src/share/vm/c1/c1_LIRGenerator.cpp

Tue, 03 Aug 2010 08:13:38 -0400

author
bobv
date
Tue, 03 Aug 2010 08:13:38 -0400
changeset 2036
126ea7725993
parent 1939
b812ff5abc73
child 2138
d5d065957597
permissions
-rw-r--r--

6953477: Increase portability and flexibility of building Hotspot
Summary: A collection of portability improvements including shared code support for PPC, ARM platforms, software floating point, cross compilation support and improvements in error crash detail.
Reviewed-by: phh, never, coleenp, dholmes

duke@435 1 /*
trims@1907 2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRGenerator.cpp.incl"
duke@435 27
duke@435 28 #ifdef ASSERT
duke@435 29 #define __ gen()->lir(__FILE__, __LINE__)->
duke@435 30 #else
duke@435 31 #define __ gen()->lir()->
duke@435 32 #endif
duke@435 33
bobv@2036 34 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
bobv@2036 35 #ifdef ARM
bobv@2036 36 #define PATCHED_ADDR (204)
bobv@2036 37 #else
bobv@2036 38 #define PATCHED_ADDR (max_jint)
bobv@2036 39 #endif
duke@435 40
duke@435 41 void PhiResolverState::reset(int max_vregs) {
duke@435 42 // Initialize array sizes
duke@435 43 _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 44 _virtual_operands.trunc_to(0);
duke@435 45 _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 46 _other_operands.trunc_to(0);
duke@435 47 _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 48 _vreg_table.trunc_to(0);
duke@435 49 }
duke@435 50
duke@435 51
duke@435 52
duke@435 53 //--------------------------------------------------------------
duke@435 54 // PhiResolver
duke@435 55
duke@435 56 // Resolves cycles:
duke@435 57 //
duke@435 58 // r1 := r2 becomes temp := r1
duke@435 59 // r2 := r1 r1 := r2
duke@435 60 // r2 := temp
duke@435 61 // and orders moves:
duke@435 62 //
duke@435 63 // r2 := r3 becomes r1 := r2
duke@435 64 // r1 := r2 r2 := r3
duke@435 65
duke@435 66 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
duke@435 67 : _gen(gen)
duke@435 68 , _state(gen->resolver_state())
duke@435 69 , _temp(LIR_OprFact::illegalOpr)
duke@435 70 {
duke@435 71 // reinitialize the shared state arrays
duke@435 72 _state.reset(max_vregs);
duke@435 73 }
duke@435 74
duke@435 75
duke@435 76 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
duke@435 77 assert(src->is_valid(), "");
duke@435 78 assert(dest->is_valid(), "");
duke@435 79 __ move(src, dest);
duke@435 80 }
duke@435 81
duke@435 82
duke@435 83 void PhiResolver::move_temp_to(LIR_Opr dest) {
duke@435 84 assert(_temp->is_valid(), "");
duke@435 85 emit_move(_temp, dest);
duke@435 86 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
duke@435 87 }
duke@435 88
duke@435 89
duke@435 90 void PhiResolver::move_to_temp(LIR_Opr src) {
duke@435 91 assert(_temp->is_illegal(), "");
duke@435 92 _temp = _gen->new_register(src->type());
duke@435 93 emit_move(src, _temp);
duke@435 94 }
duke@435 95
duke@435 96
duke@435 97 // Traverse assignment graph in depth first order and generate moves in post order
duke@435 98 // ie. two assignments: b := c, a := b start with node c:
duke@435 99 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
duke@435 100 // Generates moves in this order: move b to a and move c to b
duke@435 101 // ie. cycle a := b, b := a start with node a
duke@435 102 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
duke@435 103 // Generates moves in this order: move b to temp, move a to b, move temp to a
duke@435 104 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
duke@435 105 if (!dest->visited()) {
duke@435 106 dest->set_visited();
duke@435 107 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
duke@435 108 move(dest, dest->destination_at(i));
duke@435 109 }
duke@435 110 } else if (!dest->start_node()) {
duke@435 111 // cylce in graph detected
duke@435 112 assert(_loop == NULL, "only one loop valid!");
duke@435 113 _loop = dest;
duke@435 114 move_to_temp(src->operand());
duke@435 115 return;
duke@435 116 } // else dest is a start node
duke@435 117
duke@435 118 if (!dest->assigned()) {
duke@435 119 if (_loop == dest) {
duke@435 120 move_temp_to(dest->operand());
duke@435 121 dest->set_assigned();
duke@435 122 } else if (src != NULL) {
duke@435 123 emit_move(src->operand(), dest->operand());
duke@435 124 dest->set_assigned();
duke@435 125 }
duke@435 126 }
duke@435 127 }
duke@435 128
duke@435 129
duke@435 130 PhiResolver::~PhiResolver() {
duke@435 131 int i;
duke@435 132 // resolve any cycles in moves from and to virtual registers
duke@435 133 for (i = virtual_operands().length() - 1; i >= 0; i --) {
duke@435 134 ResolveNode* node = virtual_operands()[i];
duke@435 135 if (!node->visited()) {
duke@435 136 _loop = NULL;
duke@435 137 move(NULL, node);
duke@435 138 node->set_start_node();
duke@435 139 assert(_temp->is_illegal(), "move_temp_to() call missing");
duke@435 140 }
duke@435 141 }
duke@435 142
duke@435 143 // generate move for move from non virtual register to abitrary destination
duke@435 144 for (i = other_operands().length() - 1; i >= 0; i --) {
duke@435 145 ResolveNode* node = other_operands()[i];
duke@435 146 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
duke@435 147 emit_move(node->operand(), node->destination_at(j)->operand());
duke@435 148 }
duke@435 149 }
duke@435 150 }
duke@435 151
duke@435 152
duke@435 153 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
duke@435 154 ResolveNode* node;
duke@435 155 if (opr->is_virtual()) {
duke@435 156 int vreg_num = opr->vreg_number();
duke@435 157 node = vreg_table().at_grow(vreg_num, NULL);
duke@435 158 assert(node == NULL || node->operand() == opr, "");
duke@435 159 if (node == NULL) {
duke@435 160 node = new ResolveNode(opr);
duke@435 161 vreg_table()[vreg_num] = node;
duke@435 162 }
duke@435 163 // Make sure that all virtual operands show up in the list when
duke@435 164 // they are used as the source of a move.
duke@435 165 if (source && !virtual_operands().contains(node)) {
duke@435 166 virtual_operands().append(node);
duke@435 167 }
duke@435 168 } else {
duke@435 169 assert(source, "");
duke@435 170 node = new ResolveNode(opr);
duke@435 171 other_operands().append(node);
duke@435 172 }
duke@435 173 return node;
duke@435 174 }
duke@435 175
duke@435 176
duke@435 177 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
duke@435 178 assert(dest->is_virtual(), "");
duke@435 179 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
duke@435 180 assert(src->is_valid(), "");
duke@435 181 assert(dest->is_valid(), "");
duke@435 182 ResolveNode* source = source_node(src);
duke@435 183 source->append(destination_node(dest));
duke@435 184 }
duke@435 185
duke@435 186
duke@435 187 //--------------------------------------------------------------
duke@435 188 // LIRItem
duke@435 189
duke@435 190 void LIRItem::set_result(LIR_Opr opr) {
duke@435 191 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
duke@435 192 value()->set_operand(opr);
duke@435 193
duke@435 194 if (opr->is_virtual()) {
duke@435 195 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
duke@435 196 }
duke@435 197
duke@435 198 _result = opr;
duke@435 199 }
duke@435 200
duke@435 201 void LIRItem::load_item() {
duke@435 202 if (result()->is_illegal()) {
duke@435 203 // update the items result
duke@435 204 _result = value()->operand();
duke@435 205 }
duke@435 206 if (!result()->is_register()) {
duke@435 207 LIR_Opr reg = _gen->new_register(value()->type());
duke@435 208 __ move(result(), reg);
duke@435 209 if (result()->is_constant()) {
duke@435 210 _result = reg;
duke@435 211 } else {
duke@435 212 set_result(reg);
duke@435 213 }
duke@435 214 }
duke@435 215 }
duke@435 216
duke@435 217
duke@435 218 void LIRItem::load_for_store(BasicType type) {
duke@435 219 if (_gen->can_store_as_constant(value(), type)) {
duke@435 220 _result = value()->operand();
duke@435 221 if (!_result->is_constant()) {
duke@435 222 _result = LIR_OprFact::value_type(value()->type());
duke@435 223 }
duke@435 224 } else if (type == T_BYTE || type == T_BOOLEAN) {
duke@435 225 load_byte_item();
duke@435 226 } else {
duke@435 227 load_item();
duke@435 228 }
duke@435 229 }
duke@435 230
duke@435 231 void LIRItem::load_item_force(LIR_Opr reg) {
duke@435 232 LIR_Opr r = result();
duke@435 233 if (r != reg) {
bobv@2036 234 #if !defined(ARM) && !defined(E500V2)
duke@435 235 if (r->type() != reg->type()) {
duke@435 236 // moves between different types need an intervening spill slot
bobv@2036 237 r = _gen->force_to_spill(r, reg->type());
duke@435 238 }
bobv@2036 239 #endif
bobv@2036 240 __ move(r, reg);
duke@435 241 _result = reg;
duke@435 242 }
duke@435 243 }
duke@435 244
duke@435 245 ciObject* LIRItem::get_jobject_constant() const {
duke@435 246 ObjectType* oc = type()->as_ObjectType();
duke@435 247 if (oc) {
duke@435 248 return oc->constant_value();
duke@435 249 }
duke@435 250 return NULL;
duke@435 251 }
duke@435 252
duke@435 253
duke@435 254 jint LIRItem::get_jint_constant() const {
duke@435 255 assert(is_constant() && value() != NULL, "");
duke@435 256 assert(type()->as_IntConstant() != NULL, "type check");
duke@435 257 return type()->as_IntConstant()->value();
duke@435 258 }
duke@435 259
duke@435 260
duke@435 261 jint LIRItem::get_address_constant() const {
duke@435 262 assert(is_constant() && value() != NULL, "");
duke@435 263 assert(type()->as_AddressConstant() != NULL, "type check");
duke@435 264 return type()->as_AddressConstant()->value();
duke@435 265 }
duke@435 266
duke@435 267
duke@435 268 jfloat LIRItem::get_jfloat_constant() const {
duke@435 269 assert(is_constant() && value() != NULL, "");
duke@435 270 assert(type()->as_FloatConstant() != NULL, "type check");
duke@435 271 return type()->as_FloatConstant()->value();
duke@435 272 }
duke@435 273
duke@435 274
duke@435 275 jdouble LIRItem::get_jdouble_constant() const {
duke@435 276 assert(is_constant() && value() != NULL, "");
duke@435 277 assert(type()->as_DoubleConstant() != NULL, "type check");
duke@435 278 return type()->as_DoubleConstant()->value();
duke@435 279 }
duke@435 280
duke@435 281
duke@435 282 jlong LIRItem::get_jlong_constant() const {
duke@435 283 assert(is_constant() && value() != NULL, "");
duke@435 284 assert(type()->as_LongConstant() != NULL, "type check");
duke@435 285 return type()->as_LongConstant()->value();
duke@435 286 }
duke@435 287
duke@435 288
duke@435 289
duke@435 290 //--------------------------------------------------------------
duke@435 291
duke@435 292
duke@435 293 void LIRGenerator::init() {
ysr@777 294 _bs = Universe::heap()->barrier_set();
duke@435 295 }
duke@435 296
duke@435 297
duke@435 298 void LIRGenerator::block_do_prolog(BlockBegin* block) {
duke@435 299 #ifndef PRODUCT
duke@435 300 if (PrintIRWithLIR) {
duke@435 301 block->print();
duke@435 302 }
duke@435 303 #endif
duke@435 304
duke@435 305 // set up the list of LIR instructions
duke@435 306 assert(block->lir() == NULL, "LIR list already computed for this block");
duke@435 307 _lir = new LIR_List(compilation(), block);
duke@435 308 block->set_lir(_lir);
duke@435 309
duke@435 310 __ branch_destination(block->label());
duke@435 311
duke@435 312 if (LIRTraceExecution &&
iveresov@1939 313 Compilation::current()->hir()->start()->block_id() != block->block_id() &&
duke@435 314 !block->is_set(BlockBegin::exception_entry_flag)) {
duke@435 315 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
duke@435 316 trace_block_entry(block);
duke@435 317 }
duke@435 318 }
duke@435 319
duke@435 320
duke@435 321 void LIRGenerator::block_do_epilog(BlockBegin* block) {
duke@435 322 #ifndef PRODUCT
duke@435 323 if (PrintIRWithLIR) {
duke@435 324 tty->cr();
duke@435 325 }
duke@435 326 #endif
duke@435 327
duke@435 328 // LIR_Opr for unpinned constants shouldn't be referenced by other
duke@435 329 // blocks so clear them out after processing the block.
duke@435 330 for (int i = 0; i < _unpinned_constants.length(); i++) {
duke@435 331 _unpinned_constants.at(i)->clear_operand();
duke@435 332 }
duke@435 333 _unpinned_constants.trunc_to(0);
duke@435 334
duke@435 335 // clear our any registers for other local constants
duke@435 336 _constants.trunc_to(0);
duke@435 337 _reg_for_constants.trunc_to(0);
duke@435 338 }
duke@435 339
duke@435 340
duke@435 341 void LIRGenerator::block_do(BlockBegin* block) {
duke@435 342 CHECK_BAILOUT();
duke@435 343
duke@435 344 block_do_prolog(block);
duke@435 345 set_block(block);
duke@435 346
duke@435 347 for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
duke@435 348 if (instr->is_pinned()) do_root(instr);
duke@435 349 }
duke@435 350
duke@435 351 set_block(NULL);
duke@435 352 block_do_epilog(block);
duke@435 353 }
duke@435 354
duke@435 355
duke@435 356 //-------------------------LIRGenerator-----------------------------
duke@435 357
duke@435 358 // This is where the tree-walk starts; instr must be root;
duke@435 359 void LIRGenerator::do_root(Value instr) {
duke@435 360 CHECK_BAILOUT();
duke@435 361
duke@435 362 InstructionMark im(compilation(), instr);
duke@435 363
duke@435 364 assert(instr->is_pinned(), "use only with roots");
duke@435 365 assert(instr->subst() == instr, "shouldn't have missed substitution");
duke@435 366
duke@435 367 instr->visit(this);
duke@435 368
duke@435 369 assert(!instr->has_uses() || instr->operand()->is_valid() ||
duke@435 370 instr->as_Constant() != NULL || bailed_out(), "invalid item set");
duke@435 371 }
duke@435 372
duke@435 373
duke@435 374 // This is called for each node in tree; the walk stops if a root is reached
duke@435 375 void LIRGenerator::walk(Value instr) {
duke@435 376 InstructionMark im(compilation(), instr);
duke@435 377 //stop walk when encounter a root
duke@435 378 if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
duke@435 379 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
duke@435 380 } else {
duke@435 381 assert(instr->subst() == instr, "shouldn't have missed substitution");
duke@435 382 instr->visit(this);
duke@435 383 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
duke@435 384 }
duke@435 385 }
duke@435 386
duke@435 387
duke@435 388 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
duke@435 389 int index;
duke@435 390 Value value;
duke@435 391 for_each_stack_value(state, index, value) {
duke@435 392 assert(value->subst() == value, "missed substition");
duke@435 393 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
duke@435 394 walk(value);
duke@435 395 assert(value->operand()->is_valid(), "must be evaluated now");
duke@435 396 }
duke@435 397 }
duke@435 398 ValueStack* s = state;
duke@435 399 int bci = x->bci();
duke@435 400 for_each_state(s) {
duke@435 401 IRScope* scope = s->scope();
duke@435 402 ciMethod* method = scope->method();
duke@435 403
duke@435 404 MethodLivenessResult liveness = method->liveness_at_bci(bci);
duke@435 405 if (bci == SynchronizationEntryBCI) {
duke@435 406 if (x->as_ExceptionObject() || x->as_Throw()) {
duke@435 407 // all locals are dead on exit from the synthetic unlocker
duke@435 408 liveness.clear();
duke@435 409 } else {
duke@435 410 assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
duke@435 411 }
duke@435 412 }
duke@435 413 if (!liveness.is_valid()) {
duke@435 414 // Degenerate or breakpointed method.
duke@435 415 bailout("Degenerate or breakpointed method");
duke@435 416 } else {
duke@435 417 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
duke@435 418 for_each_local_value(s, index, value) {
duke@435 419 assert(value->subst() == value, "missed substition");
duke@435 420 if (liveness.at(index) && !value->type()->is_illegal()) {
duke@435 421 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
duke@435 422 walk(value);
duke@435 423 assert(value->operand()->is_valid(), "must be evaluated now");
duke@435 424 }
duke@435 425 } else {
duke@435 426 // NULL out this local so that linear scan can assume that all non-NULL values are live.
duke@435 427 s->invalidate_local(index);
duke@435 428 }
duke@435 429 }
duke@435 430 }
duke@435 431 bci = scope->caller_bci();
duke@435 432 }
duke@435 433
duke@435 434 return new CodeEmitInfo(x->bci(), state, ignore_xhandler ? NULL : x->exception_handlers());
duke@435 435 }
duke@435 436
duke@435 437
duke@435 438 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
duke@435 439 return state_for(x, x->lock_stack());
duke@435 440 }
duke@435 441
duke@435 442
duke@435 443 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
duke@435 444 if (!obj->is_loaded() || PatchALot) {
duke@435 445 assert(info != NULL, "info must be set if class is not loaded");
duke@435 446 __ oop2reg_patch(NULL, r, info);
duke@435 447 } else {
duke@435 448 // no patching needed
jrose@1424 449 __ oop2reg(obj->constant_encoding(), r);
duke@435 450 }
duke@435 451 }
duke@435 452
duke@435 453
duke@435 454 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
duke@435 455 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
duke@435 456 CodeStub* stub = new RangeCheckStub(range_check_info, index);
duke@435 457 if (index->is_constant()) {
duke@435 458 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
duke@435 459 index->as_jint(), null_check_info);
duke@435 460 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
duke@435 461 } else {
duke@435 462 cmp_reg_mem(lir_cond_aboveEqual, index, array,
duke@435 463 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
duke@435 464 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
duke@435 465 }
duke@435 466 }
duke@435 467
duke@435 468
duke@435 469 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
duke@435 470 CodeStub* stub = new RangeCheckStub(info, index, true);
duke@435 471 if (index->is_constant()) {
duke@435 472 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
duke@435 473 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
duke@435 474 } else {
duke@435 475 cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
duke@435 476 java_nio_Buffer::limit_offset(), T_INT, info);
duke@435 477 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
duke@435 478 }
duke@435 479 __ move(index, result);
duke@435 480 }
duke@435 481
duke@435 482
duke@435 483 // increment a counter returning the incremented value
duke@435 484 LIR_Opr LIRGenerator::increment_and_return_counter(LIR_Opr base, int offset, int increment) {
duke@435 485 LIR_Address* counter = new LIR_Address(base, offset, T_INT);
duke@435 486 LIR_Opr result = new_register(T_INT);
duke@435 487 __ load(counter, result);
duke@435 488 __ add(result, LIR_OprFact::intConst(increment), result);
duke@435 489 __ store(result, counter);
duke@435 490 return result;
duke@435 491 }
duke@435 492
duke@435 493
duke@435 494 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
duke@435 495 LIR_Opr result_op = result;
duke@435 496 LIR_Opr left_op = left;
duke@435 497 LIR_Opr right_op = right;
duke@435 498
duke@435 499 if (TwoOperandLIRForm && left_op != result_op) {
duke@435 500 assert(right_op != result_op, "malformed");
duke@435 501 __ move(left_op, result_op);
duke@435 502 left_op = result_op;
duke@435 503 }
duke@435 504
duke@435 505 switch(code) {
duke@435 506 case Bytecodes::_dadd:
duke@435 507 case Bytecodes::_fadd:
duke@435 508 case Bytecodes::_ladd:
duke@435 509 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
duke@435 510 case Bytecodes::_fmul:
duke@435 511 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
duke@435 512
duke@435 513 case Bytecodes::_dmul:
duke@435 514 {
duke@435 515 if (is_strictfp) {
duke@435 516 __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
duke@435 517 } else {
duke@435 518 __ mul(left_op, right_op, result_op); break;
duke@435 519 }
duke@435 520 }
duke@435 521 break;
duke@435 522
duke@435 523 case Bytecodes::_imul:
duke@435 524 {
duke@435 525 bool did_strength_reduce = false;
duke@435 526
duke@435 527 if (right->is_constant()) {
duke@435 528 int c = right->as_jint();
duke@435 529 if (is_power_of_2(c)) {
duke@435 530 // do not need tmp here
duke@435 531 __ shift_left(left_op, exact_log2(c), result_op);
duke@435 532 did_strength_reduce = true;
duke@435 533 } else {
duke@435 534 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
duke@435 535 }
duke@435 536 }
duke@435 537 // we couldn't strength reduce so just emit the multiply
duke@435 538 if (!did_strength_reduce) {
duke@435 539 __ mul(left_op, right_op, result_op);
duke@435 540 }
duke@435 541 }
duke@435 542 break;
duke@435 543
duke@435 544 case Bytecodes::_dsub:
duke@435 545 case Bytecodes::_fsub:
duke@435 546 case Bytecodes::_lsub:
duke@435 547 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
duke@435 548
duke@435 549 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
duke@435 550 // ldiv and lrem are implemented with a direct runtime call
duke@435 551
duke@435 552 case Bytecodes::_ddiv:
duke@435 553 {
duke@435 554 if (is_strictfp) {
duke@435 555 __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
duke@435 556 } else {
duke@435 557 __ div (left_op, right_op, result_op); break;
duke@435 558 }
duke@435 559 }
duke@435 560 break;
duke@435 561
duke@435 562 case Bytecodes::_drem:
duke@435 563 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
duke@435 564
duke@435 565 default: ShouldNotReachHere();
duke@435 566 }
duke@435 567 }
duke@435 568
duke@435 569
duke@435 570 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
duke@435 571 arithmetic_op(code, result, left, right, false, tmp);
duke@435 572 }
duke@435 573
duke@435 574
duke@435 575 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
duke@435 576 arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
duke@435 577 }
duke@435 578
duke@435 579
duke@435 580 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
duke@435 581 arithmetic_op(code, result, left, right, is_strictfp, tmp);
duke@435 582 }
duke@435 583
duke@435 584
duke@435 585 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
duke@435 586 if (TwoOperandLIRForm && value != result_op) {
duke@435 587 assert(count != result_op, "malformed");
duke@435 588 __ move(value, result_op);
duke@435 589 value = result_op;
duke@435 590 }
duke@435 591
duke@435 592 assert(count->is_constant() || count->is_register(), "must be");
duke@435 593 switch(code) {
duke@435 594 case Bytecodes::_ishl:
duke@435 595 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
duke@435 596 case Bytecodes::_ishr:
duke@435 597 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
duke@435 598 case Bytecodes::_iushr:
duke@435 599 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
duke@435 600 default: ShouldNotReachHere();
duke@435 601 }
duke@435 602 }
duke@435 603
duke@435 604
duke@435 605 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
duke@435 606 if (TwoOperandLIRForm && left_op != result_op) {
duke@435 607 assert(right_op != result_op, "malformed");
duke@435 608 __ move(left_op, result_op);
duke@435 609 left_op = result_op;
duke@435 610 }
duke@435 611
duke@435 612 switch(code) {
duke@435 613 case Bytecodes::_iand:
duke@435 614 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
duke@435 615
duke@435 616 case Bytecodes::_ior:
duke@435 617 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
duke@435 618
duke@435 619 case Bytecodes::_ixor:
duke@435 620 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
duke@435 621
duke@435 622 default: ShouldNotReachHere();
duke@435 623 }
duke@435 624 }
duke@435 625
duke@435 626
duke@435 627 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
duke@435 628 if (!GenerateSynchronizationCode) return;
duke@435 629 // for slow path, use debug info for state after successful locking
duke@435 630 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
duke@435 631 __ load_stack_address_monitor(monitor_no, lock);
duke@435 632 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
duke@435 633 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
duke@435 634 }
duke@435 635
duke@435 636
bobv@2036 637 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
duke@435 638 if (!GenerateSynchronizationCode) return;
duke@435 639 // setup registers
duke@435 640 LIR_Opr hdr = lock;
duke@435 641 lock = new_hdr;
duke@435 642 CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
duke@435 643 __ load_stack_address_monitor(monitor_no, lock);
bobv@2036 644 __ unlock_object(hdr, object, lock, scratch, slow_path);
duke@435 645 }
duke@435 646
duke@435 647
duke@435 648 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
duke@435 649 jobject2reg_with_patching(klass_reg, klass, info);
duke@435 650 // If klass is not loaded we do not know if the klass has finalizers:
duke@435 651 if (UseFastNewInstance && klass->is_loaded()
duke@435 652 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
duke@435 653
duke@435 654 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
duke@435 655
duke@435 656 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
duke@435 657
duke@435 658 assert(klass->is_loaded(), "must be loaded");
duke@435 659 // allocate space for instance
duke@435 660 assert(klass->size_helper() >= 0, "illegal instance size");
duke@435 661 const int instance_size = align_object_size(klass->size_helper());
duke@435 662 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
duke@435 663 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
duke@435 664 } else {
duke@435 665 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
duke@435 666 __ branch(lir_cond_always, T_ILLEGAL, slow_path);
duke@435 667 __ branch_destination(slow_path->continuation());
duke@435 668 }
duke@435 669 }
duke@435 670
duke@435 671
duke@435 672 static bool is_constant_zero(Instruction* inst) {
duke@435 673 IntConstant* c = inst->type()->as_IntConstant();
duke@435 674 if (c) {
duke@435 675 return (c->value() == 0);
duke@435 676 }
duke@435 677 return false;
duke@435 678 }
duke@435 679
duke@435 680
duke@435 681 static bool positive_constant(Instruction* inst) {
duke@435 682 IntConstant* c = inst->type()->as_IntConstant();
duke@435 683 if (c) {
duke@435 684 return (c->value() >= 0);
duke@435 685 }
duke@435 686 return false;
duke@435 687 }
duke@435 688
duke@435 689
duke@435 690 static ciArrayKlass* as_array_klass(ciType* type) {
duke@435 691 if (type != NULL && type->is_array_klass() && type->is_loaded()) {
duke@435 692 return (ciArrayKlass*)type;
duke@435 693 } else {
duke@435 694 return NULL;
duke@435 695 }
duke@435 696 }
duke@435 697
duke@435 698 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
duke@435 699 Instruction* src = x->argument_at(0);
duke@435 700 Instruction* src_pos = x->argument_at(1);
duke@435 701 Instruction* dst = x->argument_at(2);
duke@435 702 Instruction* dst_pos = x->argument_at(3);
duke@435 703 Instruction* length = x->argument_at(4);
duke@435 704
duke@435 705 // first try to identify the likely type of the arrays involved
duke@435 706 ciArrayKlass* expected_type = NULL;
duke@435 707 bool is_exact = false;
duke@435 708 {
duke@435 709 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
duke@435 710 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
duke@435 711 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
duke@435 712 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
duke@435 713 if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
duke@435 714 // the types exactly match so the type is fully known
duke@435 715 is_exact = true;
duke@435 716 expected_type = src_exact_type;
duke@435 717 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
duke@435 718 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
duke@435 719 ciArrayKlass* src_type = NULL;
duke@435 720 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
duke@435 721 src_type = (ciArrayKlass*) src_exact_type;
duke@435 722 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
duke@435 723 src_type = (ciArrayKlass*) src_declared_type;
duke@435 724 }
duke@435 725 if (src_type != NULL) {
duke@435 726 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
duke@435 727 is_exact = true;
duke@435 728 expected_type = dst_type;
duke@435 729 }
duke@435 730 }
duke@435 731 }
duke@435 732 // at least pass along a good guess
duke@435 733 if (expected_type == NULL) expected_type = dst_exact_type;
duke@435 734 if (expected_type == NULL) expected_type = src_declared_type;
duke@435 735 if (expected_type == NULL) expected_type = dst_declared_type;
duke@435 736 }
duke@435 737
duke@435 738 // if a probable array type has been identified, figure out if any
duke@435 739 // of the required checks for a fast case can be elided.
duke@435 740 int flags = LIR_OpArrayCopy::all_flags;
duke@435 741 if (expected_type != NULL) {
duke@435 742 // try to skip null checks
duke@435 743 if (src->as_NewArray() != NULL)
duke@435 744 flags &= ~LIR_OpArrayCopy::src_null_check;
duke@435 745 if (dst->as_NewArray() != NULL)
duke@435 746 flags &= ~LIR_OpArrayCopy::dst_null_check;
duke@435 747
duke@435 748 // check from incoming constant values
duke@435 749 if (positive_constant(src_pos))
duke@435 750 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
duke@435 751 if (positive_constant(dst_pos))
duke@435 752 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
duke@435 753 if (positive_constant(length))
duke@435 754 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 755
duke@435 756 // see if the range check can be elided, which might also imply
duke@435 757 // that src or dst is non-null.
duke@435 758 ArrayLength* al = length->as_ArrayLength();
duke@435 759 if (al != NULL) {
duke@435 760 if (al->array() == src) {
duke@435 761 // it's the length of the source array
duke@435 762 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 763 flags &= ~LIR_OpArrayCopy::src_null_check;
duke@435 764 if (is_constant_zero(src_pos))
duke@435 765 flags &= ~LIR_OpArrayCopy::src_range_check;
duke@435 766 }
duke@435 767 if (al->array() == dst) {
duke@435 768 // it's the length of the destination array
duke@435 769 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 770 flags &= ~LIR_OpArrayCopy::dst_null_check;
duke@435 771 if (is_constant_zero(dst_pos))
duke@435 772 flags &= ~LIR_OpArrayCopy::dst_range_check;
duke@435 773 }
duke@435 774 }
duke@435 775 if (is_exact) {
duke@435 776 flags &= ~LIR_OpArrayCopy::type_check;
duke@435 777 }
duke@435 778 }
duke@435 779
duke@435 780 if (src == dst) {
duke@435 781 // moving within a single array so no type checks are needed
duke@435 782 if (flags & LIR_OpArrayCopy::type_check) {
duke@435 783 flags &= ~LIR_OpArrayCopy::type_check;
duke@435 784 }
duke@435 785 }
duke@435 786 *flagsp = flags;
duke@435 787 *expected_typep = (ciArrayKlass*)expected_type;
duke@435 788 }
duke@435 789
duke@435 790
duke@435 791 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
duke@435 792 assert(opr->is_register(), "why spill if item is not register?");
duke@435 793
duke@435 794 if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
duke@435 795 LIR_Opr result = new_register(T_FLOAT);
duke@435 796 set_vreg_flag(result, must_start_in_memory);
duke@435 797 assert(opr->is_register(), "only a register can be spilled");
duke@435 798 assert(opr->value_type()->is_float(), "rounding only for floats available");
duke@435 799 __ roundfp(opr, LIR_OprFact::illegalOpr, result);
duke@435 800 return result;
duke@435 801 }
duke@435 802 return opr;
duke@435 803 }
duke@435 804
duke@435 805
duke@435 806 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
duke@435 807 assert(type2size[t] == type2size[value->type()], "size mismatch");
duke@435 808 if (!value->is_register()) {
duke@435 809 // force into a register
duke@435 810 LIR_Opr r = new_register(value->type());
duke@435 811 __ move(value, r);
duke@435 812 value = r;
duke@435 813 }
duke@435 814
duke@435 815 // create a spill location
duke@435 816 LIR_Opr tmp = new_register(t);
duke@435 817 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
duke@435 818
duke@435 819 // move from register to spill
duke@435 820 __ move(value, tmp);
duke@435 821 return tmp;
duke@435 822 }
duke@435 823
duke@435 824
duke@435 825 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
duke@435 826 if (if_instr->should_profile()) {
duke@435 827 ciMethod* method = if_instr->profiled_method();
duke@435 828 assert(method != NULL, "method should be set if branch is profiled");
duke@435 829 ciMethodData* md = method->method_data();
duke@435 830 if (md == NULL) {
duke@435 831 bailout("out of memory building methodDataOop");
duke@435 832 return;
duke@435 833 }
duke@435 834 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
duke@435 835 assert(data != NULL, "must have profiling data");
duke@435 836 assert(data->is_BranchData(), "need BranchData for two-way branches");
duke@435 837 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
duke@435 838 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
duke@435 839 LIR_Opr md_reg = new_register(T_OBJECT);
jrose@1424 840 __ move(LIR_OprFact::oopConst(md->constant_encoding()), md_reg);
duke@435 841 LIR_Opr data_offset_reg = new_register(T_INT);
duke@435 842 __ cmove(lir_cond(cond),
duke@435 843 LIR_OprFact::intConst(taken_count_offset),
duke@435 844 LIR_OprFact::intConst(not_taken_count_offset),
duke@435 845 data_offset_reg);
duke@435 846 LIR_Opr data_reg = new_register(T_INT);
duke@435 847 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, T_INT);
duke@435 848 __ move(LIR_OprFact::address(data_addr), data_reg);
duke@435 849 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
duke@435 850 // Use leal instead of add to avoid destroying condition codes on x86
duke@435 851 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
duke@435 852 __ move(data_reg, LIR_OprFact::address(data_addr));
duke@435 853 }
duke@435 854 }
duke@435 855
duke@435 856
duke@435 857 // Phi technique:
duke@435 858 // This is about passing live values from one basic block to the other.
duke@435 859 // In code generated with Java it is rather rare that more than one
duke@435 860 // value is on the stack from one basic block to the other.
duke@435 861 // We optimize our technique for efficient passing of one value
duke@435 862 // (of type long, int, double..) but it can be extended.
duke@435 863 // When entering or leaving a basic block, all registers and all spill
duke@435 864 // slots are release and empty. We use the released registers
duke@435 865 // and spill slots to pass the live values from one block
duke@435 866 // to the other. The topmost value, i.e., the value on TOS of expression
duke@435 867 // stack is passed in registers. All other values are stored in spilling
duke@435 868 // area. Every Phi has an index which designates its spill slot
duke@435 869 // At exit of a basic block, we fill the register(s) and spill slots.
duke@435 870 // At entry of a basic block, the block_prolog sets up the content of phi nodes
duke@435 871 // and locks necessary registers and spilling slots.
duke@435 872
duke@435 873
duke@435 874 // move current value to referenced phi function
duke@435 875 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
duke@435 876 Phi* phi = sux_val->as_Phi();
duke@435 877 // cur_val can be null without phi being null in conjunction with inlining
duke@435 878 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
duke@435 879 LIR_Opr operand = cur_val->operand();
duke@435 880 if (cur_val->operand()->is_illegal()) {
duke@435 881 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
duke@435 882 "these can be produced lazily");
duke@435 883 operand = operand_for_instruction(cur_val);
duke@435 884 }
duke@435 885 resolver->move(operand, operand_for_instruction(phi));
duke@435 886 }
duke@435 887 }
duke@435 888
duke@435 889
duke@435 890 // Moves all stack values into their PHI position
duke@435 891 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
duke@435 892 BlockBegin* bb = block();
duke@435 893 if (bb->number_of_sux() == 1) {
duke@435 894 BlockBegin* sux = bb->sux_at(0);
duke@435 895 assert(sux->number_of_preds() > 0, "invalid CFG");
duke@435 896
duke@435 897 // a block with only one predecessor never has phi functions
duke@435 898 if (sux->number_of_preds() > 1) {
duke@435 899 int max_phis = cur_state->stack_size() + cur_state->locals_size();
duke@435 900 PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
duke@435 901
duke@435 902 ValueStack* sux_state = sux->state();
duke@435 903 Value sux_value;
duke@435 904 int index;
duke@435 905
duke@435 906 for_each_stack_value(sux_state, index, sux_value) {
duke@435 907 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
duke@435 908 }
duke@435 909
duke@435 910 // Inlining may cause the local state not to match up, so walk up
duke@435 911 // the caller state until we get to the same scope as the
duke@435 912 // successor and then start processing from there.
duke@435 913 while (cur_state->scope() != sux_state->scope()) {
duke@435 914 cur_state = cur_state->caller_state();
duke@435 915 assert(cur_state != NULL, "scopes don't match up");
duke@435 916 }
duke@435 917
duke@435 918 for_each_local_value(sux_state, index, sux_value) {
duke@435 919 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
duke@435 920 }
duke@435 921
duke@435 922 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
duke@435 923 }
duke@435 924 }
duke@435 925 }
duke@435 926
duke@435 927
duke@435 928 LIR_Opr LIRGenerator::new_register(BasicType type) {
duke@435 929 int vreg = _virtual_register_number;
duke@435 930 // add a little fudge factor for the bailout, since the bailout is
duke@435 931 // only checked periodically. This gives a few extra registers to
duke@435 932 // hand out before we really run out, which helps us keep from
duke@435 933 // tripping over assertions.
duke@435 934 if (vreg + 20 >= LIR_OprDesc::vreg_max) {
duke@435 935 bailout("out of virtual registers");
duke@435 936 if (vreg + 2 >= LIR_OprDesc::vreg_max) {
duke@435 937 // wrap it around
duke@435 938 _virtual_register_number = LIR_OprDesc::vreg_base;
duke@435 939 }
duke@435 940 }
duke@435 941 _virtual_register_number += 1;
duke@435 942 if (type == T_ADDRESS) type = T_INT;
duke@435 943 return LIR_OprFact::virtual_register(vreg, type);
duke@435 944 }
duke@435 945
duke@435 946
duke@435 947 // Try to lock using register in hint
duke@435 948 LIR_Opr LIRGenerator::rlock(Value instr) {
duke@435 949 return new_register(instr->type());
duke@435 950 }
duke@435 951
duke@435 952
duke@435 953 // does an rlock and sets result
duke@435 954 LIR_Opr LIRGenerator::rlock_result(Value x) {
duke@435 955 LIR_Opr reg = rlock(x);
duke@435 956 set_result(x, reg);
duke@435 957 return reg;
duke@435 958 }
duke@435 959
duke@435 960
duke@435 961 // does an rlock and sets result
duke@435 962 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
duke@435 963 LIR_Opr reg;
duke@435 964 switch (type) {
duke@435 965 case T_BYTE:
duke@435 966 case T_BOOLEAN:
duke@435 967 reg = rlock_byte(type);
duke@435 968 break;
duke@435 969 default:
duke@435 970 reg = rlock(x);
duke@435 971 break;
duke@435 972 }
duke@435 973
duke@435 974 set_result(x, reg);
duke@435 975 return reg;
duke@435 976 }
duke@435 977
duke@435 978
duke@435 979 //---------------------------------------------------------------------
duke@435 980 ciObject* LIRGenerator::get_jobject_constant(Value value) {
duke@435 981 ObjectType* oc = value->type()->as_ObjectType();
duke@435 982 if (oc) {
duke@435 983 return oc->constant_value();
duke@435 984 }
duke@435 985 return NULL;
duke@435 986 }
duke@435 987
duke@435 988
duke@435 989 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
duke@435 990 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
duke@435 991 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
duke@435 992
duke@435 993 // no moves are created for phi functions at the begin of exception
duke@435 994 // handlers, so assign operands manually here
duke@435 995 for_each_phi_fun(block(), phi,
duke@435 996 operand_for_instruction(phi));
duke@435 997
duke@435 998 LIR_Opr thread_reg = getThreadPointer();
duke@435 999 __ move(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
duke@435 1000 exceptionOopOpr());
duke@435 1001 __ move(LIR_OprFact::oopConst(NULL),
duke@435 1002 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
duke@435 1003 __ move(LIR_OprFact::oopConst(NULL),
duke@435 1004 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
duke@435 1005
duke@435 1006 LIR_Opr result = new_register(T_OBJECT);
duke@435 1007 __ move(exceptionOopOpr(), result);
duke@435 1008 set_result(x, result);
duke@435 1009 }
duke@435 1010
duke@435 1011
duke@435 1012 //----------------------------------------------------------------------
duke@435 1013 //----------------------------------------------------------------------
duke@435 1014 //----------------------------------------------------------------------
duke@435 1015 //----------------------------------------------------------------------
duke@435 1016 // visitor functions
duke@435 1017 //----------------------------------------------------------------------
duke@435 1018 //----------------------------------------------------------------------
duke@435 1019 //----------------------------------------------------------------------
duke@435 1020 //----------------------------------------------------------------------
duke@435 1021
duke@435 1022 void LIRGenerator::do_Phi(Phi* x) {
duke@435 1023 // phi functions are never visited directly
duke@435 1024 ShouldNotReachHere();
duke@435 1025 }
duke@435 1026
duke@435 1027
duke@435 1028 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
duke@435 1029 void LIRGenerator::do_Constant(Constant* x) {
duke@435 1030 if (x->state() != NULL) {
duke@435 1031 // Any constant with a ValueStack requires patching so emit the patch here
duke@435 1032 LIR_Opr reg = rlock_result(x);
duke@435 1033 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1034 __ oop2reg_patch(NULL, reg, info);
duke@435 1035 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
duke@435 1036 if (!x->is_pinned()) {
duke@435 1037 // unpinned constants are handled specially so that they can be
duke@435 1038 // put into registers when they are used multiple times within a
duke@435 1039 // block. After the block completes their operand will be
duke@435 1040 // cleared so that other blocks can't refer to that register.
duke@435 1041 set_result(x, load_constant(x));
duke@435 1042 } else {
duke@435 1043 LIR_Opr res = x->operand();
duke@435 1044 if (!res->is_valid()) {
duke@435 1045 res = LIR_OprFact::value_type(x->type());
duke@435 1046 }
duke@435 1047 if (res->is_constant()) {
duke@435 1048 LIR_Opr reg = rlock_result(x);
duke@435 1049 __ move(res, reg);
duke@435 1050 } else {
duke@435 1051 set_result(x, res);
duke@435 1052 }
duke@435 1053 }
duke@435 1054 } else {
duke@435 1055 set_result(x, LIR_OprFact::value_type(x->type()));
duke@435 1056 }
duke@435 1057 }
duke@435 1058
duke@435 1059
duke@435 1060 void LIRGenerator::do_Local(Local* x) {
duke@435 1061 // operand_for_instruction has the side effect of setting the result
duke@435 1062 // so there's no need to do it here.
duke@435 1063 operand_for_instruction(x);
duke@435 1064 }
duke@435 1065
duke@435 1066
duke@435 1067 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
duke@435 1068 Unimplemented();
duke@435 1069 }
duke@435 1070
duke@435 1071
duke@435 1072 void LIRGenerator::do_Return(Return* x) {
kvn@1215 1073 if (compilation()->env()->dtrace_method_probes()) {
duke@435 1074 BasicTypeList signature;
duke@435 1075 signature.append(T_INT); // thread
duke@435 1076 signature.append(T_OBJECT); // methodOop
duke@435 1077 LIR_OprList* args = new LIR_OprList();
duke@435 1078 args->append(getThreadPointer());
duke@435 1079 LIR_Opr meth = new_register(T_OBJECT);
jrose@1424 1080 __ oop2reg(method()->constant_encoding(), meth);
duke@435 1081 args->append(meth);
duke@435 1082 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
duke@435 1083 }
duke@435 1084
duke@435 1085 if (x->type()->is_void()) {
duke@435 1086 __ return_op(LIR_OprFact::illegalOpr);
duke@435 1087 } else {
duke@435 1088 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
duke@435 1089 LIRItem result(x->result(), this);
duke@435 1090
duke@435 1091 result.load_item_force(reg);
duke@435 1092 __ return_op(result.result());
duke@435 1093 }
duke@435 1094 set_no_result(x);
duke@435 1095 }
duke@435 1096
duke@435 1097
duke@435 1098 // Example: object.getClass ()
duke@435 1099 void LIRGenerator::do_getClass(Intrinsic* x) {
duke@435 1100 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 1101
duke@435 1102 LIRItem rcvr(x->argument_at(0), this);
duke@435 1103 rcvr.load_item();
duke@435 1104 LIR_Opr result = rlock_result(x);
duke@435 1105
duke@435 1106 // need to perform the null check on the rcvr
duke@435 1107 CodeEmitInfo* info = NULL;
duke@435 1108 if (x->needs_null_check()) {
duke@435 1109 info = state_for(x, x->state()->copy_locks());
duke@435 1110 }
duke@435 1111 __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
duke@435 1112 __ move(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
duke@435 1113 klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
duke@435 1114 }
duke@435 1115
duke@435 1116
duke@435 1117 // Example: Thread.currentThread()
duke@435 1118 void LIRGenerator::do_currentThread(Intrinsic* x) {
duke@435 1119 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 1120 LIR_Opr reg = rlock_result(x);
duke@435 1121 __ load(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
duke@435 1122 }
duke@435 1123
duke@435 1124
duke@435 1125 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
duke@435 1126 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 1127 LIRItem receiver(x->argument_at(0), this);
duke@435 1128
duke@435 1129 receiver.load_item();
duke@435 1130 BasicTypeList signature;
duke@435 1131 signature.append(T_OBJECT); // receiver
duke@435 1132 LIR_OprList* args = new LIR_OprList();
duke@435 1133 args->append(receiver.result());
duke@435 1134 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1135 call_runtime(&signature, args,
duke@435 1136 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
duke@435 1137 voidType, info);
duke@435 1138
duke@435 1139 set_no_result(x);
duke@435 1140 }
duke@435 1141
duke@435 1142
duke@435 1143 //------------------------local access--------------------------------------
duke@435 1144
duke@435 1145 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
duke@435 1146 if (x->operand()->is_illegal()) {
duke@435 1147 Constant* c = x->as_Constant();
duke@435 1148 if (c != NULL) {
duke@435 1149 x->set_operand(LIR_OprFact::value_type(c->type()));
duke@435 1150 } else {
duke@435 1151 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
duke@435 1152 // allocate a virtual register for this local or phi
duke@435 1153 x->set_operand(rlock(x));
duke@435 1154 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
duke@435 1155 }
duke@435 1156 }
duke@435 1157 return x->operand();
duke@435 1158 }
duke@435 1159
duke@435 1160
duke@435 1161 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
duke@435 1162 if (opr->is_virtual()) {
duke@435 1163 return instruction_for_vreg(opr->vreg_number());
duke@435 1164 }
duke@435 1165 return NULL;
duke@435 1166 }
duke@435 1167
duke@435 1168
duke@435 1169 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
duke@435 1170 if (reg_num < _instruction_for_operand.length()) {
duke@435 1171 return _instruction_for_operand.at(reg_num);
duke@435 1172 }
duke@435 1173 return NULL;
duke@435 1174 }
duke@435 1175
duke@435 1176
duke@435 1177 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
duke@435 1178 if (_vreg_flags.size_in_bits() == 0) {
duke@435 1179 BitMap2D temp(100, num_vreg_flags);
duke@435 1180 temp.clear();
duke@435 1181 _vreg_flags = temp;
duke@435 1182 }
duke@435 1183 _vreg_flags.at_put_grow(vreg_num, f, true);
duke@435 1184 }
duke@435 1185
duke@435 1186 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
duke@435 1187 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
duke@435 1188 return false;
duke@435 1189 }
duke@435 1190 return _vreg_flags.at(vreg_num, f);
duke@435 1191 }
duke@435 1192
duke@435 1193
duke@435 1194 // Block local constant handling. This code is useful for keeping
duke@435 1195 // unpinned constants and constants which aren't exposed in the IR in
duke@435 1196 // registers. Unpinned Constant instructions have their operands
duke@435 1197 // cleared when the block is finished so that other blocks can't end
duke@435 1198 // up referring to their registers.
duke@435 1199
duke@435 1200 LIR_Opr LIRGenerator::load_constant(Constant* x) {
duke@435 1201 assert(!x->is_pinned(), "only for unpinned constants");
duke@435 1202 _unpinned_constants.append(x);
duke@435 1203 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
duke@435 1204 }
duke@435 1205
duke@435 1206
duke@435 1207 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
duke@435 1208 BasicType t = c->type();
duke@435 1209 for (int i = 0; i < _constants.length(); i++) {
duke@435 1210 LIR_Const* other = _constants.at(i);
duke@435 1211 if (t == other->type()) {
duke@435 1212 switch (t) {
duke@435 1213 case T_INT:
duke@435 1214 case T_FLOAT:
duke@435 1215 if (c->as_jint_bits() != other->as_jint_bits()) continue;
duke@435 1216 break;
duke@435 1217 case T_LONG:
duke@435 1218 case T_DOUBLE:
never@921 1219 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
never@921 1220 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
duke@435 1221 break;
duke@435 1222 case T_OBJECT:
duke@435 1223 if (c->as_jobject() != other->as_jobject()) continue;
duke@435 1224 break;
duke@435 1225 }
duke@435 1226 return _reg_for_constants.at(i);
duke@435 1227 }
duke@435 1228 }
duke@435 1229
duke@435 1230 LIR_Opr result = new_register(t);
duke@435 1231 __ move((LIR_Opr)c, result);
duke@435 1232 _constants.append(c);
duke@435 1233 _reg_for_constants.append(result);
duke@435 1234 return result;
duke@435 1235 }
duke@435 1236
duke@435 1237 // Various barriers
duke@435 1238
ysr@777 1239 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch, CodeEmitInfo* info) {
ysr@777 1240 // Do the pre-write barrier, if any.
ysr@777 1241 switch (_bs->kind()) {
ysr@777 1242 #ifndef SERIALGC
ysr@777 1243 case BarrierSet::G1SATBCT:
ysr@777 1244 case BarrierSet::G1SATBCTLogging:
ysr@777 1245 G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
ysr@777 1246 break;
ysr@777 1247 #endif // SERIALGC
ysr@777 1248 case BarrierSet::CardTableModRef:
ysr@777 1249 case BarrierSet::CardTableExtension:
ysr@777 1250 // No pre barriers
ysr@777 1251 break;
ysr@777 1252 case BarrierSet::ModRef:
ysr@777 1253 case BarrierSet::Other:
ysr@777 1254 // No pre barriers
ysr@777 1255 break;
ysr@777 1256 default :
ysr@777 1257 ShouldNotReachHere();
ysr@777 1258
ysr@777 1259 }
ysr@777 1260 }
ysr@777 1261
duke@435 1262 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
ysr@777 1263 switch (_bs->kind()) {
ysr@777 1264 #ifndef SERIALGC
ysr@777 1265 case BarrierSet::G1SATBCT:
ysr@777 1266 case BarrierSet::G1SATBCTLogging:
ysr@777 1267 G1SATBCardTableModRef_post_barrier(addr, new_val);
ysr@777 1268 break;
ysr@777 1269 #endif // SERIALGC
duke@435 1270 case BarrierSet::CardTableModRef:
duke@435 1271 case BarrierSet::CardTableExtension:
duke@435 1272 CardTableModRef_post_barrier(addr, new_val);
duke@435 1273 break;
duke@435 1274 case BarrierSet::ModRef:
duke@435 1275 case BarrierSet::Other:
duke@435 1276 // No post barriers
duke@435 1277 break;
duke@435 1278 default :
duke@435 1279 ShouldNotReachHere();
duke@435 1280 }
duke@435 1281 }
duke@435 1282
ysr@777 1283 ////////////////////////////////////////////////////////////////////////
ysr@777 1284 #ifndef SERIALGC
ysr@777 1285
ysr@777 1286 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch, CodeEmitInfo* info) {
ysr@777 1287 if (G1DisablePreBarrier) return;
ysr@777 1288
ysr@777 1289 // First we test whether marking is in progress.
ysr@777 1290 BasicType flag_type;
ysr@777 1291 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
ysr@777 1292 flag_type = T_INT;
ysr@777 1293 } else {
ysr@777 1294 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
ysr@777 1295 "Assumption");
ysr@777 1296 flag_type = T_BYTE;
ysr@777 1297 }
ysr@777 1298 LIR_Opr thrd = getThreadPointer();
ysr@777 1299 LIR_Address* mark_active_flag_addr =
ysr@777 1300 new LIR_Address(thrd,
ysr@777 1301 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 1302 PtrQueue::byte_offset_of_active()),
ysr@777 1303 flag_type);
ysr@777 1304 // Read the marking-in-progress flag.
ysr@777 1305 LIR_Opr flag_val = new_register(T_INT);
ysr@777 1306 __ load(mark_active_flag_addr, flag_val);
ysr@777 1307
ysr@777 1308 LabelObj* start_store = new LabelObj();
ysr@777 1309
ysr@777 1310 LIR_PatchCode pre_val_patch_code =
ysr@777 1311 patch ? lir_patch_normal : lir_patch_none;
ysr@777 1312
ysr@777 1313 LIR_Opr pre_val = new_register(T_OBJECT);
ysr@777 1314
ysr@777 1315 __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
ysr@777 1316 if (!addr_opr->is_address()) {
ysr@777 1317 assert(addr_opr->is_register(), "must be");
iveresov@1927 1318 addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
ysr@777 1319 }
ysr@777 1320 CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
ysr@777 1321 info);
ysr@777 1322 __ branch(lir_cond_notEqual, T_INT, slow);
ysr@777 1323 __ branch_destination(slow->continuation());
ysr@777 1324 }
ysr@777 1325
ysr@777 1326 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
ysr@777 1327 if (G1DisablePostBarrier) return;
ysr@777 1328
ysr@777 1329 // If the "new_val" is a constant NULL, no barrier is necessary.
ysr@777 1330 if (new_val->is_constant() &&
ysr@777 1331 new_val->as_constant_ptr()->as_jobject() == NULL) return;
ysr@777 1332
ysr@777 1333 if (!new_val->is_register()) {
iveresov@1927 1334 LIR_Opr new_val_reg = new_register(T_OBJECT);
ysr@777 1335 if (new_val->is_constant()) {
ysr@777 1336 __ move(new_val, new_val_reg);
ysr@777 1337 } else {
ysr@777 1338 __ leal(new_val, new_val_reg);
ysr@777 1339 }
ysr@777 1340 new_val = new_val_reg;
ysr@777 1341 }
ysr@777 1342 assert(new_val->is_register(), "must be a register at this point");
ysr@777 1343
ysr@777 1344 if (addr->is_address()) {
ysr@777 1345 LIR_Address* address = addr->as_address_ptr();
iveresov@1927 1346 LIR_Opr ptr = new_register(T_OBJECT);
ysr@777 1347 if (!address->index()->is_valid() && address->disp() == 0) {
ysr@777 1348 __ move(address->base(), ptr);
ysr@777 1349 } else {
ysr@777 1350 assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
ysr@777 1351 __ leal(addr, ptr);
ysr@777 1352 }
ysr@777 1353 addr = ptr;
ysr@777 1354 }
ysr@777 1355 assert(addr->is_register(), "must be a register at this point");
ysr@777 1356
ysr@777 1357 LIR_Opr xor_res = new_pointer_register();
ysr@777 1358 LIR_Opr xor_shift_res = new_pointer_register();
ysr@777 1359 if (TwoOperandLIRForm ) {
ysr@777 1360 __ move(addr, xor_res);
ysr@777 1361 __ logical_xor(xor_res, new_val, xor_res);
ysr@777 1362 __ move(xor_res, xor_shift_res);
ysr@777 1363 __ unsigned_shift_right(xor_shift_res,
ysr@777 1364 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
ysr@777 1365 xor_shift_res,
ysr@777 1366 LIR_OprDesc::illegalOpr());
ysr@777 1367 } else {
ysr@777 1368 __ logical_xor(addr, new_val, xor_res);
ysr@777 1369 __ unsigned_shift_right(xor_res,
ysr@777 1370 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
ysr@777 1371 xor_shift_res,
ysr@777 1372 LIR_OprDesc::illegalOpr());
ysr@777 1373 }
ysr@777 1374
ysr@777 1375 if (!new_val->is_register()) {
iveresov@1927 1376 LIR_Opr new_val_reg = new_register(T_OBJECT);
ysr@777 1377 __ leal(new_val, new_val_reg);
ysr@777 1378 new_val = new_val_reg;
ysr@777 1379 }
ysr@777 1380 assert(new_val->is_register(), "must be a register at this point");
ysr@777 1381
ysr@777 1382 __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
ysr@777 1383
ysr@777 1384 CodeStub* slow = new G1PostBarrierStub(addr, new_val);
iveresov@1927 1385 __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
ysr@777 1386 __ branch_destination(slow->continuation());
ysr@777 1387 }
ysr@777 1388
ysr@777 1389 #endif // SERIALGC
ysr@777 1390 ////////////////////////////////////////////////////////////////////////
ysr@777 1391
duke@435 1392 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
duke@435 1393
ysr@777 1394 assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
ysr@777 1395 LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
duke@435 1396 if (addr->is_address()) {
duke@435 1397 LIR_Address* address = addr->as_address_ptr();
duke@435 1398 LIR_Opr ptr = new_register(T_OBJECT);
duke@435 1399 if (!address->index()->is_valid() && address->disp() == 0) {
duke@435 1400 __ move(address->base(), ptr);
duke@435 1401 } else {
duke@435 1402 assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
duke@435 1403 __ leal(addr, ptr);
duke@435 1404 }
duke@435 1405 addr = ptr;
duke@435 1406 }
duke@435 1407 assert(addr->is_register(), "must be a register at this point");
duke@435 1408
bobv@2036 1409 #ifdef ARM
bobv@2036 1410 // TODO: ARM - move to platform-dependent code
bobv@2036 1411 LIR_Opr tmp = FrameMap::R14_opr;
bobv@2036 1412 if (VM_Version::supports_movw()) {
bobv@2036 1413 __ move((LIR_Opr)card_table_base, tmp);
bobv@2036 1414 } else {
bobv@2036 1415 __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
bobv@2036 1416 }
bobv@2036 1417
bobv@2036 1418 CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
bobv@2036 1419 LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
bobv@2036 1420 if(((int)ct->byte_map_base & 0xff) == 0) {
bobv@2036 1421 __ move(tmp, card_addr);
bobv@2036 1422 } else {
bobv@2036 1423 LIR_Opr tmp_zero = new_register(T_INT);
bobv@2036 1424 __ move(LIR_OprFact::intConst(0), tmp_zero);
bobv@2036 1425 __ move(tmp_zero, card_addr);
bobv@2036 1426 }
bobv@2036 1427 #else // ARM
duke@435 1428 LIR_Opr tmp = new_pointer_register();
duke@435 1429 if (TwoOperandLIRForm) {
duke@435 1430 __ move(addr, tmp);
duke@435 1431 __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
duke@435 1432 } else {
duke@435 1433 __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
duke@435 1434 }
duke@435 1435 if (can_inline_as_constant(card_table_base)) {
duke@435 1436 __ move(LIR_OprFact::intConst(0),
duke@435 1437 new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
duke@435 1438 } else {
duke@435 1439 __ move(LIR_OprFact::intConst(0),
duke@435 1440 new LIR_Address(tmp, load_constant(card_table_base),
duke@435 1441 T_BYTE));
duke@435 1442 }
bobv@2036 1443 #endif // ARM
duke@435 1444 }
duke@435 1445
duke@435 1446
duke@435 1447 //------------------------field access--------------------------------------
duke@435 1448
duke@435 1449 // Comment copied form templateTable_i486.cpp
duke@435 1450 // ----------------------------------------------------------------------------
duke@435 1451 // Volatile variables demand their effects be made known to all CPU's in
duke@435 1452 // order. Store buffers on most chips allow reads & writes to reorder; the
duke@435 1453 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
duke@435 1454 // memory barrier (i.e., it's not sufficient that the interpreter does not
duke@435 1455 // reorder volatile references, the hardware also must not reorder them).
duke@435 1456 //
duke@435 1457 // According to the new Java Memory Model (JMM):
duke@435 1458 // (1) All volatiles are serialized wrt to each other.
duke@435 1459 // ALSO reads & writes act as aquire & release, so:
duke@435 1460 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
duke@435 1461 // the read float up to before the read. It's OK for non-volatile memory refs
duke@435 1462 // that happen before the volatile read to float down below it.
duke@435 1463 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
duke@435 1464 // that happen BEFORE the write float down to after the write. It's OK for
duke@435 1465 // non-volatile memory refs that happen after the volatile write to float up
duke@435 1466 // before it.
duke@435 1467 //
duke@435 1468 // We only put in barriers around volatile refs (they are expensive), not
duke@435 1469 // _between_ memory refs (that would require us to track the flavor of the
duke@435 1470 // previous memory refs). Requirements (2) and (3) require some barriers
duke@435 1471 // before volatile stores and after volatile loads. These nearly cover
duke@435 1472 // requirement (1) but miss the volatile-store-volatile-load case. This final
duke@435 1473 // case is placed after volatile-stores although it could just as well go
duke@435 1474 // before volatile-loads.
duke@435 1475
duke@435 1476
duke@435 1477 void LIRGenerator::do_StoreField(StoreField* x) {
duke@435 1478 bool needs_patching = x->needs_patching();
duke@435 1479 bool is_volatile = x->field()->is_volatile();
duke@435 1480 BasicType field_type = x->field_type();
duke@435 1481 bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
duke@435 1482
duke@435 1483 CodeEmitInfo* info = NULL;
duke@435 1484 if (needs_patching) {
duke@435 1485 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
duke@435 1486 info = state_for(x, x->state_before());
duke@435 1487 } else if (x->needs_null_check()) {
duke@435 1488 NullCheck* nc = x->explicit_null_check();
duke@435 1489 if (nc == NULL) {
duke@435 1490 info = state_for(x, x->lock_stack());
duke@435 1491 } else {
duke@435 1492 info = state_for(nc);
duke@435 1493 }
duke@435 1494 }
duke@435 1495
duke@435 1496
duke@435 1497 LIRItem object(x->obj(), this);
duke@435 1498 LIRItem value(x->value(), this);
duke@435 1499
duke@435 1500 object.load_item();
duke@435 1501
duke@435 1502 if (is_volatile || needs_patching) {
duke@435 1503 // load item if field is volatile (fewer special cases for volatiles)
duke@435 1504 // load item if field not initialized
duke@435 1505 // load item if field not constant
duke@435 1506 // because of code patching we cannot inline constants
duke@435 1507 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
duke@435 1508 value.load_byte_item();
duke@435 1509 } else {
duke@435 1510 value.load_item();
duke@435 1511 }
duke@435 1512 } else {
duke@435 1513 value.load_for_store(field_type);
duke@435 1514 }
duke@435 1515
duke@435 1516 set_no_result(x);
duke@435 1517
duke@435 1518 if (PrintNotLoaded && needs_patching) {
duke@435 1519 tty->print_cr(" ###class not loaded at store_%s bci %d",
duke@435 1520 x->is_static() ? "static" : "field", x->bci());
duke@435 1521 }
duke@435 1522
duke@435 1523 if (x->needs_null_check() &&
duke@435 1524 (needs_patching ||
duke@435 1525 MacroAssembler::needs_explicit_null_check(x->offset()))) {
duke@435 1526 // emit an explicit null check because the offset is too large
duke@435 1527 __ null_check(object.result(), new CodeEmitInfo(info));
duke@435 1528 }
duke@435 1529
duke@435 1530 LIR_Address* address;
duke@435 1531 if (needs_patching) {
duke@435 1532 // we need to patch the offset in the instruction so don't allow
duke@435 1533 // generate_address to try to be smart about emitting the -1.
duke@435 1534 // Otherwise the patching code won't know how to find the
duke@435 1535 // instruction to patch.
bobv@2036 1536 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
duke@435 1537 } else {
duke@435 1538 address = generate_address(object.result(), x->offset(), field_type);
duke@435 1539 }
duke@435 1540
duke@435 1541 if (is_volatile && os::is_MP()) {
duke@435 1542 __ membar_release();
duke@435 1543 }
duke@435 1544
ysr@777 1545 if (is_oop) {
ysr@777 1546 // Do the pre-write barrier, if any.
ysr@777 1547 pre_barrier(LIR_OprFact::address(address),
ysr@777 1548 needs_patching,
ysr@777 1549 (info ? new CodeEmitInfo(info) : NULL));
ysr@777 1550 }
ysr@777 1551
duke@435 1552 if (is_volatile) {
duke@435 1553 assert(!needs_patching && x->is_loaded(),
duke@435 1554 "how do we know it's volatile if it's not loaded");
duke@435 1555 volatile_field_store(value.result(), address, info);
duke@435 1556 } else {
duke@435 1557 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
duke@435 1558 __ store(value.result(), address, info, patch_code);
duke@435 1559 }
duke@435 1560
duke@435 1561 if (is_oop) {
never@1254 1562 // Store to object so mark the card of the header
duke@435 1563 post_barrier(object.result(), value.result());
duke@435 1564 }
duke@435 1565
duke@435 1566 if (is_volatile && os::is_MP()) {
duke@435 1567 __ membar();
duke@435 1568 }
duke@435 1569 }
duke@435 1570
duke@435 1571
duke@435 1572 void LIRGenerator::do_LoadField(LoadField* x) {
duke@435 1573 bool needs_patching = x->needs_patching();
duke@435 1574 bool is_volatile = x->field()->is_volatile();
duke@435 1575 BasicType field_type = x->field_type();
duke@435 1576
duke@435 1577 CodeEmitInfo* info = NULL;
duke@435 1578 if (needs_patching) {
duke@435 1579 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
duke@435 1580 info = state_for(x, x->state_before());
duke@435 1581 } else if (x->needs_null_check()) {
duke@435 1582 NullCheck* nc = x->explicit_null_check();
duke@435 1583 if (nc == NULL) {
duke@435 1584 info = state_for(x, x->lock_stack());
duke@435 1585 } else {
duke@435 1586 info = state_for(nc);
duke@435 1587 }
duke@435 1588 }
duke@435 1589
duke@435 1590 LIRItem object(x->obj(), this);
duke@435 1591
duke@435 1592 object.load_item();
duke@435 1593
duke@435 1594 if (PrintNotLoaded && needs_patching) {
duke@435 1595 tty->print_cr(" ###class not loaded at load_%s bci %d",
duke@435 1596 x->is_static() ? "static" : "field", x->bci());
duke@435 1597 }
duke@435 1598
duke@435 1599 if (x->needs_null_check() &&
duke@435 1600 (needs_patching ||
duke@435 1601 MacroAssembler::needs_explicit_null_check(x->offset()))) {
duke@435 1602 // emit an explicit null check because the offset is too large
duke@435 1603 __ null_check(object.result(), new CodeEmitInfo(info));
duke@435 1604 }
duke@435 1605
duke@435 1606 LIR_Opr reg = rlock_result(x, field_type);
duke@435 1607 LIR_Address* address;
duke@435 1608 if (needs_patching) {
duke@435 1609 // we need to patch the offset in the instruction so don't allow
duke@435 1610 // generate_address to try to be smart about emitting the -1.
duke@435 1611 // Otherwise the patching code won't know how to find the
duke@435 1612 // instruction to patch.
bobv@2036 1613 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
duke@435 1614 } else {
duke@435 1615 address = generate_address(object.result(), x->offset(), field_type);
duke@435 1616 }
duke@435 1617
duke@435 1618 if (is_volatile) {
duke@435 1619 assert(!needs_patching && x->is_loaded(),
duke@435 1620 "how do we know it's volatile if it's not loaded");
duke@435 1621 volatile_field_load(address, reg, info);
duke@435 1622 } else {
duke@435 1623 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
duke@435 1624 __ load(address, reg, info, patch_code);
duke@435 1625 }
duke@435 1626
duke@435 1627 if (is_volatile && os::is_MP()) {
duke@435 1628 __ membar_acquire();
duke@435 1629 }
duke@435 1630 }
duke@435 1631
duke@435 1632
duke@435 1633 //------------------------java.nio.Buffer.checkIndex------------------------
duke@435 1634
duke@435 1635 // int java.nio.Buffer.checkIndex(int)
duke@435 1636 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
duke@435 1637 // NOTE: by the time we are in checkIndex() we are guaranteed that
duke@435 1638 // the buffer is non-null (because checkIndex is package-private and
duke@435 1639 // only called from within other methods in the buffer).
duke@435 1640 assert(x->number_of_arguments() == 2, "wrong type");
duke@435 1641 LIRItem buf (x->argument_at(0), this);
duke@435 1642 LIRItem index(x->argument_at(1), this);
duke@435 1643 buf.load_item();
duke@435 1644 index.load_item();
duke@435 1645
duke@435 1646 LIR_Opr result = rlock_result(x);
duke@435 1647 if (GenerateRangeChecks) {
duke@435 1648 CodeEmitInfo* info = state_for(x);
duke@435 1649 CodeStub* stub = new RangeCheckStub(info, index.result(), true);
duke@435 1650 if (index.result()->is_constant()) {
duke@435 1651 cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
duke@435 1652 __ branch(lir_cond_belowEqual, T_INT, stub);
duke@435 1653 } else {
duke@435 1654 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
duke@435 1655 java_nio_Buffer::limit_offset(), T_INT, info);
duke@435 1656 __ branch(lir_cond_aboveEqual, T_INT, stub);
duke@435 1657 }
duke@435 1658 __ move(index.result(), result);
duke@435 1659 } else {
duke@435 1660 // Just load the index into the result register
duke@435 1661 __ move(index.result(), result);
duke@435 1662 }
duke@435 1663 }
duke@435 1664
duke@435 1665
duke@435 1666 //------------------------array access--------------------------------------
duke@435 1667
duke@435 1668
duke@435 1669 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
duke@435 1670 LIRItem array(x->array(), this);
duke@435 1671 array.load_item();
duke@435 1672 LIR_Opr reg = rlock_result(x);
duke@435 1673
duke@435 1674 CodeEmitInfo* info = NULL;
duke@435 1675 if (x->needs_null_check()) {
duke@435 1676 NullCheck* nc = x->explicit_null_check();
duke@435 1677 if (nc == NULL) {
duke@435 1678 info = state_for(x);
duke@435 1679 } else {
duke@435 1680 info = state_for(nc);
duke@435 1681 }
duke@435 1682 }
duke@435 1683 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
duke@435 1684 }
duke@435 1685
duke@435 1686
duke@435 1687 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
duke@435 1688 bool use_length = x->length() != NULL;
duke@435 1689 LIRItem array(x->array(), this);
duke@435 1690 LIRItem index(x->index(), this);
duke@435 1691 LIRItem length(this);
duke@435 1692 bool needs_range_check = true;
duke@435 1693
duke@435 1694 if (use_length) {
duke@435 1695 needs_range_check = x->compute_needs_range_check();
duke@435 1696 if (needs_range_check) {
duke@435 1697 length.set_instruction(x->length());
duke@435 1698 length.load_item();
duke@435 1699 }
duke@435 1700 }
duke@435 1701
duke@435 1702 array.load_item();
duke@435 1703 if (index.is_constant() && can_inline_as_constant(x->index())) {
duke@435 1704 // let it be a constant
duke@435 1705 index.dont_load_item();
duke@435 1706 } else {
duke@435 1707 index.load_item();
duke@435 1708 }
duke@435 1709
duke@435 1710 CodeEmitInfo* range_check_info = state_for(x);
duke@435 1711 CodeEmitInfo* null_check_info = NULL;
duke@435 1712 if (x->needs_null_check()) {
duke@435 1713 NullCheck* nc = x->explicit_null_check();
duke@435 1714 if (nc != NULL) {
duke@435 1715 null_check_info = state_for(nc);
duke@435 1716 } else {
duke@435 1717 null_check_info = range_check_info;
duke@435 1718 }
duke@435 1719 }
duke@435 1720
duke@435 1721 // emit array address setup early so it schedules better
duke@435 1722 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
duke@435 1723
duke@435 1724 if (GenerateRangeChecks && needs_range_check) {
duke@435 1725 if (use_length) {
duke@435 1726 // TODO: use a (modified) version of array_range_check that does not require a
duke@435 1727 // constant length to be loaded to a register
duke@435 1728 __ cmp(lir_cond_belowEqual, length.result(), index.result());
duke@435 1729 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
duke@435 1730 } else {
duke@435 1731 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
duke@435 1732 // The range check performs the null check, so clear it out for the load
duke@435 1733 null_check_info = NULL;
duke@435 1734 }
duke@435 1735 }
duke@435 1736
duke@435 1737 __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
duke@435 1738 }
duke@435 1739
duke@435 1740
duke@435 1741 void LIRGenerator::do_NullCheck(NullCheck* x) {
duke@435 1742 if (x->can_trap()) {
duke@435 1743 LIRItem value(x->obj(), this);
duke@435 1744 value.load_item();
duke@435 1745 CodeEmitInfo* info = state_for(x);
duke@435 1746 __ null_check(value.result(), info);
duke@435 1747 }
duke@435 1748 }
duke@435 1749
duke@435 1750
duke@435 1751 void LIRGenerator::do_Throw(Throw* x) {
duke@435 1752 LIRItem exception(x->exception(), this);
duke@435 1753 exception.load_item();
duke@435 1754 set_no_result(x);
duke@435 1755 LIR_Opr exception_opr = exception.result();
duke@435 1756 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1757
duke@435 1758 #ifndef PRODUCT
duke@435 1759 if (PrintC1Statistics) {
duke@435 1760 increment_counter(Runtime1::throw_count_address());
duke@435 1761 }
duke@435 1762 #endif
duke@435 1763
duke@435 1764 // check if the instruction has an xhandler in any of the nested scopes
duke@435 1765 bool unwind = false;
duke@435 1766 if (info->exception_handlers()->length() == 0) {
duke@435 1767 // this throw is not inside an xhandler
duke@435 1768 unwind = true;
duke@435 1769 } else {
duke@435 1770 // get some idea of the throw type
duke@435 1771 bool type_is_exact = true;
duke@435 1772 ciType* throw_type = x->exception()->exact_type();
duke@435 1773 if (throw_type == NULL) {
duke@435 1774 type_is_exact = false;
duke@435 1775 throw_type = x->exception()->declared_type();
duke@435 1776 }
duke@435 1777 if (throw_type != NULL && throw_type->is_instance_klass()) {
duke@435 1778 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
duke@435 1779 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
duke@435 1780 }
duke@435 1781 }
duke@435 1782
duke@435 1783 // do null check before moving exception oop into fixed register
duke@435 1784 // to avoid a fixed interval with an oop during the null check.
duke@435 1785 // Use a copy of the CodeEmitInfo because debug information is
duke@435 1786 // different for null_check and throw.
duke@435 1787 if (GenerateCompilerNullChecks &&
duke@435 1788 (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
duke@435 1789 // if the exception object wasn't created using new then it might be null.
duke@435 1790 __ null_check(exception_opr, new CodeEmitInfo(info, true));
duke@435 1791 }
duke@435 1792
never@1813 1793 if (compilation()->env()->jvmti_can_post_on_exceptions()) {
duke@435 1794 // we need to go through the exception lookup path to get JVMTI
duke@435 1795 // notification done
duke@435 1796 unwind = false;
duke@435 1797 }
duke@435 1798
duke@435 1799 // move exception oop into fixed register
duke@435 1800 __ move(exception_opr, exceptionOopOpr());
duke@435 1801
duke@435 1802 if (unwind) {
never@1813 1803 __ unwind_exception(exceptionOopOpr());
duke@435 1804 } else {
duke@435 1805 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
duke@435 1806 }
duke@435 1807 }
duke@435 1808
duke@435 1809
duke@435 1810 void LIRGenerator::do_RoundFP(RoundFP* x) {
duke@435 1811 LIRItem input(x->input(), this);
duke@435 1812 input.load_item();
duke@435 1813 LIR_Opr input_opr = input.result();
duke@435 1814 assert(input_opr->is_register(), "why round if value is not in a register?");
duke@435 1815 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
duke@435 1816 if (input_opr->is_single_fpu()) {
duke@435 1817 set_result(x, round_item(input_opr)); // This code path not currently taken
duke@435 1818 } else {
duke@435 1819 LIR_Opr result = new_register(T_DOUBLE);
duke@435 1820 set_vreg_flag(result, must_start_in_memory);
duke@435 1821 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
duke@435 1822 set_result(x, result);
duke@435 1823 }
duke@435 1824 }
duke@435 1825
duke@435 1826 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
duke@435 1827 LIRItem base(x->base(), this);
duke@435 1828 LIRItem idx(this);
duke@435 1829
duke@435 1830 base.load_item();
duke@435 1831 if (x->has_index()) {
duke@435 1832 idx.set_instruction(x->index());
duke@435 1833 idx.load_nonconstant();
duke@435 1834 }
duke@435 1835
duke@435 1836 LIR_Opr reg = rlock_result(x, x->basic_type());
duke@435 1837
duke@435 1838 int log2_scale = 0;
duke@435 1839 if (x->has_index()) {
duke@435 1840 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
duke@435 1841 log2_scale = x->log2_scale();
duke@435 1842 }
duke@435 1843
duke@435 1844 assert(!x->has_index() || idx.value() == x->index(), "should match");
duke@435 1845
duke@435 1846 LIR_Opr base_op = base.result();
duke@435 1847 #ifndef _LP64
duke@435 1848 if (x->base()->type()->tag() == longTag) {
duke@435 1849 base_op = new_register(T_INT);
duke@435 1850 __ convert(Bytecodes::_l2i, base.result(), base_op);
duke@435 1851 } else {
duke@435 1852 assert(x->base()->type()->tag() == intTag, "must be");
duke@435 1853 }
duke@435 1854 #endif
duke@435 1855
duke@435 1856 BasicType dst_type = x->basic_type();
duke@435 1857 LIR_Opr index_op = idx.result();
duke@435 1858
duke@435 1859 LIR_Address* addr;
duke@435 1860 if (index_op->is_constant()) {
duke@435 1861 assert(log2_scale == 0, "must not have a scale");
duke@435 1862 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
duke@435 1863 } else {
never@739 1864 #ifdef X86
roland@1495 1865 #ifdef _LP64
roland@1495 1866 if (!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 1867 LIR_Opr tmp = new_pointer_register();
roland@1495 1868 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 1869 index_op = tmp;
roland@1495 1870 }
roland@1495 1871 #endif
duke@435 1872 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
bobv@2036 1873 #elif defined(ARM)
bobv@2036 1874 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
duke@435 1875 #else
duke@435 1876 if (index_op->is_illegal() || log2_scale == 0) {
roland@1495 1877 #ifdef _LP64
roland@1495 1878 if (!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 1879 LIR_Opr tmp = new_pointer_register();
roland@1495 1880 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 1881 index_op = tmp;
roland@1495 1882 }
roland@1495 1883 #endif
duke@435 1884 addr = new LIR_Address(base_op, index_op, dst_type);
duke@435 1885 } else {
roland@1495 1886 LIR_Opr tmp = new_pointer_register();
duke@435 1887 __ shift_left(index_op, log2_scale, tmp);
duke@435 1888 addr = new LIR_Address(base_op, tmp, dst_type);
duke@435 1889 }
duke@435 1890 #endif
duke@435 1891 }
duke@435 1892
duke@435 1893 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
duke@435 1894 __ unaligned_move(addr, reg);
duke@435 1895 } else {
duke@435 1896 __ move(addr, reg);
duke@435 1897 }
duke@435 1898 }
duke@435 1899
duke@435 1900
duke@435 1901 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
duke@435 1902 int log2_scale = 0;
duke@435 1903 BasicType type = x->basic_type();
duke@435 1904
duke@435 1905 if (x->has_index()) {
duke@435 1906 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
duke@435 1907 log2_scale = x->log2_scale();
duke@435 1908 }
duke@435 1909
duke@435 1910 LIRItem base(x->base(), this);
duke@435 1911 LIRItem value(x->value(), this);
duke@435 1912 LIRItem idx(this);
duke@435 1913
duke@435 1914 base.load_item();
duke@435 1915 if (x->has_index()) {
duke@435 1916 idx.set_instruction(x->index());
duke@435 1917 idx.load_item();
duke@435 1918 }
duke@435 1919
duke@435 1920 if (type == T_BYTE || type == T_BOOLEAN) {
duke@435 1921 value.load_byte_item();
duke@435 1922 } else {
duke@435 1923 value.load_item();
duke@435 1924 }
duke@435 1925
duke@435 1926 set_no_result(x);
duke@435 1927
duke@435 1928 LIR_Opr base_op = base.result();
duke@435 1929 #ifndef _LP64
duke@435 1930 if (x->base()->type()->tag() == longTag) {
duke@435 1931 base_op = new_register(T_INT);
duke@435 1932 __ convert(Bytecodes::_l2i, base.result(), base_op);
duke@435 1933 } else {
duke@435 1934 assert(x->base()->type()->tag() == intTag, "must be");
duke@435 1935 }
duke@435 1936 #endif
duke@435 1937
duke@435 1938 LIR_Opr index_op = idx.result();
duke@435 1939 if (log2_scale != 0) {
duke@435 1940 // temporary fix (platform dependent code without shift on Intel would be better)
roland@1495 1941 index_op = new_pointer_register();
roland@1495 1942 #ifdef _LP64
roland@1495 1943 if(idx.result()->type() == T_INT) {
roland@1495 1944 __ convert(Bytecodes::_i2l, idx.result(), index_op);
roland@1495 1945 } else {
roland@1495 1946 #endif
bobv@2036 1947 // TODO: ARM also allows embedded shift in the address
roland@1495 1948 __ move(idx.result(), index_op);
roland@1495 1949 #ifdef _LP64
roland@1495 1950 }
roland@1495 1951 #endif
duke@435 1952 __ shift_left(index_op, log2_scale, index_op);
duke@435 1953 }
roland@1495 1954 #ifdef _LP64
roland@1495 1955 else if(!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 1956 LIR_Opr tmp = new_pointer_register();
roland@1495 1957 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 1958 index_op = tmp;
roland@1495 1959 }
roland@1495 1960 #endif
duke@435 1961
duke@435 1962 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
duke@435 1963 __ move(value.result(), addr);
duke@435 1964 }
duke@435 1965
duke@435 1966
duke@435 1967 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
duke@435 1968 BasicType type = x->basic_type();
duke@435 1969 LIRItem src(x->object(), this);
duke@435 1970 LIRItem off(x->offset(), this);
duke@435 1971
duke@435 1972 off.load_item();
duke@435 1973 src.load_item();
duke@435 1974
duke@435 1975 LIR_Opr reg = reg = rlock_result(x, x->basic_type());
duke@435 1976
duke@435 1977 if (x->is_volatile() && os::is_MP()) __ membar_acquire();
duke@435 1978 get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
duke@435 1979 if (x->is_volatile() && os::is_MP()) __ membar();
duke@435 1980 }
duke@435 1981
duke@435 1982
duke@435 1983 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
duke@435 1984 BasicType type = x->basic_type();
duke@435 1985 LIRItem src(x->object(), this);
duke@435 1986 LIRItem off(x->offset(), this);
duke@435 1987 LIRItem data(x->value(), this);
duke@435 1988
duke@435 1989 src.load_item();
duke@435 1990 if (type == T_BOOLEAN || type == T_BYTE) {
duke@435 1991 data.load_byte_item();
duke@435 1992 } else {
duke@435 1993 data.load_item();
duke@435 1994 }
duke@435 1995 off.load_item();
duke@435 1996
duke@435 1997 set_no_result(x);
duke@435 1998
duke@435 1999 if (x->is_volatile() && os::is_MP()) __ membar_release();
duke@435 2000 put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
duke@435 2001 }
duke@435 2002
duke@435 2003
duke@435 2004 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
duke@435 2005 LIRItem src(x->object(), this);
duke@435 2006 LIRItem off(x->offset(), this);
duke@435 2007
duke@435 2008 src.load_item();
duke@435 2009 if (off.is_constant() && can_inline_as_constant(x->offset())) {
duke@435 2010 // let it be a constant
duke@435 2011 off.dont_load_item();
duke@435 2012 } else {
duke@435 2013 off.load_item();
duke@435 2014 }
duke@435 2015
duke@435 2016 set_no_result(x);
duke@435 2017
duke@435 2018 LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
duke@435 2019 __ prefetch(addr, is_store);
duke@435 2020 }
duke@435 2021
duke@435 2022
duke@435 2023 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
duke@435 2024 do_UnsafePrefetch(x, false);
duke@435 2025 }
duke@435 2026
duke@435 2027
duke@435 2028 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
duke@435 2029 do_UnsafePrefetch(x, true);
duke@435 2030 }
duke@435 2031
duke@435 2032
duke@435 2033 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
duke@435 2034 int lng = x->length();
duke@435 2035
duke@435 2036 for (int i = 0; i < lng; i++) {
duke@435 2037 SwitchRange* one_range = x->at(i);
duke@435 2038 int low_key = one_range->low_key();
duke@435 2039 int high_key = one_range->high_key();
duke@435 2040 BlockBegin* dest = one_range->sux();
duke@435 2041 if (low_key == high_key) {
duke@435 2042 __ cmp(lir_cond_equal, value, low_key);
duke@435 2043 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2044 } else if (high_key - low_key == 1) {
duke@435 2045 __ cmp(lir_cond_equal, value, low_key);
duke@435 2046 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2047 __ cmp(lir_cond_equal, value, high_key);
duke@435 2048 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2049 } else {
duke@435 2050 LabelObj* L = new LabelObj();
duke@435 2051 __ cmp(lir_cond_less, value, low_key);
duke@435 2052 __ branch(lir_cond_less, L->label());
duke@435 2053 __ cmp(lir_cond_lessEqual, value, high_key);
duke@435 2054 __ branch(lir_cond_lessEqual, T_INT, dest);
duke@435 2055 __ branch_destination(L->label());
duke@435 2056 }
duke@435 2057 }
duke@435 2058 __ jump(default_sux);
duke@435 2059 }
duke@435 2060
duke@435 2061
duke@435 2062 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
duke@435 2063 SwitchRangeList* res = new SwitchRangeList();
duke@435 2064 int len = x->length();
duke@435 2065 if (len > 0) {
duke@435 2066 BlockBegin* sux = x->sux_at(0);
duke@435 2067 int key = x->lo_key();
duke@435 2068 BlockBegin* default_sux = x->default_sux();
duke@435 2069 SwitchRange* range = new SwitchRange(key, sux);
duke@435 2070 for (int i = 0; i < len; i++, key++) {
duke@435 2071 BlockBegin* new_sux = x->sux_at(i);
duke@435 2072 if (sux == new_sux) {
duke@435 2073 // still in same range
duke@435 2074 range->set_high_key(key);
duke@435 2075 } else {
duke@435 2076 // skip tests which explicitly dispatch to the default
duke@435 2077 if (sux != default_sux) {
duke@435 2078 res->append(range);
duke@435 2079 }
duke@435 2080 range = new SwitchRange(key, new_sux);
duke@435 2081 }
duke@435 2082 sux = new_sux;
duke@435 2083 }
duke@435 2084 if (res->length() == 0 || res->last() != range) res->append(range);
duke@435 2085 }
duke@435 2086 return res;
duke@435 2087 }
duke@435 2088
duke@435 2089
duke@435 2090 // we expect the keys to be sorted by increasing value
duke@435 2091 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
duke@435 2092 SwitchRangeList* res = new SwitchRangeList();
duke@435 2093 int len = x->length();
duke@435 2094 if (len > 0) {
duke@435 2095 BlockBegin* default_sux = x->default_sux();
duke@435 2096 int key = x->key_at(0);
duke@435 2097 BlockBegin* sux = x->sux_at(0);
duke@435 2098 SwitchRange* range = new SwitchRange(key, sux);
duke@435 2099 for (int i = 1; i < len; i++) {
duke@435 2100 int new_key = x->key_at(i);
duke@435 2101 BlockBegin* new_sux = x->sux_at(i);
duke@435 2102 if (key+1 == new_key && sux == new_sux) {
duke@435 2103 // still in same range
duke@435 2104 range->set_high_key(new_key);
duke@435 2105 } else {
duke@435 2106 // skip tests which explicitly dispatch to the default
duke@435 2107 if (range->sux() != default_sux) {
duke@435 2108 res->append(range);
duke@435 2109 }
duke@435 2110 range = new SwitchRange(new_key, new_sux);
duke@435 2111 }
duke@435 2112 key = new_key;
duke@435 2113 sux = new_sux;
duke@435 2114 }
duke@435 2115 if (res->length() == 0 || res->last() != range) res->append(range);
duke@435 2116 }
duke@435 2117 return res;
duke@435 2118 }
duke@435 2119
duke@435 2120
duke@435 2121 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
duke@435 2122 LIRItem tag(x->tag(), this);
duke@435 2123 tag.load_item();
duke@435 2124 set_no_result(x);
duke@435 2125
duke@435 2126 if (x->is_safepoint()) {
duke@435 2127 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
duke@435 2128 }
duke@435 2129
duke@435 2130 // move values into phi locations
duke@435 2131 move_to_phi(x->state());
duke@435 2132
duke@435 2133 int lo_key = x->lo_key();
duke@435 2134 int hi_key = x->hi_key();
duke@435 2135 int len = x->length();
duke@435 2136 CodeEmitInfo* info = state_for(x, x->state());
duke@435 2137 LIR_Opr value = tag.result();
duke@435 2138 if (UseTableRanges) {
duke@435 2139 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
duke@435 2140 } else {
duke@435 2141 for (int i = 0; i < len; i++) {
duke@435 2142 __ cmp(lir_cond_equal, value, i + lo_key);
duke@435 2143 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
duke@435 2144 }
duke@435 2145 __ jump(x->default_sux());
duke@435 2146 }
duke@435 2147 }
duke@435 2148
duke@435 2149
duke@435 2150 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
duke@435 2151 LIRItem tag(x->tag(), this);
duke@435 2152 tag.load_item();
duke@435 2153 set_no_result(x);
duke@435 2154
duke@435 2155 if (x->is_safepoint()) {
duke@435 2156 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
duke@435 2157 }
duke@435 2158
duke@435 2159 // move values into phi locations
duke@435 2160 move_to_phi(x->state());
duke@435 2161
duke@435 2162 LIR_Opr value = tag.result();
duke@435 2163 if (UseTableRanges) {
duke@435 2164 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
duke@435 2165 } else {
duke@435 2166 int len = x->length();
duke@435 2167 for (int i = 0; i < len; i++) {
duke@435 2168 __ cmp(lir_cond_equal, value, x->key_at(i));
duke@435 2169 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
duke@435 2170 }
duke@435 2171 __ jump(x->default_sux());
duke@435 2172 }
duke@435 2173 }
duke@435 2174
duke@435 2175
duke@435 2176 void LIRGenerator::do_Goto(Goto* x) {
duke@435 2177 set_no_result(x);
duke@435 2178
duke@435 2179 if (block()->next()->as_OsrEntry()) {
duke@435 2180 // need to free up storage used for OSR entry point
duke@435 2181 LIR_Opr osrBuffer = block()->next()->operand();
duke@435 2182 BasicTypeList signature;
duke@435 2183 signature.append(T_INT);
duke@435 2184 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
duke@435 2185 __ move(osrBuffer, cc->args()->at(0));
duke@435 2186 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
duke@435 2187 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
duke@435 2188 }
duke@435 2189
duke@435 2190 if (x->is_safepoint()) {
duke@435 2191 ValueStack* state = x->state_before() ? x->state_before() : x->state();
duke@435 2192
duke@435 2193 // increment backedge counter if needed
duke@435 2194 increment_backedge_counter(state_for(x, state));
duke@435 2195
duke@435 2196 CodeEmitInfo* safepoint_info = state_for(x, state);
duke@435 2197 __ safepoint(safepoint_poll_register(), safepoint_info);
duke@435 2198 }
duke@435 2199
duke@435 2200 // emit phi-instruction move after safepoint since this simplifies
duke@435 2201 // describing the state as the safepoint.
duke@435 2202 move_to_phi(x->state());
duke@435 2203
duke@435 2204 __ jump(x->default_sux());
duke@435 2205 }
duke@435 2206
duke@435 2207
duke@435 2208 void LIRGenerator::do_Base(Base* x) {
duke@435 2209 __ std_entry(LIR_OprFact::illegalOpr);
duke@435 2210 // Emit moves from physical registers / stack slots to virtual registers
duke@435 2211 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
duke@435 2212 IRScope* irScope = compilation()->hir()->top_scope();
duke@435 2213 int java_index = 0;
duke@435 2214 for (int i = 0; i < args->length(); i++) {
duke@435 2215 LIR_Opr src = args->at(i);
duke@435 2216 assert(!src->is_illegal(), "check");
duke@435 2217 BasicType t = src->type();
duke@435 2218
duke@435 2219 // Types which are smaller than int are passed as int, so
duke@435 2220 // correct the type which passed.
duke@435 2221 switch (t) {
duke@435 2222 case T_BYTE:
duke@435 2223 case T_BOOLEAN:
duke@435 2224 case T_SHORT:
duke@435 2225 case T_CHAR:
duke@435 2226 t = T_INT;
duke@435 2227 break;
duke@435 2228 }
duke@435 2229
duke@435 2230 LIR_Opr dest = new_register(t);
duke@435 2231 __ move(src, dest);
duke@435 2232
duke@435 2233 // Assign new location to Local instruction for this local
duke@435 2234 Local* local = x->state()->local_at(java_index)->as_Local();
duke@435 2235 assert(local != NULL, "Locals for incoming arguments must have been created");
bobv@2036 2236 #ifndef __SOFTFP__
bobv@2036 2237 // The java calling convention passes double as long and float as int.
duke@435 2238 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
bobv@2036 2239 #endif // __SOFTFP__
duke@435 2240 local->set_operand(dest);
duke@435 2241 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
duke@435 2242 java_index += type2size[t];
duke@435 2243 }
duke@435 2244
kvn@1215 2245 if (compilation()->env()->dtrace_method_probes()) {
duke@435 2246 BasicTypeList signature;
duke@435 2247 signature.append(T_INT); // thread
duke@435 2248 signature.append(T_OBJECT); // methodOop
duke@435 2249 LIR_OprList* args = new LIR_OprList();
duke@435 2250 args->append(getThreadPointer());
duke@435 2251 LIR_Opr meth = new_register(T_OBJECT);
jrose@1424 2252 __ oop2reg(method()->constant_encoding(), meth);
duke@435 2253 args->append(meth);
duke@435 2254 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
duke@435 2255 }
duke@435 2256
duke@435 2257 if (method()->is_synchronized()) {
duke@435 2258 LIR_Opr obj;
duke@435 2259 if (method()->is_static()) {
duke@435 2260 obj = new_register(T_OBJECT);
jrose@1424 2261 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
duke@435 2262 } else {
duke@435 2263 Local* receiver = x->state()->local_at(0)->as_Local();
duke@435 2264 assert(receiver != NULL, "must already exist");
duke@435 2265 obj = receiver->operand();
duke@435 2266 }
duke@435 2267 assert(obj->is_valid(), "must be valid");
duke@435 2268
duke@435 2269 if (method()->is_synchronized() && GenerateSynchronizationCode) {
duke@435 2270 LIR_Opr lock = new_register(T_INT);
duke@435 2271 __ load_stack_address_monitor(0, lock);
duke@435 2272
duke@435 2273 CodeEmitInfo* info = new CodeEmitInfo(SynchronizationEntryBCI, scope()->start()->state(), NULL);
duke@435 2274 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
duke@435 2275
duke@435 2276 // receiver is guaranteed non-NULL so don't need CodeEmitInfo
duke@435 2277 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
duke@435 2278 }
duke@435 2279 }
duke@435 2280
duke@435 2281 // increment invocation counters if needed
duke@435 2282 increment_invocation_counter(new CodeEmitInfo(0, scope()->start()->state(), NULL));
duke@435 2283
duke@435 2284 // all blocks with a successor must end with an unconditional jump
duke@435 2285 // to the successor even if they are consecutive
duke@435 2286 __ jump(x->default_sux());
duke@435 2287 }
duke@435 2288
duke@435 2289
duke@435 2290 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
duke@435 2291 // construct our frame and model the production of incoming pointer
duke@435 2292 // to the OSR buffer.
duke@435 2293 __ osr_entry(LIR_Assembler::osrBufferPointer());
duke@435 2294 LIR_Opr result = rlock_result(x);
duke@435 2295 __ move(LIR_Assembler::osrBufferPointer(), result);
duke@435 2296 }
duke@435 2297
duke@435 2298
duke@435 2299 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
twisti@1730 2300 int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
duke@435 2301 for (; i < args->length(); i++) {
duke@435 2302 LIRItem* param = args->at(i);
duke@435 2303 LIR_Opr loc = arg_list->at(i);
duke@435 2304 if (loc->is_register()) {
duke@435 2305 param->load_item_force(loc);
duke@435 2306 } else {
duke@435 2307 LIR_Address* addr = loc->as_address_ptr();
duke@435 2308 param->load_for_store(addr->type());
duke@435 2309 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 2310 __ unaligned_move(param->result(), addr);
duke@435 2311 } else {
duke@435 2312 __ move(param->result(), addr);
duke@435 2313 }
duke@435 2314 }
duke@435 2315 }
duke@435 2316
duke@435 2317 if (x->has_receiver()) {
duke@435 2318 LIRItem* receiver = args->at(0);
duke@435 2319 LIR_Opr loc = arg_list->at(0);
duke@435 2320 if (loc->is_register()) {
duke@435 2321 receiver->load_item_force(loc);
duke@435 2322 } else {
duke@435 2323 assert(loc->is_address(), "just checking");
duke@435 2324 receiver->load_for_store(T_OBJECT);
duke@435 2325 __ move(receiver->result(), loc);
duke@435 2326 }
duke@435 2327 }
duke@435 2328 }
duke@435 2329
duke@435 2330
duke@435 2331 // Visits all arguments, returns appropriate items without loading them
duke@435 2332 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
duke@435 2333 LIRItemList* argument_items = new LIRItemList();
duke@435 2334 if (x->has_receiver()) {
duke@435 2335 LIRItem* receiver = new LIRItem(x->receiver(), this);
duke@435 2336 argument_items->append(receiver);
duke@435 2337 }
twisti@1730 2338 if (x->is_invokedynamic()) {
twisti@1730 2339 // Insert a dummy for the synthetic MethodHandle argument.
twisti@1730 2340 argument_items->append(NULL);
twisti@1730 2341 }
duke@435 2342 int idx = x->has_receiver() ? 1 : 0;
duke@435 2343 for (int i = 0; i < x->number_of_arguments(); i++) {
duke@435 2344 LIRItem* param = new LIRItem(x->argument_at(i), this);
duke@435 2345 argument_items->append(param);
duke@435 2346 idx += (param->type()->is_double_word() ? 2 : 1);
duke@435 2347 }
duke@435 2348 return argument_items;
duke@435 2349 }
duke@435 2350
duke@435 2351
duke@435 2352 // The invoke with receiver has following phases:
duke@435 2353 // a) traverse and load/lock receiver;
duke@435 2354 // b) traverse all arguments -> item-array (invoke_visit_argument)
duke@435 2355 // c) push receiver on stack
duke@435 2356 // d) load each of the items and push on stack
duke@435 2357 // e) unlock receiver
duke@435 2358 // f) move receiver into receiver-register %o0
duke@435 2359 // g) lock result registers and emit call operation
duke@435 2360 //
duke@435 2361 // Before issuing a call, we must spill-save all values on stack
duke@435 2362 // that are in caller-save register. "spill-save" moves thos registers
duke@435 2363 // either in a free callee-save register or spills them if no free
duke@435 2364 // callee save register is available.
duke@435 2365 //
duke@435 2366 // The problem is where to invoke spill-save.
duke@435 2367 // - if invoked between e) and f), we may lock callee save
duke@435 2368 // register in "spill-save" that destroys the receiver register
duke@435 2369 // before f) is executed
duke@435 2370 // - if we rearange the f) to be earlier, by loading %o0, it
duke@435 2371 // may destroy a value on the stack that is currently in %o0
duke@435 2372 // and is waiting to be spilled
duke@435 2373 // - if we keep the receiver locked while doing spill-save,
duke@435 2374 // we cannot spill it as it is spill-locked
duke@435 2375 //
duke@435 2376 void LIRGenerator::do_Invoke(Invoke* x) {
duke@435 2377 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
duke@435 2378
duke@435 2379 LIR_OprList* arg_list = cc->args();
duke@435 2380 LIRItemList* args = invoke_visit_arguments(x);
duke@435 2381 LIR_Opr receiver = LIR_OprFact::illegalOpr;
duke@435 2382
duke@435 2383 // setup result register
duke@435 2384 LIR_Opr result_register = LIR_OprFact::illegalOpr;
duke@435 2385 if (x->type() != voidType) {
duke@435 2386 result_register = result_register_for(x->type());
duke@435 2387 }
duke@435 2388
duke@435 2389 CodeEmitInfo* info = state_for(x, x->state());
duke@435 2390
twisti@1730 2391 // invokedynamics can deoptimize.
twisti@1739 2392 CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
twisti@1730 2393
duke@435 2394 invoke_load_arguments(x, args, arg_list);
duke@435 2395
duke@435 2396 if (x->has_receiver()) {
duke@435 2397 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
duke@435 2398 receiver = args->at(0)->result();
duke@435 2399 }
duke@435 2400
duke@435 2401 // emit invoke code
duke@435 2402 bool optimized = x->target_is_loaded() && x->target_is_final();
duke@435 2403 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
duke@435 2404
twisti@1919 2405 // JSR 292
twisti@1919 2406 // Preserve the SP over MethodHandle call sites.
twisti@1919 2407 ciMethod* target = x->target();
twisti@1919 2408 if (target->is_method_handle_invoke()) {
twisti@1919 2409 info->set_is_method_handle_invoke(true);
twisti@1919 2410 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
twisti@1919 2411 }
twisti@1919 2412
duke@435 2413 switch (x->code()) {
duke@435 2414 case Bytecodes::_invokestatic:
twisti@1919 2415 __ call_static(target, result_register,
duke@435 2416 SharedRuntime::get_resolve_static_call_stub(),
duke@435 2417 arg_list, info);
duke@435 2418 break;
duke@435 2419 case Bytecodes::_invokespecial:
duke@435 2420 case Bytecodes::_invokevirtual:
duke@435 2421 case Bytecodes::_invokeinterface:
duke@435 2422 // for final target we still produce an inline cache, in order
duke@435 2423 // to be able to call mixed mode
duke@435 2424 if (x->code() == Bytecodes::_invokespecial || optimized) {
twisti@1919 2425 __ call_opt_virtual(target, receiver, result_register,
duke@435 2426 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 2427 arg_list, info);
duke@435 2428 } else if (x->vtable_index() < 0) {
twisti@1919 2429 __ call_icvirtual(target, receiver, result_register,
duke@435 2430 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 2431 arg_list, info);
duke@435 2432 } else {
duke@435 2433 int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
duke@435 2434 int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
twisti@1919 2435 __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
duke@435 2436 }
duke@435 2437 break;
twisti@1730 2438 case Bytecodes::_invokedynamic: {
twisti@1730 2439 ciBytecodeStream bcs(x->scope()->method());
twisti@1730 2440 bcs.force_bci(x->bci());
twisti@1730 2441 assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
twisti@1730 2442 ciCPCache* cpcache = bcs.get_cpcache();
twisti@1730 2443
twisti@1730 2444 // Get CallSite offset from constant pool cache pointer.
twisti@1730 2445 int index = bcs.get_method_index();
twisti@1730 2446 size_t call_site_offset = cpcache->get_f1_offset(index);
twisti@1730 2447
twisti@1730 2448 // If this invokedynamic call site hasn't been executed yet in
twisti@1730 2449 // the interpreter, the CallSite object in the constant pool
twisti@1730 2450 // cache is still null and we need to deoptimize.
twisti@1730 2451 if (cpcache->is_f1_null_at(index)) {
twisti@1730 2452 // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
twisti@1730 2453 // clone all handlers. This is handled transparently in other
twisti@1730 2454 // places by the CodeEmitInfo cloning logic but is handled
twisti@1730 2455 // specially here because a stub isn't being used.
twisti@1730 2456 x->set_exception_handlers(new XHandlers(x->exception_handlers()));
twisti@1730 2457
twisti@1730 2458 DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
twisti@1730 2459 __ jump(deopt_stub);
twisti@1730 2460 }
twisti@1730 2461
twisti@1730 2462 // Use the receiver register for the synthetic MethodHandle
twisti@1730 2463 // argument.
twisti@1730 2464 receiver = LIR_Assembler::receiverOpr();
twisti@1730 2465 LIR_Opr tmp = new_register(objectType);
twisti@1730 2466
twisti@1730 2467 // Load CallSite object from constant pool cache.
twisti@1730 2468 __ oop2reg(cpcache->constant_encoding(), tmp);
twisti@1730 2469 __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
twisti@1730 2470
twisti@1730 2471 // Load target MethodHandle from CallSite object.
twisti@1730 2472 __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
twisti@1730 2473
twisti@1919 2474 __ call_dynamic(target, receiver, result_register,
twisti@1730 2475 SharedRuntime::get_resolve_opt_virtual_call_stub(),
twisti@1730 2476 arg_list, info);
twisti@1730 2477 break;
twisti@1730 2478 }
duke@435 2479 default:
duke@435 2480 ShouldNotReachHere();
duke@435 2481 break;
duke@435 2482 }
duke@435 2483
twisti@1919 2484 // JSR 292
twisti@1919 2485 // Restore the SP after MethodHandle call sites.
twisti@1919 2486 if (target->is_method_handle_invoke()) {
twisti@1919 2487 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
twisti@1919 2488 }
twisti@1919 2489
duke@435 2490 if (x->type()->is_float() || x->type()->is_double()) {
duke@435 2491 // Force rounding of results from non-strictfp when in strictfp
duke@435 2492 // scope (or when we don't know the strictness of the callee, to
duke@435 2493 // be safe.)
duke@435 2494 if (method()->is_strict()) {
duke@435 2495 if (!x->target_is_loaded() || !x->target_is_strictfp()) {
duke@435 2496 result_register = round_item(result_register);
duke@435 2497 }
duke@435 2498 }
duke@435 2499 }
duke@435 2500
duke@435 2501 if (result_register->is_valid()) {
duke@435 2502 LIR_Opr result = rlock_result(x);
duke@435 2503 __ move(result_register, result);
duke@435 2504 }
duke@435 2505 }
duke@435 2506
duke@435 2507
duke@435 2508 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
duke@435 2509 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 2510 LIRItem value (x->argument_at(0), this);
duke@435 2511 LIR_Opr reg = rlock_result(x);
duke@435 2512 value.load_item();
duke@435 2513 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
duke@435 2514 __ move(tmp, reg);
duke@435 2515 }
duke@435 2516
duke@435 2517
duke@435 2518
duke@435 2519 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
duke@435 2520 void LIRGenerator::do_IfOp(IfOp* x) {
duke@435 2521 #ifdef ASSERT
duke@435 2522 {
duke@435 2523 ValueTag xtag = x->x()->type()->tag();
duke@435 2524 ValueTag ttag = x->tval()->type()->tag();
duke@435 2525 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
duke@435 2526 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
duke@435 2527 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
duke@435 2528 }
duke@435 2529 #endif
duke@435 2530
duke@435 2531 LIRItem left(x->x(), this);
duke@435 2532 LIRItem right(x->y(), this);
duke@435 2533 left.load_item();
duke@435 2534 if (can_inline_as_constant(right.value())) {
duke@435 2535 right.dont_load_item();
duke@435 2536 } else {
duke@435 2537 right.load_item();
duke@435 2538 }
duke@435 2539
duke@435 2540 LIRItem t_val(x->tval(), this);
duke@435 2541 LIRItem f_val(x->fval(), this);
duke@435 2542 t_val.dont_load_item();
duke@435 2543 f_val.dont_load_item();
duke@435 2544 LIR_Opr reg = rlock_result(x);
duke@435 2545
duke@435 2546 __ cmp(lir_cond(x->cond()), left.result(), right.result());
duke@435 2547 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
duke@435 2548 }
duke@435 2549
duke@435 2550
duke@435 2551 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
duke@435 2552 switch (x->id()) {
duke@435 2553 case vmIntrinsics::_intBitsToFloat :
duke@435 2554 case vmIntrinsics::_doubleToRawLongBits :
duke@435 2555 case vmIntrinsics::_longBitsToDouble :
duke@435 2556 case vmIntrinsics::_floatToRawIntBits : {
duke@435 2557 do_FPIntrinsics(x);
duke@435 2558 break;
duke@435 2559 }
duke@435 2560
duke@435 2561 case vmIntrinsics::_currentTimeMillis: {
duke@435 2562 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 2563 LIR_Opr reg = result_register_for(x->type());
duke@435 2564 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
duke@435 2565 reg, new LIR_OprList());
duke@435 2566 LIR_Opr result = rlock_result(x);
duke@435 2567 __ move(reg, result);
duke@435 2568 break;
duke@435 2569 }
duke@435 2570
duke@435 2571 case vmIntrinsics::_nanoTime: {
duke@435 2572 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 2573 LIR_Opr reg = result_register_for(x->type());
duke@435 2574 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
duke@435 2575 reg, new LIR_OprList());
duke@435 2576 LIR_Opr result = rlock_result(x);
duke@435 2577 __ move(reg, result);
duke@435 2578 break;
duke@435 2579 }
duke@435 2580
duke@435 2581 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
duke@435 2582 case vmIntrinsics::_getClass: do_getClass(x); break;
duke@435 2583 case vmIntrinsics::_currentThread: do_currentThread(x); break;
duke@435 2584
duke@435 2585 case vmIntrinsics::_dlog: // fall through
duke@435 2586 case vmIntrinsics::_dlog10: // fall through
duke@435 2587 case vmIntrinsics::_dabs: // fall through
duke@435 2588 case vmIntrinsics::_dsqrt: // fall through
duke@435 2589 case vmIntrinsics::_dtan: // fall through
duke@435 2590 case vmIntrinsics::_dsin : // fall through
duke@435 2591 case vmIntrinsics::_dcos : do_MathIntrinsic(x); break;
duke@435 2592 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
duke@435 2593
duke@435 2594 // java.nio.Buffer.checkIndex
duke@435 2595 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break;
duke@435 2596
duke@435 2597 case vmIntrinsics::_compareAndSwapObject:
duke@435 2598 do_CompareAndSwap(x, objectType);
duke@435 2599 break;
duke@435 2600 case vmIntrinsics::_compareAndSwapInt:
duke@435 2601 do_CompareAndSwap(x, intType);
duke@435 2602 break;
duke@435 2603 case vmIntrinsics::_compareAndSwapLong:
duke@435 2604 do_CompareAndSwap(x, longType);
duke@435 2605 break;
duke@435 2606
duke@435 2607 // sun.misc.AtomicLongCSImpl.attemptUpdate
duke@435 2608 case vmIntrinsics::_attemptUpdate:
duke@435 2609 do_AttemptUpdate(x);
duke@435 2610 break;
duke@435 2611
duke@435 2612 default: ShouldNotReachHere(); break;
duke@435 2613 }
duke@435 2614 }
duke@435 2615
duke@435 2616
duke@435 2617 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
duke@435 2618 // Need recv in a temporary register so it interferes with the other temporaries
duke@435 2619 LIR_Opr recv = LIR_OprFact::illegalOpr;
duke@435 2620 LIR_Opr mdo = new_register(T_OBJECT);
duke@435 2621 LIR_Opr tmp = new_register(T_INT);
duke@435 2622 if (x->recv() != NULL) {
duke@435 2623 LIRItem value(x->recv(), this);
duke@435 2624 value.load_item();
duke@435 2625 recv = new_register(T_OBJECT);
duke@435 2626 __ move(value.result(), recv);
duke@435 2627 }
duke@435 2628 __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
duke@435 2629 }
duke@435 2630
duke@435 2631
duke@435 2632 void LIRGenerator::do_ProfileCounter(ProfileCounter* x) {
duke@435 2633 LIRItem mdo(x->mdo(), this);
duke@435 2634 mdo.load_item();
duke@435 2635
duke@435 2636 increment_counter(new LIR_Address(mdo.result(), x->offset(), T_INT), x->increment());
duke@435 2637 }
duke@435 2638
duke@435 2639
duke@435 2640 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2641 LIRItemList args(1);
duke@435 2642 LIRItem value(arg1, this);
duke@435 2643 args.append(&value);
duke@435 2644 BasicTypeList signature;
duke@435 2645 signature.append(as_BasicType(arg1->type()));
duke@435 2646
duke@435 2647 return call_runtime(&signature, &args, entry, result_type, info);
duke@435 2648 }
duke@435 2649
duke@435 2650
duke@435 2651 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2652 LIRItemList args(2);
duke@435 2653 LIRItem value1(arg1, this);
duke@435 2654 LIRItem value2(arg2, this);
duke@435 2655 args.append(&value1);
duke@435 2656 args.append(&value2);
duke@435 2657 BasicTypeList signature;
duke@435 2658 signature.append(as_BasicType(arg1->type()));
duke@435 2659 signature.append(as_BasicType(arg2->type()));
duke@435 2660
duke@435 2661 return call_runtime(&signature, &args, entry, result_type, info);
duke@435 2662 }
duke@435 2663
duke@435 2664
duke@435 2665 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
duke@435 2666 address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2667 // get a result register
duke@435 2668 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
duke@435 2669 LIR_Opr result = LIR_OprFact::illegalOpr;
duke@435 2670 if (result_type->tag() != voidTag) {
duke@435 2671 result = new_register(result_type);
duke@435 2672 phys_reg = result_register_for(result_type);
duke@435 2673 }
duke@435 2674
duke@435 2675 // move the arguments into the correct location
duke@435 2676 CallingConvention* cc = frame_map()->c_calling_convention(signature);
duke@435 2677 assert(cc->length() == args->length(), "argument mismatch");
duke@435 2678 for (int i = 0; i < args->length(); i++) {
duke@435 2679 LIR_Opr arg = args->at(i);
duke@435 2680 LIR_Opr loc = cc->at(i);
duke@435 2681 if (loc->is_register()) {
duke@435 2682 __ move(arg, loc);
duke@435 2683 } else {
duke@435 2684 LIR_Address* addr = loc->as_address_ptr();
duke@435 2685 // if (!can_store_as_constant(arg)) {
duke@435 2686 // LIR_Opr tmp = new_register(arg->type());
duke@435 2687 // __ move(arg, tmp);
duke@435 2688 // arg = tmp;
duke@435 2689 // }
duke@435 2690 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 2691 __ unaligned_move(arg, addr);
duke@435 2692 } else {
duke@435 2693 __ move(arg, addr);
duke@435 2694 }
duke@435 2695 }
duke@435 2696 }
duke@435 2697
duke@435 2698 if (info) {
duke@435 2699 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
duke@435 2700 } else {
duke@435 2701 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
duke@435 2702 }
duke@435 2703 if (result->is_valid()) {
duke@435 2704 __ move(phys_reg, result);
duke@435 2705 }
duke@435 2706 return result;
duke@435 2707 }
duke@435 2708
duke@435 2709
duke@435 2710 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
duke@435 2711 address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2712 // get a result register
duke@435 2713 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
duke@435 2714 LIR_Opr result = LIR_OprFact::illegalOpr;
duke@435 2715 if (result_type->tag() != voidTag) {
duke@435 2716 result = new_register(result_type);
duke@435 2717 phys_reg = result_register_for(result_type);
duke@435 2718 }
duke@435 2719
duke@435 2720 // move the arguments into the correct location
duke@435 2721 CallingConvention* cc = frame_map()->c_calling_convention(signature);
duke@435 2722
duke@435 2723 assert(cc->length() == args->length(), "argument mismatch");
duke@435 2724 for (int i = 0; i < args->length(); i++) {
duke@435 2725 LIRItem* arg = args->at(i);
duke@435 2726 LIR_Opr loc = cc->at(i);
duke@435 2727 if (loc->is_register()) {
duke@435 2728 arg->load_item_force(loc);
duke@435 2729 } else {
duke@435 2730 LIR_Address* addr = loc->as_address_ptr();
duke@435 2731 arg->load_for_store(addr->type());
duke@435 2732 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 2733 __ unaligned_move(arg->result(), addr);
duke@435 2734 } else {
duke@435 2735 __ move(arg->result(), addr);
duke@435 2736 }
duke@435 2737 }
duke@435 2738 }
duke@435 2739
duke@435 2740 if (info) {
duke@435 2741 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
duke@435 2742 } else {
duke@435 2743 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
duke@435 2744 }
duke@435 2745 if (result->is_valid()) {
duke@435 2746 __ move(phys_reg, result);
duke@435 2747 }
duke@435 2748 return result;
duke@435 2749 }
duke@435 2750
duke@435 2751
duke@435 2752
duke@435 2753 void LIRGenerator::increment_invocation_counter(CodeEmitInfo* info, bool backedge) {
duke@435 2754 #ifdef TIERED
duke@435 2755 if (_compilation->env()->comp_level() == CompLevel_fast_compile &&
duke@435 2756 (method()->code_size() >= Tier1BytecodeLimit || backedge)) {
duke@435 2757 int limit = InvocationCounter::Tier1InvocationLimit;
duke@435 2758 int offset = in_bytes(methodOopDesc::invocation_counter_offset() +
duke@435 2759 InvocationCounter::counter_offset());
duke@435 2760 if (backedge) {
duke@435 2761 limit = InvocationCounter::Tier1BackEdgeLimit;
duke@435 2762 offset = in_bytes(methodOopDesc::backedge_counter_offset() +
duke@435 2763 InvocationCounter::counter_offset());
duke@435 2764 }
duke@435 2765
duke@435 2766 LIR_Opr meth = new_register(T_OBJECT);
jrose@1424 2767 __ oop2reg(method()->constant_encoding(), meth);
duke@435 2768 LIR_Opr result = increment_and_return_counter(meth, offset, InvocationCounter::count_increment);
duke@435 2769 __ cmp(lir_cond_aboveEqual, result, LIR_OprFact::intConst(limit));
duke@435 2770 CodeStub* overflow = new CounterOverflowStub(info, info->bci());
duke@435 2771 __ branch(lir_cond_aboveEqual, T_INT, overflow);
duke@435 2772 __ branch_destination(overflow->continuation());
duke@435 2773 }
duke@435 2774 #endif
duke@435 2775 }

mercurial