src/share/vm/c1/c1_LIRGenerator.cpp

Fri, 08 Apr 2011 17:03:31 -0700

author
iveresov
date
Fri, 08 Apr 2011 17:03:31 -0700
changeset 2746
d86923d96dca
parent 2728
13bc79b5c9c8
child 2787
5d046bf49ce7
permissions
-rw-r--r--

7034967: C1: assert(false) failed: error (assembler_sparc.cpp:2043)
Summary: Fix -XX:+VerifyOops
Reviewed-by: kvn, never

duke@435 1 /*
never@2486 2 * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_FrameMap.hpp"
stefank@2314 28 #include "c1/c1_Instruction.hpp"
stefank@2314 29 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 30 #include "c1/c1_LIRGenerator.hpp"
stefank@2314 31 #include "c1/c1_ValueStack.hpp"
stefank@2314 32 #include "ci/ciArrayKlass.hpp"
stefank@2314 33 #include "ci/ciCPCache.hpp"
stefank@2314 34 #include "ci/ciInstance.hpp"
stefank@2314 35 #include "runtime/sharedRuntime.hpp"
stefank@2314 36 #include "runtime/stubRoutines.hpp"
stefank@2314 37 #include "utilities/bitMap.inline.hpp"
stefank@2314 38 #ifndef SERIALGC
stefank@2314 39 #include "gc_implementation/g1/heapRegion.hpp"
stefank@2314 40 #endif
duke@435 41
duke@435 42 #ifdef ASSERT
duke@435 43 #define __ gen()->lir(__FILE__, __LINE__)->
duke@435 44 #else
duke@435 45 #define __ gen()->lir()->
duke@435 46 #endif
duke@435 47
bobv@2036 48 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
bobv@2036 49 #ifdef ARM
bobv@2036 50 #define PATCHED_ADDR (204)
bobv@2036 51 #else
bobv@2036 52 #define PATCHED_ADDR (max_jint)
bobv@2036 53 #endif
duke@435 54
duke@435 55 void PhiResolverState::reset(int max_vregs) {
duke@435 56 // Initialize array sizes
duke@435 57 _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 58 _virtual_operands.trunc_to(0);
duke@435 59 _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 60 _other_operands.trunc_to(0);
duke@435 61 _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 62 _vreg_table.trunc_to(0);
duke@435 63 }
duke@435 64
duke@435 65
duke@435 66
duke@435 67 //--------------------------------------------------------------
duke@435 68 // PhiResolver
duke@435 69
duke@435 70 // Resolves cycles:
duke@435 71 //
duke@435 72 // r1 := r2 becomes temp := r1
duke@435 73 // r2 := r1 r1 := r2
duke@435 74 // r2 := temp
duke@435 75 // and orders moves:
duke@435 76 //
duke@435 77 // r2 := r3 becomes r1 := r2
duke@435 78 // r1 := r2 r2 := r3
duke@435 79
duke@435 80 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
duke@435 81 : _gen(gen)
duke@435 82 , _state(gen->resolver_state())
duke@435 83 , _temp(LIR_OprFact::illegalOpr)
duke@435 84 {
duke@435 85 // reinitialize the shared state arrays
duke@435 86 _state.reset(max_vregs);
duke@435 87 }
duke@435 88
duke@435 89
duke@435 90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
duke@435 91 assert(src->is_valid(), "");
duke@435 92 assert(dest->is_valid(), "");
duke@435 93 __ move(src, dest);
duke@435 94 }
duke@435 95
duke@435 96
duke@435 97 void PhiResolver::move_temp_to(LIR_Opr dest) {
duke@435 98 assert(_temp->is_valid(), "");
duke@435 99 emit_move(_temp, dest);
duke@435 100 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
duke@435 101 }
duke@435 102
duke@435 103
duke@435 104 void PhiResolver::move_to_temp(LIR_Opr src) {
duke@435 105 assert(_temp->is_illegal(), "");
duke@435 106 _temp = _gen->new_register(src->type());
duke@435 107 emit_move(src, _temp);
duke@435 108 }
duke@435 109
duke@435 110
duke@435 111 // Traverse assignment graph in depth first order and generate moves in post order
duke@435 112 // ie. two assignments: b := c, a := b start with node c:
duke@435 113 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
duke@435 114 // Generates moves in this order: move b to a and move c to b
duke@435 115 // ie. cycle a := b, b := a start with node a
duke@435 116 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
duke@435 117 // Generates moves in this order: move b to temp, move a to b, move temp to a
duke@435 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
duke@435 119 if (!dest->visited()) {
duke@435 120 dest->set_visited();
duke@435 121 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
duke@435 122 move(dest, dest->destination_at(i));
duke@435 123 }
duke@435 124 } else if (!dest->start_node()) {
duke@435 125 // cylce in graph detected
duke@435 126 assert(_loop == NULL, "only one loop valid!");
duke@435 127 _loop = dest;
duke@435 128 move_to_temp(src->operand());
duke@435 129 return;
duke@435 130 } // else dest is a start node
duke@435 131
duke@435 132 if (!dest->assigned()) {
duke@435 133 if (_loop == dest) {
duke@435 134 move_temp_to(dest->operand());
duke@435 135 dest->set_assigned();
duke@435 136 } else if (src != NULL) {
duke@435 137 emit_move(src->operand(), dest->operand());
duke@435 138 dest->set_assigned();
duke@435 139 }
duke@435 140 }
duke@435 141 }
duke@435 142
duke@435 143
duke@435 144 PhiResolver::~PhiResolver() {
duke@435 145 int i;
duke@435 146 // resolve any cycles in moves from and to virtual registers
duke@435 147 for (i = virtual_operands().length() - 1; i >= 0; i --) {
duke@435 148 ResolveNode* node = virtual_operands()[i];
duke@435 149 if (!node->visited()) {
duke@435 150 _loop = NULL;
duke@435 151 move(NULL, node);
duke@435 152 node->set_start_node();
duke@435 153 assert(_temp->is_illegal(), "move_temp_to() call missing");
duke@435 154 }
duke@435 155 }
duke@435 156
duke@435 157 // generate move for move from non virtual register to abitrary destination
duke@435 158 for (i = other_operands().length() - 1; i >= 0; i --) {
duke@435 159 ResolveNode* node = other_operands()[i];
duke@435 160 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
duke@435 161 emit_move(node->operand(), node->destination_at(j)->operand());
duke@435 162 }
duke@435 163 }
duke@435 164 }
duke@435 165
duke@435 166
duke@435 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
duke@435 168 ResolveNode* node;
duke@435 169 if (opr->is_virtual()) {
duke@435 170 int vreg_num = opr->vreg_number();
duke@435 171 node = vreg_table().at_grow(vreg_num, NULL);
duke@435 172 assert(node == NULL || node->operand() == opr, "");
duke@435 173 if (node == NULL) {
duke@435 174 node = new ResolveNode(opr);
duke@435 175 vreg_table()[vreg_num] = node;
duke@435 176 }
duke@435 177 // Make sure that all virtual operands show up in the list when
duke@435 178 // they are used as the source of a move.
duke@435 179 if (source && !virtual_operands().contains(node)) {
duke@435 180 virtual_operands().append(node);
duke@435 181 }
duke@435 182 } else {
duke@435 183 assert(source, "");
duke@435 184 node = new ResolveNode(opr);
duke@435 185 other_operands().append(node);
duke@435 186 }
duke@435 187 return node;
duke@435 188 }
duke@435 189
duke@435 190
duke@435 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
duke@435 192 assert(dest->is_virtual(), "");
duke@435 193 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
duke@435 194 assert(src->is_valid(), "");
duke@435 195 assert(dest->is_valid(), "");
duke@435 196 ResolveNode* source = source_node(src);
duke@435 197 source->append(destination_node(dest));
duke@435 198 }
duke@435 199
duke@435 200
duke@435 201 //--------------------------------------------------------------
duke@435 202 // LIRItem
duke@435 203
duke@435 204 void LIRItem::set_result(LIR_Opr opr) {
duke@435 205 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
duke@435 206 value()->set_operand(opr);
duke@435 207
duke@435 208 if (opr->is_virtual()) {
duke@435 209 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
duke@435 210 }
duke@435 211
duke@435 212 _result = opr;
duke@435 213 }
duke@435 214
duke@435 215 void LIRItem::load_item() {
duke@435 216 if (result()->is_illegal()) {
duke@435 217 // update the items result
duke@435 218 _result = value()->operand();
duke@435 219 }
duke@435 220 if (!result()->is_register()) {
duke@435 221 LIR_Opr reg = _gen->new_register(value()->type());
duke@435 222 __ move(result(), reg);
duke@435 223 if (result()->is_constant()) {
duke@435 224 _result = reg;
duke@435 225 } else {
duke@435 226 set_result(reg);
duke@435 227 }
duke@435 228 }
duke@435 229 }
duke@435 230
duke@435 231
duke@435 232 void LIRItem::load_for_store(BasicType type) {
duke@435 233 if (_gen->can_store_as_constant(value(), type)) {
duke@435 234 _result = value()->operand();
duke@435 235 if (!_result->is_constant()) {
duke@435 236 _result = LIR_OprFact::value_type(value()->type());
duke@435 237 }
duke@435 238 } else if (type == T_BYTE || type == T_BOOLEAN) {
duke@435 239 load_byte_item();
duke@435 240 } else {
duke@435 241 load_item();
duke@435 242 }
duke@435 243 }
duke@435 244
duke@435 245 void LIRItem::load_item_force(LIR_Opr reg) {
duke@435 246 LIR_Opr r = result();
duke@435 247 if (r != reg) {
bobv@2036 248 #if !defined(ARM) && !defined(E500V2)
duke@435 249 if (r->type() != reg->type()) {
duke@435 250 // moves between different types need an intervening spill slot
bobv@2036 251 r = _gen->force_to_spill(r, reg->type());
duke@435 252 }
bobv@2036 253 #endif
bobv@2036 254 __ move(r, reg);
duke@435 255 _result = reg;
duke@435 256 }
duke@435 257 }
duke@435 258
duke@435 259 ciObject* LIRItem::get_jobject_constant() const {
duke@435 260 ObjectType* oc = type()->as_ObjectType();
duke@435 261 if (oc) {
duke@435 262 return oc->constant_value();
duke@435 263 }
duke@435 264 return NULL;
duke@435 265 }
duke@435 266
duke@435 267
duke@435 268 jint LIRItem::get_jint_constant() const {
duke@435 269 assert(is_constant() && value() != NULL, "");
duke@435 270 assert(type()->as_IntConstant() != NULL, "type check");
duke@435 271 return type()->as_IntConstant()->value();
duke@435 272 }
duke@435 273
duke@435 274
duke@435 275 jint LIRItem::get_address_constant() const {
duke@435 276 assert(is_constant() && value() != NULL, "");
duke@435 277 assert(type()->as_AddressConstant() != NULL, "type check");
duke@435 278 return type()->as_AddressConstant()->value();
duke@435 279 }
duke@435 280
duke@435 281
duke@435 282 jfloat LIRItem::get_jfloat_constant() const {
duke@435 283 assert(is_constant() && value() != NULL, "");
duke@435 284 assert(type()->as_FloatConstant() != NULL, "type check");
duke@435 285 return type()->as_FloatConstant()->value();
duke@435 286 }
duke@435 287
duke@435 288
duke@435 289 jdouble LIRItem::get_jdouble_constant() const {
duke@435 290 assert(is_constant() && value() != NULL, "");
duke@435 291 assert(type()->as_DoubleConstant() != NULL, "type check");
duke@435 292 return type()->as_DoubleConstant()->value();
duke@435 293 }
duke@435 294
duke@435 295
duke@435 296 jlong LIRItem::get_jlong_constant() const {
duke@435 297 assert(is_constant() && value() != NULL, "");
duke@435 298 assert(type()->as_LongConstant() != NULL, "type check");
duke@435 299 return type()->as_LongConstant()->value();
duke@435 300 }
duke@435 301
duke@435 302
duke@435 303
duke@435 304 //--------------------------------------------------------------
duke@435 305
duke@435 306
duke@435 307 void LIRGenerator::init() {
ysr@777 308 _bs = Universe::heap()->barrier_set();
duke@435 309 }
duke@435 310
duke@435 311
duke@435 312 void LIRGenerator::block_do_prolog(BlockBegin* block) {
duke@435 313 #ifndef PRODUCT
duke@435 314 if (PrintIRWithLIR) {
duke@435 315 block->print();
duke@435 316 }
duke@435 317 #endif
duke@435 318
duke@435 319 // set up the list of LIR instructions
duke@435 320 assert(block->lir() == NULL, "LIR list already computed for this block");
duke@435 321 _lir = new LIR_List(compilation(), block);
duke@435 322 block->set_lir(_lir);
duke@435 323
duke@435 324 __ branch_destination(block->label());
duke@435 325
duke@435 326 if (LIRTraceExecution &&
iveresov@1939 327 Compilation::current()->hir()->start()->block_id() != block->block_id() &&
duke@435 328 !block->is_set(BlockBegin::exception_entry_flag)) {
duke@435 329 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
duke@435 330 trace_block_entry(block);
duke@435 331 }
duke@435 332 }
duke@435 333
duke@435 334
duke@435 335 void LIRGenerator::block_do_epilog(BlockBegin* block) {
duke@435 336 #ifndef PRODUCT
duke@435 337 if (PrintIRWithLIR) {
duke@435 338 tty->cr();
duke@435 339 }
duke@435 340 #endif
duke@435 341
duke@435 342 // LIR_Opr for unpinned constants shouldn't be referenced by other
duke@435 343 // blocks so clear them out after processing the block.
duke@435 344 for (int i = 0; i < _unpinned_constants.length(); i++) {
duke@435 345 _unpinned_constants.at(i)->clear_operand();
duke@435 346 }
duke@435 347 _unpinned_constants.trunc_to(0);
duke@435 348
duke@435 349 // clear our any registers for other local constants
duke@435 350 _constants.trunc_to(0);
duke@435 351 _reg_for_constants.trunc_to(0);
duke@435 352 }
duke@435 353
duke@435 354
duke@435 355 void LIRGenerator::block_do(BlockBegin* block) {
duke@435 356 CHECK_BAILOUT();
duke@435 357
duke@435 358 block_do_prolog(block);
duke@435 359 set_block(block);
duke@435 360
duke@435 361 for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
duke@435 362 if (instr->is_pinned()) do_root(instr);
duke@435 363 }
duke@435 364
duke@435 365 set_block(NULL);
duke@435 366 block_do_epilog(block);
duke@435 367 }
duke@435 368
duke@435 369
duke@435 370 //-------------------------LIRGenerator-----------------------------
duke@435 371
duke@435 372 // This is where the tree-walk starts; instr must be root;
duke@435 373 void LIRGenerator::do_root(Value instr) {
duke@435 374 CHECK_BAILOUT();
duke@435 375
duke@435 376 InstructionMark im(compilation(), instr);
duke@435 377
duke@435 378 assert(instr->is_pinned(), "use only with roots");
duke@435 379 assert(instr->subst() == instr, "shouldn't have missed substitution");
duke@435 380
duke@435 381 instr->visit(this);
duke@435 382
duke@435 383 assert(!instr->has_uses() || instr->operand()->is_valid() ||
duke@435 384 instr->as_Constant() != NULL || bailed_out(), "invalid item set");
duke@435 385 }
duke@435 386
duke@435 387
duke@435 388 // This is called for each node in tree; the walk stops if a root is reached
duke@435 389 void LIRGenerator::walk(Value instr) {
duke@435 390 InstructionMark im(compilation(), instr);
duke@435 391 //stop walk when encounter a root
duke@435 392 if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
duke@435 393 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
duke@435 394 } else {
duke@435 395 assert(instr->subst() == instr, "shouldn't have missed substitution");
duke@435 396 instr->visit(this);
duke@435 397 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
duke@435 398 }
duke@435 399 }
duke@435 400
duke@435 401
duke@435 402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
roland@2174 403 assert(state != NULL, "state must be defined");
roland@2174 404
roland@2174 405 ValueStack* s = state;
roland@2174 406 for_each_state(s) {
roland@2174 407 if (s->kind() == ValueStack::EmptyExceptionState) {
roland@2174 408 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
roland@2174 409 continue;
duke@435 410 }
roland@2174 411
roland@2174 412 int index;
roland@2174 413 Value value;
roland@2174 414 for_each_stack_value(s, index, value) {
roland@2174 415 assert(value->subst() == value, "missed substitution");
roland@2174 416 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
roland@2174 417 walk(value);
roland@2174 418 assert(value->operand()->is_valid(), "must be evaluated now");
roland@2174 419 }
roland@2174 420 }
roland@2174 421
roland@2174 422 int bci = s->bci();
duke@435 423 IRScope* scope = s->scope();
duke@435 424 ciMethod* method = scope->method();
duke@435 425
duke@435 426 MethodLivenessResult liveness = method->liveness_at_bci(bci);
duke@435 427 if (bci == SynchronizationEntryBCI) {
duke@435 428 if (x->as_ExceptionObject() || x->as_Throw()) {
duke@435 429 // all locals are dead on exit from the synthetic unlocker
duke@435 430 liveness.clear();
duke@435 431 } else {
duke@435 432 assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
duke@435 433 }
duke@435 434 }
duke@435 435 if (!liveness.is_valid()) {
duke@435 436 // Degenerate or breakpointed method.
duke@435 437 bailout("Degenerate or breakpointed method");
duke@435 438 } else {
duke@435 439 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
duke@435 440 for_each_local_value(s, index, value) {
duke@435 441 assert(value->subst() == value, "missed substition");
duke@435 442 if (liveness.at(index) && !value->type()->is_illegal()) {
duke@435 443 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
duke@435 444 walk(value);
duke@435 445 assert(value->operand()->is_valid(), "must be evaluated now");
duke@435 446 }
duke@435 447 } else {
duke@435 448 // NULL out this local so that linear scan can assume that all non-NULL values are live.
duke@435 449 s->invalidate_local(index);
duke@435 450 }
duke@435 451 }
duke@435 452 }
duke@435 453 }
duke@435 454
roland@2174 455 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
duke@435 456 }
duke@435 457
duke@435 458
duke@435 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
roland@2174 460 return state_for(x, x->exception_state());
duke@435 461 }
duke@435 462
duke@435 463
duke@435 464 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
duke@435 465 if (!obj->is_loaded() || PatchALot) {
duke@435 466 assert(info != NULL, "info must be set if class is not loaded");
duke@435 467 __ oop2reg_patch(NULL, r, info);
duke@435 468 } else {
duke@435 469 // no patching needed
jrose@1424 470 __ oop2reg(obj->constant_encoding(), r);
duke@435 471 }
duke@435 472 }
duke@435 473
duke@435 474
duke@435 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
duke@435 476 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
duke@435 477 CodeStub* stub = new RangeCheckStub(range_check_info, index);
duke@435 478 if (index->is_constant()) {
duke@435 479 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
duke@435 480 index->as_jint(), null_check_info);
duke@435 481 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
duke@435 482 } else {
duke@435 483 cmp_reg_mem(lir_cond_aboveEqual, index, array,
duke@435 484 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
duke@435 485 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
duke@435 486 }
duke@435 487 }
duke@435 488
duke@435 489
duke@435 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
duke@435 491 CodeStub* stub = new RangeCheckStub(info, index, true);
duke@435 492 if (index->is_constant()) {
duke@435 493 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
duke@435 494 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
duke@435 495 } else {
duke@435 496 cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
duke@435 497 java_nio_Buffer::limit_offset(), T_INT, info);
duke@435 498 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
duke@435 499 }
duke@435 500 __ move(index, result);
duke@435 501 }
duke@435 502
duke@435 503
duke@435 504
duke@435 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
duke@435 506 LIR_Opr result_op = result;
duke@435 507 LIR_Opr left_op = left;
duke@435 508 LIR_Opr right_op = right;
duke@435 509
duke@435 510 if (TwoOperandLIRForm && left_op != result_op) {
duke@435 511 assert(right_op != result_op, "malformed");
duke@435 512 __ move(left_op, result_op);
duke@435 513 left_op = result_op;
duke@435 514 }
duke@435 515
duke@435 516 switch(code) {
duke@435 517 case Bytecodes::_dadd:
duke@435 518 case Bytecodes::_fadd:
duke@435 519 case Bytecodes::_ladd:
duke@435 520 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
duke@435 521 case Bytecodes::_fmul:
duke@435 522 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
duke@435 523
duke@435 524 case Bytecodes::_dmul:
duke@435 525 {
duke@435 526 if (is_strictfp) {
duke@435 527 __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
duke@435 528 } else {
duke@435 529 __ mul(left_op, right_op, result_op); break;
duke@435 530 }
duke@435 531 }
duke@435 532 break;
duke@435 533
duke@435 534 case Bytecodes::_imul:
duke@435 535 {
duke@435 536 bool did_strength_reduce = false;
duke@435 537
duke@435 538 if (right->is_constant()) {
duke@435 539 int c = right->as_jint();
duke@435 540 if (is_power_of_2(c)) {
duke@435 541 // do not need tmp here
duke@435 542 __ shift_left(left_op, exact_log2(c), result_op);
duke@435 543 did_strength_reduce = true;
duke@435 544 } else {
duke@435 545 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
duke@435 546 }
duke@435 547 }
duke@435 548 // we couldn't strength reduce so just emit the multiply
duke@435 549 if (!did_strength_reduce) {
duke@435 550 __ mul(left_op, right_op, result_op);
duke@435 551 }
duke@435 552 }
duke@435 553 break;
duke@435 554
duke@435 555 case Bytecodes::_dsub:
duke@435 556 case Bytecodes::_fsub:
duke@435 557 case Bytecodes::_lsub:
duke@435 558 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
duke@435 559
duke@435 560 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
duke@435 561 // ldiv and lrem are implemented with a direct runtime call
duke@435 562
duke@435 563 case Bytecodes::_ddiv:
duke@435 564 {
duke@435 565 if (is_strictfp) {
duke@435 566 __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
duke@435 567 } else {
duke@435 568 __ div (left_op, right_op, result_op); break;
duke@435 569 }
duke@435 570 }
duke@435 571 break;
duke@435 572
duke@435 573 case Bytecodes::_drem:
duke@435 574 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
duke@435 575
duke@435 576 default: ShouldNotReachHere();
duke@435 577 }
duke@435 578 }
duke@435 579
duke@435 580
duke@435 581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
duke@435 582 arithmetic_op(code, result, left, right, false, tmp);
duke@435 583 }
duke@435 584
duke@435 585
duke@435 586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
duke@435 587 arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
duke@435 588 }
duke@435 589
duke@435 590
duke@435 591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
duke@435 592 arithmetic_op(code, result, left, right, is_strictfp, tmp);
duke@435 593 }
duke@435 594
duke@435 595
duke@435 596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
duke@435 597 if (TwoOperandLIRForm && value != result_op) {
duke@435 598 assert(count != result_op, "malformed");
duke@435 599 __ move(value, result_op);
duke@435 600 value = result_op;
duke@435 601 }
duke@435 602
duke@435 603 assert(count->is_constant() || count->is_register(), "must be");
duke@435 604 switch(code) {
duke@435 605 case Bytecodes::_ishl:
duke@435 606 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
duke@435 607 case Bytecodes::_ishr:
duke@435 608 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
duke@435 609 case Bytecodes::_iushr:
duke@435 610 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
duke@435 611 default: ShouldNotReachHere();
duke@435 612 }
duke@435 613 }
duke@435 614
duke@435 615
duke@435 616 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
duke@435 617 if (TwoOperandLIRForm && left_op != result_op) {
duke@435 618 assert(right_op != result_op, "malformed");
duke@435 619 __ move(left_op, result_op);
duke@435 620 left_op = result_op;
duke@435 621 }
duke@435 622
duke@435 623 switch(code) {
duke@435 624 case Bytecodes::_iand:
duke@435 625 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
duke@435 626
duke@435 627 case Bytecodes::_ior:
duke@435 628 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
duke@435 629
duke@435 630 case Bytecodes::_ixor:
duke@435 631 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
duke@435 632
duke@435 633 default: ShouldNotReachHere();
duke@435 634 }
duke@435 635 }
duke@435 636
duke@435 637
duke@435 638 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
duke@435 639 if (!GenerateSynchronizationCode) return;
duke@435 640 // for slow path, use debug info for state after successful locking
duke@435 641 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
duke@435 642 __ load_stack_address_monitor(monitor_no, lock);
duke@435 643 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
duke@435 644 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
duke@435 645 }
duke@435 646
duke@435 647
bobv@2036 648 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
duke@435 649 if (!GenerateSynchronizationCode) return;
duke@435 650 // setup registers
duke@435 651 LIR_Opr hdr = lock;
duke@435 652 lock = new_hdr;
duke@435 653 CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
duke@435 654 __ load_stack_address_monitor(monitor_no, lock);
bobv@2036 655 __ unlock_object(hdr, object, lock, scratch, slow_path);
duke@435 656 }
duke@435 657
duke@435 658
duke@435 659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
duke@435 660 jobject2reg_with_patching(klass_reg, klass, info);
duke@435 661 // If klass is not loaded we do not know if the klass has finalizers:
duke@435 662 if (UseFastNewInstance && klass->is_loaded()
duke@435 663 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
duke@435 664
duke@435 665 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
duke@435 666
duke@435 667 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
duke@435 668
duke@435 669 assert(klass->is_loaded(), "must be loaded");
duke@435 670 // allocate space for instance
duke@435 671 assert(klass->size_helper() >= 0, "illegal instance size");
duke@435 672 const int instance_size = align_object_size(klass->size_helper());
duke@435 673 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
duke@435 674 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
duke@435 675 } else {
duke@435 676 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
duke@435 677 __ branch(lir_cond_always, T_ILLEGAL, slow_path);
duke@435 678 __ branch_destination(slow_path->continuation());
duke@435 679 }
duke@435 680 }
duke@435 681
duke@435 682
duke@435 683 static bool is_constant_zero(Instruction* inst) {
duke@435 684 IntConstant* c = inst->type()->as_IntConstant();
duke@435 685 if (c) {
duke@435 686 return (c->value() == 0);
duke@435 687 }
duke@435 688 return false;
duke@435 689 }
duke@435 690
duke@435 691
duke@435 692 static bool positive_constant(Instruction* inst) {
duke@435 693 IntConstant* c = inst->type()->as_IntConstant();
duke@435 694 if (c) {
duke@435 695 return (c->value() >= 0);
duke@435 696 }
duke@435 697 return false;
duke@435 698 }
duke@435 699
duke@435 700
duke@435 701 static ciArrayKlass* as_array_klass(ciType* type) {
duke@435 702 if (type != NULL && type->is_array_klass() && type->is_loaded()) {
duke@435 703 return (ciArrayKlass*)type;
duke@435 704 } else {
duke@435 705 return NULL;
duke@435 706 }
duke@435 707 }
duke@435 708
roland@2728 709 static Value maxvalue(IfOp* ifop) {
roland@2728 710 switch (ifop->cond()) {
roland@2728 711 case If::eql: return NULL;
roland@2728 712 case If::neq: return NULL;
roland@2728 713 case If::lss: // x < y ? x : y
roland@2728 714 case If::leq: // x <= y ? x : y
roland@2728 715 if (ifop->x() == ifop->tval() &&
roland@2728 716 ifop->y() == ifop->fval()) return ifop->y();
roland@2728 717 return NULL;
roland@2728 718
roland@2728 719 case If::gtr: // x > y ? y : x
roland@2728 720 case If::geq: // x >= y ? y : x
roland@2728 721 if (ifop->x() == ifop->tval() &&
roland@2728 722 ifop->y() == ifop->fval()) return ifop->y();
roland@2728 723 return NULL;
roland@2728 724
roland@2728 725 }
roland@2728 726 }
roland@2728 727
roland@2728 728 static ciType* phi_declared_type(Phi* phi) {
roland@2728 729 ciType* t = phi->operand_at(0)->declared_type();
roland@2728 730 if (t == NULL) {
roland@2728 731 return NULL;
roland@2728 732 }
roland@2728 733 for(int i = 1; i < phi->operand_count(); i++) {
roland@2728 734 if (t != phi->operand_at(i)->declared_type()) {
roland@2728 735 return NULL;
roland@2728 736 }
roland@2728 737 }
roland@2728 738 return t;
roland@2728 739 }
roland@2728 740
duke@435 741 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
duke@435 742 Instruction* src = x->argument_at(0);
duke@435 743 Instruction* src_pos = x->argument_at(1);
duke@435 744 Instruction* dst = x->argument_at(2);
duke@435 745 Instruction* dst_pos = x->argument_at(3);
duke@435 746 Instruction* length = x->argument_at(4);
duke@435 747
duke@435 748 // first try to identify the likely type of the arrays involved
duke@435 749 ciArrayKlass* expected_type = NULL;
roland@2728 750 bool is_exact = false, src_objarray = false, dst_objarray = false;
duke@435 751 {
duke@435 752 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
duke@435 753 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
roland@2728 754 Phi* phi;
roland@2728 755 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
roland@2728 756 src_declared_type = as_array_klass(phi_declared_type(phi));
roland@2728 757 }
duke@435 758 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
duke@435 759 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
roland@2728 760 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
roland@2728 761 dst_declared_type = as_array_klass(phi_declared_type(phi));
roland@2728 762 }
roland@2728 763
duke@435 764 if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
duke@435 765 // the types exactly match so the type is fully known
duke@435 766 is_exact = true;
duke@435 767 expected_type = src_exact_type;
duke@435 768 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
duke@435 769 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
duke@435 770 ciArrayKlass* src_type = NULL;
duke@435 771 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
duke@435 772 src_type = (ciArrayKlass*) src_exact_type;
duke@435 773 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
duke@435 774 src_type = (ciArrayKlass*) src_declared_type;
duke@435 775 }
duke@435 776 if (src_type != NULL) {
duke@435 777 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
duke@435 778 is_exact = true;
duke@435 779 expected_type = dst_type;
duke@435 780 }
duke@435 781 }
duke@435 782 }
duke@435 783 // at least pass along a good guess
duke@435 784 if (expected_type == NULL) expected_type = dst_exact_type;
duke@435 785 if (expected_type == NULL) expected_type = src_declared_type;
duke@435 786 if (expected_type == NULL) expected_type = dst_declared_type;
roland@2728 787
roland@2728 788 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
roland@2728 789 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
duke@435 790 }
duke@435 791
duke@435 792 // if a probable array type has been identified, figure out if any
duke@435 793 // of the required checks for a fast case can be elided.
duke@435 794 int flags = LIR_OpArrayCopy::all_flags;
roland@2728 795
roland@2728 796 if (!src_objarray)
roland@2728 797 flags &= ~LIR_OpArrayCopy::src_objarray;
roland@2728 798 if (!dst_objarray)
roland@2728 799 flags &= ~LIR_OpArrayCopy::dst_objarray;
roland@2728 800
roland@2728 801 if (!x->arg_needs_null_check(0))
roland@2728 802 flags &= ~LIR_OpArrayCopy::src_null_check;
roland@2728 803 if (!x->arg_needs_null_check(2))
roland@2728 804 flags &= ~LIR_OpArrayCopy::dst_null_check;
roland@2728 805
roland@2728 806
duke@435 807 if (expected_type != NULL) {
roland@2728 808 Value length_limit = NULL;
roland@2728 809
roland@2728 810 IfOp* ifop = length->as_IfOp();
roland@2728 811 if (ifop != NULL) {
roland@2728 812 // look for expressions like min(v, a.length) which ends up as
roland@2728 813 // x > y ? y : x or x >= y ? y : x
roland@2728 814 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
roland@2728 815 ifop->x() == ifop->fval() &&
roland@2728 816 ifop->y() == ifop->tval()) {
roland@2728 817 length_limit = ifop->y();
roland@2728 818 }
roland@2728 819 }
roland@2728 820
roland@2728 821 // try to skip null checks and range checks
roland@2728 822 NewArray* src_array = src->as_NewArray();
roland@2728 823 if (src_array != NULL) {
duke@435 824 flags &= ~LIR_OpArrayCopy::src_null_check;
roland@2728 825 if (length_limit != NULL &&
roland@2728 826 src_array->length() == length_limit &&
roland@2728 827 is_constant_zero(src_pos)) {
roland@2728 828 flags &= ~LIR_OpArrayCopy::src_range_check;
roland@2728 829 }
roland@2728 830 }
roland@2728 831
roland@2728 832 NewArray* dst_array = dst->as_NewArray();
roland@2728 833 if (dst_array != NULL) {
duke@435 834 flags &= ~LIR_OpArrayCopy::dst_null_check;
roland@2728 835 if (length_limit != NULL &&
roland@2728 836 dst_array->length() == length_limit &&
roland@2728 837 is_constant_zero(dst_pos)) {
roland@2728 838 flags &= ~LIR_OpArrayCopy::dst_range_check;
roland@2728 839 }
roland@2728 840 }
duke@435 841
duke@435 842 // check from incoming constant values
duke@435 843 if (positive_constant(src_pos))
duke@435 844 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
duke@435 845 if (positive_constant(dst_pos))
duke@435 846 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
duke@435 847 if (positive_constant(length))
duke@435 848 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 849
duke@435 850 // see if the range check can be elided, which might also imply
duke@435 851 // that src or dst is non-null.
duke@435 852 ArrayLength* al = length->as_ArrayLength();
duke@435 853 if (al != NULL) {
duke@435 854 if (al->array() == src) {
duke@435 855 // it's the length of the source array
duke@435 856 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 857 flags &= ~LIR_OpArrayCopy::src_null_check;
duke@435 858 if (is_constant_zero(src_pos))
duke@435 859 flags &= ~LIR_OpArrayCopy::src_range_check;
duke@435 860 }
duke@435 861 if (al->array() == dst) {
duke@435 862 // it's the length of the destination array
duke@435 863 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 864 flags &= ~LIR_OpArrayCopy::dst_null_check;
duke@435 865 if (is_constant_zero(dst_pos))
duke@435 866 flags &= ~LIR_OpArrayCopy::dst_range_check;
duke@435 867 }
duke@435 868 }
duke@435 869 if (is_exact) {
duke@435 870 flags &= ~LIR_OpArrayCopy::type_check;
duke@435 871 }
duke@435 872 }
duke@435 873
roland@2728 874 IntConstant* src_int = src_pos->type()->as_IntConstant();
roland@2728 875 IntConstant* dst_int = dst_pos->type()->as_IntConstant();
roland@2728 876 if (src_int && dst_int) {
roland@2728 877 int s_offs = src_int->value();
roland@2728 878 int d_offs = dst_int->value();
roland@2728 879 if (src_int->value() >= dst_int->value()) {
roland@2728 880 flags &= ~LIR_OpArrayCopy::overlapping;
roland@2728 881 }
roland@2728 882 if (expected_type != NULL) {
roland@2728 883 BasicType t = expected_type->element_type()->basic_type();
roland@2728 884 int element_size = type2aelembytes(t);
roland@2728 885 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
roland@2728 886 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
roland@2728 887 flags &= ~LIR_OpArrayCopy::unaligned;
roland@2728 888 }
roland@2728 889 }
roland@2728 890 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
roland@2728 891 // src and dest positions are the same, or dst is zero so assume
roland@2728 892 // nonoverlapping copy.
roland@2728 893 flags &= ~LIR_OpArrayCopy::overlapping;
roland@2728 894 }
roland@2728 895
duke@435 896 if (src == dst) {
duke@435 897 // moving within a single array so no type checks are needed
duke@435 898 if (flags & LIR_OpArrayCopy::type_check) {
duke@435 899 flags &= ~LIR_OpArrayCopy::type_check;
duke@435 900 }
duke@435 901 }
duke@435 902 *flagsp = flags;
duke@435 903 *expected_typep = (ciArrayKlass*)expected_type;
duke@435 904 }
duke@435 905
duke@435 906
duke@435 907 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
duke@435 908 assert(opr->is_register(), "why spill if item is not register?");
duke@435 909
duke@435 910 if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
duke@435 911 LIR_Opr result = new_register(T_FLOAT);
duke@435 912 set_vreg_flag(result, must_start_in_memory);
duke@435 913 assert(opr->is_register(), "only a register can be spilled");
duke@435 914 assert(opr->value_type()->is_float(), "rounding only for floats available");
duke@435 915 __ roundfp(opr, LIR_OprFact::illegalOpr, result);
duke@435 916 return result;
duke@435 917 }
duke@435 918 return opr;
duke@435 919 }
duke@435 920
duke@435 921
duke@435 922 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
duke@435 923 assert(type2size[t] == type2size[value->type()], "size mismatch");
duke@435 924 if (!value->is_register()) {
duke@435 925 // force into a register
duke@435 926 LIR_Opr r = new_register(value->type());
duke@435 927 __ move(value, r);
duke@435 928 value = r;
duke@435 929 }
duke@435 930
duke@435 931 // create a spill location
duke@435 932 LIR_Opr tmp = new_register(t);
duke@435 933 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
duke@435 934
duke@435 935 // move from register to spill
duke@435 936 __ move(value, tmp);
duke@435 937 return tmp;
duke@435 938 }
duke@435 939
duke@435 940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
duke@435 941 if (if_instr->should_profile()) {
duke@435 942 ciMethod* method = if_instr->profiled_method();
duke@435 943 assert(method != NULL, "method should be set if branch is profiled");
iveresov@2349 944 ciMethodData* md = method->method_data_or_null();
iveresov@2349 945 assert(md != NULL, "Sanity");
duke@435 946 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
duke@435 947 assert(data != NULL, "must have profiling data");
duke@435 948 assert(data->is_BranchData(), "need BranchData for two-way branches");
duke@435 949 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
duke@435 950 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
iveresov@2138 951 if (if_instr->is_swapped()) {
iveresov@2138 952 int t = taken_count_offset;
iveresov@2138 953 taken_count_offset = not_taken_count_offset;
iveresov@2138 954 not_taken_count_offset = t;
iveresov@2138 955 }
iveresov@2138 956
duke@435 957 LIR_Opr md_reg = new_register(T_OBJECT);
iveresov@2138 958 __ oop2reg(md->constant_encoding(), md_reg);
iveresov@2138 959
iveresov@2138 960 LIR_Opr data_offset_reg = new_pointer_register();
duke@435 961 __ cmove(lir_cond(cond),
iveresov@2138 962 LIR_OprFact::intptrConst(taken_count_offset),
iveresov@2138 963 LIR_OprFact::intptrConst(not_taken_count_offset),
iveresov@2412 964 data_offset_reg, as_BasicType(if_instr->x()->type()));
iveresov@2138 965
iveresov@2138 966 // MDO cells are intptr_t, so the data_reg width is arch-dependent.
iveresov@2138 967 LIR_Opr data_reg = new_pointer_register();
iveresov@2138 968 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
iveresov@2344 969 __ move(data_addr, data_reg);
iveresov@2138 970 // Use leal instead of add to avoid destroying condition codes on x86
duke@435 971 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
duke@435 972 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
iveresov@2344 973 __ move(data_reg, data_addr);
duke@435 974 }
duke@435 975 }
duke@435 976
duke@435 977 // Phi technique:
duke@435 978 // This is about passing live values from one basic block to the other.
duke@435 979 // In code generated with Java it is rather rare that more than one
duke@435 980 // value is on the stack from one basic block to the other.
duke@435 981 // We optimize our technique for efficient passing of one value
duke@435 982 // (of type long, int, double..) but it can be extended.
duke@435 983 // When entering or leaving a basic block, all registers and all spill
duke@435 984 // slots are release and empty. We use the released registers
duke@435 985 // and spill slots to pass the live values from one block
duke@435 986 // to the other. The topmost value, i.e., the value on TOS of expression
duke@435 987 // stack is passed in registers. All other values are stored in spilling
duke@435 988 // area. Every Phi has an index which designates its spill slot
duke@435 989 // At exit of a basic block, we fill the register(s) and spill slots.
duke@435 990 // At entry of a basic block, the block_prolog sets up the content of phi nodes
duke@435 991 // and locks necessary registers and spilling slots.
duke@435 992
duke@435 993
duke@435 994 // move current value to referenced phi function
duke@435 995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
duke@435 996 Phi* phi = sux_val->as_Phi();
duke@435 997 // cur_val can be null without phi being null in conjunction with inlining
duke@435 998 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
duke@435 999 LIR_Opr operand = cur_val->operand();
duke@435 1000 if (cur_val->operand()->is_illegal()) {
duke@435 1001 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
duke@435 1002 "these can be produced lazily");
duke@435 1003 operand = operand_for_instruction(cur_val);
duke@435 1004 }
duke@435 1005 resolver->move(operand, operand_for_instruction(phi));
duke@435 1006 }
duke@435 1007 }
duke@435 1008
duke@435 1009
duke@435 1010 // Moves all stack values into their PHI position
duke@435 1011 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
duke@435 1012 BlockBegin* bb = block();
duke@435 1013 if (bb->number_of_sux() == 1) {
duke@435 1014 BlockBegin* sux = bb->sux_at(0);
duke@435 1015 assert(sux->number_of_preds() > 0, "invalid CFG");
duke@435 1016
duke@435 1017 // a block with only one predecessor never has phi functions
duke@435 1018 if (sux->number_of_preds() > 1) {
duke@435 1019 int max_phis = cur_state->stack_size() + cur_state->locals_size();
duke@435 1020 PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
duke@435 1021
duke@435 1022 ValueStack* sux_state = sux->state();
duke@435 1023 Value sux_value;
duke@435 1024 int index;
duke@435 1025
roland@2174 1026 assert(cur_state->scope() == sux_state->scope(), "not matching");
roland@2174 1027 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
roland@2174 1028 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
roland@2174 1029
duke@435 1030 for_each_stack_value(sux_state, index, sux_value) {
duke@435 1031 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
duke@435 1032 }
duke@435 1033
duke@435 1034 for_each_local_value(sux_state, index, sux_value) {
duke@435 1035 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
duke@435 1036 }
duke@435 1037
duke@435 1038 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
duke@435 1039 }
duke@435 1040 }
duke@435 1041 }
duke@435 1042
duke@435 1043
duke@435 1044 LIR_Opr LIRGenerator::new_register(BasicType type) {
duke@435 1045 int vreg = _virtual_register_number;
duke@435 1046 // add a little fudge factor for the bailout, since the bailout is
duke@435 1047 // only checked periodically. This gives a few extra registers to
duke@435 1048 // hand out before we really run out, which helps us keep from
duke@435 1049 // tripping over assertions.
duke@435 1050 if (vreg + 20 >= LIR_OprDesc::vreg_max) {
duke@435 1051 bailout("out of virtual registers");
duke@435 1052 if (vreg + 2 >= LIR_OprDesc::vreg_max) {
duke@435 1053 // wrap it around
duke@435 1054 _virtual_register_number = LIR_OprDesc::vreg_base;
duke@435 1055 }
duke@435 1056 }
duke@435 1057 _virtual_register_number += 1;
duke@435 1058 return LIR_OprFact::virtual_register(vreg, type);
duke@435 1059 }
duke@435 1060
duke@435 1061
duke@435 1062 // Try to lock using register in hint
duke@435 1063 LIR_Opr LIRGenerator::rlock(Value instr) {
duke@435 1064 return new_register(instr->type());
duke@435 1065 }
duke@435 1066
duke@435 1067
duke@435 1068 // does an rlock and sets result
duke@435 1069 LIR_Opr LIRGenerator::rlock_result(Value x) {
duke@435 1070 LIR_Opr reg = rlock(x);
duke@435 1071 set_result(x, reg);
duke@435 1072 return reg;
duke@435 1073 }
duke@435 1074
duke@435 1075
duke@435 1076 // does an rlock and sets result
duke@435 1077 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
duke@435 1078 LIR_Opr reg;
duke@435 1079 switch (type) {
duke@435 1080 case T_BYTE:
duke@435 1081 case T_BOOLEAN:
duke@435 1082 reg = rlock_byte(type);
duke@435 1083 break;
duke@435 1084 default:
duke@435 1085 reg = rlock(x);
duke@435 1086 break;
duke@435 1087 }
duke@435 1088
duke@435 1089 set_result(x, reg);
duke@435 1090 return reg;
duke@435 1091 }
duke@435 1092
duke@435 1093
duke@435 1094 //---------------------------------------------------------------------
duke@435 1095 ciObject* LIRGenerator::get_jobject_constant(Value value) {
duke@435 1096 ObjectType* oc = value->type()->as_ObjectType();
duke@435 1097 if (oc) {
duke@435 1098 return oc->constant_value();
duke@435 1099 }
duke@435 1100 return NULL;
duke@435 1101 }
duke@435 1102
duke@435 1103
duke@435 1104 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
duke@435 1105 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
duke@435 1106 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
duke@435 1107
duke@435 1108 // no moves are created for phi functions at the begin of exception
duke@435 1109 // handlers, so assign operands manually here
duke@435 1110 for_each_phi_fun(block(), phi,
duke@435 1111 operand_for_instruction(phi));
duke@435 1112
duke@435 1113 LIR_Opr thread_reg = getThreadPointer();
iveresov@2344 1114 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
iveresov@2344 1115 exceptionOopOpr());
iveresov@2344 1116 __ move_wide(LIR_OprFact::oopConst(NULL),
iveresov@2344 1117 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
iveresov@2344 1118 __ move_wide(LIR_OprFact::oopConst(NULL),
iveresov@2344 1119 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
duke@435 1120
duke@435 1121 LIR_Opr result = new_register(T_OBJECT);
duke@435 1122 __ move(exceptionOopOpr(), result);
duke@435 1123 set_result(x, result);
duke@435 1124 }
duke@435 1125
duke@435 1126
duke@435 1127 //----------------------------------------------------------------------
duke@435 1128 //----------------------------------------------------------------------
duke@435 1129 //----------------------------------------------------------------------
duke@435 1130 //----------------------------------------------------------------------
duke@435 1131 // visitor functions
duke@435 1132 //----------------------------------------------------------------------
duke@435 1133 //----------------------------------------------------------------------
duke@435 1134 //----------------------------------------------------------------------
duke@435 1135 //----------------------------------------------------------------------
duke@435 1136
duke@435 1137 void LIRGenerator::do_Phi(Phi* x) {
duke@435 1138 // phi functions are never visited directly
duke@435 1139 ShouldNotReachHere();
duke@435 1140 }
duke@435 1141
duke@435 1142
duke@435 1143 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
duke@435 1144 void LIRGenerator::do_Constant(Constant* x) {
roland@2174 1145 if (x->state_before() != NULL) {
duke@435 1146 // Any constant with a ValueStack requires patching so emit the patch here
duke@435 1147 LIR_Opr reg = rlock_result(x);
roland@2174 1148 CodeEmitInfo* info = state_for(x, x->state_before());
duke@435 1149 __ oop2reg_patch(NULL, reg, info);
duke@435 1150 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
duke@435 1151 if (!x->is_pinned()) {
duke@435 1152 // unpinned constants are handled specially so that they can be
duke@435 1153 // put into registers when they are used multiple times within a
duke@435 1154 // block. After the block completes their operand will be
duke@435 1155 // cleared so that other blocks can't refer to that register.
duke@435 1156 set_result(x, load_constant(x));
duke@435 1157 } else {
duke@435 1158 LIR_Opr res = x->operand();
duke@435 1159 if (!res->is_valid()) {
duke@435 1160 res = LIR_OprFact::value_type(x->type());
duke@435 1161 }
duke@435 1162 if (res->is_constant()) {
duke@435 1163 LIR_Opr reg = rlock_result(x);
duke@435 1164 __ move(res, reg);
duke@435 1165 } else {
duke@435 1166 set_result(x, res);
duke@435 1167 }
duke@435 1168 }
duke@435 1169 } else {
duke@435 1170 set_result(x, LIR_OprFact::value_type(x->type()));
duke@435 1171 }
duke@435 1172 }
duke@435 1173
duke@435 1174
duke@435 1175 void LIRGenerator::do_Local(Local* x) {
duke@435 1176 // operand_for_instruction has the side effect of setting the result
duke@435 1177 // so there's no need to do it here.
duke@435 1178 operand_for_instruction(x);
duke@435 1179 }
duke@435 1180
duke@435 1181
duke@435 1182 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
duke@435 1183 Unimplemented();
duke@435 1184 }
duke@435 1185
duke@435 1186
duke@435 1187 void LIRGenerator::do_Return(Return* x) {
kvn@1215 1188 if (compilation()->env()->dtrace_method_probes()) {
duke@435 1189 BasicTypeList signature;
iveresov@2344 1190 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
duke@435 1191 signature.append(T_OBJECT); // methodOop
duke@435 1192 LIR_OprList* args = new LIR_OprList();
duke@435 1193 args->append(getThreadPointer());
duke@435 1194 LIR_Opr meth = new_register(T_OBJECT);
jrose@1424 1195 __ oop2reg(method()->constant_encoding(), meth);
duke@435 1196 args->append(meth);
duke@435 1197 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
duke@435 1198 }
duke@435 1199
duke@435 1200 if (x->type()->is_void()) {
duke@435 1201 __ return_op(LIR_OprFact::illegalOpr);
duke@435 1202 } else {
duke@435 1203 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
duke@435 1204 LIRItem result(x->result(), this);
duke@435 1205
duke@435 1206 result.load_item_force(reg);
duke@435 1207 __ return_op(result.result());
duke@435 1208 }
duke@435 1209 set_no_result(x);
duke@435 1210 }
duke@435 1211
duke@435 1212
duke@435 1213 // Example: object.getClass ()
duke@435 1214 void LIRGenerator::do_getClass(Intrinsic* x) {
duke@435 1215 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 1216
duke@435 1217 LIRItem rcvr(x->argument_at(0), this);
duke@435 1218 rcvr.load_item();
duke@435 1219 LIR_Opr result = rlock_result(x);
duke@435 1220
duke@435 1221 // need to perform the null check on the rcvr
duke@435 1222 CodeEmitInfo* info = NULL;
duke@435 1223 if (x->needs_null_check()) {
roland@2174 1224 info = state_for(x);
duke@435 1225 }
duke@435 1226 __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
iveresov@2344 1227 __ move_wide(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
iveresov@2344 1228 klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
duke@435 1229 }
duke@435 1230
duke@435 1231
duke@435 1232 // Example: Thread.currentThread()
duke@435 1233 void LIRGenerator::do_currentThread(Intrinsic* x) {
duke@435 1234 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 1235 LIR_Opr reg = rlock_result(x);
iveresov@2344 1236 __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
duke@435 1237 }
duke@435 1238
duke@435 1239
duke@435 1240 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
duke@435 1241 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 1242 LIRItem receiver(x->argument_at(0), this);
duke@435 1243
duke@435 1244 receiver.load_item();
duke@435 1245 BasicTypeList signature;
duke@435 1246 signature.append(T_OBJECT); // receiver
duke@435 1247 LIR_OprList* args = new LIR_OprList();
duke@435 1248 args->append(receiver.result());
duke@435 1249 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1250 call_runtime(&signature, args,
duke@435 1251 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
duke@435 1252 voidType, info);
duke@435 1253
duke@435 1254 set_no_result(x);
duke@435 1255 }
duke@435 1256
duke@435 1257
duke@435 1258 //------------------------local access--------------------------------------
duke@435 1259
duke@435 1260 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
duke@435 1261 if (x->operand()->is_illegal()) {
duke@435 1262 Constant* c = x->as_Constant();
duke@435 1263 if (c != NULL) {
duke@435 1264 x->set_operand(LIR_OprFact::value_type(c->type()));
duke@435 1265 } else {
duke@435 1266 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
duke@435 1267 // allocate a virtual register for this local or phi
duke@435 1268 x->set_operand(rlock(x));
duke@435 1269 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
duke@435 1270 }
duke@435 1271 }
duke@435 1272 return x->operand();
duke@435 1273 }
duke@435 1274
duke@435 1275
duke@435 1276 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
duke@435 1277 if (opr->is_virtual()) {
duke@435 1278 return instruction_for_vreg(opr->vreg_number());
duke@435 1279 }
duke@435 1280 return NULL;
duke@435 1281 }
duke@435 1282
duke@435 1283
duke@435 1284 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
duke@435 1285 if (reg_num < _instruction_for_operand.length()) {
duke@435 1286 return _instruction_for_operand.at(reg_num);
duke@435 1287 }
duke@435 1288 return NULL;
duke@435 1289 }
duke@435 1290
duke@435 1291
duke@435 1292 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
duke@435 1293 if (_vreg_flags.size_in_bits() == 0) {
duke@435 1294 BitMap2D temp(100, num_vreg_flags);
duke@435 1295 temp.clear();
duke@435 1296 _vreg_flags = temp;
duke@435 1297 }
duke@435 1298 _vreg_flags.at_put_grow(vreg_num, f, true);
duke@435 1299 }
duke@435 1300
duke@435 1301 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
duke@435 1302 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
duke@435 1303 return false;
duke@435 1304 }
duke@435 1305 return _vreg_flags.at(vreg_num, f);
duke@435 1306 }
duke@435 1307
duke@435 1308
duke@435 1309 // Block local constant handling. This code is useful for keeping
duke@435 1310 // unpinned constants and constants which aren't exposed in the IR in
duke@435 1311 // registers. Unpinned Constant instructions have their operands
duke@435 1312 // cleared when the block is finished so that other blocks can't end
duke@435 1313 // up referring to their registers.
duke@435 1314
duke@435 1315 LIR_Opr LIRGenerator::load_constant(Constant* x) {
duke@435 1316 assert(!x->is_pinned(), "only for unpinned constants");
duke@435 1317 _unpinned_constants.append(x);
duke@435 1318 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
duke@435 1319 }
duke@435 1320
duke@435 1321
duke@435 1322 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
duke@435 1323 BasicType t = c->type();
duke@435 1324 for (int i = 0; i < _constants.length(); i++) {
duke@435 1325 LIR_Const* other = _constants.at(i);
duke@435 1326 if (t == other->type()) {
duke@435 1327 switch (t) {
duke@435 1328 case T_INT:
duke@435 1329 case T_FLOAT:
duke@435 1330 if (c->as_jint_bits() != other->as_jint_bits()) continue;
duke@435 1331 break;
duke@435 1332 case T_LONG:
duke@435 1333 case T_DOUBLE:
never@921 1334 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
never@921 1335 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
duke@435 1336 break;
duke@435 1337 case T_OBJECT:
duke@435 1338 if (c->as_jobject() != other->as_jobject()) continue;
duke@435 1339 break;
duke@435 1340 }
duke@435 1341 return _reg_for_constants.at(i);
duke@435 1342 }
duke@435 1343 }
duke@435 1344
duke@435 1345 LIR_Opr result = new_register(t);
duke@435 1346 __ move((LIR_Opr)c, result);
duke@435 1347 _constants.append(c);
duke@435 1348 _reg_for_constants.append(result);
duke@435 1349 return result;
duke@435 1350 }
duke@435 1351
duke@435 1352 // Various barriers
duke@435 1353
ysr@777 1354 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch, CodeEmitInfo* info) {
ysr@777 1355 // Do the pre-write barrier, if any.
ysr@777 1356 switch (_bs->kind()) {
ysr@777 1357 #ifndef SERIALGC
ysr@777 1358 case BarrierSet::G1SATBCT:
ysr@777 1359 case BarrierSet::G1SATBCTLogging:
ysr@777 1360 G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
ysr@777 1361 break;
ysr@777 1362 #endif // SERIALGC
ysr@777 1363 case BarrierSet::CardTableModRef:
ysr@777 1364 case BarrierSet::CardTableExtension:
ysr@777 1365 // No pre barriers
ysr@777 1366 break;
ysr@777 1367 case BarrierSet::ModRef:
ysr@777 1368 case BarrierSet::Other:
ysr@777 1369 // No pre barriers
ysr@777 1370 break;
ysr@777 1371 default :
ysr@777 1372 ShouldNotReachHere();
ysr@777 1373
ysr@777 1374 }
ysr@777 1375 }
ysr@777 1376
duke@435 1377 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
ysr@777 1378 switch (_bs->kind()) {
ysr@777 1379 #ifndef SERIALGC
ysr@777 1380 case BarrierSet::G1SATBCT:
ysr@777 1381 case BarrierSet::G1SATBCTLogging:
ysr@777 1382 G1SATBCardTableModRef_post_barrier(addr, new_val);
ysr@777 1383 break;
ysr@777 1384 #endif // SERIALGC
duke@435 1385 case BarrierSet::CardTableModRef:
duke@435 1386 case BarrierSet::CardTableExtension:
duke@435 1387 CardTableModRef_post_barrier(addr, new_val);
duke@435 1388 break;
duke@435 1389 case BarrierSet::ModRef:
duke@435 1390 case BarrierSet::Other:
duke@435 1391 // No post barriers
duke@435 1392 break;
duke@435 1393 default :
duke@435 1394 ShouldNotReachHere();
duke@435 1395 }
duke@435 1396 }
duke@435 1397
ysr@777 1398 ////////////////////////////////////////////////////////////////////////
ysr@777 1399 #ifndef SERIALGC
ysr@777 1400
ysr@777 1401 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch, CodeEmitInfo* info) {
ysr@777 1402 if (G1DisablePreBarrier) return;
ysr@777 1403
ysr@777 1404 // First we test whether marking is in progress.
ysr@777 1405 BasicType flag_type;
ysr@777 1406 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
ysr@777 1407 flag_type = T_INT;
ysr@777 1408 } else {
ysr@777 1409 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
ysr@777 1410 "Assumption");
ysr@777 1411 flag_type = T_BYTE;
ysr@777 1412 }
ysr@777 1413 LIR_Opr thrd = getThreadPointer();
ysr@777 1414 LIR_Address* mark_active_flag_addr =
ysr@777 1415 new LIR_Address(thrd,
ysr@777 1416 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 1417 PtrQueue::byte_offset_of_active()),
ysr@777 1418 flag_type);
ysr@777 1419 // Read the marking-in-progress flag.
ysr@777 1420 LIR_Opr flag_val = new_register(T_INT);
ysr@777 1421 __ load(mark_active_flag_addr, flag_val);
ysr@777 1422
ysr@777 1423 LIR_PatchCode pre_val_patch_code =
ysr@777 1424 patch ? lir_patch_normal : lir_patch_none;
ysr@777 1425
ysr@777 1426 LIR_Opr pre_val = new_register(T_OBJECT);
ysr@777 1427
ysr@777 1428 __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
ysr@777 1429 if (!addr_opr->is_address()) {
ysr@777 1430 assert(addr_opr->is_register(), "must be");
iveresov@1927 1431 addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
ysr@777 1432 }
ysr@777 1433 CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
ysr@777 1434 info);
ysr@777 1435 __ branch(lir_cond_notEqual, T_INT, slow);
ysr@777 1436 __ branch_destination(slow->continuation());
ysr@777 1437 }
ysr@777 1438
ysr@777 1439 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
ysr@777 1440 if (G1DisablePostBarrier) return;
ysr@777 1441
ysr@777 1442 // If the "new_val" is a constant NULL, no barrier is necessary.
ysr@777 1443 if (new_val->is_constant() &&
ysr@777 1444 new_val->as_constant_ptr()->as_jobject() == NULL) return;
ysr@777 1445
ysr@777 1446 if (!new_val->is_register()) {
iveresov@1927 1447 LIR_Opr new_val_reg = new_register(T_OBJECT);
ysr@777 1448 if (new_val->is_constant()) {
ysr@777 1449 __ move(new_val, new_val_reg);
ysr@777 1450 } else {
ysr@777 1451 __ leal(new_val, new_val_reg);
ysr@777 1452 }
ysr@777 1453 new_val = new_val_reg;
ysr@777 1454 }
ysr@777 1455 assert(new_val->is_register(), "must be a register at this point");
ysr@777 1456
ysr@777 1457 if (addr->is_address()) {
ysr@777 1458 LIR_Address* address = addr->as_address_ptr();
iveresov@2746 1459 LIR_Opr ptr = new_pointer_register();
ysr@777 1460 if (!address->index()->is_valid() && address->disp() == 0) {
ysr@777 1461 __ move(address->base(), ptr);
ysr@777 1462 } else {
ysr@777 1463 assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
ysr@777 1464 __ leal(addr, ptr);
ysr@777 1465 }
ysr@777 1466 addr = ptr;
ysr@777 1467 }
ysr@777 1468 assert(addr->is_register(), "must be a register at this point");
ysr@777 1469
ysr@777 1470 LIR_Opr xor_res = new_pointer_register();
ysr@777 1471 LIR_Opr xor_shift_res = new_pointer_register();
ysr@777 1472 if (TwoOperandLIRForm ) {
ysr@777 1473 __ move(addr, xor_res);
ysr@777 1474 __ logical_xor(xor_res, new_val, xor_res);
ysr@777 1475 __ move(xor_res, xor_shift_res);
ysr@777 1476 __ unsigned_shift_right(xor_shift_res,
ysr@777 1477 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
ysr@777 1478 xor_shift_res,
ysr@777 1479 LIR_OprDesc::illegalOpr());
ysr@777 1480 } else {
ysr@777 1481 __ logical_xor(addr, new_val, xor_res);
ysr@777 1482 __ unsigned_shift_right(xor_res,
ysr@777 1483 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
ysr@777 1484 xor_shift_res,
ysr@777 1485 LIR_OprDesc::illegalOpr());
ysr@777 1486 }
ysr@777 1487
ysr@777 1488 if (!new_val->is_register()) {
iveresov@1927 1489 LIR_Opr new_val_reg = new_register(T_OBJECT);
ysr@777 1490 __ leal(new_val, new_val_reg);
ysr@777 1491 new_val = new_val_reg;
ysr@777 1492 }
ysr@777 1493 assert(new_val->is_register(), "must be a register at this point");
ysr@777 1494
ysr@777 1495 __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
ysr@777 1496
ysr@777 1497 CodeStub* slow = new G1PostBarrierStub(addr, new_val);
iveresov@1927 1498 __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
ysr@777 1499 __ branch_destination(slow->continuation());
ysr@777 1500 }
ysr@777 1501
ysr@777 1502 #endif // SERIALGC
ysr@777 1503 ////////////////////////////////////////////////////////////////////////
ysr@777 1504
duke@435 1505 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
duke@435 1506
ysr@777 1507 assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
ysr@777 1508 LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
duke@435 1509 if (addr->is_address()) {
duke@435 1510 LIR_Address* address = addr->as_address_ptr();
iveresov@2746 1511 // ptr cannot be an object because we use this barrier for array card marks
iveresov@2746 1512 // and addr can point in the middle of an array.
iveresov@2746 1513 LIR_Opr ptr = new_pointer_register();
duke@435 1514 if (!address->index()->is_valid() && address->disp() == 0) {
duke@435 1515 __ move(address->base(), ptr);
duke@435 1516 } else {
duke@435 1517 assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
duke@435 1518 __ leal(addr, ptr);
duke@435 1519 }
duke@435 1520 addr = ptr;
duke@435 1521 }
duke@435 1522 assert(addr->is_register(), "must be a register at this point");
duke@435 1523
bobv@2036 1524 #ifdef ARM
bobv@2036 1525 // TODO: ARM - move to platform-dependent code
bobv@2036 1526 LIR_Opr tmp = FrameMap::R14_opr;
bobv@2036 1527 if (VM_Version::supports_movw()) {
bobv@2036 1528 __ move((LIR_Opr)card_table_base, tmp);
bobv@2036 1529 } else {
bobv@2036 1530 __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
bobv@2036 1531 }
bobv@2036 1532
bobv@2036 1533 CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
bobv@2036 1534 LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
bobv@2036 1535 if(((int)ct->byte_map_base & 0xff) == 0) {
bobv@2036 1536 __ move(tmp, card_addr);
bobv@2036 1537 } else {
bobv@2036 1538 LIR_Opr tmp_zero = new_register(T_INT);
bobv@2036 1539 __ move(LIR_OprFact::intConst(0), tmp_zero);
bobv@2036 1540 __ move(tmp_zero, card_addr);
bobv@2036 1541 }
bobv@2036 1542 #else // ARM
duke@435 1543 LIR_Opr tmp = new_pointer_register();
duke@435 1544 if (TwoOperandLIRForm) {
duke@435 1545 __ move(addr, tmp);
duke@435 1546 __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
duke@435 1547 } else {
duke@435 1548 __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
duke@435 1549 }
duke@435 1550 if (can_inline_as_constant(card_table_base)) {
duke@435 1551 __ move(LIR_OprFact::intConst(0),
duke@435 1552 new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
duke@435 1553 } else {
duke@435 1554 __ move(LIR_OprFact::intConst(0),
duke@435 1555 new LIR_Address(tmp, load_constant(card_table_base),
duke@435 1556 T_BYTE));
duke@435 1557 }
bobv@2036 1558 #endif // ARM
duke@435 1559 }
duke@435 1560
duke@435 1561
duke@435 1562 //------------------------field access--------------------------------------
duke@435 1563
duke@435 1564 // Comment copied form templateTable_i486.cpp
duke@435 1565 // ----------------------------------------------------------------------------
duke@435 1566 // Volatile variables demand their effects be made known to all CPU's in
duke@435 1567 // order. Store buffers on most chips allow reads & writes to reorder; the
duke@435 1568 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
duke@435 1569 // memory barrier (i.e., it's not sufficient that the interpreter does not
duke@435 1570 // reorder volatile references, the hardware also must not reorder them).
duke@435 1571 //
duke@435 1572 // According to the new Java Memory Model (JMM):
duke@435 1573 // (1) All volatiles are serialized wrt to each other.
duke@435 1574 // ALSO reads & writes act as aquire & release, so:
duke@435 1575 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
duke@435 1576 // the read float up to before the read. It's OK for non-volatile memory refs
duke@435 1577 // that happen before the volatile read to float down below it.
duke@435 1578 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
duke@435 1579 // that happen BEFORE the write float down to after the write. It's OK for
duke@435 1580 // non-volatile memory refs that happen after the volatile write to float up
duke@435 1581 // before it.
duke@435 1582 //
duke@435 1583 // We only put in barriers around volatile refs (they are expensive), not
duke@435 1584 // _between_ memory refs (that would require us to track the flavor of the
duke@435 1585 // previous memory refs). Requirements (2) and (3) require some barriers
duke@435 1586 // before volatile stores and after volatile loads. These nearly cover
duke@435 1587 // requirement (1) but miss the volatile-store-volatile-load case. This final
duke@435 1588 // case is placed after volatile-stores although it could just as well go
duke@435 1589 // before volatile-loads.
duke@435 1590
duke@435 1591
duke@435 1592 void LIRGenerator::do_StoreField(StoreField* x) {
duke@435 1593 bool needs_patching = x->needs_patching();
duke@435 1594 bool is_volatile = x->field()->is_volatile();
duke@435 1595 BasicType field_type = x->field_type();
duke@435 1596 bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
duke@435 1597
duke@435 1598 CodeEmitInfo* info = NULL;
duke@435 1599 if (needs_patching) {
duke@435 1600 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
duke@435 1601 info = state_for(x, x->state_before());
duke@435 1602 } else if (x->needs_null_check()) {
duke@435 1603 NullCheck* nc = x->explicit_null_check();
duke@435 1604 if (nc == NULL) {
roland@2174 1605 info = state_for(x);
duke@435 1606 } else {
duke@435 1607 info = state_for(nc);
duke@435 1608 }
duke@435 1609 }
duke@435 1610
duke@435 1611
duke@435 1612 LIRItem object(x->obj(), this);
duke@435 1613 LIRItem value(x->value(), this);
duke@435 1614
duke@435 1615 object.load_item();
duke@435 1616
duke@435 1617 if (is_volatile || needs_patching) {
duke@435 1618 // load item if field is volatile (fewer special cases for volatiles)
duke@435 1619 // load item if field not initialized
duke@435 1620 // load item if field not constant
duke@435 1621 // because of code patching we cannot inline constants
duke@435 1622 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
duke@435 1623 value.load_byte_item();
duke@435 1624 } else {
duke@435 1625 value.load_item();
duke@435 1626 }
duke@435 1627 } else {
duke@435 1628 value.load_for_store(field_type);
duke@435 1629 }
duke@435 1630
duke@435 1631 set_no_result(x);
duke@435 1632
roland@2174 1633 #ifndef PRODUCT
duke@435 1634 if (PrintNotLoaded && needs_patching) {
duke@435 1635 tty->print_cr(" ###class not loaded at store_%s bci %d",
roland@2174 1636 x->is_static() ? "static" : "field", x->printable_bci());
duke@435 1637 }
roland@2174 1638 #endif
duke@435 1639
duke@435 1640 if (x->needs_null_check() &&
duke@435 1641 (needs_patching ||
duke@435 1642 MacroAssembler::needs_explicit_null_check(x->offset()))) {
duke@435 1643 // emit an explicit null check because the offset is too large
duke@435 1644 __ null_check(object.result(), new CodeEmitInfo(info));
duke@435 1645 }
duke@435 1646
duke@435 1647 LIR_Address* address;
duke@435 1648 if (needs_patching) {
duke@435 1649 // we need to patch the offset in the instruction so don't allow
duke@435 1650 // generate_address to try to be smart about emitting the -1.
duke@435 1651 // Otherwise the patching code won't know how to find the
duke@435 1652 // instruction to patch.
bobv@2036 1653 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
duke@435 1654 } else {
duke@435 1655 address = generate_address(object.result(), x->offset(), field_type);
duke@435 1656 }
duke@435 1657
duke@435 1658 if (is_volatile && os::is_MP()) {
duke@435 1659 __ membar_release();
duke@435 1660 }
duke@435 1661
ysr@777 1662 if (is_oop) {
ysr@777 1663 // Do the pre-write barrier, if any.
ysr@777 1664 pre_barrier(LIR_OprFact::address(address),
ysr@777 1665 needs_patching,
ysr@777 1666 (info ? new CodeEmitInfo(info) : NULL));
ysr@777 1667 }
ysr@777 1668
never@2634 1669 if (is_volatile && !needs_patching) {
duke@435 1670 volatile_field_store(value.result(), address, info);
duke@435 1671 } else {
duke@435 1672 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
duke@435 1673 __ store(value.result(), address, info, patch_code);
duke@435 1674 }
duke@435 1675
duke@435 1676 if (is_oop) {
never@1254 1677 // Store to object so mark the card of the header
duke@435 1678 post_barrier(object.result(), value.result());
duke@435 1679 }
duke@435 1680
duke@435 1681 if (is_volatile && os::is_MP()) {
duke@435 1682 __ membar();
duke@435 1683 }
duke@435 1684 }
duke@435 1685
duke@435 1686
duke@435 1687 void LIRGenerator::do_LoadField(LoadField* x) {
duke@435 1688 bool needs_patching = x->needs_patching();
duke@435 1689 bool is_volatile = x->field()->is_volatile();
duke@435 1690 BasicType field_type = x->field_type();
duke@435 1691
duke@435 1692 CodeEmitInfo* info = NULL;
duke@435 1693 if (needs_patching) {
duke@435 1694 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
duke@435 1695 info = state_for(x, x->state_before());
duke@435 1696 } else if (x->needs_null_check()) {
duke@435 1697 NullCheck* nc = x->explicit_null_check();
duke@435 1698 if (nc == NULL) {
roland@2174 1699 info = state_for(x);
duke@435 1700 } else {
duke@435 1701 info = state_for(nc);
duke@435 1702 }
duke@435 1703 }
duke@435 1704
duke@435 1705 LIRItem object(x->obj(), this);
duke@435 1706
duke@435 1707 object.load_item();
duke@435 1708
roland@2174 1709 #ifndef PRODUCT
duke@435 1710 if (PrintNotLoaded && needs_patching) {
duke@435 1711 tty->print_cr(" ###class not loaded at load_%s bci %d",
roland@2174 1712 x->is_static() ? "static" : "field", x->printable_bci());
duke@435 1713 }
roland@2174 1714 #endif
duke@435 1715
duke@435 1716 if (x->needs_null_check() &&
duke@435 1717 (needs_patching ||
duke@435 1718 MacroAssembler::needs_explicit_null_check(x->offset()))) {
duke@435 1719 // emit an explicit null check because the offset is too large
duke@435 1720 __ null_check(object.result(), new CodeEmitInfo(info));
duke@435 1721 }
duke@435 1722
duke@435 1723 LIR_Opr reg = rlock_result(x, field_type);
duke@435 1724 LIR_Address* address;
duke@435 1725 if (needs_patching) {
duke@435 1726 // we need to patch the offset in the instruction so don't allow
duke@435 1727 // generate_address to try to be smart about emitting the -1.
duke@435 1728 // Otherwise the patching code won't know how to find the
duke@435 1729 // instruction to patch.
bobv@2036 1730 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
duke@435 1731 } else {
duke@435 1732 address = generate_address(object.result(), x->offset(), field_type);
duke@435 1733 }
duke@435 1734
never@2634 1735 if (is_volatile && !needs_patching) {
duke@435 1736 volatile_field_load(address, reg, info);
duke@435 1737 } else {
duke@435 1738 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
duke@435 1739 __ load(address, reg, info, patch_code);
duke@435 1740 }
duke@435 1741
duke@435 1742 if (is_volatile && os::is_MP()) {
duke@435 1743 __ membar_acquire();
duke@435 1744 }
duke@435 1745 }
duke@435 1746
duke@435 1747
duke@435 1748 //------------------------java.nio.Buffer.checkIndex------------------------
duke@435 1749
duke@435 1750 // int java.nio.Buffer.checkIndex(int)
duke@435 1751 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
duke@435 1752 // NOTE: by the time we are in checkIndex() we are guaranteed that
duke@435 1753 // the buffer is non-null (because checkIndex is package-private and
duke@435 1754 // only called from within other methods in the buffer).
duke@435 1755 assert(x->number_of_arguments() == 2, "wrong type");
duke@435 1756 LIRItem buf (x->argument_at(0), this);
duke@435 1757 LIRItem index(x->argument_at(1), this);
duke@435 1758 buf.load_item();
duke@435 1759 index.load_item();
duke@435 1760
duke@435 1761 LIR_Opr result = rlock_result(x);
duke@435 1762 if (GenerateRangeChecks) {
duke@435 1763 CodeEmitInfo* info = state_for(x);
duke@435 1764 CodeStub* stub = new RangeCheckStub(info, index.result(), true);
duke@435 1765 if (index.result()->is_constant()) {
duke@435 1766 cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
duke@435 1767 __ branch(lir_cond_belowEqual, T_INT, stub);
duke@435 1768 } else {
duke@435 1769 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
duke@435 1770 java_nio_Buffer::limit_offset(), T_INT, info);
duke@435 1771 __ branch(lir_cond_aboveEqual, T_INT, stub);
duke@435 1772 }
duke@435 1773 __ move(index.result(), result);
duke@435 1774 } else {
duke@435 1775 // Just load the index into the result register
duke@435 1776 __ move(index.result(), result);
duke@435 1777 }
duke@435 1778 }
duke@435 1779
duke@435 1780
duke@435 1781 //------------------------array access--------------------------------------
duke@435 1782
duke@435 1783
duke@435 1784 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
duke@435 1785 LIRItem array(x->array(), this);
duke@435 1786 array.load_item();
duke@435 1787 LIR_Opr reg = rlock_result(x);
duke@435 1788
duke@435 1789 CodeEmitInfo* info = NULL;
duke@435 1790 if (x->needs_null_check()) {
duke@435 1791 NullCheck* nc = x->explicit_null_check();
duke@435 1792 if (nc == NULL) {
duke@435 1793 info = state_for(x);
duke@435 1794 } else {
duke@435 1795 info = state_for(nc);
duke@435 1796 }
duke@435 1797 }
duke@435 1798 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
duke@435 1799 }
duke@435 1800
duke@435 1801
duke@435 1802 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
duke@435 1803 bool use_length = x->length() != NULL;
duke@435 1804 LIRItem array(x->array(), this);
duke@435 1805 LIRItem index(x->index(), this);
duke@435 1806 LIRItem length(this);
duke@435 1807 bool needs_range_check = true;
duke@435 1808
duke@435 1809 if (use_length) {
duke@435 1810 needs_range_check = x->compute_needs_range_check();
duke@435 1811 if (needs_range_check) {
duke@435 1812 length.set_instruction(x->length());
duke@435 1813 length.load_item();
duke@435 1814 }
duke@435 1815 }
duke@435 1816
duke@435 1817 array.load_item();
duke@435 1818 if (index.is_constant() && can_inline_as_constant(x->index())) {
duke@435 1819 // let it be a constant
duke@435 1820 index.dont_load_item();
duke@435 1821 } else {
duke@435 1822 index.load_item();
duke@435 1823 }
duke@435 1824
duke@435 1825 CodeEmitInfo* range_check_info = state_for(x);
duke@435 1826 CodeEmitInfo* null_check_info = NULL;
duke@435 1827 if (x->needs_null_check()) {
duke@435 1828 NullCheck* nc = x->explicit_null_check();
duke@435 1829 if (nc != NULL) {
duke@435 1830 null_check_info = state_for(nc);
duke@435 1831 } else {
duke@435 1832 null_check_info = range_check_info;
duke@435 1833 }
duke@435 1834 }
duke@435 1835
duke@435 1836 // emit array address setup early so it schedules better
duke@435 1837 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
duke@435 1838
duke@435 1839 if (GenerateRangeChecks && needs_range_check) {
duke@435 1840 if (use_length) {
duke@435 1841 // TODO: use a (modified) version of array_range_check that does not require a
duke@435 1842 // constant length to be loaded to a register
duke@435 1843 __ cmp(lir_cond_belowEqual, length.result(), index.result());
duke@435 1844 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
duke@435 1845 } else {
duke@435 1846 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
duke@435 1847 // The range check performs the null check, so clear it out for the load
duke@435 1848 null_check_info = NULL;
duke@435 1849 }
duke@435 1850 }
duke@435 1851
duke@435 1852 __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
duke@435 1853 }
duke@435 1854
duke@435 1855
duke@435 1856 void LIRGenerator::do_NullCheck(NullCheck* x) {
duke@435 1857 if (x->can_trap()) {
duke@435 1858 LIRItem value(x->obj(), this);
duke@435 1859 value.load_item();
duke@435 1860 CodeEmitInfo* info = state_for(x);
duke@435 1861 __ null_check(value.result(), info);
duke@435 1862 }
duke@435 1863 }
duke@435 1864
duke@435 1865
duke@435 1866 void LIRGenerator::do_Throw(Throw* x) {
duke@435 1867 LIRItem exception(x->exception(), this);
duke@435 1868 exception.load_item();
duke@435 1869 set_no_result(x);
duke@435 1870 LIR_Opr exception_opr = exception.result();
duke@435 1871 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1872
duke@435 1873 #ifndef PRODUCT
duke@435 1874 if (PrintC1Statistics) {
iveresov@2138 1875 increment_counter(Runtime1::throw_count_address(), T_INT);
duke@435 1876 }
duke@435 1877 #endif
duke@435 1878
duke@435 1879 // check if the instruction has an xhandler in any of the nested scopes
duke@435 1880 bool unwind = false;
duke@435 1881 if (info->exception_handlers()->length() == 0) {
duke@435 1882 // this throw is not inside an xhandler
duke@435 1883 unwind = true;
duke@435 1884 } else {
duke@435 1885 // get some idea of the throw type
duke@435 1886 bool type_is_exact = true;
duke@435 1887 ciType* throw_type = x->exception()->exact_type();
duke@435 1888 if (throw_type == NULL) {
duke@435 1889 type_is_exact = false;
duke@435 1890 throw_type = x->exception()->declared_type();
duke@435 1891 }
duke@435 1892 if (throw_type != NULL && throw_type->is_instance_klass()) {
duke@435 1893 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
duke@435 1894 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
duke@435 1895 }
duke@435 1896 }
duke@435 1897
duke@435 1898 // do null check before moving exception oop into fixed register
duke@435 1899 // to avoid a fixed interval with an oop during the null check.
duke@435 1900 // Use a copy of the CodeEmitInfo because debug information is
duke@435 1901 // different for null_check and throw.
duke@435 1902 if (GenerateCompilerNullChecks &&
duke@435 1903 (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
duke@435 1904 // if the exception object wasn't created using new then it might be null.
roland@2174 1905 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
duke@435 1906 }
duke@435 1907
never@1813 1908 if (compilation()->env()->jvmti_can_post_on_exceptions()) {
duke@435 1909 // we need to go through the exception lookup path to get JVMTI
duke@435 1910 // notification done
duke@435 1911 unwind = false;
duke@435 1912 }
duke@435 1913
duke@435 1914 // move exception oop into fixed register
duke@435 1915 __ move(exception_opr, exceptionOopOpr());
duke@435 1916
duke@435 1917 if (unwind) {
never@1813 1918 __ unwind_exception(exceptionOopOpr());
duke@435 1919 } else {
duke@435 1920 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
duke@435 1921 }
duke@435 1922 }
duke@435 1923
duke@435 1924
duke@435 1925 void LIRGenerator::do_RoundFP(RoundFP* x) {
duke@435 1926 LIRItem input(x->input(), this);
duke@435 1927 input.load_item();
duke@435 1928 LIR_Opr input_opr = input.result();
duke@435 1929 assert(input_opr->is_register(), "why round if value is not in a register?");
duke@435 1930 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
duke@435 1931 if (input_opr->is_single_fpu()) {
duke@435 1932 set_result(x, round_item(input_opr)); // This code path not currently taken
duke@435 1933 } else {
duke@435 1934 LIR_Opr result = new_register(T_DOUBLE);
duke@435 1935 set_vreg_flag(result, must_start_in_memory);
duke@435 1936 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
duke@435 1937 set_result(x, result);
duke@435 1938 }
duke@435 1939 }
duke@435 1940
duke@435 1941 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
duke@435 1942 LIRItem base(x->base(), this);
duke@435 1943 LIRItem idx(this);
duke@435 1944
duke@435 1945 base.load_item();
duke@435 1946 if (x->has_index()) {
duke@435 1947 idx.set_instruction(x->index());
duke@435 1948 idx.load_nonconstant();
duke@435 1949 }
duke@435 1950
duke@435 1951 LIR_Opr reg = rlock_result(x, x->basic_type());
duke@435 1952
duke@435 1953 int log2_scale = 0;
duke@435 1954 if (x->has_index()) {
duke@435 1955 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
duke@435 1956 log2_scale = x->log2_scale();
duke@435 1957 }
duke@435 1958
duke@435 1959 assert(!x->has_index() || idx.value() == x->index(), "should match");
duke@435 1960
duke@435 1961 LIR_Opr base_op = base.result();
duke@435 1962 #ifndef _LP64
duke@435 1963 if (x->base()->type()->tag() == longTag) {
duke@435 1964 base_op = new_register(T_INT);
duke@435 1965 __ convert(Bytecodes::_l2i, base.result(), base_op);
duke@435 1966 } else {
duke@435 1967 assert(x->base()->type()->tag() == intTag, "must be");
duke@435 1968 }
duke@435 1969 #endif
duke@435 1970
duke@435 1971 BasicType dst_type = x->basic_type();
duke@435 1972 LIR_Opr index_op = idx.result();
duke@435 1973
duke@435 1974 LIR_Address* addr;
duke@435 1975 if (index_op->is_constant()) {
duke@435 1976 assert(log2_scale == 0, "must not have a scale");
duke@435 1977 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
duke@435 1978 } else {
never@739 1979 #ifdef X86
roland@1495 1980 #ifdef _LP64
roland@1495 1981 if (!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 1982 LIR_Opr tmp = new_pointer_register();
roland@1495 1983 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 1984 index_op = tmp;
roland@1495 1985 }
roland@1495 1986 #endif
duke@435 1987 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
bobv@2036 1988 #elif defined(ARM)
bobv@2036 1989 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
duke@435 1990 #else
duke@435 1991 if (index_op->is_illegal() || log2_scale == 0) {
roland@1495 1992 #ifdef _LP64
roland@1495 1993 if (!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 1994 LIR_Opr tmp = new_pointer_register();
roland@1495 1995 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 1996 index_op = tmp;
roland@1495 1997 }
roland@1495 1998 #endif
duke@435 1999 addr = new LIR_Address(base_op, index_op, dst_type);
duke@435 2000 } else {
roland@1495 2001 LIR_Opr tmp = new_pointer_register();
duke@435 2002 __ shift_left(index_op, log2_scale, tmp);
duke@435 2003 addr = new LIR_Address(base_op, tmp, dst_type);
duke@435 2004 }
duke@435 2005 #endif
duke@435 2006 }
duke@435 2007
duke@435 2008 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
duke@435 2009 __ unaligned_move(addr, reg);
duke@435 2010 } else {
iveresov@2344 2011 if (dst_type == T_OBJECT && x->is_wide()) {
iveresov@2344 2012 __ move_wide(addr, reg);
iveresov@2344 2013 } else {
iveresov@2344 2014 __ move(addr, reg);
iveresov@2344 2015 }
duke@435 2016 }
duke@435 2017 }
duke@435 2018
duke@435 2019
duke@435 2020 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
duke@435 2021 int log2_scale = 0;
duke@435 2022 BasicType type = x->basic_type();
duke@435 2023
duke@435 2024 if (x->has_index()) {
duke@435 2025 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
duke@435 2026 log2_scale = x->log2_scale();
duke@435 2027 }
duke@435 2028
duke@435 2029 LIRItem base(x->base(), this);
duke@435 2030 LIRItem value(x->value(), this);
duke@435 2031 LIRItem idx(this);
duke@435 2032
duke@435 2033 base.load_item();
duke@435 2034 if (x->has_index()) {
duke@435 2035 idx.set_instruction(x->index());
duke@435 2036 idx.load_item();
duke@435 2037 }
duke@435 2038
duke@435 2039 if (type == T_BYTE || type == T_BOOLEAN) {
duke@435 2040 value.load_byte_item();
duke@435 2041 } else {
duke@435 2042 value.load_item();
duke@435 2043 }
duke@435 2044
duke@435 2045 set_no_result(x);
duke@435 2046
duke@435 2047 LIR_Opr base_op = base.result();
duke@435 2048 #ifndef _LP64
duke@435 2049 if (x->base()->type()->tag() == longTag) {
duke@435 2050 base_op = new_register(T_INT);
duke@435 2051 __ convert(Bytecodes::_l2i, base.result(), base_op);
duke@435 2052 } else {
duke@435 2053 assert(x->base()->type()->tag() == intTag, "must be");
duke@435 2054 }
duke@435 2055 #endif
duke@435 2056
duke@435 2057 LIR_Opr index_op = idx.result();
duke@435 2058 if (log2_scale != 0) {
duke@435 2059 // temporary fix (platform dependent code without shift on Intel would be better)
roland@1495 2060 index_op = new_pointer_register();
roland@1495 2061 #ifdef _LP64
roland@1495 2062 if(idx.result()->type() == T_INT) {
roland@1495 2063 __ convert(Bytecodes::_i2l, idx.result(), index_op);
roland@1495 2064 } else {
roland@1495 2065 #endif
bobv@2036 2066 // TODO: ARM also allows embedded shift in the address
roland@1495 2067 __ move(idx.result(), index_op);
roland@1495 2068 #ifdef _LP64
roland@1495 2069 }
roland@1495 2070 #endif
duke@435 2071 __ shift_left(index_op, log2_scale, index_op);
duke@435 2072 }
roland@1495 2073 #ifdef _LP64
roland@1495 2074 else if(!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 2075 LIR_Opr tmp = new_pointer_register();
roland@1495 2076 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 2077 index_op = tmp;
roland@1495 2078 }
roland@1495 2079 #endif
duke@435 2080
duke@435 2081 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
duke@435 2082 __ move(value.result(), addr);
duke@435 2083 }
duke@435 2084
duke@435 2085
duke@435 2086 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
duke@435 2087 BasicType type = x->basic_type();
duke@435 2088 LIRItem src(x->object(), this);
duke@435 2089 LIRItem off(x->offset(), this);
duke@435 2090
duke@435 2091 off.load_item();
duke@435 2092 src.load_item();
duke@435 2093
duke@435 2094 LIR_Opr reg = reg = rlock_result(x, x->basic_type());
duke@435 2095
dholmes@2443 2096 get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
duke@435 2097 if (x->is_volatile() && os::is_MP()) __ membar_acquire();
duke@435 2098 }
duke@435 2099
duke@435 2100
duke@435 2101 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
duke@435 2102 BasicType type = x->basic_type();
duke@435 2103 LIRItem src(x->object(), this);
duke@435 2104 LIRItem off(x->offset(), this);
duke@435 2105 LIRItem data(x->value(), this);
duke@435 2106
duke@435 2107 src.load_item();
duke@435 2108 if (type == T_BOOLEAN || type == T_BYTE) {
duke@435 2109 data.load_byte_item();
duke@435 2110 } else {
duke@435 2111 data.load_item();
duke@435 2112 }
duke@435 2113 off.load_item();
duke@435 2114
duke@435 2115 set_no_result(x);
duke@435 2116
duke@435 2117 if (x->is_volatile() && os::is_MP()) __ membar_release();
duke@435 2118 put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
dholmes@2443 2119 if (x->is_volatile() && os::is_MP()) __ membar();
duke@435 2120 }
duke@435 2121
duke@435 2122
duke@435 2123 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
duke@435 2124 LIRItem src(x->object(), this);
duke@435 2125 LIRItem off(x->offset(), this);
duke@435 2126
duke@435 2127 src.load_item();
duke@435 2128 if (off.is_constant() && can_inline_as_constant(x->offset())) {
duke@435 2129 // let it be a constant
duke@435 2130 off.dont_load_item();
duke@435 2131 } else {
duke@435 2132 off.load_item();
duke@435 2133 }
duke@435 2134
duke@435 2135 set_no_result(x);
duke@435 2136
duke@435 2137 LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
duke@435 2138 __ prefetch(addr, is_store);
duke@435 2139 }
duke@435 2140
duke@435 2141
duke@435 2142 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
duke@435 2143 do_UnsafePrefetch(x, false);
duke@435 2144 }
duke@435 2145
duke@435 2146
duke@435 2147 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
duke@435 2148 do_UnsafePrefetch(x, true);
duke@435 2149 }
duke@435 2150
duke@435 2151
duke@435 2152 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
duke@435 2153 int lng = x->length();
duke@435 2154
duke@435 2155 for (int i = 0; i < lng; i++) {
duke@435 2156 SwitchRange* one_range = x->at(i);
duke@435 2157 int low_key = one_range->low_key();
duke@435 2158 int high_key = one_range->high_key();
duke@435 2159 BlockBegin* dest = one_range->sux();
duke@435 2160 if (low_key == high_key) {
duke@435 2161 __ cmp(lir_cond_equal, value, low_key);
duke@435 2162 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2163 } else if (high_key - low_key == 1) {
duke@435 2164 __ cmp(lir_cond_equal, value, low_key);
duke@435 2165 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2166 __ cmp(lir_cond_equal, value, high_key);
duke@435 2167 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2168 } else {
duke@435 2169 LabelObj* L = new LabelObj();
duke@435 2170 __ cmp(lir_cond_less, value, low_key);
duke@435 2171 __ branch(lir_cond_less, L->label());
duke@435 2172 __ cmp(lir_cond_lessEqual, value, high_key);
duke@435 2173 __ branch(lir_cond_lessEqual, T_INT, dest);
duke@435 2174 __ branch_destination(L->label());
duke@435 2175 }
duke@435 2176 }
duke@435 2177 __ jump(default_sux);
duke@435 2178 }
duke@435 2179
duke@435 2180
duke@435 2181 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
duke@435 2182 SwitchRangeList* res = new SwitchRangeList();
duke@435 2183 int len = x->length();
duke@435 2184 if (len > 0) {
duke@435 2185 BlockBegin* sux = x->sux_at(0);
duke@435 2186 int key = x->lo_key();
duke@435 2187 BlockBegin* default_sux = x->default_sux();
duke@435 2188 SwitchRange* range = new SwitchRange(key, sux);
duke@435 2189 for (int i = 0; i < len; i++, key++) {
duke@435 2190 BlockBegin* new_sux = x->sux_at(i);
duke@435 2191 if (sux == new_sux) {
duke@435 2192 // still in same range
duke@435 2193 range->set_high_key(key);
duke@435 2194 } else {
duke@435 2195 // skip tests which explicitly dispatch to the default
duke@435 2196 if (sux != default_sux) {
duke@435 2197 res->append(range);
duke@435 2198 }
duke@435 2199 range = new SwitchRange(key, new_sux);
duke@435 2200 }
duke@435 2201 sux = new_sux;
duke@435 2202 }
duke@435 2203 if (res->length() == 0 || res->last() != range) res->append(range);
duke@435 2204 }
duke@435 2205 return res;
duke@435 2206 }
duke@435 2207
duke@435 2208
duke@435 2209 // we expect the keys to be sorted by increasing value
duke@435 2210 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
duke@435 2211 SwitchRangeList* res = new SwitchRangeList();
duke@435 2212 int len = x->length();
duke@435 2213 if (len > 0) {
duke@435 2214 BlockBegin* default_sux = x->default_sux();
duke@435 2215 int key = x->key_at(0);
duke@435 2216 BlockBegin* sux = x->sux_at(0);
duke@435 2217 SwitchRange* range = new SwitchRange(key, sux);
duke@435 2218 for (int i = 1; i < len; i++) {
duke@435 2219 int new_key = x->key_at(i);
duke@435 2220 BlockBegin* new_sux = x->sux_at(i);
duke@435 2221 if (key+1 == new_key && sux == new_sux) {
duke@435 2222 // still in same range
duke@435 2223 range->set_high_key(new_key);
duke@435 2224 } else {
duke@435 2225 // skip tests which explicitly dispatch to the default
duke@435 2226 if (range->sux() != default_sux) {
duke@435 2227 res->append(range);
duke@435 2228 }
duke@435 2229 range = new SwitchRange(new_key, new_sux);
duke@435 2230 }
duke@435 2231 key = new_key;
duke@435 2232 sux = new_sux;
duke@435 2233 }
duke@435 2234 if (res->length() == 0 || res->last() != range) res->append(range);
duke@435 2235 }
duke@435 2236 return res;
duke@435 2237 }
duke@435 2238
duke@435 2239
duke@435 2240 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
duke@435 2241 LIRItem tag(x->tag(), this);
duke@435 2242 tag.load_item();
duke@435 2243 set_no_result(x);
duke@435 2244
duke@435 2245 if (x->is_safepoint()) {
duke@435 2246 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
duke@435 2247 }
duke@435 2248
duke@435 2249 // move values into phi locations
duke@435 2250 move_to_phi(x->state());
duke@435 2251
duke@435 2252 int lo_key = x->lo_key();
duke@435 2253 int hi_key = x->hi_key();
duke@435 2254 int len = x->length();
duke@435 2255 LIR_Opr value = tag.result();
duke@435 2256 if (UseTableRanges) {
duke@435 2257 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
duke@435 2258 } else {
duke@435 2259 for (int i = 0; i < len; i++) {
duke@435 2260 __ cmp(lir_cond_equal, value, i + lo_key);
duke@435 2261 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
duke@435 2262 }
duke@435 2263 __ jump(x->default_sux());
duke@435 2264 }
duke@435 2265 }
duke@435 2266
duke@435 2267
duke@435 2268 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
duke@435 2269 LIRItem tag(x->tag(), this);
duke@435 2270 tag.load_item();
duke@435 2271 set_no_result(x);
duke@435 2272
duke@435 2273 if (x->is_safepoint()) {
duke@435 2274 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
duke@435 2275 }
duke@435 2276
duke@435 2277 // move values into phi locations
duke@435 2278 move_to_phi(x->state());
duke@435 2279
duke@435 2280 LIR_Opr value = tag.result();
duke@435 2281 if (UseTableRanges) {
duke@435 2282 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
duke@435 2283 } else {
duke@435 2284 int len = x->length();
duke@435 2285 for (int i = 0; i < len; i++) {
duke@435 2286 __ cmp(lir_cond_equal, value, x->key_at(i));
duke@435 2287 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
duke@435 2288 }
duke@435 2289 __ jump(x->default_sux());
duke@435 2290 }
duke@435 2291 }
duke@435 2292
duke@435 2293
duke@435 2294 void LIRGenerator::do_Goto(Goto* x) {
duke@435 2295 set_no_result(x);
duke@435 2296
duke@435 2297 if (block()->next()->as_OsrEntry()) {
duke@435 2298 // need to free up storage used for OSR entry point
duke@435 2299 LIR_Opr osrBuffer = block()->next()->operand();
duke@435 2300 BasicTypeList signature;
duke@435 2301 signature.append(T_INT);
duke@435 2302 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
duke@435 2303 __ move(osrBuffer, cc->args()->at(0));
duke@435 2304 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
duke@435 2305 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
duke@435 2306 }
duke@435 2307
duke@435 2308 if (x->is_safepoint()) {
duke@435 2309 ValueStack* state = x->state_before() ? x->state_before() : x->state();
duke@435 2310
duke@435 2311 // increment backedge counter if needed
iveresov@2138 2312 CodeEmitInfo* info = state_for(x, state);
roland@2174 2313 increment_backedge_counter(info, info->stack()->bci());
duke@435 2314 CodeEmitInfo* safepoint_info = state_for(x, state);
duke@435 2315 __ safepoint(safepoint_poll_register(), safepoint_info);
duke@435 2316 }
duke@435 2317
iveresov@2138 2318 // Gotos can be folded Ifs, handle this case.
iveresov@2138 2319 if (x->should_profile()) {
iveresov@2138 2320 ciMethod* method = x->profiled_method();
iveresov@2138 2321 assert(method != NULL, "method should be set if branch is profiled");
iveresov@2349 2322 ciMethodData* md = method->method_data_or_null();
iveresov@2349 2323 assert(md != NULL, "Sanity");
iveresov@2138 2324 ciProfileData* data = md->bci_to_data(x->profiled_bci());
iveresov@2138 2325 assert(data != NULL, "must have profiling data");
iveresov@2138 2326 int offset;
iveresov@2138 2327 if (x->direction() == Goto::taken) {
iveresov@2138 2328 assert(data->is_BranchData(), "need BranchData for two-way branches");
iveresov@2138 2329 offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
iveresov@2138 2330 } else if (x->direction() == Goto::not_taken) {
iveresov@2138 2331 assert(data->is_BranchData(), "need BranchData for two-way branches");
iveresov@2138 2332 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
iveresov@2138 2333 } else {
iveresov@2138 2334 assert(data->is_JumpData(), "need JumpData for branches");
iveresov@2138 2335 offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
iveresov@2138 2336 }
iveresov@2138 2337 LIR_Opr md_reg = new_register(T_OBJECT);
iveresov@2138 2338 __ oop2reg(md->constant_encoding(), md_reg);
iveresov@2138 2339
iveresov@2138 2340 increment_counter(new LIR_Address(md_reg, offset,
iveresov@2138 2341 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
iveresov@2138 2342 }
iveresov@2138 2343
duke@435 2344 // emit phi-instruction move after safepoint since this simplifies
duke@435 2345 // describing the state as the safepoint.
duke@435 2346 move_to_phi(x->state());
duke@435 2347
duke@435 2348 __ jump(x->default_sux());
duke@435 2349 }
duke@435 2350
duke@435 2351
duke@435 2352 void LIRGenerator::do_Base(Base* x) {
duke@435 2353 __ std_entry(LIR_OprFact::illegalOpr);
duke@435 2354 // Emit moves from physical registers / stack slots to virtual registers
duke@435 2355 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
duke@435 2356 IRScope* irScope = compilation()->hir()->top_scope();
duke@435 2357 int java_index = 0;
duke@435 2358 for (int i = 0; i < args->length(); i++) {
duke@435 2359 LIR_Opr src = args->at(i);
duke@435 2360 assert(!src->is_illegal(), "check");
duke@435 2361 BasicType t = src->type();
duke@435 2362
duke@435 2363 // Types which are smaller than int are passed as int, so
duke@435 2364 // correct the type which passed.
duke@435 2365 switch (t) {
duke@435 2366 case T_BYTE:
duke@435 2367 case T_BOOLEAN:
duke@435 2368 case T_SHORT:
duke@435 2369 case T_CHAR:
duke@435 2370 t = T_INT;
duke@435 2371 break;
duke@435 2372 }
duke@435 2373
duke@435 2374 LIR_Opr dest = new_register(t);
duke@435 2375 __ move(src, dest);
duke@435 2376
duke@435 2377 // Assign new location to Local instruction for this local
duke@435 2378 Local* local = x->state()->local_at(java_index)->as_Local();
duke@435 2379 assert(local != NULL, "Locals for incoming arguments must have been created");
bobv@2036 2380 #ifndef __SOFTFP__
bobv@2036 2381 // The java calling convention passes double as long and float as int.
duke@435 2382 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
bobv@2036 2383 #endif // __SOFTFP__
duke@435 2384 local->set_operand(dest);
duke@435 2385 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
duke@435 2386 java_index += type2size[t];
duke@435 2387 }
duke@435 2388
kvn@1215 2389 if (compilation()->env()->dtrace_method_probes()) {
duke@435 2390 BasicTypeList signature;
iveresov@2344 2391 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
duke@435 2392 signature.append(T_OBJECT); // methodOop
duke@435 2393 LIR_OprList* args = new LIR_OprList();
duke@435 2394 args->append(getThreadPointer());
duke@435 2395 LIR_Opr meth = new_register(T_OBJECT);
jrose@1424 2396 __ oop2reg(method()->constant_encoding(), meth);
duke@435 2397 args->append(meth);
duke@435 2398 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
duke@435 2399 }
duke@435 2400
duke@435 2401 if (method()->is_synchronized()) {
duke@435 2402 LIR_Opr obj;
duke@435 2403 if (method()->is_static()) {
duke@435 2404 obj = new_register(T_OBJECT);
jrose@1424 2405 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
duke@435 2406 } else {
duke@435 2407 Local* receiver = x->state()->local_at(0)->as_Local();
duke@435 2408 assert(receiver != NULL, "must already exist");
duke@435 2409 obj = receiver->operand();
duke@435 2410 }
duke@435 2411 assert(obj->is_valid(), "must be valid");
duke@435 2412
duke@435 2413 if (method()->is_synchronized() && GenerateSynchronizationCode) {
duke@435 2414 LIR_Opr lock = new_register(T_INT);
duke@435 2415 __ load_stack_address_monitor(0, lock);
duke@435 2416
roland@2174 2417 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
duke@435 2418 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
duke@435 2419
duke@435 2420 // receiver is guaranteed non-NULL so don't need CodeEmitInfo
duke@435 2421 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
duke@435 2422 }
duke@435 2423 }
duke@435 2424
duke@435 2425 // increment invocation counters if needed
iveresov@2138 2426 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
iveresov@2180 2427 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
iveresov@2138 2428 increment_invocation_counter(info);
iveresov@2138 2429 }
duke@435 2430
duke@435 2431 // all blocks with a successor must end with an unconditional jump
duke@435 2432 // to the successor even if they are consecutive
duke@435 2433 __ jump(x->default_sux());
duke@435 2434 }
duke@435 2435
duke@435 2436
duke@435 2437 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
duke@435 2438 // construct our frame and model the production of incoming pointer
duke@435 2439 // to the OSR buffer.
duke@435 2440 __ osr_entry(LIR_Assembler::osrBufferPointer());
duke@435 2441 LIR_Opr result = rlock_result(x);
duke@435 2442 __ move(LIR_Assembler::osrBufferPointer(), result);
duke@435 2443 }
duke@435 2444
duke@435 2445
duke@435 2446 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
twisti@1730 2447 int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
duke@435 2448 for (; i < args->length(); i++) {
duke@435 2449 LIRItem* param = args->at(i);
duke@435 2450 LIR_Opr loc = arg_list->at(i);
duke@435 2451 if (loc->is_register()) {
duke@435 2452 param->load_item_force(loc);
duke@435 2453 } else {
duke@435 2454 LIR_Address* addr = loc->as_address_ptr();
duke@435 2455 param->load_for_store(addr->type());
iveresov@2344 2456 if (addr->type() == T_OBJECT) {
iveresov@2344 2457 __ move_wide(param->result(), addr);
iveresov@2344 2458 } else
iveresov@2344 2459 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
iveresov@2344 2460 __ unaligned_move(param->result(), addr);
iveresov@2344 2461 } else {
iveresov@2344 2462 __ move(param->result(), addr);
iveresov@2344 2463 }
duke@435 2464 }
duke@435 2465 }
duke@435 2466
duke@435 2467 if (x->has_receiver()) {
duke@435 2468 LIRItem* receiver = args->at(0);
duke@435 2469 LIR_Opr loc = arg_list->at(0);
duke@435 2470 if (loc->is_register()) {
duke@435 2471 receiver->load_item_force(loc);
duke@435 2472 } else {
duke@435 2473 assert(loc->is_address(), "just checking");
duke@435 2474 receiver->load_for_store(T_OBJECT);
iveresov@2344 2475 __ move_wide(receiver->result(), loc->as_address_ptr());
duke@435 2476 }
duke@435 2477 }
duke@435 2478 }
duke@435 2479
duke@435 2480
duke@435 2481 // Visits all arguments, returns appropriate items without loading them
duke@435 2482 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
duke@435 2483 LIRItemList* argument_items = new LIRItemList();
duke@435 2484 if (x->has_receiver()) {
duke@435 2485 LIRItem* receiver = new LIRItem(x->receiver(), this);
duke@435 2486 argument_items->append(receiver);
duke@435 2487 }
twisti@1730 2488 if (x->is_invokedynamic()) {
twisti@1730 2489 // Insert a dummy for the synthetic MethodHandle argument.
twisti@1730 2490 argument_items->append(NULL);
twisti@1730 2491 }
duke@435 2492 int idx = x->has_receiver() ? 1 : 0;
duke@435 2493 for (int i = 0; i < x->number_of_arguments(); i++) {
duke@435 2494 LIRItem* param = new LIRItem(x->argument_at(i), this);
duke@435 2495 argument_items->append(param);
duke@435 2496 idx += (param->type()->is_double_word() ? 2 : 1);
duke@435 2497 }
duke@435 2498 return argument_items;
duke@435 2499 }
duke@435 2500
duke@435 2501
duke@435 2502 // The invoke with receiver has following phases:
duke@435 2503 // a) traverse and load/lock receiver;
duke@435 2504 // b) traverse all arguments -> item-array (invoke_visit_argument)
duke@435 2505 // c) push receiver on stack
duke@435 2506 // d) load each of the items and push on stack
duke@435 2507 // e) unlock receiver
duke@435 2508 // f) move receiver into receiver-register %o0
duke@435 2509 // g) lock result registers and emit call operation
duke@435 2510 //
duke@435 2511 // Before issuing a call, we must spill-save all values on stack
duke@435 2512 // that are in caller-save register. "spill-save" moves thos registers
duke@435 2513 // either in a free callee-save register or spills them if no free
duke@435 2514 // callee save register is available.
duke@435 2515 //
duke@435 2516 // The problem is where to invoke spill-save.
duke@435 2517 // - if invoked between e) and f), we may lock callee save
duke@435 2518 // register in "spill-save" that destroys the receiver register
duke@435 2519 // before f) is executed
duke@435 2520 // - if we rearange the f) to be earlier, by loading %o0, it
duke@435 2521 // may destroy a value on the stack that is currently in %o0
duke@435 2522 // and is waiting to be spilled
duke@435 2523 // - if we keep the receiver locked while doing spill-save,
duke@435 2524 // we cannot spill it as it is spill-locked
duke@435 2525 //
duke@435 2526 void LIRGenerator::do_Invoke(Invoke* x) {
duke@435 2527 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
duke@435 2528
duke@435 2529 LIR_OprList* arg_list = cc->args();
duke@435 2530 LIRItemList* args = invoke_visit_arguments(x);
duke@435 2531 LIR_Opr receiver = LIR_OprFact::illegalOpr;
duke@435 2532
duke@435 2533 // setup result register
duke@435 2534 LIR_Opr result_register = LIR_OprFact::illegalOpr;
duke@435 2535 if (x->type() != voidType) {
duke@435 2536 result_register = result_register_for(x->type());
duke@435 2537 }
duke@435 2538
duke@435 2539 CodeEmitInfo* info = state_for(x, x->state());
duke@435 2540
twisti@1730 2541 // invokedynamics can deoptimize.
twisti@1739 2542 CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
twisti@1730 2543
duke@435 2544 invoke_load_arguments(x, args, arg_list);
duke@435 2545
duke@435 2546 if (x->has_receiver()) {
duke@435 2547 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
duke@435 2548 receiver = args->at(0)->result();
duke@435 2549 }
duke@435 2550
duke@435 2551 // emit invoke code
duke@435 2552 bool optimized = x->target_is_loaded() && x->target_is_final();
duke@435 2553 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
duke@435 2554
twisti@1919 2555 // JSR 292
twisti@1919 2556 // Preserve the SP over MethodHandle call sites.
twisti@1919 2557 ciMethod* target = x->target();
twisti@1919 2558 if (target->is_method_handle_invoke()) {
twisti@1919 2559 info->set_is_method_handle_invoke(true);
twisti@1919 2560 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
twisti@1919 2561 }
twisti@1919 2562
duke@435 2563 switch (x->code()) {
duke@435 2564 case Bytecodes::_invokestatic:
twisti@1919 2565 __ call_static(target, result_register,
duke@435 2566 SharedRuntime::get_resolve_static_call_stub(),
duke@435 2567 arg_list, info);
duke@435 2568 break;
duke@435 2569 case Bytecodes::_invokespecial:
duke@435 2570 case Bytecodes::_invokevirtual:
duke@435 2571 case Bytecodes::_invokeinterface:
duke@435 2572 // for final target we still produce an inline cache, in order
duke@435 2573 // to be able to call mixed mode
duke@435 2574 if (x->code() == Bytecodes::_invokespecial || optimized) {
twisti@1919 2575 __ call_opt_virtual(target, receiver, result_register,
duke@435 2576 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 2577 arg_list, info);
duke@435 2578 } else if (x->vtable_index() < 0) {
twisti@1919 2579 __ call_icvirtual(target, receiver, result_register,
duke@435 2580 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 2581 arg_list, info);
duke@435 2582 } else {
duke@435 2583 int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
duke@435 2584 int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
twisti@1919 2585 __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
duke@435 2586 }
duke@435 2587 break;
twisti@1730 2588 case Bytecodes::_invokedynamic: {
twisti@1730 2589 ciBytecodeStream bcs(x->scope()->method());
roland@2174 2590 bcs.force_bci(x->state()->bci());
twisti@1730 2591 assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
twisti@1730 2592 ciCPCache* cpcache = bcs.get_cpcache();
twisti@1730 2593
twisti@1730 2594 // Get CallSite offset from constant pool cache pointer.
twisti@1730 2595 int index = bcs.get_method_index();
twisti@1730 2596 size_t call_site_offset = cpcache->get_f1_offset(index);
twisti@1730 2597
twisti@1730 2598 // If this invokedynamic call site hasn't been executed yet in
twisti@1730 2599 // the interpreter, the CallSite object in the constant pool
twisti@1730 2600 // cache is still null and we need to deoptimize.
twisti@1730 2601 if (cpcache->is_f1_null_at(index)) {
twisti@1730 2602 // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
twisti@1730 2603 // clone all handlers. This is handled transparently in other
twisti@1730 2604 // places by the CodeEmitInfo cloning logic but is handled
twisti@1730 2605 // specially here because a stub isn't being used.
twisti@1730 2606 x->set_exception_handlers(new XHandlers(x->exception_handlers()));
twisti@1730 2607
twisti@1730 2608 DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
twisti@1730 2609 __ jump(deopt_stub);
twisti@1730 2610 }
twisti@1730 2611
twisti@1730 2612 // Use the receiver register for the synthetic MethodHandle
twisti@1730 2613 // argument.
twisti@1730 2614 receiver = LIR_Assembler::receiverOpr();
twisti@1730 2615 LIR_Opr tmp = new_register(objectType);
twisti@1730 2616
twisti@1730 2617 // Load CallSite object from constant pool cache.
twisti@1730 2618 __ oop2reg(cpcache->constant_encoding(), tmp);
twisti@1730 2619 __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
twisti@1730 2620
twisti@1730 2621 // Load target MethodHandle from CallSite object.
jrose@2639 2622 __ load(new LIR_Address(tmp, java_lang_invoke_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
twisti@1730 2623
twisti@1919 2624 __ call_dynamic(target, receiver, result_register,
twisti@1730 2625 SharedRuntime::get_resolve_opt_virtual_call_stub(),
twisti@1730 2626 arg_list, info);
twisti@1730 2627 break;
twisti@1730 2628 }
duke@435 2629 default:
duke@435 2630 ShouldNotReachHere();
duke@435 2631 break;
duke@435 2632 }
duke@435 2633
twisti@1919 2634 // JSR 292
twisti@1919 2635 // Restore the SP after MethodHandle call sites.
twisti@1919 2636 if (target->is_method_handle_invoke()) {
twisti@1919 2637 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
twisti@1919 2638 }
twisti@1919 2639
duke@435 2640 if (x->type()->is_float() || x->type()->is_double()) {
duke@435 2641 // Force rounding of results from non-strictfp when in strictfp
duke@435 2642 // scope (or when we don't know the strictness of the callee, to
duke@435 2643 // be safe.)
duke@435 2644 if (method()->is_strict()) {
duke@435 2645 if (!x->target_is_loaded() || !x->target_is_strictfp()) {
duke@435 2646 result_register = round_item(result_register);
duke@435 2647 }
duke@435 2648 }
duke@435 2649 }
duke@435 2650
duke@435 2651 if (result_register->is_valid()) {
duke@435 2652 LIR_Opr result = rlock_result(x);
duke@435 2653 __ move(result_register, result);
duke@435 2654 }
duke@435 2655 }
duke@435 2656
duke@435 2657
duke@435 2658 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
duke@435 2659 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 2660 LIRItem value (x->argument_at(0), this);
duke@435 2661 LIR_Opr reg = rlock_result(x);
duke@435 2662 value.load_item();
duke@435 2663 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
duke@435 2664 __ move(tmp, reg);
duke@435 2665 }
duke@435 2666
duke@435 2667
duke@435 2668
duke@435 2669 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
duke@435 2670 void LIRGenerator::do_IfOp(IfOp* x) {
duke@435 2671 #ifdef ASSERT
duke@435 2672 {
duke@435 2673 ValueTag xtag = x->x()->type()->tag();
duke@435 2674 ValueTag ttag = x->tval()->type()->tag();
duke@435 2675 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
duke@435 2676 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
duke@435 2677 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
duke@435 2678 }
duke@435 2679 #endif
duke@435 2680
duke@435 2681 LIRItem left(x->x(), this);
duke@435 2682 LIRItem right(x->y(), this);
duke@435 2683 left.load_item();
duke@435 2684 if (can_inline_as_constant(right.value())) {
duke@435 2685 right.dont_load_item();
duke@435 2686 } else {
duke@435 2687 right.load_item();
duke@435 2688 }
duke@435 2689
duke@435 2690 LIRItem t_val(x->tval(), this);
duke@435 2691 LIRItem f_val(x->fval(), this);
duke@435 2692 t_val.dont_load_item();
duke@435 2693 f_val.dont_load_item();
duke@435 2694 LIR_Opr reg = rlock_result(x);
duke@435 2695
duke@435 2696 __ cmp(lir_cond(x->cond()), left.result(), right.result());
iveresov@2412 2697 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
duke@435 2698 }
duke@435 2699
duke@435 2700
duke@435 2701 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
duke@435 2702 switch (x->id()) {
duke@435 2703 case vmIntrinsics::_intBitsToFloat :
duke@435 2704 case vmIntrinsics::_doubleToRawLongBits :
duke@435 2705 case vmIntrinsics::_longBitsToDouble :
duke@435 2706 case vmIntrinsics::_floatToRawIntBits : {
duke@435 2707 do_FPIntrinsics(x);
duke@435 2708 break;
duke@435 2709 }
duke@435 2710
duke@435 2711 case vmIntrinsics::_currentTimeMillis: {
duke@435 2712 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 2713 LIR_Opr reg = result_register_for(x->type());
duke@435 2714 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
duke@435 2715 reg, new LIR_OprList());
duke@435 2716 LIR_Opr result = rlock_result(x);
duke@435 2717 __ move(reg, result);
duke@435 2718 break;
duke@435 2719 }
duke@435 2720
duke@435 2721 case vmIntrinsics::_nanoTime: {
duke@435 2722 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 2723 LIR_Opr reg = result_register_for(x->type());
duke@435 2724 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
duke@435 2725 reg, new LIR_OprList());
duke@435 2726 LIR_Opr result = rlock_result(x);
duke@435 2727 __ move(reg, result);
duke@435 2728 break;
duke@435 2729 }
duke@435 2730
duke@435 2731 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
duke@435 2732 case vmIntrinsics::_getClass: do_getClass(x); break;
duke@435 2733 case vmIntrinsics::_currentThread: do_currentThread(x); break;
duke@435 2734
duke@435 2735 case vmIntrinsics::_dlog: // fall through
duke@435 2736 case vmIntrinsics::_dlog10: // fall through
duke@435 2737 case vmIntrinsics::_dabs: // fall through
duke@435 2738 case vmIntrinsics::_dsqrt: // fall through
duke@435 2739 case vmIntrinsics::_dtan: // fall through
duke@435 2740 case vmIntrinsics::_dsin : // fall through
duke@435 2741 case vmIntrinsics::_dcos : do_MathIntrinsic(x); break;
duke@435 2742 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
duke@435 2743
duke@435 2744 // java.nio.Buffer.checkIndex
duke@435 2745 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break;
duke@435 2746
duke@435 2747 case vmIntrinsics::_compareAndSwapObject:
duke@435 2748 do_CompareAndSwap(x, objectType);
duke@435 2749 break;
duke@435 2750 case vmIntrinsics::_compareAndSwapInt:
duke@435 2751 do_CompareAndSwap(x, intType);
duke@435 2752 break;
duke@435 2753 case vmIntrinsics::_compareAndSwapLong:
duke@435 2754 do_CompareAndSwap(x, longType);
duke@435 2755 break;
duke@435 2756
duke@435 2757 // sun.misc.AtomicLongCSImpl.attemptUpdate
duke@435 2758 case vmIntrinsics::_attemptUpdate:
duke@435 2759 do_AttemptUpdate(x);
duke@435 2760 break;
duke@435 2761
duke@435 2762 default: ShouldNotReachHere(); break;
duke@435 2763 }
duke@435 2764 }
duke@435 2765
duke@435 2766 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
duke@435 2767 // Need recv in a temporary register so it interferes with the other temporaries
duke@435 2768 LIR_Opr recv = LIR_OprFact::illegalOpr;
duke@435 2769 LIR_Opr mdo = new_register(T_OBJECT);
iveresov@2138 2770 // tmp is used to hold the counters on SPARC
iveresov@2138 2771 LIR_Opr tmp = new_pointer_register();
duke@435 2772 if (x->recv() != NULL) {
duke@435 2773 LIRItem value(x->recv(), this);
duke@435 2774 value.load_item();
duke@435 2775 recv = new_register(T_OBJECT);
duke@435 2776 __ move(value.result(), recv);
duke@435 2777 }
duke@435 2778 __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
duke@435 2779 }
duke@435 2780
iveresov@2138 2781 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
iveresov@2138 2782 // We can safely ignore accessors here, since c2 will inline them anyway,
iveresov@2138 2783 // accessors are also always mature.
iveresov@2138 2784 if (!x->inlinee()->is_accessor()) {
iveresov@2138 2785 CodeEmitInfo* info = state_for(x, x->state(), true);
iveresov@2138 2786 // Increment invocation counter, don't notify the runtime, because we don't inline loops,
iveresov@2138 2787 increment_event_counter_impl(info, x->inlinee(), 0, InvocationEntryBci, false, false);
iveresov@2138 2788 }
duke@435 2789 }
duke@435 2790
iveresov@2138 2791 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
iveresov@2138 2792 int freq_log;
iveresov@2138 2793 int level = compilation()->env()->comp_level();
iveresov@2138 2794 if (level == CompLevel_limited_profile) {
iveresov@2138 2795 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
iveresov@2138 2796 } else if (level == CompLevel_full_profile) {
iveresov@2138 2797 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
iveresov@2138 2798 } else {
iveresov@2138 2799 ShouldNotReachHere();
iveresov@2138 2800 }
iveresov@2138 2801 // Increment the appropriate invocation/backedge counter and notify the runtime.
iveresov@2138 2802 increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
iveresov@2138 2803 }
iveresov@2138 2804
iveresov@2138 2805 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
iveresov@2138 2806 ciMethod *method, int frequency,
iveresov@2138 2807 int bci, bool backedge, bool notify) {
iveresov@2138 2808 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
iveresov@2138 2809 int level = _compilation->env()->comp_level();
iveresov@2138 2810 assert(level > CompLevel_simple, "Shouldn't be here");
iveresov@2138 2811
iveresov@2138 2812 int offset = -1;
iveresov@2138 2813 LIR_Opr counter_holder = new_register(T_OBJECT);
iveresov@2138 2814 LIR_Opr meth;
iveresov@2138 2815 if (level == CompLevel_limited_profile) {
iveresov@2138 2816 offset = in_bytes(backedge ? methodOopDesc::backedge_counter_offset() :
iveresov@2138 2817 methodOopDesc::invocation_counter_offset());
iveresov@2138 2818 __ oop2reg(method->constant_encoding(), counter_holder);
iveresov@2138 2819 meth = counter_holder;
iveresov@2138 2820 } else if (level == CompLevel_full_profile) {
iveresov@2138 2821 offset = in_bytes(backedge ? methodDataOopDesc::backedge_counter_offset() :
iveresov@2138 2822 methodDataOopDesc::invocation_counter_offset());
iveresov@2349 2823 ciMethodData* md = method->method_data_or_null();
iveresov@2349 2824 assert(md != NULL, "Sanity");
iveresov@2349 2825 __ oop2reg(md->constant_encoding(), counter_holder);
iveresov@2138 2826 meth = new_register(T_OBJECT);
iveresov@2138 2827 __ oop2reg(method->constant_encoding(), meth);
iveresov@2138 2828 } else {
iveresov@2138 2829 ShouldNotReachHere();
iveresov@2138 2830 }
iveresov@2138 2831 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
iveresov@2138 2832 LIR_Opr result = new_register(T_INT);
iveresov@2138 2833 __ load(counter, result);
iveresov@2138 2834 __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
iveresov@2138 2835 __ store(result, counter);
iveresov@2138 2836 if (notify) {
iveresov@2138 2837 LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
iveresov@2138 2838 __ logical_and(result, mask, result);
iveresov@2138 2839 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
iveresov@2138 2840 // The bci for info can point to cmp for if's we want the if bci
iveresov@2138 2841 CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
iveresov@2138 2842 __ branch(lir_cond_equal, T_INT, overflow);
iveresov@2138 2843 __ branch_destination(overflow->continuation());
iveresov@2138 2844 }
iveresov@2138 2845 }
duke@435 2846
never@2486 2847 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
never@2486 2848 LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
never@2486 2849 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
never@2486 2850
never@2486 2851 if (x->pass_thread()) {
never@2486 2852 signature->append(T_ADDRESS);
never@2486 2853 args->append(getThreadPointer());
never@2486 2854 }
never@2486 2855
never@2486 2856 for (int i = 0; i < x->number_of_arguments(); i++) {
never@2486 2857 Value a = x->argument_at(i);
never@2486 2858 LIRItem* item = new LIRItem(a, this);
never@2486 2859 item->load_item();
never@2486 2860 args->append(item->result());
never@2486 2861 signature->append(as_BasicType(a->type()));
never@2486 2862 }
never@2486 2863
never@2486 2864 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
never@2486 2865 if (x->type() == voidType) {
never@2486 2866 set_no_result(x);
never@2486 2867 } else {
never@2486 2868 __ move(result, rlock_result(x));
never@2486 2869 }
never@2486 2870 }
never@2486 2871
duke@435 2872 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2873 LIRItemList args(1);
duke@435 2874 LIRItem value(arg1, this);
duke@435 2875 args.append(&value);
duke@435 2876 BasicTypeList signature;
duke@435 2877 signature.append(as_BasicType(arg1->type()));
duke@435 2878
duke@435 2879 return call_runtime(&signature, &args, entry, result_type, info);
duke@435 2880 }
duke@435 2881
duke@435 2882
duke@435 2883 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2884 LIRItemList args(2);
duke@435 2885 LIRItem value1(arg1, this);
duke@435 2886 LIRItem value2(arg2, this);
duke@435 2887 args.append(&value1);
duke@435 2888 args.append(&value2);
duke@435 2889 BasicTypeList signature;
duke@435 2890 signature.append(as_BasicType(arg1->type()));
duke@435 2891 signature.append(as_BasicType(arg2->type()));
duke@435 2892
duke@435 2893 return call_runtime(&signature, &args, entry, result_type, info);
duke@435 2894 }
duke@435 2895
duke@435 2896
duke@435 2897 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
duke@435 2898 address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2899 // get a result register
duke@435 2900 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
duke@435 2901 LIR_Opr result = LIR_OprFact::illegalOpr;
duke@435 2902 if (result_type->tag() != voidTag) {
duke@435 2903 result = new_register(result_type);
duke@435 2904 phys_reg = result_register_for(result_type);
duke@435 2905 }
duke@435 2906
duke@435 2907 // move the arguments into the correct location
duke@435 2908 CallingConvention* cc = frame_map()->c_calling_convention(signature);
duke@435 2909 assert(cc->length() == args->length(), "argument mismatch");
duke@435 2910 for (int i = 0; i < args->length(); i++) {
duke@435 2911 LIR_Opr arg = args->at(i);
duke@435 2912 LIR_Opr loc = cc->at(i);
duke@435 2913 if (loc->is_register()) {
duke@435 2914 __ move(arg, loc);
duke@435 2915 } else {
duke@435 2916 LIR_Address* addr = loc->as_address_ptr();
duke@435 2917 // if (!can_store_as_constant(arg)) {
duke@435 2918 // LIR_Opr tmp = new_register(arg->type());
duke@435 2919 // __ move(arg, tmp);
duke@435 2920 // arg = tmp;
duke@435 2921 // }
duke@435 2922 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 2923 __ unaligned_move(arg, addr);
duke@435 2924 } else {
duke@435 2925 __ move(arg, addr);
duke@435 2926 }
duke@435 2927 }
duke@435 2928 }
duke@435 2929
duke@435 2930 if (info) {
duke@435 2931 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
duke@435 2932 } else {
duke@435 2933 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
duke@435 2934 }
duke@435 2935 if (result->is_valid()) {
duke@435 2936 __ move(phys_reg, result);
duke@435 2937 }
duke@435 2938 return result;
duke@435 2939 }
duke@435 2940
duke@435 2941
duke@435 2942 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
duke@435 2943 address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2944 // get a result register
duke@435 2945 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
duke@435 2946 LIR_Opr result = LIR_OprFact::illegalOpr;
duke@435 2947 if (result_type->tag() != voidTag) {
duke@435 2948 result = new_register(result_type);
duke@435 2949 phys_reg = result_register_for(result_type);
duke@435 2950 }
duke@435 2951
duke@435 2952 // move the arguments into the correct location
duke@435 2953 CallingConvention* cc = frame_map()->c_calling_convention(signature);
duke@435 2954
duke@435 2955 assert(cc->length() == args->length(), "argument mismatch");
duke@435 2956 for (int i = 0; i < args->length(); i++) {
duke@435 2957 LIRItem* arg = args->at(i);
duke@435 2958 LIR_Opr loc = cc->at(i);
duke@435 2959 if (loc->is_register()) {
duke@435 2960 arg->load_item_force(loc);
duke@435 2961 } else {
duke@435 2962 LIR_Address* addr = loc->as_address_ptr();
duke@435 2963 arg->load_for_store(addr->type());
duke@435 2964 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 2965 __ unaligned_move(arg->result(), addr);
duke@435 2966 } else {
duke@435 2967 __ move(arg->result(), addr);
duke@435 2968 }
duke@435 2969 }
duke@435 2970 }
duke@435 2971
duke@435 2972 if (info) {
duke@435 2973 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
duke@435 2974 } else {
duke@435 2975 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
duke@435 2976 }
duke@435 2977 if (result->is_valid()) {
duke@435 2978 __ move(phys_reg, result);
duke@435 2979 }
duke@435 2980 return result;
duke@435 2981 }

mercurial