src/share/vm/opto/library_call.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 464
d5fc211aea19
permissions
-rw-r--r--

Initial load

duke@435 1 /*
duke@435 2 * Copyright 1999-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_library_call.cpp.incl"
duke@435 27
duke@435 28 class LibraryIntrinsic : public InlineCallGenerator {
duke@435 29 // Extend the set of intrinsics known to the runtime:
duke@435 30 public:
duke@435 31 private:
duke@435 32 bool _is_virtual;
duke@435 33 vmIntrinsics::ID _intrinsic_id;
duke@435 34
duke@435 35 public:
duke@435 36 LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
duke@435 37 : InlineCallGenerator(m),
duke@435 38 _is_virtual(is_virtual),
duke@435 39 _intrinsic_id(id)
duke@435 40 {
duke@435 41 }
duke@435 42 virtual bool is_intrinsic() const { return true; }
duke@435 43 virtual bool is_virtual() const { return _is_virtual; }
duke@435 44 virtual JVMState* generate(JVMState* jvms);
duke@435 45 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
duke@435 46 };
duke@435 47
duke@435 48
duke@435 49 // Local helper class for LibraryIntrinsic:
duke@435 50 class LibraryCallKit : public GraphKit {
duke@435 51 private:
duke@435 52 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
duke@435 53
duke@435 54 public:
duke@435 55 LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
duke@435 56 : GraphKit(caller),
duke@435 57 _intrinsic(intrinsic)
duke@435 58 {
duke@435 59 }
duke@435 60
duke@435 61 ciMethod* caller() const { return jvms()->method(); }
duke@435 62 int bci() const { return jvms()->bci(); }
duke@435 63 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
duke@435 64 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
duke@435 65 ciMethod* callee() const { return _intrinsic->method(); }
duke@435 66 ciSignature* signature() const { return callee()->signature(); }
duke@435 67 int arg_size() const { return callee()->arg_size(); }
duke@435 68
duke@435 69 bool try_to_inline();
duke@435 70
duke@435 71 // Helper functions to inline natives
duke@435 72 void push_result(RegionNode* region, PhiNode* value);
duke@435 73 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
duke@435 74 Node* generate_slow_guard(Node* test, RegionNode* region);
duke@435 75 Node* generate_fair_guard(Node* test, RegionNode* region);
duke@435 76 Node* generate_negative_guard(Node* index, RegionNode* region,
duke@435 77 // resulting CastII of index:
duke@435 78 Node* *pos_index = NULL);
duke@435 79 Node* generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 80 // resulting CastII of index:
duke@435 81 Node* *pos_index = NULL);
duke@435 82 Node* generate_limit_guard(Node* offset, Node* subseq_length,
duke@435 83 Node* array_length,
duke@435 84 RegionNode* region);
duke@435 85 Node* generate_current_thread(Node* &tls_output);
duke@435 86 address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
duke@435 87 bool disjoint_bases, const char* &name);
duke@435 88 Node* load_mirror_from_klass(Node* klass);
duke@435 89 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
duke@435 90 int nargs,
duke@435 91 RegionNode* region, int null_path,
duke@435 92 int offset);
duke@435 93 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
duke@435 94 RegionNode* region, int null_path) {
duke@435 95 int offset = java_lang_Class::klass_offset_in_bytes();
duke@435 96 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 97 region, null_path,
duke@435 98 offset);
duke@435 99 }
duke@435 100 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 101 int nargs,
duke@435 102 RegionNode* region, int null_path) {
duke@435 103 int offset = java_lang_Class::array_klass_offset_in_bytes();
duke@435 104 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 105 region, null_path,
duke@435 106 offset);
duke@435 107 }
duke@435 108 Node* generate_access_flags_guard(Node* kls,
duke@435 109 int modifier_mask, int modifier_bits,
duke@435 110 RegionNode* region);
duke@435 111 Node* generate_interface_guard(Node* kls, RegionNode* region);
duke@435 112 Node* generate_array_guard(Node* kls, RegionNode* region) {
duke@435 113 return generate_array_guard_common(kls, region, false, false);
duke@435 114 }
duke@435 115 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
duke@435 116 return generate_array_guard_common(kls, region, false, true);
duke@435 117 }
duke@435 118 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
duke@435 119 return generate_array_guard_common(kls, region, true, false);
duke@435 120 }
duke@435 121 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
duke@435 122 return generate_array_guard_common(kls, region, true, true);
duke@435 123 }
duke@435 124 Node* generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 125 bool obj_array, bool not_array);
duke@435 126 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
duke@435 127 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
duke@435 128 bool is_virtual = false, bool is_static = false);
duke@435 129 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
duke@435 130 return generate_method_call(method_id, false, true);
duke@435 131 }
duke@435 132 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
duke@435 133 return generate_method_call(method_id, true, false);
duke@435 134 }
duke@435 135
duke@435 136 bool inline_string_compareTo();
duke@435 137 bool inline_string_indexOf();
duke@435 138 Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
duke@435 139 Node* pop_math_arg();
duke@435 140 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 141 bool inline_math_native(vmIntrinsics::ID id);
duke@435 142 bool inline_trig(vmIntrinsics::ID id);
duke@435 143 bool inline_trans(vmIntrinsics::ID id);
duke@435 144 bool inline_abs(vmIntrinsics::ID id);
duke@435 145 bool inline_sqrt(vmIntrinsics::ID id);
duke@435 146 bool inline_pow(vmIntrinsics::ID id);
duke@435 147 bool inline_exp(vmIntrinsics::ID id);
duke@435 148 bool inline_min_max(vmIntrinsics::ID id);
duke@435 149 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
duke@435 150 // This returns Type::AnyPtr, RawPtr, or OopPtr.
duke@435 151 int classify_unsafe_addr(Node* &base, Node* &offset);
duke@435 152 Node* make_unsafe_address(Node* base, Node* offset);
duke@435 153 bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
duke@435 154 bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
duke@435 155 bool inline_unsafe_allocate();
duke@435 156 bool inline_unsafe_copyMemory();
duke@435 157 bool inline_native_currentThread();
duke@435 158 bool inline_native_time_funcs(bool isNano);
duke@435 159 bool inline_native_isInterrupted();
duke@435 160 bool inline_native_Class_query(vmIntrinsics::ID id);
duke@435 161 bool inline_native_subtype_check();
duke@435 162
duke@435 163 bool inline_native_newArray();
duke@435 164 bool inline_native_getLength();
duke@435 165 bool inline_array_copyOf(bool is_copyOfRange);
duke@435 166 bool inline_native_clone(bool is_virtual);
duke@435 167 bool inline_native_Reflection_getCallerClass();
duke@435 168 bool inline_native_AtomicLong_get();
duke@435 169 bool inline_native_AtomicLong_attemptUpdate();
duke@435 170 bool is_method_invoke_or_aux_frame(JVMState* jvms);
duke@435 171 // Helper function for inlining native object hash method
duke@435 172 bool inline_native_hashcode(bool is_virtual, bool is_static);
duke@435 173 bool inline_native_getClass();
duke@435 174
duke@435 175 // Helper functions for inlining arraycopy
duke@435 176 bool inline_arraycopy();
duke@435 177 void generate_arraycopy(const TypePtr* adr_type,
duke@435 178 BasicType basic_elem_type,
duke@435 179 Node* src, Node* src_offset,
duke@435 180 Node* dest, Node* dest_offset,
duke@435 181 Node* copy_length,
duke@435 182 int nargs, // arguments on stack for debug info
duke@435 183 bool disjoint_bases = false,
duke@435 184 bool length_never_negative = false,
duke@435 185 RegionNode* slow_region = NULL);
duke@435 186 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
duke@435 187 RegionNode* slow_region);
duke@435 188 void generate_clear_array(const TypePtr* adr_type,
duke@435 189 Node* dest,
duke@435 190 BasicType basic_elem_type,
duke@435 191 Node* slice_off,
duke@435 192 Node* slice_len,
duke@435 193 Node* slice_end);
duke@435 194 bool generate_block_arraycopy(const TypePtr* adr_type,
duke@435 195 BasicType basic_elem_type,
duke@435 196 AllocateNode* alloc,
duke@435 197 Node* src, Node* src_offset,
duke@435 198 Node* dest, Node* dest_offset,
duke@435 199 Node* dest_size);
duke@435 200 void generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 201 Node* src, Node* src_offset,
duke@435 202 Node* dest, Node* dest_offset,
duke@435 203 Node* copy_length,
duke@435 204 int nargs);
duke@435 205 Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 206 Node* dest_elem_klass,
duke@435 207 Node* src, Node* src_offset,
duke@435 208 Node* dest, Node* dest_offset,
duke@435 209 Node* copy_length, int nargs);
duke@435 210 Node* generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 211 Node* src, Node* src_offset,
duke@435 212 Node* dest, Node* dest_offset,
duke@435 213 Node* copy_length, int nargs);
duke@435 214 void generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 215 BasicType basic_elem_type,
duke@435 216 bool disjoint_bases,
duke@435 217 Node* src, Node* src_offset,
duke@435 218 Node* dest, Node* dest_offset,
duke@435 219 Node* copy_length);
duke@435 220 bool inline_unsafe_CAS(BasicType type);
duke@435 221 bool inline_unsafe_ordered_store(BasicType type);
duke@435 222 bool inline_fp_conversions(vmIntrinsics::ID id);
duke@435 223 bool inline_reverseBytes(vmIntrinsics::ID id);
duke@435 224 };
duke@435 225
duke@435 226
duke@435 227 //---------------------------make_vm_intrinsic----------------------------
duke@435 228 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 229 vmIntrinsics::ID id = m->intrinsic_id();
duke@435 230 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
duke@435 231
duke@435 232 if (DisableIntrinsic[0] != '\0'
duke@435 233 && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
duke@435 234 // disabled by a user request on the command line:
duke@435 235 // example: -XX:DisableIntrinsic=_hashCode,_getClass
duke@435 236 return NULL;
duke@435 237 }
duke@435 238
duke@435 239 if (!m->is_loaded()) {
duke@435 240 // do not attempt to inline unloaded methods
duke@435 241 return NULL;
duke@435 242 }
duke@435 243
duke@435 244 // Only a few intrinsics implement a virtual dispatch.
duke@435 245 // They are expensive calls which are also frequently overridden.
duke@435 246 if (is_virtual) {
duke@435 247 switch (id) {
duke@435 248 case vmIntrinsics::_hashCode:
duke@435 249 case vmIntrinsics::_clone:
duke@435 250 // OK, Object.hashCode and Object.clone intrinsics come in both flavors
duke@435 251 break;
duke@435 252 default:
duke@435 253 return NULL;
duke@435 254 }
duke@435 255 }
duke@435 256
duke@435 257 // -XX:-InlineNatives disables nearly all intrinsics:
duke@435 258 if (!InlineNatives) {
duke@435 259 switch (id) {
duke@435 260 case vmIntrinsics::_indexOf:
duke@435 261 case vmIntrinsics::_compareTo:
duke@435 262 break; // InlineNatives does not control String.compareTo
duke@435 263 default:
duke@435 264 return NULL;
duke@435 265 }
duke@435 266 }
duke@435 267
duke@435 268 switch (id) {
duke@435 269 case vmIntrinsics::_compareTo:
duke@435 270 if (!SpecialStringCompareTo) return NULL;
duke@435 271 break;
duke@435 272 case vmIntrinsics::_indexOf:
duke@435 273 if (!SpecialStringIndexOf) return NULL;
duke@435 274 break;
duke@435 275 case vmIntrinsics::_arraycopy:
duke@435 276 if (!InlineArrayCopy) return NULL;
duke@435 277 break;
duke@435 278 case vmIntrinsics::_copyMemory:
duke@435 279 if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
duke@435 280 if (!InlineArrayCopy) return NULL;
duke@435 281 break;
duke@435 282 case vmIntrinsics::_hashCode:
duke@435 283 if (!InlineObjectHash) return NULL;
duke@435 284 break;
duke@435 285 case vmIntrinsics::_clone:
duke@435 286 case vmIntrinsics::_copyOf:
duke@435 287 case vmIntrinsics::_copyOfRange:
duke@435 288 if (!InlineObjectCopy) return NULL;
duke@435 289 // These also use the arraycopy intrinsic mechanism:
duke@435 290 if (!InlineArrayCopy) return NULL;
duke@435 291 break;
duke@435 292 case vmIntrinsics::_checkIndex:
duke@435 293 // We do not intrinsify this. The optimizer does fine with it.
duke@435 294 return NULL;
duke@435 295
duke@435 296 case vmIntrinsics::_get_AtomicLong:
duke@435 297 case vmIntrinsics::_attemptUpdate:
duke@435 298 if (!InlineAtomicLong) return NULL;
duke@435 299 break;
duke@435 300
duke@435 301 case vmIntrinsics::_Object_init:
duke@435 302 case vmIntrinsics::_invoke:
duke@435 303 // We do not intrinsify these; they are marked for other purposes.
duke@435 304 return NULL;
duke@435 305
duke@435 306 case vmIntrinsics::_getCallerClass:
duke@435 307 if (!UseNewReflection) return NULL;
duke@435 308 if (!InlineReflectionGetCallerClass) return NULL;
duke@435 309 if (!JDK_Version::is_gte_jdk14x_version()) return NULL;
duke@435 310 break;
duke@435 311
duke@435 312 default:
duke@435 313 break;
duke@435 314 }
duke@435 315
duke@435 316 // -XX:-InlineClassNatives disables natives from the Class class.
duke@435 317 // The flag applies to all reflective calls, notably Array.newArray
duke@435 318 // (visible to Java programmers as Array.newInstance).
duke@435 319 if (m->holder()->name() == ciSymbol::java_lang_Class() ||
duke@435 320 m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
duke@435 321 if (!InlineClassNatives) return NULL;
duke@435 322 }
duke@435 323
duke@435 324 // -XX:-InlineThreadNatives disables natives from the Thread class.
duke@435 325 if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
duke@435 326 if (!InlineThreadNatives) return NULL;
duke@435 327 }
duke@435 328
duke@435 329 // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
duke@435 330 if (m->holder()->name() == ciSymbol::java_lang_Math() ||
duke@435 331 m->holder()->name() == ciSymbol::java_lang_Float() ||
duke@435 332 m->holder()->name() == ciSymbol::java_lang_Double()) {
duke@435 333 if (!InlineMathNatives) return NULL;
duke@435 334 }
duke@435 335
duke@435 336 // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
duke@435 337 if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
duke@435 338 if (!InlineUnsafeOps) return NULL;
duke@435 339 }
duke@435 340
duke@435 341 return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
duke@435 342 }
duke@435 343
duke@435 344 //----------------------register_library_intrinsics-----------------------
duke@435 345 // Initialize this file's data structures, for each Compile instance.
duke@435 346 void Compile::register_library_intrinsics() {
duke@435 347 // Nothing to do here.
duke@435 348 }
duke@435 349
duke@435 350 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
duke@435 351 LibraryCallKit kit(jvms, this);
duke@435 352 Compile* C = kit.C;
duke@435 353 int nodes = C->unique();
duke@435 354 #ifndef PRODUCT
duke@435 355 if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
duke@435 356 char buf[1000];
duke@435 357 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
duke@435 358 tty->print_cr("Intrinsic %s", str);
duke@435 359 }
duke@435 360 #endif
duke@435 361 if (kit.try_to_inline()) {
duke@435 362 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
duke@435 363 tty->print("Inlining intrinsic %s%s at bci:%d in",
duke@435 364 vmIntrinsics::name_at(intrinsic_id()),
duke@435 365 (is_virtual() ? " (virtual)" : ""), kit.bci());
duke@435 366 kit.caller()->print_short_name(tty);
duke@435 367 tty->print_cr(" (%d bytes)", kit.caller()->code_size());
duke@435 368 }
duke@435 369 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
duke@435 370 if (C->log()) {
duke@435 371 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
duke@435 372 vmIntrinsics::name_at(intrinsic_id()),
duke@435 373 (is_virtual() ? " virtual='1'" : ""),
duke@435 374 C->unique() - nodes);
duke@435 375 }
duke@435 376 return kit.transfer_exceptions_into_jvms();
duke@435 377 }
duke@435 378
duke@435 379 if (PrintIntrinsics) {
duke@435 380 switch (intrinsic_id()) {
duke@435 381 case vmIntrinsics::_invoke:
duke@435 382 case vmIntrinsics::_Object_init:
duke@435 383 // We do not expect to inline these, so do not produce any noise about them.
duke@435 384 break;
duke@435 385 default:
duke@435 386 tty->print("Did not inline intrinsic %s%s at bci:%d in",
duke@435 387 vmIntrinsics::name_at(intrinsic_id()),
duke@435 388 (is_virtual() ? " (virtual)" : ""), kit.bci());
duke@435 389 kit.caller()->print_short_name(tty);
duke@435 390 tty->print_cr(" (%d bytes)", kit.caller()->code_size());
duke@435 391 }
duke@435 392 }
duke@435 393 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
duke@435 394 return NULL;
duke@435 395 }
duke@435 396
duke@435 397 bool LibraryCallKit::try_to_inline() {
duke@435 398 // Handle symbolic names for otherwise undistinguished boolean switches:
duke@435 399 const bool is_store = true;
duke@435 400 const bool is_native_ptr = true;
duke@435 401 const bool is_static = true;
duke@435 402
duke@435 403 switch (intrinsic_id()) {
duke@435 404 case vmIntrinsics::_hashCode:
duke@435 405 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
duke@435 406 case vmIntrinsics::_identityHashCode:
duke@435 407 return inline_native_hashcode(/*!virtual*/ false, is_static);
duke@435 408 case vmIntrinsics::_getClass:
duke@435 409 return inline_native_getClass();
duke@435 410
duke@435 411 case vmIntrinsics::_dsin:
duke@435 412 case vmIntrinsics::_dcos:
duke@435 413 case vmIntrinsics::_dtan:
duke@435 414 case vmIntrinsics::_dabs:
duke@435 415 case vmIntrinsics::_datan2:
duke@435 416 case vmIntrinsics::_dsqrt:
duke@435 417 case vmIntrinsics::_dexp:
duke@435 418 case vmIntrinsics::_dlog:
duke@435 419 case vmIntrinsics::_dlog10:
duke@435 420 case vmIntrinsics::_dpow:
duke@435 421 return inline_math_native(intrinsic_id());
duke@435 422
duke@435 423 case vmIntrinsics::_min:
duke@435 424 case vmIntrinsics::_max:
duke@435 425 return inline_min_max(intrinsic_id());
duke@435 426
duke@435 427 case vmIntrinsics::_arraycopy:
duke@435 428 return inline_arraycopy();
duke@435 429
duke@435 430 case vmIntrinsics::_compareTo:
duke@435 431 return inline_string_compareTo();
duke@435 432 case vmIntrinsics::_indexOf:
duke@435 433 return inline_string_indexOf();
duke@435 434
duke@435 435 case vmIntrinsics::_getObject:
duke@435 436 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
duke@435 437 case vmIntrinsics::_getBoolean:
duke@435 438 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
duke@435 439 case vmIntrinsics::_getByte:
duke@435 440 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
duke@435 441 case vmIntrinsics::_getShort:
duke@435 442 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
duke@435 443 case vmIntrinsics::_getChar:
duke@435 444 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
duke@435 445 case vmIntrinsics::_getInt:
duke@435 446 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
duke@435 447 case vmIntrinsics::_getLong:
duke@435 448 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
duke@435 449 case vmIntrinsics::_getFloat:
duke@435 450 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
duke@435 451 case vmIntrinsics::_getDouble:
duke@435 452 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 453
duke@435 454 case vmIntrinsics::_putObject:
duke@435 455 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
duke@435 456 case vmIntrinsics::_putBoolean:
duke@435 457 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
duke@435 458 case vmIntrinsics::_putByte:
duke@435 459 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
duke@435 460 case vmIntrinsics::_putShort:
duke@435 461 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
duke@435 462 case vmIntrinsics::_putChar:
duke@435 463 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
duke@435 464 case vmIntrinsics::_putInt:
duke@435 465 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
duke@435 466 case vmIntrinsics::_putLong:
duke@435 467 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
duke@435 468 case vmIntrinsics::_putFloat:
duke@435 469 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
duke@435 470 case vmIntrinsics::_putDouble:
duke@435 471 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
duke@435 472
duke@435 473 case vmIntrinsics::_getByte_raw:
duke@435 474 return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
duke@435 475 case vmIntrinsics::_getShort_raw:
duke@435 476 return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
duke@435 477 case vmIntrinsics::_getChar_raw:
duke@435 478 return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
duke@435 479 case vmIntrinsics::_getInt_raw:
duke@435 480 return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
duke@435 481 case vmIntrinsics::_getLong_raw:
duke@435 482 return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
duke@435 483 case vmIntrinsics::_getFloat_raw:
duke@435 484 return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
duke@435 485 case vmIntrinsics::_getDouble_raw:
duke@435 486 return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 487 case vmIntrinsics::_getAddress_raw:
duke@435 488 return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
duke@435 489
duke@435 490 case vmIntrinsics::_putByte_raw:
duke@435 491 return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
duke@435 492 case vmIntrinsics::_putShort_raw:
duke@435 493 return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
duke@435 494 case vmIntrinsics::_putChar_raw:
duke@435 495 return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
duke@435 496 case vmIntrinsics::_putInt_raw:
duke@435 497 return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
duke@435 498 case vmIntrinsics::_putLong_raw:
duke@435 499 return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
duke@435 500 case vmIntrinsics::_putFloat_raw:
duke@435 501 return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
duke@435 502 case vmIntrinsics::_putDouble_raw:
duke@435 503 return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
duke@435 504 case vmIntrinsics::_putAddress_raw:
duke@435 505 return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
duke@435 506
duke@435 507 case vmIntrinsics::_getObjectVolatile:
duke@435 508 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
duke@435 509 case vmIntrinsics::_getBooleanVolatile:
duke@435 510 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
duke@435 511 case vmIntrinsics::_getByteVolatile:
duke@435 512 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
duke@435 513 case vmIntrinsics::_getShortVolatile:
duke@435 514 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
duke@435 515 case vmIntrinsics::_getCharVolatile:
duke@435 516 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
duke@435 517 case vmIntrinsics::_getIntVolatile:
duke@435 518 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
duke@435 519 case vmIntrinsics::_getLongVolatile:
duke@435 520 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
duke@435 521 case vmIntrinsics::_getFloatVolatile:
duke@435 522 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
duke@435 523 case vmIntrinsics::_getDoubleVolatile:
duke@435 524 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
duke@435 525
duke@435 526 case vmIntrinsics::_putObjectVolatile:
duke@435 527 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
duke@435 528 case vmIntrinsics::_putBooleanVolatile:
duke@435 529 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
duke@435 530 case vmIntrinsics::_putByteVolatile:
duke@435 531 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
duke@435 532 case vmIntrinsics::_putShortVolatile:
duke@435 533 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
duke@435 534 case vmIntrinsics::_putCharVolatile:
duke@435 535 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
duke@435 536 case vmIntrinsics::_putIntVolatile:
duke@435 537 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
duke@435 538 case vmIntrinsics::_putLongVolatile:
duke@435 539 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
duke@435 540 case vmIntrinsics::_putFloatVolatile:
duke@435 541 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
duke@435 542 case vmIntrinsics::_putDoubleVolatile:
duke@435 543 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
duke@435 544
duke@435 545 case vmIntrinsics::_prefetchRead:
duke@435 546 return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
duke@435 547 case vmIntrinsics::_prefetchWrite:
duke@435 548 return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
duke@435 549 case vmIntrinsics::_prefetchReadStatic:
duke@435 550 return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
duke@435 551 case vmIntrinsics::_prefetchWriteStatic:
duke@435 552 return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
duke@435 553
duke@435 554 case vmIntrinsics::_compareAndSwapObject:
duke@435 555 return inline_unsafe_CAS(T_OBJECT);
duke@435 556 case vmIntrinsics::_compareAndSwapInt:
duke@435 557 return inline_unsafe_CAS(T_INT);
duke@435 558 case vmIntrinsics::_compareAndSwapLong:
duke@435 559 return inline_unsafe_CAS(T_LONG);
duke@435 560
duke@435 561 case vmIntrinsics::_putOrderedObject:
duke@435 562 return inline_unsafe_ordered_store(T_OBJECT);
duke@435 563 case vmIntrinsics::_putOrderedInt:
duke@435 564 return inline_unsafe_ordered_store(T_INT);
duke@435 565 case vmIntrinsics::_putOrderedLong:
duke@435 566 return inline_unsafe_ordered_store(T_LONG);
duke@435 567
duke@435 568 case vmIntrinsics::_currentThread:
duke@435 569 return inline_native_currentThread();
duke@435 570 case vmIntrinsics::_isInterrupted:
duke@435 571 return inline_native_isInterrupted();
duke@435 572
duke@435 573 case vmIntrinsics::_currentTimeMillis:
duke@435 574 return inline_native_time_funcs(false);
duke@435 575 case vmIntrinsics::_nanoTime:
duke@435 576 return inline_native_time_funcs(true);
duke@435 577 case vmIntrinsics::_allocateInstance:
duke@435 578 return inline_unsafe_allocate();
duke@435 579 case vmIntrinsics::_copyMemory:
duke@435 580 return inline_unsafe_copyMemory();
duke@435 581 case vmIntrinsics::_newArray:
duke@435 582 return inline_native_newArray();
duke@435 583 case vmIntrinsics::_getLength:
duke@435 584 return inline_native_getLength();
duke@435 585 case vmIntrinsics::_copyOf:
duke@435 586 return inline_array_copyOf(false);
duke@435 587 case vmIntrinsics::_copyOfRange:
duke@435 588 return inline_array_copyOf(true);
duke@435 589 case vmIntrinsics::_clone:
duke@435 590 return inline_native_clone(intrinsic()->is_virtual());
duke@435 591
duke@435 592 case vmIntrinsics::_isAssignableFrom:
duke@435 593 return inline_native_subtype_check();
duke@435 594
duke@435 595 case vmIntrinsics::_isInstance:
duke@435 596 case vmIntrinsics::_getModifiers:
duke@435 597 case vmIntrinsics::_isInterface:
duke@435 598 case vmIntrinsics::_isArray:
duke@435 599 case vmIntrinsics::_isPrimitive:
duke@435 600 case vmIntrinsics::_getSuperclass:
duke@435 601 case vmIntrinsics::_getComponentType:
duke@435 602 case vmIntrinsics::_getClassAccessFlags:
duke@435 603 return inline_native_Class_query(intrinsic_id());
duke@435 604
duke@435 605 case vmIntrinsics::_floatToRawIntBits:
duke@435 606 case vmIntrinsics::_floatToIntBits:
duke@435 607 case vmIntrinsics::_intBitsToFloat:
duke@435 608 case vmIntrinsics::_doubleToRawLongBits:
duke@435 609 case vmIntrinsics::_doubleToLongBits:
duke@435 610 case vmIntrinsics::_longBitsToDouble:
duke@435 611 return inline_fp_conversions(intrinsic_id());
duke@435 612
duke@435 613 case vmIntrinsics::_reverseBytes_i:
duke@435 614 case vmIntrinsics::_reverseBytes_l:
duke@435 615 return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
duke@435 616
duke@435 617 case vmIntrinsics::_get_AtomicLong:
duke@435 618 return inline_native_AtomicLong_get();
duke@435 619 case vmIntrinsics::_attemptUpdate:
duke@435 620 return inline_native_AtomicLong_attemptUpdate();
duke@435 621
duke@435 622 case vmIntrinsics::_getCallerClass:
duke@435 623 return inline_native_Reflection_getCallerClass();
duke@435 624
duke@435 625 default:
duke@435 626 // If you get here, it may be that someone has added a new intrinsic
duke@435 627 // to the list in vmSymbols.hpp without implementing it here.
duke@435 628 #ifndef PRODUCT
duke@435 629 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
duke@435 630 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
duke@435 631 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
duke@435 632 }
duke@435 633 #endif
duke@435 634 return false;
duke@435 635 }
duke@435 636 }
duke@435 637
duke@435 638 //------------------------------push_result------------------------------
duke@435 639 // Helper function for finishing intrinsics.
duke@435 640 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
duke@435 641 record_for_igvn(region);
duke@435 642 set_control(_gvn.transform(region));
duke@435 643 BasicType value_type = value->type()->basic_type();
duke@435 644 push_node(value_type, _gvn.transform(value));
duke@435 645 }
duke@435 646
duke@435 647 //------------------------------generate_guard---------------------------
duke@435 648 // Helper function for generating guarded fast-slow graph structures.
duke@435 649 // The given 'test', if true, guards a slow path. If the test fails
duke@435 650 // then a fast path can be taken. (We generally hope it fails.)
duke@435 651 // In all cases, GraphKit::control() is updated to the fast path.
duke@435 652 // The returned value represents the control for the slow path.
duke@435 653 // The return value is never 'top'; it is either a valid control
duke@435 654 // or NULL if it is obvious that the slow path can never be taken.
duke@435 655 // Also, if region and the slow control are not NULL, the slow edge
duke@435 656 // is appended to the region.
duke@435 657 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
duke@435 658 if (stopped()) {
duke@435 659 // Already short circuited.
duke@435 660 return NULL;
duke@435 661 }
duke@435 662
duke@435 663 // Build an if node and its projections.
duke@435 664 // If test is true we take the slow path, which we assume is uncommon.
duke@435 665 if (_gvn.type(test) == TypeInt::ZERO) {
duke@435 666 // The slow branch is never taken. No need to build this guard.
duke@435 667 return NULL;
duke@435 668 }
duke@435 669
duke@435 670 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
duke@435 671
duke@435 672 Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
duke@435 673 if (if_slow == top()) {
duke@435 674 // The slow branch is never taken. No need to build this guard.
duke@435 675 return NULL;
duke@435 676 }
duke@435 677
duke@435 678 if (region != NULL)
duke@435 679 region->add_req(if_slow);
duke@435 680
duke@435 681 Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
duke@435 682 set_control(if_fast);
duke@435 683
duke@435 684 return if_slow;
duke@435 685 }
duke@435 686
duke@435 687 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
duke@435 688 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
duke@435 689 }
duke@435 690 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
duke@435 691 return generate_guard(test, region, PROB_FAIR);
duke@435 692 }
duke@435 693
duke@435 694 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
duke@435 695 Node* *pos_index) {
duke@435 696 if (stopped())
duke@435 697 return NULL; // already stopped
duke@435 698 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
duke@435 699 return NULL; // index is already adequately typed
duke@435 700 Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 701 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 702 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
duke@435 703 if (is_neg != NULL && pos_index != NULL) {
duke@435 704 // Emulate effect of Parse::adjust_map_after_if.
duke@435 705 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
duke@435 706 ccast->set_req(0, control());
duke@435 707 (*pos_index) = _gvn.transform(ccast);
duke@435 708 }
duke@435 709 return is_neg;
duke@435 710 }
duke@435 711
duke@435 712 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 713 Node* *pos_index) {
duke@435 714 if (stopped())
duke@435 715 return NULL; // already stopped
duke@435 716 if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
duke@435 717 return NULL; // index is already adequately typed
duke@435 718 Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 719 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
duke@435 720 Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
duke@435 721 Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
duke@435 722 if (is_notp != NULL && pos_index != NULL) {
duke@435 723 // Emulate effect of Parse::adjust_map_after_if.
duke@435 724 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
duke@435 725 ccast->set_req(0, control());
duke@435 726 (*pos_index) = _gvn.transform(ccast);
duke@435 727 }
duke@435 728 return is_notp;
duke@435 729 }
duke@435 730
duke@435 731 // Make sure that 'position' is a valid limit index, in [0..length].
duke@435 732 // There are two equivalent plans for checking this:
duke@435 733 // A. (offset + copyLength) unsigned<= arrayLength
duke@435 734 // B. offset <= (arrayLength - copyLength)
duke@435 735 // We require that all of the values above, except for the sum and
duke@435 736 // difference, are already known to be non-negative.
duke@435 737 // Plan A is robust in the face of overflow, if offset and copyLength
duke@435 738 // are both hugely positive.
duke@435 739 //
duke@435 740 // Plan B is less direct and intuitive, but it does not overflow at
duke@435 741 // all, since the difference of two non-negatives is always
duke@435 742 // representable. Whenever Java methods must perform the equivalent
duke@435 743 // check they generally use Plan B instead of Plan A.
duke@435 744 // For the moment we use Plan A.
duke@435 745 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
duke@435 746 Node* subseq_length,
duke@435 747 Node* array_length,
duke@435 748 RegionNode* region) {
duke@435 749 if (stopped())
duke@435 750 return NULL; // already stopped
duke@435 751 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
duke@435 752 if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
duke@435 753 return NULL; // common case of whole-array copy
duke@435 754 Node* last = subseq_length;
duke@435 755 if (!zero_offset) // last += offset
duke@435 756 last = _gvn.transform( new (C, 3) AddINode(last, offset));
duke@435 757 Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
duke@435 758 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 759 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
duke@435 760 return is_over;
duke@435 761 }
duke@435 762
duke@435 763
duke@435 764 //--------------------------generate_current_thread--------------------
duke@435 765 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
duke@435 766 ciKlass* thread_klass = env()->Thread_klass();
duke@435 767 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
duke@435 768 Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
duke@435 769 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
duke@435 770 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
duke@435 771 tls_output = thread;
duke@435 772 return threadObj;
duke@435 773 }
duke@435 774
duke@435 775
duke@435 776 //------------------------------inline_string_compareTo------------------------
duke@435 777 bool LibraryCallKit::inline_string_compareTo() {
duke@435 778
duke@435 779 const int value_offset = java_lang_String::value_offset_in_bytes();
duke@435 780 const int count_offset = java_lang_String::count_offset_in_bytes();
duke@435 781 const int offset_offset = java_lang_String::offset_offset_in_bytes();
duke@435 782
duke@435 783 _sp += 2;
duke@435 784 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 785 Node *receiver = pop();
duke@435 786
duke@435 787 // Null check on self without removing any arguments. The argument
duke@435 788 // null check technically happens in the wrong place, which can lead to
duke@435 789 // invalid stack traces when string compare is inlined into a method
duke@435 790 // which handles NullPointerExceptions.
duke@435 791 _sp += 2;
duke@435 792 receiver = do_null_check(receiver, T_OBJECT);
duke@435 793 argument = do_null_check(argument, T_OBJECT);
duke@435 794 _sp -= 2;
duke@435 795 if (stopped()) {
duke@435 796 return true;
duke@435 797 }
duke@435 798
duke@435 799 ciInstanceKlass* klass = env()->String_klass();
duke@435 800 const TypeInstPtr* string_type =
duke@435 801 TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
duke@435 802
duke@435 803 Node* compare =
duke@435 804 _gvn.transform(new (C, 7) StrCompNode(
duke@435 805 control(),
duke@435 806 memory(TypeAryPtr::CHARS),
duke@435 807 memory(string_type->add_offset(value_offset)),
duke@435 808 memory(string_type->add_offset(count_offset)),
duke@435 809 memory(string_type->add_offset(offset_offset)),
duke@435 810 receiver,
duke@435 811 argument));
duke@435 812 push(compare);
duke@435 813 return true;
duke@435 814 }
duke@435 815
duke@435 816 // Java version of String.indexOf(constant string)
duke@435 817 // class StringDecl {
duke@435 818 // StringDecl(char[] ca) {
duke@435 819 // offset = 0;
duke@435 820 // count = ca.length;
duke@435 821 // value = ca;
duke@435 822 // }
duke@435 823 // int offset;
duke@435 824 // int count;
duke@435 825 // char[] value;
duke@435 826 // }
duke@435 827 //
duke@435 828 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
duke@435 829 // int targetOffset, int cache_i, int md2) {
duke@435 830 // int cache = cache_i;
duke@435 831 // int sourceOffset = string_object.offset;
duke@435 832 // int sourceCount = string_object.count;
duke@435 833 // int targetCount = target_object.length;
duke@435 834 //
duke@435 835 // int targetCountLess1 = targetCount - 1;
duke@435 836 // int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
duke@435 837 //
duke@435 838 // char[] source = string_object.value;
duke@435 839 // char[] target = target_object;
duke@435 840 // int lastChar = target[targetCountLess1];
duke@435 841 //
duke@435 842 // outer_loop:
duke@435 843 // for (int i = sourceOffset; i < sourceEnd; ) {
duke@435 844 // int src = source[i + targetCountLess1];
duke@435 845 // if (src == lastChar) {
duke@435 846 // // With random strings and a 4-character alphabet,
duke@435 847 // // reverse matching at this point sets up 0.8% fewer
duke@435 848 // // frames, but (paradoxically) makes 0.3% more probes.
duke@435 849 // // Since those probes are nearer the lastChar probe,
duke@435 850 // // there is may be a net D$ win with reverse matching.
duke@435 851 // // But, reversing loop inhibits unroll of inner loop
duke@435 852 // // for unknown reason. So, does running outer loop from
duke@435 853 // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
duke@435 854 // for (int j = 0; j < targetCountLess1; j++) {
duke@435 855 // if (target[targetOffset + j] != source[i+j]) {
duke@435 856 // if ((cache & (1 << source[i+j])) == 0) {
duke@435 857 // if (md2 < j+1) {
duke@435 858 // i += j+1;
duke@435 859 // continue outer_loop;
duke@435 860 // }
duke@435 861 // }
duke@435 862 // i += md2;
duke@435 863 // continue outer_loop;
duke@435 864 // }
duke@435 865 // }
duke@435 866 // return i - sourceOffset;
duke@435 867 // }
duke@435 868 // if ((cache & (1 << src)) == 0) {
duke@435 869 // i += targetCountLess1;
duke@435 870 // } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
duke@435 871 // i++;
duke@435 872 // }
duke@435 873 // return -1;
duke@435 874 // }
duke@435 875
duke@435 876 //------------------------------string_indexOf------------------------
duke@435 877 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
duke@435 878 jint cache_i, jint md2_i) {
duke@435 879
duke@435 880 Node* no_ctrl = NULL;
duke@435 881 float likely = PROB_LIKELY(0.9);
duke@435 882 float unlikely = PROB_UNLIKELY(0.9);
duke@435 883
duke@435 884 const int value_offset = java_lang_String::value_offset_in_bytes();
duke@435 885 const int count_offset = java_lang_String::count_offset_in_bytes();
duke@435 886 const int offset_offset = java_lang_String::offset_offset_in_bytes();
duke@435 887
duke@435 888 ciInstanceKlass* klass = env()->String_klass();
duke@435 889 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
duke@435 890 const TypeAryPtr* source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
duke@435 891
duke@435 892 Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
duke@435 893 Node* sourceOffset = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
duke@435 894 Node* sourceCounta = basic_plus_adr(string_object, string_object, count_offset);
duke@435 895 Node* sourceCount = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
duke@435 896 Node* sourcea = basic_plus_adr(string_object, string_object, value_offset);
duke@435 897 Node* source = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
duke@435 898
duke@435 899 Node* target = _gvn.transform(ConPNode::make(C, target_array));
duke@435 900 jint target_length = target_array->length();
duke@435 901 const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
duke@435 902 const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
duke@435 903
duke@435 904 IdealKit kit(gvn(), control(), merged_memory());
duke@435 905 #define __ kit.
duke@435 906 Node* zero = __ ConI(0);
duke@435 907 Node* one = __ ConI(1);
duke@435 908 Node* cache = __ ConI(cache_i);
duke@435 909 Node* md2 = __ ConI(md2_i);
duke@435 910 Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
duke@435 911 Node* targetCount = __ ConI(target_length);
duke@435 912 Node* targetCountLess1 = __ ConI(target_length - 1);
duke@435 913 Node* targetOffset = __ ConI(targetOffset_i);
duke@435 914 Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
duke@435 915
duke@435 916 IdealVariable rtn(kit), i(kit), j(kit); __ declares_done();
duke@435 917 Node* outer_loop = __ make_label(2 /* goto */);
duke@435 918 Node* return_ = __ make_label(1);
duke@435 919
duke@435 920 __ set(rtn,__ ConI(-1));
duke@435 921 __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
duke@435 922 Node* i2 = __ AddI(__ value(i), targetCountLess1);
duke@435 923 // pin to prohibit loading of "next iteration" value which may SEGV (rare)
duke@435 924 Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
duke@435 925 __ if_then(src, BoolTest::eq, lastChar, unlikely); {
duke@435 926 __ loop(j, zero, BoolTest::lt, targetCountLess1); {
duke@435 927 Node* tpj = __ AddI(targetOffset, __ value(j));
duke@435 928 Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
duke@435 929 Node* ipj = __ AddI(__ value(i), __ value(j));
duke@435 930 Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
duke@435 931 __ if_then(targ, BoolTest::ne, src2); {
duke@435 932 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
duke@435 933 __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
duke@435 934 __ increment(i, __ AddI(__ value(j), one));
duke@435 935 __ goto_(outer_loop);
duke@435 936 } __ end_if(); __ dead(j);
duke@435 937 }__ end_if(); __ dead(j);
duke@435 938 __ increment(i, md2);
duke@435 939 __ goto_(outer_loop);
duke@435 940 }__ end_if();
duke@435 941 __ increment(j, one);
duke@435 942 }__ end_loop(); __ dead(j);
duke@435 943 __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
duke@435 944 __ goto_(return_);
duke@435 945 }__ end_if();
duke@435 946 __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
duke@435 947 __ increment(i, targetCountLess1);
duke@435 948 }__ end_if();
duke@435 949 __ increment(i, one);
duke@435 950 __ bind(outer_loop);
duke@435 951 }__ end_loop(); __ dead(i);
duke@435 952 __ bind(return_);
duke@435 953 __ drain_delay_transform();
duke@435 954
duke@435 955 set_control(__ ctrl());
duke@435 956 Node* result = __ value(rtn);
duke@435 957 #undef __
duke@435 958 C->set_has_loops(true);
duke@435 959 return result;
duke@435 960 }
duke@435 961
duke@435 962
duke@435 963 //------------------------------inline_string_indexOf------------------------
duke@435 964 bool LibraryCallKit::inline_string_indexOf() {
duke@435 965
duke@435 966 _sp += 2;
duke@435 967 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 968 Node *receiver = pop();
duke@435 969
duke@435 970 // don't intrinsify is argument isn't a constant string.
duke@435 971 if (!argument->is_Con()) {
duke@435 972 return false;
duke@435 973 }
duke@435 974 const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
duke@435 975 if (str_type == NULL) {
duke@435 976 return false;
duke@435 977 }
duke@435 978 ciInstanceKlass* klass = env()->String_klass();
duke@435 979 ciObject* str_const = str_type->const_oop();
duke@435 980 if (str_const == NULL || str_const->klass() != klass) {
duke@435 981 return false;
duke@435 982 }
duke@435 983 ciInstance* str = str_const->as_instance();
duke@435 984 assert(str != NULL, "must be instance");
duke@435 985
duke@435 986 const int value_offset = java_lang_String::value_offset_in_bytes();
duke@435 987 const int count_offset = java_lang_String::count_offset_in_bytes();
duke@435 988 const int offset_offset = java_lang_String::offset_offset_in_bytes();
duke@435 989
duke@435 990 ciObject* v = str->field_value_by_offset(value_offset).as_object();
duke@435 991 int o = str->field_value_by_offset(offset_offset).as_int();
duke@435 992 int c = str->field_value_by_offset(count_offset).as_int();
duke@435 993 ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
duke@435 994
duke@435 995 // constant strings have no offset and count == length which
duke@435 996 // simplifies the resulting code somewhat so lets optimize for that.
duke@435 997 if (o != 0 || c != pat->length()) {
duke@435 998 return false;
duke@435 999 }
duke@435 1000
duke@435 1001 // Null check on self without removing any arguments. The argument
duke@435 1002 // null check technically happens in the wrong place, which can lead to
duke@435 1003 // invalid stack traces when string compare is inlined into a method
duke@435 1004 // which handles NullPointerExceptions.
duke@435 1005 _sp += 2;
duke@435 1006 receiver = do_null_check(receiver, T_OBJECT);
duke@435 1007 // No null check on the argument is needed since it's a constant String oop.
duke@435 1008 _sp -= 2;
duke@435 1009 if (stopped()) {
duke@435 1010 return true;
duke@435 1011 }
duke@435 1012
duke@435 1013 // The null string as a pattern always returns 0 (match at beginning of string)
duke@435 1014 if (c == 0) {
duke@435 1015 push(intcon(0));
duke@435 1016 return true;
duke@435 1017 }
duke@435 1018
duke@435 1019 jchar lastChar = pat->char_at(o + (c - 1));
duke@435 1020 int cache = 0;
duke@435 1021 int i;
duke@435 1022 for (i = 0; i < c - 1; i++) {
duke@435 1023 assert(i < pat->length(), "out of range");
duke@435 1024 cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
duke@435 1025 }
duke@435 1026
duke@435 1027 int md2 = c;
duke@435 1028 for (i = 0; i < c - 1; i++) {
duke@435 1029 assert(i < pat->length(), "out of range");
duke@435 1030 if (pat->char_at(o + i) == lastChar) {
duke@435 1031 md2 = (c - 1) - i;
duke@435 1032 }
duke@435 1033 }
duke@435 1034
duke@435 1035 Node* result = string_indexOf(receiver, pat, o, cache, md2);
duke@435 1036 push(result);
duke@435 1037 return true;
duke@435 1038 }
duke@435 1039
duke@435 1040 //--------------------------pop_math_arg--------------------------------
duke@435 1041 // Pop a double argument to a math function from the stack
duke@435 1042 // rounding it if necessary.
duke@435 1043 Node * LibraryCallKit::pop_math_arg() {
duke@435 1044 Node *arg = pop_pair();
duke@435 1045 if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
duke@435 1046 arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
duke@435 1047 return arg;
duke@435 1048 }
duke@435 1049
duke@435 1050 //------------------------------inline_trig----------------------------------
duke@435 1051 // Inline sin/cos/tan instructions, if possible. If rounding is required, do
duke@435 1052 // argument reduction which will turn into a fast/slow diamond.
duke@435 1053 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
duke@435 1054 _sp += arg_size(); // restore stack pointer
duke@435 1055 Node* arg = pop_math_arg();
duke@435 1056 Node* trig = NULL;
duke@435 1057
duke@435 1058 switch (id) {
duke@435 1059 case vmIntrinsics::_dsin:
duke@435 1060 trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
duke@435 1061 break;
duke@435 1062 case vmIntrinsics::_dcos:
duke@435 1063 trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
duke@435 1064 break;
duke@435 1065 case vmIntrinsics::_dtan:
duke@435 1066 trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
duke@435 1067 break;
duke@435 1068 default:
duke@435 1069 assert(false, "bad intrinsic was passed in");
duke@435 1070 return false;
duke@435 1071 }
duke@435 1072
duke@435 1073 // Rounding required? Check for argument reduction!
duke@435 1074 if( Matcher::strict_fp_requires_explicit_rounding ) {
duke@435 1075
duke@435 1076 static const double pi_4 = 0.7853981633974483;
duke@435 1077 static const double neg_pi_4 = -0.7853981633974483;
duke@435 1078 // pi/2 in 80-bit extended precision
duke@435 1079 // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1080 // -pi/2 in 80-bit extended precision
duke@435 1081 // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1082 // Cutoff value for using this argument reduction technique
duke@435 1083 //static const double pi_2_minus_epsilon = 1.564660403643354;
duke@435 1084 //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
duke@435 1085
duke@435 1086 // Pseudocode for sin:
duke@435 1087 // if (x <= Math.PI / 4.0) {
duke@435 1088 // if (x >= -Math.PI / 4.0) return fsin(x);
duke@435 1089 // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
duke@435 1090 // } else {
duke@435 1091 // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
duke@435 1092 // }
duke@435 1093 // return StrictMath.sin(x);
duke@435 1094
duke@435 1095 // Pseudocode for cos:
duke@435 1096 // if (x <= Math.PI / 4.0) {
duke@435 1097 // if (x >= -Math.PI / 4.0) return fcos(x);
duke@435 1098 // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
duke@435 1099 // } else {
duke@435 1100 // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
duke@435 1101 // }
duke@435 1102 // return StrictMath.cos(x);
duke@435 1103
duke@435 1104 // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
duke@435 1105 // requires a special machine instruction to load it. Instead we'll try
duke@435 1106 // the 'easy' case. If we really need the extra range +/- PI/2 we'll
duke@435 1107 // probably do the math inside the SIN encoding.
duke@435 1108
duke@435 1109 // Make the merge point
duke@435 1110 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 1111 Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
duke@435 1112
duke@435 1113 // Flatten arg so we need only 1 test
duke@435 1114 Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
duke@435 1115 // Node for PI/4 constant
duke@435 1116 Node *pi4 = makecon(TypeD::make(pi_4));
duke@435 1117 // Check PI/4 : abs(arg)
duke@435 1118 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
duke@435 1119 // Check: If PI/4 < abs(arg) then go slow
duke@435 1120 Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
duke@435 1121 // Branch either way
duke@435 1122 IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 1123 set_control(opt_iff(r,iff));
duke@435 1124
duke@435 1125 // Set fast path result
duke@435 1126 phi->init_req(2,trig);
duke@435 1127
duke@435 1128 // Slow path - non-blocking leaf call
duke@435 1129 Node* call = NULL;
duke@435 1130 switch (id) {
duke@435 1131 case vmIntrinsics::_dsin:
duke@435 1132 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1133 CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
duke@435 1134 "Sin", NULL, arg, top());
duke@435 1135 break;
duke@435 1136 case vmIntrinsics::_dcos:
duke@435 1137 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1138 CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
duke@435 1139 "Cos", NULL, arg, top());
duke@435 1140 break;
duke@435 1141 case vmIntrinsics::_dtan:
duke@435 1142 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1143 CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
duke@435 1144 "Tan", NULL, arg, top());
duke@435 1145 break;
duke@435 1146 }
duke@435 1147 assert(control()->in(0) == call, "");
duke@435 1148 Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
duke@435 1149 r->init_req(1,control());
duke@435 1150 phi->init_req(1,slow_result);
duke@435 1151
duke@435 1152 // Post-merge
duke@435 1153 set_control(_gvn.transform(r));
duke@435 1154 record_for_igvn(r);
duke@435 1155 trig = _gvn.transform(phi);
duke@435 1156
duke@435 1157 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1158 }
duke@435 1159 // Push result back on JVM stack
duke@435 1160 push_pair(trig);
duke@435 1161 return true;
duke@435 1162 }
duke@435 1163
duke@435 1164 //------------------------------inline_sqrt-------------------------------------
duke@435 1165 // Inline square root instruction, if possible.
duke@435 1166 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
duke@435 1167 assert(id == vmIntrinsics::_dsqrt, "Not square root");
duke@435 1168 _sp += arg_size(); // restore stack pointer
duke@435 1169 push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
duke@435 1170 return true;
duke@435 1171 }
duke@435 1172
duke@435 1173 //------------------------------inline_abs-------------------------------------
duke@435 1174 // Inline absolute value instruction, if possible.
duke@435 1175 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
duke@435 1176 assert(id == vmIntrinsics::_dabs, "Not absolute value");
duke@435 1177 _sp += arg_size(); // restore stack pointer
duke@435 1178 push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
duke@435 1179 return true;
duke@435 1180 }
duke@435 1181
duke@435 1182 //------------------------------inline_exp-------------------------------------
duke@435 1183 // Inline exp instructions, if possible. The Intel hardware only misses
duke@435 1184 // really odd corner cases (+/- Infinity). Just uncommon-trap them.
duke@435 1185 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
duke@435 1186 assert(id == vmIntrinsics::_dexp, "Not exp");
duke@435 1187
duke@435 1188 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1189 // every again. NaN results requires StrictMath.exp handling.
duke@435 1190 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1191
duke@435 1192 // Do not intrinsify on older platforms which lack cmove.
duke@435 1193 if (ConditionalMoveLimit == 0) return false;
duke@435 1194
duke@435 1195 _sp += arg_size(); // restore stack pointer
duke@435 1196 Node *x = pop_math_arg();
duke@435 1197 Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
duke@435 1198
duke@435 1199 //-------------------
duke@435 1200 //result=(result.isNaN())? StrictMath::exp():result;
duke@435 1201 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1202 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1203 // Build the boolean node
duke@435 1204 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1205
duke@435 1206 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1207 // End the current control-flow path
duke@435 1208 push_pair(x);
duke@435 1209 // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
duke@435 1210 // to handle. Recompile without intrinsifying Math.exp
duke@435 1211 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1212 Deoptimization::Action_make_not_entrant);
duke@435 1213 }
duke@435 1214
duke@435 1215 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1216
duke@435 1217 push_pair(result);
duke@435 1218
duke@435 1219 return true;
duke@435 1220 }
duke@435 1221
duke@435 1222 //------------------------------inline_pow-------------------------------------
duke@435 1223 // Inline power instructions, if possible.
duke@435 1224 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
duke@435 1225 assert(id == vmIntrinsics::_dpow, "Not pow");
duke@435 1226
duke@435 1227 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1228 // every again. NaN results requires StrictMath.pow handling.
duke@435 1229 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1230
duke@435 1231 // Do not intrinsify on older platforms which lack cmove.
duke@435 1232 if (ConditionalMoveLimit == 0) return false;
duke@435 1233
duke@435 1234 // Pseudocode for pow
duke@435 1235 // if (x <= 0.0) {
duke@435 1236 // if ((double)((int)y)==y) { // if y is int
duke@435 1237 // result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1238 // } else {
duke@435 1239 // result = NaN;
duke@435 1240 // }
duke@435 1241 // } else {
duke@435 1242 // result = DPow(x,y);
duke@435 1243 // }
duke@435 1244 // if (result != result)? {
duke@435 1245 // ucommon_trap();
duke@435 1246 // }
duke@435 1247 // return result;
duke@435 1248
duke@435 1249 _sp += arg_size(); // restore stack pointer
duke@435 1250 Node* y = pop_math_arg();
duke@435 1251 Node* x = pop_math_arg();
duke@435 1252
duke@435 1253 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
duke@435 1254
duke@435 1255 // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
duke@435 1256 // inside of something) then skip the fancy tests and just check for
duke@435 1257 // NaN result.
duke@435 1258 Node *result = NULL;
duke@435 1259 if( jvms()->depth() >= 1 ) {
duke@435 1260 result = fast_result;
duke@435 1261 } else {
duke@435 1262
duke@435 1263 // Set the merge point for If node with condition of (x <= 0.0)
duke@435 1264 // There are four possible paths to region node and phi node
duke@435 1265 RegionNode *r = new (C, 4) RegionNode(4);
duke@435 1266 Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
duke@435 1267
duke@435 1268 // Build the first if node: if (x <= 0.0)
duke@435 1269 // Node for 0 constant
duke@435 1270 Node *zeronode = makecon(TypeD::ZERO);
duke@435 1271 // Check x:0
duke@435 1272 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
duke@435 1273 // Check: If (x<=0) then go complex path
duke@435 1274 Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
duke@435 1275 // Branch either way
duke@435 1276 IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1277 Node *opt_test = _gvn.transform(if1);
duke@435 1278 //assert( opt_test->is_If(), "Expect an IfNode");
duke@435 1279 IfNode *opt_if1 = (IfNode*)opt_test;
duke@435 1280 // Fast path taken; set region slot 3
duke@435 1281 Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
duke@435 1282 r->init_req(3,fast_taken); // Capture fast-control
duke@435 1283
duke@435 1284 // Fast path not-taken, i.e. slow path
duke@435 1285 Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
duke@435 1286
duke@435 1287 // Set fast path result
duke@435 1288 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
duke@435 1289 phi->init_req(3, fast_result);
duke@435 1290
duke@435 1291 // Complex path
duke@435 1292 // Build the second if node (if y is int)
duke@435 1293 // Node for (int)y
duke@435 1294 Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
duke@435 1295 // Node for (double)((int) y)
duke@435 1296 Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
duke@435 1297 // Check (double)((int) y) : y
duke@435 1298 Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
duke@435 1299 // Check if (y isn't int) then go to slow path
duke@435 1300
duke@435 1301 Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
duke@435 1302 // Branch eith way
duke@435 1303 IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1304 Node *slow_path = opt_iff(r,if2); // Set region path 2
duke@435 1305
duke@435 1306 // Calculate DPow(abs(x), y)*(1 & (int)y)
duke@435 1307 // Node for constant 1
duke@435 1308 Node *conone = intcon(1);
duke@435 1309 // 1& (int)y
duke@435 1310 Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
duke@435 1311 // zero node
duke@435 1312 Node *conzero = intcon(0);
duke@435 1313 // Check (1&(int)y)==0?
duke@435 1314 Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
duke@435 1315 // Check if (1&(int)y)!=0?, if so the result is negative
duke@435 1316 Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
duke@435 1317 // abs(x)
duke@435 1318 Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
duke@435 1319 // abs(x)^y
duke@435 1320 Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
duke@435 1321 // -abs(x)^y
duke@435 1322 Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
duke@435 1323 // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1324 Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
duke@435 1325 // Set complex path fast result
duke@435 1326 phi->init_req(2, signresult);
duke@435 1327
duke@435 1328 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 1329 Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
duke@435 1330 r->init_req(1,slow_path);
duke@435 1331 phi->init_req(1,slow_result);
duke@435 1332
duke@435 1333 // Post merge
duke@435 1334 set_control(_gvn.transform(r));
duke@435 1335 record_for_igvn(r);
duke@435 1336 result=_gvn.transform(phi);
duke@435 1337 }
duke@435 1338
duke@435 1339 //-------------------
duke@435 1340 //result=(result.isNaN())? uncommon_trap():result;
duke@435 1341 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1342 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1343 // Build the boolean node
duke@435 1344 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1345
duke@435 1346 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1347 // End the current control-flow path
duke@435 1348 push_pair(x);
duke@435 1349 push_pair(y);
duke@435 1350 // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
duke@435 1351 // to handle. Recompile without intrinsifying Math.pow.
duke@435 1352 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1353 Deoptimization::Action_make_not_entrant);
duke@435 1354 }
duke@435 1355
duke@435 1356 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1357
duke@435 1358 push_pair(result);
duke@435 1359
duke@435 1360 return true;
duke@435 1361 }
duke@435 1362
duke@435 1363 //------------------------------inline_trans-------------------------------------
duke@435 1364 // Inline transcendental instructions, if possible. The Intel hardware gets
duke@435 1365 // these right, no funny corner cases missed.
duke@435 1366 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
duke@435 1367 _sp += arg_size(); // restore stack pointer
duke@435 1368 Node* arg = pop_math_arg();
duke@435 1369 Node* trans = NULL;
duke@435 1370
duke@435 1371 switch (id) {
duke@435 1372 case vmIntrinsics::_dlog:
duke@435 1373 trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
duke@435 1374 break;
duke@435 1375 case vmIntrinsics::_dlog10:
duke@435 1376 trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
duke@435 1377 break;
duke@435 1378 default:
duke@435 1379 assert(false, "bad intrinsic was passed in");
duke@435 1380 return false;
duke@435 1381 }
duke@435 1382
duke@435 1383 // Push result back on JVM stack
duke@435 1384 push_pair(trans);
duke@435 1385 return true;
duke@435 1386 }
duke@435 1387
duke@435 1388 //------------------------------runtime_math-----------------------------
duke@435 1389 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
duke@435 1390 Node* a = NULL;
duke@435 1391 Node* b = NULL;
duke@435 1392
duke@435 1393 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
duke@435 1394 "must be (DD)D or (D)D type");
duke@435 1395
duke@435 1396 // Inputs
duke@435 1397 _sp += arg_size(); // restore stack pointer
duke@435 1398 if (call_type == OptoRuntime::Math_DD_D_Type()) {
duke@435 1399 b = pop_math_arg();
duke@435 1400 }
duke@435 1401 a = pop_math_arg();
duke@435 1402
duke@435 1403 const TypePtr* no_memory_effects = NULL;
duke@435 1404 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
duke@435 1405 no_memory_effects,
duke@435 1406 a, top(), b, b ? top() : NULL);
duke@435 1407 Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
duke@435 1408 #ifdef ASSERT
duke@435 1409 Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
duke@435 1410 assert(value_top == top(), "second value must be top");
duke@435 1411 #endif
duke@435 1412
duke@435 1413 push_pair(value);
duke@435 1414 return true;
duke@435 1415 }
duke@435 1416
duke@435 1417 //------------------------------inline_math_native-----------------------------
duke@435 1418 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
duke@435 1419 switch (id) {
duke@435 1420 // These intrinsics are not properly supported on all hardware
duke@435 1421 case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
duke@435 1422 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
duke@435 1423 case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
duke@435 1424 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
duke@435 1425 case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
duke@435 1426 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
duke@435 1427
duke@435 1428 case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
duke@435 1429 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
duke@435 1430 case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
duke@435 1431 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
duke@435 1432
duke@435 1433 // These intrinsics are supported on all hardware
duke@435 1434 case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
duke@435 1435 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_abs(id) : false;
duke@435 1436
duke@435 1437 // These intrinsics don't work on X86. The ad implementation doesn't
duke@435 1438 // handle NaN's properly. Instead of returning infinity, the ad
duke@435 1439 // implementation returns a NaN on overflow. See bug: 6304089
duke@435 1440 // Once the ad implementations are fixed, change the code below
duke@435 1441 // to match the intrinsics above
duke@435 1442
duke@435 1443 case vmIntrinsics::_dexp: return
duke@435 1444 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
duke@435 1445 case vmIntrinsics::_dpow: return
duke@435 1446 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
duke@435 1447
duke@435 1448 // These intrinsics are not yet correctly implemented
duke@435 1449 case vmIntrinsics::_datan2:
duke@435 1450 return false;
duke@435 1451
duke@435 1452 default:
duke@435 1453 ShouldNotReachHere();
duke@435 1454 return false;
duke@435 1455 }
duke@435 1456 }
duke@435 1457
duke@435 1458 static bool is_simple_name(Node* n) {
duke@435 1459 return (n->req() == 1 // constant
duke@435 1460 || (n->is_Type() && n->as_Type()->type()->singleton())
duke@435 1461 || n->is_Proj() // parameter or return value
duke@435 1462 || n->is_Phi() // local of some sort
duke@435 1463 );
duke@435 1464 }
duke@435 1465
duke@435 1466 //----------------------------inline_min_max-----------------------------------
duke@435 1467 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
duke@435 1468 push(generate_min_max(id, argument(0), argument(1)));
duke@435 1469
duke@435 1470 return true;
duke@435 1471 }
duke@435 1472
duke@435 1473 Node*
duke@435 1474 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
duke@435 1475 // These are the candidate return value:
duke@435 1476 Node* xvalue = x0;
duke@435 1477 Node* yvalue = y0;
duke@435 1478
duke@435 1479 if (xvalue == yvalue) {
duke@435 1480 return xvalue;
duke@435 1481 }
duke@435 1482
duke@435 1483 bool want_max = (id == vmIntrinsics::_max);
duke@435 1484
duke@435 1485 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
duke@435 1486 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
duke@435 1487 if (txvalue == NULL || tyvalue == NULL) return top();
duke@435 1488 // This is not really necessary, but it is consistent with a
duke@435 1489 // hypothetical MaxINode::Value method:
duke@435 1490 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
duke@435 1491
duke@435 1492 // %%% This folding logic should (ideally) be in a different place.
duke@435 1493 // Some should be inside IfNode, and there to be a more reliable
duke@435 1494 // transformation of ?: style patterns into cmoves. We also want
duke@435 1495 // more powerful optimizations around cmove and min/max.
duke@435 1496
duke@435 1497 // Try to find a dominating comparison of these guys.
duke@435 1498 // It can simplify the index computation for Arrays.copyOf
duke@435 1499 // and similar uses of System.arraycopy.
duke@435 1500 // First, compute the normalized version of CmpI(x, y).
duke@435 1501 int cmp_op = Op_CmpI;
duke@435 1502 Node* xkey = xvalue;
duke@435 1503 Node* ykey = yvalue;
duke@435 1504 Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
duke@435 1505 if (ideal_cmpxy->is_Cmp()) {
duke@435 1506 // E.g., if we have CmpI(length - offset, count),
duke@435 1507 // it might idealize to CmpI(length, count + offset)
duke@435 1508 cmp_op = ideal_cmpxy->Opcode();
duke@435 1509 xkey = ideal_cmpxy->in(1);
duke@435 1510 ykey = ideal_cmpxy->in(2);
duke@435 1511 }
duke@435 1512
duke@435 1513 // Start by locating any relevant comparisons.
duke@435 1514 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
duke@435 1515 Node* cmpxy = NULL;
duke@435 1516 Node* cmpyx = NULL;
duke@435 1517 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
duke@435 1518 Node* cmp = start_from->fast_out(k);
duke@435 1519 if (cmp->outcnt() > 0 && // must have prior uses
duke@435 1520 cmp->in(0) == NULL && // must be context-independent
duke@435 1521 cmp->Opcode() == cmp_op) { // right kind of compare
duke@435 1522 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
duke@435 1523 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
duke@435 1524 }
duke@435 1525 }
duke@435 1526
duke@435 1527 const int NCMPS = 2;
duke@435 1528 Node* cmps[NCMPS] = { cmpxy, cmpyx };
duke@435 1529 int cmpn;
duke@435 1530 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1531 if (cmps[cmpn] != NULL) break; // find a result
duke@435 1532 }
duke@435 1533 if (cmpn < NCMPS) {
duke@435 1534 // Look for a dominating test that tells us the min and max.
duke@435 1535 int depth = 0; // Limit search depth for speed
duke@435 1536 Node* dom = control();
duke@435 1537 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
duke@435 1538 if (++depth >= 100) break;
duke@435 1539 Node* ifproj = dom;
duke@435 1540 if (!ifproj->is_Proj()) continue;
duke@435 1541 Node* iff = ifproj->in(0);
duke@435 1542 if (!iff->is_If()) continue;
duke@435 1543 Node* bol = iff->in(1);
duke@435 1544 if (!bol->is_Bool()) continue;
duke@435 1545 Node* cmp = bol->in(1);
duke@435 1546 if (cmp == NULL) continue;
duke@435 1547 for (cmpn = 0; cmpn < NCMPS; cmpn++)
duke@435 1548 if (cmps[cmpn] == cmp) break;
duke@435 1549 if (cmpn == NCMPS) continue;
duke@435 1550 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1551 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
duke@435 1552 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1553 // At this point, we know that 'x btest y' is true.
duke@435 1554 switch (btest) {
duke@435 1555 case BoolTest::eq:
duke@435 1556 // They are proven equal, so we can collapse the min/max.
duke@435 1557 // Either value is the answer. Choose the simpler.
duke@435 1558 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
duke@435 1559 return yvalue;
duke@435 1560 return xvalue;
duke@435 1561 case BoolTest::lt: // x < y
duke@435 1562 case BoolTest::le: // x <= y
duke@435 1563 return (want_max ? yvalue : xvalue);
duke@435 1564 case BoolTest::gt: // x > y
duke@435 1565 case BoolTest::ge: // x >= y
duke@435 1566 return (want_max ? xvalue : yvalue);
duke@435 1567 }
duke@435 1568 }
duke@435 1569 }
duke@435 1570
duke@435 1571 // We failed to find a dominating test.
duke@435 1572 // Let's pick a test that might GVN with prior tests.
duke@435 1573 Node* best_bol = NULL;
duke@435 1574 BoolTest::mask best_btest = BoolTest::illegal;
duke@435 1575 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1576 Node* cmp = cmps[cmpn];
duke@435 1577 if (cmp == NULL) continue;
duke@435 1578 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
duke@435 1579 Node* bol = cmp->fast_out(j);
duke@435 1580 if (!bol->is_Bool()) continue;
duke@435 1581 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1582 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
duke@435 1583 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1584 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
duke@435 1585 best_bol = bol->as_Bool();
duke@435 1586 best_btest = btest;
duke@435 1587 }
duke@435 1588 }
duke@435 1589 }
duke@435 1590
duke@435 1591 Node* answer_if_true = NULL;
duke@435 1592 Node* answer_if_false = NULL;
duke@435 1593 switch (best_btest) {
duke@435 1594 default:
duke@435 1595 if (cmpxy == NULL)
duke@435 1596 cmpxy = ideal_cmpxy;
duke@435 1597 best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
duke@435 1598 // and fall through:
duke@435 1599 case BoolTest::lt: // x < y
duke@435 1600 case BoolTest::le: // x <= y
duke@435 1601 answer_if_true = (want_max ? yvalue : xvalue);
duke@435 1602 answer_if_false = (want_max ? xvalue : yvalue);
duke@435 1603 break;
duke@435 1604 case BoolTest::gt: // x > y
duke@435 1605 case BoolTest::ge: // x >= y
duke@435 1606 answer_if_true = (want_max ? xvalue : yvalue);
duke@435 1607 answer_if_false = (want_max ? yvalue : xvalue);
duke@435 1608 break;
duke@435 1609 }
duke@435 1610
duke@435 1611 jint hi, lo;
duke@435 1612 if (want_max) {
duke@435 1613 // We can sharpen the minimum.
duke@435 1614 hi = MAX2(txvalue->_hi, tyvalue->_hi);
duke@435 1615 lo = MAX2(txvalue->_lo, tyvalue->_lo);
duke@435 1616 } else {
duke@435 1617 // We can sharpen the maximum.
duke@435 1618 hi = MIN2(txvalue->_hi, tyvalue->_hi);
duke@435 1619 lo = MIN2(txvalue->_lo, tyvalue->_lo);
duke@435 1620 }
duke@435 1621
duke@435 1622 // Use a flow-free graph structure, to avoid creating excess control edges
duke@435 1623 // which could hinder other optimizations.
duke@435 1624 // Since Math.min/max is often used with arraycopy, we want
duke@435 1625 // tightly_coupled_allocation to be able to see beyond min/max expressions.
duke@435 1626 Node* cmov = CMoveNode::make(C, NULL, best_bol,
duke@435 1627 answer_if_false, answer_if_true,
duke@435 1628 TypeInt::make(lo, hi, widen));
duke@435 1629
duke@435 1630 return _gvn.transform(cmov);
duke@435 1631
duke@435 1632 /*
duke@435 1633 // This is not as desirable as it may seem, since Min and Max
duke@435 1634 // nodes do not have a full set of optimizations.
duke@435 1635 // And they would interfere, anyway, with 'if' optimizations
duke@435 1636 // and with CMoveI canonical forms.
duke@435 1637 switch (id) {
duke@435 1638 case vmIntrinsics::_min:
duke@435 1639 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
duke@435 1640 case vmIntrinsics::_max:
duke@435 1641 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
duke@435 1642 default:
duke@435 1643 ShouldNotReachHere();
duke@435 1644 }
duke@435 1645 */
duke@435 1646 }
duke@435 1647
duke@435 1648 inline int
duke@435 1649 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
duke@435 1650 const TypePtr* base_type = TypePtr::NULL_PTR;
duke@435 1651 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
duke@435 1652 if (base_type == NULL) {
duke@435 1653 // Unknown type.
duke@435 1654 return Type::AnyPtr;
duke@435 1655 } else if (base_type == TypePtr::NULL_PTR) {
duke@435 1656 // Since this is a NULL+long form, we have to switch to a rawptr.
duke@435 1657 base = _gvn.transform( new (C, 2) CastX2PNode(offset) );
duke@435 1658 offset = MakeConX(0);
duke@435 1659 return Type::RawPtr;
duke@435 1660 } else if (base_type->base() == Type::RawPtr) {
duke@435 1661 return Type::RawPtr;
duke@435 1662 } else if (base_type->isa_oopptr()) {
duke@435 1663 // Base is never null => always a heap address.
duke@435 1664 if (base_type->ptr() == TypePtr::NotNull) {
duke@435 1665 return Type::OopPtr;
duke@435 1666 }
duke@435 1667 // Offset is small => always a heap address.
duke@435 1668 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
duke@435 1669 if (offset_type != NULL &&
duke@435 1670 base_type->offset() == 0 && // (should always be?)
duke@435 1671 offset_type->_lo >= 0 &&
duke@435 1672 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
duke@435 1673 return Type::OopPtr;
duke@435 1674 }
duke@435 1675 // Otherwise, it might either be oop+off or NULL+addr.
duke@435 1676 return Type::AnyPtr;
duke@435 1677 } else {
duke@435 1678 // No information:
duke@435 1679 return Type::AnyPtr;
duke@435 1680 }
duke@435 1681 }
duke@435 1682
duke@435 1683 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
duke@435 1684 int kind = classify_unsafe_addr(base, offset);
duke@435 1685 if (kind == Type::RawPtr) {
duke@435 1686 return basic_plus_adr(top(), base, offset);
duke@435 1687 } else {
duke@435 1688 return basic_plus_adr(base, offset);
duke@435 1689 }
duke@435 1690 }
duke@435 1691
duke@435 1692 //----------------------------inline_reverseBytes_int/long-------------------
duke@435 1693 // inline Int.reverseBytes(int)
duke@435 1694 // inline Long.reverseByes(long)
duke@435 1695 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
duke@435 1696 assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
duke@435 1697 if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
duke@435 1698 if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
duke@435 1699 _sp += arg_size(); // restore stack pointer
duke@435 1700 switch (id) {
duke@435 1701 case vmIntrinsics::_reverseBytes_i:
duke@435 1702 push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
duke@435 1703 break;
duke@435 1704 case vmIntrinsics::_reverseBytes_l:
duke@435 1705 push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
duke@435 1706 break;
duke@435 1707 default:
duke@435 1708 ;
duke@435 1709 }
duke@435 1710 return true;
duke@435 1711 }
duke@435 1712
duke@435 1713 //----------------------------inline_unsafe_access----------------------------
duke@435 1714
duke@435 1715 const static BasicType T_ADDRESS_HOLDER = T_LONG;
duke@435 1716
duke@435 1717 // Interpret Unsafe.fieldOffset cookies correctly:
duke@435 1718 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
duke@435 1719
duke@435 1720 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
duke@435 1721 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 1722
duke@435 1723 #ifndef PRODUCT
duke@435 1724 {
duke@435 1725 ResourceMark rm;
duke@435 1726 // Check the signatures.
duke@435 1727 ciSignature* sig = signature();
duke@435 1728 #ifdef ASSERT
duke@435 1729 if (!is_store) {
duke@435 1730 // Object getObject(Object base, int/long offset), etc.
duke@435 1731 BasicType rtype = sig->return_type()->basic_type();
duke@435 1732 if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
duke@435 1733 rtype = T_ADDRESS; // it is really a C void*
duke@435 1734 assert(rtype == type, "getter must return the expected value");
duke@435 1735 if (!is_native_ptr) {
duke@435 1736 assert(sig->count() == 2, "oop getter has 2 arguments");
duke@435 1737 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
duke@435 1738 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
duke@435 1739 } else {
duke@435 1740 assert(sig->count() == 1, "native getter has 1 argument");
duke@435 1741 assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
duke@435 1742 }
duke@435 1743 } else {
duke@435 1744 // void putObject(Object base, int/long offset, Object x), etc.
duke@435 1745 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
duke@435 1746 if (!is_native_ptr) {
duke@435 1747 assert(sig->count() == 3, "oop putter has 3 arguments");
duke@435 1748 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
duke@435 1749 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
duke@435 1750 } else {
duke@435 1751 assert(sig->count() == 2, "native putter has 2 arguments");
duke@435 1752 assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
duke@435 1753 }
duke@435 1754 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
duke@435 1755 if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
duke@435 1756 vtype = T_ADDRESS; // it is really a C void*
duke@435 1757 assert(vtype == type, "putter must accept the expected value");
duke@435 1758 }
duke@435 1759 #endif // ASSERT
duke@435 1760 }
duke@435 1761 #endif //PRODUCT
duke@435 1762
duke@435 1763 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 1764
duke@435 1765 int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
duke@435 1766
duke@435 1767 // Argument words: "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
duke@435 1768 int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
duke@435 1769
duke@435 1770 debug_only(int saved_sp = _sp);
duke@435 1771 _sp += nargs;
duke@435 1772
duke@435 1773 Node* val;
duke@435 1774 debug_only(val = (Node*)(uintptr_t)-1);
duke@435 1775
duke@435 1776
duke@435 1777 if (is_store) {
duke@435 1778 // Get the value being stored. (Pop it first; it was pushed last.)
duke@435 1779 switch (type) {
duke@435 1780 case T_DOUBLE:
duke@435 1781 case T_LONG:
duke@435 1782 case T_ADDRESS:
duke@435 1783 val = pop_pair();
duke@435 1784 break;
duke@435 1785 default:
duke@435 1786 val = pop();
duke@435 1787 }
duke@435 1788 }
duke@435 1789
duke@435 1790 // Build address expression. See the code in inline_unsafe_prefetch.
duke@435 1791 Node *adr;
duke@435 1792 Node *heap_base_oop = top();
duke@435 1793 if (!is_native_ptr) {
duke@435 1794 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
duke@435 1795 Node* offset = pop_pair();
duke@435 1796 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 1797 Node* base = pop();
duke@435 1798 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 1799 // to be plain byte offsets, which are also the same as those accepted
duke@435 1800 // by oopDesc::field_base.
duke@435 1801 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 1802 "fieldOffset must be byte-scaled");
duke@435 1803 // 32-bit machines ignore the high half!
duke@435 1804 offset = ConvL2X(offset);
duke@435 1805 adr = make_unsafe_address(base, offset);
duke@435 1806 heap_base_oop = base;
duke@435 1807 } else {
duke@435 1808 Node* ptr = pop_pair();
duke@435 1809 // Adjust Java long to machine word:
duke@435 1810 ptr = ConvL2X(ptr);
duke@435 1811 adr = make_unsafe_address(NULL, ptr);
duke@435 1812 }
duke@435 1813
duke@435 1814 // Pop receiver last: it was pushed first.
duke@435 1815 Node *receiver = pop();
duke@435 1816
duke@435 1817 assert(saved_sp == _sp, "must have correct argument count");
duke@435 1818
duke@435 1819 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 1820
duke@435 1821 // First guess at the value type.
duke@435 1822 const Type *value_type = Type::get_const_basic_type(type);
duke@435 1823
duke@435 1824 // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
duke@435 1825 // there was not enough information to nail it down.
duke@435 1826 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 1827 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 1828
duke@435 1829 // We will need memory barriers unless we can determine a unique
duke@435 1830 // alias category for this reference. (Note: If for some reason
duke@435 1831 // the barriers get omitted and the unsafe reference begins to "pollute"
duke@435 1832 // the alias analysis of the rest of the graph, either Compile::can_alias
duke@435 1833 // or Compile::must_alias will throw a diagnostic assert.)
duke@435 1834 bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
duke@435 1835
duke@435 1836 if (!is_store && type == T_OBJECT) {
duke@435 1837 // Attempt to infer a sharper value type from the offset and base type.
duke@435 1838 ciKlass* sharpened_klass = NULL;
duke@435 1839
duke@435 1840 // See if it is an instance field, with an object type.
duke@435 1841 if (alias_type->field() != NULL) {
duke@435 1842 assert(!is_native_ptr, "native pointer op cannot use a java address");
duke@435 1843 if (alias_type->field()->type()->is_klass()) {
duke@435 1844 sharpened_klass = alias_type->field()->type()->as_klass();
duke@435 1845 }
duke@435 1846 }
duke@435 1847
duke@435 1848 // See if it is a narrow oop array.
duke@435 1849 if (adr_type->isa_aryptr()) {
duke@435 1850 if (adr_type->offset() >= objArrayOopDesc::header_size() * wordSize) {
duke@435 1851 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
duke@435 1852 if (elem_type != NULL) {
duke@435 1853 sharpened_klass = elem_type->klass();
duke@435 1854 }
duke@435 1855 }
duke@435 1856 }
duke@435 1857
duke@435 1858 if (sharpened_klass != NULL) {
duke@435 1859 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
duke@435 1860
duke@435 1861 // Sharpen the value type.
duke@435 1862 value_type = tjp;
duke@435 1863
duke@435 1864 #ifndef PRODUCT
duke@435 1865 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 1866 tty->print(" from base type: "); adr_type->dump();
duke@435 1867 tty->print(" sharpened value: "); value_type->dump();
duke@435 1868 }
duke@435 1869 #endif
duke@435 1870 }
duke@435 1871 }
duke@435 1872
duke@435 1873 // Null check on self without removing any arguments. The argument
duke@435 1874 // null check technically happens in the wrong place, which can lead to
duke@435 1875 // invalid stack traces when the primitive is inlined into a method
duke@435 1876 // which handles NullPointerExceptions.
duke@435 1877 _sp += nargs;
duke@435 1878 do_null_check(receiver, T_OBJECT);
duke@435 1879 _sp -= nargs;
duke@435 1880 if (stopped()) {
duke@435 1881 return true;
duke@435 1882 }
duke@435 1883 // Heap pointers get a null-check from the interpreter,
duke@435 1884 // as a courtesy. However, this is not guaranteed by Unsafe,
duke@435 1885 // and it is not possible to fully distinguish unintended nulls
duke@435 1886 // from intended ones in this API.
duke@435 1887
duke@435 1888 if (is_volatile) {
duke@435 1889 // We need to emit leading and trailing CPU membars (see below) in
duke@435 1890 // addition to memory membars when is_volatile. This is a little
duke@435 1891 // too strong, but avoids the need to insert per-alias-type
duke@435 1892 // volatile membars (for stores; compare Parse::do_put_xxx), which
duke@435 1893 // we cannot do effctively here because we probably only have a
duke@435 1894 // rough approximation of type.
duke@435 1895 need_mem_bar = true;
duke@435 1896 // For Stores, place a memory ordering barrier now.
duke@435 1897 if (is_store)
duke@435 1898 insert_mem_bar(Op_MemBarRelease);
duke@435 1899 }
duke@435 1900
duke@435 1901 // Memory barrier to prevent normal and 'unsafe' accesses from
duke@435 1902 // bypassing each other. Happens after null checks, so the
duke@435 1903 // exception paths do not take memory state from the memory barrier,
duke@435 1904 // so there's no problems making a strong assert about mixing users
duke@435 1905 // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
duke@435 1906 // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
duke@435 1907 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 1908
duke@435 1909 if (!is_store) {
duke@435 1910 Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
duke@435 1911 // load value and push onto stack
duke@435 1912 switch (type) {
duke@435 1913 case T_BOOLEAN:
duke@435 1914 case T_CHAR:
duke@435 1915 case T_BYTE:
duke@435 1916 case T_SHORT:
duke@435 1917 case T_INT:
duke@435 1918 case T_FLOAT:
duke@435 1919 case T_OBJECT:
duke@435 1920 push( p );
duke@435 1921 break;
duke@435 1922 case T_ADDRESS:
duke@435 1923 // Cast to an int type.
duke@435 1924 p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
duke@435 1925 p = ConvX2L(p);
duke@435 1926 push_pair(p);
duke@435 1927 break;
duke@435 1928 case T_DOUBLE:
duke@435 1929 case T_LONG:
duke@435 1930 push_pair( p );
duke@435 1931 break;
duke@435 1932 default: ShouldNotReachHere();
duke@435 1933 }
duke@435 1934 } else {
duke@435 1935 // place effect of store into memory
duke@435 1936 switch (type) {
duke@435 1937 case T_DOUBLE:
duke@435 1938 val = dstore_rounding(val);
duke@435 1939 break;
duke@435 1940 case T_ADDRESS:
duke@435 1941 // Repackage the long as a pointer.
duke@435 1942 val = ConvL2X(val);
duke@435 1943 val = _gvn.transform( new (C, 2) CastX2PNode(val) );
duke@435 1944 break;
duke@435 1945 }
duke@435 1946
duke@435 1947 if (type != T_OBJECT ) {
duke@435 1948 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
duke@435 1949 } else {
duke@435 1950 // Possibly an oop being stored to Java heap or native memory
duke@435 1951 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
duke@435 1952 // oop to Java heap.
duke@435 1953 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
duke@435 1954 } else {
duke@435 1955
duke@435 1956 // We can't tell at compile time if we are storing in the Java heap or outside
duke@435 1957 // of it. So we need to emit code to conditionally do the proper type of
duke@435 1958 // store.
duke@435 1959
duke@435 1960 IdealKit kit(gvn(), control(), merged_memory());
duke@435 1961 kit.declares_done();
duke@435 1962 // QQQ who knows what probability is here??
duke@435 1963 kit.if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
duke@435 1964 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
duke@435 1965 } kit.else_(); {
duke@435 1966 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
duke@435 1967 } kit.end_if();
duke@435 1968 }
duke@435 1969 }
duke@435 1970 }
duke@435 1971
duke@435 1972 if (is_volatile) {
duke@435 1973 if (!is_store)
duke@435 1974 insert_mem_bar(Op_MemBarAcquire);
duke@435 1975 else
duke@435 1976 insert_mem_bar(Op_MemBarVolatile);
duke@435 1977 }
duke@435 1978
duke@435 1979 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 1980
duke@435 1981 return true;
duke@435 1982 }
duke@435 1983
duke@435 1984 //----------------------------inline_unsafe_prefetch----------------------------
duke@435 1985
duke@435 1986 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
duke@435 1987 #ifndef PRODUCT
duke@435 1988 {
duke@435 1989 ResourceMark rm;
duke@435 1990 // Check the signatures.
duke@435 1991 ciSignature* sig = signature();
duke@435 1992 #ifdef ASSERT
duke@435 1993 // Object getObject(Object base, int/long offset), etc.
duke@435 1994 BasicType rtype = sig->return_type()->basic_type();
duke@435 1995 if (!is_native_ptr) {
duke@435 1996 assert(sig->count() == 2, "oop prefetch has 2 arguments");
duke@435 1997 assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
duke@435 1998 assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
duke@435 1999 } else {
duke@435 2000 assert(sig->count() == 1, "native prefetch has 1 argument");
duke@435 2001 assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
duke@435 2002 }
duke@435 2003 #endif // ASSERT
duke@435 2004 }
duke@435 2005 #endif // !PRODUCT
duke@435 2006
duke@435 2007 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2008
duke@435 2009 // Argument words: "this" if not static, plus (oop/offset) or (lo/hi) args
duke@435 2010 int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
duke@435 2011
duke@435 2012 debug_only(int saved_sp = _sp);
duke@435 2013 _sp += nargs;
duke@435 2014
duke@435 2015 // Build address expression. See the code in inline_unsafe_access.
duke@435 2016 Node *adr;
duke@435 2017 if (!is_native_ptr) {
duke@435 2018 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
duke@435 2019 Node* offset = pop_pair();
duke@435 2020 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2021 Node* base = pop();
duke@435 2022 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2023 // to be plain byte offsets, which are also the same as those accepted
duke@435 2024 // by oopDesc::field_base.
duke@435 2025 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2026 "fieldOffset must be byte-scaled");
duke@435 2027 // 32-bit machines ignore the high half!
duke@435 2028 offset = ConvL2X(offset);
duke@435 2029 adr = make_unsafe_address(base, offset);
duke@435 2030 } else {
duke@435 2031 Node* ptr = pop_pair();
duke@435 2032 // Adjust Java long to machine word:
duke@435 2033 ptr = ConvL2X(ptr);
duke@435 2034 adr = make_unsafe_address(NULL, ptr);
duke@435 2035 }
duke@435 2036
duke@435 2037 if (is_static) {
duke@435 2038 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2039 } else {
duke@435 2040 // Pop receiver last: it was pushed first.
duke@435 2041 Node *receiver = pop();
duke@435 2042 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2043
duke@435 2044 // Null check on self without removing any arguments. The argument
duke@435 2045 // null check technically happens in the wrong place, which can lead to
duke@435 2046 // invalid stack traces when the primitive is inlined into a method
duke@435 2047 // which handles NullPointerExceptions.
duke@435 2048 _sp += nargs;
duke@435 2049 do_null_check(receiver, T_OBJECT);
duke@435 2050 _sp -= nargs;
duke@435 2051 if (stopped()) {
duke@435 2052 return true;
duke@435 2053 }
duke@435 2054 }
duke@435 2055
duke@435 2056 // Generate the read or write prefetch
duke@435 2057 Node *prefetch;
duke@435 2058 if (is_store) {
duke@435 2059 prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
duke@435 2060 } else {
duke@435 2061 prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
duke@435 2062 }
duke@435 2063 prefetch->init_req(0, control());
duke@435 2064 set_i_o(_gvn.transform(prefetch));
duke@435 2065
duke@435 2066 return true;
duke@435 2067 }
duke@435 2068
duke@435 2069 //----------------------------inline_unsafe_CAS----------------------------
duke@435 2070
duke@435 2071 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
duke@435 2072 // This basic scheme here is the same as inline_unsafe_access, but
duke@435 2073 // differs in enough details that combining them would make the code
duke@435 2074 // overly confusing. (This is a true fact! I originally combined
duke@435 2075 // them, but even I was confused by it!) As much code/comments as
duke@435 2076 // possible are retained from inline_unsafe_access though to make
duke@435 2077 // the correspondances clearer. - dl
duke@435 2078
duke@435 2079 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2080
duke@435 2081 #ifndef PRODUCT
duke@435 2082 {
duke@435 2083 ResourceMark rm;
duke@435 2084 // Check the signatures.
duke@435 2085 ciSignature* sig = signature();
duke@435 2086 #ifdef ASSERT
duke@435 2087 BasicType rtype = sig->return_type()->basic_type();
duke@435 2088 assert(rtype == T_BOOLEAN, "CAS must return boolean");
duke@435 2089 assert(sig->count() == 4, "CAS has 4 arguments");
duke@435 2090 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
duke@435 2091 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
duke@435 2092 #endif // ASSERT
duke@435 2093 }
duke@435 2094 #endif //PRODUCT
duke@435 2095
duke@435 2096 // number of stack slots per value argument (1 or 2)
duke@435 2097 int type_words = type2size[type];
duke@435 2098
duke@435 2099 // Cannot inline wide CAS on machines that don't support it natively
duke@435 2100 if (type2aelembytes[type] > BytesPerInt && !VM_Version::supports_cx8())
duke@435 2101 return false;
duke@435 2102
duke@435 2103 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2104
duke@435 2105 // Argument words: "this" plus oop plus offset plus oldvalue plus newvalue;
duke@435 2106 int nargs = 1 + 1 + 2 + type_words + type_words;
duke@435 2107
duke@435 2108 // pop arguments: newval, oldval, offset, base, and receiver
duke@435 2109 debug_only(int saved_sp = _sp);
duke@435 2110 _sp += nargs;
duke@435 2111 Node* newval = (type_words == 1) ? pop() : pop_pair();
duke@435 2112 Node* oldval = (type_words == 1) ? pop() : pop_pair();
duke@435 2113 Node *offset = pop_pair();
duke@435 2114 Node *base = pop();
duke@435 2115 Node *receiver = pop();
duke@435 2116 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2117
duke@435 2118 // Null check receiver.
duke@435 2119 _sp += nargs;
duke@435 2120 do_null_check(receiver, T_OBJECT);
duke@435 2121 _sp -= nargs;
duke@435 2122 if (stopped()) {
duke@435 2123 return true;
duke@435 2124 }
duke@435 2125
duke@435 2126 // Build field offset expression.
duke@435 2127 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2128 // to be plain byte offsets, which are also the same as those accepted
duke@435 2129 // by oopDesc::field_base.
duke@435 2130 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2131 // 32-bit machines ignore the high half of long offsets
duke@435 2132 offset = ConvL2X(offset);
duke@435 2133 Node* adr = make_unsafe_address(base, offset);
duke@435 2134 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2135
duke@435 2136 // (Unlike inline_unsafe_access, there seems no point in trying
duke@435 2137 // to refine types. Just use the coarse types here.
duke@435 2138 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2139 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2140 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2141 int alias_idx = C->get_alias_index(adr_type);
duke@435 2142
duke@435 2143 // Memory-model-wise, a CAS acts like a little synchronized block,
duke@435 2144 // so needs barriers on each side. These don't't translate into
duke@435 2145 // actual barriers on most machines, but we still need rest of
duke@435 2146 // compiler to respect ordering.
duke@435 2147
duke@435 2148 insert_mem_bar(Op_MemBarRelease);
duke@435 2149 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2150
duke@435 2151 // 4984716: MemBars must be inserted before this
duke@435 2152 // memory node in order to avoid a false
duke@435 2153 // dependency which will confuse the scheduler.
duke@435 2154 Node *mem = memory(alias_idx);
duke@435 2155
duke@435 2156 // For now, we handle only those cases that actually exist: ints,
duke@435 2157 // longs, and Object. Adding others should be straightforward.
duke@435 2158 Node* cas;
duke@435 2159 switch(type) {
duke@435 2160 case T_INT:
duke@435 2161 cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
duke@435 2162 break;
duke@435 2163 case T_LONG:
duke@435 2164 cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
duke@435 2165 break;
duke@435 2166 case T_OBJECT:
duke@435 2167 // reference stores need a store barrier.
duke@435 2168 // (They don't if CAS fails, but it isn't worth checking.)
duke@435 2169 pre_barrier(control(), base, adr, alias_idx, newval, value_type, T_OBJECT);
duke@435 2170 cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
duke@435 2171 post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
duke@435 2172 break;
duke@435 2173 default:
duke@435 2174 ShouldNotReachHere();
duke@435 2175 break;
duke@435 2176 }
duke@435 2177
duke@435 2178 // SCMemProjNodes represent the memory state of CAS. Their main
duke@435 2179 // role is to prevent CAS nodes from being optimized away when their
duke@435 2180 // results aren't used.
duke@435 2181 Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
duke@435 2182 set_memory(proj, alias_idx);
duke@435 2183
duke@435 2184 // Add the trailing membar surrounding the access
duke@435 2185 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2186 insert_mem_bar(Op_MemBarAcquire);
duke@435 2187
duke@435 2188 push(cas);
duke@435 2189 return true;
duke@435 2190 }
duke@435 2191
duke@435 2192 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
duke@435 2193 // This is another variant of inline_unsafe_access, differing in
duke@435 2194 // that it always issues store-store ("release") barrier and ensures
duke@435 2195 // store-atomicity (which only matters for "long").
duke@435 2196
duke@435 2197 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2198
duke@435 2199 #ifndef PRODUCT
duke@435 2200 {
duke@435 2201 ResourceMark rm;
duke@435 2202 // Check the signatures.
duke@435 2203 ciSignature* sig = signature();
duke@435 2204 #ifdef ASSERT
duke@435 2205 BasicType rtype = sig->return_type()->basic_type();
duke@435 2206 assert(rtype == T_VOID, "must return void");
duke@435 2207 assert(sig->count() == 3, "has 3 arguments");
duke@435 2208 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
duke@435 2209 assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
duke@435 2210 #endif // ASSERT
duke@435 2211 }
duke@435 2212 #endif //PRODUCT
duke@435 2213
duke@435 2214 // number of stack slots per value argument (1 or 2)
duke@435 2215 int type_words = type2size[type];
duke@435 2216
duke@435 2217 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2218
duke@435 2219 // Argument words: "this" plus oop plus offset plus value;
duke@435 2220 int nargs = 1 + 1 + 2 + type_words;
duke@435 2221
duke@435 2222 // pop arguments: val, offset, base, and receiver
duke@435 2223 debug_only(int saved_sp = _sp);
duke@435 2224 _sp += nargs;
duke@435 2225 Node* val = (type_words == 1) ? pop() : pop_pair();
duke@435 2226 Node *offset = pop_pair();
duke@435 2227 Node *base = pop();
duke@435 2228 Node *receiver = pop();
duke@435 2229 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2230
duke@435 2231 // Null check receiver.
duke@435 2232 _sp += nargs;
duke@435 2233 do_null_check(receiver, T_OBJECT);
duke@435 2234 _sp -= nargs;
duke@435 2235 if (stopped()) {
duke@435 2236 return true;
duke@435 2237 }
duke@435 2238
duke@435 2239 // Build field offset expression.
duke@435 2240 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2241 // 32-bit machines ignore the high half of long offsets
duke@435 2242 offset = ConvL2X(offset);
duke@435 2243 Node* adr = make_unsafe_address(base, offset);
duke@435 2244 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2245 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2246 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2247
duke@435 2248 insert_mem_bar(Op_MemBarRelease);
duke@435 2249 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2250 // Ensure that the store is atomic for longs:
duke@435 2251 bool require_atomic_access = true;
duke@435 2252 Node* store;
duke@435 2253 if (type == T_OBJECT) // reference stores need a store barrier.
duke@435 2254 store = store_oop_to_unknown(control(), base, adr, adr_type, val, value_type, type);
duke@435 2255 else {
duke@435 2256 store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
duke@435 2257 }
duke@435 2258 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2259 return true;
duke@435 2260 }
duke@435 2261
duke@435 2262 bool LibraryCallKit::inline_unsafe_allocate() {
duke@435 2263 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2264 int nargs = 1 + 1;
duke@435 2265 assert(signature()->size() == nargs-1, "alloc has 1 argument");
duke@435 2266 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 2267 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2268 Node* cls = do_null_check(argument(1), T_OBJECT);
duke@435 2269 _sp -= nargs;
duke@435 2270 if (stopped()) return true;
duke@435 2271
duke@435 2272 Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
duke@435 2273 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2274 kls = do_null_check(kls, T_OBJECT);
duke@435 2275 _sp -= nargs;
duke@435 2276 if (stopped()) return true; // argument was like int.class
duke@435 2277
duke@435 2278 // Note: The argument might still be an illegal value like
duke@435 2279 // Serializable.class or Object[].class. The runtime will handle it.
duke@435 2280 // But we must make an explicit check for initialization.
duke@435 2281 Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
duke@435 2282 Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
duke@435 2283 Node* bits = intcon(instanceKlass::fully_initialized);
duke@435 2284 Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
duke@435 2285 // The 'test' is non-zero if we need to take a slow path.
duke@435 2286
duke@435 2287 Node* obj = new_instance(kls, test);
duke@435 2288 push(obj);
duke@435 2289
duke@435 2290 return true;
duke@435 2291 }
duke@435 2292
duke@435 2293 //------------------------inline_native_time_funcs--------------
duke@435 2294 // inline code for System.currentTimeMillis() and System.nanoTime()
duke@435 2295 // these have the same type and signature
duke@435 2296 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
duke@435 2297 address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
duke@435 2298 CAST_FROM_FN_PTR(address, os::javaTimeMillis);
duke@435 2299 const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
duke@435 2300 const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
duke@435 2301 const TypePtr* no_memory_effects = NULL;
duke@435 2302 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
duke@435 2303 Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
duke@435 2304 #ifdef ASSERT
duke@435 2305 Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
duke@435 2306 assert(value_top == top(), "second value must be top");
duke@435 2307 #endif
duke@435 2308 push_pair(value);
duke@435 2309 return true;
duke@435 2310 }
duke@435 2311
duke@435 2312 //------------------------inline_native_currentThread------------------
duke@435 2313 bool LibraryCallKit::inline_native_currentThread() {
duke@435 2314 Node* junk = NULL;
duke@435 2315 push(generate_current_thread(junk));
duke@435 2316 return true;
duke@435 2317 }
duke@435 2318
duke@435 2319 //------------------------inline_native_isInterrupted------------------
duke@435 2320 bool LibraryCallKit::inline_native_isInterrupted() {
duke@435 2321 const int nargs = 1+1; // receiver + boolean
duke@435 2322 assert(nargs == arg_size(), "sanity");
duke@435 2323 // Add a fast path to t.isInterrupted(clear_int):
duke@435 2324 // (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
duke@435 2325 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
duke@435 2326 // So, in the common case that the interrupt bit is false,
duke@435 2327 // we avoid making a call into the VM. Even if the interrupt bit
duke@435 2328 // is true, if the clear_int argument is false, we avoid the VM call.
duke@435 2329 // However, if the receiver is not currentThread, we must call the VM,
duke@435 2330 // because there must be some locking done around the operation.
duke@435 2331
duke@435 2332 // We only go to the fast case code if we pass two guards.
duke@435 2333 // Paths which do not pass are accumulated in the slow_region.
duke@435 2334 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 2335 record_for_igvn(slow_region);
duke@435 2336 RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
duke@435 2337 PhiNode* result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
duke@435 2338 enum { no_int_result_path = 1,
duke@435 2339 no_clear_result_path = 2,
duke@435 2340 slow_result_path = 3
duke@435 2341 };
duke@435 2342
duke@435 2343 // (a) Receiving thread must be the current thread.
duke@435 2344 Node* rec_thr = argument(0);
duke@435 2345 Node* tls_ptr = NULL;
duke@435 2346 Node* cur_thr = generate_current_thread(tls_ptr);
duke@435 2347 Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
duke@435 2348 Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
duke@435 2349
duke@435 2350 bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
duke@435 2351 if (!known_current_thread)
duke@435 2352 generate_slow_guard(bol_thr, slow_region);
duke@435 2353
duke@435 2354 // (b) Interrupt bit on TLS must be false.
duke@435 2355 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
duke@435 2356 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
duke@435 2357 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
duke@435 2358 Node* int_bit = make_load(NULL, p, TypeInt::BOOL, T_INT);
duke@435 2359 Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
duke@435 2360 Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
duke@435 2361
duke@435 2362 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
duke@435 2363
duke@435 2364 // First fast path: if (!TLS._interrupted) return false;
duke@435 2365 Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
duke@435 2366 result_rgn->init_req(no_int_result_path, false_bit);
duke@435 2367 result_val->init_req(no_int_result_path, intcon(0));
duke@435 2368
duke@435 2369 // drop through to next case
duke@435 2370 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
duke@435 2371
duke@435 2372 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
duke@435 2373 Node* clr_arg = argument(1);
duke@435 2374 Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
duke@435 2375 Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
duke@435 2376 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
duke@435 2377
duke@435 2378 // Second fast path: ... else if (!clear_int) return true;
duke@435 2379 Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
duke@435 2380 result_rgn->init_req(no_clear_result_path, false_arg);
duke@435 2381 result_val->init_req(no_clear_result_path, intcon(1));
duke@435 2382
duke@435 2383 // drop through to next case
duke@435 2384 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
duke@435 2385
duke@435 2386 // (d) Otherwise, go to the slow path.
duke@435 2387 slow_region->add_req(control());
duke@435 2388 set_control( _gvn.transform(slow_region) );
duke@435 2389
duke@435 2390 if (stopped()) {
duke@435 2391 // There is no slow path.
duke@435 2392 result_rgn->init_req(slow_result_path, top());
duke@435 2393 result_val->init_req(slow_result_path, top());
duke@435 2394 } else {
duke@435 2395 // non-virtual because it is a private non-static
duke@435 2396 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
duke@435 2397
duke@435 2398 Node* slow_val = set_results_for_java_call(slow_call);
duke@435 2399 // this->control() comes from set_results_for_java_call
duke@435 2400
duke@435 2401 // If we know that the result of the slow call will be true, tell the optimizer!
duke@435 2402 if (known_current_thread) slow_val = intcon(1);
duke@435 2403
duke@435 2404 Node* fast_io = slow_call->in(TypeFunc::I_O);
duke@435 2405 Node* fast_mem = slow_call->in(TypeFunc::Memory);
duke@435 2406 // These two phis are pre-filled with copies of of the fast IO and Memory
duke@435 2407 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
duke@435 2408 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
duke@435 2409
duke@435 2410 result_rgn->init_req(slow_result_path, control());
duke@435 2411 io_phi ->init_req(slow_result_path, i_o());
duke@435 2412 mem_phi ->init_req(slow_result_path, reset_memory());
duke@435 2413 result_val->init_req(slow_result_path, slow_val);
duke@435 2414
duke@435 2415 set_all_memory( _gvn.transform(mem_phi) );
duke@435 2416 set_i_o( _gvn.transform(io_phi) );
duke@435 2417 }
duke@435 2418
duke@435 2419 push_result(result_rgn, result_val);
duke@435 2420 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 2421
duke@435 2422 return true;
duke@435 2423 }
duke@435 2424
duke@435 2425 //---------------------------load_mirror_from_klass----------------------------
duke@435 2426 // Given a klass oop, load its java mirror (a java.lang.Class oop).
duke@435 2427 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
duke@435 2428 Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
duke@435 2429 return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 2430 }
duke@435 2431
duke@435 2432 //-----------------------load_klass_from_mirror_common-------------------------
duke@435 2433 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
duke@435 2434 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
duke@435 2435 // and branch to the given path on the region.
duke@435 2436 // If never_see_null, take an uncommon trap on null, so we can optimistically
duke@435 2437 // compile for the non-null case.
duke@435 2438 // If the region is NULL, force never_see_null = true.
duke@435 2439 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
duke@435 2440 bool never_see_null,
duke@435 2441 int nargs,
duke@435 2442 RegionNode* region,
duke@435 2443 int null_path,
duke@435 2444 int offset) {
duke@435 2445 if (region == NULL) never_see_null = true;
duke@435 2446 Node* p = basic_plus_adr(mirror, offset);
duke@435 2447 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
duke@435 2448 Node* kls = _gvn.transform(new (C, 3) LoadKlassNode(0, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
duke@435 2449 _sp += nargs; // any deopt will start just before call to enclosing method
duke@435 2450 Node* null_ctl = top();
duke@435 2451 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 2452 if (region != NULL) {
duke@435 2453 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
duke@435 2454 region->init_req(null_path, null_ctl);
duke@435 2455 } else {
duke@435 2456 assert(null_ctl == top(), "no loose ends");
duke@435 2457 }
duke@435 2458 _sp -= nargs;
duke@435 2459 return kls;
duke@435 2460 }
duke@435 2461
duke@435 2462 //--------------------(inline_native_Class_query helpers)---------------------
duke@435 2463 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
duke@435 2464 // Fall through if (mods & mask) == bits, take the guard otherwise.
duke@435 2465 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
duke@435 2466 // Branch around if the given klass has the given modifier bit set.
duke@435 2467 // Like generate_guard, adds a new path onto the region.
duke@435 2468 Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
duke@435 2469 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
duke@435 2470 Node* mask = intcon(modifier_mask);
duke@435 2471 Node* bits = intcon(modifier_bits);
duke@435 2472 Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
duke@435 2473 Node* cmp = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
duke@435 2474 Node* bol = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
duke@435 2475 return generate_fair_guard(bol, region);
duke@435 2476 }
duke@435 2477 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
duke@435 2478 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
duke@435 2479 }
duke@435 2480
duke@435 2481 //-------------------------inline_native_Class_query-------------------
duke@435 2482 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
duke@435 2483 int nargs = 1+0; // just the Class mirror, in most cases
duke@435 2484 const Type* return_type = TypeInt::BOOL;
duke@435 2485 Node* prim_return_value = top(); // what happens if it's a primitive class?
duke@435 2486 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 2487 bool expect_prim = false; // most of these guys expect to work on refs
duke@435 2488
duke@435 2489 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
duke@435 2490
duke@435 2491 switch (id) {
duke@435 2492 case vmIntrinsics::_isInstance:
duke@435 2493 nargs = 1+1; // the Class mirror, plus the object getting queried about
duke@435 2494 // nothing is an instance of a primitive type
duke@435 2495 prim_return_value = intcon(0);
duke@435 2496 break;
duke@435 2497 case vmIntrinsics::_getModifiers:
duke@435 2498 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 2499 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
duke@435 2500 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
duke@435 2501 break;
duke@435 2502 case vmIntrinsics::_isInterface:
duke@435 2503 prim_return_value = intcon(0);
duke@435 2504 break;
duke@435 2505 case vmIntrinsics::_isArray:
duke@435 2506 prim_return_value = intcon(0);
duke@435 2507 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
duke@435 2508 break;
duke@435 2509 case vmIntrinsics::_isPrimitive:
duke@435 2510 prim_return_value = intcon(1);
duke@435 2511 expect_prim = true; // obviously
duke@435 2512 break;
duke@435 2513 case vmIntrinsics::_getSuperclass:
duke@435 2514 prim_return_value = null();
duke@435 2515 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 2516 break;
duke@435 2517 case vmIntrinsics::_getComponentType:
duke@435 2518 prim_return_value = null();
duke@435 2519 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 2520 break;
duke@435 2521 case vmIntrinsics::_getClassAccessFlags:
duke@435 2522 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 2523 return_type = TypeInt::INT; // not bool! 6297094
duke@435 2524 break;
duke@435 2525 default:
duke@435 2526 ShouldNotReachHere();
duke@435 2527 }
duke@435 2528
duke@435 2529 Node* mirror = argument(0);
duke@435 2530 Node* obj = (nargs <= 1)? top(): argument(1);
duke@435 2531
duke@435 2532 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
duke@435 2533 if (mirror_con == NULL) return false; // cannot happen?
duke@435 2534
duke@435 2535 #ifndef PRODUCT
duke@435 2536 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 2537 ciType* k = mirror_con->java_mirror_type();
duke@435 2538 if (k) {
duke@435 2539 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
duke@435 2540 k->print_name();
duke@435 2541 tty->cr();
duke@435 2542 }
duke@435 2543 }
duke@435 2544 #endif
duke@435 2545
duke@435 2546 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
duke@435 2547 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 2548 record_for_igvn(region);
duke@435 2549 PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
duke@435 2550
duke@435 2551 // The mirror will never be null of Reflection.getClassAccessFlags, however
duke@435 2552 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
duke@435 2553 // if it is. See bug 4774291.
duke@435 2554
duke@435 2555 // For Reflection.getClassAccessFlags(), the null check occurs in
duke@435 2556 // the wrong place; see inline_unsafe_access(), above, for a similar
duke@435 2557 // situation.
duke@435 2558 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2559 mirror = do_null_check(mirror, T_OBJECT);
duke@435 2560 _sp -= nargs;
duke@435 2561 // If mirror or obj is dead, only null-path is taken.
duke@435 2562 if (stopped()) return true;
duke@435 2563
duke@435 2564 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
duke@435 2565
duke@435 2566 // Now load the mirror's klass metaobject, and null-check it.
duke@435 2567 // Side-effects region with the control path if the klass is null.
duke@435 2568 Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
duke@435 2569 region, _prim_path);
duke@435 2570 // If kls is null, we have a primitive mirror.
duke@435 2571 phi->init_req(_prim_path, prim_return_value);
duke@435 2572 if (stopped()) { push_result(region, phi); return true; }
duke@435 2573
duke@435 2574 Node* p; // handy temp
duke@435 2575 Node* null_ctl;
duke@435 2576
duke@435 2577 // Now that we have the non-null klass, we can perform the real query.
duke@435 2578 // For constant classes, the query will constant-fold in LoadNode::Value.
duke@435 2579 Node* query_value = top();
duke@435 2580 switch (id) {
duke@435 2581 case vmIntrinsics::_isInstance:
duke@435 2582 // nothing is an instance of a primitive type
duke@435 2583 query_value = gen_instanceof(obj, kls);
duke@435 2584 break;
duke@435 2585
duke@435 2586 case vmIntrinsics::_getModifiers:
duke@435 2587 p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
duke@435 2588 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 2589 break;
duke@435 2590
duke@435 2591 case vmIntrinsics::_isInterface:
duke@435 2592 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 2593 if (generate_interface_guard(kls, region) != NULL)
duke@435 2594 // A guard was added. If the guard is taken, it was an interface.
duke@435 2595 phi->add_req(intcon(1));
duke@435 2596 // If we fall through, it's a plain class.
duke@435 2597 query_value = intcon(0);
duke@435 2598 break;
duke@435 2599
duke@435 2600 case vmIntrinsics::_isArray:
duke@435 2601 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
duke@435 2602 if (generate_array_guard(kls, region) != NULL)
duke@435 2603 // A guard was added. If the guard is taken, it was an array.
duke@435 2604 phi->add_req(intcon(1));
duke@435 2605 // If we fall through, it's a plain class.
duke@435 2606 query_value = intcon(0);
duke@435 2607 break;
duke@435 2608
duke@435 2609 case vmIntrinsics::_isPrimitive:
duke@435 2610 query_value = intcon(0); // "normal" path produces false
duke@435 2611 break;
duke@435 2612
duke@435 2613 case vmIntrinsics::_getSuperclass:
duke@435 2614 // The rules here are somewhat unfortunate, but we can still do better
duke@435 2615 // with random logic than with a JNI call.
duke@435 2616 // Interfaces store null or Object as _super, but must report null.
duke@435 2617 // Arrays store an intermediate super as _super, but must report Object.
duke@435 2618 // Other types can report the actual _super.
duke@435 2619 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 2620 if (generate_interface_guard(kls, region) != NULL)
duke@435 2621 // A guard was added. If the guard is taken, it was an interface.
duke@435 2622 phi->add_req(null());
duke@435 2623 if (generate_array_guard(kls, region) != NULL)
duke@435 2624 // A guard was added. If the guard is taken, it was an array.
duke@435 2625 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
duke@435 2626 // If we fall through, it's a plain class. Get its _super.
duke@435 2627 p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
duke@435 2628 kls = _gvn.transform(new (C, 3) LoadKlassNode(0, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
duke@435 2629 null_ctl = top();
duke@435 2630 kls = null_check_oop(kls, &null_ctl);
duke@435 2631 if (null_ctl != top()) {
duke@435 2632 // If the guard is taken, Object.superClass is null (both klass and mirror).
duke@435 2633 region->add_req(null_ctl);
duke@435 2634 phi ->add_req(null());
duke@435 2635 }
duke@435 2636 if (!stopped()) {
duke@435 2637 query_value = load_mirror_from_klass(kls);
duke@435 2638 }
duke@435 2639 break;
duke@435 2640
duke@435 2641 case vmIntrinsics::_getComponentType:
duke@435 2642 if (generate_array_guard(kls, region) != NULL) {
duke@435 2643 // Be sure to pin the oop load to the guard edge just created:
duke@435 2644 Node* is_array_ctrl = region->in(region->req()-1);
duke@435 2645 Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
duke@435 2646 Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 2647 phi->add_req(cmo);
duke@435 2648 }
duke@435 2649 query_value = null(); // non-array case is null
duke@435 2650 break;
duke@435 2651
duke@435 2652 case vmIntrinsics::_getClassAccessFlags:
duke@435 2653 p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
duke@435 2654 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 2655 break;
duke@435 2656
duke@435 2657 default:
duke@435 2658 ShouldNotReachHere();
duke@435 2659 }
duke@435 2660
duke@435 2661 // Fall-through is the normal case of a query to a real class.
duke@435 2662 phi->init_req(1, query_value);
duke@435 2663 region->init_req(1, control());
duke@435 2664
duke@435 2665 push_result(region, phi);
duke@435 2666 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 2667
duke@435 2668 return true;
duke@435 2669 }
duke@435 2670
duke@435 2671 //--------------------------inline_native_subtype_check------------------------
duke@435 2672 // This intrinsic takes the JNI calls out of the heart of
duke@435 2673 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
duke@435 2674 bool LibraryCallKit::inline_native_subtype_check() {
duke@435 2675 int nargs = 1+1; // the Class mirror, plus the other class getting examined
duke@435 2676
duke@435 2677 // Pull both arguments off the stack.
duke@435 2678 Node* args[2]; // two java.lang.Class mirrors: superc, subc
duke@435 2679 args[0] = argument(0);
duke@435 2680 args[1] = argument(1);
duke@435 2681 Node* klasses[2]; // corresponding Klasses: superk, subk
duke@435 2682 klasses[0] = klasses[1] = top();
duke@435 2683
duke@435 2684 enum {
duke@435 2685 // A full decision tree on {superc is prim, subc is prim}:
duke@435 2686 _prim_0_path = 1, // {P,N} => false
duke@435 2687 // {P,P} & superc!=subc => false
duke@435 2688 _prim_same_path, // {P,P} & superc==subc => true
duke@435 2689 _prim_1_path, // {N,P} => false
duke@435 2690 _ref_subtype_path, // {N,N} & subtype check wins => true
duke@435 2691 _both_ref_path, // {N,N} & subtype check loses => false
duke@435 2692 PATH_LIMIT
duke@435 2693 };
duke@435 2694
duke@435 2695 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 2696 Node* phi = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
duke@435 2697 record_for_igvn(region);
duke@435 2698
duke@435 2699 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
duke@435 2700 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
duke@435 2701 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
duke@435 2702
duke@435 2703 // First null-check both mirrors and load each mirror's klass metaobject.
duke@435 2704 int which_arg;
duke@435 2705 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 2706 Node* arg = args[which_arg];
duke@435 2707 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2708 arg = do_null_check(arg, T_OBJECT);
duke@435 2709 _sp -= nargs;
duke@435 2710 if (stopped()) break;
duke@435 2711 args[which_arg] = _gvn.transform(arg);
duke@435 2712
duke@435 2713 Node* p = basic_plus_adr(arg, class_klass_offset);
duke@435 2714 Node* kls = new (C, 3) LoadKlassNode(0, immutable_memory(), p, adr_type, kls_type);
duke@435 2715 klasses[which_arg] = _gvn.transform(kls);
duke@435 2716 }
duke@435 2717
duke@435 2718 // Having loaded both klasses, test each for null.
duke@435 2719 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 2720 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 2721 Node* kls = klasses[which_arg];
duke@435 2722 Node* null_ctl = top();
duke@435 2723 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2724 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 2725 _sp -= nargs;
duke@435 2726 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
duke@435 2727 region->init_req(prim_path, null_ctl);
duke@435 2728 if (stopped()) break;
duke@435 2729 klasses[which_arg] = kls;
duke@435 2730 }
duke@435 2731
duke@435 2732 if (!stopped()) {
duke@435 2733 // now we have two reference types, in klasses[0..1]
duke@435 2734 Node* subk = klasses[1]; // the argument to isAssignableFrom
duke@435 2735 Node* superk = klasses[0]; // the receiver
duke@435 2736 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
duke@435 2737 // now we have a successful reference subtype check
duke@435 2738 region->set_req(_ref_subtype_path, control());
duke@435 2739 }
duke@435 2740
duke@435 2741 // If both operands are primitive (both klasses null), then
duke@435 2742 // we must return true when they are identical primitives.
duke@435 2743 // It is convenient to test this after the first null klass check.
duke@435 2744 set_control(region->in(_prim_0_path)); // go back to first null check
duke@435 2745 if (!stopped()) {
duke@435 2746 // Since superc is primitive, make a guard for the superc==subc case.
duke@435 2747 Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
duke@435 2748 Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
duke@435 2749 generate_guard(bol_eq, region, PROB_FAIR);
duke@435 2750 if (region->req() == PATH_LIMIT+1) {
duke@435 2751 // A guard was added. If the added guard is taken, superc==subc.
duke@435 2752 region->swap_edges(PATH_LIMIT, _prim_same_path);
duke@435 2753 region->del_req(PATH_LIMIT);
duke@435 2754 }
duke@435 2755 region->set_req(_prim_0_path, control()); // Not equal after all.
duke@435 2756 }
duke@435 2757
duke@435 2758 // these are the only paths that produce 'true':
duke@435 2759 phi->set_req(_prim_same_path, intcon(1));
duke@435 2760 phi->set_req(_ref_subtype_path, intcon(1));
duke@435 2761
duke@435 2762 // pull together the cases:
duke@435 2763 assert(region->req() == PATH_LIMIT, "sane region");
duke@435 2764 for (uint i = 1; i < region->req(); i++) {
duke@435 2765 Node* ctl = region->in(i);
duke@435 2766 if (ctl == NULL || ctl == top()) {
duke@435 2767 region->set_req(i, top());
duke@435 2768 phi ->set_req(i, top());
duke@435 2769 } else if (phi->in(i) == NULL) {
duke@435 2770 phi->set_req(i, intcon(0)); // all other paths produce 'false'
duke@435 2771 }
duke@435 2772 }
duke@435 2773
duke@435 2774 set_control(_gvn.transform(region));
duke@435 2775 push(_gvn.transform(phi));
duke@435 2776
duke@435 2777 return true;
duke@435 2778 }
duke@435 2779
duke@435 2780 //---------------------generate_array_guard_common------------------------
duke@435 2781 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 2782 bool obj_array, bool not_array) {
duke@435 2783 // If obj_array/non_array==false/false:
duke@435 2784 // Branch around if the given klass is in fact an array (either obj or prim).
duke@435 2785 // If obj_array/non_array==false/true:
duke@435 2786 // Branch around if the given klass is not an array klass of any kind.
duke@435 2787 // If obj_array/non_array==true/true:
duke@435 2788 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
duke@435 2789 // If obj_array/non_array==true/false:
duke@435 2790 // Branch around if the kls is an oop array (Object[] or subtype)
duke@435 2791 //
duke@435 2792 // Like generate_guard, adds a new path onto the region.
duke@435 2793 jint layout_con = 0;
duke@435 2794 Node* layout_val = get_layout_helper(kls, layout_con);
duke@435 2795 if (layout_val == NULL) {
duke@435 2796 bool query = (obj_array
duke@435 2797 ? Klass::layout_helper_is_objArray(layout_con)
duke@435 2798 : Klass::layout_helper_is_javaArray(layout_con));
duke@435 2799 if (query == not_array) {
duke@435 2800 return NULL; // never a branch
duke@435 2801 } else { // always a branch
duke@435 2802 Node* always_branch = control();
duke@435 2803 if (region != NULL)
duke@435 2804 region->add_req(always_branch);
duke@435 2805 set_control(top());
duke@435 2806 return always_branch;
duke@435 2807 }
duke@435 2808 }
duke@435 2809 // Now test the correct condition.
duke@435 2810 jint nval = (obj_array
duke@435 2811 ? ((jint)Klass::_lh_array_tag_type_value
duke@435 2812 << Klass::_lh_array_tag_shift)
duke@435 2813 : Klass::_lh_neutral_value);
duke@435 2814 Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
duke@435 2815 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
duke@435 2816 // invert the test if we are looking for a non-array
duke@435 2817 if (not_array) btest = BoolTest(btest).negate();
duke@435 2818 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
duke@435 2819 return generate_fair_guard(bol, region);
duke@435 2820 }
duke@435 2821
duke@435 2822
duke@435 2823 //-----------------------inline_native_newArray--------------------------
duke@435 2824 bool LibraryCallKit::inline_native_newArray() {
duke@435 2825 int nargs = 2;
duke@435 2826 Node* mirror = argument(0);
duke@435 2827 Node* count_val = argument(1);
duke@435 2828
duke@435 2829 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2830 mirror = do_null_check(mirror, T_OBJECT);
duke@435 2831 _sp -= nargs;
duke@435 2832
duke@435 2833 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
duke@435 2834 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 2835 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 2836 TypeInstPtr::NOTNULL);
duke@435 2837 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 2838 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 2839 TypePtr::BOTTOM);
duke@435 2840
duke@435 2841 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 2842 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
duke@435 2843 nargs,
duke@435 2844 result_reg, _slow_path);
duke@435 2845 Node* normal_ctl = control();
duke@435 2846 Node* no_array_ctl = result_reg->in(_slow_path);
duke@435 2847
duke@435 2848 // Generate code for the slow case. We make a call to newArray().
duke@435 2849 set_control(no_array_ctl);
duke@435 2850 if (!stopped()) {
duke@435 2851 // Either the input type is void.class, or else the
duke@435 2852 // array klass has not yet been cached. Either the
duke@435 2853 // ensuing call will throw an exception, or else it
duke@435 2854 // will cache the array klass for next time.
duke@435 2855 PreserveJVMState pjvms(this);
duke@435 2856 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
duke@435 2857 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 2858 // this->control() comes from set_results_for_java_call
duke@435 2859 result_reg->set_req(_slow_path, control());
duke@435 2860 result_val->set_req(_slow_path, slow_result);
duke@435 2861 result_io ->set_req(_slow_path, i_o());
duke@435 2862 result_mem->set_req(_slow_path, reset_memory());
duke@435 2863 }
duke@435 2864
duke@435 2865 set_control(normal_ctl);
duke@435 2866 if (!stopped()) {
duke@435 2867 // Normal case: The array type has been cached in the java.lang.Class.
duke@435 2868 // The following call works fine even if the array type is polymorphic.
duke@435 2869 // It could be a dynamic mix of int[], boolean[], Object[], etc.
duke@435 2870 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2871 Node* obj = new_array(klass_node, count_val);
duke@435 2872 _sp -= nargs;
duke@435 2873 result_reg->init_req(_normal_path, control());
duke@435 2874 result_val->init_req(_normal_path, obj);
duke@435 2875 result_io ->init_req(_normal_path, i_o());
duke@435 2876 result_mem->init_req(_normal_path, reset_memory());
duke@435 2877 }
duke@435 2878
duke@435 2879 // Return the combined state.
duke@435 2880 set_i_o( _gvn.transform(result_io) );
duke@435 2881 set_all_memory( _gvn.transform(result_mem) );
duke@435 2882 push_result(result_reg, result_val);
duke@435 2883 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 2884
duke@435 2885 return true;
duke@435 2886 }
duke@435 2887
duke@435 2888 //----------------------inline_native_getLength--------------------------
duke@435 2889 bool LibraryCallKit::inline_native_getLength() {
duke@435 2890 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 2891
duke@435 2892 int nargs = 1;
duke@435 2893 Node* array = argument(0);
duke@435 2894
duke@435 2895 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2896 array = do_null_check(array, T_OBJECT);
duke@435 2897 _sp -= nargs;
duke@435 2898
duke@435 2899 // If array is dead, only null-path is taken.
duke@435 2900 if (stopped()) return true;
duke@435 2901
duke@435 2902 // Deoptimize if it is a non-array.
duke@435 2903 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
duke@435 2904
duke@435 2905 if (non_array != NULL) {
duke@435 2906 PreserveJVMState pjvms(this);
duke@435 2907 set_control(non_array);
duke@435 2908 _sp += nargs; // push the arguments back on the stack
duke@435 2909 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 2910 Deoptimization::Action_maybe_recompile);
duke@435 2911 }
duke@435 2912
duke@435 2913 // If control is dead, only non-array-path is taken.
duke@435 2914 if (stopped()) return true;
duke@435 2915
duke@435 2916 // The works fine even if the array type is polymorphic.
duke@435 2917 // It could be a dynamic mix of int[], boolean[], Object[], etc.
duke@435 2918 push( load_array_length(array) );
duke@435 2919
duke@435 2920 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 2921
duke@435 2922 return true;
duke@435 2923 }
duke@435 2924
duke@435 2925 //------------------------inline_array_copyOf----------------------------
duke@435 2926 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
duke@435 2927 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 2928
duke@435 2929 // Restore the stack and pop off the arguments.
duke@435 2930 int nargs = 3 + (is_copyOfRange? 1: 0);
duke@435 2931 Node* original = argument(0);
duke@435 2932 Node* start = is_copyOfRange? argument(1): intcon(0);
duke@435 2933 Node* end = is_copyOfRange? argument(2): argument(1);
duke@435 2934 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
duke@435 2935
duke@435 2936 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2937 array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
duke@435 2938 original = do_null_check(original, T_OBJECT);
duke@435 2939 _sp -= nargs;
duke@435 2940
duke@435 2941 // Check if a null path was taken unconditionally.
duke@435 2942 if (stopped()) return true;
duke@435 2943
duke@435 2944 Node* orig_length = load_array_length(original);
duke@435 2945
duke@435 2946 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
duke@435 2947 NULL, 0);
duke@435 2948 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2949 klass_node = do_null_check(klass_node, T_OBJECT);
duke@435 2950 _sp -= nargs;
duke@435 2951
duke@435 2952 RegionNode* bailout = new (C, 1) RegionNode(1);
duke@435 2953 record_for_igvn(bailout);
duke@435 2954
duke@435 2955 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
duke@435 2956 // Bail out if that is so.
duke@435 2957 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
duke@435 2958 if (not_objArray != NULL) {
duke@435 2959 // Improve the klass node's type from the new optimistic assumption:
duke@435 2960 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
duke@435 2961 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
duke@435 2962 Node* cast = new (C, 2) CastPPNode(klass_node, akls);
duke@435 2963 cast->init_req(0, control());
duke@435 2964 klass_node = _gvn.transform(cast);
duke@435 2965 }
duke@435 2966
duke@435 2967 // Bail out if either start or end is negative.
duke@435 2968 generate_negative_guard(start, bailout, &start);
duke@435 2969 generate_negative_guard(end, bailout, &end);
duke@435 2970
duke@435 2971 Node* length = end;
duke@435 2972 if (_gvn.type(start) != TypeInt::ZERO) {
duke@435 2973 length = _gvn.transform( new (C, 3) SubINode(end, start) );
duke@435 2974 }
duke@435 2975
duke@435 2976 // Bail out if length is negative.
duke@435 2977 // ...Not needed, since the new_array will throw the right exception.
duke@435 2978 //generate_negative_guard(length, bailout, &length);
duke@435 2979
duke@435 2980 if (bailout->req() > 1) {
duke@435 2981 PreserveJVMState pjvms(this);
duke@435 2982 set_control( _gvn.transform(bailout) );
duke@435 2983 _sp += nargs; // push the arguments back on the stack
duke@435 2984 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 2985 Deoptimization::Action_maybe_recompile);
duke@435 2986 }
duke@435 2987
duke@435 2988 if (!stopped()) {
duke@435 2989 // How many elements will we copy from the original?
duke@435 2990 // The answer is MinI(orig_length - start, length).
duke@435 2991 Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
duke@435 2992 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
duke@435 2993
duke@435 2994 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2995 Node* newcopy = new_array(klass_node, length);
duke@435 2996 _sp -= nargs;
duke@435 2997
duke@435 2998 // Generate a direct call to the right arraycopy function(s).
duke@435 2999 // We know the copy is disjoint but we might not know if the
duke@435 3000 // oop stores need checking.
duke@435 3001 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
duke@435 3002 // This will fail a store-check if x contains any non-nulls.
duke@435 3003 bool disjoint_bases = true;
duke@435 3004 bool length_never_negative = true;
duke@435 3005 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
duke@435 3006 original, start, newcopy, intcon(0), moved,
duke@435 3007 nargs, disjoint_bases, length_never_negative);
duke@435 3008
duke@435 3009 push(newcopy);
duke@435 3010 }
duke@435 3011
duke@435 3012 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3013
duke@435 3014 return true;
duke@435 3015 }
duke@435 3016
duke@435 3017
duke@435 3018 //----------------------generate_virtual_guard---------------------------
duke@435 3019 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
duke@435 3020 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
duke@435 3021 RegionNode* slow_region) {
duke@435 3022 ciMethod* method = callee();
duke@435 3023 int vtable_index = method->vtable_index();
duke@435 3024 // Get the methodOop out of the appropriate vtable entry.
duke@435 3025 int entry_offset = (instanceKlass::vtable_start_offset() +
duke@435 3026 vtable_index*vtableEntry::size()) * wordSize +
duke@435 3027 vtableEntry::method_offset_in_bytes();
duke@435 3028 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
duke@435 3029 Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
duke@435 3030
duke@435 3031 // Compare the target method with the expected method (e.g., Object.hashCode).
duke@435 3032 const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
duke@435 3033
duke@435 3034 Node* native_call = makecon(native_call_addr);
duke@435 3035 Node* chk_native = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
duke@435 3036 Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
duke@435 3037
duke@435 3038 return generate_slow_guard(test_native, slow_region);
duke@435 3039 }
duke@435 3040
duke@435 3041 //-----------------------generate_method_call----------------------------
duke@435 3042 // Use generate_method_call to make a slow-call to the real
duke@435 3043 // method if the fast path fails. An alternative would be to
duke@435 3044 // use a stub like OptoRuntime::slow_arraycopy_Java.
duke@435 3045 // This only works for expanding the current library call,
duke@435 3046 // not another intrinsic. (E.g., don't use this for making an
duke@435 3047 // arraycopy call inside of the copyOf intrinsic.)
duke@435 3048 CallJavaNode*
duke@435 3049 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
duke@435 3050 // When compiling the intrinsic method itself, do not use this technique.
duke@435 3051 guarantee(callee() != C->method(), "cannot make slow-call to self");
duke@435 3052
duke@435 3053 ciMethod* method = callee();
duke@435 3054 // ensure the JVMS we have will be correct for this call
duke@435 3055 guarantee(method_id == method->intrinsic_id(), "must match");
duke@435 3056
duke@435 3057 const TypeFunc* tf = TypeFunc::make(method);
duke@435 3058 int tfdc = tf->domain()->cnt();
duke@435 3059 CallJavaNode* slow_call;
duke@435 3060 if (is_static) {
duke@435 3061 assert(!is_virtual, "");
duke@435 3062 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3063 SharedRuntime::get_resolve_static_call_stub(),
duke@435 3064 method, bci());
duke@435 3065 } else if (is_virtual) {
duke@435 3066 null_check_receiver(method);
duke@435 3067 int vtable_index = methodOopDesc::invalid_vtable_index;
duke@435 3068 if (UseInlineCaches) {
duke@435 3069 // Suppress the vtable call
duke@435 3070 } else {
duke@435 3071 // hashCode and clone are not a miranda methods,
duke@435 3072 // so the vtable index is fixed.
duke@435 3073 // No need to use the linkResolver to get it.
duke@435 3074 vtable_index = method->vtable_index();
duke@435 3075 }
duke@435 3076 slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
duke@435 3077 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 3078 method, vtable_index, bci());
duke@435 3079 } else { // neither virtual nor static: opt_virtual
duke@435 3080 null_check_receiver(method);
duke@435 3081 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3082 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 3083 method, bci());
duke@435 3084 slow_call->set_optimized_virtual(true);
duke@435 3085 }
duke@435 3086 set_arguments_for_java_call(slow_call);
duke@435 3087 set_edges_for_java_call(slow_call);
duke@435 3088 return slow_call;
duke@435 3089 }
duke@435 3090
duke@435 3091
duke@435 3092 //------------------------------inline_native_hashcode--------------------
duke@435 3093 // Build special case code for calls to hashCode on an object.
duke@435 3094 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
duke@435 3095 assert(is_static == callee()->is_static(), "correct intrinsic selection");
duke@435 3096 assert(!(is_virtual && is_static), "either virtual, special, or static");
duke@435 3097
duke@435 3098 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
duke@435 3099
duke@435 3100 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3101 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3102 TypeInt::INT);
duke@435 3103 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3104 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3105 TypePtr::BOTTOM);
duke@435 3106 Node* obj = NULL;
duke@435 3107 if (!is_static) {
duke@435 3108 // Check for hashing null object
duke@435 3109 obj = null_check_receiver(callee());
duke@435 3110 if (stopped()) return true; // unconditionally null
duke@435 3111 result_reg->init_req(_null_path, top());
duke@435 3112 result_val->init_req(_null_path, top());
duke@435 3113 } else {
duke@435 3114 // Do a null check, and return zero if null.
duke@435 3115 // System.identityHashCode(null) == 0
duke@435 3116 obj = argument(0);
duke@435 3117 Node* null_ctl = top();
duke@435 3118 obj = null_check_oop(obj, &null_ctl);
duke@435 3119 result_reg->init_req(_null_path, null_ctl);
duke@435 3120 result_val->init_req(_null_path, _gvn.intcon(0));
duke@435 3121 }
duke@435 3122
duke@435 3123 // Unconditionally null? Then return right away.
duke@435 3124 if (stopped()) {
duke@435 3125 set_control( result_reg->in(_null_path) );
duke@435 3126 if (!stopped())
duke@435 3127 push( result_val ->in(_null_path) );
duke@435 3128 return true;
duke@435 3129 }
duke@435 3130
duke@435 3131 // After null check, get the object's klass.
duke@435 3132 Node* obj_klass = load_object_klass(obj);
duke@435 3133
duke@435 3134 // This call may be virtual (invokevirtual) or bound (invokespecial).
duke@435 3135 // For each case we generate slightly different code.
duke@435 3136
duke@435 3137 // We only go to the fast case code if we pass a number of guards. The
duke@435 3138 // paths which do not pass are accumulated in the slow_region.
duke@435 3139 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 3140 record_for_igvn(slow_region);
duke@435 3141
duke@435 3142 // If this is a virtual call, we generate a funny guard. We pull out
duke@435 3143 // the vtable entry corresponding to hashCode() from the target object.
duke@435 3144 // If the target method which we are calling happens to be the native
duke@435 3145 // Object hashCode() method, we pass the guard. We do not need this
duke@435 3146 // guard for non-virtual calls -- the caller is known to be the native
duke@435 3147 // Object hashCode().
duke@435 3148 if (is_virtual) {
duke@435 3149 generate_virtual_guard(obj_klass, slow_region);
duke@435 3150 }
duke@435 3151
duke@435 3152 // Get the header out of the object, use LoadMarkNode when available
duke@435 3153 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
duke@435 3154 Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 3155 header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
duke@435 3156
duke@435 3157 // Test the header to see if it is unlocked.
duke@435 3158 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
duke@435 3159 Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
duke@435 3160 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
duke@435 3161 Node *chk_unlocked = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
duke@435 3162 Node *test_unlocked = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
duke@435 3163
duke@435 3164 generate_slow_guard(test_unlocked, slow_region);
duke@435 3165
duke@435 3166 // Get the hash value and check to see that it has been properly assigned.
duke@435 3167 // We depend on hash_mask being at most 32 bits and avoid the use of
duke@435 3168 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
duke@435 3169 // vm: see markOop.hpp.
duke@435 3170 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
duke@435 3171 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
duke@435 3172 Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
duke@435 3173 // This hack lets the hash bits live anywhere in the mark object now, as long
duke@435 3174 // as the shift drops the relevent bits into the low 32 bits. Note that
duke@435 3175 // Java spec says that HashCode is an int so there's no point in capturing
duke@435 3176 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
duke@435 3177 hshifted_header = ConvX2I(hshifted_header);
duke@435 3178 Node *hash_val = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
duke@435 3179
duke@435 3180 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
duke@435 3181 Node *chk_assigned = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
duke@435 3182 Node *test_assigned = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
duke@435 3183
duke@435 3184 generate_slow_guard(test_assigned, slow_region);
duke@435 3185
duke@435 3186 Node* init_mem = reset_memory();
duke@435 3187 // fill in the rest of the null path:
duke@435 3188 result_io ->init_req(_null_path, i_o());
duke@435 3189 result_mem->init_req(_null_path, init_mem);
duke@435 3190
duke@435 3191 result_val->init_req(_fast_path, hash_val);
duke@435 3192 result_reg->init_req(_fast_path, control());
duke@435 3193 result_io ->init_req(_fast_path, i_o());
duke@435 3194 result_mem->init_req(_fast_path, init_mem);
duke@435 3195
duke@435 3196 // Generate code for the slow case. We make a call to hashCode().
duke@435 3197 set_control(_gvn.transform(slow_region));
duke@435 3198 if (!stopped()) {
duke@435 3199 // No need for PreserveJVMState, because we're using up the present state.
duke@435 3200 set_all_memory(init_mem);
duke@435 3201 vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
duke@435 3202 if (is_static) hashCode_id = vmIntrinsics::_identityHashCode;
duke@435 3203 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
duke@435 3204 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3205 // this->control() comes from set_results_for_java_call
duke@435 3206 result_reg->init_req(_slow_path, control());
duke@435 3207 result_val->init_req(_slow_path, slow_result);
duke@435 3208 result_io ->set_req(_slow_path, i_o());
duke@435 3209 result_mem ->set_req(_slow_path, reset_memory());
duke@435 3210 }
duke@435 3211
duke@435 3212 // Return the combined state.
duke@435 3213 set_i_o( _gvn.transform(result_io) );
duke@435 3214 set_all_memory( _gvn.transform(result_mem) );
duke@435 3215 push_result(result_reg, result_val);
duke@435 3216
duke@435 3217 return true;
duke@435 3218 }
duke@435 3219
duke@435 3220 //---------------------------inline_native_getClass----------------------------
duke@435 3221 // Build special case code for calls to hashCode on an object.
duke@435 3222 bool LibraryCallKit::inline_native_getClass() {
duke@435 3223 Node* obj = null_check_receiver(callee());
duke@435 3224 if (stopped()) return true;
duke@435 3225 push( load_mirror_from_klass(load_object_klass(obj)) );
duke@435 3226 return true;
duke@435 3227 }
duke@435 3228
duke@435 3229 //-----------------inline_native_Reflection_getCallerClass---------------------
duke@435 3230 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
duke@435 3231 //
duke@435 3232 // NOTE that this code must perform the same logic as
duke@435 3233 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3234 // Method.invoke() and auxiliary frames.
duke@435 3235
duke@435 3236
duke@435 3237
duke@435 3238
duke@435 3239 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
duke@435 3240 ciMethod* method = callee();
duke@435 3241
duke@435 3242 #ifndef PRODUCT
duke@435 3243 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3244 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
duke@435 3245 }
duke@435 3246 #endif
duke@435 3247
duke@435 3248 debug_only(int saved_sp = _sp);
duke@435 3249
duke@435 3250 // Argument words: (int depth)
duke@435 3251 int nargs = 1;
duke@435 3252
duke@435 3253 _sp += nargs;
duke@435 3254 Node* caller_depth_node = pop();
duke@435 3255
duke@435 3256 assert(saved_sp == _sp, "must have correct argument count");
duke@435 3257
duke@435 3258 // The depth value must be a constant in order for the runtime call
duke@435 3259 // to be eliminated.
duke@435 3260 const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
duke@435 3261 if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
duke@435 3262 #ifndef PRODUCT
duke@435 3263 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3264 tty->print_cr(" Bailing out because caller depth was not a constant");
duke@435 3265 }
duke@435 3266 #endif
duke@435 3267 return false;
duke@435 3268 }
duke@435 3269 // Note that the JVM state at this point does not include the
duke@435 3270 // getCallerClass() frame which we are trying to inline. The
duke@435 3271 // semantics of getCallerClass(), however, are that the "first"
duke@435 3272 // frame is the getCallerClass() frame, so we subtract one from the
duke@435 3273 // requested depth before continuing. We don't inline requests of
duke@435 3274 // getCallerClass(0).
duke@435 3275 int caller_depth = caller_depth_type->get_con() - 1;
duke@435 3276 if (caller_depth < 0) {
duke@435 3277 #ifndef PRODUCT
duke@435 3278 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3279 tty->print_cr(" Bailing out because caller depth was %d", caller_depth);
duke@435 3280 }
duke@435 3281 #endif
duke@435 3282 return false;
duke@435 3283 }
duke@435 3284
duke@435 3285 if (!jvms()->has_method()) {
duke@435 3286 #ifndef PRODUCT
duke@435 3287 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3288 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
duke@435 3289 }
duke@435 3290 #endif
duke@435 3291 return false;
duke@435 3292 }
duke@435 3293 int _depth = jvms()->depth(); // cache call chain depth
duke@435 3294
duke@435 3295 // Walk back up the JVM state to find the caller at the required
duke@435 3296 // depth. NOTE that this code must perform the same logic as
duke@435 3297 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3298 // Method.invoke() and auxiliary frames. Note also that depth is
duke@435 3299 // 1-based (1 is the bottom of the inlining).
duke@435 3300 int inlining_depth = _depth;
duke@435 3301 JVMState* caller_jvms = NULL;
duke@435 3302
duke@435 3303 if (inlining_depth > 0) {
duke@435 3304 caller_jvms = jvms();
duke@435 3305 assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
duke@435 3306 do {
duke@435 3307 // The following if-tests should be performed in this order
duke@435 3308 if (is_method_invoke_or_aux_frame(caller_jvms)) {
duke@435 3309 // Skip a Method.invoke() or auxiliary frame
duke@435 3310 } else if (caller_depth > 0) {
duke@435 3311 // Skip real frame
duke@435 3312 --caller_depth;
duke@435 3313 } else {
duke@435 3314 // We're done: reached desired caller after skipping.
duke@435 3315 break;
duke@435 3316 }
duke@435 3317 caller_jvms = caller_jvms->caller();
duke@435 3318 --inlining_depth;
duke@435 3319 } while (inlining_depth > 0);
duke@435 3320 }
duke@435 3321
duke@435 3322 if (inlining_depth == 0) {
duke@435 3323 #ifndef PRODUCT
duke@435 3324 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3325 tty->print_cr(" Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
duke@435 3326 tty->print_cr(" JVM state at this point:");
duke@435 3327 for (int i = _depth; i >= 1; i--) {
duke@435 3328 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3329 }
duke@435 3330 }
duke@435 3331 #endif
duke@435 3332 return false; // Reached end of inlining
duke@435 3333 }
duke@435 3334
duke@435 3335 // Acquire method holder as java.lang.Class
duke@435 3336 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
duke@435 3337 ciInstance* caller_mirror = caller_klass->java_mirror();
duke@435 3338 // Push this as a constant
duke@435 3339 push(makecon(TypeInstPtr::make(caller_mirror)));
duke@435 3340 #ifndef PRODUCT
duke@435 3341 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3342 tty->print_cr(" Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
duke@435 3343 tty->print_cr(" JVM state at this point:");
duke@435 3344 for (int i = _depth; i >= 1; i--) {
duke@435 3345 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3346 }
duke@435 3347 }
duke@435 3348 #endif
duke@435 3349 return true;
duke@435 3350 }
duke@435 3351
duke@435 3352 // Helper routine for above
duke@435 3353 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
duke@435 3354 // Is this the Method.invoke method itself?
duke@435 3355 if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
duke@435 3356 return true;
duke@435 3357
duke@435 3358 // Is this a helper, defined somewhere underneath MethodAccessorImpl.
duke@435 3359 ciKlass* k = jvms->method()->holder();
duke@435 3360 if (k->is_instance_klass()) {
duke@435 3361 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3362 for (; ik != NULL; ik = ik->super()) {
duke@435 3363 if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
duke@435 3364 ik == env()->find_system_klass(ik->name())) {
duke@435 3365 return true;
duke@435 3366 }
duke@435 3367 }
duke@435 3368 }
duke@435 3369
duke@435 3370 return false;
duke@435 3371 }
duke@435 3372
duke@435 3373 static int value_field_offset = -1; // offset of the "value" field of AtomicLongCSImpl. This is needed by
duke@435 3374 // inline_native_AtomicLong_attemptUpdate() but it has no way of
duke@435 3375 // computing it since there is no lookup field by name function in the
duke@435 3376 // CI interface. This is computed and set by inline_native_AtomicLong_get().
duke@435 3377 // Using a static variable here is safe even if we have multiple compilation
duke@435 3378 // threads because the offset is constant. At worst the same offset will be
duke@435 3379 // computed and stored multiple
duke@435 3380
duke@435 3381 bool LibraryCallKit::inline_native_AtomicLong_get() {
duke@435 3382 // Restore the stack and pop off the argument
duke@435 3383 _sp+=1;
duke@435 3384 Node *obj = pop();
duke@435 3385
duke@435 3386 // get the offset of the "value" field. Since the CI interfaces
duke@435 3387 // does not provide a way to look up a field by name, we scan the bytecodes
duke@435 3388 // to get the field index. We expect the first 2 instructions of the method
duke@435 3389 // to be:
duke@435 3390 // 0 aload_0
duke@435 3391 // 1 getfield "value"
duke@435 3392 ciMethod* method = callee();
duke@435 3393 if (value_field_offset == -1)
duke@435 3394 {
duke@435 3395 ciField* value_field;
duke@435 3396 ciBytecodeStream iter(method);
duke@435 3397 Bytecodes::Code bc = iter.next();
duke@435 3398
duke@435 3399 if ((bc != Bytecodes::_aload_0) &&
duke@435 3400 ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
duke@435 3401 return false;
duke@435 3402 bc = iter.next();
duke@435 3403 if (bc != Bytecodes::_getfield)
duke@435 3404 return false;
duke@435 3405 bool ignore;
duke@435 3406 value_field = iter.get_field(ignore);
duke@435 3407 value_field_offset = value_field->offset_in_bytes();
duke@435 3408 }
duke@435 3409
duke@435 3410 // Null check without removing any arguments.
duke@435 3411 _sp++;
duke@435 3412 obj = do_null_check(obj, T_OBJECT);
duke@435 3413 _sp--;
duke@435 3414 // Check for locking null object
duke@435 3415 if (stopped()) return true;
duke@435 3416
duke@435 3417 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
duke@435 3418 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
duke@435 3419 int alias_idx = C->get_alias_index(adr_type);
duke@435 3420
duke@435 3421 Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
duke@435 3422
duke@435 3423 push_pair(result);
duke@435 3424
duke@435 3425 return true;
duke@435 3426 }
duke@435 3427
duke@435 3428 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
duke@435 3429 // Restore the stack and pop off the arguments
duke@435 3430 _sp+=5;
duke@435 3431 Node *newVal = pop_pair();
duke@435 3432 Node *oldVal = pop_pair();
duke@435 3433 Node *obj = pop();
duke@435 3434
duke@435 3435 // we need the offset of the "value" field which was computed when
duke@435 3436 // inlining the get() method. Give up if we don't have it.
duke@435 3437 if (value_field_offset == -1)
duke@435 3438 return false;
duke@435 3439
duke@435 3440 // Null check without removing any arguments.
duke@435 3441 _sp+=5;
duke@435 3442 obj = do_null_check(obj, T_OBJECT);
duke@435 3443 _sp-=5;
duke@435 3444 // Check for locking null object
duke@435 3445 if (stopped()) return true;
duke@435 3446
duke@435 3447 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
duke@435 3448 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
duke@435 3449 int alias_idx = C->get_alias_index(adr_type);
duke@435 3450
duke@435 3451 Node *result = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
duke@435 3452 Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(result));
duke@435 3453 set_memory(store_proj, alias_idx);
duke@435 3454
duke@435 3455 push(result);
duke@435 3456 return true;
duke@435 3457 }
duke@435 3458
duke@435 3459 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
duke@435 3460 // restore the arguments
duke@435 3461 _sp += arg_size();
duke@435 3462
duke@435 3463 switch (id) {
duke@435 3464 case vmIntrinsics::_floatToRawIntBits:
duke@435 3465 push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
duke@435 3466 break;
duke@435 3467
duke@435 3468 case vmIntrinsics::_intBitsToFloat:
duke@435 3469 push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
duke@435 3470 break;
duke@435 3471
duke@435 3472 case vmIntrinsics::_doubleToRawLongBits:
duke@435 3473 push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
duke@435 3474 break;
duke@435 3475
duke@435 3476 case vmIntrinsics::_longBitsToDouble:
duke@435 3477 push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
duke@435 3478 break;
duke@435 3479
duke@435 3480 case vmIntrinsics::_doubleToLongBits: {
duke@435 3481 Node* value = pop_pair();
duke@435 3482
duke@435 3483 // two paths (plus control) merge in a wood
duke@435 3484 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 3485 Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
duke@435 3486
duke@435 3487 Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
duke@435 3488 // Build the boolean node
duke@435 3489 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 3490
duke@435 3491 // Branch either way.
duke@435 3492 // NaN case is less traveled, which makes all the difference.
duke@435 3493 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 3494 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 3495 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 3496 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 3497 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 3498
duke@435 3499 set_control(iftrue);
duke@435 3500
duke@435 3501 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 3502 Node *slow_result = longcon(nan_bits); // return NaN
duke@435 3503 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 3504 r->init_req(1, iftrue);
duke@435 3505
duke@435 3506 // Else fall through
duke@435 3507 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 3508 set_control(iffalse);
duke@435 3509
duke@435 3510 phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
duke@435 3511 r->init_req(2, iffalse);
duke@435 3512
duke@435 3513 // Post merge
duke@435 3514 set_control(_gvn.transform(r));
duke@435 3515 record_for_igvn(r);
duke@435 3516
duke@435 3517 Node* result = _gvn.transform(phi);
duke@435 3518 assert(result->bottom_type()->isa_long(), "must be");
duke@435 3519 push_pair(result);
duke@435 3520
duke@435 3521 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3522
duke@435 3523 break;
duke@435 3524 }
duke@435 3525
duke@435 3526 case vmIntrinsics::_floatToIntBits: {
duke@435 3527 Node* value = pop();
duke@435 3528
duke@435 3529 // two paths (plus control) merge in a wood
duke@435 3530 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 3531 Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
duke@435 3532
duke@435 3533 Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
duke@435 3534 // Build the boolean node
duke@435 3535 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 3536
duke@435 3537 // Branch either way.
duke@435 3538 // NaN case is less traveled, which makes all the difference.
duke@435 3539 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 3540 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 3541 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 3542 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 3543 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 3544
duke@435 3545 set_control(iftrue);
duke@435 3546
duke@435 3547 static const jint nan_bits = 0x7fc00000;
duke@435 3548 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
duke@435 3549 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 3550 r->init_req(1, iftrue);
duke@435 3551
duke@435 3552 // Else fall through
duke@435 3553 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 3554 set_control(iffalse);
duke@435 3555
duke@435 3556 phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
duke@435 3557 r->init_req(2, iffalse);
duke@435 3558
duke@435 3559 // Post merge
duke@435 3560 set_control(_gvn.transform(r));
duke@435 3561 record_for_igvn(r);
duke@435 3562
duke@435 3563 Node* result = _gvn.transform(phi);
duke@435 3564 assert(result->bottom_type()->isa_int(), "must be");
duke@435 3565 push(result);
duke@435 3566
duke@435 3567 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3568
duke@435 3569 break;
duke@435 3570 }
duke@435 3571
duke@435 3572 default:
duke@435 3573 ShouldNotReachHere();
duke@435 3574 }
duke@435 3575
duke@435 3576 return true;
duke@435 3577 }
duke@435 3578
duke@435 3579 #ifdef _LP64
duke@435 3580 #define XTOP ,top() /*additional argument*/
duke@435 3581 #else //_LP64
duke@435 3582 #define XTOP /*no additional argument*/
duke@435 3583 #endif //_LP64
duke@435 3584
duke@435 3585 //----------------------inline_unsafe_copyMemory-------------------------
duke@435 3586 bool LibraryCallKit::inline_unsafe_copyMemory() {
duke@435 3587 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 3588 int nargs = 1 + 5 + 3; // 5 args: (src: ptr,off, dst: ptr,off, size)
duke@435 3589 assert(signature()->size() == nargs-1, "copy has 5 arguments");
duke@435 3590 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 3591 if (stopped()) return true;
duke@435 3592
duke@435 3593 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 3594
duke@435 3595 Node* src_ptr = argument(1);
duke@435 3596 Node* src_off = ConvL2X(argument(2));
duke@435 3597 assert(argument(3)->is_top(), "2nd half of long");
duke@435 3598 Node* dst_ptr = argument(4);
duke@435 3599 Node* dst_off = ConvL2X(argument(5));
duke@435 3600 assert(argument(6)->is_top(), "2nd half of long");
duke@435 3601 Node* size = ConvL2X(argument(7));
duke@435 3602 assert(argument(8)->is_top(), "2nd half of long");
duke@435 3603
duke@435 3604 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 3605 "fieldOffset must be byte-scaled");
duke@435 3606
duke@435 3607 Node* src = make_unsafe_address(src_ptr, src_off);
duke@435 3608 Node* dst = make_unsafe_address(dst_ptr, dst_off);
duke@435 3609
duke@435 3610 // Conservatively insert a memory barrier on all memory slices.
duke@435 3611 // Do not let writes of the copy source or destination float below the copy.
duke@435 3612 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 3613
duke@435 3614 // Call it. Note that the length argument is not scaled.
duke@435 3615 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 3616 OptoRuntime::fast_arraycopy_Type(),
duke@435 3617 StubRoutines::unsafe_arraycopy(),
duke@435 3618 "unsafe_arraycopy",
duke@435 3619 TypeRawPtr::BOTTOM,
duke@435 3620 src, dst, size XTOP);
duke@435 3621
duke@435 3622 // Do not let reads of the copy destination float above the copy.
duke@435 3623 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 3624
duke@435 3625 return true;
duke@435 3626 }
duke@435 3627
duke@435 3628
duke@435 3629 //------------------------inline_native_clone----------------------------
duke@435 3630 // Here are the simple edge cases:
duke@435 3631 // null receiver => normal trap
duke@435 3632 // virtual and clone was overridden => slow path to out-of-line clone
duke@435 3633 // not cloneable or finalizer => slow path to out-of-line Object.clone
duke@435 3634 //
duke@435 3635 // The general case has two steps, allocation and copying.
duke@435 3636 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
duke@435 3637 //
duke@435 3638 // Copying also has two cases, oop arrays and everything else.
duke@435 3639 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
duke@435 3640 // Everything else uses the tight inline loop supplied by CopyArrayNode.
duke@435 3641 //
duke@435 3642 // These steps fold up nicely if and when the cloned object's klass
duke@435 3643 // can be sharply typed as an object array, a type array, or an instance.
duke@435 3644 //
duke@435 3645 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
duke@435 3646 int nargs = 1;
duke@435 3647 Node* obj = null_check_receiver(callee());
duke@435 3648 if (stopped()) return true;
duke@435 3649 Node* obj_klass = load_object_klass(obj);
duke@435 3650 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
duke@435 3651 const TypeOopPtr* toop = ((tklass != NULL)
duke@435 3652 ? tklass->as_instance_type()
duke@435 3653 : TypeInstPtr::NOTNULL);
duke@435 3654
duke@435 3655 // Conservatively insert a memory barrier on all memory slices.
duke@435 3656 // Do not let writes into the original float below the clone.
duke@435 3657 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 3658
duke@435 3659 // paths into result_reg:
duke@435 3660 enum {
duke@435 3661 _slow_path = 1, // out-of-line call to clone method (virtual or not)
duke@435 3662 _objArray_path, // plain allocation, plus arrayof_oop_arraycopy
duke@435 3663 _fast_path, // plain allocation, plus a CopyArray operation
duke@435 3664 PATH_LIMIT
duke@435 3665 };
duke@435 3666 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3667 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3668 TypeInstPtr::NOTNULL);
duke@435 3669 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3670 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3671 TypePtr::BOTTOM);
duke@435 3672 record_for_igvn(result_reg);
duke@435 3673
duke@435 3674 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
duke@435 3675 int raw_adr_idx = Compile::AliasIdxRaw;
duke@435 3676 const bool raw_mem_only = true;
duke@435 3677
duke@435 3678 // paths into alloc_reg (on the fast path, just before the CopyArray):
duke@435 3679 enum { _typeArray_alloc = 1, _instance_alloc, ALLOC_LIMIT };
duke@435 3680 RegionNode* alloc_reg = new(C, ALLOC_LIMIT) RegionNode(ALLOC_LIMIT);
duke@435 3681 PhiNode* alloc_val = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, raw_adr_type);
duke@435 3682 PhiNode* alloc_siz = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, TypeX_X);
duke@435 3683 PhiNode* alloc_i_o = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::ABIO);
duke@435 3684 PhiNode* alloc_mem = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::MEMORY,
duke@435 3685 raw_adr_type);
duke@435 3686 record_for_igvn(alloc_reg);
duke@435 3687
duke@435 3688 bool card_mark = false; // (see below)
duke@435 3689
duke@435 3690 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
duke@435 3691 if (array_ctl != NULL) {
duke@435 3692 // It's an array.
duke@435 3693 PreserveJVMState pjvms(this);
duke@435 3694 set_control(array_ctl);
duke@435 3695 Node* obj_length = load_array_length(obj);
duke@435 3696 Node* obj_size = NULL;
duke@435 3697 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3698 Node* alloc_obj = new_array(obj_klass, obj_length,
duke@435 3699 raw_mem_only, &obj_size);
duke@435 3700 _sp -= nargs;
duke@435 3701 assert(obj_size != NULL, "");
duke@435 3702 Node* raw_obj = alloc_obj->in(1);
duke@435 3703 assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
duke@435 3704 if (ReduceBulkZeroing) {
duke@435 3705 AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
duke@435 3706 if (alloc != NULL) {
duke@435 3707 // We will be completely responsible for initializing this object.
duke@435 3708 alloc->maybe_set_complete(&_gvn);
duke@435 3709 }
duke@435 3710 }
duke@435 3711
duke@435 3712 if (!use_ReduceInitialCardMarks()) {
duke@435 3713 // If it is an oop array, it requires very special treatment,
duke@435 3714 // because card marking is required on each card of the array.
duke@435 3715 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
duke@435 3716 if (is_obja != NULL) {
duke@435 3717 PreserveJVMState pjvms2(this);
duke@435 3718 set_control(is_obja);
duke@435 3719 // Generate a direct call to the right arraycopy function(s).
duke@435 3720 bool disjoint_bases = true;
duke@435 3721 bool length_never_negative = true;
duke@435 3722 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
duke@435 3723 obj, intcon(0), alloc_obj, intcon(0),
duke@435 3724 obj_length, nargs,
duke@435 3725 disjoint_bases, length_never_negative);
duke@435 3726 result_reg->init_req(_objArray_path, control());
duke@435 3727 result_val->init_req(_objArray_path, alloc_obj);
duke@435 3728 result_i_o ->set_req(_objArray_path, i_o());
duke@435 3729 result_mem ->set_req(_objArray_path, reset_memory());
duke@435 3730 }
duke@435 3731 }
duke@435 3732 // We can dispense with card marks if we know the allocation
duke@435 3733 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
duke@435 3734 // causes the non-eden paths to simulate a fresh allocation,
duke@435 3735 // insofar that no further card marks are required to initialize
duke@435 3736 // the object.
duke@435 3737
duke@435 3738 // Otherwise, there are no card marks to worry about.
duke@435 3739 alloc_val->init_req(_typeArray_alloc, raw_obj);
duke@435 3740 alloc_siz->init_req(_typeArray_alloc, obj_size);
duke@435 3741 alloc_reg->init_req(_typeArray_alloc, control());
duke@435 3742 alloc_i_o->init_req(_typeArray_alloc, i_o());
duke@435 3743 alloc_mem->init_req(_typeArray_alloc, memory(raw_adr_type));
duke@435 3744 }
duke@435 3745
duke@435 3746 // We only go to the fast case code if we pass a number of guards.
duke@435 3747 // The paths which do not pass are accumulated in the slow_region.
duke@435 3748 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 3749 record_for_igvn(slow_region);
duke@435 3750 if (!stopped()) {
duke@435 3751 // It's an instance. Make the slow-path tests.
duke@435 3752 // If this is a virtual call, we generate a funny guard. We grab
duke@435 3753 // the vtable entry corresponding to clone() from the target object.
duke@435 3754 // If the target method which we are calling happens to be the
duke@435 3755 // Object clone() method, we pass the guard. We do not need this
duke@435 3756 // guard for non-virtual calls; the caller is known to be the native
duke@435 3757 // Object clone().
duke@435 3758 if (is_virtual) {
duke@435 3759 generate_virtual_guard(obj_klass, slow_region);
duke@435 3760 }
duke@435 3761
duke@435 3762 // The object must be cloneable and must not have a finalizer.
duke@435 3763 // Both of these conditions may be checked in a single test.
duke@435 3764 // We could optimize the cloneable test further, but we don't care.
duke@435 3765 generate_access_flags_guard(obj_klass,
duke@435 3766 // Test both conditions:
duke@435 3767 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
duke@435 3768 // Must be cloneable but not finalizer:
duke@435 3769 JVM_ACC_IS_CLONEABLE,
duke@435 3770 slow_region);
duke@435 3771 }
duke@435 3772
duke@435 3773 if (!stopped()) {
duke@435 3774 // It's an instance, and it passed the slow-path tests.
duke@435 3775 PreserveJVMState pjvms(this);
duke@435 3776 Node* obj_size = NULL;
duke@435 3777 Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
duke@435 3778 assert(obj_size != NULL, "");
duke@435 3779 Node* raw_obj = alloc_obj->in(1);
duke@435 3780 assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
duke@435 3781 if (ReduceBulkZeroing) {
duke@435 3782 AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
duke@435 3783 if (alloc != NULL && !alloc->maybe_set_complete(&_gvn))
duke@435 3784 alloc = NULL;
duke@435 3785 }
duke@435 3786 if (!use_ReduceInitialCardMarks()) {
duke@435 3787 // Put in store barrier for any and all oops we are sticking
duke@435 3788 // into this object. (We could avoid this if we could prove
duke@435 3789 // that the object type contains no oop fields at all.)
duke@435 3790 card_mark = true;
duke@435 3791 }
duke@435 3792 alloc_val->init_req(_instance_alloc, raw_obj);
duke@435 3793 alloc_siz->init_req(_instance_alloc, obj_size);
duke@435 3794 alloc_reg->init_req(_instance_alloc, control());
duke@435 3795 alloc_i_o->init_req(_instance_alloc, i_o());
duke@435 3796 alloc_mem->init_req(_instance_alloc, memory(raw_adr_type));
duke@435 3797 }
duke@435 3798
duke@435 3799 // Generate code for the slow case. We make a call to clone().
duke@435 3800 set_control(_gvn.transform(slow_region));
duke@435 3801 if (!stopped()) {
duke@435 3802 PreserveJVMState pjvms(this);
duke@435 3803 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
duke@435 3804 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3805 // this->control() comes from set_results_for_java_call
duke@435 3806 result_reg->init_req(_slow_path, control());
duke@435 3807 result_val->init_req(_slow_path, slow_result);
duke@435 3808 result_i_o ->set_req(_slow_path, i_o());
duke@435 3809 result_mem ->set_req(_slow_path, reset_memory());
duke@435 3810 }
duke@435 3811
duke@435 3812 // The object is allocated, as an array and/or an instance. Now copy it.
duke@435 3813 set_control( _gvn.transform(alloc_reg) );
duke@435 3814 set_i_o( _gvn.transform(alloc_i_o) );
duke@435 3815 set_memory( _gvn.transform(alloc_mem), raw_adr_type );
duke@435 3816 Node* raw_obj = _gvn.transform(alloc_val);
duke@435 3817
duke@435 3818 if (!stopped()) {
duke@435 3819 // Copy the fastest available way.
duke@435 3820 // (No need for PreserveJVMState, since we're using it all up now.)
duke@435 3821 Node* src = obj;
duke@435 3822 Node* dest = raw_obj;
duke@435 3823 Node* end = dest;
duke@435 3824 Node* size = _gvn.transform(alloc_siz);
duke@435 3825
duke@435 3826 // Exclude the header.
duke@435 3827 int base_off = sizeof(oopDesc);
duke@435 3828 src = basic_plus_adr(src, base_off);
duke@435 3829 dest = basic_plus_adr(dest, base_off);
duke@435 3830 end = basic_plus_adr(end, size);
duke@435 3831
duke@435 3832 // Compute the length also, if needed:
duke@435 3833 Node* countx = size;
duke@435 3834 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
duke@435 3835 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
duke@435 3836
duke@435 3837 // Select an appropriate instruction to initialize the range.
duke@435 3838 // The CopyArray instruction (if supported) can be optimized
duke@435 3839 // into a discrete set of scalar loads and stores.
duke@435 3840 bool disjoint_bases = true;
duke@435 3841 generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
duke@435 3842 src, NULL, dest, NULL, countx);
duke@435 3843
duke@435 3844 // Now that the object is properly initialized, type it as an oop.
duke@435 3845 // Use a secondary InitializeNode memory barrier.
duke@435 3846 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, raw_adr_idx,
duke@435 3847 raw_obj)->as_Initialize();
duke@435 3848 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
duke@435 3849 Node* new_obj = new(C, 2) CheckCastPPNode(control(), raw_obj,
duke@435 3850 TypeInstPtr::NOTNULL);
duke@435 3851 new_obj = _gvn.transform(new_obj);
duke@435 3852
duke@435 3853 // If necessary, emit some card marks afterwards. (Non-arrays only.)
duke@435 3854 if (card_mark) {
duke@435 3855 Node* no_particular_value = NULL;
duke@435 3856 Node* no_particular_field = NULL;
duke@435 3857 post_barrier(control(),
duke@435 3858 memory(raw_adr_type),
duke@435 3859 new_obj,
duke@435 3860 no_particular_field,
duke@435 3861 raw_adr_idx,
duke@435 3862 no_particular_value,
duke@435 3863 T_OBJECT,
duke@435 3864 false);
duke@435 3865 }
duke@435 3866 // Present the results of the slow call.
duke@435 3867 result_reg->init_req(_fast_path, control());
duke@435 3868 result_val->init_req(_fast_path, new_obj);
duke@435 3869 result_i_o ->set_req(_fast_path, i_o());
duke@435 3870 result_mem ->set_req(_fast_path, reset_memory());
duke@435 3871 }
duke@435 3872
duke@435 3873 // Return the combined state.
duke@435 3874 set_control( _gvn.transform(result_reg) );
duke@435 3875 set_i_o( _gvn.transform(result_i_o) );
duke@435 3876 set_all_memory( _gvn.transform(result_mem) );
duke@435 3877
duke@435 3878 // Cast the result to a sharper type, since we know what clone does.
duke@435 3879 Node* new_obj = _gvn.transform(result_val);
duke@435 3880 Node* cast = new (C, 2) CheckCastPPNode(control(), new_obj, toop);
duke@435 3881 push(_gvn.transform(cast));
duke@435 3882
duke@435 3883 return true;
duke@435 3884 }
duke@435 3885
duke@435 3886
duke@435 3887 // constants for computing the copy function
duke@435 3888 enum {
duke@435 3889 COPYFUNC_UNALIGNED = 0,
duke@435 3890 COPYFUNC_ALIGNED = 1, // src, dest aligned to HeapWordSize
duke@435 3891 COPYFUNC_CONJOINT = 0,
duke@435 3892 COPYFUNC_DISJOINT = 2 // src != dest, or transfer can descend
duke@435 3893 };
duke@435 3894
duke@435 3895 // Note: The condition "disjoint" applies also for overlapping copies
duke@435 3896 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
duke@435 3897 static address
duke@435 3898 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
duke@435 3899 int selector =
duke@435 3900 (aligned ? COPYFUNC_ALIGNED : COPYFUNC_UNALIGNED) +
duke@435 3901 (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
duke@435 3902
duke@435 3903 #define RETURN_STUB(xxx_arraycopy) { \
duke@435 3904 name = #xxx_arraycopy; \
duke@435 3905 return StubRoutines::xxx_arraycopy(); }
duke@435 3906
duke@435 3907 switch (t) {
duke@435 3908 case T_BYTE:
duke@435 3909 case T_BOOLEAN:
duke@435 3910 switch (selector) {
duke@435 3911 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jbyte_arraycopy);
duke@435 3912 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jbyte_arraycopy);
duke@435 3913 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jbyte_disjoint_arraycopy);
duke@435 3914 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
duke@435 3915 }
duke@435 3916 case T_CHAR:
duke@435 3917 case T_SHORT:
duke@435 3918 switch (selector) {
duke@435 3919 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jshort_arraycopy);
duke@435 3920 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jshort_arraycopy);
duke@435 3921 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jshort_disjoint_arraycopy);
duke@435 3922 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
duke@435 3923 }
duke@435 3924 case T_INT:
duke@435 3925 case T_FLOAT:
duke@435 3926 switch (selector) {
duke@435 3927 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jint_arraycopy);
duke@435 3928 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jint_arraycopy);
duke@435 3929 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jint_disjoint_arraycopy);
duke@435 3930 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jint_disjoint_arraycopy);
duke@435 3931 }
duke@435 3932 case T_DOUBLE:
duke@435 3933 case T_LONG:
duke@435 3934 switch (selector) {
duke@435 3935 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jlong_arraycopy);
duke@435 3936 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jlong_arraycopy);
duke@435 3937 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jlong_disjoint_arraycopy);
duke@435 3938 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
duke@435 3939 }
duke@435 3940 case T_ARRAY:
duke@435 3941 case T_OBJECT:
duke@435 3942 switch (selector) {
duke@435 3943 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(oop_arraycopy);
duke@435 3944 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_oop_arraycopy);
duke@435 3945 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(oop_disjoint_arraycopy);
duke@435 3946 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_oop_disjoint_arraycopy);
duke@435 3947 }
duke@435 3948 default:
duke@435 3949 ShouldNotReachHere();
duke@435 3950 return NULL;
duke@435 3951 }
duke@435 3952
duke@435 3953 #undef RETURN_STUB
duke@435 3954 }
duke@435 3955
duke@435 3956 //------------------------------basictype2arraycopy----------------------------
duke@435 3957 address LibraryCallKit::basictype2arraycopy(BasicType t,
duke@435 3958 Node* src_offset,
duke@435 3959 Node* dest_offset,
duke@435 3960 bool disjoint_bases,
duke@435 3961 const char* &name) {
duke@435 3962 const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
duke@435 3963 const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
duke@435 3964
duke@435 3965 bool aligned = false;
duke@435 3966 bool disjoint = disjoint_bases;
duke@435 3967
duke@435 3968 // if the offsets are the same, we can treat the memory regions as
duke@435 3969 // disjoint, because either the memory regions are in different arrays,
duke@435 3970 // or they are identical (which we can treat as disjoint.) We can also
duke@435 3971 // treat a copy with a destination index less that the source index
duke@435 3972 // as disjoint since a low->high copy will work correctly in this case.
duke@435 3973 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
duke@435 3974 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
duke@435 3975 // both indices are constants
duke@435 3976 int s_offs = src_offset_inttype->get_con();
duke@435 3977 int d_offs = dest_offset_inttype->get_con();
duke@435 3978 int element_size = type2aelembytes[t];
duke@435 3979 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
duke@435 3980 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
duke@435 3981 if (s_offs >= d_offs) disjoint = true;
duke@435 3982 } else if (src_offset == dest_offset && src_offset != NULL) {
duke@435 3983 // This can occur if the offsets are identical non-constants.
duke@435 3984 disjoint = true;
duke@435 3985 }
duke@435 3986
duke@435 3987 return select_arraycopy_function(t, aligned, disjoint, name);
duke@435 3988 }
duke@435 3989
duke@435 3990
duke@435 3991 //------------------------------inline_arraycopy-----------------------
duke@435 3992 bool LibraryCallKit::inline_arraycopy() {
duke@435 3993 // Restore the stack and pop off the arguments.
duke@435 3994 int nargs = 5; // 2 oops, 3 ints, no size_t or long
duke@435 3995 assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
duke@435 3996
duke@435 3997 Node *src = argument(0);
duke@435 3998 Node *src_offset = argument(1);
duke@435 3999 Node *dest = argument(2);
duke@435 4000 Node *dest_offset = argument(3);
duke@435 4001 Node *length = argument(4);
duke@435 4002
duke@435 4003 // Compile time checks. If any of these checks cannot be verified at compile time,
duke@435 4004 // we do not make a fast path for this call. Instead, we let the call remain as it
duke@435 4005 // is. The checks we choose to mandate at compile time are:
duke@435 4006 //
duke@435 4007 // (1) src and dest are arrays.
duke@435 4008 const Type* src_type = src->Value(&_gvn);
duke@435 4009 const Type* dest_type = dest->Value(&_gvn);
duke@435 4010 const TypeAryPtr* top_src = src_type->isa_aryptr();
duke@435 4011 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
duke@435 4012 if (top_src == NULL || top_src->klass() == NULL ||
duke@435 4013 top_dest == NULL || top_dest->klass() == NULL) {
duke@435 4014 // Conservatively insert a memory barrier on all memory slices.
duke@435 4015 // Do not let writes into the source float below the arraycopy.
duke@435 4016 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4017
duke@435 4018 // Call StubRoutines::generic_arraycopy stub.
duke@435 4019 generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
duke@435 4020 src, src_offset, dest, dest_offset, length,
duke@435 4021 nargs);
duke@435 4022
duke@435 4023 // Do not let reads from the destination float above the arraycopy.
duke@435 4024 // Since we cannot type the arrays, we don't know which slices
duke@435 4025 // might be affected. We could restrict this barrier only to those
duke@435 4026 // memory slices which pertain to array elements--but don't bother.
duke@435 4027 if (!InsertMemBarAfterArraycopy)
duke@435 4028 // (If InsertMemBarAfterArraycopy, there is already one in place.)
duke@435 4029 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4030 return true;
duke@435 4031 }
duke@435 4032
duke@435 4033 // (2) src and dest arrays must have elements of the same BasicType
duke@435 4034 // Figure out the size and type of the elements we will be copying.
duke@435 4035 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4036 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4037 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
duke@435 4038 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
duke@435 4039
duke@435 4040 if (src_elem != dest_elem || dest_elem == T_VOID) {
duke@435 4041 // The component types are not the same or are not recognized. Punt.
duke@435 4042 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
duke@435 4043 generate_slow_arraycopy(TypePtr::BOTTOM,
duke@435 4044 src, src_offset, dest, dest_offset, length,
duke@435 4045 nargs);
duke@435 4046 return true;
duke@435 4047 }
duke@435 4048
duke@435 4049 //---------------------------------------------------------------------------
duke@435 4050 // We will make a fast path for this call to arraycopy.
duke@435 4051
duke@435 4052 // We have the following tests left to perform:
duke@435 4053 //
duke@435 4054 // (3) src and dest must not be null.
duke@435 4055 // (4) src_offset must not be negative.
duke@435 4056 // (5) dest_offset must not be negative.
duke@435 4057 // (6) length must not be negative.
duke@435 4058 // (7) src_offset + length must not exceed length of src.
duke@435 4059 // (8) dest_offset + length must not exceed length of dest.
duke@435 4060 // (9) each element of an oop array must be assignable
duke@435 4061
duke@435 4062 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 4063 record_for_igvn(slow_region);
duke@435 4064
duke@435 4065 // (3) operands must not be null
duke@435 4066 // We currently perform our null checks with the do_null_check routine.
duke@435 4067 // This means that the null exceptions will be reported in the caller
duke@435 4068 // rather than (correctly) reported inside of the native arraycopy call.
duke@435 4069 // This should be corrected, given time. We do our null check with the
duke@435 4070 // stack pointer restored.
duke@435 4071 _sp += nargs;
duke@435 4072 src = do_null_check(src, T_ARRAY);
duke@435 4073 dest = do_null_check(dest, T_ARRAY);
duke@435 4074 _sp -= nargs;
duke@435 4075
duke@435 4076 // (4) src_offset must not be negative.
duke@435 4077 generate_negative_guard(src_offset, slow_region);
duke@435 4078
duke@435 4079 // (5) dest_offset must not be negative.
duke@435 4080 generate_negative_guard(dest_offset, slow_region);
duke@435 4081
duke@435 4082 // (6) length must not be negative (moved to generate_arraycopy()).
duke@435 4083 // generate_negative_guard(length, slow_region);
duke@435 4084
duke@435 4085 // (7) src_offset + length must not exceed length of src.
duke@435 4086 generate_limit_guard(src_offset, length,
duke@435 4087 load_array_length(src),
duke@435 4088 slow_region);
duke@435 4089
duke@435 4090 // (8) dest_offset + length must not exceed length of dest.
duke@435 4091 generate_limit_guard(dest_offset, length,
duke@435 4092 load_array_length(dest),
duke@435 4093 slow_region);
duke@435 4094
duke@435 4095 // (9) each element of an oop array must be assignable
duke@435 4096 // The generate_arraycopy subroutine checks this.
duke@435 4097
duke@435 4098 // This is where the memory effects are placed:
duke@435 4099 const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
duke@435 4100 generate_arraycopy(adr_type, dest_elem,
duke@435 4101 src, src_offset, dest, dest_offset, length,
duke@435 4102 nargs, false, false, slow_region);
duke@435 4103
duke@435 4104 return true;
duke@435 4105 }
duke@435 4106
duke@435 4107 //-----------------------------generate_arraycopy----------------------
duke@435 4108 // Generate an optimized call to arraycopy.
duke@435 4109 // Caller must guard against non-arrays.
duke@435 4110 // Caller must determine a common array basic-type for both arrays.
duke@435 4111 // Caller must validate offsets against array bounds.
duke@435 4112 // The slow_region has already collected guard failure paths
duke@435 4113 // (such as out of bounds length or non-conformable array types).
duke@435 4114 // The generated code has this shape, in general:
duke@435 4115 //
duke@435 4116 // if (length == 0) return // via zero_path
duke@435 4117 // slowval = -1
duke@435 4118 // if (types unknown) {
duke@435 4119 // slowval = call generic copy loop
duke@435 4120 // if (slowval == 0) return // via checked_path
duke@435 4121 // } else if (indexes in bounds) {
duke@435 4122 // if ((is object array) && !(array type check)) {
duke@435 4123 // slowval = call checked copy loop
duke@435 4124 // if (slowval == 0) return // via checked_path
duke@435 4125 // } else {
duke@435 4126 // call bulk copy loop
duke@435 4127 // return // via fast_path
duke@435 4128 // }
duke@435 4129 // }
duke@435 4130 // // adjust params for remaining work:
duke@435 4131 // if (slowval != -1) {
duke@435 4132 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n
duke@435 4133 // }
duke@435 4134 // slow_region:
duke@435 4135 // call slow arraycopy(src, src_offset, dest, dest_offset, length)
duke@435 4136 // return // via slow_call_path
duke@435 4137 //
duke@435 4138 // This routine is used from several intrinsics: System.arraycopy,
duke@435 4139 // Object.clone (the array subcase), and Arrays.copyOf[Range].
duke@435 4140 //
duke@435 4141 void
duke@435 4142 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
duke@435 4143 BasicType basic_elem_type,
duke@435 4144 Node* src, Node* src_offset,
duke@435 4145 Node* dest, Node* dest_offset,
duke@435 4146 Node* copy_length,
duke@435 4147 int nargs,
duke@435 4148 bool disjoint_bases,
duke@435 4149 bool length_never_negative,
duke@435 4150 RegionNode* slow_region) {
duke@435 4151
duke@435 4152 if (slow_region == NULL) {
duke@435 4153 slow_region = new(C,1) RegionNode(1);
duke@435 4154 record_for_igvn(slow_region);
duke@435 4155 }
duke@435 4156
duke@435 4157 Node* original_dest = dest;
duke@435 4158 AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
duke@435 4159 Node* raw_dest = NULL; // used before zeroing, if needed
duke@435 4160 bool must_clear_dest = false;
duke@435 4161
duke@435 4162 // See if this is the initialization of a newly-allocated array.
duke@435 4163 // If so, we will take responsibility here for initializing it to zero.
duke@435 4164 // (Note: Because tightly_coupled_allocation performs checks on the
duke@435 4165 // out-edges of the dest, we need to avoid making derived pointers
duke@435 4166 // from it until we have checked its uses.)
duke@435 4167 if (ReduceBulkZeroing
duke@435 4168 && !ZeroTLAB // pointless if already zeroed
duke@435 4169 && basic_elem_type != T_CONFLICT // avoid corner case
duke@435 4170 && !_gvn.eqv_uncast(src, dest)
duke@435 4171 && ((alloc = tightly_coupled_allocation(dest, slow_region))
duke@435 4172 != NULL)
duke@435 4173 && alloc->maybe_set_complete(&_gvn)) {
duke@435 4174 // "You break it, you buy it."
duke@435 4175 InitializeNode* init = alloc->initialization();
duke@435 4176 assert(init->is_complete(), "we just did this");
duke@435 4177 assert(dest->Opcode() == Op_CheckCastPP, "sanity");
duke@435 4178 assert(dest->in(0)->in(0) == init, "dest pinned");
duke@435 4179 raw_dest = dest->in(1); // grab the raw pointer!
duke@435 4180 original_dest = dest;
duke@435 4181 dest = raw_dest;
duke@435 4182 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
duke@435 4183 // Decouple the original InitializeNode, turning it into a simple membar.
duke@435 4184 // We will build a new one at the end of this routine.
duke@435 4185 init->set_req(InitializeNode::RawAddress, top());
duke@435 4186 // From this point on, every exit path is responsible for
duke@435 4187 // initializing any non-copied parts of the object to zero.
duke@435 4188 must_clear_dest = true;
duke@435 4189 } else {
duke@435 4190 // No zeroing elimination here.
duke@435 4191 alloc = NULL;
duke@435 4192 //original_dest = dest;
duke@435 4193 //must_clear_dest = false;
duke@435 4194 }
duke@435 4195
duke@435 4196 // Results are placed here:
duke@435 4197 enum { fast_path = 1, // normal void-returning assembly stub
duke@435 4198 checked_path = 2, // special assembly stub with cleanup
duke@435 4199 slow_call_path = 3, // something went wrong; call the VM
duke@435 4200 zero_path = 4, // bypass when length of copy is zero
duke@435 4201 bcopy_path = 5, // copy primitive array by 64-bit blocks
duke@435 4202 PATH_LIMIT = 6
duke@435 4203 };
duke@435 4204 RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 4205 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
duke@435 4206 PhiNode* result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
duke@435 4207 record_for_igvn(result_region);
duke@435 4208 _gvn.set_type_bottom(result_i_o);
duke@435 4209 _gvn.set_type_bottom(result_memory);
duke@435 4210 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
duke@435 4211
duke@435 4212 // The slow_control path:
duke@435 4213 Node* slow_control;
duke@435 4214 Node* slow_i_o = i_o();
duke@435 4215 Node* slow_mem = memory(adr_type);
duke@435 4216 debug_only(slow_control = (Node*) badAddress);
duke@435 4217
duke@435 4218 // Checked control path:
duke@435 4219 Node* checked_control = top();
duke@435 4220 Node* checked_mem = NULL;
duke@435 4221 Node* checked_i_o = NULL;
duke@435 4222 Node* checked_value = NULL;
duke@435 4223
duke@435 4224 if (basic_elem_type == T_CONFLICT) {
duke@435 4225 assert(!must_clear_dest, "");
duke@435 4226 Node* cv = generate_generic_arraycopy(adr_type,
duke@435 4227 src, src_offset, dest, dest_offset,
duke@435 4228 copy_length, nargs);
duke@435 4229 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4230 checked_control = control();
duke@435 4231 checked_i_o = i_o();
duke@435 4232 checked_mem = memory(adr_type);
duke@435 4233 checked_value = cv;
duke@435 4234 set_control(top()); // no fast path
duke@435 4235 }
duke@435 4236
duke@435 4237 Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
duke@435 4238 if (not_pos != NULL) {
duke@435 4239 PreserveJVMState pjvms(this);
duke@435 4240 set_control(not_pos);
duke@435 4241
duke@435 4242 // (6) length must not be negative.
duke@435 4243 if (!length_never_negative) {
duke@435 4244 generate_negative_guard(copy_length, slow_region);
duke@435 4245 }
duke@435 4246
duke@435 4247 if (!stopped() && must_clear_dest) {
duke@435 4248 Node* dest_length = alloc->in(AllocateNode::ALength);
duke@435 4249 if (_gvn.eqv_uncast(copy_length, dest_length)
duke@435 4250 || _gvn.find_int_con(dest_length, 1) <= 0) {
duke@435 4251 // There is no zeroing to do.
duke@435 4252 } else {
duke@435 4253 // Clear the whole thing since there are no source elements to copy.
duke@435 4254 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4255 intcon(0), NULL,
duke@435 4256 alloc->in(AllocateNode::AllocSize));
duke@435 4257 }
duke@435 4258 }
duke@435 4259
duke@435 4260 // Present the results of the fast call.
duke@435 4261 result_region->init_req(zero_path, control());
duke@435 4262 result_i_o ->init_req(zero_path, i_o());
duke@435 4263 result_memory->init_req(zero_path, memory(adr_type));
duke@435 4264 }
duke@435 4265
duke@435 4266 if (!stopped() && must_clear_dest) {
duke@435 4267 // We have to initialize the *uncopied* part of the array to zero.
duke@435 4268 // The copy destination is the slice dest[off..off+len]. The other slices
duke@435 4269 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
duke@435 4270 Node* dest_size = alloc->in(AllocateNode::AllocSize);
duke@435 4271 Node* dest_length = alloc->in(AllocateNode::ALength);
duke@435 4272 Node* dest_tail = _gvn.transform( new(C,3) AddINode(dest_offset,
duke@435 4273 copy_length) );
duke@435 4274
duke@435 4275 // If there is a head section that needs zeroing, do it now.
duke@435 4276 if (find_int_con(dest_offset, -1) != 0) {
duke@435 4277 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4278 intcon(0), dest_offset,
duke@435 4279 NULL);
duke@435 4280 }
duke@435 4281
duke@435 4282 // Next, perform a dynamic check on the tail length.
duke@435 4283 // It is often zero, and we can win big if we prove this.
duke@435 4284 // There are two wins: Avoid generating the ClearArray
duke@435 4285 // with its attendant messy index arithmetic, and upgrade
duke@435 4286 // the copy to a more hardware-friendly word size of 64 bits.
duke@435 4287 Node* tail_ctl = NULL;
duke@435 4288 if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
duke@435 4289 Node* cmp_lt = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
duke@435 4290 Node* bol_lt = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 4291 tail_ctl = generate_slow_guard(bol_lt, NULL);
duke@435 4292 assert(tail_ctl != NULL || !stopped(), "must be an outcome");
duke@435 4293 }
duke@435 4294
duke@435 4295 // At this point, let's assume there is no tail.
duke@435 4296 if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
duke@435 4297 // There is no tail. Try an upgrade to a 64-bit copy.
duke@435 4298 bool didit = false;
duke@435 4299 { PreserveJVMState pjvms(this);
duke@435 4300 didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
duke@435 4301 src, src_offset, dest, dest_offset,
duke@435 4302 dest_size);
duke@435 4303 if (didit) {
duke@435 4304 // Present the results of the block-copying fast call.
duke@435 4305 result_region->init_req(bcopy_path, control());
duke@435 4306 result_i_o ->init_req(bcopy_path, i_o());
duke@435 4307 result_memory->init_req(bcopy_path, memory(adr_type));
duke@435 4308 }
duke@435 4309 }
duke@435 4310 if (didit)
duke@435 4311 set_control(top()); // no regular fast path
duke@435 4312 }
duke@435 4313
duke@435 4314 // Clear the tail, if any.
duke@435 4315 if (tail_ctl != NULL) {
duke@435 4316 Node* notail_ctl = stopped() ? NULL : control();
duke@435 4317 set_control(tail_ctl);
duke@435 4318 if (notail_ctl == NULL) {
duke@435 4319 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4320 dest_tail, NULL,
duke@435 4321 dest_size);
duke@435 4322 } else {
duke@435 4323 // Make a local merge.
duke@435 4324 Node* done_ctl = new(C,3) RegionNode(3);
duke@435 4325 Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
duke@435 4326 done_ctl->init_req(1, notail_ctl);
duke@435 4327 done_mem->init_req(1, memory(adr_type));
duke@435 4328 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4329 dest_tail, NULL,
duke@435 4330 dest_size);
duke@435 4331 done_ctl->init_req(2, control());
duke@435 4332 done_mem->init_req(2, memory(adr_type));
duke@435 4333 set_control( _gvn.transform(done_ctl) );
duke@435 4334 set_memory( _gvn.transform(done_mem), adr_type );
duke@435 4335 }
duke@435 4336 }
duke@435 4337 }
duke@435 4338
duke@435 4339 BasicType copy_type = basic_elem_type;
duke@435 4340 assert(basic_elem_type != T_ARRAY, "caller must fix this");
duke@435 4341 if (!stopped() && copy_type == T_OBJECT) {
duke@435 4342 // If src and dest have compatible element types, we can copy bits.
duke@435 4343 // Types S[] and D[] are compatible if D is a supertype of S.
duke@435 4344 //
duke@435 4345 // If they are not, we will use checked_oop_disjoint_arraycopy,
duke@435 4346 // which performs a fast optimistic per-oop check, and backs off
duke@435 4347 // further to JVM_ArrayCopy on the first per-oop check that fails.
duke@435 4348 // (Actually, we don't move raw bits only; the GC requires card marks.)
duke@435 4349
duke@435 4350 // Get the klassOop for both src and dest
duke@435 4351 Node* src_klass = load_object_klass(src);
duke@435 4352 Node* dest_klass = load_object_klass(dest);
duke@435 4353
duke@435 4354 // Generate the subtype check.
duke@435 4355 // This might fold up statically, or then again it might not.
duke@435 4356 //
duke@435 4357 // Non-static example: Copying List<String>.elements to a new String[].
duke@435 4358 // The backing store for a List<String> is always an Object[],
duke@435 4359 // but its elements are always type String, if the generic types
duke@435 4360 // are correct at the source level.
duke@435 4361 //
duke@435 4362 // Test S[] against D[], not S against D, because (probably)
duke@435 4363 // the secondary supertype cache is less busy for S[] than S.
duke@435 4364 // This usually only matters when D is an interface.
duke@435 4365 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
duke@435 4366 // Plug failing path into checked_oop_disjoint_arraycopy
duke@435 4367 if (not_subtype_ctrl != top()) {
duke@435 4368 PreserveJVMState pjvms(this);
duke@435 4369 set_control(not_subtype_ctrl);
duke@435 4370 // (At this point we can assume disjoint_bases, since types differ.)
duke@435 4371 int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
duke@435 4372 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
duke@435 4373 Node* n1 = new (C, 3) LoadKlassNode(0, immutable_memory(), p1, TypeRawPtr::BOTTOM);
duke@435 4374 Node* dest_elem_klass = _gvn.transform(n1);
duke@435 4375 Node* cv = generate_checkcast_arraycopy(adr_type,
duke@435 4376 dest_elem_klass,
duke@435 4377 src, src_offset, dest, dest_offset,
duke@435 4378 copy_length,
duke@435 4379 nargs);
duke@435 4380 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4381 checked_control = control();
duke@435 4382 checked_i_o = i_o();
duke@435 4383 checked_mem = memory(adr_type);
duke@435 4384 checked_value = cv;
duke@435 4385 }
duke@435 4386 // At this point we know we do not need type checks on oop stores.
duke@435 4387
duke@435 4388 // Let's see if we need card marks:
duke@435 4389 if (alloc != NULL && use_ReduceInitialCardMarks()) {
duke@435 4390 // If we do not need card marks, copy using the jint or jlong stub.
duke@435 4391 copy_type = LP64_ONLY(T_LONG) NOT_LP64(T_INT);
duke@435 4392 assert(type2aelembytes[basic_elem_type] == type2aelembytes[copy_type],
duke@435 4393 "sizes agree");
duke@435 4394 }
duke@435 4395 }
duke@435 4396
duke@435 4397 if (!stopped()) {
duke@435 4398 // Generate the fast path, if possible.
duke@435 4399 PreserveJVMState pjvms(this);
duke@435 4400 generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
duke@435 4401 src, src_offset, dest, dest_offset,
duke@435 4402 ConvI2X(copy_length));
duke@435 4403
duke@435 4404 // Present the results of the fast call.
duke@435 4405 result_region->init_req(fast_path, control());
duke@435 4406 result_i_o ->init_req(fast_path, i_o());
duke@435 4407 result_memory->init_req(fast_path, memory(adr_type));
duke@435 4408 }
duke@435 4409
duke@435 4410 // Here are all the slow paths up to this point, in one bundle:
duke@435 4411 slow_control = top();
duke@435 4412 if (slow_region != NULL)
duke@435 4413 slow_control = _gvn.transform(slow_region);
duke@435 4414 debug_only(slow_region = (RegionNode*)badAddress);
duke@435 4415
duke@435 4416 set_control(checked_control);
duke@435 4417 if (!stopped()) {
duke@435 4418 // Clean up after the checked call.
duke@435 4419 // The returned value is either 0 or -1^K,
duke@435 4420 // where K = number of partially transferred array elements.
duke@435 4421 Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
duke@435 4422 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
duke@435 4423 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
duke@435 4424
duke@435 4425 // If it is 0, we are done, so transfer to the end.
duke@435 4426 Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
duke@435 4427 result_region->init_req(checked_path, checks_done);
duke@435 4428 result_i_o ->init_req(checked_path, checked_i_o);
duke@435 4429 result_memory->init_req(checked_path, checked_mem);
duke@435 4430
duke@435 4431 // If it is not zero, merge into the slow call.
duke@435 4432 set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
duke@435 4433 RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
duke@435 4434 PhiNode* slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
duke@435 4435 PhiNode* slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
duke@435 4436 record_for_igvn(slow_reg2);
duke@435 4437 slow_reg2 ->init_req(1, slow_control);
duke@435 4438 slow_i_o2 ->init_req(1, slow_i_o);
duke@435 4439 slow_mem2 ->init_req(1, slow_mem);
duke@435 4440 slow_reg2 ->init_req(2, control());
duke@435 4441 slow_i_o2 ->init_req(2, i_o());
duke@435 4442 slow_mem2 ->init_req(2, memory(adr_type));
duke@435 4443
duke@435 4444 slow_control = _gvn.transform(slow_reg2);
duke@435 4445 slow_i_o = _gvn.transform(slow_i_o2);
duke@435 4446 slow_mem = _gvn.transform(slow_mem2);
duke@435 4447
duke@435 4448 if (alloc != NULL) {
duke@435 4449 // We'll restart from the very beginning, after zeroing the whole thing.
duke@435 4450 // This can cause double writes, but that's OK since dest is brand new.
duke@435 4451 // So we ignore the low 31 bits of the value returned from the stub.
duke@435 4452 } else {
duke@435 4453 // We must continue the copy exactly where it failed, or else
duke@435 4454 // another thread might see the wrong number of writes to dest.
duke@435 4455 Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
duke@435 4456 Node* slow_offset = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
duke@435 4457 slow_offset->init_req(1, intcon(0));
duke@435 4458 slow_offset->init_req(2, checked_offset);
duke@435 4459 slow_offset = _gvn.transform(slow_offset);
duke@435 4460
duke@435 4461 // Adjust the arguments by the conditionally incoming offset.
duke@435 4462 Node* src_off_plus = _gvn.transform( new(C, 3) AddINode(src_offset, slow_offset) );
duke@435 4463 Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
duke@435 4464 Node* length_minus = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
duke@435 4465
duke@435 4466 // Tweak the node variables to adjust the code produced below:
duke@435 4467 src_offset = src_off_plus;
duke@435 4468 dest_offset = dest_off_plus;
duke@435 4469 copy_length = length_minus;
duke@435 4470 }
duke@435 4471 }
duke@435 4472
duke@435 4473 set_control(slow_control);
duke@435 4474 if (!stopped()) {
duke@435 4475 // Generate the slow path, if needed.
duke@435 4476 PreserveJVMState pjvms(this); // replace_in_map may trash the map
duke@435 4477
duke@435 4478 set_memory(slow_mem, adr_type);
duke@435 4479 set_i_o(slow_i_o);
duke@435 4480
duke@435 4481 if (must_clear_dest) {
duke@435 4482 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4483 intcon(0), NULL,
duke@435 4484 alloc->in(AllocateNode::AllocSize));
duke@435 4485 }
duke@435 4486
duke@435 4487 if (dest != original_dest) {
duke@435 4488 // Promote from rawptr to oop, so it looks right in the call's GC map.
duke@435 4489 dest = _gvn.transform( new(C,2) CheckCastPPNode(control(), dest,
duke@435 4490 TypeInstPtr::NOTNULL) );
duke@435 4491
duke@435 4492 // Edit the call's debug-info to avoid referring to original_dest.
duke@435 4493 // (The problem with original_dest is that it isn't ready until
duke@435 4494 // after the InitializeNode completes, but this stuff is before.)
duke@435 4495 // Substitute in the locally valid dest_oop.
duke@435 4496 replace_in_map(original_dest, dest);
duke@435 4497 }
duke@435 4498
duke@435 4499 generate_slow_arraycopy(adr_type,
duke@435 4500 src, src_offset, dest, dest_offset,
duke@435 4501 copy_length, nargs);
duke@435 4502
duke@435 4503 result_region->init_req(slow_call_path, control());
duke@435 4504 result_i_o ->init_req(slow_call_path, i_o());
duke@435 4505 result_memory->init_req(slow_call_path, memory(adr_type));
duke@435 4506 }
duke@435 4507
duke@435 4508 // Remove unused edges.
duke@435 4509 for (uint i = 1; i < result_region->req(); i++) {
duke@435 4510 if (result_region->in(i) == NULL)
duke@435 4511 result_region->init_req(i, top());
duke@435 4512 }
duke@435 4513
duke@435 4514 // Finished; return the combined state.
duke@435 4515 set_control( _gvn.transform(result_region) );
duke@435 4516 set_i_o( _gvn.transform(result_i_o) );
duke@435 4517 set_memory( _gvn.transform(result_memory), adr_type );
duke@435 4518
duke@435 4519 if (dest != original_dest) {
duke@435 4520 // Pin the "finished" array node after the arraycopy/zeroing operations.
duke@435 4521 // Use a secondary InitializeNode memory barrier.
duke@435 4522 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
duke@435 4523 Compile::AliasIdxRaw,
duke@435 4524 raw_dest)->as_Initialize();
duke@435 4525 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
duke@435 4526 _gvn.hash_delete(original_dest);
duke@435 4527 original_dest->set_req(0, control());
duke@435 4528 _gvn.hash_find_insert(original_dest); // put back into GVN table
duke@435 4529 }
duke@435 4530
duke@435 4531 // The memory edges above are precise in order to model effects around
duke@435 4532 // array copyies accurately to allow value numbering of field loads around
duke@435 4533 // arraycopy. Such field loads, both before and after, are common in Java
duke@435 4534 // collections and similar classes involving header/array data structures.
duke@435 4535 //
duke@435 4536 // But with low number of register or when some registers are used or killed
duke@435 4537 // by arraycopy calls it causes registers spilling on stack. See 6544710.
duke@435 4538 // The next memory barrier is added to avoid it. If the arraycopy can be
duke@435 4539 // optimized away (which it can, sometimes) then we can manually remove
duke@435 4540 // the membar also.
duke@435 4541 if (InsertMemBarAfterArraycopy)
duke@435 4542 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4543 }
duke@435 4544
duke@435 4545
duke@435 4546 // Helper function which determines if an arraycopy immediately follows
duke@435 4547 // an allocation, with no intervening tests or other escapes for the object.
duke@435 4548 AllocateArrayNode*
duke@435 4549 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
duke@435 4550 RegionNode* slow_region) {
duke@435 4551 if (stopped()) return NULL; // no fast path
duke@435 4552 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
duke@435 4553
duke@435 4554 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
duke@435 4555 if (alloc == NULL) return NULL;
duke@435 4556
duke@435 4557 Node* rawmem = memory(Compile::AliasIdxRaw);
duke@435 4558 // Is the allocation's memory state untouched?
duke@435 4559 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
duke@435 4560 // Bail out if there have been raw-memory effects since the allocation.
duke@435 4561 // (Example: There might have been a call or safepoint.)
duke@435 4562 return NULL;
duke@435 4563 }
duke@435 4564 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
duke@435 4565 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
duke@435 4566 return NULL;
duke@435 4567 }
duke@435 4568
duke@435 4569 // There must be no unexpected observers of this allocation.
duke@435 4570 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
duke@435 4571 Node* obs = ptr->fast_out(i);
duke@435 4572 if (obs != this->map()) {
duke@435 4573 return NULL;
duke@435 4574 }
duke@435 4575 }
duke@435 4576
duke@435 4577 // This arraycopy must unconditionally follow the allocation of the ptr.
duke@435 4578 Node* alloc_ctl = ptr->in(0);
duke@435 4579 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
duke@435 4580
duke@435 4581 Node* ctl = control();
duke@435 4582 while (ctl != alloc_ctl) {
duke@435 4583 // There may be guards which feed into the slow_region.
duke@435 4584 // Any other control flow means that we might not get a chance
duke@435 4585 // to finish initializing the allocated object.
duke@435 4586 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
duke@435 4587 IfNode* iff = ctl->in(0)->as_If();
duke@435 4588 Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
duke@435 4589 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
duke@435 4590 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
duke@435 4591 ctl = iff->in(0); // This test feeds the known slow_region.
duke@435 4592 continue;
duke@435 4593 }
duke@435 4594 // One more try: Various low-level checks bottom out in
duke@435 4595 // uncommon traps. If the debug-info of the trap omits
duke@435 4596 // any reference to the allocation, as we've already
duke@435 4597 // observed, then there can be no objection to the trap.
duke@435 4598 bool found_trap = false;
duke@435 4599 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
duke@435 4600 Node* obs = not_ctl->fast_out(j);
duke@435 4601 if (obs->in(0) == not_ctl && obs->is_Call() &&
duke@435 4602 (obs->as_Call()->entry_point() ==
duke@435 4603 SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
duke@435 4604 found_trap = true; break;
duke@435 4605 }
duke@435 4606 }
duke@435 4607 if (found_trap) {
duke@435 4608 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
duke@435 4609 continue;
duke@435 4610 }
duke@435 4611 }
duke@435 4612 return NULL;
duke@435 4613 }
duke@435 4614
duke@435 4615 // If we get this far, we have an allocation which immediately
duke@435 4616 // precedes the arraycopy, and we can take over zeroing the new object.
duke@435 4617 // The arraycopy will finish the initialization, and provide
duke@435 4618 // a new control state to which we will anchor the destination pointer.
duke@435 4619
duke@435 4620 return alloc;
duke@435 4621 }
duke@435 4622
duke@435 4623 // Helper for initialization of arrays, creating a ClearArray.
duke@435 4624 // It writes zero bits in [start..end), within the body of an array object.
duke@435 4625 // The memory effects are all chained onto the 'adr_type' alias category.
duke@435 4626 //
duke@435 4627 // Since the object is otherwise uninitialized, we are free
duke@435 4628 // to put a little "slop" around the edges of the cleared area,
duke@435 4629 // as long as it does not go back into the array's header,
duke@435 4630 // or beyond the array end within the heap.
duke@435 4631 //
duke@435 4632 // The lower edge can be rounded down to the nearest jint and the
duke@435 4633 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
duke@435 4634 //
duke@435 4635 // Arguments:
duke@435 4636 // adr_type memory slice where writes are generated
duke@435 4637 // dest oop of the destination array
duke@435 4638 // basic_elem_type element type of the destination
duke@435 4639 // slice_idx array index of first element to store
duke@435 4640 // slice_len number of elements to store (or NULL)
duke@435 4641 // dest_size total size in bytes of the array object
duke@435 4642 //
duke@435 4643 // Exactly one of slice_len or dest_size must be non-NULL.
duke@435 4644 // If dest_size is non-NULL, zeroing extends to the end of the object.
duke@435 4645 // If slice_len is non-NULL, the slice_idx value must be a constant.
duke@435 4646 void
duke@435 4647 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
duke@435 4648 Node* dest,
duke@435 4649 BasicType basic_elem_type,
duke@435 4650 Node* slice_idx,
duke@435 4651 Node* slice_len,
duke@435 4652 Node* dest_size) {
duke@435 4653 // one or the other but not both of slice_len and dest_size:
duke@435 4654 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
duke@435 4655 if (slice_len == NULL) slice_len = top();
duke@435 4656 if (dest_size == NULL) dest_size = top();
duke@435 4657
duke@435 4658 // operate on this memory slice:
duke@435 4659 Node* mem = memory(adr_type); // memory slice to operate on
duke@435 4660
duke@435 4661 // scaling and rounding of indexes:
duke@435 4662 int scale = exact_log2(type2aelembytes[basic_elem_type]);
duke@435 4663 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 4664 int clear_low = (-1 << scale) & (BytesPerInt - 1);
duke@435 4665 int bump_bit = (-1 << scale) & BytesPerInt;
duke@435 4666
duke@435 4667 // determine constant starts and ends
duke@435 4668 const intptr_t BIG_NEG = -128;
duke@435 4669 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 4670 intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
duke@435 4671 intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
duke@435 4672 if (slice_len_con == 0) {
duke@435 4673 return; // nothing to do here
duke@435 4674 }
duke@435 4675 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
duke@435 4676 intptr_t end_con = find_intptr_t_con(dest_size, -1);
duke@435 4677 if (slice_idx_con >= 0 && slice_len_con >= 0) {
duke@435 4678 assert(end_con < 0, "not two cons");
duke@435 4679 end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
duke@435 4680 BytesPerLong);
duke@435 4681 }
duke@435 4682
duke@435 4683 if (start_con >= 0 && end_con >= 0) {
duke@435 4684 // Constant start and end. Simple.
duke@435 4685 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 4686 start_con, end_con, &_gvn);
duke@435 4687 } else if (start_con >= 0 && dest_size != top()) {
duke@435 4688 // Constant start, pre-rounded end after the tail of the array.
duke@435 4689 Node* end = dest_size;
duke@435 4690 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 4691 start_con, end, &_gvn);
duke@435 4692 } else if (start_con >= 0 && slice_len != top()) {
duke@435 4693 // Constant start, non-constant end. End needs rounding up.
duke@435 4694 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
duke@435 4695 intptr_t end_base = abase + (slice_idx_con << scale);
duke@435 4696 int end_round = (-1 << scale) & (BytesPerLong - 1);
duke@435 4697 Node* end = ConvI2X(slice_len);
duke@435 4698 if (scale != 0)
duke@435 4699 end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
duke@435 4700 end_base += end_round;
duke@435 4701 end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
duke@435 4702 end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
duke@435 4703 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 4704 start_con, end, &_gvn);
duke@435 4705 } else if (start_con < 0 && dest_size != top()) {
duke@435 4706 // Non-constant start, pre-rounded end after the tail of the array.
duke@435 4707 // This is almost certainly a "round-to-end" operation.
duke@435 4708 Node* start = slice_idx;
duke@435 4709 start = ConvI2X(start);
duke@435 4710 if (scale != 0)
duke@435 4711 start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
duke@435 4712 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
duke@435 4713 if ((bump_bit | clear_low) != 0) {
duke@435 4714 int to_clear = (bump_bit | clear_low);
duke@435 4715 // Align up mod 8, then store a jint zero unconditionally
duke@435 4716 // just before the mod-8 boundary.
duke@435 4717 // This would only fail if the first array element were immediately
duke@435 4718 // after the length field, and were also at an even offset mod 8.
duke@435 4719 assert(((abase + bump_bit) & ~to_clear) - BytesPerInt
duke@435 4720 >= arrayOopDesc::length_offset_in_bytes() + BytesPerInt,
duke@435 4721 "store must not trash length field");
duke@435 4722
duke@435 4723 // Bump 'start' up to (or past) the next jint boundary:
duke@435 4724 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
duke@435 4725 // Round bumped 'start' down to jlong boundary in body of array.
duke@435 4726 start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
duke@435 4727 // Store a zero to the immediately preceding jint:
duke@435 4728 Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-BytesPerInt)) );
duke@435 4729 Node* p1 = basic_plus_adr(dest, x1);
duke@435 4730 mem = StoreNode::make(C, control(), mem, p1, adr_type, intcon(0), T_INT);
duke@435 4731 mem = _gvn.transform(mem);
duke@435 4732 }
duke@435 4733
duke@435 4734 Node* end = dest_size; // pre-rounded
duke@435 4735 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 4736 start, end, &_gvn);
duke@435 4737 } else {
duke@435 4738 // Non-constant start, unrounded non-constant end.
duke@435 4739 // (Nobody zeroes a random midsection of an array using this routine.)
duke@435 4740 ShouldNotReachHere(); // fix caller
duke@435 4741 }
duke@435 4742
duke@435 4743 // Done.
duke@435 4744 set_memory(mem, adr_type);
duke@435 4745 }
duke@435 4746
duke@435 4747
duke@435 4748 bool
duke@435 4749 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
duke@435 4750 BasicType basic_elem_type,
duke@435 4751 AllocateNode* alloc,
duke@435 4752 Node* src, Node* src_offset,
duke@435 4753 Node* dest, Node* dest_offset,
duke@435 4754 Node* dest_size) {
duke@435 4755 // See if there is an advantage from block transfer.
duke@435 4756 int scale = exact_log2(type2aelembytes[basic_elem_type]);
duke@435 4757 if (scale >= LogBytesPerLong)
duke@435 4758 return false; // it is already a block transfer
duke@435 4759
duke@435 4760 // Look at the alignment of the starting offsets.
duke@435 4761 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 4762 const intptr_t BIG_NEG = -128;
duke@435 4763 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 4764
duke@435 4765 intptr_t src_off = abase + ((intptr_t) find_int_con(src_offset, -1) << scale);
duke@435 4766 intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
duke@435 4767 if (src_off < 0 || dest_off < 0)
duke@435 4768 // At present, we can only understand constants.
duke@435 4769 return false;
duke@435 4770
duke@435 4771 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
duke@435 4772 // Non-aligned; too bad.
duke@435 4773 // One more chance: Pick off an initial 32-bit word.
duke@435 4774 // This is a common case, since abase can be odd mod 8.
duke@435 4775 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
duke@435 4776 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
duke@435 4777 Node* sptr = basic_plus_adr(src, src_off);
duke@435 4778 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 4779 Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
duke@435 4780 store_to_memory(control(), dptr, sval, T_INT, adr_type);
duke@435 4781 src_off += BytesPerInt;
duke@435 4782 dest_off += BytesPerInt;
duke@435 4783 } else {
duke@435 4784 return false;
duke@435 4785 }
duke@435 4786 }
duke@435 4787 assert(src_off % BytesPerLong == 0, "");
duke@435 4788 assert(dest_off % BytesPerLong == 0, "");
duke@435 4789
duke@435 4790 // Do this copy by giant steps.
duke@435 4791 Node* sptr = basic_plus_adr(src, src_off);
duke@435 4792 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 4793 Node* countx = dest_size;
duke@435 4794 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
duke@435 4795 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
duke@435 4796
duke@435 4797 bool disjoint_bases = true; // since alloc != NULL
duke@435 4798 generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
duke@435 4799 sptr, NULL, dptr, NULL, countx);
duke@435 4800
duke@435 4801 return true;
duke@435 4802 }
duke@435 4803
duke@435 4804
duke@435 4805 // Helper function; generates code for the slow case.
duke@435 4806 // We make a call to a runtime method which emulates the native method,
duke@435 4807 // but without the native wrapper overhead.
duke@435 4808 void
duke@435 4809 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 4810 Node* src, Node* src_offset,
duke@435 4811 Node* dest, Node* dest_offset,
duke@435 4812 Node* copy_length,
duke@435 4813 int nargs) {
duke@435 4814 _sp += nargs; // any deopt will start just before call to enclosing method
duke@435 4815 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
duke@435 4816 OptoRuntime::slow_arraycopy_Type(),
duke@435 4817 OptoRuntime::slow_arraycopy_Java(),
duke@435 4818 "slow_arraycopy", adr_type,
duke@435 4819 src, src_offset, dest, dest_offset,
duke@435 4820 copy_length);
duke@435 4821 _sp -= nargs;
duke@435 4822
duke@435 4823 // Handle exceptions thrown by this fellow:
duke@435 4824 make_slow_call_ex(call, env()->Throwable_klass(), false);
duke@435 4825 }
duke@435 4826
duke@435 4827 // Helper function; generates code for cases requiring runtime checks.
duke@435 4828 Node*
duke@435 4829 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 4830 Node* dest_elem_klass,
duke@435 4831 Node* src, Node* src_offset,
duke@435 4832 Node* dest, Node* dest_offset,
duke@435 4833 Node* copy_length,
duke@435 4834 int nargs) {
duke@435 4835 if (stopped()) return NULL;
duke@435 4836
duke@435 4837 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
duke@435 4838 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 4839 return NULL;
duke@435 4840 }
duke@435 4841
duke@435 4842 // Pick out the parameters required to perform a store-check
duke@435 4843 // for the target array. This is an optimistic check. It will
duke@435 4844 // look in each non-null element's class, at the desired klass's
duke@435 4845 // super_check_offset, for the desired klass.
duke@435 4846 int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
duke@435 4847 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
duke@435 4848 Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
duke@435 4849 Node* check_offset = _gvn.transform(n3);
duke@435 4850 Node* check_value = dest_elem_klass;
duke@435 4851
duke@435 4852 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
duke@435 4853 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
duke@435 4854
duke@435 4855 // (We know the arrays are never conjoint, because their types differ.)
duke@435 4856 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 4857 OptoRuntime::checkcast_arraycopy_Type(),
duke@435 4858 copyfunc_addr, "checkcast_arraycopy", adr_type,
duke@435 4859 // five arguments, of which two are
duke@435 4860 // intptr_t (jlong in LP64)
duke@435 4861 src_start, dest_start,
duke@435 4862 copy_length XTOP,
duke@435 4863 check_offset XTOP,
duke@435 4864 check_value);
duke@435 4865
duke@435 4866 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 4867 }
duke@435 4868
duke@435 4869
duke@435 4870 // Helper function; generates code for cases requiring runtime checks.
duke@435 4871 Node*
duke@435 4872 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 4873 Node* src, Node* src_offset,
duke@435 4874 Node* dest, Node* dest_offset,
duke@435 4875 Node* copy_length,
duke@435 4876 int nargs) {
duke@435 4877 if (stopped()) return NULL;
duke@435 4878
duke@435 4879 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 4880 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 4881 return NULL;
duke@435 4882 }
duke@435 4883
duke@435 4884 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 4885 OptoRuntime::generic_arraycopy_Type(),
duke@435 4886 copyfunc_addr, "generic_arraycopy", adr_type,
duke@435 4887 src, src_offset, dest, dest_offset, copy_length);
duke@435 4888
duke@435 4889 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 4890 }
duke@435 4891
duke@435 4892 // Helper function; generates the fast out-of-line call to an arraycopy stub.
duke@435 4893 void
duke@435 4894 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 4895 BasicType basic_elem_type,
duke@435 4896 bool disjoint_bases,
duke@435 4897 Node* src, Node* src_offset,
duke@435 4898 Node* dest, Node* dest_offset,
duke@435 4899 Node* copy_length) {
duke@435 4900 if (stopped()) return; // nothing to do
duke@435 4901
duke@435 4902 Node* src_start = src;
duke@435 4903 Node* dest_start = dest;
duke@435 4904 if (src_offset != NULL || dest_offset != NULL) {
duke@435 4905 assert(src_offset != NULL && dest_offset != NULL, "");
duke@435 4906 src_start = array_element_address(src, src_offset, basic_elem_type);
duke@435 4907 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
duke@435 4908 }
duke@435 4909
duke@435 4910 // Figure out which arraycopy runtime method to call.
duke@435 4911 const char* copyfunc_name = "arraycopy";
duke@435 4912 address copyfunc_addr =
duke@435 4913 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
duke@435 4914 disjoint_bases, copyfunc_name);
duke@435 4915
duke@435 4916 // Call it. Note that the count_ix value is not scaled to a byte-size.
duke@435 4917 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 4918 OptoRuntime::fast_arraycopy_Type(),
duke@435 4919 copyfunc_addr, copyfunc_name, adr_type,
duke@435 4920 src_start, dest_start, copy_length XTOP);
duke@435 4921 }

mercurial