src/share/vm/opto/library_call.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2199
75588558f1bf
child 2602
41d4973cf100
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

duke@435 1 /*
trims@1907 2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "compiler/compileLog.hpp"
stefank@2314 29 #include "oops/objArrayKlass.hpp"
stefank@2314 30 #include "opto/addnode.hpp"
stefank@2314 31 #include "opto/callGenerator.hpp"
stefank@2314 32 #include "opto/cfgnode.hpp"
stefank@2314 33 #include "opto/idealKit.hpp"
stefank@2314 34 #include "opto/mulnode.hpp"
stefank@2314 35 #include "opto/parse.hpp"
stefank@2314 36 #include "opto/runtime.hpp"
stefank@2314 37 #include "opto/subnode.hpp"
stefank@2314 38 #include "prims/nativeLookup.hpp"
stefank@2314 39 #include "runtime/sharedRuntime.hpp"
duke@435 40
duke@435 41 class LibraryIntrinsic : public InlineCallGenerator {
duke@435 42 // Extend the set of intrinsics known to the runtime:
duke@435 43 public:
duke@435 44 private:
duke@435 45 bool _is_virtual;
duke@435 46 vmIntrinsics::ID _intrinsic_id;
duke@435 47
duke@435 48 public:
duke@435 49 LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
duke@435 50 : InlineCallGenerator(m),
duke@435 51 _is_virtual(is_virtual),
duke@435 52 _intrinsic_id(id)
duke@435 53 {
duke@435 54 }
duke@435 55 virtual bool is_intrinsic() const { return true; }
duke@435 56 virtual bool is_virtual() const { return _is_virtual; }
duke@435 57 virtual JVMState* generate(JVMState* jvms);
duke@435 58 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
duke@435 59 };
duke@435 60
duke@435 61
duke@435 62 // Local helper class for LibraryIntrinsic:
duke@435 63 class LibraryCallKit : public GraphKit {
duke@435 64 private:
duke@435 65 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
duke@435 66
duke@435 67 public:
duke@435 68 LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
duke@435 69 : GraphKit(caller),
duke@435 70 _intrinsic(intrinsic)
duke@435 71 {
duke@435 72 }
duke@435 73
duke@435 74 ciMethod* caller() const { return jvms()->method(); }
duke@435 75 int bci() const { return jvms()->bci(); }
duke@435 76 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
duke@435 77 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
duke@435 78 ciMethod* callee() const { return _intrinsic->method(); }
duke@435 79 ciSignature* signature() const { return callee()->signature(); }
duke@435 80 int arg_size() const { return callee()->arg_size(); }
duke@435 81
duke@435 82 bool try_to_inline();
duke@435 83
duke@435 84 // Helper functions to inline natives
duke@435 85 void push_result(RegionNode* region, PhiNode* value);
duke@435 86 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
duke@435 87 Node* generate_slow_guard(Node* test, RegionNode* region);
duke@435 88 Node* generate_fair_guard(Node* test, RegionNode* region);
duke@435 89 Node* generate_negative_guard(Node* index, RegionNode* region,
duke@435 90 // resulting CastII of index:
duke@435 91 Node* *pos_index = NULL);
duke@435 92 Node* generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 93 // resulting CastII of index:
duke@435 94 Node* *pos_index = NULL);
duke@435 95 Node* generate_limit_guard(Node* offset, Node* subseq_length,
duke@435 96 Node* array_length,
duke@435 97 RegionNode* region);
duke@435 98 Node* generate_current_thread(Node* &tls_output);
duke@435 99 address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
duke@435 100 bool disjoint_bases, const char* &name);
duke@435 101 Node* load_mirror_from_klass(Node* klass);
duke@435 102 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
duke@435 103 int nargs,
duke@435 104 RegionNode* region, int null_path,
duke@435 105 int offset);
duke@435 106 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
duke@435 107 RegionNode* region, int null_path) {
duke@435 108 int offset = java_lang_Class::klass_offset_in_bytes();
duke@435 109 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 110 region, null_path,
duke@435 111 offset);
duke@435 112 }
duke@435 113 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 114 int nargs,
duke@435 115 RegionNode* region, int null_path) {
duke@435 116 int offset = java_lang_Class::array_klass_offset_in_bytes();
duke@435 117 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 118 region, null_path,
duke@435 119 offset);
duke@435 120 }
duke@435 121 Node* generate_access_flags_guard(Node* kls,
duke@435 122 int modifier_mask, int modifier_bits,
duke@435 123 RegionNode* region);
duke@435 124 Node* generate_interface_guard(Node* kls, RegionNode* region);
duke@435 125 Node* generate_array_guard(Node* kls, RegionNode* region) {
duke@435 126 return generate_array_guard_common(kls, region, false, false);
duke@435 127 }
duke@435 128 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
duke@435 129 return generate_array_guard_common(kls, region, false, true);
duke@435 130 }
duke@435 131 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
duke@435 132 return generate_array_guard_common(kls, region, true, false);
duke@435 133 }
duke@435 134 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
duke@435 135 return generate_array_guard_common(kls, region, true, true);
duke@435 136 }
duke@435 137 Node* generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 138 bool obj_array, bool not_array);
duke@435 139 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
duke@435 140 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
duke@435 141 bool is_virtual = false, bool is_static = false);
duke@435 142 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
duke@435 143 return generate_method_call(method_id, false, true);
duke@435 144 }
duke@435 145 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
duke@435 146 return generate_method_call(method_id, true, false);
duke@435 147 }
duke@435 148
kvn@1421 149 Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
duke@435 150 bool inline_string_compareTo();
duke@435 151 bool inline_string_indexOf();
duke@435 152 Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
cfang@1116 153 bool inline_string_equals();
duke@435 154 Node* pop_math_arg();
duke@435 155 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 156 bool inline_math_native(vmIntrinsics::ID id);
duke@435 157 bool inline_trig(vmIntrinsics::ID id);
duke@435 158 bool inline_trans(vmIntrinsics::ID id);
duke@435 159 bool inline_abs(vmIntrinsics::ID id);
duke@435 160 bool inline_sqrt(vmIntrinsics::ID id);
duke@435 161 bool inline_pow(vmIntrinsics::ID id);
duke@435 162 bool inline_exp(vmIntrinsics::ID id);
duke@435 163 bool inline_min_max(vmIntrinsics::ID id);
duke@435 164 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
duke@435 165 // This returns Type::AnyPtr, RawPtr, or OopPtr.
duke@435 166 int classify_unsafe_addr(Node* &base, Node* &offset);
duke@435 167 Node* make_unsafe_address(Node* base, Node* offset);
duke@435 168 bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
duke@435 169 bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
duke@435 170 bool inline_unsafe_allocate();
duke@435 171 bool inline_unsafe_copyMemory();
duke@435 172 bool inline_native_currentThread();
duke@435 173 bool inline_native_time_funcs(bool isNano);
duke@435 174 bool inline_native_isInterrupted();
duke@435 175 bool inline_native_Class_query(vmIntrinsics::ID id);
duke@435 176 bool inline_native_subtype_check();
duke@435 177
duke@435 178 bool inline_native_newArray();
duke@435 179 bool inline_native_getLength();
duke@435 180 bool inline_array_copyOf(bool is_copyOfRange);
rasbold@604 181 bool inline_array_equals();
kvn@1268 182 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
duke@435 183 bool inline_native_clone(bool is_virtual);
duke@435 184 bool inline_native_Reflection_getCallerClass();
duke@435 185 bool inline_native_AtomicLong_get();
duke@435 186 bool inline_native_AtomicLong_attemptUpdate();
duke@435 187 bool is_method_invoke_or_aux_frame(JVMState* jvms);
duke@435 188 // Helper function for inlining native object hash method
duke@435 189 bool inline_native_hashcode(bool is_virtual, bool is_static);
duke@435 190 bool inline_native_getClass();
duke@435 191
duke@435 192 // Helper functions for inlining arraycopy
duke@435 193 bool inline_arraycopy();
duke@435 194 void generate_arraycopy(const TypePtr* adr_type,
duke@435 195 BasicType basic_elem_type,
duke@435 196 Node* src, Node* src_offset,
duke@435 197 Node* dest, Node* dest_offset,
duke@435 198 Node* copy_length,
duke@435 199 bool disjoint_bases = false,
duke@435 200 bool length_never_negative = false,
duke@435 201 RegionNode* slow_region = NULL);
duke@435 202 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
duke@435 203 RegionNode* slow_region);
duke@435 204 void generate_clear_array(const TypePtr* adr_type,
duke@435 205 Node* dest,
duke@435 206 BasicType basic_elem_type,
duke@435 207 Node* slice_off,
duke@435 208 Node* slice_len,
duke@435 209 Node* slice_end);
duke@435 210 bool generate_block_arraycopy(const TypePtr* adr_type,
duke@435 211 BasicType basic_elem_type,
duke@435 212 AllocateNode* alloc,
duke@435 213 Node* src, Node* src_offset,
duke@435 214 Node* dest, Node* dest_offset,
duke@435 215 Node* dest_size);
duke@435 216 void generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 217 Node* src, Node* src_offset,
duke@435 218 Node* dest, Node* dest_offset,
kvn@1268 219 Node* copy_length);
duke@435 220 Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 221 Node* dest_elem_klass,
duke@435 222 Node* src, Node* src_offset,
duke@435 223 Node* dest, Node* dest_offset,
kvn@1268 224 Node* copy_length);
duke@435 225 Node* generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 226 Node* src, Node* src_offset,
duke@435 227 Node* dest, Node* dest_offset,
kvn@1268 228 Node* copy_length);
duke@435 229 void generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 230 BasicType basic_elem_type,
duke@435 231 bool disjoint_bases,
duke@435 232 Node* src, Node* src_offset,
duke@435 233 Node* dest, Node* dest_offset,
duke@435 234 Node* copy_length);
duke@435 235 bool inline_unsafe_CAS(BasicType type);
duke@435 236 bool inline_unsafe_ordered_store(BasicType type);
duke@435 237 bool inline_fp_conversions(vmIntrinsics::ID id);
twisti@1210 238 bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
twisti@1210 239 bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
twisti@1078 240 bool inline_bitCount(vmIntrinsics::ID id);
duke@435 241 bool inline_reverseBytes(vmIntrinsics::ID id);
duke@435 242 };
duke@435 243
duke@435 244
duke@435 245 //---------------------------make_vm_intrinsic----------------------------
duke@435 246 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 247 vmIntrinsics::ID id = m->intrinsic_id();
duke@435 248 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
duke@435 249
duke@435 250 if (DisableIntrinsic[0] != '\0'
duke@435 251 && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
duke@435 252 // disabled by a user request on the command line:
duke@435 253 // example: -XX:DisableIntrinsic=_hashCode,_getClass
duke@435 254 return NULL;
duke@435 255 }
duke@435 256
duke@435 257 if (!m->is_loaded()) {
duke@435 258 // do not attempt to inline unloaded methods
duke@435 259 return NULL;
duke@435 260 }
duke@435 261
duke@435 262 // Only a few intrinsics implement a virtual dispatch.
duke@435 263 // They are expensive calls which are also frequently overridden.
duke@435 264 if (is_virtual) {
duke@435 265 switch (id) {
duke@435 266 case vmIntrinsics::_hashCode:
duke@435 267 case vmIntrinsics::_clone:
duke@435 268 // OK, Object.hashCode and Object.clone intrinsics come in both flavors
duke@435 269 break;
duke@435 270 default:
duke@435 271 return NULL;
duke@435 272 }
duke@435 273 }
duke@435 274
duke@435 275 // -XX:-InlineNatives disables nearly all intrinsics:
duke@435 276 if (!InlineNatives) {
duke@435 277 switch (id) {
duke@435 278 case vmIntrinsics::_indexOf:
duke@435 279 case vmIntrinsics::_compareTo:
cfang@1116 280 case vmIntrinsics::_equals:
rasbold@604 281 case vmIntrinsics::_equalsC:
duke@435 282 break; // InlineNatives does not control String.compareTo
duke@435 283 default:
duke@435 284 return NULL;
duke@435 285 }
duke@435 286 }
duke@435 287
duke@435 288 switch (id) {
duke@435 289 case vmIntrinsics::_compareTo:
duke@435 290 if (!SpecialStringCompareTo) return NULL;
duke@435 291 break;
duke@435 292 case vmIntrinsics::_indexOf:
duke@435 293 if (!SpecialStringIndexOf) return NULL;
duke@435 294 break;
cfang@1116 295 case vmIntrinsics::_equals:
cfang@1116 296 if (!SpecialStringEquals) return NULL;
cfang@1116 297 break;
rasbold@604 298 case vmIntrinsics::_equalsC:
rasbold@604 299 if (!SpecialArraysEquals) return NULL;
rasbold@604 300 break;
duke@435 301 case vmIntrinsics::_arraycopy:
duke@435 302 if (!InlineArrayCopy) return NULL;
duke@435 303 break;
duke@435 304 case vmIntrinsics::_copyMemory:
duke@435 305 if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
duke@435 306 if (!InlineArrayCopy) return NULL;
duke@435 307 break;
duke@435 308 case vmIntrinsics::_hashCode:
duke@435 309 if (!InlineObjectHash) return NULL;
duke@435 310 break;
duke@435 311 case vmIntrinsics::_clone:
duke@435 312 case vmIntrinsics::_copyOf:
duke@435 313 case vmIntrinsics::_copyOfRange:
duke@435 314 if (!InlineObjectCopy) return NULL;
duke@435 315 // These also use the arraycopy intrinsic mechanism:
duke@435 316 if (!InlineArrayCopy) return NULL;
duke@435 317 break;
duke@435 318 case vmIntrinsics::_checkIndex:
duke@435 319 // We do not intrinsify this. The optimizer does fine with it.
duke@435 320 return NULL;
duke@435 321
duke@435 322 case vmIntrinsics::_get_AtomicLong:
duke@435 323 case vmIntrinsics::_attemptUpdate:
duke@435 324 if (!InlineAtomicLong) return NULL;
duke@435 325 break;
duke@435 326
duke@435 327 case vmIntrinsics::_getCallerClass:
duke@435 328 if (!UseNewReflection) return NULL;
duke@435 329 if (!InlineReflectionGetCallerClass) return NULL;
duke@435 330 if (!JDK_Version::is_gte_jdk14x_version()) return NULL;
duke@435 331 break;
duke@435 332
twisti@1078 333 case vmIntrinsics::_bitCount_i:
twisti@1078 334 case vmIntrinsics::_bitCount_l:
twisti@1078 335 if (!UsePopCountInstruction) return NULL;
twisti@1078 336 break;
twisti@1078 337
duke@435 338 default:
jrose@1291 339 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
jrose@1291 340 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
duke@435 341 break;
duke@435 342 }
duke@435 343
duke@435 344 // -XX:-InlineClassNatives disables natives from the Class class.
duke@435 345 // The flag applies to all reflective calls, notably Array.newArray
duke@435 346 // (visible to Java programmers as Array.newInstance).
duke@435 347 if (m->holder()->name() == ciSymbol::java_lang_Class() ||
duke@435 348 m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
duke@435 349 if (!InlineClassNatives) return NULL;
duke@435 350 }
duke@435 351
duke@435 352 // -XX:-InlineThreadNatives disables natives from the Thread class.
duke@435 353 if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
duke@435 354 if (!InlineThreadNatives) return NULL;
duke@435 355 }
duke@435 356
duke@435 357 // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
duke@435 358 if (m->holder()->name() == ciSymbol::java_lang_Math() ||
duke@435 359 m->holder()->name() == ciSymbol::java_lang_Float() ||
duke@435 360 m->holder()->name() == ciSymbol::java_lang_Double()) {
duke@435 361 if (!InlineMathNatives) return NULL;
duke@435 362 }
duke@435 363
duke@435 364 // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
duke@435 365 if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
duke@435 366 if (!InlineUnsafeOps) return NULL;
duke@435 367 }
duke@435 368
duke@435 369 return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
duke@435 370 }
duke@435 371
duke@435 372 //----------------------register_library_intrinsics-----------------------
duke@435 373 // Initialize this file's data structures, for each Compile instance.
duke@435 374 void Compile::register_library_intrinsics() {
duke@435 375 // Nothing to do here.
duke@435 376 }
duke@435 377
duke@435 378 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
duke@435 379 LibraryCallKit kit(jvms, this);
duke@435 380 Compile* C = kit.C;
duke@435 381 int nodes = C->unique();
duke@435 382 #ifndef PRODUCT
duke@435 383 if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
duke@435 384 char buf[1000];
duke@435 385 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
duke@435 386 tty->print_cr("Intrinsic %s", str);
duke@435 387 }
duke@435 388 #endif
duke@435 389 if (kit.try_to_inline()) {
duke@435 390 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
duke@435 391 tty->print("Inlining intrinsic %s%s at bci:%d in",
duke@435 392 vmIntrinsics::name_at(intrinsic_id()),
duke@435 393 (is_virtual() ? " (virtual)" : ""), kit.bci());
duke@435 394 kit.caller()->print_short_name(tty);
duke@435 395 tty->print_cr(" (%d bytes)", kit.caller()->code_size());
duke@435 396 }
duke@435 397 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
duke@435 398 if (C->log()) {
duke@435 399 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
duke@435 400 vmIntrinsics::name_at(intrinsic_id()),
duke@435 401 (is_virtual() ? " virtual='1'" : ""),
duke@435 402 C->unique() - nodes);
duke@435 403 }
duke@435 404 return kit.transfer_exceptions_into_jvms();
duke@435 405 }
duke@435 406
duke@435 407 if (PrintIntrinsics) {
jrose@1291 408 tty->print("Did not inline intrinsic %s%s at bci:%d in",
jrose@1291 409 vmIntrinsics::name_at(intrinsic_id()),
jrose@1291 410 (is_virtual() ? " (virtual)" : ""), kit.bci());
jrose@1291 411 kit.caller()->print_short_name(tty);
jrose@1291 412 tty->print_cr(" (%d bytes)", kit.caller()->code_size());
duke@435 413 }
duke@435 414 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
duke@435 415 return NULL;
duke@435 416 }
duke@435 417
duke@435 418 bool LibraryCallKit::try_to_inline() {
duke@435 419 // Handle symbolic names for otherwise undistinguished boolean switches:
duke@435 420 const bool is_store = true;
duke@435 421 const bool is_native_ptr = true;
duke@435 422 const bool is_static = true;
duke@435 423
duke@435 424 switch (intrinsic_id()) {
duke@435 425 case vmIntrinsics::_hashCode:
duke@435 426 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
duke@435 427 case vmIntrinsics::_identityHashCode:
duke@435 428 return inline_native_hashcode(/*!virtual*/ false, is_static);
duke@435 429 case vmIntrinsics::_getClass:
duke@435 430 return inline_native_getClass();
duke@435 431
duke@435 432 case vmIntrinsics::_dsin:
duke@435 433 case vmIntrinsics::_dcos:
duke@435 434 case vmIntrinsics::_dtan:
duke@435 435 case vmIntrinsics::_dabs:
duke@435 436 case vmIntrinsics::_datan2:
duke@435 437 case vmIntrinsics::_dsqrt:
duke@435 438 case vmIntrinsics::_dexp:
duke@435 439 case vmIntrinsics::_dlog:
duke@435 440 case vmIntrinsics::_dlog10:
duke@435 441 case vmIntrinsics::_dpow:
duke@435 442 return inline_math_native(intrinsic_id());
duke@435 443
duke@435 444 case vmIntrinsics::_min:
duke@435 445 case vmIntrinsics::_max:
duke@435 446 return inline_min_max(intrinsic_id());
duke@435 447
duke@435 448 case vmIntrinsics::_arraycopy:
duke@435 449 return inline_arraycopy();
duke@435 450
duke@435 451 case vmIntrinsics::_compareTo:
duke@435 452 return inline_string_compareTo();
duke@435 453 case vmIntrinsics::_indexOf:
duke@435 454 return inline_string_indexOf();
cfang@1116 455 case vmIntrinsics::_equals:
cfang@1116 456 return inline_string_equals();
duke@435 457
duke@435 458 case vmIntrinsics::_getObject:
duke@435 459 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
duke@435 460 case vmIntrinsics::_getBoolean:
duke@435 461 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
duke@435 462 case vmIntrinsics::_getByte:
duke@435 463 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
duke@435 464 case vmIntrinsics::_getShort:
duke@435 465 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
duke@435 466 case vmIntrinsics::_getChar:
duke@435 467 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
duke@435 468 case vmIntrinsics::_getInt:
duke@435 469 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
duke@435 470 case vmIntrinsics::_getLong:
duke@435 471 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
duke@435 472 case vmIntrinsics::_getFloat:
duke@435 473 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
duke@435 474 case vmIntrinsics::_getDouble:
duke@435 475 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 476
duke@435 477 case vmIntrinsics::_putObject:
duke@435 478 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
duke@435 479 case vmIntrinsics::_putBoolean:
duke@435 480 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
duke@435 481 case vmIntrinsics::_putByte:
duke@435 482 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
duke@435 483 case vmIntrinsics::_putShort:
duke@435 484 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
duke@435 485 case vmIntrinsics::_putChar:
duke@435 486 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
duke@435 487 case vmIntrinsics::_putInt:
duke@435 488 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
duke@435 489 case vmIntrinsics::_putLong:
duke@435 490 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
duke@435 491 case vmIntrinsics::_putFloat:
duke@435 492 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
duke@435 493 case vmIntrinsics::_putDouble:
duke@435 494 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
duke@435 495
duke@435 496 case vmIntrinsics::_getByte_raw:
duke@435 497 return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
duke@435 498 case vmIntrinsics::_getShort_raw:
duke@435 499 return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
duke@435 500 case vmIntrinsics::_getChar_raw:
duke@435 501 return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
duke@435 502 case vmIntrinsics::_getInt_raw:
duke@435 503 return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
duke@435 504 case vmIntrinsics::_getLong_raw:
duke@435 505 return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
duke@435 506 case vmIntrinsics::_getFloat_raw:
duke@435 507 return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
duke@435 508 case vmIntrinsics::_getDouble_raw:
duke@435 509 return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 510 case vmIntrinsics::_getAddress_raw:
duke@435 511 return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
duke@435 512
duke@435 513 case vmIntrinsics::_putByte_raw:
duke@435 514 return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
duke@435 515 case vmIntrinsics::_putShort_raw:
duke@435 516 return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
duke@435 517 case vmIntrinsics::_putChar_raw:
duke@435 518 return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
duke@435 519 case vmIntrinsics::_putInt_raw:
duke@435 520 return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
duke@435 521 case vmIntrinsics::_putLong_raw:
duke@435 522 return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
duke@435 523 case vmIntrinsics::_putFloat_raw:
duke@435 524 return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
duke@435 525 case vmIntrinsics::_putDouble_raw:
duke@435 526 return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
duke@435 527 case vmIntrinsics::_putAddress_raw:
duke@435 528 return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
duke@435 529
duke@435 530 case vmIntrinsics::_getObjectVolatile:
duke@435 531 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
duke@435 532 case vmIntrinsics::_getBooleanVolatile:
duke@435 533 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
duke@435 534 case vmIntrinsics::_getByteVolatile:
duke@435 535 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
duke@435 536 case vmIntrinsics::_getShortVolatile:
duke@435 537 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
duke@435 538 case vmIntrinsics::_getCharVolatile:
duke@435 539 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
duke@435 540 case vmIntrinsics::_getIntVolatile:
duke@435 541 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
duke@435 542 case vmIntrinsics::_getLongVolatile:
duke@435 543 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
duke@435 544 case vmIntrinsics::_getFloatVolatile:
duke@435 545 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
duke@435 546 case vmIntrinsics::_getDoubleVolatile:
duke@435 547 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
duke@435 548
duke@435 549 case vmIntrinsics::_putObjectVolatile:
duke@435 550 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
duke@435 551 case vmIntrinsics::_putBooleanVolatile:
duke@435 552 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
duke@435 553 case vmIntrinsics::_putByteVolatile:
duke@435 554 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
duke@435 555 case vmIntrinsics::_putShortVolatile:
duke@435 556 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
duke@435 557 case vmIntrinsics::_putCharVolatile:
duke@435 558 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
duke@435 559 case vmIntrinsics::_putIntVolatile:
duke@435 560 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
duke@435 561 case vmIntrinsics::_putLongVolatile:
duke@435 562 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
duke@435 563 case vmIntrinsics::_putFloatVolatile:
duke@435 564 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
duke@435 565 case vmIntrinsics::_putDoubleVolatile:
duke@435 566 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
duke@435 567
duke@435 568 case vmIntrinsics::_prefetchRead:
duke@435 569 return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
duke@435 570 case vmIntrinsics::_prefetchWrite:
duke@435 571 return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
duke@435 572 case vmIntrinsics::_prefetchReadStatic:
duke@435 573 return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
duke@435 574 case vmIntrinsics::_prefetchWriteStatic:
duke@435 575 return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
duke@435 576
duke@435 577 case vmIntrinsics::_compareAndSwapObject:
duke@435 578 return inline_unsafe_CAS(T_OBJECT);
duke@435 579 case vmIntrinsics::_compareAndSwapInt:
duke@435 580 return inline_unsafe_CAS(T_INT);
duke@435 581 case vmIntrinsics::_compareAndSwapLong:
duke@435 582 return inline_unsafe_CAS(T_LONG);
duke@435 583
duke@435 584 case vmIntrinsics::_putOrderedObject:
duke@435 585 return inline_unsafe_ordered_store(T_OBJECT);
duke@435 586 case vmIntrinsics::_putOrderedInt:
duke@435 587 return inline_unsafe_ordered_store(T_INT);
duke@435 588 case vmIntrinsics::_putOrderedLong:
duke@435 589 return inline_unsafe_ordered_store(T_LONG);
duke@435 590
duke@435 591 case vmIntrinsics::_currentThread:
duke@435 592 return inline_native_currentThread();
duke@435 593 case vmIntrinsics::_isInterrupted:
duke@435 594 return inline_native_isInterrupted();
duke@435 595
duke@435 596 case vmIntrinsics::_currentTimeMillis:
duke@435 597 return inline_native_time_funcs(false);
duke@435 598 case vmIntrinsics::_nanoTime:
duke@435 599 return inline_native_time_funcs(true);
duke@435 600 case vmIntrinsics::_allocateInstance:
duke@435 601 return inline_unsafe_allocate();
duke@435 602 case vmIntrinsics::_copyMemory:
duke@435 603 return inline_unsafe_copyMemory();
duke@435 604 case vmIntrinsics::_newArray:
duke@435 605 return inline_native_newArray();
duke@435 606 case vmIntrinsics::_getLength:
duke@435 607 return inline_native_getLength();
duke@435 608 case vmIntrinsics::_copyOf:
duke@435 609 return inline_array_copyOf(false);
duke@435 610 case vmIntrinsics::_copyOfRange:
duke@435 611 return inline_array_copyOf(true);
rasbold@604 612 case vmIntrinsics::_equalsC:
rasbold@604 613 return inline_array_equals();
duke@435 614 case vmIntrinsics::_clone:
duke@435 615 return inline_native_clone(intrinsic()->is_virtual());
duke@435 616
duke@435 617 case vmIntrinsics::_isAssignableFrom:
duke@435 618 return inline_native_subtype_check();
duke@435 619
duke@435 620 case vmIntrinsics::_isInstance:
duke@435 621 case vmIntrinsics::_getModifiers:
duke@435 622 case vmIntrinsics::_isInterface:
duke@435 623 case vmIntrinsics::_isArray:
duke@435 624 case vmIntrinsics::_isPrimitive:
duke@435 625 case vmIntrinsics::_getSuperclass:
duke@435 626 case vmIntrinsics::_getComponentType:
duke@435 627 case vmIntrinsics::_getClassAccessFlags:
duke@435 628 return inline_native_Class_query(intrinsic_id());
duke@435 629
duke@435 630 case vmIntrinsics::_floatToRawIntBits:
duke@435 631 case vmIntrinsics::_floatToIntBits:
duke@435 632 case vmIntrinsics::_intBitsToFloat:
duke@435 633 case vmIntrinsics::_doubleToRawLongBits:
duke@435 634 case vmIntrinsics::_doubleToLongBits:
duke@435 635 case vmIntrinsics::_longBitsToDouble:
duke@435 636 return inline_fp_conversions(intrinsic_id());
duke@435 637
twisti@1210 638 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 639 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 640 return inline_numberOfLeadingZeros(intrinsic_id());
twisti@1210 641
twisti@1210 642 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 643 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 644 return inline_numberOfTrailingZeros(intrinsic_id());
twisti@1210 645
twisti@1078 646 case vmIntrinsics::_bitCount_i:
twisti@1078 647 case vmIntrinsics::_bitCount_l:
twisti@1078 648 return inline_bitCount(intrinsic_id());
twisti@1078 649
duke@435 650 case vmIntrinsics::_reverseBytes_i:
duke@435 651 case vmIntrinsics::_reverseBytes_l:
never@1831 652 case vmIntrinsics::_reverseBytes_s:
never@1831 653 case vmIntrinsics::_reverseBytes_c:
duke@435 654 return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
duke@435 655
duke@435 656 case vmIntrinsics::_get_AtomicLong:
duke@435 657 return inline_native_AtomicLong_get();
duke@435 658 case vmIntrinsics::_attemptUpdate:
duke@435 659 return inline_native_AtomicLong_attemptUpdate();
duke@435 660
duke@435 661 case vmIntrinsics::_getCallerClass:
duke@435 662 return inline_native_Reflection_getCallerClass();
duke@435 663
duke@435 664 default:
duke@435 665 // If you get here, it may be that someone has added a new intrinsic
duke@435 666 // to the list in vmSymbols.hpp without implementing it here.
duke@435 667 #ifndef PRODUCT
duke@435 668 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
duke@435 669 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
duke@435 670 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
duke@435 671 }
duke@435 672 #endif
duke@435 673 return false;
duke@435 674 }
duke@435 675 }
duke@435 676
duke@435 677 //------------------------------push_result------------------------------
duke@435 678 // Helper function for finishing intrinsics.
duke@435 679 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
duke@435 680 record_for_igvn(region);
duke@435 681 set_control(_gvn.transform(region));
duke@435 682 BasicType value_type = value->type()->basic_type();
duke@435 683 push_node(value_type, _gvn.transform(value));
duke@435 684 }
duke@435 685
duke@435 686 //------------------------------generate_guard---------------------------
duke@435 687 // Helper function for generating guarded fast-slow graph structures.
duke@435 688 // The given 'test', if true, guards a slow path. If the test fails
duke@435 689 // then a fast path can be taken. (We generally hope it fails.)
duke@435 690 // In all cases, GraphKit::control() is updated to the fast path.
duke@435 691 // The returned value represents the control for the slow path.
duke@435 692 // The return value is never 'top'; it is either a valid control
duke@435 693 // or NULL if it is obvious that the slow path can never be taken.
duke@435 694 // Also, if region and the slow control are not NULL, the slow edge
duke@435 695 // is appended to the region.
duke@435 696 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
duke@435 697 if (stopped()) {
duke@435 698 // Already short circuited.
duke@435 699 return NULL;
duke@435 700 }
duke@435 701
duke@435 702 // Build an if node and its projections.
duke@435 703 // If test is true we take the slow path, which we assume is uncommon.
duke@435 704 if (_gvn.type(test) == TypeInt::ZERO) {
duke@435 705 // The slow branch is never taken. No need to build this guard.
duke@435 706 return NULL;
duke@435 707 }
duke@435 708
duke@435 709 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
duke@435 710
duke@435 711 Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
duke@435 712 if (if_slow == top()) {
duke@435 713 // The slow branch is never taken. No need to build this guard.
duke@435 714 return NULL;
duke@435 715 }
duke@435 716
duke@435 717 if (region != NULL)
duke@435 718 region->add_req(if_slow);
duke@435 719
duke@435 720 Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
duke@435 721 set_control(if_fast);
duke@435 722
duke@435 723 return if_slow;
duke@435 724 }
duke@435 725
duke@435 726 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
duke@435 727 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
duke@435 728 }
duke@435 729 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
duke@435 730 return generate_guard(test, region, PROB_FAIR);
duke@435 731 }
duke@435 732
duke@435 733 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
duke@435 734 Node* *pos_index) {
duke@435 735 if (stopped())
duke@435 736 return NULL; // already stopped
duke@435 737 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
duke@435 738 return NULL; // index is already adequately typed
duke@435 739 Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 740 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 741 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
duke@435 742 if (is_neg != NULL && pos_index != NULL) {
duke@435 743 // Emulate effect of Parse::adjust_map_after_if.
duke@435 744 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
duke@435 745 ccast->set_req(0, control());
duke@435 746 (*pos_index) = _gvn.transform(ccast);
duke@435 747 }
duke@435 748 return is_neg;
duke@435 749 }
duke@435 750
duke@435 751 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 752 Node* *pos_index) {
duke@435 753 if (stopped())
duke@435 754 return NULL; // already stopped
duke@435 755 if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
duke@435 756 return NULL; // index is already adequately typed
duke@435 757 Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 758 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
duke@435 759 Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
duke@435 760 Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
duke@435 761 if (is_notp != NULL && pos_index != NULL) {
duke@435 762 // Emulate effect of Parse::adjust_map_after_if.
duke@435 763 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
duke@435 764 ccast->set_req(0, control());
duke@435 765 (*pos_index) = _gvn.transform(ccast);
duke@435 766 }
duke@435 767 return is_notp;
duke@435 768 }
duke@435 769
duke@435 770 // Make sure that 'position' is a valid limit index, in [0..length].
duke@435 771 // There are two equivalent plans for checking this:
duke@435 772 // A. (offset + copyLength) unsigned<= arrayLength
duke@435 773 // B. offset <= (arrayLength - copyLength)
duke@435 774 // We require that all of the values above, except for the sum and
duke@435 775 // difference, are already known to be non-negative.
duke@435 776 // Plan A is robust in the face of overflow, if offset and copyLength
duke@435 777 // are both hugely positive.
duke@435 778 //
duke@435 779 // Plan B is less direct and intuitive, but it does not overflow at
duke@435 780 // all, since the difference of two non-negatives is always
duke@435 781 // representable. Whenever Java methods must perform the equivalent
duke@435 782 // check they generally use Plan B instead of Plan A.
duke@435 783 // For the moment we use Plan A.
duke@435 784 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
duke@435 785 Node* subseq_length,
duke@435 786 Node* array_length,
duke@435 787 RegionNode* region) {
duke@435 788 if (stopped())
duke@435 789 return NULL; // already stopped
duke@435 790 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
duke@435 791 if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
duke@435 792 return NULL; // common case of whole-array copy
duke@435 793 Node* last = subseq_length;
duke@435 794 if (!zero_offset) // last += offset
duke@435 795 last = _gvn.transform( new (C, 3) AddINode(last, offset));
duke@435 796 Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
duke@435 797 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 798 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
duke@435 799 return is_over;
duke@435 800 }
duke@435 801
duke@435 802
duke@435 803 //--------------------------generate_current_thread--------------------
duke@435 804 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
duke@435 805 ciKlass* thread_klass = env()->Thread_klass();
duke@435 806 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
duke@435 807 Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
duke@435 808 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
duke@435 809 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
duke@435 810 tls_output = thread;
duke@435 811 return threadObj;
duke@435 812 }
duke@435 813
duke@435 814
kvn@1421 815 //------------------------------make_string_method_node------------------------
kvn@1421 816 // Helper method for String intrinsic finctions.
kvn@1421 817 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
kvn@1421 818 const int value_offset = java_lang_String::value_offset_in_bytes();
kvn@1421 819 const int count_offset = java_lang_String::count_offset_in_bytes();
kvn@1421 820 const int offset_offset = java_lang_String::offset_offset_in_bytes();
kvn@1421 821
kvn@1421 822 Node* no_ctrl = NULL;
kvn@1421 823
kvn@1421 824 ciInstanceKlass* klass = env()->String_klass();
never@1851 825 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
kvn@1421 826
kvn@1421 827 const TypeAryPtr* value_type =
kvn@1421 828 TypeAryPtr::make(TypePtr::NotNull,
kvn@1421 829 TypeAry::make(TypeInt::CHAR,TypeInt::POS),
kvn@1421 830 ciTypeArrayKlass::make(T_CHAR), true, 0);
kvn@1421 831
kvn@1421 832 // Get start addr of string and substring
kvn@1421 833 Node* str1_valuea = basic_plus_adr(str1, str1, value_offset);
kvn@1421 834 Node* str1_value = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
kvn@1421 835 Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
kvn@1421 836 Node* str1_offset = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
kvn@1421 837 Node* str1_start = array_element_address(str1_value, str1_offset, T_CHAR);
kvn@1421 838
kvn@1421 839 // Pin loads from String::equals() argument since it could be NULL.
kvn@1421 840 Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
kvn@1421 841 Node* str2_valuea = basic_plus_adr(str2, str2, value_offset);
kvn@1421 842 Node* str2_value = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
kvn@1421 843 Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
kvn@1421 844 Node* str2_offset = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
kvn@1421 845 Node* str2_start = array_element_address(str2_value, str2_offset, T_CHAR);
kvn@1421 846
kvn@1421 847 Node* result = NULL;
kvn@1421 848 switch (opcode) {
kvn@1421 849 case Op_StrIndexOf:
kvn@1421 850 result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 851 str1_start, cnt1, str2_start, cnt2);
kvn@1421 852 break;
kvn@1421 853 case Op_StrComp:
kvn@1421 854 result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 855 str1_start, cnt1, str2_start, cnt2);
kvn@1421 856 break;
kvn@1421 857 case Op_StrEquals:
kvn@1421 858 result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 859 str1_start, str2_start, cnt1);
kvn@1421 860 break;
kvn@1421 861 default:
kvn@1421 862 ShouldNotReachHere();
kvn@1421 863 return NULL;
kvn@1421 864 }
kvn@1421 865
kvn@1421 866 // All these intrinsics have checks.
kvn@1421 867 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@1421 868
kvn@1421 869 return _gvn.transform(result);
kvn@1421 870 }
kvn@1421 871
duke@435 872 //------------------------------inline_string_compareTo------------------------
duke@435 873 bool LibraryCallKit::inline_string_compareTo() {
duke@435 874
cfang@1116 875 if (!Matcher::has_match_rule(Op_StrComp)) return false;
cfang@1116 876
duke@435 877 const int value_offset = java_lang_String::value_offset_in_bytes();
duke@435 878 const int count_offset = java_lang_String::count_offset_in_bytes();
duke@435 879 const int offset_offset = java_lang_String::offset_offset_in_bytes();
duke@435 880
duke@435 881 _sp += 2;
duke@435 882 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 883 Node *receiver = pop();
duke@435 884
duke@435 885 // Null check on self without removing any arguments. The argument
duke@435 886 // null check technically happens in the wrong place, which can lead to
duke@435 887 // invalid stack traces when string compare is inlined into a method
duke@435 888 // which handles NullPointerExceptions.
duke@435 889 _sp += 2;
duke@435 890 receiver = do_null_check(receiver, T_OBJECT);
duke@435 891 argument = do_null_check(argument, T_OBJECT);
duke@435 892 _sp -= 2;
duke@435 893 if (stopped()) {
duke@435 894 return true;
duke@435 895 }
duke@435 896
duke@435 897 ciInstanceKlass* klass = env()->String_klass();
never@1851 898 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
kvn@1421 899 Node* no_ctrl = NULL;
kvn@1421 900
kvn@1421 901 // Get counts for string and argument
kvn@1421 902 Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
kvn@1421 903 Node* receiver_cnt = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 904
kvn@1421 905 Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
kvn@1421 906 Node* argument_cnt = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 907
kvn@1421 908 Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
duke@435 909 push(compare);
duke@435 910 return true;
duke@435 911 }
duke@435 912
cfang@1116 913 //------------------------------inline_string_equals------------------------
cfang@1116 914 bool LibraryCallKit::inline_string_equals() {
cfang@1116 915
cfang@1116 916 if (!Matcher::has_match_rule(Op_StrEquals)) return false;
cfang@1116 917
cfang@1116 918 const int value_offset = java_lang_String::value_offset_in_bytes();
cfang@1116 919 const int count_offset = java_lang_String::count_offset_in_bytes();
cfang@1116 920 const int offset_offset = java_lang_String::offset_offset_in_bytes();
cfang@1116 921
jrose@2101 922 int nargs = 2;
jrose@2101 923 _sp += nargs;
cfang@1116 924 Node* argument = pop(); // pop non-receiver first: it was pushed second
cfang@1116 925 Node* receiver = pop();
cfang@1116 926
cfang@1116 927 // Null check on self without removing any arguments. The argument
cfang@1116 928 // null check technically happens in the wrong place, which can lead to
cfang@1116 929 // invalid stack traces when string compare is inlined into a method
cfang@1116 930 // which handles NullPointerExceptions.
jrose@2101 931 _sp += nargs;
cfang@1116 932 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 933 //should not do null check for argument for String.equals(), because spec
cfang@1116 934 //allows to specify NULL as argument.
jrose@2101 935 _sp -= nargs;
cfang@1116 936
cfang@1116 937 if (stopped()) {
cfang@1116 938 return true;
cfang@1116 939 }
cfang@1116 940
kvn@1421 941 // paths (plus control) merge
kvn@1421 942 RegionNode* region = new (C, 5) RegionNode(5);
kvn@1421 943 Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
kvn@1421 944
kvn@1421 945 // does source == target string?
kvn@1421 946 Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
kvn@1421 947 Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
kvn@1421 948
kvn@1421 949 Node* if_eq = generate_slow_guard(bol, NULL);
kvn@1421 950 if (if_eq != NULL) {
kvn@1421 951 // receiver == argument
kvn@1421 952 phi->init_req(2, intcon(1));
kvn@1421 953 region->init_req(2, if_eq);
kvn@1421 954 }
kvn@1421 955
cfang@1116 956 // get String klass for instanceOf
cfang@1116 957 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 958
kvn@1421 959 if (!stopped()) {
jrose@2101 960 _sp += nargs; // gen_instanceof might do an uncommon trap
kvn@1421 961 Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
jrose@2101 962 _sp -= nargs;
kvn@1421 963 Node* cmp = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
kvn@1421 964 Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
kvn@1421 965
kvn@1421 966 Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
kvn@1421 967 //instanceOf == true, fallthrough
kvn@1421 968
kvn@1421 969 if (inst_false != NULL) {
kvn@1421 970 phi->init_req(3, intcon(0));
kvn@1421 971 region->init_req(3, inst_false);
kvn@1421 972 }
kvn@1421 973 }
cfang@1116 974
never@1851 975 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
cfang@1116 976
kvn@1421 977 Node* no_ctrl = NULL;
kvn@1421 978 Node* receiver_cnt;
kvn@1421 979 Node* argument_cnt;
kvn@1421 980
kvn@1421 981 if (!stopped()) {
never@1851 982 // Properly cast the argument to String
never@1851 983 argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
never@1851 984
kvn@1421 985 // Get counts for string and argument
kvn@1421 986 Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
kvn@1421 987 receiver_cnt = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 988
kvn@1421 989 // Pin load from argument string since it could be NULL.
kvn@1421 990 Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
kvn@1421 991 argument_cnt = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 992
kvn@1421 993 // Check for receiver count != argument count
kvn@1421 994 Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
kvn@1421 995 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
kvn@1421 996 Node* if_ne = generate_slow_guard(bol, NULL);
kvn@1421 997 if (if_ne != NULL) {
kvn@1421 998 phi->init_req(4, intcon(0));
kvn@1421 999 region->init_req(4, if_ne);
kvn@1421 1000 }
kvn@1421 1001 }
kvn@1421 1002
kvn@1421 1003 // Check for count == 0 is done by mach node StrEquals.
kvn@1421 1004
kvn@1421 1005 if (!stopped()) {
kvn@1421 1006 Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
kvn@1421 1007 phi->init_req(1, equals);
kvn@1421 1008 region->init_req(1, control());
kvn@1421 1009 }
cfang@1116 1010
cfang@1116 1011 // post merge
cfang@1116 1012 set_control(_gvn.transform(region));
cfang@1116 1013 record_for_igvn(region);
cfang@1116 1014
cfang@1116 1015 push(_gvn.transform(phi));
cfang@1116 1016
cfang@1116 1017 return true;
cfang@1116 1018 }
cfang@1116 1019
rasbold@604 1020 //------------------------------inline_array_equals----------------------------
rasbold@604 1021 bool LibraryCallKit::inline_array_equals() {
rasbold@604 1022
rasbold@609 1023 if (!Matcher::has_match_rule(Op_AryEq)) return false;
rasbold@609 1024
rasbold@604 1025 _sp += 2;
rasbold@604 1026 Node *argument2 = pop();
rasbold@604 1027 Node *argument1 = pop();
rasbold@604 1028
rasbold@604 1029 Node* equals =
kvn@1421 1030 _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 1031 argument1, argument2) );
rasbold@604 1032 push(equals);
rasbold@604 1033 return true;
rasbold@604 1034 }
rasbold@604 1035
duke@435 1036 // Java version of String.indexOf(constant string)
duke@435 1037 // class StringDecl {
duke@435 1038 // StringDecl(char[] ca) {
duke@435 1039 // offset = 0;
duke@435 1040 // count = ca.length;
duke@435 1041 // value = ca;
duke@435 1042 // }
duke@435 1043 // int offset;
duke@435 1044 // int count;
duke@435 1045 // char[] value;
duke@435 1046 // }
duke@435 1047 //
duke@435 1048 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
duke@435 1049 // int targetOffset, int cache_i, int md2) {
duke@435 1050 // int cache = cache_i;
duke@435 1051 // int sourceOffset = string_object.offset;
duke@435 1052 // int sourceCount = string_object.count;
duke@435 1053 // int targetCount = target_object.length;
duke@435 1054 //
duke@435 1055 // int targetCountLess1 = targetCount - 1;
duke@435 1056 // int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
duke@435 1057 //
duke@435 1058 // char[] source = string_object.value;
duke@435 1059 // char[] target = target_object;
duke@435 1060 // int lastChar = target[targetCountLess1];
duke@435 1061 //
duke@435 1062 // outer_loop:
duke@435 1063 // for (int i = sourceOffset; i < sourceEnd; ) {
duke@435 1064 // int src = source[i + targetCountLess1];
duke@435 1065 // if (src == lastChar) {
duke@435 1066 // // With random strings and a 4-character alphabet,
duke@435 1067 // // reverse matching at this point sets up 0.8% fewer
duke@435 1068 // // frames, but (paradoxically) makes 0.3% more probes.
duke@435 1069 // // Since those probes are nearer the lastChar probe,
duke@435 1070 // // there is may be a net D$ win with reverse matching.
duke@435 1071 // // But, reversing loop inhibits unroll of inner loop
duke@435 1072 // // for unknown reason. So, does running outer loop from
duke@435 1073 // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
duke@435 1074 // for (int j = 0; j < targetCountLess1; j++) {
duke@435 1075 // if (target[targetOffset + j] != source[i+j]) {
duke@435 1076 // if ((cache & (1 << source[i+j])) == 0) {
duke@435 1077 // if (md2 < j+1) {
duke@435 1078 // i += j+1;
duke@435 1079 // continue outer_loop;
duke@435 1080 // }
duke@435 1081 // }
duke@435 1082 // i += md2;
duke@435 1083 // continue outer_loop;
duke@435 1084 // }
duke@435 1085 // }
duke@435 1086 // return i - sourceOffset;
duke@435 1087 // }
duke@435 1088 // if ((cache & (1 << src)) == 0) {
duke@435 1089 // i += targetCountLess1;
duke@435 1090 // } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
duke@435 1091 // i++;
duke@435 1092 // }
duke@435 1093 // return -1;
duke@435 1094 // }
duke@435 1095
duke@435 1096 //------------------------------string_indexOf------------------------
duke@435 1097 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
duke@435 1098 jint cache_i, jint md2_i) {
duke@435 1099
duke@435 1100 Node* no_ctrl = NULL;
duke@435 1101 float likely = PROB_LIKELY(0.9);
duke@435 1102 float unlikely = PROB_UNLIKELY(0.9);
duke@435 1103
duke@435 1104 const int value_offset = java_lang_String::value_offset_in_bytes();
duke@435 1105 const int count_offset = java_lang_String::count_offset_in_bytes();
duke@435 1106 const int offset_offset = java_lang_String::offset_offset_in_bytes();
duke@435 1107
duke@435 1108 ciInstanceKlass* klass = env()->String_klass();
never@1851 1109 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
duke@435 1110 const TypeAryPtr* source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
duke@435 1111
duke@435 1112 Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
duke@435 1113 Node* sourceOffset = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
duke@435 1114 Node* sourceCounta = basic_plus_adr(string_object, string_object, count_offset);
duke@435 1115 Node* sourceCount = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
duke@435 1116 Node* sourcea = basic_plus_adr(string_object, string_object, value_offset);
duke@435 1117 Node* source = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
duke@435 1118
kvn@599 1119 Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
duke@435 1120 jint target_length = target_array->length();
duke@435 1121 const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
duke@435 1122 const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
duke@435 1123
kvn@1286 1124 IdealKit kit(gvn(), control(), merged_memory(), false, true);
duke@435 1125 #define __ kit.
duke@435 1126 Node* zero = __ ConI(0);
duke@435 1127 Node* one = __ ConI(1);
duke@435 1128 Node* cache = __ ConI(cache_i);
duke@435 1129 Node* md2 = __ ConI(md2_i);
duke@435 1130 Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
duke@435 1131 Node* targetCount = __ ConI(target_length);
duke@435 1132 Node* targetCountLess1 = __ ConI(target_length - 1);
duke@435 1133 Node* targetOffset = __ ConI(targetOffset_i);
duke@435 1134 Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
duke@435 1135
kvn@1286 1136 IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
duke@435 1137 Node* outer_loop = __ make_label(2 /* goto */);
duke@435 1138 Node* return_ = __ make_label(1);
duke@435 1139
duke@435 1140 __ set(rtn,__ ConI(-1));
duke@435 1141 __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
duke@435 1142 Node* i2 = __ AddI(__ value(i), targetCountLess1);
duke@435 1143 // pin to prohibit loading of "next iteration" value which may SEGV (rare)
duke@435 1144 Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
duke@435 1145 __ if_then(src, BoolTest::eq, lastChar, unlikely); {
duke@435 1146 __ loop(j, zero, BoolTest::lt, targetCountLess1); {
duke@435 1147 Node* tpj = __ AddI(targetOffset, __ value(j));
duke@435 1148 Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
duke@435 1149 Node* ipj = __ AddI(__ value(i), __ value(j));
duke@435 1150 Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
duke@435 1151 __ if_then(targ, BoolTest::ne, src2); {
duke@435 1152 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
duke@435 1153 __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
duke@435 1154 __ increment(i, __ AddI(__ value(j), one));
duke@435 1155 __ goto_(outer_loop);
duke@435 1156 } __ end_if(); __ dead(j);
duke@435 1157 }__ end_if(); __ dead(j);
duke@435 1158 __ increment(i, md2);
duke@435 1159 __ goto_(outer_loop);
duke@435 1160 }__ end_if();
duke@435 1161 __ increment(j, one);
duke@435 1162 }__ end_loop(); __ dead(j);
duke@435 1163 __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
duke@435 1164 __ goto_(return_);
duke@435 1165 }__ end_if();
duke@435 1166 __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
duke@435 1167 __ increment(i, targetCountLess1);
duke@435 1168 }__ end_if();
duke@435 1169 __ increment(i, one);
duke@435 1170 __ bind(outer_loop);
duke@435 1171 }__ end_loop(); __ dead(i);
duke@435 1172 __ bind(return_);
kvn@1286 1173
kvn@1286 1174 // Final sync IdealKit and GraphKit.
kvn@1286 1175 sync_kit(kit);
duke@435 1176 Node* result = __ value(rtn);
duke@435 1177 #undef __
duke@435 1178 C->set_has_loops(true);
duke@435 1179 return result;
duke@435 1180 }
duke@435 1181
duke@435 1182 //------------------------------inline_string_indexOf------------------------
duke@435 1183 bool LibraryCallKit::inline_string_indexOf() {
duke@435 1184
cfang@1116 1185 const int value_offset = java_lang_String::value_offset_in_bytes();
cfang@1116 1186 const int count_offset = java_lang_String::count_offset_in_bytes();
cfang@1116 1187 const int offset_offset = java_lang_String::offset_offset_in_bytes();
cfang@1116 1188
duke@435 1189 _sp += 2;
duke@435 1190 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 1191 Node *receiver = pop();
duke@435 1192
cfang@1116 1193 Node* result;
iveresov@1859 1194 // Disable the use of pcmpestri until it can be guaranteed that
iveresov@1859 1195 // the load doesn't cross into the uncommited space.
iveresov@1859 1196 if (false && Matcher::has_match_rule(Op_StrIndexOf) &&
cfang@1116 1197 UseSSE42Intrinsics) {
cfang@1116 1198 // Generate SSE4.2 version of indexOf
cfang@1116 1199 // We currently only have match rules that use SSE4.2
cfang@1116 1200
cfang@1116 1201 // Null check on self without removing any arguments. The argument
cfang@1116 1202 // null check technically happens in the wrong place, which can lead to
cfang@1116 1203 // invalid stack traces when string compare is inlined into a method
cfang@1116 1204 // which handles NullPointerExceptions.
cfang@1116 1205 _sp += 2;
cfang@1116 1206 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1207 argument = do_null_check(argument, T_OBJECT);
cfang@1116 1208 _sp -= 2;
cfang@1116 1209
cfang@1116 1210 if (stopped()) {
cfang@1116 1211 return true;
cfang@1116 1212 }
cfang@1116 1213
kvn@1421 1214 // Make the merge point
kvn@1421 1215 RegionNode* result_rgn = new (C, 3) RegionNode(3);
kvn@1421 1216 Node* result_phi = new (C, 3) PhiNode(result_rgn, TypeInt::INT);
kvn@1421 1217 Node* no_ctrl = NULL;
kvn@1421 1218
cfang@1116 1219 ciInstanceKlass* klass = env()->String_klass();
never@1851 1220 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
cfang@1116 1221
kvn@1421 1222 // Get counts for string and substr
kvn@1421 1223 Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
kvn@1421 1224 Node* source_cnt = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 1225
kvn@1421 1226 Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
kvn@1421 1227 Node* substr_cnt = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
kvn@1421 1228
kvn@1421 1229 // Check for substr count > string count
kvn@1421 1230 Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
kvn@1421 1231 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
kvn@1421 1232 Node* if_gt = generate_slow_guard(bol, NULL);
kvn@1421 1233 if (if_gt != NULL) {
kvn@1421 1234 result_phi->init_req(2, intcon(-1));
kvn@1421 1235 result_rgn->init_req(2, if_gt);
kvn@1421 1236 }
kvn@1421 1237
kvn@1421 1238 if (!stopped()) {
kvn@1421 1239 result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
kvn@1421 1240 result_phi->init_req(1, result);
kvn@1421 1241 result_rgn->init_req(1, control());
kvn@1421 1242 }
kvn@1421 1243 set_control(_gvn.transform(result_rgn));
kvn@1421 1244 record_for_igvn(result_rgn);
kvn@1421 1245 result = _gvn.transform(result_phi);
kvn@1421 1246
cfang@1116 1247 } else { //Use LibraryCallKit::string_indexOf
cfang@1116 1248 // don't intrinsify is argument isn't a constant string.
cfang@1116 1249 if (!argument->is_Con()) {
cfang@1116 1250 return false;
cfang@1116 1251 }
cfang@1116 1252 const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
cfang@1116 1253 if (str_type == NULL) {
cfang@1116 1254 return false;
cfang@1116 1255 }
cfang@1116 1256 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1257 ciObject* str_const = str_type->const_oop();
cfang@1116 1258 if (str_const == NULL || str_const->klass() != klass) {
cfang@1116 1259 return false;
cfang@1116 1260 }
cfang@1116 1261 ciInstance* str = str_const->as_instance();
cfang@1116 1262 assert(str != NULL, "must be instance");
cfang@1116 1263
cfang@1116 1264 ciObject* v = str->field_value_by_offset(value_offset).as_object();
cfang@1116 1265 int o = str->field_value_by_offset(offset_offset).as_int();
cfang@1116 1266 int c = str->field_value_by_offset(count_offset).as_int();
cfang@1116 1267 ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
cfang@1116 1268
cfang@1116 1269 // constant strings have no offset and count == length which
cfang@1116 1270 // simplifies the resulting code somewhat so lets optimize for that.
cfang@1116 1271 if (o != 0 || c != pat->length()) {
cfang@1116 1272 return false;
cfang@1116 1273 }
cfang@1116 1274
cfang@1116 1275 // Null check on self without removing any arguments. The argument
cfang@1116 1276 // null check technically happens in the wrong place, which can lead to
cfang@1116 1277 // invalid stack traces when string compare is inlined into a method
cfang@1116 1278 // which handles NullPointerExceptions.
cfang@1116 1279 _sp += 2;
cfang@1116 1280 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1281 // No null check on the argument is needed since it's a constant String oop.
cfang@1116 1282 _sp -= 2;
cfang@1116 1283 if (stopped()) {
cfang@1116 1284 return true;
cfang@1116 1285 }
cfang@1116 1286
cfang@1116 1287 // The null string as a pattern always returns 0 (match at beginning of string)
cfang@1116 1288 if (c == 0) {
cfang@1116 1289 push(intcon(0));
cfang@1116 1290 return true;
cfang@1116 1291 }
cfang@1116 1292
cfang@1116 1293 // Generate default indexOf
cfang@1116 1294 jchar lastChar = pat->char_at(o + (c - 1));
cfang@1116 1295 int cache = 0;
cfang@1116 1296 int i;
cfang@1116 1297 for (i = 0; i < c - 1; i++) {
cfang@1116 1298 assert(i < pat->length(), "out of range");
cfang@1116 1299 cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
cfang@1116 1300 }
cfang@1116 1301
cfang@1116 1302 int md2 = c;
cfang@1116 1303 for (i = 0; i < c - 1; i++) {
cfang@1116 1304 assert(i < pat->length(), "out of range");
cfang@1116 1305 if (pat->char_at(o + i) == lastChar) {
cfang@1116 1306 md2 = (c - 1) - i;
cfang@1116 1307 }
cfang@1116 1308 }
cfang@1116 1309
cfang@1116 1310 result = string_indexOf(receiver, pat, o, cache, md2);
duke@435 1311 }
cfang@1116 1312
duke@435 1313 push(result);
duke@435 1314 return true;
duke@435 1315 }
duke@435 1316
duke@435 1317 //--------------------------pop_math_arg--------------------------------
duke@435 1318 // Pop a double argument to a math function from the stack
duke@435 1319 // rounding it if necessary.
duke@435 1320 Node * LibraryCallKit::pop_math_arg() {
duke@435 1321 Node *arg = pop_pair();
duke@435 1322 if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
duke@435 1323 arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
duke@435 1324 return arg;
duke@435 1325 }
duke@435 1326
duke@435 1327 //------------------------------inline_trig----------------------------------
duke@435 1328 // Inline sin/cos/tan instructions, if possible. If rounding is required, do
duke@435 1329 // argument reduction which will turn into a fast/slow diamond.
duke@435 1330 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
duke@435 1331 _sp += arg_size(); // restore stack pointer
duke@435 1332 Node* arg = pop_math_arg();
duke@435 1333 Node* trig = NULL;
duke@435 1334
duke@435 1335 switch (id) {
duke@435 1336 case vmIntrinsics::_dsin:
duke@435 1337 trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
duke@435 1338 break;
duke@435 1339 case vmIntrinsics::_dcos:
duke@435 1340 trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
duke@435 1341 break;
duke@435 1342 case vmIntrinsics::_dtan:
duke@435 1343 trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
duke@435 1344 break;
duke@435 1345 default:
duke@435 1346 assert(false, "bad intrinsic was passed in");
duke@435 1347 return false;
duke@435 1348 }
duke@435 1349
duke@435 1350 // Rounding required? Check for argument reduction!
duke@435 1351 if( Matcher::strict_fp_requires_explicit_rounding ) {
duke@435 1352
duke@435 1353 static const double pi_4 = 0.7853981633974483;
duke@435 1354 static const double neg_pi_4 = -0.7853981633974483;
duke@435 1355 // pi/2 in 80-bit extended precision
duke@435 1356 // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1357 // -pi/2 in 80-bit extended precision
duke@435 1358 // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1359 // Cutoff value for using this argument reduction technique
duke@435 1360 //static const double pi_2_minus_epsilon = 1.564660403643354;
duke@435 1361 //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
duke@435 1362
duke@435 1363 // Pseudocode for sin:
duke@435 1364 // if (x <= Math.PI / 4.0) {
duke@435 1365 // if (x >= -Math.PI / 4.0) return fsin(x);
duke@435 1366 // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
duke@435 1367 // } else {
duke@435 1368 // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
duke@435 1369 // }
duke@435 1370 // return StrictMath.sin(x);
duke@435 1371
duke@435 1372 // Pseudocode for cos:
duke@435 1373 // if (x <= Math.PI / 4.0) {
duke@435 1374 // if (x >= -Math.PI / 4.0) return fcos(x);
duke@435 1375 // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
duke@435 1376 // } else {
duke@435 1377 // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
duke@435 1378 // }
duke@435 1379 // return StrictMath.cos(x);
duke@435 1380
duke@435 1381 // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
duke@435 1382 // requires a special machine instruction to load it. Instead we'll try
duke@435 1383 // the 'easy' case. If we really need the extra range +/- PI/2 we'll
duke@435 1384 // probably do the math inside the SIN encoding.
duke@435 1385
duke@435 1386 // Make the merge point
duke@435 1387 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 1388 Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
duke@435 1389
duke@435 1390 // Flatten arg so we need only 1 test
duke@435 1391 Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
duke@435 1392 // Node for PI/4 constant
duke@435 1393 Node *pi4 = makecon(TypeD::make(pi_4));
duke@435 1394 // Check PI/4 : abs(arg)
duke@435 1395 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
duke@435 1396 // Check: If PI/4 < abs(arg) then go slow
duke@435 1397 Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
duke@435 1398 // Branch either way
duke@435 1399 IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 1400 set_control(opt_iff(r,iff));
duke@435 1401
duke@435 1402 // Set fast path result
duke@435 1403 phi->init_req(2,trig);
duke@435 1404
duke@435 1405 // Slow path - non-blocking leaf call
duke@435 1406 Node* call = NULL;
duke@435 1407 switch (id) {
duke@435 1408 case vmIntrinsics::_dsin:
duke@435 1409 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1410 CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
duke@435 1411 "Sin", NULL, arg, top());
duke@435 1412 break;
duke@435 1413 case vmIntrinsics::_dcos:
duke@435 1414 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1415 CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
duke@435 1416 "Cos", NULL, arg, top());
duke@435 1417 break;
duke@435 1418 case vmIntrinsics::_dtan:
duke@435 1419 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1420 CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
duke@435 1421 "Tan", NULL, arg, top());
duke@435 1422 break;
duke@435 1423 }
duke@435 1424 assert(control()->in(0) == call, "");
duke@435 1425 Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
duke@435 1426 r->init_req(1,control());
duke@435 1427 phi->init_req(1,slow_result);
duke@435 1428
duke@435 1429 // Post-merge
duke@435 1430 set_control(_gvn.transform(r));
duke@435 1431 record_for_igvn(r);
duke@435 1432 trig = _gvn.transform(phi);
duke@435 1433
duke@435 1434 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1435 }
duke@435 1436 // Push result back on JVM stack
duke@435 1437 push_pair(trig);
duke@435 1438 return true;
duke@435 1439 }
duke@435 1440
duke@435 1441 //------------------------------inline_sqrt-------------------------------------
duke@435 1442 // Inline square root instruction, if possible.
duke@435 1443 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
duke@435 1444 assert(id == vmIntrinsics::_dsqrt, "Not square root");
duke@435 1445 _sp += arg_size(); // restore stack pointer
duke@435 1446 push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
duke@435 1447 return true;
duke@435 1448 }
duke@435 1449
duke@435 1450 //------------------------------inline_abs-------------------------------------
duke@435 1451 // Inline absolute value instruction, if possible.
duke@435 1452 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
duke@435 1453 assert(id == vmIntrinsics::_dabs, "Not absolute value");
duke@435 1454 _sp += arg_size(); // restore stack pointer
duke@435 1455 push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
duke@435 1456 return true;
duke@435 1457 }
duke@435 1458
duke@435 1459 //------------------------------inline_exp-------------------------------------
duke@435 1460 // Inline exp instructions, if possible. The Intel hardware only misses
duke@435 1461 // really odd corner cases (+/- Infinity). Just uncommon-trap them.
duke@435 1462 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
duke@435 1463 assert(id == vmIntrinsics::_dexp, "Not exp");
duke@435 1464
duke@435 1465 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1466 // every again. NaN results requires StrictMath.exp handling.
duke@435 1467 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1468
duke@435 1469 // Do not intrinsify on older platforms which lack cmove.
duke@435 1470 if (ConditionalMoveLimit == 0) return false;
duke@435 1471
duke@435 1472 _sp += arg_size(); // restore stack pointer
duke@435 1473 Node *x = pop_math_arg();
duke@435 1474 Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
duke@435 1475
duke@435 1476 //-------------------
duke@435 1477 //result=(result.isNaN())? StrictMath::exp():result;
duke@435 1478 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1479 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1480 // Build the boolean node
duke@435 1481 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1482
duke@435 1483 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1484 // End the current control-flow path
duke@435 1485 push_pair(x);
duke@435 1486 // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
duke@435 1487 // to handle. Recompile without intrinsifying Math.exp
duke@435 1488 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1489 Deoptimization::Action_make_not_entrant);
duke@435 1490 }
duke@435 1491
duke@435 1492 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1493
duke@435 1494 push_pair(result);
duke@435 1495
duke@435 1496 return true;
duke@435 1497 }
duke@435 1498
duke@435 1499 //------------------------------inline_pow-------------------------------------
duke@435 1500 // Inline power instructions, if possible.
duke@435 1501 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
duke@435 1502 assert(id == vmIntrinsics::_dpow, "Not pow");
duke@435 1503
duke@435 1504 // If this inlining ever returned NaN in the past, we do not intrinsify it
duke@435 1505 // every again. NaN results requires StrictMath.pow handling.
duke@435 1506 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 1507
duke@435 1508 // Do not intrinsify on older platforms which lack cmove.
duke@435 1509 if (ConditionalMoveLimit == 0) return false;
duke@435 1510
duke@435 1511 // Pseudocode for pow
duke@435 1512 // if (x <= 0.0) {
duke@435 1513 // if ((double)((int)y)==y) { // if y is int
duke@435 1514 // result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1515 // } else {
duke@435 1516 // result = NaN;
duke@435 1517 // }
duke@435 1518 // } else {
duke@435 1519 // result = DPow(x,y);
duke@435 1520 // }
duke@435 1521 // if (result != result)? {
twisti@1040 1522 // uncommon_trap();
duke@435 1523 // }
duke@435 1524 // return result;
duke@435 1525
duke@435 1526 _sp += arg_size(); // restore stack pointer
duke@435 1527 Node* y = pop_math_arg();
duke@435 1528 Node* x = pop_math_arg();
duke@435 1529
duke@435 1530 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
duke@435 1531
duke@435 1532 // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
duke@435 1533 // inside of something) then skip the fancy tests and just check for
duke@435 1534 // NaN result.
duke@435 1535 Node *result = NULL;
duke@435 1536 if( jvms()->depth() >= 1 ) {
duke@435 1537 result = fast_result;
duke@435 1538 } else {
duke@435 1539
duke@435 1540 // Set the merge point for If node with condition of (x <= 0.0)
duke@435 1541 // There are four possible paths to region node and phi node
duke@435 1542 RegionNode *r = new (C, 4) RegionNode(4);
duke@435 1543 Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
duke@435 1544
duke@435 1545 // Build the first if node: if (x <= 0.0)
duke@435 1546 // Node for 0 constant
duke@435 1547 Node *zeronode = makecon(TypeD::ZERO);
duke@435 1548 // Check x:0
duke@435 1549 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
duke@435 1550 // Check: If (x<=0) then go complex path
duke@435 1551 Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
duke@435 1552 // Branch either way
duke@435 1553 IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1554 Node *opt_test = _gvn.transform(if1);
duke@435 1555 //assert( opt_test->is_If(), "Expect an IfNode");
duke@435 1556 IfNode *opt_if1 = (IfNode*)opt_test;
duke@435 1557 // Fast path taken; set region slot 3
duke@435 1558 Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
duke@435 1559 r->init_req(3,fast_taken); // Capture fast-control
duke@435 1560
duke@435 1561 // Fast path not-taken, i.e. slow path
duke@435 1562 Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
duke@435 1563
duke@435 1564 // Set fast path result
duke@435 1565 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
duke@435 1566 phi->init_req(3, fast_result);
duke@435 1567
duke@435 1568 // Complex path
duke@435 1569 // Build the second if node (if y is int)
duke@435 1570 // Node for (int)y
duke@435 1571 Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
duke@435 1572 // Node for (double)((int) y)
duke@435 1573 Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
duke@435 1574 // Check (double)((int) y) : y
duke@435 1575 Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
duke@435 1576 // Check if (y isn't int) then go to slow path
duke@435 1577
duke@435 1578 Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
twisti@1040 1579 // Branch either way
duke@435 1580 IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1581 Node *slow_path = opt_iff(r,if2); // Set region path 2
duke@435 1582
duke@435 1583 // Calculate DPow(abs(x), y)*(1 & (int)y)
duke@435 1584 // Node for constant 1
duke@435 1585 Node *conone = intcon(1);
duke@435 1586 // 1& (int)y
duke@435 1587 Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
duke@435 1588 // zero node
duke@435 1589 Node *conzero = intcon(0);
duke@435 1590 // Check (1&(int)y)==0?
duke@435 1591 Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
duke@435 1592 // Check if (1&(int)y)!=0?, if so the result is negative
duke@435 1593 Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
duke@435 1594 // abs(x)
duke@435 1595 Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
duke@435 1596 // abs(x)^y
duke@435 1597 Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
duke@435 1598 // -abs(x)^y
duke@435 1599 Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
duke@435 1600 // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
duke@435 1601 Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
duke@435 1602 // Set complex path fast result
duke@435 1603 phi->init_req(2, signresult);
duke@435 1604
duke@435 1605 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 1606 Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
duke@435 1607 r->init_req(1,slow_path);
duke@435 1608 phi->init_req(1,slow_result);
duke@435 1609
duke@435 1610 // Post merge
duke@435 1611 set_control(_gvn.transform(r));
duke@435 1612 record_for_igvn(r);
duke@435 1613 result=_gvn.transform(phi);
duke@435 1614 }
duke@435 1615
duke@435 1616 //-------------------
duke@435 1617 //result=(result.isNaN())? uncommon_trap():result;
duke@435 1618 // Check: If isNaN() by checking result!=result? then go to Strict Math
duke@435 1619 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
duke@435 1620 // Build the boolean node
duke@435 1621 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
duke@435 1622
duke@435 1623 { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
duke@435 1624 // End the current control-flow path
duke@435 1625 push_pair(x);
duke@435 1626 push_pair(y);
duke@435 1627 // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
duke@435 1628 // to handle. Recompile without intrinsifying Math.pow.
duke@435 1629 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 1630 Deoptimization::Action_make_not_entrant);
duke@435 1631 }
duke@435 1632
duke@435 1633 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1634
duke@435 1635 push_pair(result);
duke@435 1636
duke@435 1637 return true;
duke@435 1638 }
duke@435 1639
duke@435 1640 //------------------------------inline_trans-------------------------------------
duke@435 1641 // Inline transcendental instructions, if possible. The Intel hardware gets
duke@435 1642 // these right, no funny corner cases missed.
duke@435 1643 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
duke@435 1644 _sp += arg_size(); // restore stack pointer
duke@435 1645 Node* arg = pop_math_arg();
duke@435 1646 Node* trans = NULL;
duke@435 1647
duke@435 1648 switch (id) {
duke@435 1649 case vmIntrinsics::_dlog:
duke@435 1650 trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
duke@435 1651 break;
duke@435 1652 case vmIntrinsics::_dlog10:
duke@435 1653 trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
duke@435 1654 break;
duke@435 1655 default:
duke@435 1656 assert(false, "bad intrinsic was passed in");
duke@435 1657 return false;
duke@435 1658 }
duke@435 1659
duke@435 1660 // Push result back on JVM stack
duke@435 1661 push_pair(trans);
duke@435 1662 return true;
duke@435 1663 }
duke@435 1664
duke@435 1665 //------------------------------runtime_math-----------------------------
duke@435 1666 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
duke@435 1667 Node* a = NULL;
duke@435 1668 Node* b = NULL;
duke@435 1669
duke@435 1670 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
duke@435 1671 "must be (DD)D or (D)D type");
duke@435 1672
duke@435 1673 // Inputs
duke@435 1674 _sp += arg_size(); // restore stack pointer
duke@435 1675 if (call_type == OptoRuntime::Math_DD_D_Type()) {
duke@435 1676 b = pop_math_arg();
duke@435 1677 }
duke@435 1678 a = pop_math_arg();
duke@435 1679
duke@435 1680 const TypePtr* no_memory_effects = NULL;
duke@435 1681 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
duke@435 1682 no_memory_effects,
duke@435 1683 a, top(), b, b ? top() : NULL);
duke@435 1684 Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
duke@435 1685 #ifdef ASSERT
duke@435 1686 Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
duke@435 1687 assert(value_top == top(), "second value must be top");
duke@435 1688 #endif
duke@435 1689
duke@435 1690 push_pair(value);
duke@435 1691 return true;
duke@435 1692 }
duke@435 1693
duke@435 1694 //------------------------------inline_math_native-----------------------------
duke@435 1695 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
duke@435 1696 switch (id) {
duke@435 1697 // These intrinsics are not properly supported on all hardware
duke@435 1698 case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
duke@435 1699 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
duke@435 1700 case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
duke@435 1701 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
duke@435 1702 case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
duke@435 1703 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
duke@435 1704
duke@435 1705 case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
duke@435 1706 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
duke@435 1707 case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
duke@435 1708 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
duke@435 1709
duke@435 1710 // These intrinsics are supported on all hardware
duke@435 1711 case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
duke@435 1712 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_abs(id) : false;
duke@435 1713
duke@435 1714 // These intrinsics don't work on X86. The ad implementation doesn't
duke@435 1715 // handle NaN's properly. Instead of returning infinity, the ad
duke@435 1716 // implementation returns a NaN on overflow. See bug: 6304089
duke@435 1717 // Once the ad implementations are fixed, change the code below
duke@435 1718 // to match the intrinsics above
duke@435 1719
duke@435 1720 case vmIntrinsics::_dexp: return
duke@435 1721 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
duke@435 1722 case vmIntrinsics::_dpow: return
duke@435 1723 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
duke@435 1724
duke@435 1725 // These intrinsics are not yet correctly implemented
duke@435 1726 case vmIntrinsics::_datan2:
duke@435 1727 return false;
duke@435 1728
duke@435 1729 default:
duke@435 1730 ShouldNotReachHere();
duke@435 1731 return false;
duke@435 1732 }
duke@435 1733 }
duke@435 1734
duke@435 1735 static bool is_simple_name(Node* n) {
duke@435 1736 return (n->req() == 1 // constant
duke@435 1737 || (n->is_Type() && n->as_Type()->type()->singleton())
duke@435 1738 || n->is_Proj() // parameter or return value
duke@435 1739 || n->is_Phi() // local of some sort
duke@435 1740 );
duke@435 1741 }
duke@435 1742
duke@435 1743 //----------------------------inline_min_max-----------------------------------
duke@435 1744 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
duke@435 1745 push(generate_min_max(id, argument(0), argument(1)));
duke@435 1746
duke@435 1747 return true;
duke@435 1748 }
duke@435 1749
duke@435 1750 Node*
duke@435 1751 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
duke@435 1752 // These are the candidate return value:
duke@435 1753 Node* xvalue = x0;
duke@435 1754 Node* yvalue = y0;
duke@435 1755
duke@435 1756 if (xvalue == yvalue) {
duke@435 1757 return xvalue;
duke@435 1758 }
duke@435 1759
duke@435 1760 bool want_max = (id == vmIntrinsics::_max);
duke@435 1761
duke@435 1762 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
duke@435 1763 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
duke@435 1764 if (txvalue == NULL || tyvalue == NULL) return top();
duke@435 1765 // This is not really necessary, but it is consistent with a
duke@435 1766 // hypothetical MaxINode::Value method:
duke@435 1767 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
duke@435 1768
duke@435 1769 // %%% This folding logic should (ideally) be in a different place.
duke@435 1770 // Some should be inside IfNode, and there to be a more reliable
duke@435 1771 // transformation of ?: style patterns into cmoves. We also want
duke@435 1772 // more powerful optimizations around cmove and min/max.
duke@435 1773
duke@435 1774 // Try to find a dominating comparison of these guys.
duke@435 1775 // It can simplify the index computation for Arrays.copyOf
duke@435 1776 // and similar uses of System.arraycopy.
duke@435 1777 // First, compute the normalized version of CmpI(x, y).
duke@435 1778 int cmp_op = Op_CmpI;
duke@435 1779 Node* xkey = xvalue;
duke@435 1780 Node* ykey = yvalue;
duke@435 1781 Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
duke@435 1782 if (ideal_cmpxy->is_Cmp()) {
duke@435 1783 // E.g., if we have CmpI(length - offset, count),
duke@435 1784 // it might idealize to CmpI(length, count + offset)
duke@435 1785 cmp_op = ideal_cmpxy->Opcode();
duke@435 1786 xkey = ideal_cmpxy->in(1);
duke@435 1787 ykey = ideal_cmpxy->in(2);
duke@435 1788 }
duke@435 1789
duke@435 1790 // Start by locating any relevant comparisons.
duke@435 1791 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
duke@435 1792 Node* cmpxy = NULL;
duke@435 1793 Node* cmpyx = NULL;
duke@435 1794 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
duke@435 1795 Node* cmp = start_from->fast_out(k);
duke@435 1796 if (cmp->outcnt() > 0 && // must have prior uses
duke@435 1797 cmp->in(0) == NULL && // must be context-independent
duke@435 1798 cmp->Opcode() == cmp_op) { // right kind of compare
duke@435 1799 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
duke@435 1800 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
duke@435 1801 }
duke@435 1802 }
duke@435 1803
duke@435 1804 const int NCMPS = 2;
duke@435 1805 Node* cmps[NCMPS] = { cmpxy, cmpyx };
duke@435 1806 int cmpn;
duke@435 1807 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1808 if (cmps[cmpn] != NULL) break; // find a result
duke@435 1809 }
duke@435 1810 if (cmpn < NCMPS) {
duke@435 1811 // Look for a dominating test that tells us the min and max.
duke@435 1812 int depth = 0; // Limit search depth for speed
duke@435 1813 Node* dom = control();
duke@435 1814 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
duke@435 1815 if (++depth >= 100) break;
duke@435 1816 Node* ifproj = dom;
duke@435 1817 if (!ifproj->is_Proj()) continue;
duke@435 1818 Node* iff = ifproj->in(0);
duke@435 1819 if (!iff->is_If()) continue;
duke@435 1820 Node* bol = iff->in(1);
duke@435 1821 if (!bol->is_Bool()) continue;
duke@435 1822 Node* cmp = bol->in(1);
duke@435 1823 if (cmp == NULL) continue;
duke@435 1824 for (cmpn = 0; cmpn < NCMPS; cmpn++)
duke@435 1825 if (cmps[cmpn] == cmp) break;
duke@435 1826 if (cmpn == NCMPS) continue;
duke@435 1827 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1828 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
duke@435 1829 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1830 // At this point, we know that 'x btest y' is true.
duke@435 1831 switch (btest) {
duke@435 1832 case BoolTest::eq:
duke@435 1833 // They are proven equal, so we can collapse the min/max.
duke@435 1834 // Either value is the answer. Choose the simpler.
duke@435 1835 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
duke@435 1836 return yvalue;
duke@435 1837 return xvalue;
duke@435 1838 case BoolTest::lt: // x < y
duke@435 1839 case BoolTest::le: // x <= y
duke@435 1840 return (want_max ? yvalue : xvalue);
duke@435 1841 case BoolTest::gt: // x > y
duke@435 1842 case BoolTest::ge: // x >= y
duke@435 1843 return (want_max ? xvalue : yvalue);
duke@435 1844 }
duke@435 1845 }
duke@435 1846 }
duke@435 1847
duke@435 1848 // We failed to find a dominating test.
duke@435 1849 // Let's pick a test that might GVN with prior tests.
duke@435 1850 Node* best_bol = NULL;
duke@435 1851 BoolTest::mask best_btest = BoolTest::illegal;
duke@435 1852 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1853 Node* cmp = cmps[cmpn];
duke@435 1854 if (cmp == NULL) continue;
duke@435 1855 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
duke@435 1856 Node* bol = cmp->fast_out(j);
duke@435 1857 if (!bol->is_Bool()) continue;
duke@435 1858 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1859 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
duke@435 1860 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1861 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
duke@435 1862 best_bol = bol->as_Bool();
duke@435 1863 best_btest = btest;
duke@435 1864 }
duke@435 1865 }
duke@435 1866 }
duke@435 1867
duke@435 1868 Node* answer_if_true = NULL;
duke@435 1869 Node* answer_if_false = NULL;
duke@435 1870 switch (best_btest) {
duke@435 1871 default:
duke@435 1872 if (cmpxy == NULL)
duke@435 1873 cmpxy = ideal_cmpxy;
duke@435 1874 best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
duke@435 1875 // and fall through:
duke@435 1876 case BoolTest::lt: // x < y
duke@435 1877 case BoolTest::le: // x <= y
duke@435 1878 answer_if_true = (want_max ? yvalue : xvalue);
duke@435 1879 answer_if_false = (want_max ? xvalue : yvalue);
duke@435 1880 break;
duke@435 1881 case BoolTest::gt: // x > y
duke@435 1882 case BoolTest::ge: // x >= y
duke@435 1883 answer_if_true = (want_max ? xvalue : yvalue);
duke@435 1884 answer_if_false = (want_max ? yvalue : xvalue);
duke@435 1885 break;
duke@435 1886 }
duke@435 1887
duke@435 1888 jint hi, lo;
duke@435 1889 if (want_max) {
duke@435 1890 // We can sharpen the minimum.
duke@435 1891 hi = MAX2(txvalue->_hi, tyvalue->_hi);
duke@435 1892 lo = MAX2(txvalue->_lo, tyvalue->_lo);
duke@435 1893 } else {
duke@435 1894 // We can sharpen the maximum.
duke@435 1895 hi = MIN2(txvalue->_hi, tyvalue->_hi);
duke@435 1896 lo = MIN2(txvalue->_lo, tyvalue->_lo);
duke@435 1897 }
duke@435 1898
duke@435 1899 // Use a flow-free graph structure, to avoid creating excess control edges
duke@435 1900 // which could hinder other optimizations.
duke@435 1901 // Since Math.min/max is often used with arraycopy, we want
duke@435 1902 // tightly_coupled_allocation to be able to see beyond min/max expressions.
duke@435 1903 Node* cmov = CMoveNode::make(C, NULL, best_bol,
duke@435 1904 answer_if_false, answer_if_true,
duke@435 1905 TypeInt::make(lo, hi, widen));
duke@435 1906
duke@435 1907 return _gvn.transform(cmov);
duke@435 1908
duke@435 1909 /*
duke@435 1910 // This is not as desirable as it may seem, since Min and Max
duke@435 1911 // nodes do not have a full set of optimizations.
duke@435 1912 // And they would interfere, anyway, with 'if' optimizations
duke@435 1913 // and with CMoveI canonical forms.
duke@435 1914 switch (id) {
duke@435 1915 case vmIntrinsics::_min:
duke@435 1916 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
duke@435 1917 case vmIntrinsics::_max:
duke@435 1918 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
duke@435 1919 default:
duke@435 1920 ShouldNotReachHere();
duke@435 1921 }
duke@435 1922 */
duke@435 1923 }
duke@435 1924
duke@435 1925 inline int
duke@435 1926 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
duke@435 1927 const TypePtr* base_type = TypePtr::NULL_PTR;
duke@435 1928 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
duke@435 1929 if (base_type == NULL) {
duke@435 1930 // Unknown type.
duke@435 1931 return Type::AnyPtr;
duke@435 1932 } else if (base_type == TypePtr::NULL_PTR) {
duke@435 1933 // Since this is a NULL+long form, we have to switch to a rawptr.
duke@435 1934 base = _gvn.transform( new (C, 2) CastX2PNode(offset) );
duke@435 1935 offset = MakeConX(0);
duke@435 1936 return Type::RawPtr;
duke@435 1937 } else if (base_type->base() == Type::RawPtr) {
duke@435 1938 return Type::RawPtr;
duke@435 1939 } else if (base_type->isa_oopptr()) {
duke@435 1940 // Base is never null => always a heap address.
duke@435 1941 if (base_type->ptr() == TypePtr::NotNull) {
duke@435 1942 return Type::OopPtr;
duke@435 1943 }
duke@435 1944 // Offset is small => always a heap address.
duke@435 1945 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
duke@435 1946 if (offset_type != NULL &&
duke@435 1947 base_type->offset() == 0 && // (should always be?)
duke@435 1948 offset_type->_lo >= 0 &&
duke@435 1949 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
duke@435 1950 return Type::OopPtr;
duke@435 1951 }
duke@435 1952 // Otherwise, it might either be oop+off or NULL+addr.
duke@435 1953 return Type::AnyPtr;
duke@435 1954 } else {
duke@435 1955 // No information:
duke@435 1956 return Type::AnyPtr;
duke@435 1957 }
duke@435 1958 }
duke@435 1959
duke@435 1960 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
duke@435 1961 int kind = classify_unsafe_addr(base, offset);
duke@435 1962 if (kind == Type::RawPtr) {
duke@435 1963 return basic_plus_adr(top(), base, offset);
duke@435 1964 } else {
duke@435 1965 return basic_plus_adr(base, offset);
duke@435 1966 }
duke@435 1967 }
duke@435 1968
twisti@1210 1969 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
twisti@1210 1970 // inline int Integer.numberOfLeadingZeros(int)
twisti@1210 1971 // inline int Long.numberOfLeadingZeros(long)
twisti@1210 1972 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
twisti@1210 1973 assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
twisti@1210 1974 if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
twisti@1210 1975 if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
twisti@1210 1976 _sp += arg_size(); // restore stack pointer
twisti@1210 1977 switch (id) {
twisti@1210 1978 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 1979 push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
twisti@1210 1980 break;
twisti@1210 1981 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 1982 push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
twisti@1210 1983 break;
twisti@1210 1984 default:
twisti@1210 1985 ShouldNotReachHere();
twisti@1210 1986 }
twisti@1210 1987 return true;
twisti@1210 1988 }
twisti@1210 1989
twisti@1210 1990 //-------------------inline_numberOfTrailingZeros_int/long----------------------
twisti@1210 1991 // inline int Integer.numberOfTrailingZeros(int)
twisti@1210 1992 // inline int Long.numberOfTrailingZeros(long)
twisti@1210 1993 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
twisti@1210 1994 assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
twisti@1210 1995 if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
twisti@1210 1996 if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
twisti@1210 1997 _sp += arg_size(); // restore stack pointer
twisti@1210 1998 switch (id) {
twisti@1210 1999 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 2000 push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
twisti@1210 2001 break;
twisti@1210 2002 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 2003 push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
twisti@1210 2004 break;
twisti@1210 2005 default:
twisti@1210 2006 ShouldNotReachHere();
twisti@1210 2007 }
twisti@1210 2008 return true;
twisti@1210 2009 }
twisti@1210 2010
twisti@1078 2011 //----------------------------inline_bitCount_int/long-----------------------
twisti@1078 2012 // inline int Integer.bitCount(int)
twisti@1078 2013 // inline int Long.bitCount(long)
twisti@1078 2014 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
twisti@1078 2015 assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
twisti@1078 2016 if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
twisti@1078 2017 if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
twisti@1078 2018 _sp += arg_size(); // restore stack pointer
twisti@1078 2019 switch (id) {
twisti@1078 2020 case vmIntrinsics::_bitCount_i:
twisti@1078 2021 push(_gvn.transform(new (C, 2) PopCountINode(pop())));
twisti@1078 2022 break;
twisti@1078 2023 case vmIntrinsics::_bitCount_l:
twisti@1078 2024 push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
twisti@1078 2025 break;
twisti@1078 2026 default:
twisti@1078 2027 ShouldNotReachHere();
twisti@1078 2028 }
twisti@1078 2029 return true;
twisti@1078 2030 }
twisti@1078 2031
never@1831 2032 //----------------------------inline_reverseBytes_int/long/char/short-------------------
twisti@1040 2033 // inline Integer.reverseBytes(int)
twisti@1040 2034 // inline Long.reverseBytes(long)
never@1831 2035 // inline Character.reverseBytes(char)
never@1831 2036 // inline Short.reverseBytes(short)
duke@435 2037 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
never@1831 2038 assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
never@1831 2039 id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
never@1831 2040 "not reverse Bytes");
never@1831 2041 if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
never@1831 2042 if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
never@1831 2043 if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
never@1831 2044 if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS)) return false;
duke@435 2045 _sp += arg_size(); // restore stack pointer
duke@435 2046 switch (id) {
duke@435 2047 case vmIntrinsics::_reverseBytes_i:
duke@435 2048 push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
duke@435 2049 break;
duke@435 2050 case vmIntrinsics::_reverseBytes_l:
duke@435 2051 push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
duke@435 2052 break;
never@1831 2053 case vmIntrinsics::_reverseBytes_c:
never@1831 2054 push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
never@1831 2055 break;
never@1831 2056 case vmIntrinsics::_reverseBytes_s:
never@1831 2057 push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
never@1831 2058 break;
duke@435 2059 default:
duke@435 2060 ;
duke@435 2061 }
duke@435 2062 return true;
duke@435 2063 }
duke@435 2064
duke@435 2065 //----------------------------inline_unsafe_access----------------------------
duke@435 2066
duke@435 2067 const static BasicType T_ADDRESS_HOLDER = T_LONG;
duke@435 2068
duke@435 2069 // Interpret Unsafe.fieldOffset cookies correctly:
duke@435 2070 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
duke@435 2071
duke@435 2072 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
duke@435 2073 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2074
duke@435 2075 #ifndef PRODUCT
duke@435 2076 {
duke@435 2077 ResourceMark rm;
duke@435 2078 // Check the signatures.
duke@435 2079 ciSignature* sig = signature();
duke@435 2080 #ifdef ASSERT
duke@435 2081 if (!is_store) {
duke@435 2082 // Object getObject(Object base, int/long offset), etc.
duke@435 2083 BasicType rtype = sig->return_type()->basic_type();
duke@435 2084 if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
duke@435 2085 rtype = T_ADDRESS; // it is really a C void*
duke@435 2086 assert(rtype == type, "getter must return the expected value");
duke@435 2087 if (!is_native_ptr) {
duke@435 2088 assert(sig->count() == 2, "oop getter has 2 arguments");
duke@435 2089 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
duke@435 2090 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
duke@435 2091 } else {
duke@435 2092 assert(sig->count() == 1, "native getter has 1 argument");
duke@435 2093 assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
duke@435 2094 }
duke@435 2095 } else {
duke@435 2096 // void putObject(Object base, int/long offset, Object x), etc.
duke@435 2097 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
duke@435 2098 if (!is_native_ptr) {
duke@435 2099 assert(sig->count() == 3, "oop putter has 3 arguments");
duke@435 2100 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
duke@435 2101 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
duke@435 2102 } else {
duke@435 2103 assert(sig->count() == 2, "native putter has 2 arguments");
duke@435 2104 assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
duke@435 2105 }
duke@435 2106 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
duke@435 2107 if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
duke@435 2108 vtype = T_ADDRESS; // it is really a C void*
duke@435 2109 assert(vtype == type, "putter must accept the expected value");
duke@435 2110 }
duke@435 2111 #endif // ASSERT
duke@435 2112 }
duke@435 2113 #endif //PRODUCT
duke@435 2114
duke@435 2115 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2116
duke@435 2117 int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
duke@435 2118
duke@435 2119 // Argument words: "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
duke@435 2120 int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
duke@435 2121
duke@435 2122 debug_only(int saved_sp = _sp);
duke@435 2123 _sp += nargs;
duke@435 2124
duke@435 2125 Node* val;
duke@435 2126 debug_only(val = (Node*)(uintptr_t)-1);
duke@435 2127
duke@435 2128
duke@435 2129 if (is_store) {
duke@435 2130 // Get the value being stored. (Pop it first; it was pushed last.)
duke@435 2131 switch (type) {
duke@435 2132 case T_DOUBLE:
duke@435 2133 case T_LONG:
duke@435 2134 case T_ADDRESS:
duke@435 2135 val = pop_pair();
duke@435 2136 break;
duke@435 2137 default:
duke@435 2138 val = pop();
duke@435 2139 }
duke@435 2140 }
duke@435 2141
duke@435 2142 // Build address expression. See the code in inline_unsafe_prefetch.
duke@435 2143 Node *adr;
duke@435 2144 Node *heap_base_oop = top();
duke@435 2145 if (!is_native_ptr) {
duke@435 2146 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
duke@435 2147 Node* offset = pop_pair();
duke@435 2148 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2149 Node* base = pop();
duke@435 2150 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2151 // to be plain byte offsets, which are also the same as those accepted
duke@435 2152 // by oopDesc::field_base.
duke@435 2153 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2154 "fieldOffset must be byte-scaled");
duke@435 2155 // 32-bit machines ignore the high half!
duke@435 2156 offset = ConvL2X(offset);
duke@435 2157 adr = make_unsafe_address(base, offset);
duke@435 2158 heap_base_oop = base;
duke@435 2159 } else {
duke@435 2160 Node* ptr = pop_pair();
duke@435 2161 // Adjust Java long to machine word:
duke@435 2162 ptr = ConvL2X(ptr);
duke@435 2163 adr = make_unsafe_address(NULL, ptr);
duke@435 2164 }
duke@435 2165
duke@435 2166 // Pop receiver last: it was pushed first.
duke@435 2167 Node *receiver = pop();
duke@435 2168
duke@435 2169 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2170
duke@435 2171 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2172
duke@435 2173 // First guess at the value type.
duke@435 2174 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2175
duke@435 2176 // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
duke@435 2177 // there was not enough information to nail it down.
duke@435 2178 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2179 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2180
duke@435 2181 // We will need memory barriers unless we can determine a unique
duke@435 2182 // alias category for this reference. (Note: If for some reason
duke@435 2183 // the barriers get omitted and the unsafe reference begins to "pollute"
duke@435 2184 // the alias analysis of the rest of the graph, either Compile::can_alias
duke@435 2185 // or Compile::must_alias will throw a diagnostic assert.)
duke@435 2186 bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
duke@435 2187
duke@435 2188 if (!is_store && type == T_OBJECT) {
duke@435 2189 // Attempt to infer a sharper value type from the offset and base type.
duke@435 2190 ciKlass* sharpened_klass = NULL;
duke@435 2191
duke@435 2192 // See if it is an instance field, with an object type.
duke@435 2193 if (alias_type->field() != NULL) {
duke@435 2194 assert(!is_native_ptr, "native pointer op cannot use a java address");
duke@435 2195 if (alias_type->field()->type()->is_klass()) {
duke@435 2196 sharpened_klass = alias_type->field()->type()->as_klass();
duke@435 2197 }
duke@435 2198 }
duke@435 2199
duke@435 2200 // See if it is a narrow oop array.
duke@435 2201 if (adr_type->isa_aryptr()) {
twisti@1330 2202 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
duke@435 2203 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
duke@435 2204 if (elem_type != NULL) {
duke@435 2205 sharpened_klass = elem_type->klass();
duke@435 2206 }
duke@435 2207 }
duke@435 2208 }
duke@435 2209
duke@435 2210 if (sharpened_klass != NULL) {
duke@435 2211 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
duke@435 2212
duke@435 2213 // Sharpen the value type.
duke@435 2214 value_type = tjp;
duke@435 2215
duke@435 2216 #ifndef PRODUCT
duke@435 2217 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 2218 tty->print(" from base type: "); adr_type->dump();
duke@435 2219 tty->print(" sharpened value: "); value_type->dump();
duke@435 2220 }
duke@435 2221 #endif
duke@435 2222 }
duke@435 2223 }
duke@435 2224
duke@435 2225 // Null check on self without removing any arguments. The argument
duke@435 2226 // null check technically happens in the wrong place, which can lead to
duke@435 2227 // invalid stack traces when the primitive is inlined into a method
duke@435 2228 // which handles NullPointerExceptions.
duke@435 2229 _sp += nargs;
duke@435 2230 do_null_check(receiver, T_OBJECT);
duke@435 2231 _sp -= nargs;
duke@435 2232 if (stopped()) {
duke@435 2233 return true;
duke@435 2234 }
duke@435 2235 // Heap pointers get a null-check from the interpreter,
duke@435 2236 // as a courtesy. However, this is not guaranteed by Unsafe,
duke@435 2237 // and it is not possible to fully distinguish unintended nulls
duke@435 2238 // from intended ones in this API.
duke@435 2239
duke@435 2240 if (is_volatile) {
duke@435 2241 // We need to emit leading and trailing CPU membars (see below) in
duke@435 2242 // addition to memory membars when is_volatile. This is a little
duke@435 2243 // too strong, but avoids the need to insert per-alias-type
duke@435 2244 // volatile membars (for stores; compare Parse::do_put_xxx), which
twisti@1040 2245 // we cannot do effectively here because we probably only have a
duke@435 2246 // rough approximation of type.
duke@435 2247 need_mem_bar = true;
duke@435 2248 // For Stores, place a memory ordering barrier now.
duke@435 2249 if (is_store)
duke@435 2250 insert_mem_bar(Op_MemBarRelease);
duke@435 2251 }
duke@435 2252
duke@435 2253 // Memory barrier to prevent normal and 'unsafe' accesses from
duke@435 2254 // bypassing each other. Happens after null checks, so the
duke@435 2255 // exception paths do not take memory state from the memory barrier,
duke@435 2256 // so there's no problems making a strong assert about mixing users
duke@435 2257 // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
duke@435 2258 // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
duke@435 2259 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2260
duke@435 2261 if (!is_store) {
duke@435 2262 Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
duke@435 2263 // load value and push onto stack
duke@435 2264 switch (type) {
duke@435 2265 case T_BOOLEAN:
duke@435 2266 case T_CHAR:
duke@435 2267 case T_BYTE:
duke@435 2268 case T_SHORT:
duke@435 2269 case T_INT:
duke@435 2270 case T_FLOAT:
duke@435 2271 case T_OBJECT:
duke@435 2272 push( p );
duke@435 2273 break;
duke@435 2274 case T_ADDRESS:
duke@435 2275 // Cast to an int type.
duke@435 2276 p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
duke@435 2277 p = ConvX2L(p);
duke@435 2278 push_pair(p);
duke@435 2279 break;
duke@435 2280 case T_DOUBLE:
duke@435 2281 case T_LONG:
duke@435 2282 push_pair( p );
duke@435 2283 break;
duke@435 2284 default: ShouldNotReachHere();
duke@435 2285 }
duke@435 2286 } else {
duke@435 2287 // place effect of store into memory
duke@435 2288 switch (type) {
duke@435 2289 case T_DOUBLE:
duke@435 2290 val = dstore_rounding(val);
duke@435 2291 break;
duke@435 2292 case T_ADDRESS:
duke@435 2293 // Repackage the long as a pointer.
duke@435 2294 val = ConvL2X(val);
duke@435 2295 val = _gvn.transform( new (C, 2) CastX2PNode(val) );
duke@435 2296 break;
duke@435 2297 }
duke@435 2298
duke@435 2299 if (type != T_OBJECT ) {
duke@435 2300 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
duke@435 2301 } else {
duke@435 2302 // Possibly an oop being stored to Java heap or native memory
duke@435 2303 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
duke@435 2304 // oop to Java heap.
never@1260 2305 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
duke@435 2306 } else {
duke@435 2307 // We can't tell at compile time if we are storing in the Java heap or outside
duke@435 2308 // of it. So we need to emit code to conditionally do the proper type of
duke@435 2309 // store.
duke@435 2310
kvn@1286 2311 IdealKit ideal(gvn(), control(), merged_memory());
kvn@1286 2312 #define __ ideal.
duke@435 2313 // QQQ who knows what probability is here??
kvn@1286 2314 __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
kvn@1286 2315 // Sync IdealKit and graphKit.
kvn@1286 2316 set_all_memory( __ merged_memory());
kvn@1286 2317 set_control(__ ctrl());
kvn@1286 2318 Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
kvn@1286 2319 // Update IdealKit memory.
kvn@1286 2320 __ set_all_memory(merged_memory());
kvn@1286 2321 __ set_ctrl(control());
kvn@1286 2322 } __ else_(); {
kvn@1286 2323 __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
kvn@1286 2324 } __ end_if();
kvn@1286 2325 // Final sync IdealKit and GraphKit.
kvn@1286 2326 sync_kit(ideal);
kvn@1286 2327 #undef __
duke@435 2328 }
duke@435 2329 }
duke@435 2330 }
duke@435 2331
duke@435 2332 if (is_volatile) {
duke@435 2333 if (!is_store)
duke@435 2334 insert_mem_bar(Op_MemBarAcquire);
duke@435 2335 else
duke@435 2336 insert_mem_bar(Op_MemBarVolatile);
duke@435 2337 }
duke@435 2338
duke@435 2339 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2340
duke@435 2341 return true;
duke@435 2342 }
duke@435 2343
duke@435 2344 //----------------------------inline_unsafe_prefetch----------------------------
duke@435 2345
duke@435 2346 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
duke@435 2347 #ifndef PRODUCT
duke@435 2348 {
duke@435 2349 ResourceMark rm;
duke@435 2350 // Check the signatures.
duke@435 2351 ciSignature* sig = signature();
duke@435 2352 #ifdef ASSERT
duke@435 2353 // Object getObject(Object base, int/long offset), etc.
duke@435 2354 BasicType rtype = sig->return_type()->basic_type();
duke@435 2355 if (!is_native_ptr) {
duke@435 2356 assert(sig->count() == 2, "oop prefetch has 2 arguments");
duke@435 2357 assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
duke@435 2358 assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
duke@435 2359 } else {
duke@435 2360 assert(sig->count() == 1, "native prefetch has 1 argument");
duke@435 2361 assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
duke@435 2362 }
duke@435 2363 #endif // ASSERT
duke@435 2364 }
duke@435 2365 #endif // !PRODUCT
duke@435 2366
duke@435 2367 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2368
duke@435 2369 // Argument words: "this" if not static, plus (oop/offset) or (lo/hi) args
duke@435 2370 int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
duke@435 2371
duke@435 2372 debug_only(int saved_sp = _sp);
duke@435 2373 _sp += nargs;
duke@435 2374
duke@435 2375 // Build address expression. See the code in inline_unsafe_access.
duke@435 2376 Node *adr;
duke@435 2377 if (!is_native_ptr) {
duke@435 2378 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
duke@435 2379 Node* offset = pop_pair();
duke@435 2380 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2381 Node* base = pop();
duke@435 2382 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2383 // to be plain byte offsets, which are also the same as those accepted
duke@435 2384 // by oopDesc::field_base.
duke@435 2385 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2386 "fieldOffset must be byte-scaled");
duke@435 2387 // 32-bit machines ignore the high half!
duke@435 2388 offset = ConvL2X(offset);
duke@435 2389 adr = make_unsafe_address(base, offset);
duke@435 2390 } else {
duke@435 2391 Node* ptr = pop_pair();
duke@435 2392 // Adjust Java long to machine word:
duke@435 2393 ptr = ConvL2X(ptr);
duke@435 2394 adr = make_unsafe_address(NULL, ptr);
duke@435 2395 }
duke@435 2396
duke@435 2397 if (is_static) {
duke@435 2398 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2399 } else {
duke@435 2400 // Pop receiver last: it was pushed first.
duke@435 2401 Node *receiver = pop();
duke@435 2402 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2403
duke@435 2404 // Null check on self without removing any arguments. The argument
duke@435 2405 // null check technically happens in the wrong place, which can lead to
duke@435 2406 // invalid stack traces when the primitive is inlined into a method
duke@435 2407 // which handles NullPointerExceptions.
duke@435 2408 _sp += nargs;
duke@435 2409 do_null_check(receiver, T_OBJECT);
duke@435 2410 _sp -= nargs;
duke@435 2411 if (stopped()) {
duke@435 2412 return true;
duke@435 2413 }
duke@435 2414 }
duke@435 2415
duke@435 2416 // Generate the read or write prefetch
duke@435 2417 Node *prefetch;
duke@435 2418 if (is_store) {
duke@435 2419 prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
duke@435 2420 } else {
duke@435 2421 prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
duke@435 2422 }
duke@435 2423 prefetch->init_req(0, control());
duke@435 2424 set_i_o(_gvn.transform(prefetch));
duke@435 2425
duke@435 2426 return true;
duke@435 2427 }
duke@435 2428
duke@435 2429 //----------------------------inline_unsafe_CAS----------------------------
duke@435 2430
duke@435 2431 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
duke@435 2432 // This basic scheme here is the same as inline_unsafe_access, but
duke@435 2433 // differs in enough details that combining them would make the code
duke@435 2434 // overly confusing. (This is a true fact! I originally combined
duke@435 2435 // them, but even I was confused by it!) As much code/comments as
duke@435 2436 // possible are retained from inline_unsafe_access though to make
twisti@1040 2437 // the correspondences clearer. - dl
duke@435 2438
duke@435 2439 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2440
duke@435 2441 #ifndef PRODUCT
duke@435 2442 {
duke@435 2443 ResourceMark rm;
duke@435 2444 // Check the signatures.
duke@435 2445 ciSignature* sig = signature();
duke@435 2446 #ifdef ASSERT
duke@435 2447 BasicType rtype = sig->return_type()->basic_type();
duke@435 2448 assert(rtype == T_BOOLEAN, "CAS must return boolean");
duke@435 2449 assert(sig->count() == 4, "CAS has 4 arguments");
duke@435 2450 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
duke@435 2451 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
duke@435 2452 #endif // ASSERT
duke@435 2453 }
duke@435 2454 #endif //PRODUCT
duke@435 2455
duke@435 2456 // number of stack slots per value argument (1 or 2)
duke@435 2457 int type_words = type2size[type];
duke@435 2458
duke@435 2459 // Cannot inline wide CAS on machines that don't support it natively
kvn@464 2460 if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
duke@435 2461 return false;
duke@435 2462
duke@435 2463 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2464
duke@435 2465 // Argument words: "this" plus oop plus offset plus oldvalue plus newvalue;
duke@435 2466 int nargs = 1 + 1 + 2 + type_words + type_words;
duke@435 2467
duke@435 2468 // pop arguments: newval, oldval, offset, base, and receiver
duke@435 2469 debug_only(int saved_sp = _sp);
duke@435 2470 _sp += nargs;
duke@435 2471 Node* newval = (type_words == 1) ? pop() : pop_pair();
duke@435 2472 Node* oldval = (type_words == 1) ? pop() : pop_pair();
duke@435 2473 Node *offset = pop_pair();
duke@435 2474 Node *base = pop();
duke@435 2475 Node *receiver = pop();
duke@435 2476 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2477
duke@435 2478 // Null check receiver.
duke@435 2479 _sp += nargs;
duke@435 2480 do_null_check(receiver, T_OBJECT);
duke@435 2481 _sp -= nargs;
duke@435 2482 if (stopped()) {
duke@435 2483 return true;
duke@435 2484 }
duke@435 2485
duke@435 2486 // Build field offset expression.
duke@435 2487 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2488 // to be plain byte offsets, which are also the same as those accepted
duke@435 2489 // by oopDesc::field_base.
duke@435 2490 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2491 // 32-bit machines ignore the high half of long offsets
duke@435 2492 offset = ConvL2X(offset);
duke@435 2493 Node* adr = make_unsafe_address(base, offset);
duke@435 2494 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2495
duke@435 2496 // (Unlike inline_unsafe_access, there seems no point in trying
duke@435 2497 // to refine types. Just use the coarse types here.
duke@435 2498 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2499 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2500 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2501 int alias_idx = C->get_alias_index(adr_type);
duke@435 2502
duke@435 2503 // Memory-model-wise, a CAS acts like a little synchronized block,
twisti@1040 2504 // so needs barriers on each side. These don't translate into
duke@435 2505 // actual barriers on most machines, but we still need rest of
duke@435 2506 // compiler to respect ordering.
duke@435 2507
duke@435 2508 insert_mem_bar(Op_MemBarRelease);
duke@435 2509 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2510
duke@435 2511 // 4984716: MemBars must be inserted before this
duke@435 2512 // memory node in order to avoid a false
duke@435 2513 // dependency which will confuse the scheduler.
duke@435 2514 Node *mem = memory(alias_idx);
duke@435 2515
duke@435 2516 // For now, we handle only those cases that actually exist: ints,
duke@435 2517 // longs, and Object. Adding others should be straightforward.
duke@435 2518 Node* cas;
duke@435 2519 switch(type) {
duke@435 2520 case T_INT:
duke@435 2521 cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
duke@435 2522 break;
duke@435 2523 case T_LONG:
duke@435 2524 cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
duke@435 2525 break;
duke@435 2526 case T_OBJECT:
coleenp@548 2527 // reference stores need a store barrier.
duke@435 2528 // (They don't if CAS fails, but it isn't worth checking.)
never@1262 2529 pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
coleenp@548 2530 #ifdef _LP64
kvn@598 2531 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@656 2532 Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
kvn@656 2533 Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
coleenp@548 2534 cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
kvn@656 2535 newval_enc, oldval_enc));
coleenp@548 2536 } else
coleenp@548 2537 #endif
kvn@656 2538 {
kvn@656 2539 cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
kvn@656 2540 }
duke@435 2541 post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
duke@435 2542 break;
duke@435 2543 default:
duke@435 2544 ShouldNotReachHere();
duke@435 2545 break;
duke@435 2546 }
duke@435 2547
duke@435 2548 // SCMemProjNodes represent the memory state of CAS. Their main
duke@435 2549 // role is to prevent CAS nodes from being optimized away when their
duke@435 2550 // results aren't used.
duke@435 2551 Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
duke@435 2552 set_memory(proj, alias_idx);
duke@435 2553
duke@435 2554 // Add the trailing membar surrounding the access
duke@435 2555 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2556 insert_mem_bar(Op_MemBarAcquire);
duke@435 2557
duke@435 2558 push(cas);
duke@435 2559 return true;
duke@435 2560 }
duke@435 2561
duke@435 2562 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
duke@435 2563 // This is another variant of inline_unsafe_access, differing in
duke@435 2564 // that it always issues store-store ("release") barrier and ensures
duke@435 2565 // store-atomicity (which only matters for "long").
duke@435 2566
duke@435 2567 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2568
duke@435 2569 #ifndef PRODUCT
duke@435 2570 {
duke@435 2571 ResourceMark rm;
duke@435 2572 // Check the signatures.
duke@435 2573 ciSignature* sig = signature();
duke@435 2574 #ifdef ASSERT
duke@435 2575 BasicType rtype = sig->return_type()->basic_type();
duke@435 2576 assert(rtype == T_VOID, "must return void");
duke@435 2577 assert(sig->count() == 3, "has 3 arguments");
duke@435 2578 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
duke@435 2579 assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
duke@435 2580 #endif // ASSERT
duke@435 2581 }
duke@435 2582 #endif //PRODUCT
duke@435 2583
duke@435 2584 // number of stack slots per value argument (1 or 2)
duke@435 2585 int type_words = type2size[type];
duke@435 2586
duke@435 2587 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2588
duke@435 2589 // Argument words: "this" plus oop plus offset plus value;
duke@435 2590 int nargs = 1 + 1 + 2 + type_words;
duke@435 2591
duke@435 2592 // pop arguments: val, offset, base, and receiver
duke@435 2593 debug_only(int saved_sp = _sp);
duke@435 2594 _sp += nargs;
duke@435 2595 Node* val = (type_words == 1) ? pop() : pop_pair();
duke@435 2596 Node *offset = pop_pair();
duke@435 2597 Node *base = pop();
duke@435 2598 Node *receiver = pop();
duke@435 2599 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2600
duke@435 2601 // Null check receiver.
duke@435 2602 _sp += nargs;
duke@435 2603 do_null_check(receiver, T_OBJECT);
duke@435 2604 _sp -= nargs;
duke@435 2605 if (stopped()) {
duke@435 2606 return true;
duke@435 2607 }
duke@435 2608
duke@435 2609 // Build field offset expression.
duke@435 2610 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2611 // 32-bit machines ignore the high half of long offsets
duke@435 2612 offset = ConvL2X(offset);
duke@435 2613 Node* adr = make_unsafe_address(base, offset);
duke@435 2614 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2615 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2616 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2617
duke@435 2618 insert_mem_bar(Op_MemBarRelease);
duke@435 2619 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2620 // Ensure that the store is atomic for longs:
duke@435 2621 bool require_atomic_access = true;
duke@435 2622 Node* store;
duke@435 2623 if (type == T_OBJECT) // reference stores need a store barrier.
never@1260 2624 store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
duke@435 2625 else {
duke@435 2626 store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
duke@435 2627 }
duke@435 2628 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2629 return true;
duke@435 2630 }
duke@435 2631
duke@435 2632 bool LibraryCallKit::inline_unsafe_allocate() {
duke@435 2633 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2634 int nargs = 1 + 1;
duke@435 2635 assert(signature()->size() == nargs-1, "alloc has 1 argument");
duke@435 2636 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 2637 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2638 Node* cls = do_null_check(argument(1), T_OBJECT);
duke@435 2639 _sp -= nargs;
duke@435 2640 if (stopped()) return true;
duke@435 2641
duke@435 2642 Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
duke@435 2643 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2644 kls = do_null_check(kls, T_OBJECT);
duke@435 2645 _sp -= nargs;
duke@435 2646 if (stopped()) return true; // argument was like int.class
duke@435 2647
duke@435 2648 // Note: The argument might still be an illegal value like
duke@435 2649 // Serializable.class or Object[].class. The runtime will handle it.
duke@435 2650 // But we must make an explicit check for initialization.
duke@435 2651 Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
duke@435 2652 Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
duke@435 2653 Node* bits = intcon(instanceKlass::fully_initialized);
duke@435 2654 Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
duke@435 2655 // The 'test' is non-zero if we need to take a slow path.
duke@435 2656
duke@435 2657 Node* obj = new_instance(kls, test);
duke@435 2658 push(obj);
duke@435 2659
duke@435 2660 return true;
duke@435 2661 }
duke@435 2662
duke@435 2663 //------------------------inline_native_time_funcs--------------
duke@435 2664 // inline code for System.currentTimeMillis() and System.nanoTime()
duke@435 2665 // these have the same type and signature
duke@435 2666 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
duke@435 2667 address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
duke@435 2668 CAST_FROM_FN_PTR(address, os::javaTimeMillis);
duke@435 2669 const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
duke@435 2670 const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
duke@435 2671 const TypePtr* no_memory_effects = NULL;
duke@435 2672 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
duke@435 2673 Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
duke@435 2674 #ifdef ASSERT
duke@435 2675 Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
duke@435 2676 assert(value_top == top(), "second value must be top");
duke@435 2677 #endif
duke@435 2678 push_pair(value);
duke@435 2679 return true;
duke@435 2680 }
duke@435 2681
duke@435 2682 //------------------------inline_native_currentThread------------------
duke@435 2683 bool LibraryCallKit::inline_native_currentThread() {
duke@435 2684 Node* junk = NULL;
duke@435 2685 push(generate_current_thread(junk));
duke@435 2686 return true;
duke@435 2687 }
duke@435 2688
duke@435 2689 //------------------------inline_native_isInterrupted------------------
duke@435 2690 bool LibraryCallKit::inline_native_isInterrupted() {
duke@435 2691 const int nargs = 1+1; // receiver + boolean
duke@435 2692 assert(nargs == arg_size(), "sanity");
duke@435 2693 // Add a fast path to t.isInterrupted(clear_int):
duke@435 2694 // (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
duke@435 2695 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
duke@435 2696 // So, in the common case that the interrupt bit is false,
duke@435 2697 // we avoid making a call into the VM. Even if the interrupt bit
duke@435 2698 // is true, if the clear_int argument is false, we avoid the VM call.
duke@435 2699 // However, if the receiver is not currentThread, we must call the VM,
duke@435 2700 // because there must be some locking done around the operation.
duke@435 2701
duke@435 2702 // We only go to the fast case code if we pass two guards.
duke@435 2703 // Paths which do not pass are accumulated in the slow_region.
duke@435 2704 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 2705 record_for_igvn(slow_region);
duke@435 2706 RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
duke@435 2707 PhiNode* result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
duke@435 2708 enum { no_int_result_path = 1,
duke@435 2709 no_clear_result_path = 2,
duke@435 2710 slow_result_path = 3
duke@435 2711 };
duke@435 2712
duke@435 2713 // (a) Receiving thread must be the current thread.
duke@435 2714 Node* rec_thr = argument(0);
duke@435 2715 Node* tls_ptr = NULL;
duke@435 2716 Node* cur_thr = generate_current_thread(tls_ptr);
duke@435 2717 Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
duke@435 2718 Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
duke@435 2719
duke@435 2720 bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
duke@435 2721 if (!known_current_thread)
duke@435 2722 generate_slow_guard(bol_thr, slow_region);
duke@435 2723
duke@435 2724 // (b) Interrupt bit on TLS must be false.
duke@435 2725 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
duke@435 2726 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
duke@435 2727 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
kvn@1222 2728 // Set the control input on the field _interrupted read to prevent it floating up.
kvn@1222 2729 Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
duke@435 2730 Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
duke@435 2731 Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
duke@435 2732
duke@435 2733 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
duke@435 2734
duke@435 2735 // First fast path: if (!TLS._interrupted) return false;
duke@435 2736 Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
duke@435 2737 result_rgn->init_req(no_int_result_path, false_bit);
duke@435 2738 result_val->init_req(no_int_result_path, intcon(0));
duke@435 2739
duke@435 2740 // drop through to next case
duke@435 2741 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
duke@435 2742
duke@435 2743 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
duke@435 2744 Node* clr_arg = argument(1);
duke@435 2745 Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
duke@435 2746 Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
duke@435 2747 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
duke@435 2748
duke@435 2749 // Second fast path: ... else if (!clear_int) return true;
duke@435 2750 Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
duke@435 2751 result_rgn->init_req(no_clear_result_path, false_arg);
duke@435 2752 result_val->init_req(no_clear_result_path, intcon(1));
duke@435 2753
duke@435 2754 // drop through to next case
duke@435 2755 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
duke@435 2756
duke@435 2757 // (d) Otherwise, go to the slow path.
duke@435 2758 slow_region->add_req(control());
duke@435 2759 set_control( _gvn.transform(slow_region) );
duke@435 2760
duke@435 2761 if (stopped()) {
duke@435 2762 // There is no slow path.
duke@435 2763 result_rgn->init_req(slow_result_path, top());
duke@435 2764 result_val->init_req(slow_result_path, top());
duke@435 2765 } else {
duke@435 2766 // non-virtual because it is a private non-static
duke@435 2767 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
duke@435 2768
duke@435 2769 Node* slow_val = set_results_for_java_call(slow_call);
duke@435 2770 // this->control() comes from set_results_for_java_call
duke@435 2771
duke@435 2772 // If we know that the result of the slow call will be true, tell the optimizer!
duke@435 2773 if (known_current_thread) slow_val = intcon(1);
duke@435 2774
duke@435 2775 Node* fast_io = slow_call->in(TypeFunc::I_O);
duke@435 2776 Node* fast_mem = slow_call->in(TypeFunc::Memory);
duke@435 2777 // These two phis are pre-filled with copies of of the fast IO and Memory
duke@435 2778 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
duke@435 2779 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
duke@435 2780
duke@435 2781 result_rgn->init_req(slow_result_path, control());
duke@435 2782 io_phi ->init_req(slow_result_path, i_o());
duke@435 2783 mem_phi ->init_req(slow_result_path, reset_memory());
duke@435 2784 result_val->init_req(slow_result_path, slow_val);
duke@435 2785
duke@435 2786 set_all_memory( _gvn.transform(mem_phi) );
duke@435 2787 set_i_o( _gvn.transform(io_phi) );
duke@435 2788 }
duke@435 2789
duke@435 2790 push_result(result_rgn, result_val);
duke@435 2791 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 2792
duke@435 2793 return true;
duke@435 2794 }
duke@435 2795
duke@435 2796 //---------------------------load_mirror_from_klass----------------------------
duke@435 2797 // Given a klass oop, load its java mirror (a java.lang.Class oop).
duke@435 2798 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
duke@435 2799 Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
duke@435 2800 return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 2801 }
duke@435 2802
duke@435 2803 //-----------------------load_klass_from_mirror_common-------------------------
duke@435 2804 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
duke@435 2805 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
duke@435 2806 // and branch to the given path on the region.
duke@435 2807 // If never_see_null, take an uncommon trap on null, so we can optimistically
duke@435 2808 // compile for the non-null case.
duke@435 2809 // If the region is NULL, force never_see_null = true.
duke@435 2810 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
duke@435 2811 bool never_see_null,
duke@435 2812 int nargs,
duke@435 2813 RegionNode* region,
duke@435 2814 int null_path,
duke@435 2815 int offset) {
duke@435 2816 if (region == NULL) never_see_null = true;
duke@435 2817 Node* p = basic_plus_adr(mirror, offset);
duke@435 2818 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
kvn@599 2819 Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
duke@435 2820 _sp += nargs; // any deopt will start just before call to enclosing method
duke@435 2821 Node* null_ctl = top();
duke@435 2822 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 2823 if (region != NULL) {
duke@435 2824 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
duke@435 2825 region->init_req(null_path, null_ctl);
duke@435 2826 } else {
duke@435 2827 assert(null_ctl == top(), "no loose ends");
duke@435 2828 }
duke@435 2829 _sp -= nargs;
duke@435 2830 return kls;
duke@435 2831 }
duke@435 2832
duke@435 2833 //--------------------(inline_native_Class_query helpers)---------------------
duke@435 2834 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
duke@435 2835 // Fall through if (mods & mask) == bits, take the guard otherwise.
duke@435 2836 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
duke@435 2837 // Branch around if the given klass has the given modifier bit set.
duke@435 2838 // Like generate_guard, adds a new path onto the region.
duke@435 2839 Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
duke@435 2840 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
duke@435 2841 Node* mask = intcon(modifier_mask);
duke@435 2842 Node* bits = intcon(modifier_bits);
duke@435 2843 Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
duke@435 2844 Node* cmp = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
duke@435 2845 Node* bol = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
duke@435 2846 return generate_fair_guard(bol, region);
duke@435 2847 }
duke@435 2848 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
duke@435 2849 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
duke@435 2850 }
duke@435 2851
duke@435 2852 //-------------------------inline_native_Class_query-------------------
duke@435 2853 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
duke@435 2854 int nargs = 1+0; // just the Class mirror, in most cases
duke@435 2855 const Type* return_type = TypeInt::BOOL;
duke@435 2856 Node* prim_return_value = top(); // what happens if it's a primitive class?
duke@435 2857 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 2858 bool expect_prim = false; // most of these guys expect to work on refs
duke@435 2859
duke@435 2860 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
duke@435 2861
duke@435 2862 switch (id) {
duke@435 2863 case vmIntrinsics::_isInstance:
duke@435 2864 nargs = 1+1; // the Class mirror, plus the object getting queried about
duke@435 2865 // nothing is an instance of a primitive type
duke@435 2866 prim_return_value = intcon(0);
duke@435 2867 break;
duke@435 2868 case vmIntrinsics::_getModifiers:
duke@435 2869 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 2870 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
duke@435 2871 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
duke@435 2872 break;
duke@435 2873 case vmIntrinsics::_isInterface:
duke@435 2874 prim_return_value = intcon(0);
duke@435 2875 break;
duke@435 2876 case vmIntrinsics::_isArray:
duke@435 2877 prim_return_value = intcon(0);
duke@435 2878 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
duke@435 2879 break;
duke@435 2880 case vmIntrinsics::_isPrimitive:
duke@435 2881 prim_return_value = intcon(1);
duke@435 2882 expect_prim = true; // obviously
duke@435 2883 break;
duke@435 2884 case vmIntrinsics::_getSuperclass:
duke@435 2885 prim_return_value = null();
duke@435 2886 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 2887 break;
duke@435 2888 case vmIntrinsics::_getComponentType:
duke@435 2889 prim_return_value = null();
duke@435 2890 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 2891 break;
duke@435 2892 case vmIntrinsics::_getClassAccessFlags:
duke@435 2893 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 2894 return_type = TypeInt::INT; // not bool! 6297094
duke@435 2895 break;
duke@435 2896 default:
duke@435 2897 ShouldNotReachHere();
duke@435 2898 }
duke@435 2899
duke@435 2900 Node* mirror = argument(0);
duke@435 2901 Node* obj = (nargs <= 1)? top(): argument(1);
duke@435 2902
duke@435 2903 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
duke@435 2904 if (mirror_con == NULL) return false; // cannot happen?
duke@435 2905
duke@435 2906 #ifndef PRODUCT
duke@435 2907 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 2908 ciType* k = mirror_con->java_mirror_type();
duke@435 2909 if (k) {
duke@435 2910 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
duke@435 2911 k->print_name();
duke@435 2912 tty->cr();
duke@435 2913 }
duke@435 2914 }
duke@435 2915 #endif
duke@435 2916
duke@435 2917 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
duke@435 2918 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 2919 record_for_igvn(region);
duke@435 2920 PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
duke@435 2921
duke@435 2922 // The mirror will never be null of Reflection.getClassAccessFlags, however
duke@435 2923 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
duke@435 2924 // if it is. See bug 4774291.
duke@435 2925
duke@435 2926 // For Reflection.getClassAccessFlags(), the null check occurs in
duke@435 2927 // the wrong place; see inline_unsafe_access(), above, for a similar
duke@435 2928 // situation.
duke@435 2929 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2930 mirror = do_null_check(mirror, T_OBJECT);
duke@435 2931 _sp -= nargs;
duke@435 2932 // If mirror or obj is dead, only null-path is taken.
duke@435 2933 if (stopped()) return true;
duke@435 2934
duke@435 2935 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
duke@435 2936
duke@435 2937 // Now load the mirror's klass metaobject, and null-check it.
duke@435 2938 // Side-effects region with the control path if the klass is null.
duke@435 2939 Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
duke@435 2940 region, _prim_path);
duke@435 2941 // If kls is null, we have a primitive mirror.
duke@435 2942 phi->init_req(_prim_path, prim_return_value);
duke@435 2943 if (stopped()) { push_result(region, phi); return true; }
duke@435 2944
duke@435 2945 Node* p; // handy temp
duke@435 2946 Node* null_ctl;
duke@435 2947
duke@435 2948 // Now that we have the non-null klass, we can perform the real query.
duke@435 2949 // For constant classes, the query will constant-fold in LoadNode::Value.
duke@435 2950 Node* query_value = top();
duke@435 2951 switch (id) {
duke@435 2952 case vmIntrinsics::_isInstance:
duke@435 2953 // nothing is an instance of a primitive type
jrose@2101 2954 _sp += nargs; // gen_instanceof might do an uncommon trap
duke@435 2955 query_value = gen_instanceof(obj, kls);
jrose@2101 2956 _sp -= nargs;
duke@435 2957 break;
duke@435 2958
duke@435 2959 case vmIntrinsics::_getModifiers:
duke@435 2960 p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
duke@435 2961 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 2962 break;
duke@435 2963
duke@435 2964 case vmIntrinsics::_isInterface:
duke@435 2965 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 2966 if (generate_interface_guard(kls, region) != NULL)
duke@435 2967 // A guard was added. If the guard is taken, it was an interface.
duke@435 2968 phi->add_req(intcon(1));
duke@435 2969 // If we fall through, it's a plain class.
duke@435 2970 query_value = intcon(0);
duke@435 2971 break;
duke@435 2972
duke@435 2973 case vmIntrinsics::_isArray:
duke@435 2974 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
duke@435 2975 if (generate_array_guard(kls, region) != NULL)
duke@435 2976 // A guard was added. If the guard is taken, it was an array.
duke@435 2977 phi->add_req(intcon(1));
duke@435 2978 // If we fall through, it's a plain class.
duke@435 2979 query_value = intcon(0);
duke@435 2980 break;
duke@435 2981
duke@435 2982 case vmIntrinsics::_isPrimitive:
duke@435 2983 query_value = intcon(0); // "normal" path produces false
duke@435 2984 break;
duke@435 2985
duke@435 2986 case vmIntrinsics::_getSuperclass:
duke@435 2987 // The rules here are somewhat unfortunate, but we can still do better
duke@435 2988 // with random logic than with a JNI call.
duke@435 2989 // Interfaces store null or Object as _super, but must report null.
duke@435 2990 // Arrays store an intermediate super as _super, but must report Object.
duke@435 2991 // Other types can report the actual _super.
duke@435 2992 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 2993 if (generate_interface_guard(kls, region) != NULL)
duke@435 2994 // A guard was added. If the guard is taken, it was an interface.
duke@435 2995 phi->add_req(null());
duke@435 2996 if (generate_array_guard(kls, region) != NULL)
duke@435 2997 // A guard was added. If the guard is taken, it was an array.
duke@435 2998 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
duke@435 2999 // If we fall through, it's a plain class. Get its _super.
duke@435 3000 p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
kvn@599 3001 kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
duke@435 3002 null_ctl = top();
duke@435 3003 kls = null_check_oop(kls, &null_ctl);
duke@435 3004 if (null_ctl != top()) {
duke@435 3005 // If the guard is taken, Object.superClass is null (both klass and mirror).
duke@435 3006 region->add_req(null_ctl);
duke@435 3007 phi ->add_req(null());
duke@435 3008 }
duke@435 3009 if (!stopped()) {
duke@435 3010 query_value = load_mirror_from_klass(kls);
duke@435 3011 }
duke@435 3012 break;
duke@435 3013
duke@435 3014 case vmIntrinsics::_getComponentType:
duke@435 3015 if (generate_array_guard(kls, region) != NULL) {
duke@435 3016 // Be sure to pin the oop load to the guard edge just created:
duke@435 3017 Node* is_array_ctrl = region->in(region->req()-1);
duke@435 3018 Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
duke@435 3019 Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3020 phi->add_req(cmo);
duke@435 3021 }
duke@435 3022 query_value = null(); // non-array case is null
duke@435 3023 break;
duke@435 3024
duke@435 3025 case vmIntrinsics::_getClassAccessFlags:
duke@435 3026 p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
duke@435 3027 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3028 break;
duke@435 3029
duke@435 3030 default:
duke@435 3031 ShouldNotReachHere();
duke@435 3032 }
duke@435 3033
duke@435 3034 // Fall-through is the normal case of a query to a real class.
duke@435 3035 phi->init_req(1, query_value);
duke@435 3036 region->init_req(1, control());
duke@435 3037
duke@435 3038 push_result(region, phi);
duke@435 3039 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3040
duke@435 3041 return true;
duke@435 3042 }
duke@435 3043
duke@435 3044 //--------------------------inline_native_subtype_check------------------------
duke@435 3045 // This intrinsic takes the JNI calls out of the heart of
duke@435 3046 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
duke@435 3047 bool LibraryCallKit::inline_native_subtype_check() {
duke@435 3048 int nargs = 1+1; // the Class mirror, plus the other class getting examined
duke@435 3049
duke@435 3050 // Pull both arguments off the stack.
duke@435 3051 Node* args[2]; // two java.lang.Class mirrors: superc, subc
duke@435 3052 args[0] = argument(0);
duke@435 3053 args[1] = argument(1);
duke@435 3054 Node* klasses[2]; // corresponding Klasses: superk, subk
duke@435 3055 klasses[0] = klasses[1] = top();
duke@435 3056
duke@435 3057 enum {
duke@435 3058 // A full decision tree on {superc is prim, subc is prim}:
duke@435 3059 _prim_0_path = 1, // {P,N} => false
duke@435 3060 // {P,P} & superc!=subc => false
duke@435 3061 _prim_same_path, // {P,P} & superc==subc => true
duke@435 3062 _prim_1_path, // {N,P} => false
duke@435 3063 _ref_subtype_path, // {N,N} & subtype check wins => true
duke@435 3064 _both_ref_path, // {N,N} & subtype check loses => false
duke@435 3065 PATH_LIMIT
duke@435 3066 };
duke@435 3067
duke@435 3068 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3069 Node* phi = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
duke@435 3070 record_for_igvn(region);
duke@435 3071
duke@435 3072 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
duke@435 3073 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3074 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
duke@435 3075
duke@435 3076 // First null-check both mirrors and load each mirror's klass metaobject.
duke@435 3077 int which_arg;
duke@435 3078 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3079 Node* arg = args[which_arg];
duke@435 3080 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3081 arg = do_null_check(arg, T_OBJECT);
duke@435 3082 _sp -= nargs;
duke@435 3083 if (stopped()) break;
duke@435 3084 args[which_arg] = _gvn.transform(arg);
duke@435 3085
duke@435 3086 Node* p = basic_plus_adr(arg, class_klass_offset);
kvn@599 3087 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
duke@435 3088 klasses[which_arg] = _gvn.transform(kls);
duke@435 3089 }
duke@435 3090
duke@435 3091 // Having loaded both klasses, test each for null.
duke@435 3092 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3093 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3094 Node* kls = klasses[which_arg];
duke@435 3095 Node* null_ctl = top();
duke@435 3096 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3097 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3098 _sp -= nargs;
duke@435 3099 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
duke@435 3100 region->init_req(prim_path, null_ctl);
duke@435 3101 if (stopped()) break;
duke@435 3102 klasses[which_arg] = kls;
duke@435 3103 }
duke@435 3104
duke@435 3105 if (!stopped()) {
duke@435 3106 // now we have two reference types, in klasses[0..1]
duke@435 3107 Node* subk = klasses[1]; // the argument to isAssignableFrom
duke@435 3108 Node* superk = klasses[0]; // the receiver
duke@435 3109 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
duke@435 3110 // now we have a successful reference subtype check
duke@435 3111 region->set_req(_ref_subtype_path, control());
duke@435 3112 }
duke@435 3113
duke@435 3114 // If both operands are primitive (both klasses null), then
duke@435 3115 // we must return true when they are identical primitives.
duke@435 3116 // It is convenient to test this after the first null klass check.
duke@435 3117 set_control(region->in(_prim_0_path)); // go back to first null check
duke@435 3118 if (!stopped()) {
duke@435 3119 // Since superc is primitive, make a guard for the superc==subc case.
duke@435 3120 Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
duke@435 3121 Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
duke@435 3122 generate_guard(bol_eq, region, PROB_FAIR);
duke@435 3123 if (region->req() == PATH_LIMIT+1) {
duke@435 3124 // A guard was added. If the added guard is taken, superc==subc.
duke@435 3125 region->swap_edges(PATH_LIMIT, _prim_same_path);
duke@435 3126 region->del_req(PATH_LIMIT);
duke@435 3127 }
duke@435 3128 region->set_req(_prim_0_path, control()); // Not equal after all.
duke@435 3129 }
duke@435 3130
duke@435 3131 // these are the only paths that produce 'true':
duke@435 3132 phi->set_req(_prim_same_path, intcon(1));
duke@435 3133 phi->set_req(_ref_subtype_path, intcon(1));
duke@435 3134
duke@435 3135 // pull together the cases:
duke@435 3136 assert(region->req() == PATH_LIMIT, "sane region");
duke@435 3137 for (uint i = 1; i < region->req(); i++) {
duke@435 3138 Node* ctl = region->in(i);
duke@435 3139 if (ctl == NULL || ctl == top()) {
duke@435 3140 region->set_req(i, top());
duke@435 3141 phi ->set_req(i, top());
duke@435 3142 } else if (phi->in(i) == NULL) {
duke@435 3143 phi->set_req(i, intcon(0)); // all other paths produce 'false'
duke@435 3144 }
duke@435 3145 }
duke@435 3146
duke@435 3147 set_control(_gvn.transform(region));
duke@435 3148 push(_gvn.transform(phi));
duke@435 3149
duke@435 3150 return true;
duke@435 3151 }
duke@435 3152
duke@435 3153 //---------------------generate_array_guard_common------------------------
duke@435 3154 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 3155 bool obj_array, bool not_array) {
duke@435 3156 // If obj_array/non_array==false/false:
duke@435 3157 // Branch around if the given klass is in fact an array (either obj or prim).
duke@435 3158 // If obj_array/non_array==false/true:
duke@435 3159 // Branch around if the given klass is not an array klass of any kind.
duke@435 3160 // If obj_array/non_array==true/true:
duke@435 3161 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
duke@435 3162 // If obj_array/non_array==true/false:
duke@435 3163 // Branch around if the kls is an oop array (Object[] or subtype)
duke@435 3164 //
duke@435 3165 // Like generate_guard, adds a new path onto the region.
duke@435 3166 jint layout_con = 0;
duke@435 3167 Node* layout_val = get_layout_helper(kls, layout_con);
duke@435 3168 if (layout_val == NULL) {
duke@435 3169 bool query = (obj_array
duke@435 3170 ? Klass::layout_helper_is_objArray(layout_con)
duke@435 3171 : Klass::layout_helper_is_javaArray(layout_con));
duke@435 3172 if (query == not_array) {
duke@435 3173 return NULL; // never a branch
duke@435 3174 } else { // always a branch
duke@435 3175 Node* always_branch = control();
duke@435 3176 if (region != NULL)
duke@435 3177 region->add_req(always_branch);
duke@435 3178 set_control(top());
duke@435 3179 return always_branch;
duke@435 3180 }
duke@435 3181 }
duke@435 3182 // Now test the correct condition.
duke@435 3183 jint nval = (obj_array
duke@435 3184 ? ((jint)Klass::_lh_array_tag_type_value
duke@435 3185 << Klass::_lh_array_tag_shift)
duke@435 3186 : Klass::_lh_neutral_value);
duke@435 3187 Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
duke@435 3188 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
duke@435 3189 // invert the test if we are looking for a non-array
duke@435 3190 if (not_array) btest = BoolTest(btest).negate();
duke@435 3191 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
duke@435 3192 return generate_fair_guard(bol, region);
duke@435 3193 }
duke@435 3194
duke@435 3195
duke@435 3196 //-----------------------inline_native_newArray--------------------------
duke@435 3197 bool LibraryCallKit::inline_native_newArray() {
duke@435 3198 int nargs = 2;
duke@435 3199 Node* mirror = argument(0);
duke@435 3200 Node* count_val = argument(1);
duke@435 3201
duke@435 3202 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3203 mirror = do_null_check(mirror, T_OBJECT);
duke@435 3204 _sp -= nargs;
kvn@598 3205 // If mirror or obj is dead, only null-path is taken.
kvn@598 3206 if (stopped()) return true;
duke@435 3207
duke@435 3208 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
duke@435 3209 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3210 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3211 TypeInstPtr::NOTNULL);
duke@435 3212 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3213 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3214 TypePtr::BOTTOM);
duke@435 3215
duke@435 3216 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3217 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
duke@435 3218 nargs,
duke@435 3219 result_reg, _slow_path);
duke@435 3220 Node* normal_ctl = control();
duke@435 3221 Node* no_array_ctl = result_reg->in(_slow_path);
duke@435 3222
duke@435 3223 // Generate code for the slow case. We make a call to newArray().
duke@435 3224 set_control(no_array_ctl);
duke@435 3225 if (!stopped()) {
duke@435 3226 // Either the input type is void.class, or else the
duke@435 3227 // array klass has not yet been cached. Either the
duke@435 3228 // ensuing call will throw an exception, or else it
duke@435 3229 // will cache the array klass for next time.
duke@435 3230 PreserveJVMState pjvms(this);
duke@435 3231 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
duke@435 3232 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3233 // this->control() comes from set_results_for_java_call
duke@435 3234 result_reg->set_req(_slow_path, control());
duke@435 3235 result_val->set_req(_slow_path, slow_result);
duke@435 3236 result_io ->set_req(_slow_path, i_o());
duke@435 3237 result_mem->set_req(_slow_path, reset_memory());
duke@435 3238 }
duke@435 3239
duke@435 3240 set_control(normal_ctl);
duke@435 3241 if (!stopped()) {
duke@435 3242 // Normal case: The array type has been cached in the java.lang.Class.
duke@435 3243 // The following call works fine even if the array type is polymorphic.
duke@435 3244 // It could be a dynamic mix of int[], boolean[], Object[], etc.
cfang@1165 3245 Node* obj = new_array(klass_node, count_val, nargs);
duke@435 3246 result_reg->init_req(_normal_path, control());
duke@435 3247 result_val->init_req(_normal_path, obj);
duke@435 3248 result_io ->init_req(_normal_path, i_o());
duke@435 3249 result_mem->init_req(_normal_path, reset_memory());
duke@435 3250 }
duke@435 3251
duke@435 3252 // Return the combined state.
duke@435 3253 set_i_o( _gvn.transform(result_io) );
duke@435 3254 set_all_memory( _gvn.transform(result_mem) );
duke@435 3255 push_result(result_reg, result_val);
duke@435 3256 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3257
duke@435 3258 return true;
duke@435 3259 }
duke@435 3260
duke@435 3261 //----------------------inline_native_getLength--------------------------
duke@435 3262 bool LibraryCallKit::inline_native_getLength() {
duke@435 3263 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3264
duke@435 3265 int nargs = 1;
duke@435 3266 Node* array = argument(0);
duke@435 3267
duke@435 3268 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3269 array = do_null_check(array, T_OBJECT);
duke@435 3270 _sp -= nargs;
duke@435 3271
duke@435 3272 // If array is dead, only null-path is taken.
duke@435 3273 if (stopped()) return true;
duke@435 3274
duke@435 3275 // Deoptimize if it is a non-array.
duke@435 3276 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
duke@435 3277
duke@435 3278 if (non_array != NULL) {
duke@435 3279 PreserveJVMState pjvms(this);
duke@435 3280 set_control(non_array);
duke@435 3281 _sp += nargs; // push the arguments back on the stack
duke@435 3282 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 3283 Deoptimization::Action_maybe_recompile);
duke@435 3284 }
duke@435 3285
duke@435 3286 // If control is dead, only non-array-path is taken.
duke@435 3287 if (stopped()) return true;
duke@435 3288
duke@435 3289 // The works fine even if the array type is polymorphic.
duke@435 3290 // It could be a dynamic mix of int[], boolean[], Object[], etc.
duke@435 3291 push( load_array_length(array) );
duke@435 3292
duke@435 3293 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3294
duke@435 3295 return true;
duke@435 3296 }
duke@435 3297
duke@435 3298 //------------------------inline_array_copyOf----------------------------
duke@435 3299 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
duke@435 3300 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3301
duke@435 3302 // Restore the stack and pop off the arguments.
duke@435 3303 int nargs = 3 + (is_copyOfRange? 1: 0);
duke@435 3304 Node* original = argument(0);
duke@435 3305 Node* start = is_copyOfRange? argument(1): intcon(0);
duke@435 3306 Node* end = is_copyOfRange? argument(2): argument(1);
duke@435 3307 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
duke@435 3308
cfang@1337 3309 Node* newcopy;
cfang@1337 3310
cfang@1337 3311 //set the original stack and the reexecute bit for the interpreter to reexecute
cfang@1337 3312 //the bytecode that invokes Arrays.copyOf if deoptimization happens
cfang@1337 3313 { PreserveReexecuteState preexecs(this);
cfang@1337 3314 _sp += nargs;
cfang@1337 3315 jvms()->set_should_reexecute(true);
cfang@1337 3316
cfang@1337 3317 array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
cfang@1337 3318 original = do_null_check(original, T_OBJECT);
cfang@1337 3319
cfang@1337 3320 // Check if a null path was taken unconditionally.
cfang@1337 3321 if (stopped()) return true;
cfang@1337 3322
cfang@1337 3323 Node* orig_length = load_array_length(original);
cfang@1337 3324
cfang@1337 3325 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
cfang@1337 3326 NULL, 0);
cfang@1337 3327 klass_node = do_null_check(klass_node, T_OBJECT);
cfang@1337 3328
cfang@1337 3329 RegionNode* bailout = new (C, 1) RegionNode(1);
cfang@1337 3330 record_for_igvn(bailout);
cfang@1337 3331
cfang@1337 3332 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
cfang@1337 3333 // Bail out if that is so.
cfang@1337 3334 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
cfang@1337 3335 if (not_objArray != NULL) {
cfang@1337 3336 // Improve the klass node's type from the new optimistic assumption:
cfang@1337 3337 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
cfang@1337 3338 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
cfang@1337 3339 Node* cast = new (C, 2) CastPPNode(klass_node, akls);
cfang@1337 3340 cast->init_req(0, control());
cfang@1337 3341 klass_node = _gvn.transform(cast);
cfang@1337 3342 }
cfang@1337 3343
cfang@1337 3344 // Bail out if either start or end is negative.
cfang@1337 3345 generate_negative_guard(start, bailout, &start);
cfang@1337 3346 generate_negative_guard(end, bailout, &end);
cfang@1337 3347
cfang@1337 3348 Node* length = end;
cfang@1337 3349 if (_gvn.type(start) != TypeInt::ZERO) {
cfang@1337 3350 length = _gvn.transform( new (C, 3) SubINode(end, start) );
cfang@1337 3351 }
cfang@1337 3352
cfang@1337 3353 // Bail out if length is negative.
cfang@1337 3354 // ...Not needed, since the new_array will throw the right exception.
cfang@1337 3355 //generate_negative_guard(length, bailout, &length);
cfang@1337 3356
cfang@1337 3357 if (bailout->req() > 1) {
cfang@1337 3358 PreserveJVMState pjvms(this);
cfang@1337 3359 set_control( _gvn.transform(bailout) );
cfang@1337 3360 uncommon_trap(Deoptimization::Reason_intrinsic,
cfang@1337 3361 Deoptimization::Action_maybe_recompile);
cfang@1337 3362 }
cfang@1337 3363
cfang@1337 3364 if (!stopped()) {
cfang@1335 3365
cfang@1335 3366 // How many elements will we copy from the original?
cfang@1335 3367 // The answer is MinI(orig_length - start, length).
cfang@1335 3368 Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
cfang@1335 3369 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
cfang@1335 3370
cfang@1335 3371 const bool raw_mem_only = true;
cfang@1335 3372 newcopy = new_array(klass_node, length, 0, raw_mem_only);
cfang@1335 3373
cfang@1335 3374 // Generate a direct call to the right arraycopy function(s).
cfang@1335 3375 // We know the copy is disjoint but we might not know if the
cfang@1335 3376 // oop stores need checking.
cfang@1335 3377 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
cfang@1335 3378 // This will fail a store-check if x contains any non-nulls.
cfang@1335 3379 bool disjoint_bases = true;
cfang@1335 3380 bool length_never_negative = true;
cfang@1335 3381 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 3382 original, start, newcopy, intcon(0), moved,
cfang@1335 3383 disjoint_bases, length_never_negative);
cfang@1337 3384 }
cfang@1337 3385 } //original reexecute and sp are set back here
cfang@1337 3386
cfang@1337 3387 if(!stopped()) {
duke@435 3388 push(newcopy);
duke@435 3389 }
duke@435 3390
duke@435 3391 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3392
duke@435 3393 return true;
duke@435 3394 }
duke@435 3395
duke@435 3396
duke@435 3397 //----------------------generate_virtual_guard---------------------------
duke@435 3398 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
duke@435 3399 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
duke@435 3400 RegionNode* slow_region) {
duke@435 3401 ciMethod* method = callee();
duke@435 3402 int vtable_index = method->vtable_index();
duke@435 3403 // Get the methodOop out of the appropriate vtable entry.
duke@435 3404 int entry_offset = (instanceKlass::vtable_start_offset() +
duke@435 3405 vtable_index*vtableEntry::size()) * wordSize +
duke@435 3406 vtableEntry::method_offset_in_bytes();
duke@435 3407 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
duke@435 3408 Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
duke@435 3409
duke@435 3410 // Compare the target method with the expected method (e.g., Object.hashCode).
duke@435 3411 const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
duke@435 3412
duke@435 3413 Node* native_call = makecon(native_call_addr);
duke@435 3414 Node* chk_native = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
duke@435 3415 Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
duke@435 3416
duke@435 3417 return generate_slow_guard(test_native, slow_region);
duke@435 3418 }
duke@435 3419
duke@435 3420 //-----------------------generate_method_call----------------------------
duke@435 3421 // Use generate_method_call to make a slow-call to the real
duke@435 3422 // method if the fast path fails. An alternative would be to
duke@435 3423 // use a stub like OptoRuntime::slow_arraycopy_Java.
duke@435 3424 // This only works for expanding the current library call,
duke@435 3425 // not another intrinsic. (E.g., don't use this for making an
duke@435 3426 // arraycopy call inside of the copyOf intrinsic.)
duke@435 3427 CallJavaNode*
duke@435 3428 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
duke@435 3429 // When compiling the intrinsic method itself, do not use this technique.
duke@435 3430 guarantee(callee() != C->method(), "cannot make slow-call to self");
duke@435 3431
duke@435 3432 ciMethod* method = callee();
duke@435 3433 // ensure the JVMS we have will be correct for this call
duke@435 3434 guarantee(method_id == method->intrinsic_id(), "must match");
duke@435 3435
duke@435 3436 const TypeFunc* tf = TypeFunc::make(method);
duke@435 3437 int tfdc = tf->domain()->cnt();
duke@435 3438 CallJavaNode* slow_call;
duke@435 3439 if (is_static) {
duke@435 3440 assert(!is_virtual, "");
duke@435 3441 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3442 SharedRuntime::get_resolve_static_call_stub(),
duke@435 3443 method, bci());
duke@435 3444 } else if (is_virtual) {
duke@435 3445 null_check_receiver(method);
duke@435 3446 int vtable_index = methodOopDesc::invalid_vtable_index;
duke@435 3447 if (UseInlineCaches) {
duke@435 3448 // Suppress the vtable call
duke@435 3449 } else {
duke@435 3450 // hashCode and clone are not a miranda methods,
duke@435 3451 // so the vtable index is fixed.
duke@435 3452 // No need to use the linkResolver to get it.
duke@435 3453 vtable_index = method->vtable_index();
duke@435 3454 }
duke@435 3455 slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
duke@435 3456 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 3457 method, vtable_index, bci());
duke@435 3458 } else { // neither virtual nor static: opt_virtual
duke@435 3459 null_check_receiver(method);
duke@435 3460 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3461 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 3462 method, bci());
duke@435 3463 slow_call->set_optimized_virtual(true);
duke@435 3464 }
duke@435 3465 set_arguments_for_java_call(slow_call);
duke@435 3466 set_edges_for_java_call(slow_call);
duke@435 3467 return slow_call;
duke@435 3468 }
duke@435 3469
duke@435 3470
duke@435 3471 //------------------------------inline_native_hashcode--------------------
duke@435 3472 // Build special case code for calls to hashCode on an object.
duke@435 3473 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
duke@435 3474 assert(is_static == callee()->is_static(), "correct intrinsic selection");
duke@435 3475 assert(!(is_virtual && is_static), "either virtual, special, or static");
duke@435 3476
duke@435 3477 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
duke@435 3478
duke@435 3479 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3480 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3481 TypeInt::INT);
duke@435 3482 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3483 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3484 TypePtr::BOTTOM);
duke@435 3485 Node* obj = NULL;
duke@435 3486 if (!is_static) {
duke@435 3487 // Check for hashing null object
duke@435 3488 obj = null_check_receiver(callee());
duke@435 3489 if (stopped()) return true; // unconditionally null
duke@435 3490 result_reg->init_req(_null_path, top());
duke@435 3491 result_val->init_req(_null_path, top());
duke@435 3492 } else {
duke@435 3493 // Do a null check, and return zero if null.
duke@435 3494 // System.identityHashCode(null) == 0
duke@435 3495 obj = argument(0);
duke@435 3496 Node* null_ctl = top();
duke@435 3497 obj = null_check_oop(obj, &null_ctl);
duke@435 3498 result_reg->init_req(_null_path, null_ctl);
duke@435 3499 result_val->init_req(_null_path, _gvn.intcon(0));
duke@435 3500 }
duke@435 3501
duke@435 3502 // Unconditionally null? Then return right away.
duke@435 3503 if (stopped()) {
duke@435 3504 set_control( result_reg->in(_null_path) );
duke@435 3505 if (!stopped())
duke@435 3506 push( result_val ->in(_null_path) );
duke@435 3507 return true;
duke@435 3508 }
duke@435 3509
duke@435 3510 // After null check, get the object's klass.
duke@435 3511 Node* obj_klass = load_object_klass(obj);
duke@435 3512
duke@435 3513 // This call may be virtual (invokevirtual) or bound (invokespecial).
duke@435 3514 // For each case we generate slightly different code.
duke@435 3515
duke@435 3516 // We only go to the fast case code if we pass a number of guards. The
duke@435 3517 // paths which do not pass are accumulated in the slow_region.
duke@435 3518 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 3519 record_for_igvn(slow_region);
duke@435 3520
duke@435 3521 // If this is a virtual call, we generate a funny guard. We pull out
duke@435 3522 // the vtable entry corresponding to hashCode() from the target object.
duke@435 3523 // If the target method which we are calling happens to be the native
duke@435 3524 // Object hashCode() method, we pass the guard. We do not need this
duke@435 3525 // guard for non-virtual calls -- the caller is known to be the native
duke@435 3526 // Object hashCode().
duke@435 3527 if (is_virtual) {
duke@435 3528 generate_virtual_guard(obj_klass, slow_region);
duke@435 3529 }
duke@435 3530
duke@435 3531 // Get the header out of the object, use LoadMarkNode when available
duke@435 3532 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@1964 3533 Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
duke@435 3534
duke@435 3535 // Test the header to see if it is unlocked.
duke@435 3536 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
duke@435 3537 Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
duke@435 3538 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
duke@435 3539 Node *chk_unlocked = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
duke@435 3540 Node *test_unlocked = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
duke@435 3541
duke@435 3542 generate_slow_guard(test_unlocked, slow_region);
duke@435 3543
duke@435 3544 // Get the hash value and check to see that it has been properly assigned.
duke@435 3545 // We depend on hash_mask being at most 32 bits and avoid the use of
duke@435 3546 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
duke@435 3547 // vm: see markOop.hpp.
duke@435 3548 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
duke@435 3549 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
duke@435 3550 Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
duke@435 3551 // This hack lets the hash bits live anywhere in the mark object now, as long
twisti@1040 3552 // as the shift drops the relevant bits into the low 32 bits. Note that
duke@435 3553 // Java spec says that HashCode is an int so there's no point in capturing
duke@435 3554 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
duke@435 3555 hshifted_header = ConvX2I(hshifted_header);
duke@435 3556 Node *hash_val = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
duke@435 3557
duke@435 3558 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
duke@435 3559 Node *chk_assigned = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
duke@435 3560 Node *test_assigned = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
duke@435 3561
duke@435 3562 generate_slow_guard(test_assigned, slow_region);
duke@435 3563
duke@435 3564 Node* init_mem = reset_memory();
duke@435 3565 // fill in the rest of the null path:
duke@435 3566 result_io ->init_req(_null_path, i_o());
duke@435 3567 result_mem->init_req(_null_path, init_mem);
duke@435 3568
duke@435 3569 result_val->init_req(_fast_path, hash_val);
duke@435 3570 result_reg->init_req(_fast_path, control());
duke@435 3571 result_io ->init_req(_fast_path, i_o());
duke@435 3572 result_mem->init_req(_fast_path, init_mem);
duke@435 3573
duke@435 3574 // Generate code for the slow case. We make a call to hashCode().
duke@435 3575 set_control(_gvn.transform(slow_region));
duke@435 3576 if (!stopped()) {
duke@435 3577 // No need for PreserveJVMState, because we're using up the present state.
duke@435 3578 set_all_memory(init_mem);
duke@435 3579 vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
duke@435 3580 if (is_static) hashCode_id = vmIntrinsics::_identityHashCode;
duke@435 3581 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
duke@435 3582 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3583 // this->control() comes from set_results_for_java_call
duke@435 3584 result_reg->init_req(_slow_path, control());
duke@435 3585 result_val->init_req(_slow_path, slow_result);
duke@435 3586 result_io ->set_req(_slow_path, i_o());
duke@435 3587 result_mem ->set_req(_slow_path, reset_memory());
duke@435 3588 }
duke@435 3589
duke@435 3590 // Return the combined state.
duke@435 3591 set_i_o( _gvn.transform(result_io) );
duke@435 3592 set_all_memory( _gvn.transform(result_mem) );
duke@435 3593 push_result(result_reg, result_val);
duke@435 3594
duke@435 3595 return true;
duke@435 3596 }
duke@435 3597
duke@435 3598 //---------------------------inline_native_getClass----------------------------
twisti@1040 3599 // Build special case code for calls to getClass on an object.
duke@435 3600 bool LibraryCallKit::inline_native_getClass() {
duke@435 3601 Node* obj = null_check_receiver(callee());
duke@435 3602 if (stopped()) return true;
duke@435 3603 push( load_mirror_from_klass(load_object_klass(obj)) );
duke@435 3604 return true;
duke@435 3605 }
duke@435 3606
duke@435 3607 //-----------------inline_native_Reflection_getCallerClass---------------------
duke@435 3608 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
duke@435 3609 //
duke@435 3610 // NOTE that this code must perform the same logic as
duke@435 3611 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3612 // Method.invoke() and auxiliary frames.
duke@435 3613
duke@435 3614
duke@435 3615
duke@435 3616
duke@435 3617 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
duke@435 3618 ciMethod* method = callee();
duke@435 3619
duke@435 3620 #ifndef PRODUCT
duke@435 3621 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3622 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
duke@435 3623 }
duke@435 3624 #endif
duke@435 3625
duke@435 3626 debug_only(int saved_sp = _sp);
duke@435 3627
duke@435 3628 // Argument words: (int depth)
duke@435 3629 int nargs = 1;
duke@435 3630
duke@435 3631 _sp += nargs;
duke@435 3632 Node* caller_depth_node = pop();
duke@435 3633
duke@435 3634 assert(saved_sp == _sp, "must have correct argument count");
duke@435 3635
duke@435 3636 // The depth value must be a constant in order for the runtime call
duke@435 3637 // to be eliminated.
duke@435 3638 const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
duke@435 3639 if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
duke@435 3640 #ifndef PRODUCT
duke@435 3641 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3642 tty->print_cr(" Bailing out because caller depth was not a constant");
duke@435 3643 }
duke@435 3644 #endif
duke@435 3645 return false;
duke@435 3646 }
duke@435 3647 // Note that the JVM state at this point does not include the
duke@435 3648 // getCallerClass() frame which we are trying to inline. The
duke@435 3649 // semantics of getCallerClass(), however, are that the "first"
duke@435 3650 // frame is the getCallerClass() frame, so we subtract one from the
duke@435 3651 // requested depth before continuing. We don't inline requests of
duke@435 3652 // getCallerClass(0).
duke@435 3653 int caller_depth = caller_depth_type->get_con() - 1;
duke@435 3654 if (caller_depth < 0) {
duke@435 3655 #ifndef PRODUCT
duke@435 3656 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3657 tty->print_cr(" Bailing out because caller depth was %d", caller_depth);
duke@435 3658 }
duke@435 3659 #endif
duke@435 3660 return false;
duke@435 3661 }
duke@435 3662
duke@435 3663 if (!jvms()->has_method()) {
duke@435 3664 #ifndef PRODUCT
duke@435 3665 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3666 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
duke@435 3667 }
duke@435 3668 #endif
duke@435 3669 return false;
duke@435 3670 }
duke@435 3671 int _depth = jvms()->depth(); // cache call chain depth
duke@435 3672
duke@435 3673 // Walk back up the JVM state to find the caller at the required
duke@435 3674 // depth. NOTE that this code must perform the same logic as
duke@435 3675 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3676 // Method.invoke() and auxiliary frames. Note also that depth is
duke@435 3677 // 1-based (1 is the bottom of the inlining).
duke@435 3678 int inlining_depth = _depth;
duke@435 3679 JVMState* caller_jvms = NULL;
duke@435 3680
duke@435 3681 if (inlining_depth > 0) {
duke@435 3682 caller_jvms = jvms();
duke@435 3683 assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
duke@435 3684 do {
duke@435 3685 // The following if-tests should be performed in this order
duke@435 3686 if (is_method_invoke_or_aux_frame(caller_jvms)) {
duke@435 3687 // Skip a Method.invoke() or auxiliary frame
duke@435 3688 } else if (caller_depth > 0) {
duke@435 3689 // Skip real frame
duke@435 3690 --caller_depth;
duke@435 3691 } else {
duke@435 3692 // We're done: reached desired caller after skipping.
duke@435 3693 break;
duke@435 3694 }
duke@435 3695 caller_jvms = caller_jvms->caller();
duke@435 3696 --inlining_depth;
duke@435 3697 } while (inlining_depth > 0);
duke@435 3698 }
duke@435 3699
duke@435 3700 if (inlining_depth == 0) {
duke@435 3701 #ifndef PRODUCT
duke@435 3702 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3703 tty->print_cr(" Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
duke@435 3704 tty->print_cr(" JVM state at this point:");
duke@435 3705 for (int i = _depth; i >= 1; i--) {
duke@435 3706 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3707 }
duke@435 3708 }
duke@435 3709 #endif
duke@435 3710 return false; // Reached end of inlining
duke@435 3711 }
duke@435 3712
duke@435 3713 // Acquire method holder as java.lang.Class
duke@435 3714 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
duke@435 3715 ciInstance* caller_mirror = caller_klass->java_mirror();
duke@435 3716 // Push this as a constant
duke@435 3717 push(makecon(TypeInstPtr::make(caller_mirror)));
duke@435 3718 #ifndef PRODUCT
duke@435 3719 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3720 tty->print_cr(" Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
duke@435 3721 tty->print_cr(" JVM state at this point:");
duke@435 3722 for (int i = _depth; i >= 1; i--) {
duke@435 3723 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 3724 }
duke@435 3725 }
duke@435 3726 #endif
duke@435 3727 return true;
duke@435 3728 }
duke@435 3729
duke@435 3730 // Helper routine for above
duke@435 3731 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
twisti@1587 3732 ciMethod* method = jvms->method();
twisti@1587 3733
duke@435 3734 // Is this the Method.invoke method itself?
twisti@1587 3735 if (method->intrinsic_id() == vmIntrinsics::_invoke)
duke@435 3736 return true;
duke@435 3737
duke@435 3738 // Is this a helper, defined somewhere underneath MethodAccessorImpl.
twisti@1587 3739 ciKlass* k = method->holder();
duke@435 3740 if (k->is_instance_klass()) {
duke@435 3741 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 3742 for (; ik != NULL; ik = ik->super()) {
duke@435 3743 if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
duke@435 3744 ik == env()->find_system_klass(ik->name())) {
duke@435 3745 return true;
duke@435 3746 }
duke@435 3747 }
duke@435 3748 }
twisti@1587 3749 else if (method->is_method_handle_adapter()) {
twisti@1587 3750 // This is an internal adapter frame from the MethodHandleCompiler -- skip it
twisti@1587 3751 return true;
twisti@1587 3752 }
duke@435 3753
duke@435 3754 return false;
duke@435 3755 }
duke@435 3756
duke@435 3757 static int value_field_offset = -1; // offset of the "value" field of AtomicLongCSImpl. This is needed by
duke@435 3758 // inline_native_AtomicLong_attemptUpdate() but it has no way of
duke@435 3759 // computing it since there is no lookup field by name function in the
duke@435 3760 // CI interface. This is computed and set by inline_native_AtomicLong_get().
duke@435 3761 // Using a static variable here is safe even if we have multiple compilation
duke@435 3762 // threads because the offset is constant. At worst the same offset will be
duke@435 3763 // computed and stored multiple
duke@435 3764
duke@435 3765 bool LibraryCallKit::inline_native_AtomicLong_get() {
duke@435 3766 // Restore the stack and pop off the argument
duke@435 3767 _sp+=1;
duke@435 3768 Node *obj = pop();
duke@435 3769
duke@435 3770 // get the offset of the "value" field. Since the CI interfaces
duke@435 3771 // does not provide a way to look up a field by name, we scan the bytecodes
duke@435 3772 // to get the field index. We expect the first 2 instructions of the method
duke@435 3773 // to be:
duke@435 3774 // 0 aload_0
duke@435 3775 // 1 getfield "value"
duke@435 3776 ciMethod* method = callee();
duke@435 3777 if (value_field_offset == -1)
duke@435 3778 {
duke@435 3779 ciField* value_field;
duke@435 3780 ciBytecodeStream iter(method);
duke@435 3781 Bytecodes::Code bc = iter.next();
duke@435 3782
duke@435 3783 if ((bc != Bytecodes::_aload_0) &&
duke@435 3784 ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
duke@435 3785 return false;
duke@435 3786 bc = iter.next();
duke@435 3787 if (bc != Bytecodes::_getfield)
duke@435 3788 return false;
duke@435 3789 bool ignore;
duke@435 3790 value_field = iter.get_field(ignore);
duke@435 3791 value_field_offset = value_field->offset_in_bytes();
duke@435 3792 }
duke@435 3793
duke@435 3794 // Null check without removing any arguments.
duke@435 3795 _sp++;
duke@435 3796 obj = do_null_check(obj, T_OBJECT);
duke@435 3797 _sp--;
duke@435 3798 // Check for locking null object
duke@435 3799 if (stopped()) return true;
duke@435 3800
duke@435 3801 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
duke@435 3802 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
duke@435 3803 int alias_idx = C->get_alias_index(adr_type);
duke@435 3804
duke@435 3805 Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
duke@435 3806
duke@435 3807 push_pair(result);
duke@435 3808
duke@435 3809 return true;
duke@435 3810 }
duke@435 3811
duke@435 3812 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
duke@435 3813 // Restore the stack and pop off the arguments
duke@435 3814 _sp+=5;
duke@435 3815 Node *newVal = pop_pair();
duke@435 3816 Node *oldVal = pop_pair();
duke@435 3817 Node *obj = pop();
duke@435 3818
duke@435 3819 // we need the offset of the "value" field which was computed when
duke@435 3820 // inlining the get() method. Give up if we don't have it.
duke@435 3821 if (value_field_offset == -1)
duke@435 3822 return false;
duke@435 3823
duke@435 3824 // Null check without removing any arguments.
duke@435 3825 _sp+=5;
duke@435 3826 obj = do_null_check(obj, T_OBJECT);
duke@435 3827 _sp-=5;
duke@435 3828 // Check for locking null object
duke@435 3829 if (stopped()) return true;
duke@435 3830
duke@435 3831 Node *adr = basic_plus_adr(obj, obj, value_field_offset);
duke@435 3832 const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
duke@435 3833 int alias_idx = C->get_alias_index(adr_type);
duke@435 3834
kvn@855 3835 Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
kvn@855 3836 Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
duke@435 3837 set_memory(store_proj, alias_idx);
kvn@855 3838 Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
kvn@855 3839
kvn@855 3840 Node *result;
kvn@855 3841 // CMove node is not used to be able fold a possible check code
kvn@855 3842 // after attemptUpdate() call. This code could be transformed
kvn@855 3843 // into CMove node by loop optimizations.
kvn@855 3844 {
kvn@855 3845 RegionNode *r = new (C, 3) RegionNode(3);
kvn@855 3846 result = new (C, 3) PhiNode(r, TypeInt::BOOL);
kvn@855 3847
kvn@855 3848 Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
kvn@855 3849 Node *iftrue = opt_iff(r, iff);
kvn@855 3850 r->init_req(1, iftrue);
kvn@855 3851 result->init_req(1, intcon(1));
kvn@855 3852 result->init_req(2, intcon(0));
kvn@855 3853
kvn@855 3854 set_control(_gvn.transform(r));
kvn@855 3855 record_for_igvn(r);
kvn@855 3856
kvn@855 3857 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@855 3858 }
kvn@855 3859
kvn@855 3860 push(_gvn.transform(result));
duke@435 3861 return true;
duke@435 3862 }
duke@435 3863
duke@435 3864 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
duke@435 3865 // restore the arguments
duke@435 3866 _sp += arg_size();
duke@435 3867
duke@435 3868 switch (id) {
duke@435 3869 case vmIntrinsics::_floatToRawIntBits:
duke@435 3870 push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
duke@435 3871 break;
duke@435 3872
duke@435 3873 case vmIntrinsics::_intBitsToFloat:
duke@435 3874 push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
duke@435 3875 break;
duke@435 3876
duke@435 3877 case vmIntrinsics::_doubleToRawLongBits:
duke@435 3878 push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
duke@435 3879 break;
duke@435 3880
duke@435 3881 case vmIntrinsics::_longBitsToDouble:
duke@435 3882 push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
duke@435 3883 break;
duke@435 3884
duke@435 3885 case vmIntrinsics::_doubleToLongBits: {
duke@435 3886 Node* value = pop_pair();
duke@435 3887
duke@435 3888 // two paths (plus control) merge in a wood
duke@435 3889 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 3890 Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
duke@435 3891
duke@435 3892 Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
duke@435 3893 // Build the boolean node
duke@435 3894 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 3895
duke@435 3896 // Branch either way.
duke@435 3897 // NaN case is less traveled, which makes all the difference.
duke@435 3898 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 3899 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 3900 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 3901 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 3902 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 3903
duke@435 3904 set_control(iftrue);
duke@435 3905
duke@435 3906 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 3907 Node *slow_result = longcon(nan_bits); // return NaN
duke@435 3908 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 3909 r->init_req(1, iftrue);
duke@435 3910
duke@435 3911 // Else fall through
duke@435 3912 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 3913 set_control(iffalse);
duke@435 3914
duke@435 3915 phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
duke@435 3916 r->init_req(2, iffalse);
duke@435 3917
duke@435 3918 // Post merge
duke@435 3919 set_control(_gvn.transform(r));
duke@435 3920 record_for_igvn(r);
duke@435 3921
duke@435 3922 Node* result = _gvn.transform(phi);
duke@435 3923 assert(result->bottom_type()->isa_long(), "must be");
duke@435 3924 push_pair(result);
duke@435 3925
duke@435 3926 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3927
duke@435 3928 break;
duke@435 3929 }
duke@435 3930
duke@435 3931 case vmIntrinsics::_floatToIntBits: {
duke@435 3932 Node* value = pop();
duke@435 3933
duke@435 3934 // two paths (plus control) merge in a wood
duke@435 3935 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 3936 Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
duke@435 3937
duke@435 3938 Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
duke@435 3939 // Build the boolean node
duke@435 3940 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 3941
duke@435 3942 // Branch either way.
duke@435 3943 // NaN case is less traveled, which makes all the difference.
duke@435 3944 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 3945 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 3946 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 3947 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 3948 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 3949
duke@435 3950 set_control(iftrue);
duke@435 3951
duke@435 3952 static const jint nan_bits = 0x7fc00000;
duke@435 3953 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
duke@435 3954 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 3955 r->init_req(1, iftrue);
duke@435 3956
duke@435 3957 // Else fall through
duke@435 3958 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 3959 set_control(iffalse);
duke@435 3960
duke@435 3961 phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
duke@435 3962 r->init_req(2, iffalse);
duke@435 3963
duke@435 3964 // Post merge
duke@435 3965 set_control(_gvn.transform(r));
duke@435 3966 record_for_igvn(r);
duke@435 3967
duke@435 3968 Node* result = _gvn.transform(phi);
duke@435 3969 assert(result->bottom_type()->isa_int(), "must be");
duke@435 3970 push(result);
duke@435 3971
duke@435 3972 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3973
duke@435 3974 break;
duke@435 3975 }
duke@435 3976
duke@435 3977 default:
duke@435 3978 ShouldNotReachHere();
duke@435 3979 }
duke@435 3980
duke@435 3981 return true;
duke@435 3982 }
duke@435 3983
duke@435 3984 #ifdef _LP64
duke@435 3985 #define XTOP ,top() /*additional argument*/
duke@435 3986 #else //_LP64
duke@435 3987 #define XTOP /*no additional argument*/
duke@435 3988 #endif //_LP64
duke@435 3989
duke@435 3990 //----------------------inline_unsafe_copyMemory-------------------------
duke@435 3991 bool LibraryCallKit::inline_unsafe_copyMemory() {
duke@435 3992 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 3993 int nargs = 1 + 5 + 3; // 5 args: (src: ptr,off, dst: ptr,off, size)
duke@435 3994 assert(signature()->size() == nargs-1, "copy has 5 arguments");
duke@435 3995 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 3996 if (stopped()) return true;
duke@435 3997
duke@435 3998 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 3999
duke@435 4000 Node* src_ptr = argument(1);
duke@435 4001 Node* src_off = ConvL2X(argument(2));
duke@435 4002 assert(argument(3)->is_top(), "2nd half of long");
duke@435 4003 Node* dst_ptr = argument(4);
duke@435 4004 Node* dst_off = ConvL2X(argument(5));
duke@435 4005 assert(argument(6)->is_top(), "2nd half of long");
duke@435 4006 Node* size = ConvL2X(argument(7));
duke@435 4007 assert(argument(8)->is_top(), "2nd half of long");
duke@435 4008
duke@435 4009 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 4010 "fieldOffset must be byte-scaled");
duke@435 4011
duke@435 4012 Node* src = make_unsafe_address(src_ptr, src_off);
duke@435 4013 Node* dst = make_unsafe_address(dst_ptr, dst_off);
duke@435 4014
duke@435 4015 // Conservatively insert a memory barrier on all memory slices.
duke@435 4016 // Do not let writes of the copy source or destination float below the copy.
duke@435 4017 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4018
duke@435 4019 // Call it. Note that the length argument is not scaled.
duke@435 4020 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 4021 OptoRuntime::fast_arraycopy_Type(),
duke@435 4022 StubRoutines::unsafe_arraycopy(),
duke@435 4023 "unsafe_arraycopy",
duke@435 4024 TypeRawPtr::BOTTOM,
duke@435 4025 src, dst, size XTOP);
duke@435 4026
duke@435 4027 // Do not let reads of the copy destination float above the copy.
duke@435 4028 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4029
duke@435 4030 return true;
duke@435 4031 }
duke@435 4032
kvn@1268 4033 //------------------------clone_coping-----------------------------------
kvn@1268 4034 // Helper function for inline_native_clone.
kvn@1268 4035 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
kvn@1268 4036 assert(obj_size != NULL, "");
kvn@1268 4037 Node* raw_obj = alloc_obj->in(1);
kvn@1268 4038 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
kvn@1268 4039
kvn@1268 4040 if (ReduceBulkZeroing) {
kvn@1268 4041 // We will be completely responsible for initializing this object -
kvn@1268 4042 // mark Initialize node as complete.
kvn@1268 4043 AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
kvn@1268 4044 // The object was just allocated - there should be no any stores!
kvn@1268 4045 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
kvn@1268 4046 }
kvn@1268 4047
kvn@1268 4048 // Copy the fastest available way.
kvn@1268 4049 // TODO: generate fields copies for small objects instead.
kvn@1268 4050 Node* src = obj;
kvn@1393 4051 Node* dest = alloc_obj;
kvn@1268 4052 Node* size = _gvn.transform(obj_size);
kvn@1268 4053
kvn@1268 4054 // Exclude the header but include array length to copy by 8 bytes words.
kvn@1268 4055 // Can't use base_offset_in_bytes(bt) since basic type is unknown.
kvn@1268 4056 int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
kvn@1268 4057 instanceOopDesc::base_offset_in_bytes();
kvn@1268 4058 // base_off:
kvn@1268 4059 // 8 - 32-bit VM
kvn@1268 4060 // 12 - 64-bit VM, compressed oops
kvn@1268 4061 // 16 - 64-bit VM, normal oops
kvn@1268 4062 if (base_off % BytesPerLong != 0) {
kvn@1268 4063 assert(UseCompressedOops, "");
kvn@1268 4064 if (is_array) {
kvn@1268 4065 // Exclude length to copy by 8 bytes words.
kvn@1268 4066 base_off += sizeof(int);
kvn@1268 4067 } else {
kvn@1268 4068 // Include klass to copy by 8 bytes words.
kvn@1268 4069 base_off = instanceOopDesc::klass_offset_in_bytes();
kvn@1268 4070 }
kvn@1268 4071 assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
kvn@1268 4072 }
kvn@1268 4073 src = basic_plus_adr(src, base_off);
kvn@1268 4074 dest = basic_plus_adr(dest, base_off);
kvn@1268 4075
kvn@1268 4076 // Compute the length also, if needed:
kvn@1268 4077 Node* countx = size;
kvn@1268 4078 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
kvn@1268 4079 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
kvn@1268 4080
kvn@1268 4081 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
kvn@1268 4082 bool disjoint_bases = true;
kvn@1268 4083 generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
kvn@1268 4084 src, NULL, dest, NULL, countx);
kvn@1268 4085
kvn@1268 4086 // If necessary, emit some card marks afterwards. (Non-arrays only.)
kvn@1268 4087 if (card_mark) {
kvn@1268 4088 assert(!is_array, "");
kvn@1268 4089 // Put in store barrier for any and all oops we are sticking
kvn@1268 4090 // into this object. (We could avoid this if we could prove
kvn@1268 4091 // that the object type contains no oop fields at all.)
kvn@1268 4092 Node* no_particular_value = NULL;
kvn@1268 4093 Node* no_particular_field = NULL;
kvn@1268 4094 int raw_adr_idx = Compile::AliasIdxRaw;
kvn@1268 4095 post_barrier(control(),
kvn@1268 4096 memory(raw_adr_type),
kvn@1393 4097 alloc_obj,
kvn@1268 4098 no_particular_field,
kvn@1268 4099 raw_adr_idx,
kvn@1268 4100 no_particular_value,
kvn@1268 4101 T_OBJECT,
kvn@1268 4102 false);
kvn@1268 4103 }
kvn@1268 4104
kvn@1393 4105 // Do not let reads from the cloned object float above the arraycopy.
kvn@1393 4106 insert_mem_bar(Op_MemBarCPUOrder);
kvn@1268 4107 }
duke@435 4108
duke@435 4109 //------------------------inline_native_clone----------------------------
duke@435 4110 // Here are the simple edge cases:
duke@435 4111 // null receiver => normal trap
duke@435 4112 // virtual and clone was overridden => slow path to out-of-line clone
duke@435 4113 // not cloneable or finalizer => slow path to out-of-line Object.clone
duke@435 4114 //
duke@435 4115 // The general case has two steps, allocation and copying.
duke@435 4116 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
duke@435 4117 //
duke@435 4118 // Copying also has two cases, oop arrays and everything else.
duke@435 4119 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
duke@435 4120 // Everything else uses the tight inline loop supplied by CopyArrayNode.
duke@435 4121 //
duke@435 4122 // These steps fold up nicely if and when the cloned object's klass
duke@435 4123 // can be sharply typed as an object array, a type array, or an instance.
duke@435 4124 //
duke@435 4125 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
duke@435 4126 int nargs = 1;
cfang@1337 4127 PhiNode* result_val;
duke@435 4128
cfang@1335 4129 //set the original stack and the reexecute bit for the interpreter to reexecute
cfang@1335 4130 //the bytecode that invokes Object.clone if deoptimization happens
cfang@1335 4131 { PreserveReexecuteState preexecs(this);
cfang@1337 4132 jvms()->set_should_reexecute(true);
cfang@1337 4133
cfang@1337 4134 //null_check_receiver will adjust _sp (push and pop)
cfang@1337 4135 Node* obj = null_check_receiver(callee());
cfang@1337 4136 if (stopped()) return true;
cfang@1337 4137
cfang@1335 4138 _sp += nargs;
cfang@1337 4139
cfang@1337 4140 Node* obj_klass = load_object_klass(obj);
cfang@1337 4141 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
cfang@1337 4142 const TypeOopPtr* toop = ((tklass != NULL)
cfang@1337 4143 ? tklass->as_instance_type()
cfang@1337 4144 : TypeInstPtr::NOTNULL);
cfang@1337 4145
cfang@1337 4146 // Conservatively insert a memory barrier on all memory slices.
cfang@1337 4147 // Do not let writes into the original float below the clone.
cfang@1337 4148 insert_mem_bar(Op_MemBarCPUOrder);
cfang@1337 4149
cfang@1337 4150 // paths into result_reg:
cfang@1337 4151 enum {
cfang@1337 4152 _slow_path = 1, // out-of-line call to clone method (virtual or not)
cfang@1337 4153 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
cfang@1337 4154 _array_path, // plain array allocation, plus arrayof_long_arraycopy
cfang@1337 4155 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy
cfang@1337 4156 PATH_LIMIT
cfang@1337 4157 };
cfang@1337 4158 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
cfang@1337 4159 result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
cfang@1337 4160 TypeInstPtr::NOTNULL);
cfang@1337 4161 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
cfang@1337 4162 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
cfang@1337 4163 TypePtr::BOTTOM);
cfang@1337 4164 record_for_igvn(result_reg);
cfang@1337 4165
cfang@1337 4166 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
cfang@1337 4167 int raw_adr_idx = Compile::AliasIdxRaw;
cfang@1337 4168 const bool raw_mem_only = true;
cfang@1337 4169
cfang@1335 4170
cfang@1335 4171 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4172 if (array_ctl != NULL) {
cfang@1335 4173 // It's an array.
cfang@1335 4174 PreserveJVMState pjvms(this);
cfang@1335 4175 set_control(array_ctl);
cfang@1335 4176 Node* obj_length = load_array_length(obj);
cfang@1335 4177 Node* obj_size = NULL;
cfang@1335 4178 Node* alloc_obj = new_array(obj_klass, obj_length, 0,
cfang@1335 4179 raw_mem_only, &obj_size);
cfang@1335 4180
cfang@1335 4181 if (!use_ReduceInitialCardMarks()) {
cfang@1335 4182 // If it is an oop array, it requires very special treatment,
cfang@1335 4183 // because card marking is required on each card of the array.
cfang@1335 4184 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4185 if (is_obja != NULL) {
cfang@1335 4186 PreserveJVMState pjvms2(this);
cfang@1335 4187 set_control(is_obja);
cfang@1335 4188 // Generate a direct call to the right arraycopy function(s).
cfang@1335 4189 bool disjoint_bases = true;
cfang@1335 4190 bool length_never_negative = true;
cfang@1335 4191 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 4192 obj, intcon(0), alloc_obj, intcon(0),
cfang@1335 4193 obj_length,
cfang@1335 4194 disjoint_bases, length_never_negative);
cfang@1335 4195 result_reg->init_req(_objArray_path, control());
cfang@1335 4196 result_val->init_req(_objArray_path, alloc_obj);
cfang@1335 4197 result_i_o ->set_req(_objArray_path, i_o());
cfang@1335 4198 result_mem ->set_req(_objArray_path, reset_memory());
cfang@1335 4199 }
cfang@1335 4200 }
cfang@1335 4201 // Otherwise, there are no card marks to worry about.
ysr@1462 4202 // (We can dispense with card marks if we know the allocation
ysr@1462 4203 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
ysr@1462 4204 // causes the non-eden paths to take compensating steps to
ysr@1462 4205 // simulate a fresh allocation, so that no further
ysr@1462 4206 // card marks are required in compiled code to initialize
ysr@1462 4207 // the object.)
cfang@1335 4208
cfang@1335 4209 if (!stopped()) {
cfang@1335 4210 copy_to_clone(obj, alloc_obj, obj_size, true, false);
cfang@1335 4211
cfang@1335 4212 // Present the results of the copy.
cfang@1335 4213 result_reg->init_req(_array_path, control());
cfang@1335 4214 result_val->init_req(_array_path, alloc_obj);
cfang@1335 4215 result_i_o ->set_req(_array_path, i_o());
cfang@1335 4216 result_mem ->set_req(_array_path, reset_memory());
duke@435 4217 }
duke@435 4218 }
cfang@1335 4219
cfang@1335 4220 // We only go to the instance fast case code if we pass a number of guards.
cfang@1335 4221 // The paths which do not pass are accumulated in the slow_region.
cfang@1335 4222 RegionNode* slow_region = new (C, 1) RegionNode(1);
cfang@1335 4223 record_for_igvn(slow_region);
kvn@1268 4224 if (!stopped()) {
cfang@1335 4225 // It's an instance (we did array above). Make the slow-path tests.
cfang@1335 4226 // If this is a virtual call, we generate a funny guard. We grab
cfang@1335 4227 // the vtable entry corresponding to clone() from the target object.
cfang@1335 4228 // If the target method which we are calling happens to be the
cfang@1335 4229 // Object clone() method, we pass the guard. We do not need this
cfang@1335 4230 // guard for non-virtual calls; the caller is known to be the native
cfang@1335 4231 // Object clone().
cfang@1335 4232 if (is_virtual) {
cfang@1335 4233 generate_virtual_guard(obj_klass, slow_region);
cfang@1335 4234 }
cfang@1335 4235
cfang@1335 4236 // The object must be cloneable and must not have a finalizer.
cfang@1335 4237 // Both of these conditions may be checked in a single test.
cfang@1335 4238 // We could optimize the cloneable test further, but we don't care.
cfang@1335 4239 generate_access_flags_guard(obj_klass,
cfang@1335 4240 // Test both conditions:
cfang@1335 4241 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
cfang@1335 4242 // Must be cloneable but not finalizer:
cfang@1335 4243 JVM_ACC_IS_CLONEABLE,
cfang@1335 4244 slow_region);
kvn@1268 4245 }
cfang@1335 4246
cfang@1335 4247 if (!stopped()) {
cfang@1335 4248 // It's an instance, and it passed the slow-path tests.
cfang@1335 4249 PreserveJVMState pjvms(this);
cfang@1335 4250 Node* obj_size = NULL;
cfang@1335 4251 Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
cfang@1335 4252
cfang@1335 4253 copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
cfang@1335 4254
cfang@1335 4255 // Present the results of the slow call.
cfang@1335 4256 result_reg->init_req(_instance_path, control());
cfang@1335 4257 result_val->init_req(_instance_path, alloc_obj);
cfang@1335 4258 result_i_o ->set_req(_instance_path, i_o());
cfang@1335 4259 result_mem ->set_req(_instance_path, reset_memory());
duke@435 4260 }
duke@435 4261
cfang@1335 4262 // Generate code for the slow case. We make a call to clone().
cfang@1335 4263 set_control(_gvn.transform(slow_region));
cfang@1335 4264 if (!stopped()) {
cfang@1335 4265 PreserveJVMState pjvms(this);
cfang@1335 4266 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
cfang@1335 4267 Node* slow_result = set_results_for_java_call(slow_call);
cfang@1335 4268 // this->control() comes from set_results_for_java_call
cfang@1335 4269 result_reg->init_req(_slow_path, control());
cfang@1335 4270 result_val->init_req(_slow_path, slow_result);
cfang@1335 4271 result_i_o ->set_req(_slow_path, i_o());
cfang@1335 4272 result_mem ->set_req(_slow_path, reset_memory());
cfang@1335 4273 }
cfang@1337 4274
cfang@1337 4275 // Return the combined state.
cfang@1337 4276 set_control( _gvn.transform(result_reg) );
cfang@1337 4277 set_i_o( _gvn.transform(result_i_o) );
cfang@1337 4278 set_all_memory( _gvn.transform(result_mem) );
cfang@1335 4279 } //original reexecute and sp are set back here
duke@435 4280
kvn@1268 4281 push(_gvn.transform(result_val));
duke@435 4282
duke@435 4283 return true;
duke@435 4284 }
duke@435 4285
duke@435 4286
duke@435 4287 // constants for computing the copy function
duke@435 4288 enum {
duke@435 4289 COPYFUNC_UNALIGNED = 0,
duke@435 4290 COPYFUNC_ALIGNED = 1, // src, dest aligned to HeapWordSize
duke@435 4291 COPYFUNC_CONJOINT = 0,
duke@435 4292 COPYFUNC_DISJOINT = 2 // src != dest, or transfer can descend
duke@435 4293 };
duke@435 4294
duke@435 4295 // Note: The condition "disjoint" applies also for overlapping copies
duke@435 4296 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
duke@435 4297 static address
duke@435 4298 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
duke@435 4299 int selector =
duke@435 4300 (aligned ? COPYFUNC_ALIGNED : COPYFUNC_UNALIGNED) +
duke@435 4301 (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
duke@435 4302
duke@435 4303 #define RETURN_STUB(xxx_arraycopy) { \
duke@435 4304 name = #xxx_arraycopy; \
duke@435 4305 return StubRoutines::xxx_arraycopy(); }
duke@435 4306
duke@435 4307 switch (t) {
duke@435 4308 case T_BYTE:
duke@435 4309 case T_BOOLEAN:
duke@435 4310 switch (selector) {
duke@435 4311 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jbyte_arraycopy);
duke@435 4312 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jbyte_arraycopy);
duke@435 4313 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jbyte_disjoint_arraycopy);
duke@435 4314 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
duke@435 4315 }
duke@435 4316 case T_CHAR:
duke@435 4317 case T_SHORT:
duke@435 4318 switch (selector) {
duke@435 4319 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jshort_arraycopy);
duke@435 4320 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jshort_arraycopy);
duke@435 4321 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jshort_disjoint_arraycopy);
duke@435 4322 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
duke@435 4323 }
duke@435 4324 case T_INT:
duke@435 4325 case T_FLOAT:
duke@435 4326 switch (selector) {
duke@435 4327 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jint_arraycopy);
duke@435 4328 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jint_arraycopy);
duke@435 4329 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jint_disjoint_arraycopy);
duke@435 4330 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jint_disjoint_arraycopy);
duke@435 4331 }
duke@435 4332 case T_DOUBLE:
duke@435 4333 case T_LONG:
duke@435 4334 switch (selector) {
duke@435 4335 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jlong_arraycopy);
duke@435 4336 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jlong_arraycopy);
duke@435 4337 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(jlong_disjoint_arraycopy);
duke@435 4338 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
duke@435 4339 }
duke@435 4340 case T_ARRAY:
duke@435 4341 case T_OBJECT:
duke@435 4342 switch (selector) {
duke@435 4343 case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(oop_arraycopy);
duke@435 4344 case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_oop_arraycopy);
duke@435 4345 case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED: RETURN_STUB(oop_disjoint_arraycopy);
duke@435 4346 case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED: RETURN_STUB(arrayof_oop_disjoint_arraycopy);
duke@435 4347 }
duke@435 4348 default:
duke@435 4349 ShouldNotReachHere();
duke@435 4350 return NULL;
duke@435 4351 }
duke@435 4352
duke@435 4353 #undef RETURN_STUB
duke@435 4354 }
duke@435 4355
duke@435 4356 //------------------------------basictype2arraycopy----------------------------
duke@435 4357 address LibraryCallKit::basictype2arraycopy(BasicType t,
duke@435 4358 Node* src_offset,
duke@435 4359 Node* dest_offset,
duke@435 4360 bool disjoint_bases,
duke@435 4361 const char* &name) {
duke@435 4362 const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
duke@435 4363 const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
duke@435 4364
duke@435 4365 bool aligned = false;
duke@435 4366 bool disjoint = disjoint_bases;
duke@435 4367
duke@435 4368 // if the offsets are the same, we can treat the memory regions as
duke@435 4369 // disjoint, because either the memory regions are in different arrays,
duke@435 4370 // or they are identical (which we can treat as disjoint.) We can also
duke@435 4371 // treat a copy with a destination index less that the source index
duke@435 4372 // as disjoint since a low->high copy will work correctly in this case.
duke@435 4373 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
duke@435 4374 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
duke@435 4375 // both indices are constants
duke@435 4376 int s_offs = src_offset_inttype->get_con();
duke@435 4377 int d_offs = dest_offset_inttype->get_con();
kvn@464 4378 int element_size = type2aelembytes(t);
duke@435 4379 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
duke@435 4380 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
duke@435 4381 if (s_offs >= d_offs) disjoint = true;
duke@435 4382 } else if (src_offset == dest_offset && src_offset != NULL) {
duke@435 4383 // This can occur if the offsets are identical non-constants.
duke@435 4384 disjoint = true;
duke@435 4385 }
duke@435 4386
duke@435 4387 return select_arraycopy_function(t, aligned, disjoint, name);
duke@435 4388 }
duke@435 4389
duke@435 4390
duke@435 4391 //------------------------------inline_arraycopy-----------------------
duke@435 4392 bool LibraryCallKit::inline_arraycopy() {
duke@435 4393 // Restore the stack and pop off the arguments.
duke@435 4394 int nargs = 5; // 2 oops, 3 ints, no size_t or long
duke@435 4395 assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
duke@435 4396
duke@435 4397 Node *src = argument(0);
duke@435 4398 Node *src_offset = argument(1);
duke@435 4399 Node *dest = argument(2);
duke@435 4400 Node *dest_offset = argument(3);
duke@435 4401 Node *length = argument(4);
duke@435 4402
duke@435 4403 // Compile time checks. If any of these checks cannot be verified at compile time,
duke@435 4404 // we do not make a fast path for this call. Instead, we let the call remain as it
duke@435 4405 // is. The checks we choose to mandate at compile time are:
duke@435 4406 //
duke@435 4407 // (1) src and dest are arrays.
duke@435 4408 const Type* src_type = src->Value(&_gvn);
duke@435 4409 const Type* dest_type = dest->Value(&_gvn);
duke@435 4410 const TypeAryPtr* top_src = src_type->isa_aryptr();
duke@435 4411 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
duke@435 4412 if (top_src == NULL || top_src->klass() == NULL ||
duke@435 4413 top_dest == NULL || top_dest->klass() == NULL) {
duke@435 4414 // Conservatively insert a memory barrier on all memory slices.
duke@435 4415 // Do not let writes into the source float below the arraycopy.
duke@435 4416 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4417
duke@435 4418 // Call StubRoutines::generic_arraycopy stub.
duke@435 4419 generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
kvn@1268 4420 src, src_offset, dest, dest_offset, length);
duke@435 4421
duke@435 4422 // Do not let reads from the destination float above the arraycopy.
duke@435 4423 // Since we cannot type the arrays, we don't know which slices
duke@435 4424 // might be affected. We could restrict this barrier only to those
duke@435 4425 // memory slices which pertain to array elements--but don't bother.
duke@435 4426 if (!InsertMemBarAfterArraycopy)
duke@435 4427 // (If InsertMemBarAfterArraycopy, there is already one in place.)
duke@435 4428 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4429 return true;
duke@435 4430 }
duke@435 4431
duke@435 4432 // (2) src and dest arrays must have elements of the same BasicType
duke@435 4433 // Figure out the size and type of the elements we will be copying.
duke@435 4434 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4435 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4436 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
duke@435 4437 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
duke@435 4438
duke@435 4439 if (src_elem != dest_elem || dest_elem == T_VOID) {
duke@435 4440 // The component types are not the same or are not recognized. Punt.
duke@435 4441 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
duke@435 4442 generate_slow_arraycopy(TypePtr::BOTTOM,
kvn@1268 4443 src, src_offset, dest, dest_offset, length);
duke@435 4444 return true;
duke@435 4445 }
duke@435 4446
duke@435 4447 //---------------------------------------------------------------------------
duke@435 4448 // We will make a fast path for this call to arraycopy.
duke@435 4449
duke@435 4450 // We have the following tests left to perform:
duke@435 4451 //
duke@435 4452 // (3) src and dest must not be null.
duke@435 4453 // (4) src_offset must not be negative.
duke@435 4454 // (5) dest_offset must not be negative.
duke@435 4455 // (6) length must not be negative.
duke@435 4456 // (7) src_offset + length must not exceed length of src.
duke@435 4457 // (8) dest_offset + length must not exceed length of dest.
duke@435 4458 // (9) each element of an oop array must be assignable
duke@435 4459
duke@435 4460 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 4461 record_for_igvn(slow_region);
duke@435 4462
duke@435 4463 // (3) operands must not be null
duke@435 4464 // We currently perform our null checks with the do_null_check routine.
duke@435 4465 // This means that the null exceptions will be reported in the caller
duke@435 4466 // rather than (correctly) reported inside of the native arraycopy call.
duke@435 4467 // This should be corrected, given time. We do our null check with the
duke@435 4468 // stack pointer restored.
duke@435 4469 _sp += nargs;
duke@435 4470 src = do_null_check(src, T_ARRAY);
duke@435 4471 dest = do_null_check(dest, T_ARRAY);
duke@435 4472 _sp -= nargs;
duke@435 4473
duke@435 4474 // (4) src_offset must not be negative.
duke@435 4475 generate_negative_guard(src_offset, slow_region);
duke@435 4476
duke@435 4477 // (5) dest_offset must not be negative.
duke@435 4478 generate_negative_guard(dest_offset, slow_region);
duke@435 4479
duke@435 4480 // (6) length must not be negative (moved to generate_arraycopy()).
duke@435 4481 // generate_negative_guard(length, slow_region);
duke@435 4482
duke@435 4483 // (7) src_offset + length must not exceed length of src.
duke@435 4484 generate_limit_guard(src_offset, length,
duke@435 4485 load_array_length(src),
duke@435 4486 slow_region);
duke@435 4487
duke@435 4488 // (8) dest_offset + length must not exceed length of dest.
duke@435 4489 generate_limit_guard(dest_offset, length,
duke@435 4490 load_array_length(dest),
duke@435 4491 slow_region);
duke@435 4492
duke@435 4493 // (9) each element of an oop array must be assignable
duke@435 4494 // The generate_arraycopy subroutine checks this.
duke@435 4495
duke@435 4496 // This is where the memory effects are placed:
duke@435 4497 const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
duke@435 4498 generate_arraycopy(adr_type, dest_elem,
duke@435 4499 src, src_offset, dest, dest_offset, length,
kvn@1268 4500 false, false, slow_region);
duke@435 4501
duke@435 4502 return true;
duke@435 4503 }
duke@435 4504
duke@435 4505 //-----------------------------generate_arraycopy----------------------
duke@435 4506 // Generate an optimized call to arraycopy.
duke@435 4507 // Caller must guard against non-arrays.
duke@435 4508 // Caller must determine a common array basic-type for both arrays.
duke@435 4509 // Caller must validate offsets against array bounds.
duke@435 4510 // The slow_region has already collected guard failure paths
duke@435 4511 // (such as out of bounds length or non-conformable array types).
duke@435 4512 // The generated code has this shape, in general:
duke@435 4513 //
duke@435 4514 // if (length == 0) return // via zero_path
duke@435 4515 // slowval = -1
duke@435 4516 // if (types unknown) {
duke@435 4517 // slowval = call generic copy loop
duke@435 4518 // if (slowval == 0) return // via checked_path
duke@435 4519 // } else if (indexes in bounds) {
duke@435 4520 // if ((is object array) && !(array type check)) {
duke@435 4521 // slowval = call checked copy loop
duke@435 4522 // if (slowval == 0) return // via checked_path
duke@435 4523 // } else {
duke@435 4524 // call bulk copy loop
duke@435 4525 // return // via fast_path
duke@435 4526 // }
duke@435 4527 // }
duke@435 4528 // // adjust params for remaining work:
duke@435 4529 // if (slowval != -1) {
duke@435 4530 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n
duke@435 4531 // }
duke@435 4532 // slow_region:
duke@435 4533 // call slow arraycopy(src, src_offset, dest, dest_offset, length)
duke@435 4534 // return // via slow_call_path
duke@435 4535 //
duke@435 4536 // This routine is used from several intrinsics: System.arraycopy,
duke@435 4537 // Object.clone (the array subcase), and Arrays.copyOf[Range].
duke@435 4538 //
duke@435 4539 void
duke@435 4540 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
duke@435 4541 BasicType basic_elem_type,
duke@435 4542 Node* src, Node* src_offset,
duke@435 4543 Node* dest, Node* dest_offset,
duke@435 4544 Node* copy_length,
duke@435 4545 bool disjoint_bases,
duke@435 4546 bool length_never_negative,
duke@435 4547 RegionNode* slow_region) {
duke@435 4548
duke@435 4549 if (slow_region == NULL) {
duke@435 4550 slow_region = new(C,1) RegionNode(1);
duke@435 4551 record_for_igvn(slow_region);
duke@435 4552 }
duke@435 4553
duke@435 4554 Node* original_dest = dest;
duke@435 4555 AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
duke@435 4556 bool must_clear_dest = false;
duke@435 4557
duke@435 4558 // See if this is the initialization of a newly-allocated array.
duke@435 4559 // If so, we will take responsibility here for initializing it to zero.
duke@435 4560 // (Note: Because tightly_coupled_allocation performs checks on the
duke@435 4561 // out-edges of the dest, we need to avoid making derived pointers
duke@435 4562 // from it until we have checked its uses.)
duke@435 4563 if (ReduceBulkZeroing
duke@435 4564 && !ZeroTLAB // pointless if already zeroed
duke@435 4565 && basic_elem_type != T_CONFLICT // avoid corner case
duke@435 4566 && !_gvn.eqv_uncast(src, dest)
duke@435 4567 && ((alloc = tightly_coupled_allocation(dest, slow_region))
duke@435 4568 != NULL)
kvn@469 4569 && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
duke@435 4570 && alloc->maybe_set_complete(&_gvn)) {
duke@435 4571 // "You break it, you buy it."
duke@435 4572 InitializeNode* init = alloc->initialization();
duke@435 4573 assert(init->is_complete(), "we just did this");
kvn@1268 4574 assert(dest->is_CheckCastPP(), "sanity");
duke@435 4575 assert(dest->in(0)->in(0) == init, "dest pinned");
duke@435 4576 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
duke@435 4577 // From this point on, every exit path is responsible for
duke@435 4578 // initializing any non-copied parts of the object to zero.
duke@435 4579 must_clear_dest = true;
duke@435 4580 } else {
duke@435 4581 // No zeroing elimination here.
duke@435 4582 alloc = NULL;
duke@435 4583 //original_dest = dest;
duke@435 4584 //must_clear_dest = false;
duke@435 4585 }
duke@435 4586
duke@435 4587 // Results are placed here:
duke@435 4588 enum { fast_path = 1, // normal void-returning assembly stub
duke@435 4589 checked_path = 2, // special assembly stub with cleanup
duke@435 4590 slow_call_path = 3, // something went wrong; call the VM
duke@435 4591 zero_path = 4, // bypass when length of copy is zero
duke@435 4592 bcopy_path = 5, // copy primitive array by 64-bit blocks
duke@435 4593 PATH_LIMIT = 6
duke@435 4594 };
duke@435 4595 RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 4596 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
duke@435 4597 PhiNode* result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
duke@435 4598 record_for_igvn(result_region);
duke@435 4599 _gvn.set_type_bottom(result_i_o);
duke@435 4600 _gvn.set_type_bottom(result_memory);
duke@435 4601 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
duke@435 4602
duke@435 4603 // The slow_control path:
duke@435 4604 Node* slow_control;
duke@435 4605 Node* slow_i_o = i_o();
duke@435 4606 Node* slow_mem = memory(adr_type);
duke@435 4607 debug_only(slow_control = (Node*) badAddress);
duke@435 4608
duke@435 4609 // Checked control path:
duke@435 4610 Node* checked_control = top();
duke@435 4611 Node* checked_mem = NULL;
duke@435 4612 Node* checked_i_o = NULL;
duke@435 4613 Node* checked_value = NULL;
duke@435 4614
duke@435 4615 if (basic_elem_type == T_CONFLICT) {
duke@435 4616 assert(!must_clear_dest, "");
duke@435 4617 Node* cv = generate_generic_arraycopy(adr_type,
duke@435 4618 src, src_offset, dest, dest_offset,
kvn@1268 4619 copy_length);
duke@435 4620 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4621 checked_control = control();
duke@435 4622 checked_i_o = i_o();
duke@435 4623 checked_mem = memory(adr_type);
duke@435 4624 checked_value = cv;
duke@435 4625 set_control(top()); // no fast path
duke@435 4626 }
duke@435 4627
duke@435 4628 Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
duke@435 4629 if (not_pos != NULL) {
duke@435 4630 PreserveJVMState pjvms(this);
duke@435 4631 set_control(not_pos);
duke@435 4632
duke@435 4633 // (6) length must not be negative.
duke@435 4634 if (!length_never_negative) {
duke@435 4635 generate_negative_guard(copy_length, slow_region);
duke@435 4636 }
duke@435 4637
kvn@1271 4638 // copy_length is 0.
duke@435 4639 if (!stopped() && must_clear_dest) {
duke@435 4640 Node* dest_length = alloc->in(AllocateNode::ALength);
duke@435 4641 if (_gvn.eqv_uncast(copy_length, dest_length)
duke@435 4642 || _gvn.find_int_con(dest_length, 1) <= 0) {
kvn@1271 4643 // There is no zeroing to do. No need for a secondary raw memory barrier.
duke@435 4644 } else {
duke@435 4645 // Clear the whole thing since there are no source elements to copy.
duke@435 4646 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4647 intcon(0), NULL,
duke@435 4648 alloc->in(AllocateNode::AllocSize));
kvn@1271 4649 // Use a secondary InitializeNode as raw memory barrier.
kvn@1271 4650 // Currently it is needed only on this path since other
kvn@1271 4651 // paths have stub or runtime calls as raw memory barriers.
kvn@1271 4652 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
kvn@1271 4653 Compile::AliasIdxRaw,
kvn@1271 4654 top())->as_Initialize();
kvn@1271 4655 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
duke@435 4656 }
duke@435 4657 }
duke@435 4658
duke@435 4659 // Present the results of the fast call.
duke@435 4660 result_region->init_req(zero_path, control());
duke@435 4661 result_i_o ->init_req(zero_path, i_o());
duke@435 4662 result_memory->init_req(zero_path, memory(adr_type));
duke@435 4663 }
duke@435 4664
duke@435 4665 if (!stopped() && must_clear_dest) {
duke@435 4666 // We have to initialize the *uncopied* part of the array to zero.
duke@435 4667 // The copy destination is the slice dest[off..off+len]. The other slices
duke@435 4668 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
duke@435 4669 Node* dest_size = alloc->in(AllocateNode::AllocSize);
duke@435 4670 Node* dest_length = alloc->in(AllocateNode::ALength);
duke@435 4671 Node* dest_tail = _gvn.transform( new(C,3) AddINode(dest_offset,
duke@435 4672 copy_length) );
duke@435 4673
duke@435 4674 // If there is a head section that needs zeroing, do it now.
duke@435 4675 if (find_int_con(dest_offset, -1) != 0) {
duke@435 4676 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4677 intcon(0), dest_offset,
duke@435 4678 NULL);
duke@435 4679 }
duke@435 4680
duke@435 4681 // Next, perform a dynamic check on the tail length.
duke@435 4682 // It is often zero, and we can win big if we prove this.
duke@435 4683 // There are two wins: Avoid generating the ClearArray
duke@435 4684 // with its attendant messy index arithmetic, and upgrade
duke@435 4685 // the copy to a more hardware-friendly word size of 64 bits.
duke@435 4686 Node* tail_ctl = NULL;
duke@435 4687 if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
duke@435 4688 Node* cmp_lt = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
duke@435 4689 Node* bol_lt = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 4690 tail_ctl = generate_slow_guard(bol_lt, NULL);
duke@435 4691 assert(tail_ctl != NULL || !stopped(), "must be an outcome");
duke@435 4692 }
duke@435 4693
duke@435 4694 // At this point, let's assume there is no tail.
duke@435 4695 if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
duke@435 4696 // There is no tail. Try an upgrade to a 64-bit copy.
duke@435 4697 bool didit = false;
duke@435 4698 { PreserveJVMState pjvms(this);
duke@435 4699 didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
duke@435 4700 src, src_offset, dest, dest_offset,
duke@435 4701 dest_size);
duke@435 4702 if (didit) {
duke@435 4703 // Present the results of the block-copying fast call.
duke@435 4704 result_region->init_req(bcopy_path, control());
duke@435 4705 result_i_o ->init_req(bcopy_path, i_o());
duke@435 4706 result_memory->init_req(bcopy_path, memory(adr_type));
duke@435 4707 }
duke@435 4708 }
duke@435 4709 if (didit)
duke@435 4710 set_control(top()); // no regular fast path
duke@435 4711 }
duke@435 4712
duke@435 4713 // Clear the tail, if any.
duke@435 4714 if (tail_ctl != NULL) {
duke@435 4715 Node* notail_ctl = stopped() ? NULL : control();
duke@435 4716 set_control(tail_ctl);
duke@435 4717 if (notail_ctl == NULL) {
duke@435 4718 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4719 dest_tail, NULL,
duke@435 4720 dest_size);
duke@435 4721 } else {
duke@435 4722 // Make a local merge.
duke@435 4723 Node* done_ctl = new(C,3) RegionNode(3);
duke@435 4724 Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
duke@435 4725 done_ctl->init_req(1, notail_ctl);
duke@435 4726 done_mem->init_req(1, memory(adr_type));
duke@435 4727 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4728 dest_tail, NULL,
duke@435 4729 dest_size);
duke@435 4730 done_ctl->init_req(2, control());
duke@435 4731 done_mem->init_req(2, memory(adr_type));
duke@435 4732 set_control( _gvn.transform(done_ctl) );
duke@435 4733 set_memory( _gvn.transform(done_mem), adr_type );
duke@435 4734 }
duke@435 4735 }
duke@435 4736 }
duke@435 4737
duke@435 4738 BasicType copy_type = basic_elem_type;
duke@435 4739 assert(basic_elem_type != T_ARRAY, "caller must fix this");
duke@435 4740 if (!stopped() && copy_type == T_OBJECT) {
duke@435 4741 // If src and dest have compatible element types, we can copy bits.
duke@435 4742 // Types S[] and D[] are compatible if D is a supertype of S.
duke@435 4743 //
duke@435 4744 // If they are not, we will use checked_oop_disjoint_arraycopy,
duke@435 4745 // which performs a fast optimistic per-oop check, and backs off
duke@435 4746 // further to JVM_ArrayCopy on the first per-oop check that fails.
duke@435 4747 // (Actually, we don't move raw bits only; the GC requires card marks.)
duke@435 4748
duke@435 4749 // Get the klassOop for both src and dest
duke@435 4750 Node* src_klass = load_object_klass(src);
duke@435 4751 Node* dest_klass = load_object_klass(dest);
duke@435 4752
duke@435 4753 // Generate the subtype check.
duke@435 4754 // This might fold up statically, or then again it might not.
duke@435 4755 //
duke@435 4756 // Non-static example: Copying List<String>.elements to a new String[].
duke@435 4757 // The backing store for a List<String> is always an Object[],
duke@435 4758 // but its elements are always type String, if the generic types
duke@435 4759 // are correct at the source level.
duke@435 4760 //
duke@435 4761 // Test S[] against D[], not S against D, because (probably)
duke@435 4762 // the secondary supertype cache is less busy for S[] than S.
duke@435 4763 // This usually only matters when D is an interface.
duke@435 4764 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
duke@435 4765 // Plug failing path into checked_oop_disjoint_arraycopy
duke@435 4766 if (not_subtype_ctrl != top()) {
duke@435 4767 PreserveJVMState pjvms(this);
duke@435 4768 set_control(not_subtype_ctrl);
duke@435 4769 // (At this point we can assume disjoint_bases, since types differ.)
duke@435 4770 int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
duke@435 4771 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
kvn@599 4772 Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
duke@435 4773 Node* dest_elem_klass = _gvn.transform(n1);
duke@435 4774 Node* cv = generate_checkcast_arraycopy(adr_type,
duke@435 4775 dest_elem_klass,
duke@435 4776 src, src_offset, dest, dest_offset,
never@2199 4777 ConvI2X(copy_length));
duke@435 4778 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4779 checked_control = control();
duke@435 4780 checked_i_o = i_o();
duke@435 4781 checked_mem = memory(adr_type);
duke@435 4782 checked_value = cv;
duke@435 4783 }
duke@435 4784 // At this point we know we do not need type checks on oop stores.
duke@435 4785
duke@435 4786 // Let's see if we need card marks:
duke@435 4787 if (alloc != NULL && use_ReduceInitialCardMarks()) {
duke@435 4788 // If we do not need card marks, copy using the jint or jlong stub.
coleenp@548 4789 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
kvn@464 4790 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
duke@435 4791 "sizes agree");
duke@435 4792 }
duke@435 4793 }
duke@435 4794
duke@435 4795 if (!stopped()) {
duke@435 4796 // Generate the fast path, if possible.
duke@435 4797 PreserveJVMState pjvms(this);
duke@435 4798 generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
duke@435 4799 src, src_offset, dest, dest_offset,
duke@435 4800 ConvI2X(copy_length));
duke@435 4801
duke@435 4802 // Present the results of the fast call.
duke@435 4803 result_region->init_req(fast_path, control());
duke@435 4804 result_i_o ->init_req(fast_path, i_o());
duke@435 4805 result_memory->init_req(fast_path, memory(adr_type));
duke@435 4806 }
duke@435 4807
duke@435 4808 // Here are all the slow paths up to this point, in one bundle:
duke@435 4809 slow_control = top();
duke@435 4810 if (slow_region != NULL)
duke@435 4811 slow_control = _gvn.transform(slow_region);
duke@435 4812 debug_only(slow_region = (RegionNode*)badAddress);
duke@435 4813
duke@435 4814 set_control(checked_control);
duke@435 4815 if (!stopped()) {
duke@435 4816 // Clean up after the checked call.
duke@435 4817 // The returned value is either 0 or -1^K,
duke@435 4818 // where K = number of partially transferred array elements.
duke@435 4819 Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
duke@435 4820 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
duke@435 4821 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
duke@435 4822
duke@435 4823 // If it is 0, we are done, so transfer to the end.
duke@435 4824 Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
duke@435 4825 result_region->init_req(checked_path, checks_done);
duke@435 4826 result_i_o ->init_req(checked_path, checked_i_o);
duke@435 4827 result_memory->init_req(checked_path, checked_mem);
duke@435 4828
duke@435 4829 // If it is not zero, merge into the slow call.
duke@435 4830 set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
duke@435 4831 RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
duke@435 4832 PhiNode* slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
duke@435 4833 PhiNode* slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
duke@435 4834 record_for_igvn(slow_reg2);
duke@435 4835 slow_reg2 ->init_req(1, slow_control);
duke@435 4836 slow_i_o2 ->init_req(1, slow_i_o);
duke@435 4837 slow_mem2 ->init_req(1, slow_mem);
duke@435 4838 slow_reg2 ->init_req(2, control());
kvn@1268 4839 slow_i_o2 ->init_req(2, checked_i_o);
kvn@1268 4840 slow_mem2 ->init_req(2, checked_mem);
duke@435 4841
duke@435 4842 slow_control = _gvn.transform(slow_reg2);
duke@435 4843 slow_i_o = _gvn.transform(slow_i_o2);
duke@435 4844 slow_mem = _gvn.transform(slow_mem2);
duke@435 4845
duke@435 4846 if (alloc != NULL) {
duke@435 4847 // We'll restart from the very beginning, after zeroing the whole thing.
duke@435 4848 // This can cause double writes, but that's OK since dest is brand new.
duke@435 4849 // So we ignore the low 31 bits of the value returned from the stub.
duke@435 4850 } else {
duke@435 4851 // We must continue the copy exactly where it failed, or else
duke@435 4852 // another thread might see the wrong number of writes to dest.
duke@435 4853 Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
duke@435 4854 Node* slow_offset = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
duke@435 4855 slow_offset->init_req(1, intcon(0));
duke@435 4856 slow_offset->init_req(2, checked_offset);
duke@435 4857 slow_offset = _gvn.transform(slow_offset);
duke@435 4858
duke@435 4859 // Adjust the arguments by the conditionally incoming offset.
duke@435 4860 Node* src_off_plus = _gvn.transform( new(C, 3) AddINode(src_offset, slow_offset) );
duke@435 4861 Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
duke@435 4862 Node* length_minus = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
duke@435 4863
duke@435 4864 // Tweak the node variables to adjust the code produced below:
duke@435 4865 src_offset = src_off_plus;
duke@435 4866 dest_offset = dest_off_plus;
duke@435 4867 copy_length = length_minus;
duke@435 4868 }
duke@435 4869 }
duke@435 4870
duke@435 4871 set_control(slow_control);
duke@435 4872 if (!stopped()) {
duke@435 4873 // Generate the slow path, if needed.
duke@435 4874 PreserveJVMState pjvms(this); // replace_in_map may trash the map
duke@435 4875
duke@435 4876 set_memory(slow_mem, adr_type);
duke@435 4877 set_i_o(slow_i_o);
duke@435 4878
duke@435 4879 if (must_clear_dest) {
duke@435 4880 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4881 intcon(0), NULL,
duke@435 4882 alloc->in(AllocateNode::AllocSize));
duke@435 4883 }
duke@435 4884
duke@435 4885 generate_slow_arraycopy(adr_type,
duke@435 4886 src, src_offset, dest, dest_offset,
kvn@1268 4887 copy_length);
duke@435 4888
duke@435 4889 result_region->init_req(slow_call_path, control());
duke@435 4890 result_i_o ->init_req(slow_call_path, i_o());
duke@435 4891 result_memory->init_req(slow_call_path, memory(adr_type));
duke@435 4892 }
duke@435 4893
duke@435 4894 // Remove unused edges.
duke@435 4895 for (uint i = 1; i < result_region->req(); i++) {
duke@435 4896 if (result_region->in(i) == NULL)
duke@435 4897 result_region->init_req(i, top());
duke@435 4898 }
duke@435 4899
duke@435 4900 // Finished; return the combined state.
duke@435 4901 set_control( _gvn.transform(result_region) );
duke@435 4902 set_i_o( _gvn.transform(result_i_o) );
duke@435 4903 set_memory( _gvn.transform(result_memory), adr_type );
duke@435 4904
duke@435 4905 // The memory edges above are precise in order to model effects around
twisti@1040 4906 // array copies accurately to allow value numbering of field loads around
duke@435 4907 // arraycopy. Such field loads, both before and after, are common in Java
duke@435 4908 // collections and similar classes involving header/array data structures.
duke@435 4909 //
duke@435 4910 // But with low number of register or when some registers are used or killed
duke@435 4911 // by arraycopy calls it causes registers spilling on stack. See 6544710.
duke@435 4912 // The next memory barrier is added to avoid it. If the arraycopy can be
duke@435 4913 // optimized away (which it can, sometimes) then we can manually remove
duke@435 4914 // the membar also.
kvn@1393 4915 //
kvn@1393 4916 // Do not let reads from the cloned object float above the arraycopy.
kvn@1393 4917 if (InsertMemBarAfterArraycopy || alloc != NULL)
duke@435 4918 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4919 }
duke@435 4920
duke@435 4921
duke@435 4922 // Helper function which determines if an arraycopy immediately follows
duke@435 4923 // an allocation, with no intervening tests or other escapes for the object.
duke@435 4924 AllocateArrayNode*
duke@435 4925 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
duke@435 4926 RegionNode* slow_region) {
duke@435 4927 if (stopped()) return NULL; // no fast path
duke@435 4928 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
duke@435 4929
duke@435 4930 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
duke@435 4931 if (alloc == NULL) return NULL;
duke@435 4932
duke@435 4933 Node* rawmem = memory(Compile::AliasIdxRaw);
duke@435 4934 // Is the allocation's memory state untouched?
duke@435 4935 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
duke@435 4936 // Bail out if there have been raw-memory effects since the allocation.
duke@435 4937 // (Example: There might have been a call or safepoint.)
duke@435 4938 return NULL;
duke@435 4939 }
duke@435 4940 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
duke@435 4941 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
duke@435 4942 return NULL;
duke@435 4943 }
duke@435 4944
duke@435 4945 // There must be no unexpected observers of this allocation.
duke@435 4946 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
duke@435 4947 Node* obs = ptr->fast_out(i);
duke@435 4948 if (obs != this->map()) {
duke@435 4949 return NULL;
duke@435 4950 }
duke@435 4951 }
duke@435 4952
duke@435 4953 // This arraycopy must unconditionally follow the allocation of the ptr.
duke@435 4954 Node* alloc_ctl = ptr->in(0);
duke@435 4955 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
duke@435 4956
duke@435 4957 Node* ctl = control();
duke@435 4958 while (ctl != alloc_ctl) {
duke@435 4959 // There may be guards which feed into the slow_region.
duke@435 4960 // Any other control flow means that we might not get a chance
duke@435 4961 // to finish initializing the allocated object.
duke@435 4962 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
duke@435 4963 IfNode* iff = ctl->in(0)->as_If();
duke@435 4964 Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
duke@435 4965 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
duke@435 4966 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
duke@435 4967 ctl = iff->in(0); // This test feeds the known slow_region.
duke@435 4968 continue;
duke@435 4969 }
duke@435 4970 // One more try: Various low-level checks bottom out in
duke@435 4971 // uncommon traps. If the debug-info of the trap omits
duke@435 4972 // any reference to the allocation, as we've already
duke@435 4973 // observed, then there can be no objection to the trap.
duke@435 4974 bool found_trap = false;
duke@435 4975 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
duke@435 4976 Node* obs = not_ctl->fast_out(j);
duke@435 4977 if (obs->in(0) == not_ctl && obs->is_Call() &&
twisti@2103 4978 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
duke@435 4979 found_trap = true; break;
duke@435 4980 }
duke@435 4981 }
duke@435 4982 if (found_trap) {
duke@435 4983 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
duke@435 4984 continue;
duke@435 4985 }
duke@435 4986 }
duke@435 4987 return NULL;
duke@435 4988 }
duke@435 4989
duke@435 4990 // If we get this far, we have an allocation which immediately
duke@435 4991 // precedes the arraycopy, and we can take over zeroing the new object.
duke@435 4992 // The arraycopy will finish the initialization, and provide
duke@435 4993 // a new control state to which we will anchor the destination pointer.
duke@435 4994
duke@435 4995 return alloc;
duke@435 4996 }
duke@435 4997
duke@435 4998 // Helper for initialization of arrays, creating a ClearArray.
duke@435 4999 // It writes zero bits in [start..end), within the body of an array object.
duke@435 5000 // The memory effects are all chained onto the 'adr_type' alias category.
duke@435 5001 //
duke@435 5002 // Since the object is otherwise uninitialized, we are free
duke@435 5003 // to put a little "slop" around the edges of the cleared area,
duke@435 5004 // as long as it does not go back into the array's header,
duke@435 5005 // or beyond the array end within the heap.
duke@435 5006 //
duke@435 5007 // The lower edge can be rounded down to the nearest jint and the
duke@435 5008 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
duke@435 5009 //
duke@435 5010 // Arguments:
duke@435 5011 // adr_type memory slice where writes are generated
duke@435 5012 // dest oop of the destination array
duke@435 5013 // basic_elem_type element type of the destination
duke@435 5014 // slice_idx array index of first element to store
duke@435 5015 // slice_len number of elements to store (or NULL)
duke@435 5016 // dest_size total size in bytes of the array object
duke@435 5017 //
duke@435 5018 // Exactly one of slice_len or dest_size must be non-NULL.
duke@435 5019 // If dest_size is non-NULL, zeroing extends to the end of the object.
duke@435 5020 // If slice_len is non-NULL, the slice_idx value must be a constant.
duke@435 5021 void
duke@435 5022 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
duke@435 5023 Node* dest,
duke@435 5024 BasicType basic_elem_type,
duke@435 5025 Node* slice_idx,
duke@435 5026 Node* slice_len,
duke@435 5027 Node* dest_size) {
duke@435 5028 // one or the other but not both of slice_len and dest_size:
duke@435 5029 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
duke@435 5030 if (slice_len == NULL) slice_len = top();
duke@435 5031 if (dest_size == NULL) dest_size = top();
duke@435 5032
duke@435 5033 // operate on this memory slice:
duke@435 5034 Node* mem = memory(adr_type); // memory slice to operate on
duke@435 5035
duke@435 5036 // scaling and rounding of indexes:
kvn@464 5037 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5038 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 5039 int clear_low = (-1 << scale) & (BytesPerInt - 1);
duke@435 5040 int bump_bit = (-1 << scale) & BytesPerInt;
duke@435 5041
duke@435 5042 // determine constant starts and ends
duke@435 5043 const intptr_t BIG_NEG = -128;
duke@435 5044 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 5045 intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
duke@435 5046 intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
duke@435 5047 if (slice_len_con == 0) {
duke@435 5048 return; // nothing to do here
duke@435 5049 }
duke@435 5050 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
duke@435 5051 intptr_t end_con = find_intptr_t_con(dest_size, -1);
duke@435 5052 if (slice_idx_con >= 0 && slice_len_con >= 0) {
duke@435 5053 assert(end_con < 0, "not two cons");
duke@435 5054 end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
duke@435 5055 BytesPerLong);
duke@435 5056 }
duke@435 5057
duke@435 5058 if (start_con >= 0 && end_con >= 0) {
duke@435 5059 // Constant start and end. Simple.
duke@435 5060 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5061 start_con, end_con, &_gvn);
duke@435 5062 } else if (start_con >= 0 && dest_size != top()) {
duke@435 5063 // Constant start, pre-rounded end after the tail of the array.
duke@435 5064 Node* end = dest_size;
duke@435 5065 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5066 start_con, end, &_gvn);
duke@435 5067 } else if (start_con >= 0 && slice_len != top()) {
duke@435 5068 // Constant start, non-constant end. End needs rounding up.
duke@435 5069 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
duke@435 5070 intptr_t end_base = abase + (slice_idx_con << scale);
duke@435 5071 int end_round = (-1 << scale) & (BytesPerLong - 1);
duke@435 5072 Node* end = ConvI2X(slice_len);
duke@435 5073 if (scale != 0)
duke@435 5074 end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
duke@435 5075 end_base += end_round;
duke@435 5076 end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
duke@435 5077 end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
duke@435 5078 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5079 start_con, end, &_gvn);
duke@435 5080 } else if (start_con < 0 && dest_size != top()) {
duke@435 5081 // Non-constant start, pre-rounded end after the tail of the array.
duke@435 5082 // This is almost certainly a "round-to-end" operation.
duke@435 5083 Node* start = slice_idx;
duke@435 5084 start = ConvI2X(start);
duke@435 5085 if (scale != 0)
duke@435 5086 start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
duke@435 5087 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
duke@435 5088 if ((bump_bit | clear_low) != 0) {
duke@435 5089 int to_clear = (bump_bit | clear_low);
duke@435 5090 // Align up mod 8, then store a jint zero unconditionally
duke@435 5091 // just before the mod-8 boundary.
coleenp@548 5092 if (((abase + bump_bit) & ~to_clear) - bump_bit
coleenp@548 5093 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
coleenp@548 5094 bump_bit = 0;
coleenp@548 5095 assert((abase & to_clear) == 0, "array base must be long-aligned");
coleenp@548 5096 } else {
coleenp@548 5097 // Bump 'start' up to (or past) the next jint boundary:
coleenp@548 5098 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
coleenp@548 5099 assert((abase & clear_low) == 0, "array base must be int-aligned");
coleenp@548 5100 }
duke@435 5101 // Round bumped 'start' down to jlong boundary in body of array.
duke@435 5102 start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
coleenp@548 5103 if (bump_bit != 0) {
coleenp@548 5104 // Store a zero to the immediately preceding jint:
coleenp@548 5105 Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
coleenp@548 5106 Node* p1 = basic_plus_adr(dest, x1);
coleenp@548 5107 mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
coleenp@548 5108 mem = _gvn.transform(mem);
coleenp@548 5109 }
duke@435 5110 }
duke@435 5111 Node* end = dest_size; // pre-rounded
duke@435 5112 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5113 start, end, &_gvn);
duke@435 5114 } else {
duke@435 5115 // Non-constant start, unrounded non-constant end.
duke@435 5116 // (Nobody zeroes a random midsection of an array using this routine.)
duke@435 5117 ShouldNotReachHere(); // fix caller
duke@435 5118 }
duke@435 5119
duke@435 5120 // Done.
duke@435 5121 set_memory(mem, adr_type);
duke@435 5122 }
duke@435 5123
duke@435 5124
duke@435 5125 bool
duke@435 5126 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
duke@435 5127 BasicType basic_elem_type,
duke@435 5128 AllocateNode* alloc,
duke@435 5129 Node* src, Node* src_offset,
duke@435 5130 Node* dest, Node* dest_offset,
duke@435 5131 Node* dest_size) {
duke@435 5132 // See if there is an advantage from block transfer.
kvn@464 5133 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5134 if (scale >= LogBytesPerLong)
duke@435 5135 return false; // it is already a block transfer
duke@435 5136
duke@435 5137 // Look at the alignment of the starting offsets.
duke@435 5138 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 5139 const intptr_t BIG_NEG = -128;
duke@435 5140 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 5141
duke@435 5142 intptr_t src_off = abase + ((intptr_t) find_int_con(src_offset, -1) << scale);
duke@435 5143 intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
duke@435 5144 if (src_off < 0 || dest_off < 0)
duke@435 5145 // At present, we can only understand constants.
duke@435 5146 return false;
duke@435 5147
duke@435 5148 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
duke@435 5149 // Non-aligned; too bad.
duke@435 5150 // One more chance: Pick off an initial 32-bit word.
duke@435 5151 // This is a common case, since abase can be odd mod 8.
duke@435 5152 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
duke@435 5153 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
duke@435 5154 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5155 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5156 Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
duke@435 5157 store_to_memory(control(), dptr, sval, T_INT, adr_type);
duke@435 5158 src_off += BytesPerInt;
duke@435 5159 dest_off += BytesPerInt;
duke@435 5160 } else {
duke@435 5161 return false;
duke@435 5162 }
duke@435 5163 }
duke@435 5164 assert(src_off % BytesPerLong == 0, "");
duke@435 5165 assert(dest_off % BytesPerLong == 0, "");
duke@435 5166
duke@435 5167 // Do this copy by giant steps.
duke@435 5168 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5169 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5170 Node* countx = dest_size;
duke@435 5171 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
duke@435 5172 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
duke@435 5173
duke@435 5174 bool disjoint_bases = true; // since alloc != NULL
duke@435 5175 generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
duke@435 5176 sptr, NULL, dptr, NULL, countx);
duke@435 5177
duke@435 5178 return true;
duke@435 5179 }
duke@435 5180
duke@435 5181
duke@435 5182 // Helper function; generates code for the slow case.
duke@435 5183 // We make a call to a runtime method which emulates the native method,
duke@435 5184 // but without the native wrapper overhead.
duke@435 5185 void
duke@435 5186 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 5187 Node* src, Node* src_offset,
duke@435 5188 Node* dest, Node* dest_offset,
kvn@1268 5189 Node* copy_length) {
duke@435 5190 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
duke@435 5191 OptoRuntime::slow_arraycopy_Type(),
duke@435 5192 OptoRuntime::slow_arraycopy_Java(),
duke@435 5193 "slow_arraycopy", adr_type,
duke@435 5194 src, src_offset, dest, dest_offset,
duke@435 5195 copy_length);
duke@435 5196
duke@435 5197 // Handle exceptions thrown by this fellow:
duke@435 5198 make_slow_call_ex(call, env()->Throwable_klass(), false);
duke@435 5199 }
duke@435 5200
duke@435 5201 // Helper function; generates code for cases requiring runtime checks.
duke@435 5202 Node*
duke@435 5203 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 5204 Node* dest_elem_klass,
duke@435 5205 Node* src, Node* src_offset,
duke@435 5206 Node* dest, Node* dest_offset,
kvn@1268 5207 Node* copy_length) {
duke@435 5208 if (stopped()) return NULL;
duke@435 5209
duke@435 5210 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
duke@435 5211 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5212 return NULL;
duke@435 5213 }
duke@435 5214
duke@435 5215 // Pick out the parameters required to perform a store-check
duke@435 5216 // for the target array. This is an optimistic check. It will
duke@435 5217 // look in each non-null element's class, at the desired klass's
duke@435 5218 // super_check_offset, for the desired klass.
duke@435 5219 int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
duke@435 5220 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
kvn@1964 5221 Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
never@2199 5222 Node* check_offset = ConvI2X(_gvn.transform(n3));
duke@435 5223 Node* check_value = dest_elem_klass;
duke@435 5224
duke@435 5225 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
duke@435 5226 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
duke@435 5227
duke@435 5228 // (We know the arrays are never conjoint, because their types differ.)
duke@435 5229 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5230 OptoRuntime::checkcast_arraycopy_Type(),
duke@435 5231 copyfunc_addr, "checkcast_arraycopy", adr_type,
duke@435 5232 // five arguments, of which two are
duke@435 5233 // intptr_t (jlong in LP64)
duke@435 5234 src_start, dest_start,
duke@435 5235 copy_length XTOP,
duke@435 5236 check_offset XTOP,
duke@435 5237 check_value);
duke@435 5238
duke@435 5239 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5240 }
duke@435 5241
duke@435 5242
duke@435 5243 // Helper function; generates code for cases requiring runtime checks.
duke@435 5244 Node*
duke@435 5245 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 5246 Node* src, Node* src_offset,
duke@435 5247 Node* dest, Node* dest_offset,
kvn@1268 5248 Node* copy_length) {
duke@435 5249 if (stopped()) return NULL;
duke@435 5250
duke@435 5251 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 5252 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5253 return NULL;
duke@435 5254 }
duke@435 5255
duke@435 5256 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5257 OptoRuntime::generic_arraycopy_Type(),
duke@435 5258 copyfunc_addr, "generic_arraycopy", adr_type,
duke@435 5259 src, src_offset, dest, dest_offset, copy_length);
duke@435 5260
duke@435 5261 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5262 }
duke@435 5263
duke@435 5264 // Helper function; generates the fast out-of-line call to an arraycopy stub.
duke@435 5265 void
duke@435 5266 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 5267 BasicType basic_elem_type,
duke@435 5268 bool disjoint_bases,
duke@435 5269 Node* src, Node* src_offset,
duke@435 5270 Node* dest, Node* dest_offset,
duke@435 5271 Node* copy_length) {
duke@435 5272 if (stopped()) return; // nothing to do
duke@435 5273
duke@435 5274 Node* src_start = src;
duke@435 5275 Node* dest_start = dest;
duke@435 5276 if (src_offset != NULL || dest_offset != NULL) {
duke@435 5277 assert(src_offset != NULL && dest_offset != NULL, "");
duke@435 5278 src_start = array_element_address(src, src_offset, basic_elem_type);
duke@435 5279 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
duke@435 5280 }
duke@435 5281
duke@435 5282 // Figure out which arraycopy runtime method to call.
duke@435 5283 const char* copyfunc_name = "arraycopy";
duke@435 5284 address copyfunc_addr =
duke@435 5285 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
duke@435 5286 disjoint_bases, copyfunc_name);
duke@435 5287
duke@435 5288 // Call it. Note that the count_ix value is not scaled to a byte-size.
duke@435 5289 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5290 OptoRuntime::fast_arraycopy_Type(),
duke@435 5291 copyfunc_addr, copyfunc_name, adr_type,
duke@435 5292 src_start, dest_start, copy_length XTOP);
duke@435 5293 }

mercurial