src/share/vm/c1/c1_LIRGenerator.cpp

Tue, 09 Oct 2012 10:11:38 +0200

author
roland
date
Tue, 09 Oct 2012 10:11:38 +0200
changeset 4159
8e47bac5643a
parent 4051
8a02ca5e5576
child 4361
1e41b0bc58a0
permissions
-rw-r--r--

7054512: Compress class pointers after perm gen removal
Summary: support of compress class pointers in the compilers.
Reviewed-by: kvn, twisti

duke@435 1 /*
rbackman@3709 2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_FrameMap.hpp"
stefank@2314 28 #include "c1/c1_Instruction.hpp"
stefank@2314 29 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 30 #include "c1/c1_LIRGenerator.hpp"
stefank@2314 31 #include "c1/c1_ValueStack.hpp"
stefank@2314 32 #include "ci/ciArrayKlass.hpp"
stefank@2314 33 #include "ci/ciInstance.hpp"
coleenp@4037 34 #include "ci/ciObjArray.hpp"
stefank@2314 35 #include "runtime/sharedRuntime.hpp"
stefank@2314 36 #include "runtime/stubRoutines.hpp"
stefank@2314 37 #include "utilities/bitMap.inline.hpp"
stefank@2314 38 #ifndef SERIALGC
stefank@2314 39 #include "gc_implementation/g1/heapRegion.hpp"
stefank@2314 40 #endif
duke@435 41
duke@435 42 #ifdef ASSERT
duke@435 43 #define __ gen()->lir(__FILE__, __LINE__)->
duke@435 44 #else
duke@435 45 #define __ gen()->lir()->
duke@435 46 #endif
duke@435 47
bobv@2036 48 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
bobv@2036 49 #ifdef ARM
bobv@2036 50 #define PATCHED_ADDR (204)
bobv@2036 51 #else
bobv@2036 52 #define PATCHED_ADDR (max_jint)
bobv@2036 53 #endif
duke@435 54
duke@435 55 void PhiResolverState::reset(int max_vregs) {
duke@435 56 // Initialize array sizes
duke@435 57 _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 58 _virtual_operands.trunc_to(0);
duke@435 59 _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 60 _other_operands.trunc_to(0);
duke@435 61 _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 62 _vreg_table.trunc_to(0);
duke@435 63 }
duke@435 64
duke@435 65
duke@435 66
duke@435 67 //--------------------------------------------------------------
duke@435 68 // PhiResolver
duke@435 69
duke@435 70 // Resolves cycles:
duke@435 71 //
duke@435 72 // r1 := r2 becomes temp := r1
duke@435 73 // r2 := r1 r1 := r2
duke@435 74 // r2 := temp
duke@435 75 // and orders moves:
duke@435 76 //
duke@435 77 // r2 := r3 becomes r1 := r2
duke@435 78 // r1 := r2 r2 := r3
duke@435 79
duke@435 80 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
duke@435 81 : _gen(gen)
duke@435 82 , _state(gen->resolver_state())
duke@435 83 , _temp(LIR_OprFact::illegalOpr)
duke@435 84 {
duke@435 85 // reinitialize the shared state arrays
duke@435 86 _state.reset(max_vregs);
duke@435 87 }
duke@435 88
duke@435 89
duke@435 90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
duke@435 91 assert(src->is_valid(), "");
duke@435 92 assert(dest->is_valid(), "");
duke@435 93 __ move(src, dest);
duke@435 94 }
duke@435 95
duke@435 96
duke@435 97 void PhiResolver::move_temp_to(LIR_Opr dest) {
duke@435 98 assert(_temp->is_valid(), "");
duke@435 99 emit_move(_temp, dest);
duke@435 100 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
duke@435 101 }
duke@435 102
duke@435 103
duke@435 104 void PhiResolver::move_to_temp(LIR_Opr src) {
duke@435 105 assert(_temp->is_illegal(), "");
duke@435 106 _temp = _gen->new_register(src->type());
duke@435 107 emit_move(src, _temp);
duke@435 108 }
duke@435 109
duke@435 110
duke@435 111 // Traverse assignment graph in depth first order and generate moves in post order
duke@435 112 // ie. two assignments: b := c, a := b start with node c:
duke@435 113 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
duke@435 114 // Generates moves in this order: move b to a and move c to b
duke@435 115 // ie. cycle a := b, b := a start with node a
duke@435 116 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
duke@435 117 // Generates moves in this order: move b to temp, move a to b, move temp to a
duke@435 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
duke@435 119 if (!dest->visited()) {
duke@435 120 dest->set_visited();
duke@435 121 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
duke@435 122 move(dest, dest->destination_at(i));
duke@435 123 }
duke@435 124 } else if (!dest->start_node()) {
duke@435 125 // cylce in graph detected
duke@435 126 assert(_loop == NULL, "only one loop valid!");
duke@435 127 _loop = dest;
duke@435 128 move_to_temp(src->operand());
duke@435 129 return;
duke@435 130 } // else dest is a start node
duke@435 131
duke@435 132 if (!dest->assigned()) {
duke@435 133 if (_loop == dest) {
duke@435 134 move_temp_to(dest->operand());
duke@435 135 dest->set_assigned();
duke@435 136 } else if (src != NULL) {
duke@435 137 emit_move(src->operand(), dest->operand());
duke@435 138 dest->set_assigned();
duke@435 139 }
duke@435 140 }
duke@435 141 }
duke@435 142
duke@435 143
duke@435 144 PhiResolver::~PhiResolver() {
duke@435 145 int i;
duke@435 146 // resolve any cycles in moves from and to virtual registers
duke@435 147 for (i = virtual_operands().length() - 1; i >= 0; i --) {
duke@435 148 ResolveNode* node = virtual_operands()[i];
duke@435 149 if (!node->visited()) {
duke@435 150 _loop = NULL;
duke@435 151 move(NULL, node);
duke@435 152 node->set_start_node();
duke@435 153 assert(_temp->is_illegal(), "move_temp_to() call missing");
duke@435 154 }
duke@435 155 }
duke@435 156
duke@435 157 // generate move for move from non virtual register to abitrary destination
duke@435 158 for (i = other_operands().length() - 1; i >= 0; i --) {
duke@435 159 ResolveNode* node = other_operands()[i];
duke@435 160 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
duke@435 161 emit_move(node->operand(), node->destination_at(j)->operand());
duke@435 162 }
duke@435 163 }
duke@435 164 }
duke@435 165
duke@435 166
duke@435 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
duke@435 168 ResolveNode* node;
duke@435 169 if (opr->is_virtual()) {
duke@435 170 int vreg_num = opr->vreg_number();
duke@435 171 node = vreg_table().at_grow(vreg_num, NULL);
duke@435 172 assert(node == NULL || node->operand() == opr, "");
duke@435 173 if (node == NULL) {
duke@435 174 node = new ResolveNode(opr);
duke@435 175 vreg_table()[vreg_num] = node;
duke@435 176 }
duke@435 177 // Make sure that all virtual operands show up in the list when
duke@435 178 // they are used as the source of a move.
duke@435 179 if (source && !virtual_operands().contains(node)) {
duke@435 180 virtual_operands().append(node);
duke@435 181 }
duke@435 182 } else {
duke@435 183 assert(source, "");
duke@435 184 node = new ResolveNode(opr);
duke@435 185 other_operands().append(node);
duke@435 186 }
duke@435 187 return node;
duke@435 188 }
duke@435 189
duke@435 190
duke@435 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
duke@435 192 assert(dest->is_virtual(), "");
duke@435 193 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
duke@435 194 assert(src->is_valid(), "");
duke@435 195 assert(dest->is_valid(), "");
duke@435 196 ResolveNode* source = source_node(src);
duke@435 197 source->append(destination_node(dest));
duke@435 198 }
duke@435 199
duke@435 200
duke@435 201 //--------------------------------------------------------------
duke@435 202 // LIRItem
duke@435 203
duke@435 204 void LIRItem::set_result(LIR_Opr opr) {
duke@435 205 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
duke@435 206 value()->set_operand(opr);
duke@435 207
duke@435 208 if (opr->is_virtual()) {
duke@435 209 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
duke@435 210 }
duke@435 211
duke@435 212 _result = opr;
duke@435 213 }
duke@435 214
duke@435 215 void LIRItem::load_item() {
duke@435 216 if (result()->is_illegal()) {
duke@435 217 // update the items result
duke@435 218 _result = value()->operand();
duke@435 219 }
duke@435 220 if (!result()->is_register()) {
duke@435 221 LIR_Opr reg = _gen->new_register(value()->type());
duke@435 222 __ move(result(), reg);
duke@435 223 if (result()->is_constant()) {
duke@435 224 _result = reg;
duke@435 225 } else {
duke@435 226 set_result(reg);
duke@435 227 }
duke@435 228 }
duke@435 229 }
duke@435 230
duke@435 231
duke@435 232 void LIRItem::load_for_store(BasicType type) {
duke@435 233 if (_gen->can_store_as_constant(value(), type)) {
duke@435 234 _result = value()->operand();
duke@435 235 if (!_result->is_constant()) {
duke@435 236 _result = LIR_OprFact::value_type(value()->type());
duke@435 237 }
duke@435 238 } else if (type == T_BYTE || type == T_BOOLEAN) {
duke@435 239 load_byte_item();
duke@435 240 } else {
duke@435 241 load_item();
duke@435 242 }
duke@435 243 }
duke@435 244
duke@435 245 void LIRItem::load_item_force(LIR_Opr reg) {
duke@435 246 LIR_Opr r = result();
duke@435 247 if (r != reg) {
bobv@2036 248 #if !defined(ARM) && !defined(E500V2)
duke@435 249 if (r->type() != reg->type()) {
duke@435 250 // moves between different types need an intervening spill slot
bobv@2036 251 r = _gen->force_to_spill(r, reg->type());
duke@435 252 }
bobv@2036 253 #endif
bobv@2036 254 __ move(r, reg);
duke@435 255 _result = reg;
duke@435 256 }
duke@435 257 }
duke@435 258
duke@435 259 ciObject* LIRItem::get_jobject_constant() const {
duke@435 260 ObjectType* oc = type()->as_ObjectType();
duke@435 261 if (oc) {
duke@435 262 return oc->constant_value();
duke@435 263 }
duke@435 264 return NULL;
duke@435 265 }
duke@435 266
duke@435 267
duke@435 268 jint LIRItem::get_jint_constant() const {
duke@435 269 assert(is_constant() && value() != NULL, "");
duke@435 270 assert(type()->as_IntConstant() != NULL, "type check");
duke@435 271 return type()->as_IntConstant()->value();
duke@435 272 }
duke@435 273
duke@435 274
duke@435 275 jint LIRItem::get_address_constant() const {
duke@435 276 assert(is_constant() && value() != NULL, "");
duke@435 277 assert(type()->as_AddressConstant() != NULL, "type check");
duke@435 278 return type()->as_AddressConstant()->value();
duke@435 279 }
duke@435 280
duke@435 281
duke@435 282 jfloat LIRItem::get_jfloat_constant() const {
duke@435 283 assert(is_constant() && value() != NULL, "");
duke@435 284 assert(type()->as_FloatConstant() != NULL, "type check");
duke@435 285 return type()->as_FloatConstant()->value();
duke@435 286 }
duke@435 287
duke@435 288
duke@435 289 jdouble LIRItem::get_jdouble_constant() const {
duke@435 290 assert(is_constant() && value() != NULL, "");
duke@435 291 assert(type()->as_DoubleConstant() != NULL, "type check");
duke@435 292 return type()->as_DoubleConstant()->value();
duke@435 293 }
duke@435 294
duke@435 295
duke@435 296 jlong LIRItem::get_jlong_constant() const {
duke@435 297 assert(is_constant() && value() != NULL, "");
duke@435 298 assert(type()->as_LongConstant() != NULL, "type check");
duke@435 299 return type()->as_LongConstant()->value();
duke@435 300 }
duke@435 301
duke@435 302
duke@435 303
duke@435 304 //--------------------------------------------------------------
duke@435 305
duke@435 306
duke@435 307 void LIRGenerator::init() {
ysr@777 308 _bs = Universe::heap()->barrier_set();
duke@435 309 }
duke@435 310
duke@435 311
duke@435 312 void LIRGenerator::block_do_prolog(BlockBegin* block) {
duke@435 313 #ifndef PRODUCT
duke@435 314 if (PrintIRWithLIR) {
duke@435 315 block->print();
duke@435 316 }
duke@435 317 #endif
duke@435 318
duke@435 319 // set up the list of LIR instructions
duke@435 320 assert(block->lir() == NULL, "LIR list already computed for this block");
duke@435 321 _lir = new LIR_List(compilation(), block);
duke@435 322 block->set_lir(_lir);
duke@435 323
duke@435 324 __ branch_destination(block->label());
duke@435 325
duke@435 326 if (LIRTraceExecution &&
iveresov@1939 327 Compilation::current()->hir()->start()->block_id() != block->block_id() &&
duke@435 328 !block->is_set(BlockBegin::exception_entry_flag)) {
duke@435 329 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
duke@435 330 trace_block_entry(block);
duke@435 331 }
duke@435 332 }
duke@435 333
duke@435 334
duke@435 335 void LIRGenerator::block_do_epilog(BlockBegin* block) {
duke@435 336 #ifndef PRODUCT
duke@435 337 if (PrintIRWithLIR) {
duke@435 338 tty->cr();
duke@435 339 }
duke@435 340 #endif
duke@435 341
duke@435 342 // LIR_Opr for unpinned constants shouldn't be referenced by other
duke@435 343 // blocks so clear them out after processing the block.
duke@435 344 for (int i = 0; i < _unpinned_constants.length(); i++) {
duke@435 345 _unpinned_constants.at(i)->clear_operand();
duke@435 346 }
duke@435 347 _unpinned_constants.trunc_to(0);
duke@435 348
duke@435 349 // clear our any registers for other local constants
duke@435 350 _constants.trunc_to(0);
duke@435 351 _reg_for_constants.trunc_to(0);
duke@435 352 }
duke@435 353
duke@435 354
duke@435 355 void LIRGenerator::block_do(BlockBegin* block) {
duke@435 356 CHECK_BAILOUT();
duke@435 357
duke@435 358 block_do_prolog(block);
duke@435 359 set_block(block);
duke@435 360
duke@435 361 for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
duke@435 362 if (instr->is_pinned()) do_root(instr);
duke@435 363 }
duke@435 364
duke@435 365 set_block(NULL);
duke@435 366 block_do_epilog(block);
duke@435 367 }
duke@435 368
duke@435 369
duke@435 370 //-------------------------LIRGenerator-----------------------------
duke@435 371
duke@435 372 // This is where the tree-walk starts; instr must be root;
duke@435 373 void LIRGenerator::do_root(Value instr) {
duke@435 374 CHECK_BAILOUT();
duke@435 375
duke@435 376 InstructionMark im(compilation(), instr);
duke@435 377
duke@435 378 assert(instr->is_pinned(), "use only with roots");
duke@435 379 assert(instr->subst() == instr, "shouldn't have missed substitution");
duke@435 380
duke@435 381 instr->visit(this);
duke@435 382
duke@435 383 assert(!instr->has_uses() || instr->operand()->is_valid() ||
duke@435 384 instr->as_Constant() != NULL || bailed_out(), "invalid item set");
duke@435 385 }
duke@435 386
duke@435 387
duke@435 388 // This is called for each node in tree; the walk stops if a root is reached
duke@435 389 void LIRGenerator::walk(Value instr) {
duke@435 390 InstructionMark im(compilation(), instr);
duke@435 391 //stop walk when encounter a root
duke@435 392 if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
duke@435 393 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
duke@435 394 } else {
duke@435 395 assert(instr->subst() == instr, "shouldn't have missed substitution");
duke@435 396 instr->visit(this);
duke@435 397 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
duke@435 398 }
duke@435 399 }
duke@435 400
duke@435 401
duke@435 402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
roland@2174 403 assert(state != NULL, "state must be defined");
roland@2174 404
roland@2174 405 ValueStack* s = state;
roland@2174 406 for_each_state(s) {
roland@2174 407 if (s->kind() == ValueStack::EmptyExceptionState) {
roland@2174 408 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
roland@2174 409 continue;
duke@435 410 }
roland@2174 411
roland@2174 412 int index;
roland@2174 413 Value value;
roland@2174 414 for_each_stack_value(s, index, value) {
roland@2174 415 assert(value->subst() == value, "missed substitution");
roland@2174 416 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
roland@2174 417 walk(value);
roland@2174 418 assert(value->operand()->is_valid(), "must be evaluated now");
roland@2174 419 }
roland@2174 420 }
roland@2174 421
roland@2174 422 int bci = s->bci();
duke@435 423 IRScope* scope = s->scope();
duke@435 424 ciMethod* method = scope->method();
duke@435 425
duke@435 426 MethodLivenessResult liveness = method->liveness_at_bci(bci);
duke@435 427 if (bci == SynchronizationEntryBCI) {
duke@435 428 if (x->as_ExceptionObject() || x->as_Throw()) {
duke@435 429 // all locals are dead on exit from the synthetic unlocker
duke@435 430 liveness.clear();
duke@435 431 } else {
iveresov@3312 432 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
duke@435 433 }
duke@435 434 }
duke@435 435 if (!liveness.is_valid()) {
duke@435 436 // Degenerate or breakpointed method.
duke@435 437 bailout("Degenerate or breakpointed method");
duke@435 438 } else {
duke@435 439 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
duke@435 440 for_each_local_value(s, index, value) {
duke@435 441 assert(value->subst() == value, "missed substition");
duke@435 442 if (liveness.at(index) && !value->type()->is_illegal()) {
duke@435 443 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
duke@435 444 walk(value);
duke@435 445 assert(value->operand()->is_valid(), "must be evaluated now");
duke@435 446 }
duke@435 447 } else {
duke@435 448 // NULL out this local so that linear scan can assume that all non-NULL values are live.
duke@435 449 s->invalidate_local(index);
duke@435 450 }
duke@435 451 }
duke@435 452 }
duke@435 453 }
duke@435 454
roland@2174 455 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
duke@435 456 }
duke@435 457
duke@435 458
duke@435 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
roland@2174 460 return state_for(x, x->exception_state());
duke@435 461 }
duke@435 462
duke@435 463
coleenp@4037 464 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info) {
duke@435 465 if (!obj->is_loaded() || PatchALot) {
duke@435 466 assert(info != NULL, "info must be set if class is not loaded");
coleenp@4037 467 __ klass2reg_patch(NULL, r, info);
duke@435 468 } else {
duke@435 469 // no patching needed
roland@4051 470 __ metadata2reg(obj->constant_encoding(), r);
duke@435 471 }
duke@435 472 }
duke@435 473
duke@435 474
duke@435 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
duke@435 476 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
duke@435 477 CodeStub* stub = new RangeCheckStub(range_check_info, index);
duke@435 478 if (index->is_constant()) {
duke@435 479 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
duke@435 480 index->as_jint(), null_check_info);
duke@435 481 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
duke@435 482 } else {
duke@435 483 cmp_reg_mem(lir_cond_aboveEqual, index, array,
duke@435 484 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
duke@435 485 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
duke@435 486 }
duke@435 487 }
duke@435 488
duke@435 489
duke@435 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
duke@435 491 CodeStub* stub = new RangeCheckStub(info, index, true);
duke@435 492 if (index->is_constant()) {
duke@435 493 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
duke@435 494 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
duke@435 495 } else {
duke@435 496 cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
duke@435 497 java_nio_Buffer::limit_offset(), T_INT, info);
duke@435 498 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
duke@435 499 }
duke@435 500 __ move(index, result);
duke@435 501 }
duke@435 502
duke@435 503
duke@435 504
duke@435 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
duke@435 506 LIR_Opr result_op = result;
duke@435 507 LIR_Opr left_op = left;
duke@435 508 LIR_Opr right_op = right;
duke@435 509
duke@435 510 if (TwoOperandLIRForm && left_op != result_op) {
duke@435 511 assert(right_op != result_op, "malformed");
duke@435 512 __ move(left_op, result_op);
duke@435 513 left_op = result_op;
duke@435 514 }
duke@435 515
duke@435 516 switch(code) {
duke@435 517 case Bytecodes::_dadd:
duke@435 518 case Bytecodes::_fadd:
duke@435 519 case Bytecodes::_ladd:
duke@435 520 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
duke@435 521 case Bytecodes::_fmul:
duke@435 522 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
duke@435 523
duke@435 524 case Bytecodes::_dmul:
duke@435 525 {
duke@435 526 if (is_strictfp) {
duke@435 527 __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
duke@435 528 } else {
duke@435 529 __ mul(left_op, right_op, result_op); break;
duke@435 530 }
duke@435 531 }
duke@435 532 break;
duke@435 533
duke@435 534 case Bytecodes::_imul:
duke@435 535 {
duke@435 536 bool did_strength_reduce = false;
duke@435 537
duke@435 538 if (right->is_constant()) {
duke@435 539 int c = right->as_jint();
duke@435 540 if (is_power_of_2(c)) {
duke@435 541 // do not need tmp here
duke@435 542 __ shift_left(left_op, exact_log2(c), result_op);
duke@435 543 did_strength_reduce = true;
duke@435 544 } else {
duke@435 545 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
duke@435 546 }
duke@435 547 }
duke@435 548 // we couldn't strength reduce so just emit the multiply
duke@435 549 if (!did_strength_reduce) {
duke@435 550 __ mul(left_op, right_op, result_op);
duke@435 551 }
duke@435 552 }
duke@435 553 break;
duke@435 554
duke@435 555 case Bytecodes::_dsub:
duke@435 556 case Bytecodes::_fsub:
duke@435 557 case Bytecodes::_lsub:
duke@435 558 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
duke@435 559
duke@435 560 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
duke@435 561 // ldiv and lrem are implemented with a direct runtime call
duke@435 562
duke@435 563 case Bytecodes::_ddiv:
duke@435 564 {
duke@435 565 if (is_strictfp) {
duke@435 566 __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
duke@435 567 } else {
duke@435 568 __ div (left_op, right_op, result_op); break;
duke@435 569 }
duke@435 570 }
duke@435 571 break;
duke@435 572
duke@435 573 case Bytecodes::_drem:
duke@435 574 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
duke@435 575
duke@435 576 default: ShouldNotReachHere();
duke@435 577 }
duke@435 578 }
duke@435 579
duke@435 580
duke@435 581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
duke@435 582 arithmetic_op(code, result, left, right, false, tmp);
duke@435 583 }
duke@435 584
duke@435 585
duke@435 586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
duke@435 587 arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
duke@435 588 }
duke@435 589
duke@435 590
duke@435 591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
duke@435 592 arithmetic_op(code, result, left, right, is_strictfp, tmp);
duke@435 593 }
duke@435 594
duke@435 595
duke@435 596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
duke@435 597 if (TwoOperandLIRForm && value != result_op) {
duke@435 598 assert(count != result_op, "malformed");
duke@435 599 __ move(value, result_op);
duke@435 600 value = result_op;
duke@435 601 }
duke@435 602
duke@435 603 assert(count->is_constant() || count->is_register(), "must be");
duke@435 604 switch(code) {
duke@435 605 case Bytecodes::_ishl:
duke@435 606 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
duke@435 607 case Bytecodes::_ishr:
duke@435 608 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
duke@435 609 case Bytecodes::_iushr:
duke@435 610 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
duke@435 611 default: ShouldNotReachHere();
duke@435 612 }
duke@435 613 }
duke@435 614
duke@435 615
duke@435 616 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
duke@435 617 if (TwoOperandLIRForm && left_op != result_op) {
duke@435 618 assert(right_op != result_op, "malformed");
duke@435 619 __ move(left_op, result_op);
duke@435 620 left_op = result_op;
duke@435 621 }
duke@435 622
duke@435 623 switch(code) {
duke@435 624 case Bytecodes::_iand:
duke@435 625 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
duke@435 626
duke@435 627 case Bytecodes::_ior:
duke@435 628 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
duke@435 629
duke@435 630 case Bytecodes::_ixor:
duke@435 631 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
duke@435 632
duke@435 633 default: ShouldNotReachHere();
duke@435 634 }
duke@435 635 }
duke@435 636
duke@435 637
duke@435 638 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
duke@435 639 if (!GenerateSynchronizationCode) return;
duke@435 640 // for slow path, use debug info for state after successful locking
duke@435 641 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
duke@435 642 __ load_stack_address_monitor(monitor_no, lock);
duke@435 643 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
duke@435 644 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
duke@435 645 }
duke@435 646
duke@435 647
bobv@2036 648 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
duke@435 649 if (!GenerateSynchronizationCode) return;
duke@435 650 // setup registers
duke@435 651 LIR_Opr hdr = lock;
duke@435 652 lock = new_hdr;
duke@435 653 CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
duke@435 654 __ load_stack_address_monitor(monitor_no, lock);
bobv@2036 655 __ unlock_object(hdr, object, lock, scratch, slow_path);
duke@435 656 }
duke@435 657
duke@435 658
duke@435 659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
coleenp@4037 660 klass2reg_with_patching(klass_reg, klass, info);
duke@435 661 // If klass is not loaded we do not know if the klass has finalizers:
duke@435 662 if (UseFastNewInstance && klass->is_loaded()
duke@435 663 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
duke@435 664
duke@435 665 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
duke@435 666
duke@435 667 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
duke@435 668
duke@435 669 assert(klass->is_loaded(), "must be loaded");
duke@435 670 // allocate space for instance
duke@435 671 assert(klass->size_helper() >= 0, "illegal instance size");
duke@435 672 const int instance_size = align_object_size(klass->size_helper());
duke@435 673 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
duke@435 674 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
duke@435 675 } else {
duke@435 676 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
duke@435 677 __ branch(lir_cond_always, T_ILLEGAL, slow_path);
duke@435 678 __ branch_destination(slow_path->continuation());
duke@435 679 }
duke@435 680 }
duke@435 681
duke@435 682
duke@435 683 static bool is_constant_zero(Instruction* inst) {
duke@435 684 IntConstant* c = inst->type()->as_IntConstant();
duke@435 685 if (c) {
duke@435 686 return (c->value() == 0);
duke@435 687 }
duke@435 688 return false;
duke@435 689 }
duke@435 690
duke@435 691
duke@435 692 static bool positive_constant(Instruction* inst) {
duke@435 693 IntConstant* c = inst->type()->as_IntConstant();
duke@435 694 if (c) {
duke@435 695 return (c->value() >= 0);
duke@435 696 }
duke@435 697 return false;
duke@435 698 }
duke@435 699
duke@435 700
duke@435 701 static ciArrayKlass* as_array_klass(ciType* type) {
duke@435 702 if (type != NULL && type->is_array_klass() && type->is_loaded()) {
duke@435 703 return (ciArrayKlass*)type;
duke@435 704 } else {
duke@435 705 return NULL;
duke@435 706 }
duke@435 707 }
duke@435 708
roland@2728 709 static Value maxvalue(IfOp* ifop) {
roland@2728 710 switch (ifop->cond()) {
roland@2728 711 case If::eql: return NULL;
roland@2728 712 case If::neq: return NULL;
roland@2728 713 case If::lss: // x < y ? x : y
roland@2728 714 case If::leq: // x <= y ? x : y
roland@2728 715 if (ifop->x() == ifop->tval() &&
roland@2728 716 ifop->y() == ifop->fval()) return ifop->y();
roland@2728 717 return NULL;
roland@2728 718
roland@2728 719 case If::gtr: // x > y ? y : x
roland@2728 720 case If::geq: // x >= y ? y : x
roland@2728 721 if (ifop->x() == ifop->tval() &&
roland@2728 722 ifop->y() == ifop->fval()) return ifop->y();
roland@2728 723 return NULL;
roland@2728 724
roland@2728 725 }
roland@2728 726 }
roland@2728 727
roland@2728 728 static ciType* phi_declared_type(Phi* phi) {
roland@2728 729 ciType* t = phi->operand_at(0)->declared_type();
roland@2728 730 if (t == NULL) {
roland@2728 731 return NULL;
roland@2728 732 }
roland@2728 733 for(int i = 1; i < phi->operand_count(); i++) {
roland@2728 734 if (t != phi->operand_at(i)->declared_type()) {
roland@2728 735 return NULL;
roland@2728 736 }
roland@2728 737 }
roland@2728 738 return t;
roland@2728 739 }
roland@2728 740
duke@435 741 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
duke@435 742 Instruction* src = x->argument_at(0);
duke@435 743 Instruction* src_pos = x->argument_at(1);
duke@435 744 Instruction* dst = x->argument_at(2);
duke@435 745 Instruction* dst_pos = x->argument_at(3);
duke@435 746 Instruction* length = x->argument_at(4);
duke@435 747
duke@435 748 // first try to identify the likely type of the arrays involved
duke@435 749 ciArrayKlass* expected_type = NULL;
roland@2728 750 bool is_exact = false, src_objarray = false, dst_objarray = false;
duke@435 751 {
duke@435 752 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
duke@435 753 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
roland@2728 754 Phi* phi;
roland@2728 755 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
roland@2728 756 src_declared_type = as_array_klass(phi_declared_type(phi));
roland@2728 757 }
duke@435 758 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
duke@435 759 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
roland@2728 760 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
roland@2728 761 dst_declared_type = as_array_klass(phi_declared_type(phi));
roland@2728 762 }
roland@2728 763
duke@435 764 if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
duke@435 765 // the types exactly match so the type is fully known
duke@435 766 is_exact = true;
duke@435 767 expected_type = src_exact_type;
duke@435 768 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
duke@435 769 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
duke@435 770 ciArrayKlass* src_type = NULL;
duke@435 771 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
duke@435 772 src_type = (ciArrayKlass*) src_exact_type;
duke@435 773 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
duke@435 774 src_type = (ciArrayKlass*) src_declared_type;
duke@435 775 }
duke@435 776 if (src_type != NULL) {
duke@435 777 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
duke@435 778 is_exact = true;
duke@435 779 expected_type = dst_type;
duke@435 780 }
duke@435 781 }
duke@435 782 }
duke@435 783 // at least pass along a good guess
duke@435 784 if (expected_type == NULL) expected_type = dst_exact_type;
duke@435 785 if (expected_type == NULL) expected_type = src_declared_type;
duke@435 786 if (expected_type == NULL) expected_type = dst_declared_type;
roland@2728 787
roland@2728 788 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
roland@2728 789 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
duke@435 790 }
duke@435 791
duke@435 792 // if a probable array type has been identified, figure out if any
duke@435 793 // of the required checks for a fast case can be elided.
duke@435 794 int flags = LIR_OpArrayCopy::all_flags;
roland@2728 795
roland@2728 796 if (!src_objarray)
roland@2728 797 flags &= ~LIR_OpArrayCopy::src_objarray;
roland@2728 798 if (!dst_objarray)
roland@2728 799 flags &= ~LIR_OpArrayCopy::dst_objarray;
roland@2728 800
roland@2728 801 if (!x->arg_needs_null_check(0))
roland@2728 802 flags &= ~LIR_OpArrayCopy::src_null_check;
roland@2728 803 if (!x->arg_needs_null_check(2))
roland@2728 804 flags &= ~LIR_OpArrayCopy::dst_null_check;
roland@2728 805
roland@2728 806
duke@435 807 if (expected_type != NULL) {
roland@2728 808 Value length_limit = NULL;
roland@2728 809
roland@2728 810 IfOp* ifop = length->as_IfOp();
roland@2728 811 if (ifop != NULL) {
roland@2728 812 // look for expressions like min(v, a.length) which ends up as
roland@2728 813 // x > y ? y : x or x >= y ? y : x
roland@2728 814 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
roland@2728 815 ifop->x() == ifop->fval() &&
roland@2728 816 ifop->y() == ifop->tval()) {
roland@2728 817 length_limit = ifop->y();
roland@2728 818 }
roland@2728 819 }
roland@2728 820
roland@2728 821 // try to skip null checks and range checks
roland@2728 822 NewArray* src_array = src->as_NewArray();
roland@2728 823 if (src_array != NULL) {
duke@435 824 flags &= ~LIR_OpArrayCopy::src_null_check;
roland@2728 825 if (length_limit != NULL &&
roland@2728 826 src_array->length() == length_limit &&
roland@2728 827 is_constant_zero(src_pos)) {
roland@2728 828 flags &= ~LIR_OpArrayCopy::src_range_check;
roland@2728 829 }
roland@2728 830 }
roland@2728 831
roland@2728 832 NewArray* dst_array = dst->as_NewArray();
roland@2728 833 if (dst_array != NULL) {
duke@435 834 flags &= ~LIR_OpArrayCopy::dst_null_check;
roland@2728 835 if (length_limit != NULL &&
roland@2728 836 dst_array->length() == length_limit &&
roland@2728 837 is_constant_zero(dst_pos)) {
roland@2728 838 flags &= ~LIR_OpArrayCopy::dst_range_check;
roland@2728 839 }
roland@2728 840 }
duke@435 841
duke@435 842 // check from incoming constant values
duke@435 843 if (positive_constant(src_pos))
duke@435 844 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
duke@435 845 if (positive_constant(dst_pos))
duke@435 846 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
duke@435 847 if (positive_constant(length))
duke@435 848 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 849
duke@435 850 // see if the range check can be elided, which might also imply
duke@435 851 // that src or dst is non-null.
duke@435 852 ArrayLength* al = length->as_ArrayLength();
duke@435 853 if (al != NULL) {
duke@435 854 if (al->array() == src) {
duke@435 855 // it's the length of the source array
duke@435 856 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 857 flags &= ~LIR_OpArrayCopy::src_null_check;
duke@435 858 if (is_constant_zero(src_pos))
duke@435 859 flags &= ~LIR_OpArrayCopy::src_range_check;
duke@435 860 }
duke@435 861 if (al->array() == dst) {
duke@435 862 // it's the length of the destination array
duke@435 863 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 864 flags &= ~LIR_OpArrayCopy::dst_null_check;
duke@435 865 if (is_constant_zero(dst_pos))
duke@435 866 flags &= ~LIR_OpArrayCopy::dst_range_check;
duke@435 867 }
duke@435 868 }
duke@435 869 if (is_exact) {
duke@435 870 flags &= ~LIR_OpArrayCopy::type_check;
duke@435 871 }
duke@435 872 }
duke@435 873
roland@2728 874 IntConstant* src_int = src_pos->type()->as_IntConstant();
roland@2728 875 IntConstant* dst_int = dst_pos->type()->as_IntConstant();
roland@2728 876 if (src_int && dst_int) {
roland@2728 877 int s_offs = src_int->value();
roland@2728 878 int d_offs = dst_int->value();
roland@2728 879 if (src_int->value() >= dst_int->value()) {
roland@2728 880 flags &= ~LIR_OpArrayCopy::overlapping;
roland@2728 881 }
roland@2728 882 if (expected_type != NULL) {
roland@2728 883 BasicType t = expected_type->element_type()->basic_type();
roland@2728 884 int element_size = type2aelembytes(t);
roland@2728 885 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
roland@2728 886 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
roland@2728 887 flags &= ~LIR_OpArrayCopy::unaligned;
roland@2728 888 }
roland@2728 889 }
roland@2728 890 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
roland@2728 891 // src and dest positions are the same, or dst is zero so assume
roland@2728 892 // nonoverlapping copy.
roland@2728 893 flags &= ~LIR_OpArrayCopy::overlapping;
roland@2728 894 }
roland@2728 895
duke@435 896 if (src == dst) {
duke@435 897 // moving within a single array so no type checks are needed
duke@435 898 if (flags & LIR_OpArrayCopy::type_check) {
duke@435 899 flags &= ~LIR_OpArrayCopy::type_check;
duke@435 900 }
duke@435 901 }
duke@435 902 *flagsp = flags;
duke@435 903 *expected_typep = (ciArrayKlass*)expected_type;
duke@435 904 }
duke@435 905
duke@435 906
duke@435 907 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
duke@435 908 assert(opr->is_register(), "why spill if item is not register?");
duke@435 909
duke@435 910 if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
duke@435 911 LIR_Opr result = new_register(T_FLOAT);
duke@435 912 set_vreg_flag(result, must_start_in_memory);
duke@435 913 assert(opr->is_register(), "only a register can be spilled");
duke@435 914 assert(opr->value_type()->is_float(), "rounding only for floats available");
duke@435 915 __ roundfp(opr, LIR_OprFact::illegalOpr, result);
duke@435 916 return result;
duke@435 917 }
duke@435 918 return opr;
duke@435 919 }
duke@435 920
duke@435 921
duke@435 922 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
twisti@4003 923 assert(type2size[t] == type2size[value->type()],
twisti@4003 924 err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
duke@435 925 if (!value->is_register()) {
duke@435 926 // force into a register
duke@435 927 LIR_Opr r = new_register(value->type());
duke@435 928 __ move(value, r);
duke@435 929 value = r;
duke@435 930 }
duke@435 931
duke@435 932 // create a spill location
duke@435 933 LIR_Opr tmp = new_register(t);
duke@435 934 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
duke@435 935
duke@435 936 // move from register to spill
duke@435 937 __ move(value, tmp);
duke@435 938 return tmp;
duke@435 939 }
duke@435 940
duke@435 941 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
duke@435 942 if (if_instr->should_profile()) {
duke@435 943 ciMethod* method = if_instr->profiled_method();
duke@435 944 assert(method != NULL, "method should be set if branch is profiled");
iveresov@2349 945 ciMethodData* md = method->method_data_or_null();
iveresov@2349 946 assert(md != NULL, "Sanity");
duke@435 947 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
duke@435 948 assert(data != NULL, "must have profiling data");
duke@435 949 assert(data->is_BranchData(), "need BranchData for two-way branches");
duke@435 950 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
duke@435 951 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
iveresov@2138 952 if (if_instr->is_swapped()) {
iveresov@2138 953 int t = taken_count_offset;
iveresov@2138 954 taken_count_offset = not_taken_count_offset;
iveresov@2138 955 not_taken_count_offset = t;
iveresov@2138 956 }
iveresov@2138 957
roland@4051 958 LIR_Opr md_reg = new_register(T_METADATA);
roland@4051 959 __ metadata2reg(md->constant_encoding(), md_reg);
iveresov@2138 960
iveresov@2138 961 LIR_Opr data_offset_reg = new_pointer_register();
duke@435 962 __ cmove(lir_cond(cond),
iveresov@2138 963 LIR_OprFact::intptrConst(taken_count_offset),
iveresov@2138 964 LIR_OprFact::intptrConst(not_taken_count_offset),
iveresov@2412 965 data_offset_reg, as_BasicType(if_instr->x()->type()));
iveresov@2138 966
iveresov@2138 967 // MDO cells are intptr_t, so the data_reg width is arch-dependent.
iveresov@2138 968 LIR_Opr data_reg = new_pointer_register();
iveresov@2138 969 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
iveresov@2344 970 __ move(data_addr, data_reg);
iveresov@2138 971 // Use leal instead of add to avoid destroying condition codes on x86
duke@435 972 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
duke@435 973 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
iveresov@2344 974 __ move(data_reg, data_addr);
duke@435 975 }
duke@435 976 }
duke@435 977
duke@435 978 // Phi technique:
duke@435 979 // This is about passing live values from one basic block to the other.
duke@435 980 // In code generated with Java it is rather rare that more than one
duke@435 981 // value is on the stack from one basic block to the other.
duke@435 982 // We optimize our technique for efficient passing of one value
duke@435 983 // (of type long, int, double..) but it can be extended.
duke@435 984 // When entering or leaving a basic block, all registers and all spill
duke@435 985 // slots are release and empty. We use the released registers
duke@435 986 // and spill slots to pass the live values from one block
duke@435 987 // to the other. The topmost value, i.e., the value on TOS of expression
duke@435 988 // stack is passed in registers. All other values are stored in spilling
duke@435 989 // area. Every Phi has an index which designates its spill slot
duke@435 990 // At exit of a basic block, we fill the register(s) and spill slots.
duke@435 991 // At entry of a basic block, the block_prolog sets up the content of phi nodes
duke@435 992 // and locks necessary registers and spilling slots.
duke@435 993
duke@435 994
duke@435 995 // move current value to referenced phi function
duke@435 996 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
duke@435 997 Phi* phi = sux_val->as_Phi();
duke@435 998 // cur_val can be null without phi being null in conjunction with inlining
duke@435 999 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
duke@435 1000 LIR_Opr operand = cur_val->operand();
duke@435 1001 if (cur_val->operand()->is_illegal()) {
duke@435 1002 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
duke@435 1003 "these can be produced lazily");
duke@435 1004 operand = operand_for_instruction(cur_val);
duke@435 1005 }
duke@435 1006 resolver->move(operand, operand_for_instruction(phi));
duke@435 1007 }
duke@435 1008 }
duke@435 1009
duke@435 1010
duke@435 1011 // Moves all stack values into their PHI position
duke@435 1012 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
duke@435 1013 BlockBegin* bb = block();
duke@435 1014 if (bb->number_of_sux() == 1) {
duke@435 1015 BlockBegin* sux = bb->sux_at(0);
duke@435 1016 assert(sux->number_of_preds() > 0, "invalid CFG");
duke@435 1017
duke@435 1018 // a block with only one predecessor never has phi functions
duke@435 1019 if (sux->number_of_preds() > 1) {
duke@435 1020 int max_phis = cur_state->stack_size() + cur_state->locals_size();
duke@435 1021 PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
duke@435 1022
duke@435 1023 ValueStack* sux_state = sux->state();
duke@435 1024 Value sux_value;
duke@435 1025 int index;
duke@435 1026
roland@2174 1027 assert(cur_state->scope() == sux_state->scope(), "not matching");
roland@2174 1028 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
roland@2174 1029 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
roland@2174 1030
duke@435 1031 for_each_stack_value(sux_state, index, sux_value) {
duke@435 1032 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
duke@435 1033 }
duke@435 1034
duke@435 1035 for_each_local_value(sux_state, index, sux_value) {
duke@435 1036 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
duke@435 1037 }
duke@435 1038
duke@435 1039 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
duke@435 1040 }
duke@435 1041 }
duke@435 1042 }
duke@435 1043
duke@435 1044
duke@435 1045 LIR_Opr LIRGenerator::new_register(BasicType type) {
duke@435 1046 int vreg = _virtual_register_number;
duke@435 1047 // add a little fudge factor for the bailout, since the bailout is
duke@435 1048 // only checked periodically. This gives a few extra registers to
duke@435 1049 // hand out before we really run out, which helps us keep from
duke@435 1050 // tripping over assertions.
duke@435 1051 if (vreg + 20 >= LIR_OprDesc::vreg_max) {
duke@435 1052 bailout("out of virtual registers");
duke@435 1053 if (vreg + 2 >= LIR_OprDesc::vreg_max) {
duke@435 1054 // wrap it around
duke@435 1055 _virtual_register_number = LIR_OprDesc::vreg_base;
duke@435 1056 }
duke@435 1057 }
duke@435 1058 _virtual_register_number += 1;
duke@435 1059 return LIR_OprFact::virtual_register(vreg, type);
duke@435 1060 }
duke@435 1061
duke@435 1062
duke@435 1063 // Try to lock using register in hint
duke@435 1064 LIR_Opr LIRGenerator::rlock(Value instr) {
duke@435 1065 return new_register(instr->type());
duke@435 1066 }
duke@435 1067
duke@435 1068
duke@435 1069 // does an rlock and sets result
duke@435 1070 LIR_Opr LIRGenerator::rlock_result(Value x) {
duke@435 1071 LIR_Opr reg = rlock(x);
duke@435 1072 set_result(x, reg);
duke@435 1073 return reg;
duke@435 1074 }
duke@435 1075
duke@435 1076
duke@435 1077 // does an rlock and sets result
duke@435 1078 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
duke@435 1079 LIR_Opr reg;
duke@435 1080 switch (type) {
duke@435 1081 case T_BYTE:
duke@435 1082 case T_BOOLEAN:
duke@435 1083 reg = rlock_byte(type);
duke@435 1084 break;
duke@435 1085 default:
duke@435 1086 reg = rlock(x);
duke@435 1087 break;
duke@435 1088 }
duke@435 1089
duke@435 1090 set_result(x, reg);
duke@435 1091 return reg;
duke@435 1092 }
duke@435 1093
duke@435 1094
duke@435 1095 //---------------------------------------------------------------------
duke@435 1096 ciObject* LIRGenerator::get_jobject_constant(Value value) {
duke@435 1097 ObjectType* oc = value->type()->as_ObjectType();
duke@435 1098 if (oc) {
duke@435 1099 return oc->constant_value();
duke@435 1100 }
duke@435 1101 return NULL;
duke@435 1102 }
duke@435 1103
duke@435 1104
duke@435 1105 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
duke@435 1106 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
duke@435 1107 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
duke@435 1108
duke@435 1109 // no moves are created for phi functions at the begin of exception
duke@435 1110 // handlers, so assign operands manually here
duke@435 1111 for_each_phi_fun(block(), phi,
duke@435 1112 operand_for_instruction(phi));
duke@435 1113
duke@435 1114 LIR_Opr thread_reg = getThreadPointer();
iveresov@2344 1115 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
iveresov@2344 1116 exceptionOopOpr());
iveresov@2344 1117 __ move_wide(LIR_OprFact::oopConst(NULL),
iveresov@2344 1118 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
iveresov@2344 1119 __ move_wide(LIR_OprFact::oopConst(NULL),
iveresov@2344 1120 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
duke@435 1121
duke@435 1122 LIR_Opr result = new_register(T_OBJECT);
duke@435 1123 __ move(exceptionOopOpr(), result);
duke@435 1124 set_result(x, result);
duke@435 1125 }
duke@435 1126
duke@435 1127
duke@435 1128 //----------------------------------------------------------------------
duke@435 1129 //----------------------------------------------------------------------
duke@435 1130 //----------------------------------------------------------------------
duke@435 1131 //----------------------------------------------------------------------
duke@435 1132 // visitor functions
duke@435 1133 //----------------------------------------------------------------------
duke@435 1134 //----------------------------------------------------------------------
duke@435 1135 //----------------------------------------------------------------------
duke@435 1136 //----------------------------------------------------------------------
duke@435 1137
duke@435 1138 void LIRGenerator::do_Phi(Phi* x) {
duke@435 1139 // phi functions are never visited directly
duke@435 1140 ShouldNotReachHere();
duke@435 1141 }
duke@435 1142
duke@435 1143
duke@435 1144 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
duke@435 1145 void LIRGenerator::do_Constant(Constant* x) {
roland@2174 1146 if (x->state_before() != NULL) {
duke@435 1147 // Any constant with a ValueStack requires patching so emit the patch here
duke@435 1148 LIR_Opr reg = rlock_result(x);
roland@2174 1149 CodeEmitInfo* info = state_for(x, x->state_before());
duke@435 1150 __ oop2reg_patch(NULL, reg, info);
duke@435 1151 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
duke@435 1152 if (!x->is_pinned()) {
duke@435 1153 // unpinned constants are handled specially so that they can be
duke@435 1154 // put into registers when they are used multiple times within a
duke@435 1155 // block. After the block completes their operand will be
duke@435 1156 // cleared so that other blocks can't refer to that register.
duke@435 1157 set_result(x, load_constant(x));
duke@435 1158 } else {
duke@435 1159 LIR_Opr res = x->operand();
duke@435 1160 if (!res->is_valid()) {
duke@435 1161 res = LIR_OprFact::value_type(x->type());
duke@435 1162 }
duke@435 1163 if (res->is_constant()) {
duke@435 1164 LIR_Opr reg = rlock_result(x);
duke@435 1165 __ move(res, reg);
duke@435 1166 } else {
duke@435 1167 set_result(x, res);
duke@435 1168 }
duke@435 1169 }
duke@435 1170 } else {
duke@435 1171 set_result(x, LIR_OprFact::value_type(x->type()));
duke@435 1172 }
duke@435 1173 }
duke@435 1174
duke@435 1175
duke@435 1176 void LIRGenerator::do_Local(Local* x) {
duke@435 1177 // operand_for_instruction has the side effect of setting the result
duke@435 1178 // so there's no need to do it here.
duke@435 1179 operand_for_instruction(x);
duke@435 1180 }
duke@435 1181
duke@435 1182
duke@435 1183 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
duke@435 1184 Unimplemented();
duke@435 1185 }
duke@435 1186
duke@435 1187
duke@435 1188 void LIRGenerator::do_Return(Return* x) {
kvn@1215 1189 if (compilation()->env()->dtrace_method_probes()) {
duke@435 1190 BasicTypeList signature;
iveresov@2344 1191 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
coleenp@4037 1192 signature.append(T_OBJECT); // Method*
duke@435 1193 LIR_OprList* args = new LIR_OprList();
duke@435 1194 args->append(getThreadPointer());
roland@4051 1195 LIR_Opr meth = new_register(T_METADATA);
roland@4051 1196 __ metadata2reg(method()->constant_encoding(), meth);
duke@435 1197 args->append(meth);
duke@435 1198 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
duke@435 1199 }
duke@435 1200
duke@435 1201 if (x->type()->is_void()) {
duke@435 1202 __ return_op(LIR_OprFact::illegalOpr);
duke@435 1203 } else {
duke@435 1204 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
duke@435 1205 LIRItem result(x->result(), this);
duke@435 1206
duke@435 1207 result.load_item_force(reg);
duke@435 1208 __ return_op(result.result());
duke@435 1209 }
duke@435 1210 set_no_result(x);
duke@435 1211 }
duke@435 1212
johnc@2781 1213 // Examble: ref.get()
johnc@2781 1214 // Combination of LoadField and g1 pre-write barrier
johnc@2781 1215 void LIRGenerator::do_Reference_get(Intrinsic* x) {
johnc@2781 1216
johnc@2781 1217 const int referent_offset = java_lang_ref_Reference::referent_offset;
johnc@2781 1218 guarantee(referent_offset > 0, "referent offset not initialized");
johnc@2781 1219
johnc@2781 1220 assert(x->number_of_arguments() == 1, "wrong type");
johnc@2781 1221
johnc@2781 1222 LIRItem reference(x->argument_at(0), this);
johnc@2781 1223 reference.load_item();
johnc@2781 1224
johnc@2781 1225 // need to perform the null check on the reference objecy
johnc@2781 1226 CodeEmitInfo* info = NULL;
johnc@2781 1227 if (x->needs_null_check()) {
johnc@2781 1228 info = state_for(x);
johnc@2781 1229 }
johnc@2781 1230
johnc@2781 1231 LIR_Address* referent_field_adr =
johnc@2781 1232 new LIR_Address(reference.result(), referent_offset, T_OBJECT);
johnc@2781 1233
johnc@2781 1234 LIR_Opr result = rlock_result(x);
johnc@2781 1235
johnc@2781 1236 __ load(referent_field_adr, result, info);
johnc@2781 1237
johnc@2781 1238 // Register the value in the referent field with the pre-barrier
johnc@2781 1239 pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
johnc@2781 1240 result /* pre_val */,
johnc@2781 1241 false /* do_load */,
johnc@2781 1242 false /* patch */,
johnc@2781 1243 NULL /* info */);
johnc@2781 1244 }
duke@435 1245
roland@3838 1246 // Example: clazz.isInstance(object)
roland@3838 1247 void LIRGenerator::do_isInstance(Intrinsic* x) {
roland@3838 1248 assert(x->number_of_arguments() == 2, "wrong type");
roland@3838 1249
roland@3838 1250 // TODO could try to substitute this node with an equivalent InstanceOf
roland@3838 1251 // if clazz is known to be a constant Class. This will pick up newly found
roland@3838 1252 // constants after HIR construction. I'll leave this to a future change.
roland@3838 1253
roland@3838 1254 // as a first cut, make a simple leaf call to runtime to stay platform independent.
roland@3838 1255 // could follow the aastore example in a future change.
roland@3838 1256
roland@3838 1257 LIRItem clazz(x->argument_at(0), this);
roland@3838 1258 LIRItem object(x->argument_at(1), this);
roland@3838 1259 clazz.load_item();
roland@3838 1260 object.load_item();
roland@3838 1261 LIR_Opr result = rlock_result(x);
roland@3838 1262
roland@3838 1263 // need to perform null check on clazz
roland@3838 1264 if (x->needs_null_check()) {
roland@3838 1265 CodeEmitInfo* info = state_for(x);
roland@3838 1266 __ null_check(clazz.result(), info);
roland@3838 1267 }
roland@3838 1268
roland@3838 1269 LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
roland@3838 1270 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
roland@3838 1271 x->type(),
roland@3838 1272 NULL); // NULL CodeEmitInfo results in a leaf call
roland@3838 1273 __ move(call_result, result);
roland@3838 1274 }
roland@3838 1275
duke@435 1276 // Example: object.getClass ()
duke@435 1277 void LIRGenerator::do_getClass(Intrinsic* x) {
duke@435 1278 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 1279
duke@435 1280 LIRItem rcvr(x->argument_at(0), this);
duke@435 1281 rcvr.load_item();
duke@435 1282 LIR_Opr result = rlock_result(x);
duke@435 1283
duke@435 1284 // need to perform the null check on the rcvr
duke@435 1285 CodeEmitInfo* info = NULL;
duke@435 1286 if (x->needs_null_check()) {
roland@2174 1287 info = state_for(x);
duke@435 1288 }
roland@4159 1289 __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), result, info);
stefank@3391 1290 __ move_wide(new LIR_Address(result, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
duke@435 1291 }
duke@435 1292
duke@435 1293
duke@435 1294 // Example: Thread.currentThread()
duke@435 1295 void LIRGenerator::do_currentThread(Intrinsic* x) {
duke@435 1296 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 1297 LIR_Opr reg = rlock_result(x);
iveresov@2344 1298 __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
duke@435 1299 }
duke@435 1300
duke@435 1301
duke@435 1302 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
duke@435 1303 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 1304 LIRItem receiver(x->argument_at(0), this);
duke@435 1305
duke@435 1306 receiver.load_item();
duke@435 1307 BasicTypeList signature;
duke@435 1308 signature.append(T_OBJECT); // receiver
duke@435 1309 LIR_OprList* args = new LIR_OprList();
duke@435 1310 args->append(receiver.result());
duke@435 1311 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1312 call_runtime(&signature, args,
duke@435 1313 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
duke@435 1314 voidType, info);
duke@435 1315
duke@435 1316 set_no_result(x);
duke@435 1317 }
duke@435 1318
duke@435 1319
duke@435 1320 //------------------------local access--------------------------------------
duke@435 1321
duke@435 1322 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
duke@435 1323 if (x->operand()->is_illegal()) {
duke@435 1324 Constant* c = x->as_Constant();
duke@435 1325 if (c != NULL) {
duke@435 1326 x->set_operand(LIR_OprFact::value_type(c->type()));
duke@435 1327 } else {
duke@435 1328 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
duke@435 1329 // allocate a virtual register for this local or phi
duke@435 1330 x->set_operand(rlock(x));
duke@435 1331 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
duke@435 1332 }
duke@435 1333 }
duke@435 1334 return x->operand();
duke@435 1335 }
duke@435 1336
duke@435 1337
duke@435 1338 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
duke@435 1339 if (opr->is_virtual()) {
duke@435 1340 return instruction_for_vreg(opr->vreg_number());
duke@435 1341 }
duke@435 1342 return NULL;
duke@435 1343 }
duke@435 1344
duke@435 1345
duke@435 1346 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
duke@435 1347 if (reg_num < _instruction_for_operand.length()) {
duke@435 1348 return _instruction_for_operand.at(reg_num);
duke@435 1349 }
duke@435 1350 return NULL;
duke@435 1351 }
duke@435 1352
duke@435 1353
duke@435 1354 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
duke@435 1355 if (_vreg_flags.size_in_bits() == 0) {
duke@435 1356 BitMap2D temp(100, num_vreg_flags);
duke@435 1357 temp.clear();
duke@435 1358 _vreg_flags = temp;
duke@435 1359 }
duke@435 1360 _vreg_flags.at_put_grow(vreg_num, f, true);
duke@435 1361 }
duke@435 1362
duke@435 1363 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
duke@435 1364 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
duke@435 1365 return false;
duke@435 1366 }
duke@435 1367 return _vreg_flags.at(vreg_num, f);
duke@435 1368 }
duke@435 1369
duke@435 1370
duke@435 1371 // Block local constant handling. This code is useful for keeping
duke@435 1372 // unpinned constants and constants which aren't exposed in the IR in
duke@435 1373 // registers. Unpinned Constant instructions have their operands
duke@435 1374 // cleared when the block is finished so that other blocks can't end
duke@435 1375 // up referring to their registers.
duke@435 1376
duke@435 1377 LIR_Opr LIRGenerator::load_constant(Constant* x) {
duke@435 1378 assert(!x->is_pinned(), "only for unpinned constants");
duke@435 1379 _unpinned_constants.append(x);
duke@435 1380 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
duke@435 1381 }
duke@435 1382
duke@435 1383
duke@435 1384 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
duke@435 1385 BasicType t = c->type();
duke@435 1386 for (int i = 0; i < _constants.length(); i++) {
duke@435 1387 LIR_Const* other = _constants.at(i);
duke@435 1388 if (t == other->type()) {
duke@435 1389 switch (t) {
duke@435 1390 case T_INT:
duke@435 1391 case T_FLOAT:
duke@435 1392 if (c->as_jint_bits() != other->as_jint_bits()) continue;
duke@435 1393 break;
duke@435 1394 case T_LONG:
duke@435 1395 case T_DOUBLE:
never@921 1396 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
never@921 1397 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
duke@435 1398 break;
duke@435 1399 case T_OBJECT:
duke@435 1400 if (c->as_jobject() != other->as_jobject()) continue;
duke@435 1401 break;
duke@435 1402 }
duke@435 1403 return _reg_for_constants.at(i);
duke@435 1404 }
duke@435 1405 }
duke@435 1406
duke@435 1407 LIR_Opr result = new_register(t);
duke@435 1408 __ move((LIR_Opr)c, result);
duke@435 1409 _constants.append(c);
duke@435 1410 _reg_for_constants.append(result);
duke@435 1411 return result;
duke@435 1412 }
duke@435 1413
duke@435 1414 // Various barriers
duke@435 1415
johnc@2781 1416 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
johnc@2781 1417 bool do_load, bool patch, CodeEmitInfo* info) {
ysr@777 1418 // Do the pre-write barrier, if any.
ysr@777 1419 switch (_bs->kind()) {
ysr@777 1420 #ifndef SERIALGC
ysr@777 1421 case BarrierSet::G1SATBCT:
ysr@777 1422 case BarrierSet::G1SATBCTLogging:
johnc@2781 1423 G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
ysr@777 1424 break;
ysr@777 1425 #endif // SERIALGC
ysr@777 1426 case BarrierSet::CardTableModRef:
ysr@777 1427 case BarrierSet::CardTableExtension:
ysr@777 1428 // No pre barriers
ysr@777 1429 break;
ysr@777 1430 case BarrierSet::ModRef:
ysr@777 1431 case BarrierSet::Other:
ysr@777 1432 // No pre barriers
ysr@777 1433 break;
ysr@777 1434 default :
ysr@777 1435 ShouldNotReachHere();
ysr@777 1436
ysr@777 1437 }
ysr@777 1438 }
ysr@777 1439
duke@435 1440 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
ysr@777 1441 switch (_bs->kind()) {
ysr@777 1442 #ifndef SERIALGC
ysr@777 1443 case BarrierSet::G1SATBCT:
ysr@777 1444 case BarrierSet::G1SATBCTLogging:
ysr@777 1445 G1SATBCardTableModRef_post_barrier(addr, new_val);
ysr@777 1446 break;
ysr@777 1447 #endif // SERIALGC
duke@435 1448 case BarrierSet::CardTableModRef:
duke@435 1449 case BarrierSet::CardTableExtension:
duke@435 1450 CardTableModRef_post_barrier(addr, new_val);
duke@435 1451 break;
duke@435 1452 case BarrierSet::ModRef:
duke@435 1453 case BarrierSet::Other:
duke@435 1454 // No post barriers
duke@435 1455 break;
duke@435 1456 default :
duke@435 1457 ShouldNotReachHere();
duke@435 1458 }
duke@435 1459 }
duke@435 1460
ysr@777 1461 ////////////////////////////////////////////////////////////////////////
ysr@777 1462 #ifndef SERIALGC
ysr@777 1463
johnc@2781 1464 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
johnc@2781 1465 bool do_load, bool patch, CodeEmitInfo* info) {
ysr@777 1466 // First we test whether marking is in progress.
ysr@777 1467 BasicType flag_type;
ysr@777 1468 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
ysr@777 1469 flag_type = T_INT;
ysr@777 1470 } else {
ysr@777 1471 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
ysr@777 1472 "Assumption");
ysr@777 1473 flag_type = T_BYTE;
ysr@777 1474 }
ysr@777 1475 LIR_Opr thrd = getThreadPointer();
ysr@777 1476 LIR_Address* mark_active_flag_addr =
ysr@777 1477 new LIR_Address(thrd,
ysr@777 1478 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 1479 PtrQueue::byte_offset_of_active()),
ysr@777 1480 flag_type);
ysr@777 1481 // Read the marking-in-progress flag.
ysr@777 1482 LIR_Opr flag_val = new_register(T_INT);
ysr@777 1483 __ load(mark_active_flag_addr, flag_val);
ysr@777 1484 __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
johnc@2781 1485
johnc@2781 1486 LIR_PatchCode pre_val_patch_code = lir_patch_none;
johnc@2781 1487
johnc@2781 1488 CodeStub* slow;
johnc@2781 1489
johnc@2781 1490 if (do_load) {
johnc@2781 1491 assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
johnc@2781 1492 assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
johnc@2781 1493
johnc@2781 1494 if (patch)
johnc@2781 1495 pre_val_patch_code = lir_patch_normal;
johnc@2781 1496
johnc@2781 1497 pre_val = new_register(T_OBJECT);
johnc@2781 1498
johnc@2781 1499 if (!addr_opr->is_address()) {
johnc@2781 1500 assert(addr_opr->is_register(), "must be");
johnc@2781 1501 addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
johnc@2781 1502 }
johnc@2781 1503 slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
johnc@2781 1504 } else {
johnc@2781 1505 assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
johnc@2781 1506 assert(pre_val->is_register(), "must be");
johnc@2781 1507 assert(pre_val->type() == T_OBJECT, "must be an object");
johnc@2781 1508 assert(info == NULL, "sanity");
johnc@2781 1509
johnc@2781 1510 slow = new G1PreBarrierStub(pre_val);
ysr@777 1511 }
johnc@2781 1512
ysr@777 1513 __ branch(lir_cond_notEqual, T_INT, slow);
ysr@777 1514 __ branch_destination(slow->continuation());
ysr@777 1515 }
ysr@777 1516
ysr@777 1517 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
ysr@777 1518 // If the "new_val" is a constant NULL, no barrier is necessary.
ysr@777 1519 if (new_val->is_constant() &&
ysr@777 1520 new_val->as_constant_ptr()->as_jobject() == NULL) return;
ysr@777 1521
ysr@777 1522 if (!new_val->is_register()) {
iveresov@1927 1523 LIR_Opr new_val_reg = new_register(T_OBJECT);
ysr@777 1524 if (new_val->is_constant()) {
ysr@777 1525 __ move(new_val, new_val_reg);
ysr@777 1526 } else {
ysr@777 1527 __ leal(new_val, new_val_reg);
ysr@777 1528 }
ysr@777 1529 new_val = new_val_reg;
ysr@777 1530 }
ysr@777 1531 assert(new_val->is_register(), "must be a register at this point");
ysr@777 1532
ysr@777 1533 if (addr->is_address()) {
ysr@777 1534 LIR_Address* address = addr->as_address_ptr();
iveresov@2746 1535 LIR_Opr ptr = new_pointer_register();
ysr@777 1536 if (!address->index()->is_valid() && address->disp() == 0) {
ysr@777 1537 __ move(address->base(), ptr);
ysr@777 1538 } else {
ysr@777 1539 assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
ysr@777 1540 __ leal(addr, ptr);
ysr@777 1541 }
ysr@777 1542 addr = ptr;
ysr@777 1543 }
ysr@777 1544 assert(addr->is_register(), "must be a register at this point");
ysr@777 1545
ysr@777 1546 LIR_Opr xor_res = new_pointer_register();
ysr@777 1547 LIR_Opr xor_shift_res = new_pointer_register();
ysr@777 1548 if (TwoOperandLIRForm ) {
ysr@777 1549 __ move(addr, xor_res);
ysr@777 1550 __ logical_xor(xor_res, new_val, xor_res);
ysr@777 1551 __ move(xor_res, xor_shift_res);
ysr@777 1552 __ unsigned_shift_right(xor_shift_res,
ysr@777 1553 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
ysr@777 1554 xor_shift_res,
ysr@777 1555 LIR_OprDesc::illegalOpr());
ysr@777 1556 } else {
ysr@777 1557 __ logical_xor(addr, new_val, xor_res);
ysr@777 1558 __ unsigned_shift_right(xor_res,
ysr@777 1559 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
ysr@777 1560 xor_shift_res,
ysr@777 1561 LIR_OprDesc::illegalOpr());
ysr@777 1562 }
ysr@777 1563
ysr@777 1564 if (!new_val->is_register()) {
iveresov@1927 1565 LIR_Opr new_val_reg = new_register(T_OBJECT);
ysr@777 1566 __ leal(new_val, new_val_reg);
ysr@777 1567 new_val = new_val_reg;
ysr@777 1568 }
ysr@777 1569 assert(new_val->is_register(), "must be a register at this point");
ysr@777 1570
ysr@777 1571 __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
ysr@777 1572
ysr@777 1573 CodeStub* slow = new G1PostBarrierStub(addr, new_val);
iveresov@1927 1574 __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
ysr@777 1575 __ branch_destination(slow->continuation());
ysr@777 1576 }
ysr@777 1577
ysr@777 1578 #endif // SERIALGC
ysr@777 1579 ////////////////////////////////////////////////////////////////////////
ysr@777 1580
duke@435 1581 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
duke@435 1582
ysr@777 1583 assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
ysr@777 1584 LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
duke@435 1585 if (addr->is_address()) {
duke@435 1586 LIR_Address* address = addr->as_address_ptr();
iveresov@2746 1587 // ptr cannot be an object because we use this barrier for array card marks
iveresov@2746 1588 // and addr can point in the middle of an array.
iveresov@2746 1589 LIR_Opr ptr = new_pointer_register();
duke@435 1590 if (!address->index()->is_valid() && address->disp() == 0) {
duke@435 1591 __ move(address->base(), ptr);
duke@435 1592 } else {
duke@435 1593 assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
duke@435 1594 __ leal(addr, ptr);
duke@435 1595 }
duke@435 1596 addr = ptr;
duke@435 1597 }
duke@435 1598 assert(addr->is_register(), "must be a register at this point");
duke@435 1599
bobv@2036 1600 #ifdef ARM
bobv@2036 1601 // TODO: ARM - move to platform-dependent code
bobv@2036 1602 LIR_Opr tmp = FrameMap::R14_opr;
bobv@2036 1603 if (VM_Version::supports_movw()) {
bobv@2036 1604 __ move((LIR_Opr)card_table_base, tmp);
bobv@2036 1605 } else {
bobv@2036 1606 __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
bobv@2036 1607 }
bobv@2036 1608
bobv@2036 1609 CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
bobv@2036 1610 LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
bobv@2036 1611 if(((int)ct->byte_map_base & 0xff) == 0) {
bobv@2036 1612 __ move(tmp, card_addr);
bobv@2036 1613 } else {
bobv@2036 1614 LIR_Opr tmp_zero = new_register(T_INT);
bobv@2036 1615 __ move(LIR_OprFact::intConst(0), tmp_zero);
bobv@2036 1616 __ move(tmp_zero, card_addr);
bobv@2036 1617 }
bobv@2036 1618 #else // ARM
duke@435 1619 LIR_Opr tmp = new_pointer_register();
duke@435 1620 if (TwoOperandLIRForm) {
duke@435 1621 __ move(addr, tmp);
duke@435 1622 __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
duke@435 1623 } else {
duke@435 1624 __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
duke@435 1625 }
duke@435 1626 if (can_inline_as_constant(card_table_base)) {
duke@435 1627 __ move(LIR_OprFact::intConst(0),
duke@435 1628 new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
duke@435 1629 } else {
duke@435 1630 __ move(LIR_OprFact::intConst(0),
duke@435 1631 new LIR_Address(tmp, load_constant(card_table_base),
duke@435 1632 T_BYTE));
duke@435 1633 }
bobv@2036 1634 #endif // ARM
duke@435 1635 }
duke@435 1636
duke@435 1637
duke@435 1638 //------------------------field access--------------------------------------
duke@435 1639
duke@435 1640 // Comment copied form templateTable_i486.cpp
duke@435 1641 // ----------------------------------------------------------------------------
duke@435 1642 // Volatile variables demand their effects be made known to all CPU's in
duke@435 1643 // order. Store buffers on most chips allow reads & writes to reorder; the
duke@435 1644 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
duke@435 1645 // memory barrier (i.e., it's not sufficient that the interpreter does not
duke@435 1646 // reorder volatile references, the hardware also must not reorder them).
duke@435 1647 //
duke@435 1648 // According to the new Java Memory Model (JMM):
duke@435 1649 // (1) All volatiles are serialized wrt to each other.
duke@435 1650 // ALSO reads & writes act as aquire & release, so:
duke@435 1651 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
duke@435 1652 // the read float up to before the read. It's OK for non-volatile memory refs
duke@435 1653 // that happen before the volatile read to float down below it.
duke@435 1654 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
duke@435 1655 // that happen BEFORE the write float down to after the write. It's OK for
duke@435 1656 // non-volatile memory refs that happen after the volatile write to float up
duke@435 1657 // before it.
duke@435 1658 //
duke@435 1659 // We only put in barriers around volatile refs (they are expensive), not
duke@435 1660 // _between_ memory refs (that would require us to track the flavor of the
duke@435 1661 // previous memory refs). Requirements (2) and (3) require some barriers
duke@435 1662 // before volatile stores and after volatile loads. These nearly cover
duke@435 1663 // requirement (1) but miss the volatile-store-volatile-load case. This final
duke@435 1664 // case is placed after volatile-stores although it could just as well go
duke@435 1665 // before volatile-loads.
duke@435 1666
duke@435 1667
duke@435 1668 void LIRGenerator::do_StoreField(StoreField* x) {
duke@435 1669 bool needs_patching = x->needs_patching();
duke@435 1670 bool is_volatile = x->field()->is_volatile();
duke@435 1671 BasicType field_type = x->field_type();
duke@435 1672 bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
duke@435 1673
duke@435 1674 CodeEmitInfo* info = NULL;
duke@435 1675 if (needs_patching) {
duke@435 1676 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
duke@435 1677 info = state_for(x, x->state_before());
duke@435 1678 } else if (x->needs_null_check()) {
duke@435 1679 NullCheck* nc = x->explicit_null_check();
duke@435 1680 if (nc == NULL) {
roland@2174 1681 info = state_for(x);
duke@435 1682 } else {
duke@435 1683 info = state_for(nc);
duke@435 1684 }
duke@435 1685 }
duke@435 1686
duke@435 1687
duke@435 1688 LIRItem object(x->obj(), this);
duke@435 1689 LIRItem value(x->value(), this);
duke@435 1690
duke@435 1691 object.load_item();
duke@435 1692
duke@435 1693 if (is_volatile || needs_patching) {
duke@435 1694 // load item if field is volatile (fewer special cases for volatiles)
duke@435 1695 // load item if field not initialized
duke@435 1696 // load item if field not constant
duke@435 1697 // because of code patching we cannot inline constants
duke@435 1698 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
duke@435 1699 value.load_byte_item();
duke@435 1700 } else {
duke@435 1701 value.load_item();
duke@435 1702 }
duke@435 1703 } else {
duke@435 1704 value.load_for_store(field_type);
duke@435 1705 }
duke@435 1706
duke@435 1707 set_no_result(x);
duke@435 1708
roland@2174 1709 #ifndef PRODUCT
duke@435 1710 if (PrintNotLoaded && needs_patching) {
duke@435 1711 tty->print_cr(" ###class not loaded at store_%s bci %d",
roland@2174 1712 x->is_static() ? "static" : "field", x->printable_bci());
duke@435 1713 }
roland@2174 1714 #endif
duke@435 1715
duke@435 1716 if (x->needs_null_check() &&
duke@435 1717 (needs_patching ||
duke@435 1718 MacroAssembler::needs_explicit_null_check(x->offset()))) {
duke@435 1719 // emit an explicit null check because the offset is too large
duke@435 1720 __ null_check(object.result(), new CodeEmitInfo(info));
duke@435 1721 }
duke@435 1722
duke@435 1723 LIR_Address* address;
duke@435 1724 if (needs_patching) {
duke@435 1725 // we need to patch the offset in the instruction so don't allow
duke@435 1726 // generate_address to try to be smart about emitting the -1.
duke@435 1727 // Otherwise the patching code won't know how to find the
duke@435 1728 // instruction to patch.
bobv@2036 1729 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
duke@435 1730 } else {
duke@435 1731 address = generate_address(object.result(), x->offset(), field_type);
duke@435 1732 }
duke@435 1733
duke@435 1734 if (is_volatile && os::is_MP()) {
duke@435 1735 __ membar_release();
duke@435 1736 }
duke@435 1737
ysr@777 1738 if (is_oop) {
ysr@777 1739 // Do the pre-write barrier, if any.
ysr@777 1740 pre_barrier(LIR_OprFact::address(address),
johnc@2781 1741 LIR_OprFact::illegalOpr /* pre_val */,
johnc@2781 1742 true /* do_load*/,
ysr@777 1743 needs_patching,
ysr@777 1744 (info ? new CodeEmitInfo(info) : NULL));
ysr@777 1745 }
ysr@777 1746
never@2634 1747 if (is_volatile && !needs_patching) {
duke@435 1748 volatile_field_store(value.result(), address, info);
duke@435 1749 } else {
duke@435 1750 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
duke@435 1751 __ store(value.result(), address, info, patch_code);
duke@435 1752 }
duke@435 1753
duke@435 1754 if (is_oop) {
never@1254 1755 // Store to object so mark the card of the header
duke@435 1756 post_barrier(object.result(), value.result());
duke@435 1757 }
duke@435 1758
duke@435 1759 if (is_volatile && os::is_MP()) {
duke@435 1760 __ membar();
duke@435 1761 }
duke@435 1762 }
duke@435 1763
duke@435 1764
duke@435 1765 void LIRGenerator::do_LoadField(LoadField* x) {
duke@435 1766 bool needs_patching = x->needs_patching();
duke@435 1767 bool is_volatile = x->field()->is_volatile();
duke@435 1768 BasicType field_type = x->field_type();
duke@435 1769
duke@435 1770 CodeEmitInfo* info = NULL;
duke@435 1771 if (needs_patching) {
duke@435 1772 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
duke@435 1773 info = state_for(x, x->state_before());
duke@435 1774 } else if (x->needs_null_check()) {
duke@435 1775 NullCheck* nc = x->explicit_null_check();
duke@435 1776 if (nc == NULL) {
roland@2174 1777 info = state_for(x);
duke@435 1778 } else {
duke@435 1779 info = state_for(nc);
duke@435 1780 }
duke@435 1781 }
duke@435 1782
duke@435 1783 LIRItem object(x->obj(), this);
duke@435 1784
duke@435 1785 object.load_item();
duke@435 1786
roland@2174 1787 #ifndef PRODUCT
duke@435 1788 if (PrintNotLoaded && needs_patching) {
duke@435 1789 tty->print_cr(" ###class not loaded at load_%s bci %d",
roland@2174 1790 x->is_static() ? "static" : "field", x->printable_bci());
duke@435 1791 }
roland@2174 1792 #endif
duke@435 1793
duke@435 1794 if (x->needs_null_check() &&
duke@435 1795 (needs_patching ||
duke@435 1796 MacroAssembler::needs_explicit_null_check(x->offset()))) {
duke@435 1797 // emit an explicit null check because the offset is too large
duke@435 1798 __ null_check(object.result(), new CodeEmitInfo(info));
duke@435 1799 }
duke@435 1800
duke@435 1801 LIR_Opr reg = rlock_result(x, field_type);
duke@435 1802 LIR_Address* address;
duke@435 1803 if (needs_patching) {
duke@435 1804 // we need to patch the offset in the instruction so don't allow
duke@435 1805 // generate_address to try to be smart about emitting the -1.
duke@435 1806 // Otherwise the patching code won't know how to find the
duke@435 1807 // instruction to patch.
bobv@2036 1808 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
duke@435 1809 } else {
duke@435 1810 address = generate_address(object.result(), x->offset(), field_type);
duke@435 1811 }
duke@435 1812
never@2634 1813 if (is_volatile && !needs_patching) {
duke@435 1814 volatile_field_load(address, reg, info);
duke@435 1815 } else {
duke@435 1816 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
duke@435 1817 __ load(address, reg, info, patch_code);
duke@435 1818 }
duke@435 1819
duke@435 1820 if (is_volatile && os::is_MP()) {
duke@435 1821 __ membar_acquire();
duke@435 1822 }
duke@435 1823 }
duke@435 1824
duke@435 1825
duke@435 1826 //------------------------java.nio.Buffer.checkIndex------------------------
duke@435 1827
duke@435 1828 // int java.nio.Buffer.checkIndex(int)
duke@435 1829 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
duke@435 1830 // NOTE: by the time we are in checkIndex() we are guaranteed that
duke@435 1831 // the buffer is non-null (because checkIndex is package-private and
duke@435 1832 // only called from within other methods in the buffer).
duke@435 1833 assert(x->number_of_arguments() == 2, "wrong type");
duke@435 1834 LIRItem buf (x->argument_at(0), this);
duke@435 1835 LIRItem index(x->argument_at(1), this);
duke@435 1836 buf.load_item();
duke@435 1837 index.load_item();
duke@435 1838
duke@435 1839 LIR_Opr result = rlock_result(x);
duke@435 1840 if (GenerateRangeChecks) {
duke@435 1841 CodeEmitInfo* info = state_for(x);
duke@435 1842 CodeStub* stub = new RangeCheckStub(info, index.result(), true);
duke@435 1843 if (index.result()->is_constant()) {
duke@435 1844 cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
duke@435 1845 __ branch(lir_cond_belowEqual, T_INT, stub);
duke@435 1846 } else {
duke@435 1847 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
duke@435 1848 java_nio_Buffer::limit_offset(), T_INT, info);
duke@435 1849 __ branch(lir_cond_aboveEqual, T_INT, stub);
duke@435 1850 }
duke@435 1851 __ move(index.result(), result);
duke@435 1852 } else {
duke@435 1853 // Just load the index into the result register
duke@435 1854 __ move(index.result(), result);
duke@435 1855 }
duke@435 1856 }
duke@435 1857
duke@435 1858
duke@435 1859 //------------------------array access--------------------------------------
duke@435 1860
duke@435 1861
duke@435 1862 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
duke@435 1863 LIRItem array(x->array(), this);
duke@435 1864 array.load_item();
duke@435 1865 LIR_Opr reg = rlock_result(x);
duke@435 1866
duke@435 1867 CodeEmitInfo* info = NULL;
duke@435 1868 if (x->needs_null_check()) {
duke@435 1869 NullCheck* nc = x->explicit_null_check();
duke@435 1870 if (nc == NULL) {
duke@435 1871 info = state_for(x);
duke@435 1872 } else {
duke@435 1873 info = state_for(nc);
duke@435 1874 }
duke@435 1875 }
duke@435 1876 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
duke@435 1877 }
duke@435 1878
duke@435 1879
duke@435 1880 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
duke@435 1881 bool use_length = x->length() != NULL;
duke@435 1882 LIRItem array(x->array(), this);
duke@435 1883 LIRItem index(x->index(), this);
duke@435 1884 LIRItem length(this);
duke@435 1885 bool needs_range_check = true;
duke@435 1886
duke@435 1887 if (use_length) {
duke@435 1888 needs_range_check = x->compute_needs_range_check();
duke@435 1889 if (needs_range_check) {
duke@435 1890 length.set_instruction(x->length());
duke@435 1891 length.load_item();
duke@435 1892 }
duke@435 1893 }
duke@435 1894
duke@435 1895 array.load_item();
duke@435 1896 if (index.is_constant() && can_inline_as_constant(x->index())) {
duke@435 1897 // let it be a constant
duke@435 1898 index.dont_load_item();
duke@435 1899 } else {
duke@435 1900 index.load_item();
duke@435 1901 }
duke@435 1902
duke@435 1903 CodeEmitInfo* range_check_info = state_for(x);
duke@435 1904 CodeEmitInfo* null_check_info = NULL;
duke@435 1905 if (x->needs_null_check()) {
duke@435 1906 NullCheck* nc = x->explicit_null_check();
duke@435 1907 if (nc != NULL) {
duke@435 1908 null_check_info = state_for(nc);
duke@435 1909 } else {
duke@435 1910 null_check_info = range_check_info;
duke@435 1911 }
duke@435 1912 }
duke@435 1913
duke@435 1914 // emit array address setup early so it schedules better
duke@435 1915 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
duke@435 1916
duke@435 1917 if (GenerateRangeChecks && needs_range_check) {
duke@435 1918 if (use_length) {
duke@435 1919 // TODO: use a (modified) version of array_range_check that does not require a
duke@435 1920 // constant length to be loaded to a register
duke@435 1921 __ cmp(lir_cond_belowEqual, length.result(), index.result());
duke@435 1922 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
duke@435 1923 } else {
duke@435 1924 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
duke@435 1925 // The range check performs the null check, so clear it out for the load
duke@435 1926 null_check_info = NULL;
duke@435 1927 }
duke@435 1928 }
duke@435 1929
duke@435 1930 __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
duke@435 1931 }
duke@435 1932
duke@435 1933
duke@435 1934 void LIRGenerator::do_NullCheck(NullCheck* x) {
duke@435 1935 if (x->can_trap()) {
duke@435 1936 LIRItem value(x->obj(), this);
duke@435 1937 value.load_item();
duke@435 1938 CodeEmitInfo* info = state_for(x);
duke@435 1939 __ null_check(value.result(), info);
duke@435 1940 }
duke@435 1941 }
duke@435 1942
duke@435 1943
twisti@3969 1944 void LIRGenerator::do_TypeCast(TypeCast* x) {
twisti@3969 1945 LIRItem value(x->obj(), this);
twisti@3969 1946 value.load_item();
twisti@3969 1947 // the result is the same as from the node we are casting
twisti@3969 1948 set_result(x, value.result());
twisti@3969 1949 }
twisti@3969 1950
twisti@3969 1951
duke@435 1952 void LIRGenerator::do_Throw(Throw* x) {
duke@435 1953 LIRItem exception(x->exception(), this);
duke@435 1954 exception.load_item();
duke@435 1955 set_no_result(x);
duke@435 1956 LIR_Opr exception_opr = exception.result();
duke@435 1957 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1958
duke@435 1959 #ifndef PRODUCT
duke@435 1960 if (PrintC1Statistics) {
iveresov@2138 1961 increment_counter(Runtime1::throw_count_address(), T_INT);
duke@435 1962 }
duke@435 1963 #endif
duke@435 1964
duke@435 1965 // check if the instruction has an xhandler in any of the nested scopes
duke@435 1966 bool unwind = false;
duke@435 1967 if (info->exception_handlers()->length() == 0) {
duke@435 1968 // this throw is not inside an xhandler
duke@435 1969 unwind = true;
duke@435 1970 } else {
duke@435 1971 // get some idea of the throw type
duke@435 1972 bool type_is_exact = true;
duke@435 1973 ciType* throw_type = x->exception()->exact_type();
duke@435 1974 if (throw_type == NULL) {
duke@435 1975 type_is_exact = false;
duke@435 1976 throw_type = x->exception()->declared_type();
duke@435 1977 }
duke@435 1978 if (throw_type != NULL && throw_type->is_instance_klass()) {
duke@435 1979 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
duke@435 1980 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
duke@435 1981 }
duke@435 1982 }
duke@435 1983
duke@435 1984 // do null check before moving exception oop into fixed register
duke@435 1985 // to avoid a fixed interval with an oop during the null check.
duke@435 1986 // Use a copy of the CodeEmitInfo because debug information is
duke@435 1987 // different for null_check and throw.
duke@435 1988 if (GenerateCompilerNullChecks &&
duke@435 1989 (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
duke@435 1990 // if the exception object wasn't created using new then it might be null.
roland@2174 1991 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
duke@435 1992 }
duke@435 1993
never@1813 1994 if (compilation()->env()->jvmti_can_post_on_exceptions()) {
duke@435 1995 // we need to go through the exception lookup path to get JVMTI
duke@435 1996 // notification done
duke@435 1997 unwind = false;
duke@435 1998 }
duke@435 1999
duke@435 2000 // move exception oop into fixed register
duke@435 2001 __ move(exception_opr, exceptionOopOpr());
duke@435 2002
duke@435 2003 if (unwind) {
never@1813 2004 __ unwind_exception(exceptionOopOpr());
duke@435 2005 } else {
duke@435 2006 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
duke@435 2007 }
duke@435 2008 }
duke@435 2009
duke@435 2010
duke@435 2011 void LIRGenerator::do_RoundFP(RoundFP* x) {
duke@435 2012 LIRItem input(x->input(), this);
duke@435 2013 input.load_item();
duke@435 2014 LIR_Opr input_opr = input.result();
duke@435 2015 assert(input_opr->is_register(), "why round if value is not in a register?");
duke@435 2016 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
duke@435 2017 if (input_opr->is_single_fpu()) {
duke@435 2018 set_result(x, round_item(input_opr)); // This code path not currently taken
duke@435 2019 } else {
duke@435 2020 LIR_Opr result = new_register(T_DOUBLE);
duke@435 2021 set_vreg_flag(result, must_start_in_memory);
duke@435 2022 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
duke@435 2023 set_result(x, result);
duke@435 2024 }
duke@435 2025 }
duke@435 2026
duke@435 2027 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
duke@435 2028 LIRItem base(x->base(), this);
duke@435 2029 LIRItem idx(this);
duke@435 2030
duke@435 2031 base.load_item();
duke@435 2032 if (x->has_index()) {
duke@435 2033 idx.set_instruction(x->index());
duke@435 2034 idx.load_nonconstant();
duke@435 2035 }
duke@435 2036
duke@435 2037 LIR_Opr reg = rlock_result(x, x->basic_type());
duke@435 2038
duke@435 2039 int log2_scale = 0;
duke@435 2040 if (x->has_index()) {
duke@435 2041 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
duke@435 2042 log2_scale = x->log2_scale();
duke@435 2043 }
duke@435 2044
duke@435 2045 assert(!x->has_index() || idx.value() == x->index(), "should match");
duke@435 2046
duke@435 2047 LIR_Opr base_op = base.result();
duke@435 2048 #ifndef _LP64
duke@435 2049 if (x->base()->type()->tag() == longTag) {
duke@435 2050 base_op = new_register(T_INT);
duke@435 2051 __ convert(Bytecodes::_l2i, base.result(), base_op);
duke@435 2052 } else {
duke@435 2053 assert(x->base()->type()->tag() == intTag, "must be");
duke@435 2054 }
duke@435 2055 #endif
duke@435 2056
duke@435 2057 BasicType dst_type = x->basic_type();
duke@435 2058 LIR_Opr index_op = idx.result();
duke@435 2059
duke@435 2060 LIR_Address* addr;
duke@435 2061 if (index_op->is_constant()) {
duke@435 2062 assert(log2_scale == 0, "must not have a scale");
duke@435 2063 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
duke@435 2064 } else {
never@739 2065 #ifdef X86
roland@1495 2066 #ifdef _LP64
roland@1495 2067 if (!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 2068 LIR_Opr tmp = new_pointer_register();
roland@1495 2069 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 2070 index_op = tmp;
roland@1495 2071 }
roland@1495 2072 #endif
duke@435 2073 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
bobv@2036 2074 #elif defined(ARM)
bobv@2036 2075 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
duke@435 2076 #else
duke@435 2077 if (index_op->is_illegal() || log2_scale == 0) {
roland@1495 2078 #ifdef _LP64
roland@1495 2079 if (!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 2080 LIR_Opr tmp = new_pointer_register();
roland@1495 2081 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 2082 index_op = tmp;
roland@1495 2083 }
roland@1495 2084 #endif
duke@435 2085 addr = new LIR_Address(base_op, index_op, dst_type);
duke@435 2086 } else {
roland@1495 2087 LIR_Opr tmp = new_pointer_register();
duke@435 2088 __ shift_left(index_op, log2_scale, tmp);
duke@435 2089 addr = new LIR_Address(base_op, tmp, dst_type);
duke@435 2090 }
duke@435 2091 #endif
duke@435 2092 }
duke@435 2093
duke@435 2094 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
duke@435 2095 __ unaligned_move(addr, reg);
duke@435 2096 } else {
iveresov@2344 2097 if (dst_type == T_OBJECT && x->is_wide()) {
iveresov@2344 2098 __ move_wide(addr, reg);
iveresov@2344 2099 } else {
iveresov@2344 2100 __ move(addr, reg);
iveresov@2344 2101 }
duke@435 2102 }
duke@435 2103 }
duke@435 2104
duke@435 2105
duke@435 2106 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
duke@435 2107 int log2_scale = 0;
duke@435 2108 BasicType type = x->basic_type();
duke@435 2109
duke@435 2110 if (x->has_index()) {
duke@435 2111 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
duke@435 2112 log2_scale = x->log2_scale();
duke@435 2113 }
duke@435 2114
duke@435 2115 LIRItem base(x->base(), this);
duke@435 2116 LIRItem value(x->value(), this);
duke@435 2117 LIRItem idx(this);
duke@435 2118
duke@435 2119 base.load_item();
duke@435 2120 if (x->has_index()) {
duke@435 2121 idx.set_instruction(x->index());
duke@435 2122 idx.load_item();
duke@435 2123 }
duke@435 2124
duke@435 2125 if (type == T_BYTE || type == T_BOOLEAN) {
duke@435 2126 value.load_byte_item();
duke@435 2127 } else {
duke@435 2128 value.load_item();
duke@435 2129 }
duke@435 2130
duke@435 2131 set_no_result(x);
duke@435 2132
duke@435 2133 LIR_Opr base_op = base.result();
duke@435 2134 #ifndef _LP64
duke@435 2135 if (x->base()->type()->tag() == longTag) {
duke@435 2136 base_op = new_register(T_INT);
duke@435 2137 __ convert(Bytecodes::_l2i, base.result(), base_op);
duke@435 2138 } else {
duke@435 2139 assert(x->base()->type()->tag() == intTag, "must be");
duke@435 2140 }
duke@435 2141 #endif
duke@435 2142
duke@435 2143 LIR_Opr index_op = idx.result();
duke@435 2144 if (log2_scale != 0) {
duke@435 2145 // temporary fix (platform dependent code without shift on Intel would be better)
roland@1495 2146 index_op = new_pointer_register();
roland@1495 2147 #ifdef _LP64
roland@1495 2148 if(idx.result()->type() == T_INT) {
roland@1495 2149 __ convert(Bytecodes::_i2l, idx.result(), index_op);
roland@1495 2150 } else {
roland@1495 2151 #endif
bobv@2036 2152 // TODO: ARM also allows embedded shift in the address
roland@1495 2153 __ move(idx.result(), index_op);
roland@1495 2154 #ifdef _LP64
roland@1495 2155 }
roland@1495 2156 #endif
duke@435 2157 __ shift_left(index_op, log2_scale, index_op);
duke@435 2158 }
roland@1495 2159 #ifdef _LP64
roland@1495 2160 else if(!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 2161 LIR_Opr tmp = new_pointer_register();
roland@1495 2162 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 2163 index_op = tmp;
roland@1495 2164 }
roland@1495 2165 #endif
duke@435 2166
duke@435 2167 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
duke@435 2168 __ move(value.result(), addr);
duke@435 2169 }
duke@435 2170
duke@435 2171
duke@435 2172 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
duke@435 2173 BasicType type = x->basic_type();
duke@435 2174 LIRItem src(x->object(), this);
duke@435 2175 LIRItem off(x->offset(), this);
duke@435 2176
duke@435 2177 off.load_item();
duke@435 2178 src.load_item();
duke@435 2179
kvn@4002 2180 LIR_Opr value = rlock_result(x, x->basic_type());
kvn@4002 2181
kvn@4002 2182 get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
johnc@2781 2183
johnc@2781 2184 #ifndef SERIALGC
johnc@2781 2185 // We might be reading the value of the referent field of a
johnc@2781 2186 // Reference object in order to attach it back to the live
johnc@2781 2187 // object graph. If G1 is enabled then we need to record
johnc@2781 2188 // the value that is being returned in an SATB log buffer.
johnc@2781 2189 //
johnc@2781 2190 // We need to generate code similar to the following...
johnc@2781 2191 //
johnc@2781 2192 // if (offset == java_lang_ref_Reference::referent_offset) {
johnc@2781 2193 // if (src != NULL) {
johnc@2781 2194 // if (klass(src)->reference_type() != REF_NONE) {
kvn@4002 2195 // pre_barrier(..., value, ...);
johnc@2781 2196 // }
johnc@2781 2197 // }
johnc@2781 2198 // }
johnc@2781 2199
johnc@2781 2200 if (UseG1GC && type == T_OBJECT) {
kvn@4002 2201 bool gen_pre_barrier = true; // Assume we need to generate pre_barrier.
kvn@4002 2202 bool gen_offset_check = true; // Assume we need to generate the offset guard.
kvn@4002 2203 bool gen_source_check = true; // Assume we need to check the src object for null.
kvn@4002 2204 bool gen_type_check = true; // Assume we need to check the reference_type.
johnc@2781 2205
johnc@2781 2206 if (off.is_constant()) {
johnc@2786 2207 jlong off_con = (off.type()->is_int() ?
johnc@2786 2208 (jlong) off.get_jint_constant() :
johnc@2786 2209 off.get_jlong_constant());
johnc@2786 2210
johnc@2786 2211
johnc@2786 2212 if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
johnc@2781 2213 // The constant offset is something other than referent_offset.
johnc@2781 2214 // We can skip generating/checking the remaining guards and
johnc@2781 2215 // skip generation of the code stub.
kvn@4002 2216 gen_pre_barrier = false;
johnc@2781 2217 } else {
johnc@2781 2218 // The constant offset is the same as referent_offset -
johnc@2781 2219 // we do not need to generate a runtime offset check.
johnc@2781 2220 gen_offset_check = false;
johnc@2781 2221 }
johnc@2781 2222 }
johnc@2781 2223
johnc@2781 2224 // We don't need to generate stub if the source object is an array
kvn@4002 2225 if (gen_pre_barrier && src.type()->is_array()) {
kvn@4002 2226 gen_pre_barrier = false;
johnc@2781 2227 }
johnc@2781 2228
kvn@4002 2229 if (gen_pre_barrier) {
johnc@2781 2230 // We still need to continue with the checks.
johnc@2781 2231 if (src.is_constant()) {
johnc@2781 2232 ciObject* src_con = src.get_jobject_constant();
johnc@2781 2233
johnc@2781 2234 if (src_con->is_null_object()) {
johnc@2781 2235 // The constant src object is null - We can skip
johnc@2781 2236 // generating the code stub.
kvn@4002 2237 gen_pre_barrier = false;
johnc@2781 2238 } else {
johnc@2781 2239 // Non-null constant source object. We still have to generate
johnc@2781 2240 // the slow stub - but we don't need to generate the runtime
johnc@2781 2241 // null object check.
johnc@2781 2242 gen_source_check = false;
johnc@2781 2243 }
johnc@2781 2244 }
johnc@2781 2245 }
kvn@4002 2246 if (gen_pre_barrier && !PatchALot) {
kvn@4002 2247 // Can the klass of object be statically determined to be
kvn@4002 2248 // a sub-class of Reference?
kvn@4002 2249 ciType* type = src.value()->declared_type();
kvn@4002 2250 if ((type != NULL) && type->is_loaded()) {
kvn@4002 2251 if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
kvn@4002 2252 gen_type_check = false;
kvn@4002 2253 } else if (type->is_klass() &&
kvn@4002 2254 !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
kvn@4002 2255 // Not Reference and not Object klass.
kvn@4002 2256 gen_pre_barrier = false;
kvn@4002 2257 }
kvn@4002 2258 }
kvn@4002 2259 }
kvn@4002 2260
kvn@4002 2261 if (gen_pre_barrier) {
kvn@4002 2262 LabelObj* Lcont = new LabelObj();
johnc@2781 2263
johnc@2781 2264 // We can have generate one runtime check here. Let's start with
johnc@2781 2265 // the offset check.
johnc@2781 2266 if (gen_offset_check) {
kvn@4002 2267 // if (offset != referent_offset) -> continue
johnc@2786 2268 // If offset is an int then we can do the comparison with the
johnc@2786 2269 // referent_offset constant; otherwise we need to move
johnc@2786 2270 // referent_offset into a temporary register and generate
johnc@2786 2271 // a reg-reg compare.
johnc@2786 2272
johnc@2786 2273 LIR_Opr referent_off;
johnc@2786 2274
johnc@2786 2275 if (off.type()->is_int()) {
johnc@2786 2276 referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
johnc@2786 2277 } else {
johnc@2786 2278 assert(off.type()->is_long(), "what else?");
johnc@2786 2279 referent_off = new_register(T_LONG);
johnc@2786 2280 __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
johnc@2786 2281 }
kvn@4002 2282 __ cmp(lir_cond_notEqual, off.result(), referent_off);
kvn@4002 2283 __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
johnc@2781 2284 }
kvn@4002 2285 if (gen_source_check) {
kvn@4002 2286 // offset is a const and equals referent offset
kvn@4002 2287 // if (source == null) -> continue
kvn@4002 2288 __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
kvn@4002 2289 __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
kvn@4002 2290 }
kvn@4002 2291 LIR_Opr src_klass = new_register(T_OBJECT);
kvn@4002 2292 if (gen_type_check) {
kvn@4002 2293 // We have determined that offset == referent_offset && src != null.
kvn@4002 2294 // if (src->_klass->_reference_type == REF_NONE) -> continue
stefank@4043 2295 __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), UseCompressedKlassPointers ? T_OBJECT : T_ADDRESS), src_klass);
coleenp@4037 2296 LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
kvn@4002 2297 LIR_Opr reference_type = new_register(T_INT);
kvn@4002 2298 __ move(reference_type_addr, reference_type);
kvn@4002 2299 __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
kvn@4002 2300 __ branch(lir_cond_equal, T_INT, Lcont->label());
kvn@4002 2301 }
kvn@4002 2302 {
kvn@4002 2303 // We have determined that src->_klass->_reference_type != REF_NONE
kvn@4002 2304 // so register the value in the referent field with the pre-barrier.
kvn@4002 2305 pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
kvn@4002 2306 value /* pre_val */,
kvn@4002 2307 false /* do_load */,
kvn@4002 2308 false /* patch */,
kvn@4002 2309 NULL /* info */);
kvn@4002 2310 }
kvn@4002 2311 __ branch_destination(Lcont->label());
johnc@2781 2312 }
johnc@2781 2313 }
johnc@2781 2314 #endif // SERIALGC
johnc@2781 2315
duke@435 2316 if (x->is_volatile() && os::is_MP()) __ membar_acquire();
duke@435 2317 }
duke@435 2318
duke@435 2319
duke@435 2320 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
duke@435 2321 BasicType type = x->basic_type();
duke@435 2322 LIRItem src(x->object(), this);
duke@435 2323 LIRItem off(x->offset(), this);
duke@435 2324 LIRItem data(x->value(), this);
duke@435 2325
duke@435 2326 src.load_item();
duke@435 2327 if (type == T_BOOLEAN || type == T_BYTE) {
duke@435 2328 data.load_byte_item();
duke@435 2329 } else {
duke@435 2330 data.load_item();
duke@435 2331 }
duke@435 2332 off.load_item();
duke@435 2333
duke@435 2334 set_no_result(x);
duke@435 2335
duke@435 2336 if (x->is_volatile() && os::is_MP()) __ membar_release();
duke@435 2337 put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
dholmes@2443 2338 if (x->is_volatile() && os::is_MP()) __ membar();
duke@435 2339 }
duke@435 2340
duke@435 2341
duke@435 2342 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
duke@435 2343 LIRItem src(x->object(), this);
duke@435 2344 LIRItem off(x->offset(), this);
duke@435 2345
duke@435 2346 src.load_item();
duke@435 2347 if (off.is_constant() && can_inline_as_constant(x->offset())) {
duke@435 2348 // let it be a constant
duke@435 2349 off.dont_load_item();
duke@435 2350 } else {
duke@435 2351 off.load_item();
duke@435 2352 }
duke@435 2353
duke@435 2354 set_no_result(x);
duke@435 2355
duke@435 2356 LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
duke@435 2357 __ prefetch(addr, is_store);
duke@435 2358 }
duke@435 2359
duke@435 2360
duke@435 2361 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
duke@435 2362 do_UnsafePrefetch(x, false);
duke@435 2363 }
duke@435 2364
duke@435 2365
duke@435 2366 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
duke@435 2367 do_UnsafePrefetch(x, true);
duke@435 2368 }
duke@435 2369
duke@435 2370
duke@435 2371 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
duke@435 2372 int lng = x->length();
duke@435 2373
duke@435 2374 for (int i = 0; i < lng; i++) {
duke@435 2375 SwitchRange* one_range = x->at(i);
duke@435 2376 int low_key = one_range->low_key();
duke@435 2377 int high_key = one_range->high_key();
duke@435 2378 BlockBegin* dest = one_range->sux();
duke@435 2379 if (low_key == high_key) {
duke@435 2380 __ cmp(lir_cond_equal, value, low_key);
duke@435 2381 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2382 } else if (high_key - low_key == 1) {
duke@435 2383 __ cmp(lir_cond_equal, value, low_key);
duke@435 2384 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2385 __ cmp(lir_cond_equal, value, high_key);
duke@435 2386 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2387 } else {
duke@435 2388 LabelObj* L = new LabelObj();
duke@435 2389 __ cmp(lir_cond_less, value, low_key);
iveresov@3443 2390 __ branch(lir_cond_less, T_INT, L->label());
duke@435 2391 __ cmp(lir_cond_lessEqual, value, high_key);
duke@435 2392 __ branch(lir_cond_lessEqual, T_INT, dest);
duke@435 2393 __ branch_destination(L->label());
duke@435 2394 }
duke@435 2395 }
duke@435 2396 __ jump(default_sux);
duke@435 2397 }
duke@435 2398
duke@435 2399
duke@435 2400 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
duke@435 2401 SwitchRangeList* res = new SwitchRangeList();
duke@435 2402 int len = x->length();
duke@435 2403 if (len > 0) {
duke@435 2404 BlockBegin* sux = x->sux_at(0);
duke@435 2405 int key = x->lo_key();
duke@435 2406 BlockBegin* default_sux = x->default_sux();
duke@435 2407 SwitchRange* range = new SwitchRange(key, sux);
duke@435 2408 for (int i = 0; i < len; i++, key++) {
duke@435 2409 BlockBegin* new_sux = x->sux_at(i);
duke@435 2410 if (sux == new_sux) {
duke@435 2411 // still in same range
duke@435 2412 range->set_high_key(key);
duke@435 2413 } else {
duke@435 2414 // skip tests which explicitly dispatch to the default
duke@435 2415 if (sux != default_sux) {
duke@435 2416 res->append(range);
duke@435 2417 }
duke@435 2418 range = new SwitchRange(key, new_sux);
duke@435 2419 }
duke@435 2420 sux = new_sux;
duke@435 2421 }
duke@435 2422 if (res->length() == 0 || res->last() != range) res->append(range);
duke@435 2423 }
duke@435 2424 return res;
duke@435 2425 }
duke@435 2426
duke@435 2427
duke@435 2428 // we expect the keys to be sorted by increasing value
duke@435 2429 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
duke@435 2430 SwitchRangeList* res = new SwitchRangeList();
duke@435 2431 int len = x->length();
duke@435 2432 if (len > 0) {
duke@435 2433 BlockBegin* default_sux = x->default_sux();
duke@435 2434 int key = x->key_at(0);
duke@435 2435 BlockBegin* sux = x->sux_at(0);
duke@435 2436 SwitchRange* range = new SwitchRange(key, sux);
duke@435 2437 for (int i = 1; i < len; i++) {
duke@435 2438 int new_key = x->key_at(i);
duke@435 2439 BlockBegin* new_sux = x->sux_at(i);
duke@435 2440 if (key+1 == new_key && sux == new_sux) {
duke@435 2441 // still in same range
duke@435 2442 range->set_high_key(new_key);
duke@435 2443 } else {
duke@435 2444 // skip tests which explicitly dispatch to the default
duke@435 2445 if (range->sux() != default_sux) {
duke@435 2446 res->append(range);
duke@435 2447 }
duke@435 2448 range = new SwitchRange(new_key, new_sux);
duke@435 2449 }
duke@435 2450 key = new_key;
duke@435 2451 sux = new_sux;
duke@435 2452 }
duke@435 2453 if (res->length() == 0 || res->last() != range) res->append(range);
duke@435 2454 }
duke@435 2455 return res;
duke@435 2456 }
duke@435 2457
duke@435 2458
duke@435 2459 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
duke@435 2460 LIRItem tag(x->tag(), this);
duke@435 2461 tag.load_item();
duke@435 2462 set_no_result(x);
duke@435 2463
duke@435 2464 if (x->is_safepoint()) {
duke@435 2465 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
duke@435 2466 }
duke@435 2467
duke@435 2468 // move values into phi locations
duke@435 2469 move_to_phi(x->state());
duke@435 2470
duke@435 2471 int lo_key = x->lo_key();
duke@435 2472 int hi_key = x->hi_key();
duke@435 2473 int len = x->length();
duke@435 2474 LIR_Opr value = tag.result();
duke@435 2475 if (UseTableRanges) {
duke@435 2476 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
duke@435 2477 } else {
duke@435 2478 for (int i = 0; i < len; i++) {
duke@435 2479 __ cmp(lir_cond_equal, value, i + lo_key);
duke@435 2480 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
duke@435 2481 }
duke@435 2482 __ jump(x->default_sux());
duke@435 2483 }
duke@435 2484 }
duke@435 2485
duke@435 2486
duke@435 2487 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
duke@435 2488 LIRItem tag(x->tag(), this);
duke@435 2489 tag.load_item();
duke@435 2490 set_no_result(x);
duke@435 2491
duke@435 2492 if (x->is_safepoint()) {
duke@435 2493 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
duke@435 2494 }
duke@435 2495
duke@435 2496 // move values into phi locations
duke@435 2497 move_to_phi(x->state());
duke@435 2498
duke@435 2499 LIR_Opr value = tag.result();
duke@435 2500 if (UseTableRanges) {
duke@435 2501 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
duke@435 2502 } else {
duke@435 2503 int len = x->length();
duke@435 2504 for (int i = 0; i < len; i++) {
duke@435 2505 __ cmp(lir_cond_equal, value, x->key_at(i));
duke@435 2506 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
duke@435 2507 }
duke@435 2508 __ jump(x->default_sux());
duke@435 2509 }
duke@435 2510 }
duke@435 2511
duke@435 2512
duke@435 2513 void LIRGenerator::do_Goto(Goto* x) {
duke@435 2514 set_no_result(x);
duke@435 2515
duke@435 2516 if (block()->next()->as_OsrEntry()) {
duke@435 2517 // need to free up storage used for OSR entry point
duke@435 2518 LIR_Opr osrBuffer = block()->next()->operand();
duke@435 2519 BasicTypeList signature;
duke@435 2520 signature.append(T_INT);
duke@435 2521 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
duke@435 2522 __ move(osrBuffer, cc->args()->at(0));
duke@435 2523 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
duke@435 2524 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
duke@435 2525 }
duke@435 2526
duke@435 2527 if (x->is_safepoint()) {
duke@435 2528 ValueStack* state = x->state_before() ? x->state_before() : x->state();
duke@435 2529
duke@435 2530 // increment backedge counter if needed
iveresov@2138 2531 CodeEmitInfo* info = state_for(x, state);
iveresov@3193 2532 increment_backedge_counter(info, x->profiled_bci());
duke@435 2533 CodeEmitInfo* safepoint_info = state_for(x, state);
duke@435 2534 __ safepoint(safepoint_poll_register(), safepoint_info);
duke@435 2535 }
duke@435 2536
iveresov@2138 2537 // Gotos can be folded Ifs, handle this case.
iveresov@2138 2538 if (x->should_profile()) {
iveresov@2138 2539 ciMethod* method = x->profiled_method();
iveresov@2138 2540 assert(method != NULL, "method should be set if branch is profiled");
iveresov@2349 2541 ciMethodData* md = method->method_data_or_null();
iveresov@2349 2542 assert(md != NULL, "Sanity");
iveresov@2138 2543 ciProfileData* data = md->bci_to_data(x->profiled_bci());
iveresov@2138 2544 assert(data != NULL, "must have profiling data");
iveresov@2138 2545 int offset;
iveresov@2138 2546 if (x->direction() == Goto::taken) {
iveresov@2138 2547 assert(data->is_BranchData(), "need BranchData for two-way branches");
iveresov@2138 2548 offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
iveresov@2138 2549 } else if (x->direction() == Goto::not_taken) {
iveresov@2138 2550 assert(data->is_BranchData(), "need BranchData for two-way branches");
iveresov@2138 2551 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
iveresov@2138 2552 } else {
iveresov@2138 2553 assert(data->is_JumpData(), "need JumpData for branches");
iveresov@2138 2554 offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
iveresov@2138 2555 }
roland@4051 2556 LIR_Opr md_reg = new_register(T_METADATA);
roland@4051 2557 __ metadata2reg(md->constant_encoding(), md_reg);
iveresov@2138 2558
iveresov@2138 2559 increment_counter(new LIR_Address(md_reg, offset,
iveresov@2138 2560 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
iveresov@2138 2561 }
iveresov@2138 2562
duke@435 2563 // emit phi-instruction move after safepoint since this simplifies
duke@435 2564 // describing the state as the safepoint.
duke@435 2565 move_to_phi(x->state());
duke@435 2566
duke@435 2567 __ jump(x->default_sux());
duke@435 2568 }
duke@435 2569
duke@435 2570
duke@435 2571 void LIRGenerator::do_Base(Base* x) {
duke@435 2572 __ std_entry(LIR_OprFact::illegalOpr);
duke@435 2573 // Emit moves from physical registers / stack slots to virtual registers
duke@435 2574 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
duke@435 2575 IRScope* irScope = compilation()->hir()->top_scope();
duke@435 2576 int java_index = 0;
duke@435 2577 for (int i = 0; i < args->length(); i++) {
duke@435 2578 LIR_Opr src = args->at(i);
duke@435 2579 assert(!src->is_illegal(), "check");
duke@435 2580 BasicType t = src->type();
duke@435 2581
duke@435 2582 // Types which are smaller than int are passed as int, so
duke@435 2583 // correct the type which passed.
duke@435 2584 switch (t) {
duke@435 2585 case T_BYTE:
duke@435 2586 case T_BOOLEAN:
duke@435 2587 case T_SHORT:
duke@435 2588 case T_CHAR:
duke@435 2589 t = T_INT;
duke@435 2590 break;
duke@435 2591 }
duke@435 2592
duke@435 2593 LIR_Opr dest = new_register(t);
duke@435 2594 __ move(src, dest);
duke@435 2595
duke@435 2596 // Assign new location to Local instruction for this local
duke@435 2597 Local* local = x->state()->local_at(java_index)->as_Local();
duke@435 2598 assert(local != NULL, "Locals for incoming arguments must have been created");
bobv@2036 2599 #ifndef __SOFTFP__
bobv@2036 2600 // The java calling convention passes double as long and float as int.
duke@435 2601 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
bobv@2036 2602 #endif // __SOFTFP__
duke@435 2603 local->set_operand(dest);
duke@435 2604 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
duke@435 2605 java_index += type2size[t];
duke@435 2606 }
duke@435 2607
kvn@1215 2608 if (compilation()->env()->dtrace_method_probes()) {
duke@435 2609 BasicTypeList signature;
iveresov@2344 2610 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
coleenp@4037 2611 signature.append(T_OBJECT); // Method*
duke@435 2612 LIR_OprList* args = new LIR_OprList();
duke@435 2613 args->append(getThreadPointer());
roland@4051 2614 LIR_Opr meth = new_register(T_METADATA);
roland@4051 2615 __ metadata2reg(method()->constant_encoding(), meth);
duke@435 2616 args->append(meth);
duke@435 2617 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
duke@435 2618 }
duke@435 2619
duke@435 2620 if (method()->is_synchronized()) {
duke@435 2621 LIR_Opr obj;
duke@435 2622 if (method()->is_static()) {
duke@435 2623 obj = new_register(T_OBJECT);
jrose@1424 2624 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
duke@435 2625 } else {
duke@435 2626 Local* receiver = x->state()->local_at(0)->as_Local();
duke@435 2627 assert(receiver != NULL, "must already exist");
duke@435 2628 obj = receiver->operand();
duke@435 2629 }
duke@435 2630 assert(obj->is_valid(), "must be valid");
duke@435 2631
duke@435 2632 if (method()->is_synchronized() && GenerateSynchronizationCode) {
duke@435 2633 LIR_Opr lock = new_register(T_INT);
duke@435 2634 __ load_stack_address_monitor(0, lock);
duke@435 2635
roland@2174 2636 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
duke@435 2637 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
duke@435 2638
duke@435 2639 // receiver is guaranteed non-NULL so don't need CodeEmitInfo
duke@435 2640 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
duke@435 2641 }
duke@435 2642 }
duke@435 2643
duke@435 2644 // increment invocation counters if needed
iveresov@2138 2645 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
iveresov@2180 2646 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
iveresov@2138 2647 increment_invocation_counter(info);
iveresov@2138 2648 }
duke@435 2649
duke@435 2650 // all blocks with a successor must end with an unconditional jump
duke@435 2651 // to the successor even if they are consecutive
duke@435 2652 __ jump(x->default_sux());
duke@435 2653 }
duke@435 2654
duke@435 2655
duke@435 2656 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
duke@435 2657 // construct our frame and model the production of incoming pointer
duke@435 2658 // to the OSR buffer.
duke@435 2659 __ osr_entry(LIR_Assembler::osrBufferPointer());
duke@435 2660 LIR_Opr result = rlock_result(x);
duke@435 2661 __ move(LIR_Assembler::osrBufferPointer(), result);
duke@435 2662 }
duke@435 2663
duke@435 2664
duke@435 2665 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
twisti@4003 2666 assert(args->length() == arg_list->length(),
twisti@4003 2667 err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
twisti@4003 2668 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
duke@435 2669 LIRItem* param = args->at(i);
duke@435 2670 LIR_Opr loc = arg_list->at(i);
duke@435 2671 if (loc->is_register()) {
duke@435 2672 param->load_item_force(loc);
duke@435 2673 } else {
duke@435 2674 LIR_Address* addr = loc->as_address_ptr();
duke@435 2675 param->load_for_store(addr->type());
iveresov@2344 2676 if (addr->type() == T_OBJECT) {
iveresov@2344 2677 __ move_wide(param->result(), addr);
iveresov@2344 2678 } else
iveresov@2344 2679 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
iveresov@2344 2680 __ unaligned_move(param->result(), addr);
iveresov@2344 2681 } else {
iveresov@2344 2682 __ move(param->result(), addr);
iveresov@2344 2683 }
duke@435 2684 }
duke@435 2685 }
duke@435 2686
duke@435 2687 if (x->has_receiver()) {
duke@435 2688 LIRItem* receiver = args->at(0);
duke@435 2689 LIR_Opr loc = arg_list->at(0);
duke@435 2690 if (loc->is_register()) {
duke@435 2691 receiver->load_item_force(loc);
duke@435 2692 } else {
duke@435 2693 assert(loc->is_address(), "just checking");
duke@435 2694 receiver->load_for_store(T_OBJECT);
iveresov@2344 2695 __ move_wide(receiver->result(), loc->as_address_ptr());
duke@435 2696 }
duke@435 2697 }
duke@435 2698 }
duke@435 2699
duke@435 2700
duke@435 2701 // Visits all arguments, returns appropriate items without loading them
duke@435 2702 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
duke@435 2703 LIRItemList* argument_items = new LIRItemList();
duke@435 2704 if (x->has_receiver()) {
duke@435 2705 LIRItem* receiver = new LIRItem(x->receiver(), this);
duke@435 2706 argument_items->append(receiver);
duke@435 2707 }
duke@435 2708 for (int i = 0; i < x->number_of_arguments(); i++) {
duke@435 2709 LIRItem* param = new LIRItem(x->argument_at(i), this);
duke@435 2710 argument_items->append(param);
duke@435 2711 }
duke@435 2712 return argument_items;
duke@435 2713 }
duke@435 2714
duke@435 2715
duke@435 2716 // The invoke with receiver has following phases:
duke@435 2717 // a) traverse and load/lock receiver;
duke@435 2718 // b) traverse all arguments -> item-array (invoke_visit_argument)
duke@435 2719 // c) push receiver on stack
duke@435 2720 // d) load each of the items and push on stack
duke@435 2721 // e) unlock receiver
duke@435 2722 // f) move receiver into receiver-register %o0
duke@435 2723 // g) lock result registers and emit call operation
duke@435 2724 //
duke@435 2725 // Before issuing a call, we must spill-save all values on stack
duke@435 2726 // that are in caller-save register. "spill-save" moves thos registers
duke@435 2727 // either in a free callee-save register or spills them if no free
duke@435 2728 // callee save register is available.
duke@435 2729 //
duke@435 2730 // The problem is where to invoke spill-save.
duke@435 2731 // - if invoked between e) and f), we may lock callee save
duke@435 2732 // register in "spill-save" that destroys the receiver register
duke@435 2733 // before f) is executed
duke@435 2734 // - if we rearange the f) to be earlier, by loading %o0, it
duke@435 2735 // may destroy a value on the stack that is currently in %o0
duke@435 2736 // and is waiting to be spilled
duke@435 2737 // - if we keep the receiver locked while doing spill-save,
duke@435 2738 // we cannot spill it as it is spill-locked
duke@435 2739 //
duke@435 2740 void LIRGenerator::do_Invoke(Invoke* x) {
duke@435 2741 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
duke@435 2742
duke@435 2743 LIR_OprList* arg_list = cc->args();
duke@435 2744 LIRItemList* args = invoke_visit_arguments(x);
duke@435 2745 LIR_Opr receiver = LIR_OprFact::illegalOpr;
duke@435 2746
duke@435 2747 // setup result register
duke@435 2748 LIR_Opr result_register = LIR_OprFact::illegalOpr;
duke@435 2749 if (x->type() != voidType) {
duke@435 2750 result_register = result_register_for(x->type());
duke@435 2751 }
duke@435 2752
duke@435 2753 CodeEmitInfo* info = state_for(x, x->state());
duke@435 2754
duke@435 2755 invoke_load_arguments(x, args, arg_list);
duke@435 2756
duke@435 2757 if (x->has_receiver()) {
duke@435 2758 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
duke@435 2759 receiver = args->at(0)->result();
duke@435 2760 }
duke@435 2761
duke@435 2762 // emit invoke code
duke@435 2763 bool optimized = x->target_is_loaded() && x->target_is_final();
duke@435 2764 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
duke@435 2765
twisti@1919 2766 // JSR 292
twisti@1919 2767 // Preserve the SP over MethodHandle call sites.
twisti@1919 2768 ciMethod* target = x->target();
twisti@3969 2769 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
twisti@3969 2770 target->is_method_handle_intrinsic() ||
twisti@3969 2771 target->is_compiled_lambda_form());
twisti@3969 2772 if (is_method_handle_invoke) {
twisti@1919 2773 info->set_is_method_handle_invoke(true);
twisti@1919 2774 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
twisti@1919 2775 }
twisti@1919 2776
duke@435 2777 switch (x->code()) {
duke@435 2778 case Bytecodes::_invokestatic:
twisti@1919 2779 __ call_static(target, result_register,
duke@435 2780 SharedRuntime::get_resolve_static_call_stub(),
duke@435 2781 arg_list, info);
duke@435 2782 break;
duke@435 2783 case Bytecodes::_invokespecial:
duke@435 2784 case Bytecodes::_invokevirtual:
duke@435 2785 case Bytecodes::_invokeinterface:
duke@435 2786 // for final target we still produce an inline cache, in order
duke@435 2787 // to be able to call mixed mode
duke@435 2788 if (x->code() == Bytecodes::_invokespecial || optimized) {
twisti@1919 2789 __ call_opt_virtual(target, receiver, result_register,
duke@435 2790 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 2791 arg_list, info);
duke@435 2792 } else if (x->vtable_index() < 0) {
twisti@1919 2793 __ call_icvirtual(target, receiver, result_register,
duke@435 2794 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 2795 arg_list, info);
duke@435 2796 } else {
coleenp@4037 2797 int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
duke@435 2798 int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
twisti@1919 2799 __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
duke@435 2800 }
duke@435 2801 break;
twisti@1730 2802 case Bytecodes::_invokedynamic: {
twisti@1919 2803 __ call_dynamic(target, receiver, result_register,
twisti@4003 2804 SharedRuntime::get_resolve_static_call_stub(),
twisti@1730 2805 arg_list, info);
twisti@1730 2806 break;
twisti@1730 2807 }
duke@435 2808 default:
twisti@3848 2809 fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
duke@435 2810 break;
duke@435 2811 }
duke@435 2812
twisti@1919 2813 // JSR 292
twisti@1919 2814 // Restore the SP after MethodHandle call sites.
twisti@3969 2815 if (is_method_handle_invoke) {
twisti@1919 2816 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
twisti@1919 2817 }
twisti@1919 2818
duke@435 2819 if (x->type()->is_float() || x->type()->is_double()) {
duke@435 2820 // Force rounding of results from non-strictfp when in strictfp
duke@435 2821 // scope (or when we don't know the strictness of the callee, to
duke@435 2822 // be safe.)
duke@435 2823 if (method()->is_strict()) {
duke@435 2824 if (!x->target_is_loaded() || !x->target_is_strictfp()) {
duke@435 2825 result_register = round_item(result_register);
duke@435 2826 }
duke@435 2827 }
duke@435 2828 }
duke@435 2829
duke@435 2830 if (result_register->is_valid()) {
duke@435 2831 LIR_Opr result = rlock_result(x);
duke@435 2832 __ move(result_register, result);
duke@435 2833 }
duke@435 2834 }
duke@435 2835
duke@435 2836
duke@435 2837 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
duke@435 2838 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 2839 LIRItem value (x->argument_at(0), this);
duke@435 2840 LIR_Opr reg = rlock_result(x);
duke@435 2841 value.load_item();
duke@435 2842 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
duke@435 2843 __ move(tmp, reg);
duke@435 2844 }
duke@435 2845
duke@435 2846
duke@435 2847
duke@435 2848 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
duke@435 2849 void LIRGenerator::do_IfOp(IfOp* x) {
duke@435 2850 #ifdef ASSERT
duke@435 2851 {
duke@435 2852 ValueTag xtag = x->x()->type()->tag();
duke@435 2853 ValueTag ttag = x->tval()->type()->tag();
duke@435 2854 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
duke@435 2855 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
duke@435 2856 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
duke@435 2857 }
duke@435 2858 #endif
duke@435 2859
duke@435 2860 LIRItem left(x->x(), this);
duke@435 2861 LIRItem right(x->y(), this);
duke@435 2862 left.load_item();
duke@435 2863 if (can_inline_as_constant(right.value())) {
duke@435 2864 right.dont_load_item();
duke@435 2865 } else {
duke@435 2866 right.load_item();
duke@435 2867 }
duke@435 2868
duke@435 2869 LIRItem t_val(x->tval(), this);
duke@435 2870 LIRItem f_val(x->fval(), this);
duke@435 2871 t_val.dont_load_item();
duke@435 2872 f_val.dont_load_item();
duke@435 2873 LIR_Opr reg = rlock_result(x);
duke@435 2874
duke@435 2875 __ cmp(lir_cond(x->cond()), left.result(), right.result());
iveresov@2412 2876 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
duke@435 2877 }
duke@435 2878
rbackman@3709 2879 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
rbackman@3709 2880 assert(x->number_of_arguments() == expected_arguments, "wrong type");
rbackman@3709 2881 LIR_Opr reg = result_register_for(x->type());
rbackman@3709 2882 __ call_runtime_leaf(routine, getThreadTemp(),
rbackman@3709 2883 reg, new LIR_OprList());
rbackman@3709 2884 LIR_Opr result = rlock_result(x);
rbackman@3709 2885 __ move(reg, result);
rbackman@3709 2886 }
rbackman@3709 2887
rbackman@3709 2888 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 2889 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
rbackman@3709 2890 LIR_Opr thread = getThreadPointer();
rbackman@3709 2891 LIR_Opr osthread = new_pointer_register();
rbackman@3709 2892 __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
rbackman@3709 2893 size_t thread_id_size = OSThread::thread_id_size();
rbackman@3709 2894 if (thread_id_size == (size_t) BytesPerLong) {
rbackman@3709 2895 LIR_Opr id = new_register(T_LONG);
rbackman@3709 2896 __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
rbackman@3709 2897 __ convert(Bytecodes::_l2i, id, rlock_result(x));
rbackman@3709 2898 } else if (thread_id_size == (size_t) BytesPerInt) {
rbackman@3709 2899 __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
rbackman@3709 2900 } else {
rbackman@3709 2901 ShouldNotReachHere();
rbackman@3709 2902 }
rbackman@3709 2903 }
rbackman@3709 2904
rbackman@3709 2905 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
rbackman@3709 2906 CodeEmitInfo* info = state_for(x);
rbackman@3709 2907 CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
coleenp@4037 2908 BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
rbackman@3709 2909 assert(info != NULL, "must have info");
rbackman@3709 2910 LIRItem arg(x->argument_at(1), this);
rbackman@3709 2911 arg.load_item();
coleenp@4037 2912 LIR_Opr klass = new_pointer_register();
coleenp@4037 2913 __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
rbackman@3709 2914 LIR_Opr id = new_register(T_LONG);
rbackman@3709 2915 ByteSize offset = TRACE_ID_OFFSET;
rbackman@3709 2916 LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
rbackman@3709 2917 __ move(trace_id_addr, id);
rbackman@3709 2918 __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
rbackman@3709 2919 __ store(id, trace_id_addr);
rbackman@3709 2920 __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
rbackman@3709 2921 __ move(id, rlock_result(x));
rbackman@3709 2922 }
rbackman@3709 2923 #endif
duke@435 2924
duke@435 2925 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
duke@435 2926 switch (x->id()) {
duke@435 2927 case vmIntrinsics::_intBitsToFloat :
duke@435 2928 case vmIntrinsics::_doubleToRawLongBits :
duke@435 2929 case vmIntrinsics::_longBitsToDouble :
duke@435 2930 case vmIntrinsics::_floatToRawIntBits : {
duke@435 2931 do_FPIntrinsics(x);
duke@435 2932 break;
duke@435 2933 }
duke@435 2934
rbackman@3709 2935 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 2936 case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
rbackman@3709 2937 case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
rbackman@3709 2938 case vmIntrinsics::_counterTime:
rbackman@3709 2939 do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
duke@435 2940 break;
rbackman@3709 2941 #endif
rbackman@3709 2942
rbackman@3709 2943 case vmIntrinsics::_currentTimeMillis:
rbackman@3709 2944 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
duke@435 2945 break;
rbackman@3709 2946
rbackman@3709 2947 case vmIntrinsics::_nanoTime:
rbackman@3709 2948 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
rbackman@3709 2949 break;
duke@435 2950
duke@435 2951 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
roland@3838 2952 case vmIntrinsics::_isInstance: do_isInstance(x); break;
duke@435 2953 case vmIntrinsics::_getClass: do_getClass(x); break;
duke@435 2954 case vmIntrinsics::_currentThread: do_currentThread(x); break;
duke@435 2955
duke@435 2956 case vmIntrinsics::_dlog: // fall through
duke@435 2957 case vmIntrinsics::_dlog10: // fall through
duke@435 2958 case vmIntrinsics::_dabs: // fall through
duke@435 2959 case vmIntrinsics::_dsqrt: // fall through
duke@435 2960 case vmIntrinsics::_dtan: // fall through
duke@435 2961 case vmIntrinsics::_dsin : // fall through
roland@3787 2962 case vmIntrinsics::_dcos : // fall through
roland@3787 2963 case vmIntrinsics::_dexp : // fall through
roland@3787 2964 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
duke@435 2965 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
duke@435 2966
duke@435 2967 // java.nio.Buffer.checkIndex
duke@435 2968 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break;
duke@435 2969
duke@435 2970 case vmIntrinsics::_compareAndSwapObject:
duke@435 2971 do_CompareAndSwap(x, objectType);
duke@435 2972 break;
duke@435 2973 case vmIntrinsics::_compareAndSwapInt:
duke@435 2974 do_CompareAndSwap(x, intType);
duke@435 2975 break;
duke@435 2976 case vmIntrinsics::_compareAndSwapLong:
duke@435 2977 do_CompareAndSwap(x, longType);
duke@435 2978 break;
duke@435 2979
johnc@2781 2980 case vmIntrinsics::_Reference_get:
johnc@2781 2981 do_Reference_get(x);
johnc@2781 2982 break;
johnc@2781 2983
duke@435 2984 default: ShouldNotReachHere(); break;
duke@435 2985 }
duke@435 2986 }
duke@435 2987
duke@435 2988 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
duke@435 2989 // Need recv in a temporary register so it interferes with the other temporaries
duke@435 2990 LIR_Opr recv = LIR_OprFact::illegalOpr;
duke@435 2991 LIR_Opr mdo = new_register(T_OBJECT);
iveresov@2138 2992 // tmp is used to hold the counters on SPARC
iveresov@2138 2993 LIR_Opr tmp = new_pointer_register();
duke@435 2994 if (x->recv() != NULL) {
duke@435 2995 LIRItem value(x->recv(), this);
duke@435 2996 value.load_item();
duke@435 2997 recv = new_register(T_OBJECT);
duke@435 2998 __ move(value.result(), recv);
duke@435 2999 }
twisti@3969 3000 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
duke@435 3001 }
duke@435 3002
iveresov@2138 3003 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
iveresov@2138 3004 // We can safely ignore accessors here, since c2 will inline them anyway,
iveresov@2138 3005 // accessors are also always mature.
iveresov@2138 3006 if (!x->inlinee()->is_accessor()) {
iveresov@2138 3007 CodeEmitInfo* info = state_for(x, x->state(), true);
iveresov@3160 3008 // Notify the runtime very infrequently only to take care of counter overflows
iveresov@3160 3009 increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
iveresov@2138 3010 }
duke@435 3011 }
duke@435 3012
iveresov@2138 3013 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
iveresov@2138 3014 int freq_log;
iveresov@2138 3015 int level = compilation()->env()->comp_level();
iveresov@2138 3016 if (level == CompLevel_limited_profile) {
iveresov@2138 3017 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
iveresov@2138 3018 } else if (level == CompLevel_full_profile) {
iveresov@2138 3019 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
iveresov@2138 3020 } else {
iveresov@2138 3021 ShouldNotReachHere();
iveresov@2138 3022 }
iveresov@2138 3023 // Increment the appropriate invocation/backedge counter and notify the runtime.
iveresov@2138 3024 increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
iveresov@2138 3025 }
iveresov@2138 3026
iveresov@2138 3027 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
iveresov@2138 3028 ciMethod *method, int frequency,
iveresov@2138 3029 int bci, bool backedge, bool notify) {
iveresov@2138 3030 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
iveresov@2138 3031 int level = _compilation->env()->comp_level();
iveresov@2138 3032 assert(level > CompLevel_simple, "Shouldn't be here");
iveresov@2138 3033
iveresov@2138 3034 int offset = -1;
roland@4051 3035 LIR_Opr counter_holder = new_register(T_METADATA);
iveresov@2138 3036 LIR_Opr meth;
iveresov@2138 3037 if (level == CompLevel_limited_profile) {
coleenp@4037 3038 offset = in_bytes(backedge ? Method::backedge_counter_offset() :
coleenp@4037 3039 Method::invocation_counter_offset());
roland@4051 3040 __ metadata2reg(method->constant_encoding(), counter_holder);
iveresov@2138 3041 meth = counter_holder;
iveresov@2138 3042 } else if (level == CompLevel_full_profile) {
coleenp@4037 3043 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
coleenp@4037 3044 MethodData::invocation_counter_offset());
iveresov@2349 3045 ciMethodData* md = method->method_data_or_null();
iveresov@2349 3046 assert(md != NULL, "Sanity");
roland@4051 3047 __ metadata2reg(md->constant_encoding(), counter_holder);
roland@4051 3048 meth = new_register(T_METADATA);
roland@4051 3049 __ metadata2reg(method->constant_encoding(), meth);
iveresov@2138 3050 } else {
iveresov@2138 3051 ShouldNotReachHere();
iveresov@2138 3052 }
iveresov@2138 3053 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
iveresov@2138 3054 LIR_Opr result = new_register(T_INT);
iveresov@2138 3055 __ load(counter, result);
iveresov@2138 3056 __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
iveresov@2138 3057 __ store(result, counter);
iveresov@2138 3058 if (notify) {
iveresov@2138 3059 LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
iveresov@2138 3060 __ logical_and(result, mask, result);
iveresov@2138 3061 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
iveresov@2138 3062 // The bci for info can point to cmp for if's we want the if bci
iveresov@2138 3063 CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
iveresov@2138 3064 __ branch(lir_cond_equal, T_INT, overflow);
iveresov@2138 3065 __ branch_destination(overflow->continuation());
iveresov@2138 3066 }
iveresov@2138 3067 }
duke@435 3068
never@2486 3069 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
never@2486 3070 LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
never@2486 3071 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
never@2486 3072
never@2486 3073 if (x->pass_thread()) {
never@2486 3074 signature->append(T_ADDRESS);
never@2486 3075 args->append(getThreadPointer());
never@2486 3076 }
never@2486 3077
never@2486 3078 for (int i = 0; i < x->number_of_arguments(); i++) {
never@2486 3079 Value a = x->argument_at(i);
never@2486 3080 LIRItem* item = new LIRItem(a, this);
never@2486 3081 item->load_item();
never@2486 3082 args->append(item->result());
never@2486 3083 signature->append(as_BasicType(a->type()));
never@2486 3084 }
never@2486 3085
never@2486 3086 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
never@2486 3087 if (x->type() == voidType) {
never@2486 3088 set_no_result(x);
never@2486 3089 } else {
never@2486 3090 __ move(result, rlock_result(x));
never@2486 3091 }
never@2486 3092 }
never@2486 3093
duke@435 3094 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 3095 LIRItemList args(1);
duke@435 3096 LIRItem value(arg1, this);
duke@435 3097 args.append(&value);
duke@435 3098 BasicTypeList signature;
duke@435 3099 signature.append(as_BasicType(arg1->type()));
duke@435 3100
duke@435 3101 return call_runtime(&signature, &args, entry, result_type, info);
duke@435 3102 }
duke@435 3103
duke@435 3104
duke@435 3105 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 3106 LIRItemList args(2);
duke@435 3107 LIRItem value1(arg1, this);
duke@435 3108 LIRItem value2(arg2, this);
duke@435 3109 args.append(&value1);
duke@435 3110 args.append(&value2);
duke@435 3111 BasicTypeList signature;
duke@435 3112 signature.append(as_BasicType(arg1->type()));
duke@435 3113 signature.append(as_BasicType(arg2->type()));
duke@435 3114
duke@435 3115 return call_runtime(&signature, &args, entry, result_type, info);
duke@435 3116 }
duke@435 3117
duke@435 3118
duke@435 3119 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
duke@435 3120 address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 3121 // get a result register
duke@435 3122 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
duke@435 3123 LIR_Opr result = LIR_OprFact::illegalOpr;
duke@435 3124 if (result_type->tag() != voidTag) {
duke@435 3125 result = new_register(result_type);
duke@435 3126 phys_reg = result_register_for(result_type);
duke@435 3127 }
duke@435 3128
duke@435 3129 // move the arguments into the correct location
duke@435 3130 CallingConvention* cc = frame_map()->c_calling_convention(signature);
duke@435 3131 assert(cc->length() == args->length(), "argument mismatch");
duke@435 3132 for (int i = 0; i < args->length(); i++) {
duke@435 3133 LIR_Opr arg = args->at(i);
duke@435 3134 LIR_Opr loc = cc->at(i);
duke@435 3135 if (loc->is_register()) {
duke@435 3136 __ move(arg, loc);
duke@435 3137 } else {
duke@435 3138 LIR_Address* addr = loc->as_address_ptr();
duke@435 3139 // if (!can_store_as_constant(arg)) {
duke@435 3140 // LIR_Opr tmp = new_register(arg->type());
duke@435 3141 // __ move(arg, tmp);
duke@435 3142 // arg = tmp;
duke@435 3143 // }
duke@435 3144 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 3145 __ unaligned_move(arg, addr);
duke@435 3146 } else {
duke@435 3147 __ move(arg, addr);
duke@435 3148 }
duke@435 3149 }
duke@435 3150 }
duke@435 3151
duke@435 3152 if (info) {
duke@435 3153 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
duke@435 3154 } else {
duke@435 3155 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
duke@435 3156 }
duke@435 3157 if (result->is_valid()) {
duke@435 3158 __ move(phys_reg, result);
duke@435 3159 }
duke@435 3160 return result;
duke@435 3161 }
duke@435 3162
duke@435 3163
duke@435 3164 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
duke@435 3165 address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 3166 // get a result register
duke@435 3167 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
duke@435 3168 LIR_Opr result = LIR_OprFact::illegalOpr;
duke@435 3169 if (result_type->tag() != voidTag) {
duke@435 3170 result = new_register(result_type);
duke@435 3171 phys_reg = result_register_for(result_type);
duke@435 3172 }
duke@435 3173
duke@435 3174 // move the arguments into the correct location
duke@435 3175 CallingConvention* cc = frame_map()->c_calling_convention(signature);
duke@435 3176
duke@435 3177 assert(cc->length() == args->length(), "argument mismatch");
duke@435 3178 for (int i = 0; i < args->length(); i++) {
duke@435 3179 LIRItem* arg = args->at(i);
duke@435 3180 LIR_Opr loc = cc->at(i);
duke@435 3181 if (loc->is_register()) {
duke@435 3182 arg->load_item_force(loc);
duke@435 3183 } else {
duke@435 3184 LIR_Address* addr = loc->as_address_ptr();
duke@435 3185 arg->load_for_store(addr->type());
duke@435 3186 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 3187 __ unaligned_move(arg->result(), addr);
duke@435 3188 } else {
duke@435 3189 __ move(arg->result(), addr);
duke@435 3190 }
duke@435 3191 }
duke@435 3192 }
duke@435 3193
duke@435 3194 if (info) {
duke@435 3195 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
duke@435 3196 } else {
duke@435 3197 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
duke@435 3198 }
duke@435 3199 if (result->is_valid()) {
duke@435 3200 __ move(phys_reg, result);
duke@435 3201 }
duke@435 3202 return result;
duke@435 3203 }
jiangli@3592 3204
jiangli@3592 3205 void LIRGenerator::do_MemBar(MemBar* x) {
jiangli@3592 3206 if (os::is_MP()) {
jiangli@3592 3207 LIR_Code code = x->code();
jiangli@3592 3208 switch(code) {
jiangli@3592 3209 case lir_membar_acquire : __ membar_acquire(); break;
jiangli@3592 3210 case lir_membar_release : __ membar_release(); break;
jiangli@3592 3211 case lir_membar : __ membar(); break;
jiangli@3592 3212 case lir_membar_loadload : __ membar_loadload(); break;
jiangli@3592 3213 case lir_membar_storestore: __ membar_storestore(); break;
jiangli@3592 3214 case lir_membar_loadstore : __ membar_loadstore(); break;
jiangli@3592 3215 case lir_membar_storeload : __ membar_storeload(); break;
jiangli@3592 3216 default : ShouldNotReachHere(); break;
jiangli@3592 3217 }
jiangli@3592 3218 }
jiangli@3592 3219 }

mercurial