435 4683 slow_control = top();
duke@435 4684 if (slow_region != NULL)
duke@435 4685 slow_control = _gvn.transform(slow_region);
duke@435 4686 debug_only(slow_region = (RegionNode*)badAddress);
duke@435 4687
duke@435 4688 set_control(checked_control);
duke@435 4689 if (!stopped()) {
duke@435 4690 // Clean up after the checked call.
duke@435 4691 // The returned value is either 0 or -1^K,
duke@435 4692 // where K = number of partially transferred array elements.
duke@435 4693 Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
duke@435 4694 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
duke@435 4695 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
duke@435 4696
duke@435 4697 // If it is 0, we are done, so transfer to the end.
duke@435 4698 Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
duke@435 4699 result_region->init_req(checked_path, checks_done);
duke@435 4700 result_i_o ->init_req(checked_path, checked_i_o);
duke@435 4701 result_memory->init_req(checked_path, checked_mem);
duke@435 4702
duke@435 4703 // If it is not zero, merge into the slow call.
duke@435 4704 set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
duke@435 4705 RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
duke@435 4706 PhiNode* slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
duke@435 4707 PhiNode* slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
duke@435 4708 record_for_igvn(slow_reg2);
duke@435 4709 slow_reg2 ->init_req(1, slow_control);
duke@435 4710 slow_i_o2 ->init_req(1, slow_i_o);
duke@435 4711 slow_mem2 ->init_req(1, slow_mem);
duke@435 4712 slow_reg2 ->init_req(2, control());
kvn@1268 4713 slow_i_o2 ->init_req(2, checked_i_o);
kvn@1268 4714 slow_mem2 ->init_req(2, checked_mem);
duke@435 4715
duke@435 4716 slow_control = _gvn.transform(slow_reg2);
duke@435 4717 slow_i_o = _gvn.transform(slow_i_o2);
duke@435 4718 slow_mem = _gvn.transform(slow_mem2);
duke@435 4719
duke@435 4720 if (alloc != NULL) {
duke@435 4721 // We'll restart from the very beginning, after zeroing the whole thing.
duke@435 4722 // This can cause double writes, but that's OK since dest is brand new.
duke@435 4723 // So we ignore the low 31 bits of the value returned from the stub.
duke@435 4724 } else {
duke@435 4725 // We must continue the copy exactly where it failed, or else
duke@435 4726 // another thread might see the wrong number of writes to dest.
duke@435 4727 Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
duke@435 4728 Node* slow_offset = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
duke@435 4729 slow_offset->init_req(1, intcon(0));
duke@435 4730 slow_offset->init_req(2, checked_offset);
duke@435 4731 slow_offset = _gvn.transform(slow_offset);
duke@435 4732
duke@435 4733 // Adjust the arguments by the conditionally incoming offset.
duke@435 4734 Node* src_off_plus = _gvn.transform( new(C, 3) AddINode(src_offset, slow_offset) );
duke@435 4735 Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
duke@435 4736 Node* length_minus = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
duke@435 4737
duke@435 4738 // Tweak the node variables to adjust the code produced below:
duke@435 4739 src_offset = src_off_plus;
duke@435 4740 dest_offset = dest_off_plus;
duke@435 4741 copy_length = length_minus;
duke@435 4742 }
duke@435 4743 }
duke@435 4744
duke@435 4745 set_control(slow_control);
duke@435 4746 if (!stopped()) {
duke@435 4747 // Generate the slow path, if needed.
duke@435 4748 PreserveJVMState pjvms(this); // replace_in_map may trash the map
duke@435 4749
duke@435 4750 set_memory(slow_mem, adr_type);
duke@435 4751 set_i_o(slow_i_o);
duke@435 4752
duke@435 4753 if (must_clear_dest) {
duke@435 4754 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4755 intcon(0), NULL,
duke@435 4756 alloc->in(AllocateNode::AllocSize));
duke@435 4757 }
duke@435 4758
duke@435 4759 generate_slow_arraycopy(adr_type,
duke@435 4760 src, src_offset, dest, dest_offset,
kvn@1268 4761 copy_length);
duke@435 4762
duke@435 4763 result_region->init_req(slow_call_path, control());
duke@435 4764 result_i_o ->init_req(slow_call_path, i_o());
duke@435 4765 result_memory->init_req(slow_call_path, memory(adr_type));
duke@435 4766 }
duke@435 4767
duke@435 4768 // Remove unused edges.
duke@435 4769 for (uint i = 1; i < result_region->req(); i++) {
duke@435 4770 if (result_region->in(i) == NULL)
duke@435 4771 result_region->init_req(i, top());
duke@435 4772 }
duke@435 4773
duke@435 4774 // Finished; return the combined state.
duke@435 4775 set_control( _gvn.transform(result_region) );
duke@435 4776 set_i_o( _gvn.transform(result_i_o) );
duke@435 4777 set_memory( _gvn.transform(result_memory), adr_type );
duke@435 4778
duke@435 4779 if (dest != original_dest) {
duke@435 4780 // Pin the "finished" array node after the arraycopy/zeroing operations.
duke@435 4781 _gvn.hash_delete(original_dest);
duke@435 4782 original_dest->set_req(0, control());
kvn@1268 4783 // Replace raw memory edge with new CheckCastPP to have a live oop
kvn@1268 4784 // at safepoints instead of raw value.
kvn@1268 4785 assert(dest->is_CheckCastPP() && dest->in(1) == original_dest->in(1), "sanity");
kvn@1268 4786 original_dest->set_req(1, dest); // cast to the original type
duke@435 4787 _gvn.hash_find_insert(original_dest); // put back into GVN table
kvn@1268 4788 // Restore in the locally valid dest_oop.
kvn@1268 4789 replace_in_map(dest, original_dest);
duke@435 4790 }
duke@435 4791 // The memory edges above are precise in order to model effects around
twisti@1040 4792 // array copies accurately to allow value numbering of field loads around
duke@435 4793 // arraycopy. Such field loads, both before and after, are common in Java
duke@435 4794 // collections and similar classes involving header/array data structures.
duke@435 4795 //
duke@435 4796 // But with low number of register or when some registers are used or killed
duke@435 4797 // by arraycopy calls it causes registers spilling on stack. See 6544710.
duke@435 4798 // The next memory barrier is added to avoid it. If the arraycopy can be
duke@435 4799 // optimized away (which it can, sometimes) then we can manually remove
duke@435 4800 // the membar also.
duke@435 4801 if (InsertMemBarAfterArraycopy)
duke@435 4802 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4803 }
duke@435 4804
duke@435 4805
duke@435 4806 // Helper function which determines if an arraycopy immediately follows
duke@435 4807 // an allocation, with no intervening tests or other escapes for the object.
duke@435 4808 AllocateArrayNode*
duke@435 4809 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
duke@435 4810 RegionNode* slow_region) {
duke@435 4811 if (stopped()) return NULL; // no fast path
duke@435 4812 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
duke@435 4813
duke@435 4814 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
duke@435 4815 if (alloc == NULL) return NULL;
duke@435 4816
duke@435 4817 Node* rawmem = memory(Compile::AliasIdxRaw);
duke@435 4818 // Is the allocation's memory state untouched?
duke@435 4819 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
duke@435 4820 // Bail out if there have been raw-memory effects since the allocation.
duke@435 4821 // (Example: There might have been a call or safepoint.)
duke@435 4822 return NULL;
duke@435 4823 }
duke@435 4824 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
duke@435 4825 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
duke@435 4826 return NULL;
duke@435 4827 }
duke@435 4828
duke@435 4829 // There must be no unexpected observers of this allocation.
duke@435 4830 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
duke@435 4831 Node* obs = ptr->fast_out(i);
duke@435 4832 if (obs != this->map()) {
duke@435 4833 return NULL;
duke@435 4834 }
duke@435 4835 }
duke@435 4836
duke@435 4837 // This arraycopy must unconditionally follow the allocation of the ptr.
duke@435 4838 Node* alloc_ctl = ptr->in(0);
duke@435 4839 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
duke@435 4840
duke@435 4841 Node* ctl = control();
duke@435 4842 while (ctl != alloc_ctl) {
duke@435 4843 // There may be guards which feed into the slow_region.
duke@435 4844 // Any other control flow means that we might not get a chance
duke@435 4845 // to finish initializing the allocated object.
duke@435 4846 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
duke@435 4847 IfNode* iff = ctl->in(0)->as_If();
duke@435 4848 Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
duke@435 4849 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
duke@435 4850 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
duke@435 4851 ctl = iff->in(0); // This test feeds the known slow_region.
duke@435 4852 continue;
duke@435 4853 }
duke@435 4854 // One more try: Various low-level checks bottom out in
duke@435 4855 // uncommon traps. If the debug-info of the trap omits
duke@435 4856 // any reference to the allocation, as we've already
duke@435 4857 // observed, then there can be no objection to the trap.
duke@435 4858 bool found_trap = false;
duke@435 4859 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
duke@435 4860 Node* obs = not_ctl->fast_out(j);
duke@435 4861 if (obs->in(0) == not_ctl && obs->is_Call() &&
duke@435 4862 (obs->as_Call()->entry_point() ==
duke@435 4863 SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
duke@435 4864 found_trap = true; break;
duke@435 4865 }
duke@435 4866 }
duke@435 4867 if (found_trap) {
duke@435 4868 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
duke@435 4869 continue;
duke@435 4870 }
duke@435 4871 }
duke@435 4872 return NULL;
duke@435 4873 }
duke@435 4874
duke@435 4875 // If we get this far, we have an allocation which immediately
duke@435 4876 // precedes the arraycopy, and we can take over zeroing the new object.
duke@435 4877 // The arraycopy will finish the initialization, and provide
duke@435 4878 // a new control state to which we will anchor the destination pointer.
duke@435 4879
duke@435 4880 return alloc;
duke@435 4881 }
duke@435 4882
duke@435 4883 // Helper for initialization of arrays, creating a ClearArray.
duke@435 4884 // It writes zero bits in [start..end), within the body of an array object.
duke@435 4885 // The memory effects are all chained onto the 'adr_type' alias category.
duke@435 4886 //
duke@435 4887 // Since the object is otherwise uninitialized, we are free
duke@435 4888 // to put a little "slop" around the edges of the cleared area,
duke@435 4889 // as long as it does not go back into the array's header,
duke@435 4890 // or beyond the array end within the heap.
duke@435 4891 //
duke@435 4892 // The lower edge can be rounded down to the nearest jint and the
duke@435 4893 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
duke@435 4894 //
duke@435 4895 // Arguments:
duke@435 4896 // adr_type memory slice where writes are generated
duke@435 4897 // dest oop of the destination array
duke@435 4898 // basic_elem_type element type of the destination
duke@435 4899 // slice_idx array index of first element to store
duke@435 4900 // slice_len number of elements to store (or NULL)
duke@435 4901 // dest_size total size in bytes of the array object
duke@435 4902 //
duke@435 4903 // Exactly one of slice_len or dest_size must be non-NULL.
duke@435 4904 // If dest_size is non-NULL, zeroing extends to the end of the object.
duke@435 4905 // If slice_len is non-NULL, the slice_idx value must be a constant.
duke@435 4906 void
duke@435 4907 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
duke@435 4908 Node* dest,
duke@435 4909 BasicType basic_elem_type,
duke@435 4910 Node* slice_idx,
duke@435 4911 Node* slice_len,
duke@435 4912 Node* dest_size) {
duke@435 4913 // one or the other but not both of slice_len and dest_size:
duke@435 4914 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
duke@435 4915 if (slice_len == NULL) slice_len = top();
duke@435 4916 if (dest_size == NULL) dest_size = top();
duke@435 4917
duke@435 4918 // operate on this memory slice:
duke@435 4919 Node* mem = memory(adr_type); // memory slice to operate on
duke@435 4920
duke@435 4921 // scaling and rounding of indexes:
kvn@464 4922 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 4923 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 4924 int clear_low = (-1 << scale) & (BytesPerInt - 1);
duke@435 4925 int bump_bit = (-1 << scale) & BytesPerInt;
duke@435 4926
duke@435 4927 // determine constant starts and ends
duke@435 4928 const intptr_t BIG_NEG = -128;
duke@435 4929 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 4930 intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
duke@435 4931 intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
duke@435 4932 if (slice_len_con == 0) {
duke@435 4933 return; // nothing to do here
duke@435 4934 }
duke@435 4935 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
duke@435 4936 intptr_t end_con = find_intptr_t_con(dest_size, -1);
duke@435 4937 if (slice_idx_con >= 0 && slice_len_con >= 0) {
duke@435 4938 assert(end_con < 0, "not two cons");
duke@435 4939 end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
duke@435 4940 BytesPerLong);
duke@435 4941 }
duke@435 4942
duke@435 4943 if (start_con >= 0 && end_con >= 0) {
duke@435 4944 // Constant start and end. Simple.
duke@435 4945 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 4946 start_con, end_con, &_gvn);
duke@435 4947 } else if (start_con >= 0 && dest_size != top()) {
duke@435 4948 // Constant start, pre-rounded end after the tail of the array.
duke@435 4949 Node* end = dest_size;
duke@435 4950 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 4951 start_con, end, &_gvn);
duke@435 4952 } else if (start_con >= 0 && slice_len != top()) {
duke@435 4953 // Constant start, non-constant end. End needs rounding up.
duke@435 4954 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
duke@435 4955 intptr_t end_base = abase + (slice_idx_con << scale);
duke@435 4956 int end_round = (-1 << scale) & (BytesPerLong - 1);
duke@435 4957 Node* end = ConvI2X(slice_len);
duke@435 4958 if (scale != 0)
duke@435 4959 end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
duke@435 4960 end_base += end_round;
duke@435 4961 end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
duke@435 4962 end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
duke@435 4963 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 4964 start_con, end, &_gvn);
duke@435 4965 } else if (start_con < 0 && dest_size != top()) {
duke@435 4966 // Non-constant start, pre-rounded end after the tail of the array.
duke@435 4967 // This is almost certainly a "round-to-end" operation.
duke@435 4968 Node* start = slice_idx;
duke@435 4969 start = ConvI2X(start);
duke@435 4970 if (scale != 0)
duke@435 4971 start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
duke@435 4972 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
duke@435 4973 if ((bump_bit | clear_low) != 0) {
duke@435 4974 int to_clear = (bump_bit | clear_low);
duke@435 4975 // Align up mod 8, then store a jint zero unconditionally
duke@435 4976 // just before the mod-8 boundary.
coleenp@548 4977 if (((abase + bump_bit) & ~to_clear) - bump_bit
coleenp@548 4978 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
coleenp@548 4979 bump_bit = 0;
coleenp@548 4980 assert((abase & to_clear) == 0, "array base must be long-aligned");
coleenp@548 4981 } else {
coleenp@548 4982 // Bump 'start' up to (or past) the next jint boundary:
coleenp@548 4983 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
coleenp@548 4984 assert((abase & clear_low) == 0, "array base must be int-aligned");
coleenp@548 4985 }
duke@435 4986 // Round bumped 'start' down to jlong boundary in body of array.
duke@435 4987 start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
coleenp@548 4988 if (bump_bit != 0) {
coleenp@548 4989 // Store a zero to the immediately preceding jint:
coleenp@548 4990 Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
coleenp@548 4991 Node* p1 = basic_plus_adr(dest, x1);
coleenp@548 4992 mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
coleenp@548 4993 mem = _gvn.transform(mem);
coleenp@548 4994 }
duke@435 4995 }
duke@435 4996 Node* end = dest_size; // pre-rounded
duke@435 4997 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 4998 start, end, &_gvn);
duke@435 4999 } else {
duke@435 5000 // Non-constant start, unrounded non-constant end.
duke@435 5001 // (Nobody zeroes a random midsection of an array using this routine.)
duke@435 5002 ShouldNotReachHere(); // fix caller
duke@435 5003 }
duke@435 5004
duke@435 5005 // Done.
duke@435 5006 set_memory(mem, adr_type);
duke@435 5007 }
duke@435 5008
duke@435 5009
duke@435 5010 bool
duke@435 5011 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
duke@435 5012 BasicType basic_elem_type,
duke@435 5013 AllocateNode* alloc,
duke@435 5014 Node* src, Node* src_offset,
duke@435 5015 Node* dest, Node* dest_offset,
duke@435 5016 Node* dest_size) {
duke@435 5017 // See if there is an advantage from block transfer.
kvn@464 5018 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5019 if (scale >= LogBytesPerLong)
duke@435 5020 return false; // it is already a block transfer
duke@435 5021
duke@435 5022 // Look at the alignment of the starting offsets.
duke@435 5023 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 5024 const intptr_t BIG_NEG = -128;
duke@435 5025 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 5026
duke@435 5027 intptr_t src_off = abase + ((intptr_t) find_int_con(src_offset, -1) << scale);
duke@435 5028 intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
duke@435 5029 if (src_off < 0 || dest_off < 0)
duke@435 5030 // At present, we can only understand constants.
duke@435 5031 return false;
duke@435 5032
duke@435 5033 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
duke@435 5034 // Non-aligned; too bad.
duke@435 5035 // One more chance: Pick off an initial 32-bit word.
duke@435 5036 // This is a common case, since abase can be odd mod 8.
duke@435 5037 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
duke@435 5038 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
duke@435 5039 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5040 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5041 Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
duke@435 5042 store_to_memory(control(), dptr, sval, T_INT, adr_type);
duke@435 5043 src_off += BytesPerInt;
duke@435 5044 dest_off += BytesPerInt;
duke@435 5045 } else {
duke@435 5046 return false;
duke@435 5047 }
duke@435 5048 }
duke@435 5049 assert(src_off % BytesPerLong == 0, "");
duke@435 5050 assert(dest_off % BytesPerLong == 0, "");
duke@435 5051
duke@435 5052 // Do this copy by giant steps.
duke@435 5053 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5054 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5055 Node* countx = dest_size;
duke@435 5056 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
duke@435 5057 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
duke@435 5058
duke@435 5059 bool disjoint_bases = true; // since alloc != NULL
duke@435 5060 generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
duke@435 5061 sptr, NULL, dptr, NULL, countx);
duke@435 5062
duke@435 5063 return true;
duke@435 5064 }
duke@435 5065
duke@435 5066
duke@435 5067 // Helper function; generates code for the slow case.
duke@435 5068 // We make a call to a runtime method which emulates the native method,
duke@435 5069 // but without the native wrapper overhead.
duke@435 5070 void
duke@435 5071 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 5072 Node* src, Node* src_offset,
duke@435 5073 Node* dest, Node* dest_offset,
kvn@1268 5074 Node* copy_length) {
duke@435 5075 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
duke@435 5076 OptoRuntime::slow_arraycopy_Type(),
duke@435 5077 OptoRuntime::slow_arraycopy_Java(),
duke@435 5078 "slow_arraycopy", adr_type,
duke@435 5079 src, src_offset, dest, dest_offset,
duke@435 5080 copy_length);
duke@435 5081
duke@435 5082 // Handle exceptions thrown by this fellow:
duke@435 5083 make_slow_call_ex(call, env()->Throwable_klass(), false);
duke@435 5084 }
duke@435 5085
duke@435 5086 // Helper function; generates code for cases requiring runtime checks.
duke@435 5087 Node*
duke@435 5088 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 5089 Node* dest_elem_klass,
duke@435 5090 Node* src, Node* src_offset,
duke@435 5091 Node* dest, Node* dest_offset,
kvn@1268 5092 Node* copy_length) {
duke@435 5093 if (stopped()) return NULL;
duke@435 5094
duke@435 5095 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
duke@435 5096 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5097 return NULL;
duke@435 5098 }
duke@435 5099
duke@435 5100 // Pick out the parameters required to perform a store-check
duke@435 5101 // for the target array. This is an optimistic check. It will
duke@435 5102 // look in each non-null element's class, at the desired klass's
duke@435 5103 // super_check_offset, for the desired klass.
duke@435 5104 int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
duke@435 5105 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
duke@435 5106 Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
duke@435 5107 Node* check_offset = _gvn.transform(n3);
duke@435 5108 Node* check_value = dest_elem_klass;
duke@435 5109
duke@435 5110 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
duke@435 5111 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
duke@435 5112
duke@435 5113 // (We know the arrays are never conjoint, because their types differ.)
duke@435 5114 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5115 OptoRuntime::checkcast_arraycopy_Type(),
duke@435 5116 copyfunc_addr, "checkcast_arraycopy", adr_type,
duke@435 5117 // five arguments, of which two are
duke@435 5118 // intptr_t (jlong in LP64)
duke@435 5119 src_start, dest_start,
duke@435 5120 copy_length XTOP,
duke@435 5121 check_offset XTOP,
duke@435 5122 check_value);
duke@435 5123
duke@435 5124 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5125 }
duke@435 5126
duke@435 5127
duke@435 5128 // Helper function; generates code for cases requiring runtime checks.
duke@435 5129 Node*
duke@435 5130 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 5131 Node* src, Node* src_offset,
duke@435 5132 Node* dest, Node* dest_offset,
kvn@1268 5133 Node* copy_length) {
duke@435 5134 if (stopped()) return NULL;
duke@435 5135
duke@435 5136 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 5137 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5138 return NULL;
duke@435 5139 }
duke@435 5140
duke@435 5141 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5142 OptoRuntime::generic_arraycopy_Type(),
duke@435 5143 copyfunc_addr, "generic_arraycopy", adr_type,
duke@435 5144 src, src_offset, dest, dest_offset, copy_length);
duke@435 5145
duke@435 5146 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5147 }
duke@435 5148
duke@435 5149 // Helper function; generates the fast out-of-line call to an arraycopy stub.
duke@435 5150 void
duke@435 5151 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 5152 BasicType basic_elem_type,
duke@435 5153 bool disjoint_bases,
duke@435 5154 Node* src, Node* src_offset,
duke@435 5155 Node* dest, Node* dest_offset,
duke@435 5156 Node* copy_length) {
duke@435 5157 if (stopped()) return; // nothing to do
duke@435 5158
duke@435 5159 Node* src_start = src;
duke@435 5160 Node* dest_start = dest;
duke@435 5161 if (src_offset != NULL || dest_offset != NULL) {
duke@435 5162 assert(src_offset != NULL && dest_offset != NULL, "");
duke@435 5163 src_start = array_element_address(src, src_offset, basic_elem_type);
duke@435 5164 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
duke@435 5165 }
duke@435 5166
duke@435 5167 // Figure out which arraycopy runtime method to call.
duke@435 5168 const char* copyfunc_name = "arraycopy";
duke@435 5169 address copyfunc_addr =
duke@435 5170 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
duke@435 5171 disjoint_bases, copyfunc_name);
duke@435 5172
duke@435 5173 // Call it. Note that the count_ix value is not scaled to a byte-size.
duke@435 5174 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5175 OptoRuntime::fast_arraycopy_Type(),
duke@435 5176 copyfunc_addr, copyfunc_name, adr_type,
duke@435 5177 src_start, dest_start, copy_length XTOP);
duke@435 5178 }

mercurial