src/share/vm/c1/c1_LIRGenerator.cpp

Tue, 29 Dec 2009 19:08:54 +0100

author
roland
date
Tue, 29 Dec 2009 19:08:54 +0100
changeset 2174
f02a8bbe6ed4
parent 2171
87b64980e2f1
child 2180
80c9354976b0
permissions
-rw-r--r--

6986046: C1 valuestack cleanup
Summary: fixes an historical oddity in C1 with inlining where all of the expression stacks are kept in the topmost ValueStack instead of being in their respective ValueStacks.
Reviewed-by: never
Contributed-by: Christian Wimmer <cwimmer@uci.edu>

duke@435 1 /*
trims@1907 2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRGenerator.cpp.incl"
duke@435 27
duke@435 28 #ifdef ASSERT
duke@435 29 #define __ gen()->lir(__FILE__, __LINE__)->
duke@435 30 #else
duke@435 31 #define __ gen()->lir()->
duke@435 32 #endif
duke@435 33
bobv@2036 34 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
bobv@2036 35 #ifdef ARM
bobv@2036 36 #define PATCHED_ADDR (204)
bobv@2036 37 #else
bobv@2036 38 #define PATCHED_ADDR (max_jint)
bobv@2036 39 #endif
duke@435 40
duke@435 41 void PhiResolverState::reset(int max_vregs) {
duke@435 42 // Initialize array sizes
duke@435 43 _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 44 _virtual_operands.trunc_to(0);
duke@435 45 _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 46 _other_operands.trunc_to(0);
duke@435 47 _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 48 _vreg_table.trunc_to(0);
duke@435 49 }
duke@435 50
duke@435 51
duke@435 52
duke@435 53 //--------------------------------------------------------------
duke@435 54 // PhiResolver
duke@435 55
duke@435 56 // Resolves cycles:
duke@435 57 //
duke@435 58 // r1 := r2 becomes temp := r1
duke@435 59 // r2 := r1 r1 := r2
duke@435 60 // r2 := temp
duke@435 61 // and orders moves:
duke@435 62 //
duke@435 63 // r2 := r3 becomes r1 := r2
duke@435 64 // r1 := r2 r2 := r3
duke@435 65
duke@435 66 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
duke@435 67 : _gen(gen)
duke@435 68 , _state(gen->resolver_state())
duke@435 69 , _temp(LIR_OprFact::illegalOpr)
duke@435 70 {
duke@435 71 // reinitialize the shared state arrays
duke@435 72 _state.reset(max_vregs);
duke@435 73 }
duke@435 74
duke@435 75
duke@435 76 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
duke@435 77 assert(src->is_valid(), "");
duke@435 78 assert(dest->is_valid(), "");
duke@435 79 __ move(src, dest);
duke@435 80 }
duke@435 81
duke@435 82
duke@435 83 void PhiResolver::move_temp_to(LIR_Opr dest) {
duke@435 84 assert(_temp->is_valid(), "");
duke@435 85 emit_move(_temp, dest);
duke@435 86 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
duke@435 87 }
duke@435 88
duke@435 89
duke@435 90 void PhiResolver::move_to_temp(LIR_Opr src) {
duke@435 91 assert(_temp->is_illegal(), "");
duke@435 92 _temp = _gen->new_register(src->type());
duke@435 93 emit_move(src, _temp);
duke@435 94 }
duke@435 95
duke@435 96
duke@435 97 // Traverse assignment graph in depth first order and generate moves in post order
duke@435 98 // ie. two assignments: b := c, a := b start with node c:
duke@435 99 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
duke@435 100 // Generates moves in this order: move b to a and move c to b
duke@435 101 // ie. cycle a := b, b := a start with node a
duke@435 102 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
duke@435 103 // Generates moves in this order: move b to temp, move a to b, move temp to a
duke@435 104 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
duke@435 105 if (!dest->visited()) {
duke@435 106 dest->set_visited();
duke@435 107 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
duke@435 108 move(dest, dest->destination_at(i));
duke@435 109 }
duke@435 110 } else if (!dest->start_node()) {
duke@435 111 // cylce in graph detected
duke@435 112 assert(_loop == NULL, "only one loop valid!");
duke@435 113 _loop = dest;
duke@435 114 move_to_temp(src->operand());
duke@435 115 return;
duke@435 116 } // else dest is a start node
duke@435 117
duke@435 118 if (!dest->assigned()) {
duke@435 119 if (_loop == dest) {
duke@435 120 move_temp_to(dest->operand());
duke@435 121 dest->set_assigned();
duke@435 122 } else if (src != NULL) {
duke@435 123 emit_move(src->operand(), dest->operand());
duke@435 124 dest->set_assigned();
duke@435 125 }
duke@435 126 }
duke@435 127 }
duke@435 128
duke@435 129
duke@435 130 PhiResolver::~PhiResolver() {
duke@435 131 int i;
duke@435 132 // resolve any cycles in moves from and to virtual registers
duke@435 133 for (i = virtual_operands().length() - 1; i >= 0; i --) {
duke@435 134 ResolveNode* node = virtual_operands()[i];
duke@435 135 if (!node->visited()) {
duke@435 136 _loop = NULL;
duke@435 137 move(NULL, node);
duke@435 138 node->set_start_node();
duke@435 139 assert(_temp->is_illegal(), "move_temp_to() call missing");
duke@435 140 }
duke@435 141 }
duke@435 142
duke@435 143 // generate move for move from non virtual register to abitrary destination
duke@435 144 for (i = other_operands().length() - 1; i >= 0; i --) {
duke@435 145 ResolveNode* node = other_operands()[i];
duke@435 146 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
duke@435 147 emit_move(node->operand(), node->destination_at(j)->operand());
duke@435 148 }
duke@435 149 }
duke@435 150 }
duke@435 151
duke@435 152
duke@435 153 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
duke@435 154 ResolveNode* node;
duke@435 155 if (opr->is_virtual()) {
duke@435 156 int vreg_num = opr->vreg_number();
duke@435 157 node = vreg_table().at_grow(vreg_num, NULL);
duke@435 158 assert(node == NULL || node->operand() == opr, "");
duke@435 159 if (node == NULL) {
duke@435 160 node = new ResolveNode(opr);
duke@435 161 vreg_table()[vreg_num] = node;
duke@435 162 }
duke@435 163 // Make sure that all virtual operands show up in the list when
duke@435 164 // they are used as the source of a move.
duke@435 165 if (source && !virtual_operands().contains(node)) {
duke@435 166 virtual_operands().append(node);
duke@435 167 }
duke@435 168 } else {
duke@435 169 assert(source, "");
duke@435 170 node = new ResolveNode(opr);
duke@435 171 other_operands().append(node);
duke@435 172 }
duke@435 173 return node;
duke@435 174 }
duke@435 175
duke@435 176
duke@435 177 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
duke@435 178 assert(dest->is_virtual(), "");
duke@435 179 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
duke@435 180 assert(src->is_valid(), "");
duke@435 181 assert(dest->is_valid(), "");
duke@435 182 ResolveNode* source = source_node(src);
duke@435 183 source->append(destination_node(dest));
duke@435 184 }
duke@435 185
duke@435 186
duke@435 187 //--------------------------------------------------------------
duke@435 188 // LIRItem
duke@435 189
duke@435 190 void LIRItem::set_result(LIR_Opr opr) {
duke@435 191 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
duke@435 192 value()->set_operand(opr);
duke@435 193
duke@435 194 if (opr->is_virtual()) {
duke@435 195 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
duke@435 196 }
duke@435 197
duke@435 198 _result = opr;
duke@435 199 }
duke@435 200
duke@435 201 void LIRItem::load_item() {
duke@435 202 if (result()->is_illegal()) {
duke@435 203 // update the items result
duke@435 204 _result = value()->operand();
duke@435 205 }
duke@435 206 if (!result()->is_register()) {
duke@435 207 LIR_Opr reg = _gen->new_register(value()->type());
duke@435 208 __ move(result(), reg);
duke@435 209 if (result()->is_constant()) {
duke@435 210 _result = reg;
duke@435 211 } else {
duke@435 212 set_result(reg);
duke@435 213 }
duke@435 214 }
duke@435 215 }
duke@435 216
duke@435 217
duke@435 218 void LIRItem::load_for_store(BasicType type) {
duke@435 219 if (_gen->can_store_as_constant(value(), type)) {
duke@435 220 _result = value()->operand();
duke@435 221 if (!_result->is_constant()) {
duke@435 222 _result = LIR_OprFact::value_type(value()->type());
duke@435 223 }
duke@435 224 } else if (type == T_BYTE || type == T_BOOLEAN) {
duke@435 225 load_byte_item();
duke@435 226 } else {
duke@435 227 load_item();
duke@435 228 }
duke@435 229 }
duke@435 230
duke@435 231 void LIRItem::load_item_force(LIR_Opr reg) {
duke@435 232 LIR_Opr r = result();
duke@435 233 if (r != reg) {
bobv@2036 234 #if !defined(ARM) && !defined(E500V2)
duke@435 235 if (r->type() != reg->type()) {
duke@435 236 // moves between different types need an intervening spill slot
bobv@2036 237 r = _gen->force_to_spill(r, reg->type());
duke@435 238 }
bobv@2036 239 #endif
bobv@2036 240 __ move(r, reg);
duke@435 241 _result = reg;
duke@435 242 }
duke@435 243 }
duke@435 244
duke@435 245 ciObject* LIRItem::get_jobject_constant() const {
duke@435 246 ObjectType* oc = type()->as_ObjectType();
duke@435 247 if (oc) {
duke@435 248 return oc->constant_value();
duke@435 249 }
duke@435 250 return NULL;
duke@435 251 }
duke@435 252
duke@435 253
duke@435 254 jint LIRItem::get_jint_constant() const {
duke@435 255 assert(is_constant() && value() != NULL, "");
duke@435 256 assert(type()->as_IntConstant() != NULL, "type check");
duke@435 257 return type()->as_IntConstant()->value();
duke@435 258 }
duke@435 259
duke@435 260
duke@435 261 jint LIRItem::get_address_constant() const {
duke@435 262 assert(is_constant() && value() != NULL, "");
duke@435 263 assert(type()->as_AddressConstant() != NULL, "type check");
duke@435 264 return type()->as_AddressConstant()->value();
duke@435 265 }
duke@435 266
duke@435 267
duke@435 268 jfloat LIRItem::get_jfloat_constant() const {
duke@435 269 assert(is_constant() && value() != NULL, "");
duke@435 270 assert(type()->as_FloatConstant() != NULL, "type check");
duke@435 271 return type()->as_FloatConstant()->value();
duke@435 272 }
duke@435 273
duke@435 274
duke@435 275 jdouble LIRItem::get_jdouble_constant() const {
duke@435 276 assert(is_constant() && value() != NULL, "");
duke@435 277 assert(type()->as_DoubleConstant() != NULL, "type check");
duke@435 278 return type()->as_DoubleConstant()->value();
duke@435 279 }
duke@435 280
duke@435 281
duke@435 282 jlong LIRItem::get_jlong_constant() const {
duke@435 283 assert(is_constant() && value() != NULL, "");
duke@435 284 assert(type()->as_LongConstant() != NULL, "type check");
duke@435 285 return type()->as_LongConstant()->value();
duke@435 286 }
duke@435 287
duke@435 288
duke@435 289
duke@435 290 //--------------------------------------------------------------
duke@435 291
duke@435 292
duke@435 293 void LIRGenerator::init() {
ysr@777 294 _bs = Universe::heap()->barrier_set();
duke@435 295 }
duke@435 296
duke@435 297
duke@435 298 void LIRGenerator::block_do_prolog(BlockBegin* block) {
duke@435 299 #ifndef PRODUCT
duke@435 300 if (PrintIRWithLIR) {
duke@435 301 block->print();
duke@435 302 }
duke@435 303 #endif
duke@435 304
duke@435 305 // set up the list of LIR instructions
duke@435 306 assert(block->lir() == NULL, "LIR list already computed for this block");
duke@435 307 _lir = new LIR_List(compilation(), block);
duke@435 308 block->set_lir(_lir);
duke@435 309
duke@435 310 __ branch_destination(block->label());
duke@435 311
duke@435 312 if (LIRTraceExecution &&
iveresov@1939 313 Compilation::current()->hir()->start()->block_id() != block->block_id() &&
duke@435 314 !block->is_set(BlockBegin::exception_entry_flag)) {
duke@435 315 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
duke@435 316 trace_block_entry(block);
duke@435 317 }
duke@435 318 }
duke@435 319
duke@435 320
duke@435 321 void LIRGenerator::block_do_epilog(BlockBegin* block) {
duke@435 322 #ifndef PRODUCT
duke@435 323 if (PrintIRWithLIR) {
duke@435 324 tty->cr();
duke@435 325 }
duke@435 326 #endif
duke@435 327
duke@435 328 // LIR_Opr for unpinned constants shouldn't be referenced by other
duke@435 329 // blocks so clear them out after processing the block.
duke@435 330 for (int i = 0; i < _unpinned_constants.length(); i++) {
duke@435 331 _unpinned_constants.at(i)->clear_operand();
duke@435 332 }
duke@435 333 _unpinned_constants.trunc_to(0);
duke@435 334
duke@435 335 // clear our any registers for other local constants
duke@435 336 _constants.trunc_to(0);
duke@435 337 _reg_for_constants.trunc_to(0);
duke@435 338 }
duke@435 339
duke@435 340
duke@435 341 void LIRGenerator::block_do(BlockBegin* block) {
duke@435 342 CHECK_BAILOUT();
duke@435 343
duke@435 344 block_do_prolog(block);
duke@435 345 set_block(block);
duke@435 346
duke@435 347 for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
duke@435 348 if (instr->is_pinned()) do_root(instr);
duke@435 349 }
duke@435 350
duke@435 351 set_block(NULL);
duke@435 352 block_do_epilog(block);
duke@435 353 }
duke@435 354
duke@435 355
duke@435 356 //-------------------------LIRGenerator-----------------------------
duke@435 357
duke@435 358 // This is where the tree-walk starts; instr must be root;
duke@435 359 void LIRGenerator::do_root(Value instr) {
duke@435 360 CHECK_BAILOUT();
duke@435 361
duke@435 362 InstructionMark im(compilation(), instr);
duke@435 363
duke@435 364 assert(instr->is_pinned(), "use only with roots");
duke@435 365 assert(instr->subst() == instr, "shouldn't have missed substitution");
duke@435 366
duke@435 367 instr->visit(this);
duke@435 368
duke@435 369 assert(!instr->has_uses() || instr->operand()->is_valid() ||
duke@435 370 instr->as_Constant() != NULL || bailed_out(), "invalid item set");
duke@435 371 }
duke@435 372
duke@435 373
duke@435 374 // This is called for each node in tree; the walk stops if a root is reached
duke@435 375 void LIRGenerator::walk(Value instr) {
duke@435 376 InstructionMark im(compilation(), instr);
duke@435 377 //stop walk when encounter a root
duke@435 378 if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
duke@435 379 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
duke@435 380 } else {
duke@435 381 assert(instr->subst() == instr, "shouldn't have missed substitution");
duke@435 382 instr->visit(this);
duke@435 383 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
duke@435 384 }
duke@435 385 }
duke@435 386
duke@435 387
duke@435 388 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
roland@2174 389 assert(state != NULL, "state must be defined");
roland@2174 390
roland@2174 391 ValueStack* s = state;
roland@2174 392 for_each_state(s) {
roland@2174 393 if (s->kind() == ValueStack::EmptyExceptionState) {
roland@2174 394 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
roland@2174 395 continue;
duke@435 396 }
roland@2174 397
roland@2174 398 int index;
roland@2174 399 Value value;
roland@2174 400 for_each_stack_value(s, index, value) {
roland@2174 401 assert(value->subst() == value, "missed substitution");
roland@2174 402 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
roland@2174 403 walk(value);
roland@2174 404 assert(value->operand()->is_valid(), "must be evaluated now");
roland@2174 405 }
roland@2174 406 }
roland@2174 407
roland@2174 408 int bci = s->bci();
duke@435 409 IRScope* scope = s->scope();
duke@435 410 ciMethod* method = scope->method();
duke@435 411
duke@435 412 MethodLivenessResult liveness = method->liveness_at_bci(bci);
duke@435 413 if (bci == SynchronizationEntryBCI) {
duke@435 414 if (x->as_ExceptionObject() || x->as_Throw()) {
duke@435 415 // all locals are dead on exit from the synthetic unlocker
duke@435 416 liveness.clear();
duke@435 417 } else {
duke@435 418 assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
duke@435 419 }
duke@435 420 }
duke@435 421 if (!liveness.is_valid()) {
duke@435 422 // Degenerate or breakpointed method.
duke@435 423 bailout("Degenerate or breakpointed method");
duke@435 424 } else {
duke@435 425 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
duke@435 426 for_each_local_value(s, index, value) {
duke@435 427 assert(value->subst() == value, "missed substition");
duke@435 428 if (liveness.at(index) && !value->type()->is_illegal()) {
duke@435 429 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
duke@435 430 walk(value);
duke@435 431 assert(value->operand()->is_valid(), "must be evaluated now");
duke@435 432 }
duke@435 433 } else {
duke@435 434 // NULL out this local so that linear scan can assume that all non-NULL values are live.
duke@435 435 s->invalidate_local(index);
duke@435 436 }
duke@435 437 }
duke@435 438 }
duke@435 439 }
duke@435 440
roland@2174 441 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
duke@435 442 }
duke@435 443
duke@435 444
duke@435 445 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
roland@2174 446 return state_for(x, x->exception_state());
duke@435 447 }
duke@435 448
duke@435 449
duke@435 450 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
duke@435 451 if (!obj->is_loaded() || PatchALot) {
duke@435 452 assert(info != NULL, "info must be set if class is not loaded");
duke@435 453 __ oop2reg_patch(NULL, r, info);
duke@435 454 } else {
duke@435 455 // no patching needed
jrose@1424 456 __ oop2reg(obj->constant_encoding(), r);
duke@435 457 }
duke@435 458 }
duke@435 459
duke@435 460
duke@435 461 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
duke@435 462 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
duke@435 463 CodeStub* stub = new RangeCheckStub(range_check_info, index);
duke@435 464 if (index->is_constant()) {
duke@435 465 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
duke@435 466 index->as_jint(), null_check_info);
duke@435 467 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
duke@435 468 } else {
duke@435 469 cmp_reg_mem(lir_cond_aboveEqual, index, array,
duke@435 470 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
duke@435 471 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
duke@435 472 }
duke@435 473 }
duke@435 474
duke@435 475
duke@435 476 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
duke@435 477 CodeStub* stub = new RangeCheckStub(info, index, true);
duke@435 478 if (index->is_constant()) {
duke@435 479 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
duke@435 480 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
duke@435 481 } else {
duke@435 482 cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
duke@435 483 java_nio_Buffer::limit_offset(), T_INT, info);
duke@435 484 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
duke@435 485 }
duke@435 486 __ move(index, result);
duke@435 487 }
duke@435 488
duke@435 489
duke@435 490
duke@435 491 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
duke@435 492 LIR_Opr result_op = result;
duke@435 493 LIR_Opr left_op = left;
duke@435 494 LIR_Opr right_op = right;
duke@435 495
duke@435 496 if (TwoOperandLIRForm && left_op != result_op) {
duke@435 497 assert(right_op != result_op, "malformed");
duke@435 498 __ move(left_op, result_op);
duke@435 499 left_op = result_op;
duke@435 500 }
duke@435 501
duke@435 502 switch(code) {
duke@435 503 case Bytecodes::_dadd:
duke@435 504 case Bytecodes::_fadd:
duke@435 505 case Bytecodes::_ladd:
duke@435 506 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
duke@435 507 case Bytecodes::_fmul:
duke@435 508 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
duke@435 509
duke@435 510 case Bytecodes::_dmul:
duke@435 511 {
duke@435 512 if (is_strictfp) {
duke@435 513 __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
duke@435 514 } else {
duke@435 515 __ mul(left_op, right_op, result_op); break;
duke@435 516 }
duke@435 517 }
duke@435 518 break;
duke@435 519
duke@435 520 case Bytecodes::_imul:
duke@435 521 {
duke@435 522 bool did_strength_reduce = false;
duke@435 523
duke@435 524 if (right->is_constant()) {
duke@435 525 int c = right->as_jint();
duke@435 526 if (is_power_of_2(c)) {
duke@435 527 // do not need tmp here
duke@435 528 __ shift_left(left_op, exact_log2(c), result_op);
duke@435 529 did_strength_reduce = true;
duke@435 530 } else {
duke@435 531 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
duke@435 532 }
duke@435 533 }
duke@435 534 // we couldn't strength reduce so just emit the multiply
duke@435 535 if (!did_strength_reduce) {
duke@435 536 __ mul(left_op, right_op, result_op);
duke@435 537 }
duke@435 538 }
duke@435 539 break;
duke@435 540
duke@435 541 case Bytecodes::_dsub:
duke@435 542 case Bytecodes::_fsub:
duke@435 543 case Bytecodes::_lsub:
duke@435 544 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
duke@435 545
duke@435 546 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
duke@435 547 // ldiv and lrem are implemented with a direct runtime call
duke@435 548
duke@435 549 case Bytecodes::_ddiv:
duke@435 550 {
duke@435 551 if (is_strictfp) {
duke@435 552 __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
duke@435 553 } else {
duke@435 554 __ div (left_op, right_op, result_op); break;
duke@435 555 }
duke@435 556 }
duke@435 557 break;
duke@435 558
duke@435 559 case Bytecodes::_drem:
duke@435 560 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
duke@435 561
duke@435 562 default: ShouldNotReachHere();
duke@435 563 }
duke@435 564 }
duke@435 565
duke@435 566
duke@435 567 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
duke@435 568 arithmetic_op(code, result, left, right, false, tmp);
duke@435 569 }
duke@435 570
duke@435 571
duke@435 572 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
duke@435 573 arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
duke@435 574 }
duke@435 575
duke@435 576
duke@435 577 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
duke@435 578 arithmetic_op(code, result, left, right, is_strictfp, tmp);
duke@435 579 }
duke@435 580
duke@435 581
duke@435 582 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
duke@435 583 if (TwoOperandLIRForm && value != result_op) {
duke@435 584 assert(count != result_op, "malformed");
duke@435 585 __ move(value, result_op);
duke@435 586 value = result_op;
duke@435 587 }
duke@435 588
duke@435 589 assert(count->is_constant() || count->is_register(), "must be");
duke@435 590 switch(code) {
duke@435 591 case Bytecodes::_ishl:
duke@435 592 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
duke@435 593 case Bytecodes::_ishr:
duke@435 594 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
duke@435 595 case Bytecodes::_iushr:
duke@435 596 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
duke@435 597 default: ShouldNotReachHere();
duke@435 598 }
duke@435 599 }
duke@435 600
duke@435 601
duke@435 602 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
duke@435 603 if (TwoOperandLIRForm && left_op != result_op) {
duke@435 604 assert(right_op != result_op, "malformed");
duke@435 605 __ move(left_op, result_op);
duke@435 606 left_op = result_op;
duke@435 607 }
duke@435 608
duke@435 609 switch(code) {
duke@435 610 case Bytecodes::_iand:
duke@435 611 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
duke@435 612
duke@435 613 case Bytecodes::_ior:
duke@435 614 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
duke@435 615
duke@435 616 case Bytecodes::_ixor:
duke@435 617 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
duke@435 618
duke@435 619 default: ShouldNotReachHere();
duke@435 620 }
duke@435 621 }
duke@435 622
duke@435 623
duke@435 624 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
duke@435 625 if (!GenerateSynchronizationCode) return;
duke@435 626 // for slow path, use debug info for state after successful locking
duke@435 627 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
duke@435 628 __ load_stack_address_monitor(monitor_no, lock);
duke@435 629 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
duke@435 630 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
duke@435 631 }
duke@435 632
duke@435 633
bobv@2036 634 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
duke@435 635 if (!GenerateSynchronizationCode) return;
duke@435 636 // setup registers
duke@435 637 LIR_Opr hdr = lock;
duke@435 638 lock = new_hdr;
duke@435 639 CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
duke@435 640 __ load_stack_address_monitor(monitor_no, lock);
bobv@2036 641 __ unlock_object(hdr, object, lock, scratch, slow_path);
duke@435 642 }
duke@435 643
duke@435 644
duke@435 645 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
duke@435 646 jobject2reg_with_patching(klass_reg, klass, info);
duke@435 647 // If klass is not loaded we do not know if the klass has finalizers:
duke@435 648 if (UseFastNewInstance && klass->is_loaded()
duke@435 649 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
duke@435 650
duke@435 651 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
duke@435 652
duke@435 653 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
duke@435 654
duke@435 655 assert(klass->is_loaded(), "must be loaded");
duke@435 656 // allocate space for instance
duke@435 657 assert(klass->size_helper() >= 0, "illegal instance size");
duke@435 658 const int instance_size = align_object_size(klass->size_helper());
duke@435 659 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
duke@435 660 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
duke@435 661 } else {
duke@435 662 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
duke@435 663 __ branch(lir_cond_always, T_ILLEGAL, slow_path);
duke@435 664 __ branch_destination(slow_path->continuation());
duke@435 665 }
duke@435 666 }
duke@435 667
duke@435 668
duke@435 669 static bool is_constant_zero(Instruction* inst) {
duke@435 670 IntConstant* c = inst->type()->as_IntConstant();
duke@435 671 if (c) {
duke@435 672 return (c->value() == 0);
duke@435 673 }
duke@435 674 return false;
duke@435 675 }
duke@435 676
duke@435 677
duke@435 678 static bool positive_constant(Instruction* inst) {
duke@435 679 IntConstant* c = inst->type()->as_IntConstant();
duke@435 680 if (c) {
duke@435 681 return (c->value() >= 0);
duke@435 682 }
duke@435 683 return false;
duke@435 684 }
duke@435 685
duke@435 686
duke@435 687 static ciArrayKlass* as_array_klass(ciType* type) {
duke@435 688 if (type != NULL && type->is_array_klass() && type->is_loaded()) {
duke@435 689 return (ciArrayKlass*)type;
duke@435 690 } else {
duke@435 691 return NULL;
duke@435 692 }
duke@435 693 }
duke@435 694
duke@435 695 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
duke@435 696 Instruction* src = x->argument_at(0);
duke@435 697 Instruction* src_pos = x->argument_at(1);
duke@435 698 Instruction* dst = x->argument_at(2);
duke@435 699 Instruction* dst_pos = x->argument_at(3);
duke@435 700 Instruction* length = x->argument_at(4);
duke@435 701
duke@435 702 // first try to identify the likely type of the arrays involved
duke@435 703 ciArrayKlass* expected_type = NULL;
duke@435 704 bool is_exact = false;
duke@435 705 {
duke@435 706 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
duke@435 707 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
duke@435 708 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
duke@435 709 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
duke@435 710 if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
duke@435 711 // the types exactly match so the type is fully known
duke@435 712 is_exact = true;
duke@435 713 expected_type = src_exact_type;
duke@435 714 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
duke@435 715 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
duke@435 716 ciArrayKlass* src_type = NULL;
duke@435 717 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
duke@435 718 src_type = (ciArrayKlass*) src_exact_type;
duke@435 719 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
duke@435 720 src_type = (ciArrayKlass*) src_declared_type;
duke@435 721 }
duke@435 722 if (src_type != NULL) {
duke@435 723 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
duke@435 724 is_exact = true;
duke@435 725 expected_type = dst_type;
duke@435 726 }
duke@435 727 }
duke@435 728 }
duke@435 729 // at least pass along a good guess
duke@435 730 if (expected_type == NULL) expected_type = dst_exact_type;
duke@435 731 if (expected_type == NULL) expected_type = src_declared_type;
duke@435 732 if (expected_type == NULL) expected_type = dst_declared_type;
duke@435 733 }
duke@435 734
duke@435 735 // if a probable array type has been identified, figure out if any
duke@435 736 // of the required checks for a fast case can be elided.
duke@435 737 int flags = LIR_OpArrayCopy::all_flags;
duke@435 738 if (expected_type != NULL) {
duke@435 739 // try to skip null checks
duke@435 740 if (src->as_NewArray() != NULL)
duke@435 741 flags &= ~LIR_OpArrayCopy::src_null_check;
duke@435 742 if (dst->as_NewArray() != NULL)
duke@435 743 flags &= ~LIR_OpArrayCopy::dst_null_check;
duke@435 744
duke@435 745 // check from incoming constant values
duke@435 746 if (positive_constant(src_pos))
duke@435 747 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
duke@435 748 if (positive_constant(dst_pos))
duke@435 749 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
duke@435 750 if (positive_constant(length))
duke@435 751 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 752
duke@435 753 // see if the range check can be elided, which might also imply
duke@435 754 // that src or dst is non-null.
duke@435 755 ArrayLength* al = length->as_ArrayLength();
duke@435 756 if (al != NULL) {
duke@435 757 if (al->array() == src) {
duke@435 758 // it's the length of the source array
duke@435 759 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 760 flags &= ~LIR_OpArrayCopy::src_null_check;
duke@435 761 if (is_constant_zero(src_pos))
duke@435 762 flags &= ~LIR_OpArrayCopy::src_range_check;
duke@435 763 }
duke@435 764 if (al->array() == dst) {
duke@435 765 // it's the length of the destination array
duke@435 766 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 767 flags &= ~LIR_OpArrayCopy::dst_null_check;
duke@435 768 if (is_constant_zero(dst_pos))
duke@435 769 flags &= ~LIR_OpArrayCopy::dst_range_check;
duke@435 770 }
duke@435 771 }
duke@435 772 if (is_exact) {
duke@435 773 flags &= ~LIR_OpArrayCopy::type_check;
duke@435 774 }
duke@435 775 }
duke@435 776
duke@435 777 if (src == dst) {
duke@435 778 // moving within a single array so no type checks are needed
duke@435 779 if (flags & LIR_OpArrayCopy::type_check) {
duke@435 780 flags &= ~LIR_OpArrayCopy::type_check;
duke@435 781 }
duke@435 782 }
duke@435 783 *flagsp = flags;
duke@435 784 *expected_typep = (ciArrayKlass*)expected_type;
duke@435 785 }
duke@435 786
duke@435 787
duke@435 788 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
duke@435 789 assert(opr->is_register(), "why spill if item is not register?");
duke@435 790
duke@435 791 if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
duke@435 792 LIR_Opr result = new_register(T_FLOAT);
duke@435 793 set_vreg_flag(result, must_start_in_memory);
duke@435 794 assert(opr->is_register(), "only a register can be spilled");
duke@435 795 assert(opr->value_type()->is_float(), "rounding only for floats available");
duke@435 796 __ roundfp(opr, LIR_OprFact::illegalOpr, result);
duke@435 797 return result;
duke@435 798 }
duke@435 799 return opr;
duke@435 800 }
duke@435 801
duke@435 802
duke@435 803 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
duke@435 804 assert(type2size[t] == type2size[value->type()], "size mismatch");
duke@435 805 if (!value->is_register()) {
duke@435 806 // force into a register
duke@435 807 LIR_Opr r = new_register(value->type());
duke@435 808 __ move(value, r);
duke@435 809 value = r;
duke@435 810 }
duke@435 811
duke@435 812 // create a spill location
duke@435 813 LIR_Opr tmp = new_register(t);
duke@435 814 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
duke@435 815
duke@435 816 // move from register to spill
duke@435 817 __ move(value, tmp);
duke@435 818 return tmp;
duke@435 819 }
duke@435 820
duke@435 821 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
duke@435 822 if (if_instr->should_profile()) {
duke@435 823 ciMethod* method = if_instr->profiled_method();
duke@435 824 assert(method != NULL, "method should be set if branch is profiled");
duke@435 825 ciMethodData* md = method->method_data();
duke@435 826 if (md == NULL) {
duke@435 827 bailout("out of memory building methodDataOop");
duke@435 828 return;
duke@435 829 }
duke@435 830 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
duke@435 831 assert(data != NULL, "must have profiling data");
duke@435 832 assert(data->is_BranchData(), "need BranchData for two-way branches");
duke@435 833 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
duke@435 834 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
iveresov@2138 835 if (if_instr->is_swapped()) {
iveresov@2138 836 int t = taken_count_offset;
iveresov@2138 837 taken_count_offset = not_taken_count_offset;
iveresov@2138 838 not_taken_count_offset = t;
iveresov@2138 839 }
iveresov@2138 840
duke@435 841 LIR_Opr md_reg = new_register(T_OBJECT);
iveresov@2138 842 __ oop2reg(md->constant_encoding(), md_reg);
iveresov@2138 843
iveresov@2138 844 LIR_Opr data_offset_reg = new_pointer_register();
duke@435 845 __ cmove(lir_cond(cond),
iveresov@2138 846 LIR_OprFact::intptrConst(taken_count_offset),
iveresov@2138 847 LIR_OprFact::intptrConst(not_taken_count_offset),
duke@435 848 data_offset_reg);
iveresov@2138 849
iveresov@2138 850 // MDO cells are intptr_t, so the data_reg width is arch-dependent.
iveresov@2138 851 LIR_Opr data_reg = new_pointer_register();
iveresov@2138 852 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
duke@435 853 __ move(LIR_OprFact::address(data_addr), data_reg);
iveresov@2138 854 // Use leal instead of add to avoid destroying condition codes on x86
duke@435 855 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
duke@435 856 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
duke@435 857 __ move(data_reg, LIR_OprFact::address(data_addr));
duke@435 858 }
duke@435 859 }
duke@435 860
duke@435 861 // Phi technique:
duke@435 862 // This is about passing live values from one basic block to the other.
duke@435 863 // In code generated with Java it is rather rare that more than one
duke@435 864 // value is on the stack from one basic block to the other.
duke@435 865 // We optimize our technique for efficient passing of one value
duke@435 866 // (of type long, int, double..) but it can be extended.
duke@435 867 // When entering or leaving a basic block, all registers and all spill
duke@435 868 // slots are release and empty. We use the released registers
duke@435 869 // and spill slots to pass the live values from one block
duke@435 870 // to the other. The topmost value, i.e., the value on TOS of expression
duke@435 871 // stack is passed in registers. All other values are stored in spilling
duke@435 872 // area. Every Phi has an index which designates its spill slot
duke@435 873 // At exit of a basic block, we fill the register(s) and spill slots.
duke@435 874 // At entry of a basic block, the block_prolog sets up the content of phi nodes
duke@435 875 // and locks necessary registers and spilling slots.
duke@435 876
duke@435 877
duke@435 878 // move current value to referenced phi function
duke@435 879 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
duke@435 880 Phi* phi = sux_val->as_Phi();
duke@435 881 // cur_val can be null without phi being null in conjunction with inlining
duke@435 882 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
duke@435 883 LIR_Opr operand = cur_val->operand();
duke@435 884 if (cur_val->operand()->is_illegal()) {
duke@435 885 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
duke@435 886 "these can be produced lazily");
duke@435 887 operand = operand_for_instruction(cur_val);
duke@435 888 }
duke@435 889 resolver->move(operand, operand_for_instruction(phi));
duke@435 890 }
duke@435 891 }
duke@435 892
duke@435 893
duke@435 894 // Moves all stack values into their PHI position
duke@435 895 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
duke@435 896 BlockBegin* bb = block();
duke@435 897 if (bb->number_of_sux() == 1) {
duke@435 898 BlockBegin* sux = bb->sux_at(0);
duke@435 899 assert(sux->number_of_preds() > 0, "invalid CFG");
duke@435 900
duke@435 901 // a block with only one predecessor never has phi functions
duke@435 902 if (sux->number_of_preds() > 1) {
duke@435 903 int max_phis = cur_state->stack_size() + cur_state->locals_size();
duke@435 904 PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
duke@435 905
duke@435 906 ValueStack* sux_state = sux->state();
duke@435 907 Value sux_value;
duke@435 908 int index;
duke@435 909
roland@2174 910 assert(cur_state->scope() == sux_state->scope(), "not matching");
roland@2174 911 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
roland@2174 912 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
roland@2174 913
duke@435 914 for_each_stack_value(sux_state, index, sux_value) {
duke@435 915 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
duke@435 916 }
duke@435 917
duke@435 918 for_each_local_value(sux_state, index, sux_value) {
duke@435 919 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
duke@435 920 }
duke@435 921
duke@435 922 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
duke@435 923 }
duke@435 924 }
duke@435 925 }
duke@435 926
duke@435 927
duke@435 928 LIR_Opr LIRGenerator::new_register(BasicType type) {
duke@435 929 int vreg = _virtual_register_number;
duke@435 930 // add a little fudge factor for the bailout, since the bailout is
duke@435 931 // only checked periodically. This gives a few extra registers to
duke@435 932 // hand out before we really run out, which helps us keep from
duke@435 933 // tripping over assertions.
duke@435 934 if (vreg + 20 >= LIR_OprDesc::vreg_max) {
duke@435 935 bailout("out of virtual registers");
duke@435 936 if (vreg + 2 >= LIR_OprDesc::vreg_max) {
duke@435 937 // wrap it around
duke@435 938 _virtual_register_number = LIR_OprDesc::vreg_base;
duke@435 939 }
duke@435 940 }
duke@435 941 _virtual_register_number += 1;
duke@435 942 return LIR_OprFact::virtual_register(vreg, type);
duke@435 943 }
duke@435 944
duke@435 945
duke@435 946 // Try to lock using register in hint
duke@435 947 LIR_Opr LIRGenerator::rlock(Value instr) {
duke@435 948 return new_register(instr->type());
duke@435 949 }
duke@435 950
duke@435 951
duke@435 952 // does an rlock and sets result
duke@435 953 LIR_Opr LIRGenerator::rlock_result(Value x) {
duke@435 954 LIR_Opr reg = rlock(x);
duke@435 955 set_result(x, reg);
duke@435 956 return reg;
duke@435 957 }
duke@435 958
duke@435 959
duke@435 960 // does an rlock and sets result
duke@435 961 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
duke@435 962 LIR_Opr reg;
duke@435 963 switch (type) {
duke@435 964 case T_BYTE:
duke@435 965 case T_BOOLEAN:
duke@435 966 reg = rlock_byte(type);
duke@435 967 break;
duke@435 968 default:
duke@435 969 reg = rlock(x);
duke@435 970 break;
duke@435 971 }
duke@435 972
duke@435 973 set_result(x, reg);
duke@435 974 return reg;
duke@435 975 }
duke@435 976
duke@435 977
duke@435 978 //---------------------------------------------------------------------
duke@435 979 ciObject* LIRGenerator::get_jobject_constant(Value value) {
duke@435 980 ObjectType* oc = value->type()->as_ObjectType();
duke@435 981 if (oc) {
duke@435 982 return oc->constant_value();
duke@435 983 }
duke@435 984 return NULL;
duke@435 985 }
duke@435 986
duke@435 987
duke@435 988 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
duke@435 989 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
duke@435 990 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
duke@435 991
duke@435 992 // no moves are created for phi functions at the begin of exception
duke@435 993 // handlers, so assign operands manually here
duke@435 994 for_each_phi_fun(block(), phi,
duke@435 995 operand_for_instruction(phi));
duke@435 996
duke@435 997 LIR_Opr thread_reg = getThreadPointer();
duke@435 998 __ move(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
duke@435 999 exceptionOopOpr());
duke@435 1000 __ move(LIR_OprFact::oopConst(NULL),
duke@435 1001 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
duke@435 1002 __ move(LIR_OprFact::oopConst(NULL),
duke@435 1003 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
duke@435 1004
duke@435 1005 LIR_Opr result = new_register(T_OBJECT);
duke@435 1006 __ move(exceptionOopOpr(), result);
duke@435 1007 set_result(x, result);
duke@435 1008 }
duke@435 1009
duke@435 1010
duke@435 1011 //----------------------------------------------------------------------
duke@435 1012 //----------------------------------------------------------------------
duke@435 1013 //----------------------------------------------------------------------
duke@435 1014 //----------------------------------------------------------------------
duke@435 1015 // visitor functions
duke@435 1016 //----------------------------------------------------------------------
duke@435 1017 //----------------------------------------------------------------------
duke@435 1018 //----------------------------------------------------------------------
duke@435 1019 //----------------------------------------------------------------------
duke@435 1020
duke@435 1021 void LIRGenerator::do_Phi(Phi* x) {
duke@435 1022 // phi functions are never visited directly
duke@435 1023 ShouldNotReachHere();
duke@435 1024 }
duke@435 1025
duke@435 1026
duke@435 1027 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
duke@435 1028 void LIRGenerator::do_Constant(Constant* x) {
roland@2174 1029 if (x->state_before() != NULL) {
duke@435 1030 // Any constant with a ValueStack requires patching so emit the patch here
duke@435 1031 LIR_Opr reg = rlock_result(x);
roland@2174 1032 CodeEmitInfo* info = state_for(x, x->state_before());
duke@435 1033 __ oop2reg_patch(NULL, reg, info);
duke@435 1034 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
duke@435 1035 if (!x->is_pinned()) {
duke@435 1036 // unpinned constants are handled specially so that they can be
duke@435 1037 // put into registers when they are used multiple times within a
duke@435 1038 // block. After the block completes their operand will be
duke@435 1039 // cleared so that other blocks can't refer to that register.
duke@435 1040 set_result(x, load_constant(x));
duke@435 1041 } else {
duke@435 1042 LIR_Opr res = x->operand();
duke@435 1043 if (!res->is_valid()) {
duke@435 1044 res = LIR_OprFact::value_type(x->type());
duke@435 1045 }
duke@435 1046 if (res->is_constant()) {
duke@435 1047 LIR_Opr reg = rlock_result(x);
duke@435 1048 __ move(res, reg);
duke@435 1049 } else {
duke@435 1050 set_result(x, res);
duke@435 1051 }
duke@435 1052 }
duke@435 1053 } else {
duke@435 1054 set_result(x, LIR_OprFact::value_type(x->type()));
duke@435 1055 }
duke@435 1056 }
duke@435 1057
duke@435 1058
duke@435 1059 void LIRGenerator::do_Local(Local* x) {
duke@435 1060 // operand_for_instruction has the side effect of setting the result
duke@435 1061 // so there's no need to do it here.
duke@435 1062 operand_for_instruction(x);
duke@435 1063 }
duke@435 1064
duke@435 1065
duke@435 1066 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
duke@435 1067 Unimplemented();
duke@435 1068 }
duke@435 1069
duke@435 1070
duke@435 1071 void LIRGenerator::do_Return(Return* x) {
kvn@1215 1072 if (compilation()->env()->dtrace_method_probes()) {
duke@435 1073 BasicTypeList signature;
duke@435 1074 signature.append(T_INT); // thread
duke@435 1075 signature.append(T_OBJECT); // methodOop
duke@435 1076 LIR_OprList* args = new LIR_OprList();
duke@435 1077 args->append(getThreadPointer());
duke@435 1078 LIR_Opr meth = new_register(T_OBJECT);
jrose@1424 1079 __ oop2reg(method()->constant_encoding(), meth);
duke@435 1080 args->append(meth);
duke@435 1081 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
duke@435 1082 }
duke@435 1083
duke@435 1084 if (x->type()->is_void()) {
duke@435 1085 __ return_op(LIR_OprFact::illegalOpr);
duke@435 1086 } else {
duke@435 1087 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
duke@435 1088 LIRItem result(x->result(), this);
duke@435 1089
duke@435 1090 result.load_item_force(reg);
duke@435 1091 __ return_op(result.result());
duke@435 1092 }
duke@435 1093 set_no_result(x);
duke@435 1094 }
duke@435 1095
duke@435 1096
duke@435 1097 // Example: object.getClass ()
duke@435 1098 void LIRGenerator::do_getClass(Intrinsic* x) {
duke@435 1099 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 1100
duke@435 1101 LIRItem rcvr(x->argument_at(0), this);
duke@435 1102 rcvr.load_item();
duke@435 1103 LIR_Opr result = rlock_result(x);
duke@435 1104
duke@435 1105 // need to perform the null check on the rcvr
duke@435 1106 CodeEmitInfo* info = NULL;
duke@435 1107 if (x->needs_null_check()) {
roland@2174 1108 info = state_for(x);
duke@435 1109 }
duke@435 1110 __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
duke@435 1111 __ move(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
duke@435 1112 klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
duke@435 1113 }
duke@435 1114
duke@435 1115
duke@435 1116 // Example: Thread.currentThread()
duke@435 1117 void LIRGenerator::do_currentThread(Intrinsic* x) {
duke@435 1118 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 1119 LIR_Opr reg = rlock_result(x);
duke@435 1120 __ load(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
duke@435 1121 }
duke@435 1122
duke@435 1123
duke@435 1124 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
duke@435 1125 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 1126 LIRItem receiver(x->argument_at(0), this);
duke@435 1127
duke@435 1128 receiver.load_item();
duke@435 1129 BasicTypeList signature;
duke@435 1130 signature.append(T_OBJECT); // receiver
duke@435 1131 LIR_OprList* args = new LIR_OprList();
duke@435 1132 args->append(receiver.result());
duke@435 1133 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1134 call_runtime(&signature, args,
duke@435 1135 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
duke@435 1136 voidType, info);
duke@435 1137
duke@435 1138 set_no_result(x);
duke@435 1139 }
duke@435 1140
duke@435 1141
duke@435 1142 //------------------------local access--------------------------------------
duke@435 1143
duke@435 1144 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
duke@435 1145 if (x->operand()->is_illegal()) {
duke@435 1146 Constant* c = x->as_Constant();
duke@435 1147 if (c != NULL) {
duke@435 1148 x->set_operand(LIR_OprFact::value_type(c->type()));
duke@435 1149 } else {
duke@435 1150 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
duke@435 1151 // allocate a virtual register for this local or phi
duke@435 1152 x->set_operand(rlock(x));
duke@435 1153 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
duke@435 1154 }
duke@435 1155 }
duke@435 1156 return x->operand();
duke@435 1157 }
duke@435 1158
duke@435 1159
duke@435 1160 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
duke@435 1161 if (opr->is_virtual()) {
duke@435 1162 return instruction_for_vreg(opr->vreg_number());
duke@435 1163 }
duke@435 1164 return NULL;
duke@435 1165 }
duke@435 1166
duke@435 1167
duke@435 1168 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
duke@435 1169 if (reg_num < _instruction_for_operand.length()) {
duke@435 1170 return _instruction_for_operand.at(reg_num);
duke@435 1171 }
duke@435 1172 return NULL;
duke@435 1173 }
duke@435 1174
duke@435 1175
duke@435 1176 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
duke@435 1177 if (_vreg_flags.size_in_bits() == 0) {
duke@435 1178 BitMap2D temp(100, num_vreg_flags);
duke@435 1179 temp.clear();
duke@435 1180 _vreg_flags = temp;
duke@435 1181 }
duke@435 1182 _vreg_flags.at_put_grow(vreg_num, f, true);
duke@435 1183 }
duke@435 1184
duke@435 1185 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
duke@435 1186 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
duke@435 1187 return false;
duke@435 1188 }
duke@435 1189 return _vreg_flags.at(vreg_num, f);
duke@435 1190 }
duke@435 1191
duke@435 1192
duke@435 1193 // Block local constant handling. This code is useful for keeping
duke@435 1194 // unpinned constants and constants which aren't exposed in the IR in
duke@435 1195 // registers. Unpinned Constant instructions have their operands
duke@435 1196 // cleared when the block is finished so that other blocks can't end
duke@435 1197 // up referring to their registers.
duke@435 1198
duke@435 1199 LIR_Opr LIRGenerator::load_constant(Constant* x) {
duke@435 1200 assert(!x->is_pinned(), "only for unpinned constants");
duke@435 1201 _unpinned_constants.append(x);
duke@435 1202 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
duke@435 1203 }
duke@435 1204
duke@435 1205
duke@435 1206 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
duke@435 1207 BasicType t = c->type();
duke@435 1208 for (int i = 0; i < _constants.length(); i++) {
duke@435 1209 LIR_Const* other = _constants.at(i);
duke@435 1210 if (t == other->type()) {
duke@435 1211 switch (t) {
duke@435 1212 case T_INT:
duke@435 1213 case T_FLOAT:
duke@435 1214 if (c->as_jint_bits() != other->as_jint_bits()) continue;
duke@435 1215 break;
duke@435 1216 case T_LONG:
duke@435 1217 case T_DOUBLE:
never@921 1218 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
never@921 1219 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
duke@435 1220 break;
duke@435 1221 case T_OBJECT:
duke@435 1222 if (c->as_jobject() != other->as_jobject()) continue;
duke@435 1223 break;
duke@435 1224 }
duke@435 1225 return _reg_for_constants.at(i);
duke@435 1226 }
duke@435 1227 }
duke@435 1228
duke@435 1229 LIR_Opr result = new_register(t);
duke@435 1230 __ move((LIR_Opr)c, result);
duke@435 1231 _constants.append(c);
duke@435 1232 _reg_for_constants.append(result);
duke@435 1233 return result;
duke@435 1234 }
duke@435 1235
duke@435 1236 // Various barriers
duke@435 1237
ysr@777 1238 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch, CodeEmitInfo* info) {
ysr@777 1239 // Do the pre-write barrier, if any.
ysr@777 1240 switch (_bs->kind()) {
ysr@777 1241 #ifndef SERIALGC
ysr@777 1242 case BarrierSet::G1SATBCT:
ysr@777 1243 case BarrierSet::G1SATBCTLogging:
ysr@777 1244 G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
ysr@777 1245 break;
ysr@777 1246 #endif // SERIALGC
ysr@777 1247 case BarrierSet::CardTableModRef:
ysr@777 1248 case BarrierSet::CardTableExtension:
ysr@777 1249 // No pre barriers
ysr@777 1250 break;
ysr@777 1251 case BarrierSet::ModRef:
ysr@777 1252 case BarrierSet::Other:
ysr@777 1253 // No pre barriers
ysr@777 1254 break;
ysr@777 1255 default :
ysr@777 1256 ShouldNotReachHere();
ysr@777 1257
ysr@777 1258 }
ysr@777 1259 }
ysr@777 1260
duke@435 1261 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
ysr@777 1262 switch (_bs->kind()) {
ysr@777 1263 #ifndef SERIALGC
ysr@777 1264 case BarrierSet::G1SATBCT:
ysr@777 1265 case BarrierSet::G1SATBCTLogging:
ysr@777 1266 G1SATBCardTableModRef_post_barrier(addr, new_val);
ysr@777 1267 break;
ysr@777 1268 #endif // SERIALGC
duke@435 1269 case BarrierSet::CardTableModRef:
duke@435 1270 case BarrierSet::CardTableExtension:
duke@435 1271 CardTableModRef_post_barrier(addr, new_val);
duke@435 1272 break;
duke@435 1273 case BarrierSet::ModRef:
duke@435 1274 case BarrierSet::Other:
duke@435 1275 // No post barriers
duke@435 1276 break;
duke@435 1277 default :
duke@435 1278 ShouldNotReachHere();
duke@435 1279 }
duke@435 1280 }
duke@435 1281
ysr@777 1282 ////////////////////////////////////////////////////////////////////////
ysr@777 1283 #ifndef SERIALGC
ysr@777 1284
ysr@777 1285 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch, CodeEmitInfo* info) {
ysr@777 1286 if (G1DisablePreBarrier) return;
ysr@777 1287
ysr@777 1288 // First we test whether marking is in progress.
ysr@777 1289 BasicType flag_type;
ysr@777 1290 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
ysr@777 1291 flag_type = T_INT;
ysr@777 1292 } else {
ysr@777 1293 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
ysr@777 1294 "Assumption");
ysr@777 1295 flag_type = T_BYTE;
ysr@777 1296 }
ysr@777 1297 LIR_Opr thrd = getThreadPointer();
ysr@777 1298 LIR_Address* mark_active_flag_addr =
ysr@777 1299 new LIR_Address(thrd,
ysr@777 1300 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 1301 PtrQueue::byte_offset_of_active()),
ysr@777 1302 flag_type);
ysr@777 1303 // Read the marking-in-progress flag.
ysr@777 1304 LIR_Opr flag_val = new_register(T_INT);
ysr@777 1305 __ load(mark_active_flag_addr, flag_val);
ysr@777 1306
ysr@777 1307 LIR_PatchCode pre_val_patch_code =
ysr@777 1308 patch ? lir_patch_normal : lir_patch_none;
ysr@777 1309
ysr@777 1310 LIR_Opr pre_val = new_register(T_OBJECT);
ysr@777 1311
ysr@777 1312 __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
ysr@777 1313 if (!addr_opr->is_address()) {
ysr@777 1314 assert(addr_opr->is_register(), "must be");
iveresov@1927 1315 addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
ysr@777 1316 }
ysr@777 1317 CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
ysr@777 1318 info);
ysr@777 1319 __ branch(lir_cond_notEqual, T_INT, slow);
ysr@777 1320 __ branch_destination(slow->continuation());
ysr@777 1321 }
ysr@777 1322
ysr@777 1323 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
ysr@777 1324 if (G1DisablePostBarrier) return;
ysr@777 1325
ysr@777 1326 // If the "new_val" is a constant NULL, no barrier is necessary.
ysr@777 1327 if (new_val->is_constant() &&
ysr@777 1328 new_val->as_constant_ptr()->as_jobject() == NULL) return;
ysr@777 1329
ysr@777 1330 if (!new_val->is_register()) {
iveresov@1927 1331 LIR_Opr new_val_reg = new_register(T_OBJECT);
ysr@777 1332 if (new_val->is_constant()) {
ysr@777 1333 __ move(new_val, new_val_reg);
ysr@777 1334 } else {
ysr@777 1335 __ leal(new_val, new_val_reg);
ysr@777 1336 }
ysr@777 1337 new_val = new_val_reg;
ysr@777 1338 }
ysr@777 1339 assert(new_val->is_register(), "must be a register at this point");
ysr@777 1340
ysr@777 1341 if (addr->is_address()) {
ysr@777 1342 LIR_Address* address = addr->as_address_ptr();
iveresov@1927 1343 LIR_Opr ptr = new_register(T_OBJECT);
ysr@777 1344 if (!address->index()->is_valid() && address->disp() == 0) {
ysr@777 1345 __ move(address->base(), ptr);
ysr@777 1346 } else {
ysr@777 1347 assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
ysr@777 1348 __ leal(addr, ptr);
ysr@777 1349 }
ysr@777 1350 addr = ptr;
ysr@777 1351 }
ysr@777 1352 assert(addr->is_register(), "must be a register at this point");
ysr@777 1353
ysr@777 1354 LIR_Opr xor_res = new_pointer_register();
ysr@777 1355 LIR_Opr xor_shift_res = new_pointer_register();
ysr@777 1356 if (TwoOperandLIRForm ) {
ysr@777 1357 __ move(addr, xor_res);
ysr@777 1358 __ logical_xor(xor_res, new_val, xor_res);
ysr@777 1359 __ move(xor_res, xor_shift_res);
ysr@777 1360 __ unsigned_shift_right(xor_shift_res,
ysr@777 1361 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
ysr@777 1362 xor_shift_res,
ysr@777 1363 LIR_OprDesc::illegalOpr());
ysr@777 1364 } else {
ysr@777 1365 __ logical_xor(addr, new_val, xor_res);
ysr@777 1366 __ unsigned_shift_right(xor_res,
ysr@777 1367 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
ysr@777 1368 xor_shift_res,
ysr@777 1369 LIR_OprDesc::illegalOpr());
ysr@777 1370 }
ysr@777 1371
ysr@777 1372 if (!new_val->is_register()) {
iveresov@1927 1373 LIR_Opr new_val_reg = new_register(T_OBJECT);
ysr@777 1374 __ leal(new_val, new_val_reg);
ysr@777 1375 new_val = new_val_reg;
ysr@777 1376 }
ysr@777 1377 assert(new_val->is_register(), "must be a register at this point");
ysr@777 1378
ysr@777 1379 __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
ysr@777 1380
ysr@777 1381 CodeStub* slow = new G1PostBarrierStub(addr, new_val);
iveresov@1927 1382 __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
ysr@777 1383 __ branch_destination(slow->continuation());
ysr@777 1384 }
ysr@777 1385
ysr@777 1386 #endif // SERIALGC
ysr@777 1387 ////////////////////////////////////////////////////////////////////////
ysr@777 1388
duke@435 1389 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
duke@435 1390
ysr@777 1391 assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
ysr@777 1392 LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
duke@435 1393 if (addr->is_address()) {
duke@435 1394 LIR_Address* address = addr->as_address_ptr();
duke@435 1395 LIR_Opr ptr = new_register(T_OBJECT);
duke@435 1396 if (!address->index()->is_valid() && address->disp() == 0) {
duke@435 1397 __ move(address->base(), ptr);
duke@435 1398 } else {
duke@435 1399 assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
duke@435 1400 __ leal(addr, ptr);
duke@435 1401 }
duke@435 1402 addr = ptr;
duke@435 1403 }
duke@435 1404 assert(addr->is_register(), "must be a register at this point");
duke@435 1405
bobv@2036 1406 #ifdef ARM
bobv@2036 1407 // TODO: ARM - move to platform-dependent code
bobv@2036 1408 LIR_Opr tmp = FrameMap::R14_opr;
bobv@2036 1409 if (VM_Version::supports_movw()) {
bobv@2036 1410 __ move((LIR_Opr)card_table_base, tmp);
bobv@2036 1411 } else {
bobv@2036 1412 __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
bobv@2036 1413 }
bobv@2036 1414
bobv@2036 1415 CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
bobv@2036 1416 LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
bobv@2036 1417 if(((int)ct->byte_map_base & 0xff) == 0) {
bobv@2036 1418 __ move(tmp, card_addr);
bobv@2036 1419 } else {
bobv@2036 1420 LIR_Opr tmp_zero = new_register(T_INT);
bobv@2036 1421 __ move(LIR_OprFact::intConst(0), tmp_zero);
bobv@2036 1422 __ move(tmp_zero, card_addr);
bobv@2036 1423 }
bobv@2036 1424 #else // ARM
duke@435 1425 LIR_Opr tmp = new_pointer_register();
duke@435 1426 if (TwoOperandLIRForm) {
duke@435 1427 __ move(addr, tmp);
duke@435 1428 __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
duke@435 1429 } else {
duke@435 1430 __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
duke@435 1431 }
duke@435 1432 if (can_inline_as_constant(card_table_base)) {
duke@435 1433 __ move(LIR_OprFact::intConst(0),
duke@435 1434 new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
duke@435 1435 } else {
duke@435 1436 __ move(LIR_OprFact::intConst(0),
duke@435 1437 new LIR_Address(tmp, load_constant(card_table_base),
duke@435 1438 T_BYTE));
duke@435 1439 }
bobv@2036 1440 #endif // ARM
duke@435 1441 }
duke@435 1442
duke@435 1443
duke@435 1444 //------------------------field access--------------------------------------
duke@435 1445
duke@435 1446 // Comment copied form templateTable_i486.cpp
duke@435 1447 // ----------------------------------------------------------------------------
duke@435 1448 // Volatile variables demand their effects be made known to all CPU's in
duke@435 1449 // order. Store buffers on most chips allow reads & writes to reorder; the
duke@435 1450 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
duke@435 1451 // memory barrier (i.e., it's not sufficient that the interpreter does not
duke@435 1452 // reorder volatile references, the hardware also must not reorder them).
duke@435 1453 //
duke@435 1454 // According to the new Java Memory Model (JMM):
duke@435 1455 // (1) All volatiles are serialized wrt to each other.
duke@435 1456 // ALSO reads & writes act as aquire & release, so:
duke@435 1457 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
duke@435 1458 // the read float up to before the read. It's OK for non-volatile memory refs
duke@435 1459 // that happen before the volatile read to float down below it.
duke@435 1460 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
duke@435 1461 // that happen BEFORE the write float down to after the write. It's OK for
duke@435 1462 // non-volatile memory refs that happen after the volatile write to float up
duke@435 1463 // before it.
duke@435 1464 //
duke@435 1465 // We only put in barriers around volatile refs (they are expensive), not
duke@435 1466 // _between_ memory refs (that would require us to track the flavor of the
duke@435 1467 // previous memory refs). Requirements (2) and (3) require some barriers
duke@435 1468 // before volatile stores and after volatile loads. These nearly cover
duke@435 1469 // requirement (1) but miss the volatile-store-volatile-load case. This final
duke@435 1470 // case is placed after volatile-stores although it could just as well go
duke@435 1471 // before volatile-loads.
duke@435 1472
duke@435 1473
duke@435 1474 void LIRGenerator::do_StoreField(StoreField* x) {
duke@435 1475 bool needs_patching = x->needs_patching();
duke@435 1476 bool is_volatile = x->field()->is_volatile();
duke@435 1477 BasicType field_type = x->field_type();
duke@435 1478 bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
duke@435 1479
duke@435 1480 CodeEmitInfo* info = NULL;
duke@435 1481 if (needs_patching) {
duke@435 1482 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
duke@435 1483 info = state_for(x, x->state_before());
duke@435 1484 } else if (x->needs_null_check()) {
duke@435 1485 NullCheck* nc = x->explicit_null_check();
duke@435 1486 if (nc == NULL) {
roland@2174 1487 info = state_for(x);
duke@435 1488 } else {
duke@435 1489 info = state_for(nc);
duke@435 1490 }
duke@435 1491 }
duke@435 1492
duke@435 1493
duke@435 1494 LIRItem object(x->obj(), this);
duke@435 1495 LIRItem value(x->value(), this);
duke@435 1496
duke@435 1497 object.load_item();
duke@435 1498
duke@435 1499 if (is_volatile || needs_patching) {
duke@435 1500 // load item if field is volatile (fewer special cases for volatiles)
duke@435 1501 // load item if field not initialized
duke@435 1502 // load item if field not constant
duke@435 1503 // because of code patching we cannot inline constants
duke@435 1504 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
duke@435 1505 value.load_byte_item();
duke@435 1506 } else {
duke@435 1507 value.load_item();
duke@435 1508 }
duke@435 1509 } else {
duke@435 1510 value.load_for_store(field_type);
duke@435 1511 }
duke@435 1512
duke@435 1513 set_no_result(x);
duke@435 1514
roland@2174 1515 #ifndef PRODUCT
duke@435 1516 if (PrintNotLoaded && needs_patching) {
duke@435 1517 tty->print_cr(" ###class not loaded at store_%s bci %d",
roland@2174 1518 x->is_static() ? "static" : "field", x->printable_bci());
duke@435 1519 }
roland@2174 1520 #endif
duke@435 1521
duke@435 1522 if (x->needs_null_check() &&
duke@435 1523 (needs_patching ||
duke@435 1524 MacroAssembler::needs_explicit_null_check(x->offset()))) {
duke@435 1525 // emit an explicit null check because the offset is too large
duke@435 1526 __ null_check(object.result(), new CodeEmitInfo(info));
duke@435 1527 }
duke@435 1528
duke@435 1529 LIR_Address* address;
duke@435 1530 if (needs_patching) {
duke@435 1531 // we need to patch the offset in the instruction so don't allow
duke@435 1532 // generate_address to try to be smart about emitting the -1.
duke@435 1533 // Otherwise the patching code won't know how to find the
duke@435 1534 // instruction to patch.
bobv@2036 1535 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
duke@435 1536 } else {
duke@435 1537 address = generate_address(object.result(), x->offset(), field_type);
duke@435 1538 }
duke@435 1539
duke@435 1540 if (is_volatile && os::is_MP()) {
duke@435 1541 __ membar_release();
duke@435 1542 }
duke@435 1543
ysr@777 1544 if (is_oop) {
ysr@777 1545 // Do the pre-write barrier, if any.
ysr@777 1546 pre_barrier(LIR_OprFact::address(address),
ysr@777 1547 needs_patching,
ysr@777 1548 (info ? new CodeEmitInfo(info) : NULL));
ysr@777 1549 }
ysr@777 1550
duke@435 1551 if (is_volatile) {
duke@435 1552 assert(!needs_patching && x->is_loaded(),
duke@435 1553 "how do we know it's volatile if it's not loaded");
duke@435 1554 volatile_field_store(value.result(), address, info);
duke@435 1555 } else {
duke@435 1556 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
duke@435 1557 __ store(value.result(), address, info, patch_code);
duke@435 1558 }
duke@435 1559
duke@435 1560 if (is_oop) {
never@1254 1561 // Store to object so mark the card of the header
duke@435 1562 post_barrier(object.result(), value.result());
duke@435 1563 }
duke@435 1564
duke@435 1565 if (is_volatile && os::is_MP()) {
duke@435 1566 __ membar();
duke@435 1567 }
duke@435 1568 }
duke@435 1569
duke@435 1570
duke@435 1571 void LIRGenerator::do_LoadField(LoadField* x) {
duke@435 1572 bool needs_patching = x->needs_patching();
duke@435 1573 bool is_volatile = x->field()->is_volatile();
duke@435 1574 BasicType field_type = x->field_type();
duke@435 1575
duke@435 1576 CodeEmitInfo* info = NULL;
duke@435 1577 if (needs_patching) {
duke@435 1578 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
duke@435 1579 info = state_for(x, x->state_before());
duke@435 1580 } else if (x->needs_null_check()) {
duke@435 1581 NullCheck* nc = x->explicit_null_check();
duke@435 1582 if (nc == NULL) {
roland@2174 1583 info = state_for(x);
duke@435 1584 } else {
duke@435 1585 info = state_for(nc);
duke@435 1586 }
duke@435 1587 }
duke@435 1588
duke@435 1589 LIRItem object(x->obj(), this);
duke@435 1590
duke@435 1591 object.load_item();
duke@435 1592
roland@2174 1593 #ifndef PRODUCT
duke@435 1594 if (PrintNotLoaded && needs_patching) {
duke@435 1595 tty->print_cr(" ###class not loaded at load_%s bci %d",
roland@2174 1596 x->is_static() ? "static" : "field", x->printable_bci());
duke@435 1597 }
roland@2174 1598 #endif
duke@435 1599
duke@435 1600 if (x->needs_null_check() &&
duke@435 1601 (needs_patching ||
duke@435 1602 MacroAssembler::needs_explicit_null_check(x->offset()))) {
duke@435 1603 // emit an explicit null check because the offset is too large
duke@435 1604 __ null_check(object.result(), new CodeEmitInfo(info));
duke@435 1605 }
duke@435 1606
duke@435 1607 LIR_Opr reg = rlock_result(x, field_type);
duke@435 1608 LIR_Address* address;
duke@435 1609 if (needs_patching) {
duke@435 1610 // we need to patch the offset in the instruction so don't allow
duke@435 1611 // generate_address to try to be smart about emitting the -1.
duke@435 1612 // Otherwise the patching code won't know how to find the
duke@435 1613 // instruction to patch.
bobv@2036 1614 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
duke@435 1615 } else {
duke@435 1616 address = generate_address(object.result(), x->offset(), field_type);
duke@435 1617 }
duke@435 1618
duke@435 1619 if (is_volatile) {
duke@435 1620 assert(!needs_patching && x->is_loaded(),
duke@435 1621 "how do we know it's volatile if it's not loaded");
duke@435 1622 volatile_field_load(address, reg, info);
duke@435 1623 } else {
duke@435 1624 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
duke@435 1625 __ load(address, reg, info, patch_code);
duke@435 1626 }
duke@435 1627
duke@435 1628 if (is_volatile && os::is_MP()) {
duke@435 1629 __ membar_acquire();
duke@435 1630 }
duke@435 1631 }
duke@435 1632
duke@435 1633
duke@435 1634 //------------------------java.nio.Buffer.checkIndex------------------------
duke@435 1635
duke@435 1636 // int java.nio.Buffer.checkIndex(int)
duke@435 1637 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
duke@435 1638 // NOTE: by the time we are in checkIndex() we are guaranteed that
duke@435 1639 // the buffer is non-null (because checkIndex is package-private and
duke@435 1640 // only called from within other methods in the buffer).
duke@435 1641 assert(x->number_of_arguments() == 2, "wrong type");
duke@435 1642 LIRItem buf (x->argument_at(0), this);
duke@435 1643 LIRItem index(x->argument_at(1), this);
duke@435 1644 buf.load_item();
duke@435 1645 index.load_item();
duke@435 1646
duke@435 1647 LIR_Opr result = rlock_result(x);
duke@435 1648 if (GenerateRangeChecks) {
duke@435 1649 CodeEmitInfo* info = state_for(x);
duke@435 1650 CodeStub* stub = new RangeCheckStub(info, index.result(), true);
duke@435 1651 if (index.result()->is_constant()) {
duke@435 1652 cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
duke@435 1653 __ branch(lir_cond_belowEqual, T_INT, stub);
duke@435 1654 } else {
duke@435 1655 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
duke@435 1656 java_nio_Buffer::limit_offset(), T_INT, info);
duke@435 1657 __ branch(lir_cond_aboveEqual, T_INT, stub);
duke@435 1658 }
duke@435 1659 __ move(index.result(), result);
duke@435 1660 } else {
duke@435 1661 // Just load the index into the result register
duke@435 1662 __ move(index.result(), result);
duke@435 1663 }
duke@435 1664 }
duke@435 1665
duke@435 1666
duke@435 1667 //------------------------array access--------------------------------------
duke@435 1668
duke@435 1669
duke@435 1670 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
duke@435 1671 LIRItem array(x->array(), this);
duke@435 1672 array.load_item();
duke@435 1673 LIR_Opr reg = rlock_result(x);
duke@435 1674
duke@435 1675 CodeEmitInfo* info = NULL;
duke@435 1676 if (x->needs_null_check()) {
duke@435 1677 NullCheck* nc = x->explicit_null_check();
duke@435 1678 if (nc == NULL) {
duke@435 1679 info = state_for(x);
duke@435 1680 } else {
duke@435 1681 info = state_for(nc);
duke@435 1682 }
duke@435 1683 }
duke@435 1684 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
duke@435 1685 }
duke@435 1686
duke@435 1687
duke@435 1688 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
duke@435 1689 bool use_length = x->length() != NULL;
duke@435 1690 LIRItem array(x->array(), this);
duke@435 1691 LIRItem index(x->index(), this);
duke@435 1692 LIRItem length(this);
duke@435 1693 bool needs_range_check = true;
duke@435 1694
duke@435 1695 if (use_length) {
duke@435 1696 needs_range_check = x->compute_needs_range_check();
duke@435 1697 if (needs_range_check) {
duke@435 1698 length.set_instruction(x->length());
duke@435 1699 length.load_item();
duke@435 1700 }
duke@435 1701 }
duke@435 1702
duke@435 1703 array.load_item();
duke@435 1704 if (index.is_constant() && can_inline_as_constant(x->index())) {
duke@435 1705 // let it be a constant
duke@435 1706 index.dont_load_item();
duke@435 1707 } else {
duke@435 1708 index.load_item();
duke@435 1709 }
duke@435 1710
duke@435 1711 CodeEmitInfo* range_check_info = state_for(x);
duke@435 1712 CodeEmitInfo* null_check_info = NULL;
duke@435 1713 if (x->needs_null_check()) {
duke@435 1714 NullCheck* nc = x->explicit_null_check();
duke@435 1715 if (nc != NULL) {
duke@435 1716 null_check_info = state_for(nc);
duke@435 1717 } else {
duke@435 1718 null_check_info = range_check_info;
duke@435 1719 }
duke@435 1720 }
duke@435 1721
duke@435 1722 // emit array address setup early so it schedules better
duke@435 1723 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
duke@435 1724
duke@435 1725 if (GenerateRangeChecks && needs_range_check) {
duke@435 1726 if (use_length) {
duke@435 1727 // TODO: use a (modified) version of array_range_check that does not require a
duke@435 1728 // constant length to be loaded to a register
duke@435 1729 __ cmp(lir_cond_belowEqual, length.result(), index.result());
duke@435 1730 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
duke@435 1731 } else {
duke@435 1732 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
duke@435 1733 // The range check performs the null check, so clear it out for the load
duke@435 1734 null_check_info = NULL;
duke@435 1735 }
duke@435 1736 }
duke@435 1737
duke@435 1738 __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
duke@435 1739 }
duke@435 1740
duke@435 1741
duke@435 1742 void LIRGenerator::do_NullCheck(NullCheck* x) {
duke@435 1743 if (x->can_trap()) {
duke@435 1744 LIRItem value(x->obj(), this);
duke@435 1745 value.load_item();
duke@435 1746 CodeEmitInfo* info = state_for(x);
duke@435 1747 __ null_check(value.result(), info);
duke@435 1748 }
duke@435 1749 }
duke@435 1750
duke@435 1751
duke@435 1752 void LIRGenerator::do_Throw(Throw* x) {
duke@435 1753 LIRItem exception(x->exception(), this);
duke@435 1754 exception.load_item();
duke@435 1755 set_no_result(x);
duke@435 1756 LIR_Opr exception_opr = exception.result();
duke@435 1757 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1758
duke@435 1759 #ifndef PRODUCT
duke@435 1760 if (PrintC1Statistics) {
iveresov@2138 1761 increment_counter(Runtime1::throw_count_address(), T_INT);
duke@435 1762 }
duke@435 1763 #endif
duke@435 1764
duke@435 1765 // check if the instruction has an xhandler in any of the nested scopes
duke@435 1766 bool unwind = false;
duke@435 1767 if (info->exception_handlers()->length() == 0) {
duke@435 1768 // this throw is not inside an xhandler
duke@435 1769 unwind = true;
duke@435 1770 } else {
duke@435 1771 // get some idea of the throw type
duke@435 1772 bool type_is_exact = true;
duke@435 1773 ciType* throw_type = x->exception()->exact_type();
duke@435 1774 if (throw_type == NULL) {
duke@435 1775 type_is_exact = false;
duke@435 1776 throw_type = x->exception()->declared_type();
duke@435 1777 }
duke@435 1778 if (throw_type != NULL && throw_type->is_instance_klass()) {
duke@435 1779 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
duke@435 1780 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
duke@435 1781 }
duke@435 1782 }
duke@435 1783
duke@435 1784 // do null check before moving exception oop into fixed register
duke@435 1785 // to avoid a fixed interval with an oop during the null check.
duke@435 1786 // Use a copy of the CodeEmitInfo because debug information is
duke@435 1787 // different for null_check and throw.
duke@435 1788 if (GenerateCompilerNullChecks &&
duke@435 1789 (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
duke@435 1790 // if the exception object wasn't created using new then it might be null.
roland@2174 1791 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
duke@435 1792 }
duke@435 1793
never@1813 1794 if (compilation()->env()->jvmti_can_post_on_exceptions()) {
duke@435 1795 // we need to go through the exception lookup path to get JVMTI
duke@435 1796 // notification done
duke@435 1797 unwind = false;
duke@435 1798 }
duke@435 1799
duke@435 1800 // move exception oop into fixed register
duke@435 1801 __ move(exception_opr, exceptionOopOpr());
duke@435 1802
duke@435 1803 if (unwind) {
never@1813 1804 __ unwind_exception(exceptionOopOpr());
duke@435 1805 } else {
duke@435 1806 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
duke@435 1807 }
duke@435 1808 }
duke@435 1809
duke@435 1810
duke@435 1811 void LIRGenerator::do_RoundFP(RoundFP* x) {
duke@435 1812 LIRItem input(x->input(), this);
duke@435 1813 input.load_item();
duke@435 1814 LIR_Opr input_opr = input.result();
duke@435 1815 assert(input_opr->is_register(), "why round if value is not in a register?");
duke@435 1816 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
duke@435 1817 if (input_opr->is_single_fpu()) {
duke@435 1818 set_result(x, round_item(input_opr)); // This code path not currently taken
duke@435 1819 } else {
duke@435 1820 LIR_Opr result = new_register(T_DOUBLE);
duke@435 1821 set_vreg_flag(result, must_start_in_memory);
duke@435 1822 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
duke@435 1823 set_result(x, result);
duke@435 1824 }
duke@435 1825 }
duke@435 1826
duke@435 1827 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
duke@435 1828 LIRItem base(x->base(), this);
duke@435 1829 LIRItem idx(this);
duke@435 1830
duke@435 1831 base.load_item();
duke@435 1832 if (x->has_index()) {
duke@435 1833 idx.set_instruction(x->index());
duke@435 1834 idx.load_nonconstant();
duke@435 1835 }
duke@435 1836
duke@435 1837 LIR_Opr reg = rlock_result(x, x->basic_type());
duke@435 1838
duke@435 1839 int log2_scale = 0;
duke@435 1840 if (x->has_index()) {
duke@435 1841 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
duke@435 1842 log2_scale = x->log2_scale();
duke@435 1843 }
duke@435 1844
duke@435 1845 assert(!x->has_index() || idx.value() == x->index(), "should match");
duke@435 1846
duke@435 1847 LIR_Opr base_op = base.result();
duke@435 1848 #ifndef _LP64
duke@435 1849 if (x->base()->type()->tag() == longTag) {
duke@435 1850 base_op = new_register(T_INT);
duke@435 1851 __ convert(Bytecodes::_l2i, base.result(), base_op);
duke@435 1852 } else {
duke@435 1853 assert(x->base()->type()->tag() == intTag, "must be");
duke@435 1854 }
duke@435 1855 #endif
duke@435 1856
duke@435 1857 BasicType dst_type = x->basic_type();
duke@435 1858 LIR_Opr index_op = idx.result();
duke@435 1859
duke@435 1860 LIR_Address* addr;
duke@435 1861 if (index_op->is_constant()) {
duke@435 1862 assert(log2_scale == 0, "must not have a scale");
duke@435 1863 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
duke@435 1864 } else {
never@739 1865 #ifdef X86
roland@1495 1866 #ifdef _LP64
roland@1495 1867 if (!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 1868 LIR_Opr tmp = new_pointer_register();
roland@1495 1869 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 1870 index_op = tmp;
roland@1495 1871 }
roland@1495 1872 #endif
duke@435 1873 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
bobv@2036 1874 #elif defined(ARM)
bobv@2036 1875 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
duke@435 1876 #else
duke@435 1877 if (index_op->is_illegal() || log2_scale == 0) {
roland@1495 1878 #ifdef _LP64
roland@1495 1879 if (!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 1880 LIR_Opr tmp = new_pointer_register();
roland@1495 1881 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 1882 index_op = tmp;
roland@1495 1883 }
roland@1495 1884 #endif
duke@435 1885 addr = new LIR_Address(base_op, index_op, dst_type);
duke@435 1886 } else {
roland@1495 1887 LIR_Opr tmp = new_pointer_register();
duke@435 1888 __ shift_left(index_op, log2_scale, tmp);
duke@435 1889 addr = new LIR_Address(base_op, tmp, dst_type);
duke@435 1890 }
duke@435 1891 #endif
duke@435 1892 }
duke@435 1893
duke@435 1894 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
duke@435 1895 __ unaligned_move(addr, reg);
duke@435 1896 } else {
duke@435 1897 __ move(addr, reg);
duke@435 1898 }
duke@435 1899 }
duke@435 1900
duke@435 1901
duke@435 1902 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
duke@435 1903 int log2_scale = 0;
duke@435 1904 BasicType type = x->basic_type();
duke@435 1905
duke@435 1906 if (x->has_index()) {
duke@435 1907 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
duke@435 1908 log2_scale = x->log2_scale();
duke@435 1909 }
duke@435 1910
duke@435 1911 LIRItem base(x->base(), this);
duke@435 1912 LIRItem value(x->value(), this);
duke@435 1913 LIRItem idx(this);
duke@435 1914
duke@435 1915 base.load_item();
duke@435 1916 if (x->has_index()) {
duke@435 1917 idx.set_instruction(x->index());
duke@435 1918 idx.load_item();
duke@435 1919 }
duke@435 1920
duke@435 1921 if (type == T_BYTE || type == T_BOOLEAN) {
duke@435 1922 value.load_byte_item();
duke@435 1923 } else {
duke@435 1924 value.load_item();
duke@435 1925 }
duke@435 1926
duke@435 1927 set_no_result(x);
duke@435 1928
duke@435 1929 LIR_Opr base_op = base.result();
duke@435 1930 #ifndef _LP64
duke@435 1931 if (x->base()->type()->tag() == longTag) {
duke@435 1932 base_op = new_register(T_INT);
duke@435 1933 __ convert(Bytecodes::_l2i, base.result(), base_op);
duke@435 1934 } else {
duke@435 1935 assert(x->base()->type()->tag() == intTag, "must be");
duke@435 1936 }
duke@435 1937 #endif
duke@435 1938
duke@435 1939 LIR_Opr index_op = idx.result();
duke@435 1940 if (log2_scale != 0) {
duke@435 1941 // temporary fix (platform dependent code without shift on Intel would be better)
roland@1495 1942 index_op = new_pointer_register();
roland@1495 1943 #ifdef _LP64
roland@1495 1944 if(idx.result()->type() == T_INT) {
roland@1495 1945 __ convert(Bytecodes::_i2l, idx.result(), index_op);
roland@1495 1946 } else {
roland@1495 1947 #endif
bobv@2036 1948 // TODO: ARM also allows embedded shift in the address
roland@1495 1949 __ move(idx.result(), index_op);
roland@1495 1950 #ifdef _LP64
roland@1495 1951 }
roland@1495 1952 #endif
duke@435 1953 __ shift_left(index_op, log2_scale, index_op);
duke@435 1954 }
roland@1495 1955 #ifdef _LP64
roland@1495 1956 else if(!index_op->is_illegal() && index_op->type() == T_INT) {
roland@1495 1957 LIR_Opr tmp = new_pointer_register();
roland@1495 1958 __ convert(Bytecodes::_i2l, index_op, tmp);
roland@1495 1959 index_op = tmp;
roland@1495 1960 }
roland@1495 1961 #endif
duke@435 1962
duke@435 1963 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
duke@435 1964 __ move(value.result(), addr);
duke@435 1965 }
duke@435 1966
duke@435 1967
duke@435 1968 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
duke@435 1969 BasicType type = x->basic_type();
duke@435 1970 LIRItem src(x->object(), this);
duke@435 1971 LIRItem off(x->offset(), this);
duke@435 1972
duke@435 1973 off.load_item();
duke@435 1974 src.load_item();
duke@435 1975
duke@435 1976 LIR_Opr reg = reg = rlock_result(x, x->basic_type());
duke@435 1977
duke@435 1978 if (x->is_volatile() && os::is_MP()) __ membar_acquire();
duke@435 1979 get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
duke@435 1980 if (x->is_volatile() && os::is_MP()) __ membar();
duke@435 1981 }
duke@435 1982
duke@435 1983
duke@435 1984 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
duke@435 1985 BasicType type = x->basic_type();
duke@435 1986 LIRItem src(x->object(), this);
duke@435 1987 LIRItem off(x->offset(), this);
duke@435 1988 LIRItem data(x->value(), this);
duke@435 1989
duke@435 1990 src.load_item();
duke@435 1991 if (type == T_BOOLEAN || type == T_BYTE) {
duke@435 1992 data.load_byte_item();
duke@435 1993 } else {
duke@435 1994 data.load_item();
duke@435 1995 }
duke@435 1996 off.load_item();
duke@435 1997
duke@435 1998 set_no_result(x);
duke@435 1999
duke@435 2000 if (x->is_volatile() && os::is_MP()) __ membar_release();
duke@435 2001 put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
duke@435 2002 }
duke@435 2003
duke@435 2004
duke@435 2005 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
duke@435 2006 LIRItem src(x->object(), this);
duke@435 2007 LIRItem off(x->offset(), this);
duke@435 2008
duke@435 2009 src.load_item();
duke@435 2010 if (off.is_constant() && can_inline_as_constant(x->offset())) {
duke@435 2011 // let it be a constant
duke@435 2012 off.dont_load_item();
duke@435 2013 } else {
duke@435 2014 off.load_item();
duke@435 2015 }
duke@435 2016
duke@435 2017 set_no_result(x);
duke@435 2018
duke@435 2019 LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
duke@435 2020 __ prefetch(addr, is_store);
duke@435 2021 }
duke@435 2022
duke@435 2023
duke@435 2024 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
duke@435 2025 do_UnsafePrefetch(x, false);
duke@435 2026 }
duke@435 2027
duke@435 2028
duke@435 2029 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
duke@435 2030 do_UnsafePrefetch(x, true);
duke@435 2031 }
duke@435 2032
duke@435 2033
duke@435 2034 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
duke@435 2035 int lng = x->length();
duke@435 2036
duke@435 2037 for (int i = 0; i < lng; i++) {
duke@435 2038 SwitchRange* one_range = x->at(i);
duke@435 2039 int low_key = one_range->low_key();
duke@435 2040 int high_key = one_range->high_key();
duke@435 2041 BlockBegin* dest = one_range->sux();
duke@435 2042 if (low_key == high_key) {
duke@435 2043 __ cmp(lir_cond_equal, value, low_key);
duke@435 2044 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2045 } else if (high_key - low_key == 1) {
duke@435 2046 __ cmp(lir_cond_equal, value, low_key);
duke@435 2047 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2048 __ cmp(lir_cond_equal, value, high_key);
duke@435 2049 __ branch(lir_cond_equal, T_INT, dest);
duke@435 2050 } else {
duke@435 2051 LabelObj* L = new LabelObj();
duke@435 2052 __ cmp(lir_cond_less, value, low_key);
duke@435 2053 __ branch(lir_cond_less, L->label());
duke@435 2054 __ cmp(lir_cond_lessEqual, value, high_key);
duke@435 2055 __ branch(lir_cond_lessEqual, T_INT, dest);
duke@435 2056 __ branch_destination(L->label());
duke@435 2057 }
duke@435 2058 }
duke@435 2059 __ jump(default_sux);
duke@435 2060 }
duke@435 2061
duke@435 2062
duke@435 2063 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
duke@435 2064 SwitchRangeList* res = new SwitchRangeList();
duke@435 2065 int len = x->length();
duke@435 2066 if (len > 0) {
duke@435 2067 BlockBegin* sux = x->sux_at(0);
duke@435 2068 int key = x->lo_key();
duke@435 2069 BlockBegin* default_sux = x->default_sux();
duke@435 2070 SwitchRange* range = new SwitchRange(key, sux);
duke@435 2071 for (int i = 0; i < len; i++, key++) {
duke@435 2072 BlockBegin* new_sux = x->sux_at(i);
duke@435 2073 if (sux == new_sux) {
duke@435 2074 // still in same range
duke@435 2075 range->set_high_key(key);
duke@435 2076 } else {
duke@435 2077 // skip tests which explicitly dispatch to the default
duke@435 2078 if (sux != default_sux) {
duke@435 2079 res->append(range);
duke@435 2080 }
duke@435 2081 range = new SwitchRange(key, new_sux);
duke@435 2082 }
duke@435 2083 sux = new_sux;
duke@435 2084 }
duke@435 2085 if (res->length() == 0 || res->last() != range) res->append(range);
duke@435 2086 }
duke@435 2087 return res;
duke@435 2088 }
duke@435 2089
duke@435 2090
duke@435 2091 // we expect the keys to be sorted by increasing value
duke@435 2092 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
duke@435 2093 SwitchRangeList* res = new SwitchRangeList();
duke@435 2094 int len = x->length();
duke@435 2095 if (len > 0) {
duke@435 2096 BlockBegin* default_sux = x->default_sux();
duke@435 2097 int key = x->key_at(0);
duke@435 2098 BlockBegin* sux = x->sux_at(0);
duke@435 2099 SwitchRange* range = new SwitchRange(key, sux);
duke@435 2100 for (int i = 1; i < len; i++) {
duke@435 2101 int new_key = x->key_at(i);
duke@435 2102 BlockBegin* new_sux = x->sux_at(i);
duke@435 2103 if (key+1 == new_key && sux == new_sux) {
duke@435 2104 // still in same range
duke@435 2105 range->set_high_key(new_key);
duke@435 2106 } else {
duke@435 2107 // skip tests which explicitly dispatch to the default
duke@435 2108 if (range->sux() != default_sux) {
duke@435 2109 res->append(range);
duke@435 2110 }
duke@435 2111 range = new SwitchRange(new_key, new_sux);
duke@435 2112 }
duke@435 2113 key = new_key;
duke@435 2114 sux = new_sux;
duke@435 2115 }
duke@435 2116 if (res->length() == 0 || res->last() != range) res->append(range);
duke@435 2117 }
duke@435 2118 return res;
duke@435 2119 }
duke@435 2120
duke@435 2121
duke@435 2122 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
duke@435 2123 LIRItem tag(x->tag(), this);
duke@435 2124 tag.load_item();
duke@435 2125 set_no_result(x);
duke@435 2126
duke@435 2127 if (x->is_safepoint()) {
duke@435 2128 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
duke@435 2129 }
duke@435 2130
duke@435 2131 // move values into phi locations
duke@435 2132 move_to_phi(x->state());
duke@435 2133
duke@435 2134 int lo_key = x->lo_key();
duke@435 2135 int hi_key = x->hi_key();
duke@435 2136 int len = x->length();
duke@435 2137 LIR_Opr value = tag.result();
duke@435 2138 if (UseTableRanges) {
duke@435 2139 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
duke@435 2140 } else {
duke@435 2141 for (int i = 0; i < len; i++) {
duke@435 2142 __ cmp(lir_cond_equal, value, i + lo_key);
duke@435 2143 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
duke@435 2144 }
duke@435 2145 __ jump(x->default_sux());
duke@435 2146 }
duke@435 2147 }
duke@435 2148
duke@435 2149
duke@435 2150 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
duke@435 2151 LIRItem tag(x->tag(), this);
duke@435 2152 tag.load_item();
duke@435 2153 set_no_result(x);
duke@435 2154
duke@435 2155 if (x->is_safepoint()) {
duke@435 2156 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
duke@435 2157 }
duke@435 2158
duke@435 2159 // move values into phi locations
duke@435 2160 move_to_phi(x->state());
duke@435 2161
duke@435 2162 LIR_Opr value = tag.result();
duke@435 2163 if (UseTableRanges) {
duke@435 2164 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
duke@435 2165 } else {
duke@435 2166 int len = x->length();
duke@435 2167 for (int i = 0; i < len; i++) {
duke@435 2168 __ cmp(lir_cond_equal, value, x->key_at(i));
duke@435 2169 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
duke@435 2170 }
duke@435 2171 __ jump(x->default_sux());
duke@435 2172 }
duke@435 2173 }
duke@435 2174
duke@435 2175
duke@435 2176 void LIRGenerator::do_Goto(Goto* x) {
duke@435 2177 set_no_result(x);
duke@435 2178
duke@435 2179 if (block()->next()->as_OsrEntry()) {
duke@435 2180 // need to free up storage used for OSR entry point
duke@435 2181 LIR_Opr osrBuffer = block()->next()->operand();
duke@435 2182 BasicTypeList signature;
duke@435 2183 signature.append(T_INT);
duke@435 2184 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
duke@435 2185 __ move(osrBuffer, cc->args()->at(0));
duke@435 2186 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
duke@435 2187 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
duke@435 2188 }
duke@435 2189
duke@435 2190 if (x->is_safepoint()) {
duke@435 2191 ValueStack* state = x->state_before() ? x->state_before() : x->state();
duke@435 2192
duke@435 2193 // increment backedge counter if needed
iveresov@2138 2194 CodeEmitInfo* info = state_for(x, state);
roland@2174 2195 increment_backedge_counter(info, info->stack()->bci());
duke@435 2196 CodeEmitInfo* safepoint_info = state_for(x, state);
duke@435 2197 __ safepoint(safepoint_poll_register(), safepoint_info);
duke@435 2198 }
duke@435 2199
iveresov@2138 2200 // Gotos can be folded Ifs, handle this case.
iveresov@2138 2201 if (x->should_profile()) {
iveresov@2138 2202 ciMethod* method = x->profiled_method();
iveresov@2138 2203 assert(method != NULL, "method should be set if branch is profiled");
iveresov@2138 2204 ciMethodData* md = method->method_data();
iveresov@2138 2205 if (md == NULL) {
iveresov@2138 2206 bailout("out of memory building methodDataOop");
iveresov@2138 2207 return;
iveresov@2138 2208 }
iveresov@2138 2209 ciProfileData* data = md->bci_to_data(x->profiled_bci());
iveresov@2138 2210 assert(data != NULL, "must have profiling data");
iveresov@2138 2211 int offset;
iveresov@2138 2212 if (x->direction() == Goto::taken) {
iveresov@2138 2213 assert(data->is_BranchData(), "need BranchData for two-way branches");
iveresov@2138 2214 offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
iveresov@2138 2215 } else if (x->direction() == Goto::not_taken) {
iveresov@2138 2216 assert(data->is_BranchData(), "need BranchData for two-way branches");
iveresov@2138 2217 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
iveresov@2138 2218 } else {
iveresov@2138 2219 assert(data->is_JumpData(), "need JumpData for branches");
iveresov@2138 2220 offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
iveresov@2138 2221 }
iveresov@2138 2222 LIR_Opr md_reg = new_register(T_OBJECT);
iveresov@2138 2223 __ oop2reg(md->constant_encoding(), md_reg);
iveresov@2138 2224
iveresov@2138 2225 increment_counter(new LIR_Address(md_reg, offset,
iveresov@2138 2226 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
iveresov@2138 2227 }
iveresov@2138 2228
duke@435 2229 // emit phi-instruction move after safepoint since this simplifies
duke@435 2230 // describing the state as the safepoint.
duke@435 2231 move_to_phi(x->state());
duke@435 2232
duke@435 2233 __ jump(x->default_sux());
duke@435 2234 }
duke@435 2235
duke@435 2236
duke@435 2237 void LIRGenerator::do_Base(Base* x) {
duke@435 2238 __ std_entry(LIR_OprFact::illegalOpr);
duke@435 2239 // Emit moves from physical registers / stack slots to virtual registers
duke@435 2240 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
duke@435 2241 IRScope* irScope = compilation()->hir()->top_scope();
duke@435 2242 int java_index = 0;
duke@435 2243 for (int i = 0; i < args->length(); i++) {
duke@435 2244 LIR_Opr src = args->at(i);
duke@435 2245 assert(!src->is_illegal(), "check");
duke@435 2246 BasicType t = src->type();
duke@435 2247
duke@435 2248 // Types which are smaller than int are passed as int, so
duke@435 2249 // correct the type which passed.
duke@435 2250 switch (t) {
duke@435 2251 case T_BYTE:
duke@435 2252 case T_BOOLEAN:
duke@435 2253 case T_SHORT:
duke@435 2254 case T_CHAR:
duke@435 2255 t = T_INT;
duke@435 2256 break;
duke@435 2257 }
duke@435 2258
duke@435 2259 LIR_Opr dest = new_register(t);
duke@435 2260 __ move(src, dest);
duke@435 2261
duke@435 2262 // Assign new location to Local instruction for this local
duke@435 2263 Local* local = x->state()->local_at(java_index)->as_Local();
duke@435 2264 assert(local != NULL, "Locals for incoming arguments must have been created");
bobv@2036 2265 #ifndef __SOFTFP__
bobv@2036 2266 // The java calling convention passes double as long and float as int.
duke@435 2267 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
bobv@2036 2268 #endif // __SOFTFP__
duke@435 2269 local->set_operand(dest);
duke@435 2270 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
duke@435 2271 java_index += type2size[t];
duke@435 2272 }
duke@435 2273
kvn@1215 2274 if (compilation()->env()->dtrace_method_probes()) {
duke@435 2275 BasicTypeList signature;
duke@435 2276 signature.append(T_INT); // thread
duke@435 2277 signature.append(T_OBJECT); // methodOop
duke@435 2278 LIR_OprList* args = new LIR_OprList();
duke@435 2279 args->append(getThreadPointer());
duke@435 2280 LIR_Opr meth = new_register(T_OBJECT);
jrose@1424 2281 __ oop2reg(method()->constant_encoding(), meth);
duke@435 2282 args->append(meth);
duke@435 2283 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
duke@435 2284 }
duke@435 2285
duke@435 2286 if (method()->is_synchronized()) {
duke@435 2287 LIR_Opr obj;
duke@435 2288 if (method()->is_static()) {
duke@435 2289 obj = new_register(T_OBJECT);
jrose@1424 2290 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
duke@435 2291 } else {
duke@435 2292 Local* receiver = x->state()->local_at(0)->as_Local();
duke@435 2293 assert(receiver != NULL, "must already exist");
duke@435 2294 obj = receiver->operand();
duke@435 2295 }
duke@435 2296 assert(obj->is_valid(), "must be valid");
duke@435 2297
duke@435 2298 if (method()->is_synchronized() && GenerateSynchronizationCode) {
duke@435 2299 LIR_Opr lock = new_register(T_INT);
duke@435 2300 __ load_stack_address_monitor(0, lock);
duke@435 2301
roland@2174 2302 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
duke@435 2303 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
duke@435 2304
duke@435 2305 // receiver is guaranteed non-NULL so don't need CodeEmitInfo
duke@435 2306 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
duke@435 2307 }
duke@435 2308 }
duke@435 2309
duke@435 2310 // increment invocation counters if needed
iveresov@2138 2311 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
roland@2174 2312 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state(), NULL);
iveresov@2138 2313 increment_invocation_counter(info);
iveresov@2138 2314 }
duke@435 2315
duke@435 2316 // all blocks with a successor must end with an unconditional jump
duke@435 2317 // to the successor even if they are consecutive
duke@435 2318 __ jump(x->default_sux());
duke@435 2319 }
duke@435 2320
duke@435 2321
duke@435 2322 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
duke@435 2323 // construct our frame and model the production of incoming pointer
duke@435 2324 // to the OSR buffer.
duke@435 2325 __ osr_entry(LIR_Assembler::osrBufferPointer());
duke@435 2326 LIR_Opr result = rlock_result(x);
duke@435 2327 __ move(LIR_Assembler::osrBufferPointer(), result);
duke@435 2328 }
duke@435 2329
duke@435 2330
duke@435 2331 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
twisti@1730 2332 int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
duke@435 2333 for (; i < args->length(); i++) {
duke@435 2334 LIRItem* param = args->at(i);
duke@435 2335 LIR_Opr loc = arg_list->at(i);
duke@435 2336 if (loc->is_register()) {
duke@435 2337 param->load_item_force(loc);
duke@435 2338 } else {
duke@435 2339 LIR_Address* addr = loc->as_address_ptr();
duke@435 2340 param->load_for_store(addr->type());
duke@435 2341 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 2342 __ unaligned_move(param->result(), addr);
duke@435 2343 } else {
duke@435 2344 __ move(param->result(), addr);
duke@435 2345 }
duke@435 2346 }
duke@435 2347 }
duke@435 2348
duke@435 2349 if (x->has_receiver()) {
duke@435 2350 LIRItem* receiver = args->at(0);
duke@435 2351 LIR_Opr loc = arg_list->at(0);
duke@435 2352 if (loc->is_register()) {
duke@435 2353 receiver->load_item_force(loc);
duke@435 2354 } else {
duke@435 2355 assert(loc->is_address(), "just checking");
duke@435 2356 receiver->load_for_store(T_OBJECT);
duke@435 2357 __ move(receiver->result(), loc);
duke@435 2358 }
duke@435 2359 }
duke@435 2360 }
duke@435 2361
duke@435 2362
duke@435 2363 // Visits all arguments, returns appropriate items without loading them
duke@435 2364 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
duke@435 2365 LIRItemList* argument_items = new LIRItemList();
duke@435 2366 if (x->has_receiver()) {
duke@435 2367 LIRItem* receiver = new LIRItem(x->receiver(), this);
duke@435 2368 argument_items->append(receiver);
duke@435 2369 }
twisti@1730 2370 if (x->is_invokedynamic()) {
twisti@1730 2371 // Insert a dummy for the synthetic MethodHandle argument.
twisti@1730 2372 argument_items->append(NULL);
twisti@1730 2373 }
duke@435 2374 int idx = x->has_receiver() ? 1 : 0;
duke@435 2375 for (int i = 0; i < x->number_of_arguments(); i++) {
duke@435 2376 LIRItem* param = new LIRItem(x->argument_at(i), this);
duke@435 2377 argument_items->append(param);
duke@435 2378 idx += (param->type()->is_double_word() ? 2 : 1);
duke@435 2379 }
duke@435 2380 return argument_items;
duke@435 2381 }
duke@435 2382
duke@435 2383
duke@435 2384 // The invoke with receiver has following phases:
duke@435 2385 // a) traverse and load/lock receiver;
duke@435 2386 // b) traverse all arguments -> item-array (invoke_visit_argument)
duke@435 2387 // c) push receiver on stack
duke@435 2388 // d) load each of the items and push on stack
duke@435 2389 // e) unlock receiver
duke@435 2390 // f) move receiver into receiver-register %o0
duke@435 2391 // g) lock result registers and emit call operation
duke@435 2392 //
duke@435 2393 // Before issuing a call, we must spill-save all values on stack
duke@435 2394 // that are in caller-save register. "spill-save" moves thos registers
duke@435 2395 // either in a free callee-save register or spills them if no free
duke@435 2396 // callee save register is available.
duke@435 2397 //
duke@435 2398 // The problem is where to invoke spill-save.
duke@435 2399 // - if invoked between e) and f), we may lock callee save
duke@435 2400 // register in "spill-save" that destroys the receiver register
duke@435 2401 // before f) is executed
duke@435 2402 // - if we rearange the f) to be earlier, by loading %o0, it
duke@435 2403 // may destroy a value on the stack that is currently in %o0
duke@435 2404 // and is waiting to be spilled
duke@435 2405 // - if we keep the receiver locked while doing spill-save,
duke@435 2406 // we cannot spill it as it is spill-locked
duke@435 2407 //
duke@435 2408 void LIRGenerator::do_Invoke(Invoke* x) {
duke@435 2409 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
duke@435 2410
duke@435 2411 LIR_OprList* arg_list = cc->args();
duke@435 2412 LIRItemList* args = invoke_visit_arguments(x);
duke@435 2413 LIR_Opr receiver = LIR_OprFact::illegalOpr;
duke@435 2414
duke@435 2415 // setup result register
duke@435 2416 LIR_Opr result_register = LIR_OprFact::illegalOpr;
duke@435 2417 if (x->type() != voidType) {
duke@435 2418 result_register = result_register_for(x->type());
duke@435 2419 }
duke@435 2420
duke@435 2421 CodeEmitInfo* info = state_for(x, x->state());
duke@435 2422
twisti@1730 2423 // invokedynamics can deoptimize.
twisti@1739 2424 CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
twisti@1730 2425
duke@435 2426 invoke_load_arguments(x, args, arg_list);
duke@435 2427
duke@435 2428 if (x->has_receiver()) {
duke@435 2429 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
duke@435 2430 receiver = args->at(0)->result();
duke@435 2431 }
duke@435 2432
duke@435 2433 // emit invoke code
duke@435 2434 bool optimized = x->target_is_loaded() && x->target_is_final();
duke@435 2435 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
duke@435 2436
twisti@1919 2437 // JSR 292
twisti@1919 2438 // Preserve the SP over MethodHandle call sites.
twisti@1919 2439 ciMethod* target = x->target();
twisti@1919 2440 if (target->is_method_handle_invoke()) {
twisti@1919 2441 info->set_is_method_handle_invoke(true);
twisti@1919 2442 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
twisti@1919 2443 }
twisti@1919 2444
duke@435 2445 switch (x->code()) {
duke@435 2446 case Bytecodes::_invokestatic:
twisti@1919 2447 __ call_static(target, result_register,
duke@435 2448 SharedRuntime::get_resolve_static_call_stub(),
duke@435 2449 arg_list, info);
duke@435 2450 break;
duke@435 2451 case Bytecodes::_invokespecial:
duke@435 2452 case Bytecodes::_invokevirtual:
duke@435 2453 case Bytecodes::_invokeinterface:
duke@435 2454 // for final target we still produce an inline cache, in order
duke@435 2455 // to be able to call mixed mode
duke@435 2456 if (x->code() == Bytecodes::_invokespecial || optimized) {
twisti@1919 2457 __ call_opt_virtual(target, receiver, result_register,
duke@435 2458 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 2459 arg_list, info);
duke@435 2460 } else if (x->vtable_index() < 0) {
twisti@1919 2461 __ call_icvirtual(target, receiver, result_register,
duke@435 2462 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 2463 arg_list, info);
duke@435 2464 } else {
duke@435 2465 int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
duke@435 2466 int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
twisti@1919 2467 __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
duke@435 2468 }
duke@435 2469 break;
twisti@1730 2470 case Bytecodes::_invokedynamic: {
twisti@1730 2471 ciBytecodeStream bcs(x->scope()->method());
roland@2174 2472 bcs.force_bci(x->state()->bci());
twisti@1730 2473 assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
twisti@1730 2474 ciCPCache* cpcache = bcs.get_cpcache();
twisti@1730 2475
twisti@1730 2476 // Get CallSite offset from constant pool cache pointer.
twisti@1730 2477 int index = bcs.get_method_index();
twisti@1730 2478 size_t call_site_offset = cpcache->get_f1_offset(index);
twisti@1730 2479
twisti@1730 2480 // If this invokedynamic call site hasn't been executed yet in
twisti@1730 2481 // the interpreter, the CallSite object in the constant pool
twisti@1730 2482 // cache is still null and we need to deoptimize.
twisti@1730 2483 if (cpcache->is_f1_null_at(index)) {
twisti@1730 2484 // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
twisti@1730 2485 // clone all handlers. This is handled transparently in other
twisti@1730 2486 // places by the CodeEmitInfo cloning logic but is handled
twisti@1730 2487 // specially here because a stub isn't being used.
twisti@1730 2488 x->set_exception_handlers(new XHandlers(x->exception_handlers()));
twisti@1730 2489
twisti@1730 2490 DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
twisti@1730 2491 __ jump(deopt_stub);
twisti@1730 2492 }
twisti@1730 2493
twisti@1730 2494 // Use the receiver register for the synthetic MethodHandle
twisti@1730 2495 // argument.
twisti@1730 2496 receiver = LIR_Assembler::receiverOpr();
twisti@1730 2497 LIR_Opr tmp = new_register(objectType);
twisti@1730 2498
twisti@1730 2499 // Load CallSite object from constant pool cache.
twisti@1730 2500 __ oop2reg(cpcache->constant_encoding(), tmp);
twisti@1730 2501 __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
twisti@1730 2502
twisti@1730 2503 // Load target MethodHandle from CallSite object.
twisti@1730 2504 __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
twisti@1730 2505
twisti@1919 2506 __ call_dynamic(target, receiver, result_register,
twisti@1730 2507 SharedRuntime::get_resolve_opt_virtual_call_stub(),
twisti@1730 2508 arg_list, info);
twisti@1730 2509 break;
twisti@1730 2510 }
duke@435 2511 default:
duke@435 2512 ShouldNotReachHere();
duke@435 2513 break;
duke@435 2514 }
duke@435 2515
twisti@1919 2516 // JSR 292
twisti@1919 2517 // Restore the SP after MethodHandle call sites.
twisti@1919 2518 if (target->is_method_handle_invoke()) {
twisti@1919 2519 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
twisti@1919 2520 }
twisti@1919 2521
duke@435 2522 if (x->type()->is_float() || x->type()->is_double()) {
duke@435 2523 // Force rounding of results from non-strictfp when in strictfp
duke@435 2524 // scope (or when we don't know the strictness of the callee, to
duke@435 2525 // be safe.)
duke@435 2526 if (method()->is_strict()) {
duke@435 2527 if (!x->target_is_loaded() || !x->target_is_strictfp()) {
duke@435 2528 result_register = round_item(result_register);
duke@435 2529 }
duke@435 2530 }
duke@435 2531 }
duke@435 2532
duke@435 2533 if (result_register->is_valid()) {
duke@435 2534 LIR_Opr result = rlock_result(x);
duke@435 2535 __ move(result_register, result);
duke@435 2536 }
duke@435 2537 }
duke@435 2538
duke@435 2539
duke@435 2540 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
duke@435 2541 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 2542 LIRItem value (x->argument_at(0), this);
duke@435 2543 LIR_Opr reg = rlock_result(x);
duke@435 2544 value.load_item();
duke@435 2545 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
duke@435 2546 __ move(tmp, reg);
duke@435 2547 }
duke@435 2548
duke@435 2549
duke@435 2550
duke@435 2551 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
duke@435 2552 void LIRGenerator::do_IfOp(IfOp* x) {
duke@435 2553 #ifdef ASSERT
duke@435 2554 {
duke@435 2555 ValueTag xtag = x->x()->type()->tag();
duke@435 2556 ValueTag ttag = x->tval()->type()->tag();
duke@435 2557 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
duke@435 2558 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
duke@435 2559 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
duke@435 2560 }
duke@435 2561 #endif
duke@435 2562
duke@435 2563 LIRItem left(x->x(), this);
duke@435 2564 LIRItem right(x->y(), this);
duke@435 2565 left.load_item();
duke@435 2566 if (can_inline_as_constant(right.value())) {
duke@435 2567 right.dont_load_item();
duke@435 2568 } else {
duke@435 2569 right.load_item();
duke@435 2570 }
duke@435 2571
duke@435 2572 LIRItem t_val(x->tval(), this);
duke@435 2573 LIRItem f_val(x->fval(), this);
duke@435 2574 t_val.dont_load_item();
duke@435 2575 f_val.dont_load_item();
duke@435 2576 LIR_Opr reg = rlock_result(x);
duke@435 2577
duke@435 2578 __ cmp(lir_cond(x->cond()), left.result(), right.result());
duke@435 2579 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
duke@435 2580 }
duke@435 2581
duke@435 2582
duke@435 2583 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
duke@435 2584 switch (x->id()) {
duke@435 2585 case vmIntrinsics::_intBitsToFloat :
duke@435 2586 case vmIntrinsics::_doubleToRawLongBits :
duke@435 2587 case vmIntrinsics::_longBitsToDouble :
duke@435 2588 case vmIntrinsics::_floatToRawIntBits : {
duke@435 2589 do_FPIntrinsics(x);
duke@435 2590 break;
duke@435 2591 }
duke@435 2592
duke@435 2593 case vmIntrinsics::_currentTimeMillis: {
duke@435 2594 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 2595 LIR_Opr reg = result_register_for(x->type());
duke@435 2596 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
duke@435 2597 reg, new LIR_OprList());
duke@435 2598 LIR_Opr result = rlock_result(x);
duke@435 2599 __ move(reg, result);
duke@435 2600 break;
duke@435 2601 }
duke@435 2602
duke@435 2603 case vmIntrinsics::_nanoTime: {
duke@435 2604 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 2605 LIR_Opr reg = result_register_for(x->type());
duke@435 2606 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
duke@435 2607 reg, new LIR_OprList());
duke@435 2608 LIR_Opr result = rlock_result(x);
duke@435 2609 __ move(reg, result);
duke@435 2610 break;
duke@435 2611 }
duke@435 2612
duke@435 2613 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
duke@435 2614 case vmIntrinsics::_getClass: do_getClass(x); break;
duke@435 2615 case vmIntrinsics::_currentThread: do_currentThread(x); break;
duke@435 2616
duke@435 2617 case vmIntrinsics::_dlog: // fall through
duke@435 2618 case vmIntrinsics::_dlog10: // fall through
duke@435 2619 case vmIntrinsics::_dabs: // fall through
duke@435 2620 case vmIntrinsics::_dsqrt: // fall through
duke@435 2621 case vmIntrinsics::_dtan: // fall through
duke@435 2622 case vmIntrinsics::_dsin : // fall through
duke@435 2623 case vmIntrinsics::_dcos : do_MathIntrinsic(x); break;
duke@435 2624 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
duke@435 2625
duke@435 2626 // java.nio.Buffer.checkIndex
duke@435 2627 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break;
duke@435 2628
duke@435 2629 case vmIntrinsics::_compareAndSwapObject:
duke@435 2630 do_CompareAndSwap(x, objectType);
duke@435 2631 break;
duke@435 2632 case vmIntrinsics::_compareAndSwapInt:
duke@435 2633 do_CompareAndSwap(x, intType);
duke@435 2634 break;
duke@435 2635 case vmIntrinsics::_compareAndSwapLong:
duke@435 2636 do_CompareAndSwap(x, longType);
duke@435 2637 break;
duke@435 2638
duke@435 2639 // sun.misc.AtomicLongCSImpl.attemptUpdate
duke@435 2640 case vmIntrinsics::_attemptUpdate:
duke@435 2641 do_AttemptUpdate(x);
duke@435 2642 break;
duke@435 2643
duke@435 2644 default: ShouldNotReachHere(); break;
duke@435 2645 }
duke@435 2646 }
duke@435 2647
duke@435 2648 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
duke@435 2649 // Need recv in a temporary register so it interferes with the other temporaries
duke@435 2650 LIR_Opr recv = LIR_OprFact::illegalOpr;
duke@435 2651 LIR_Opr mdo = new_register(T_OBJECT);
iveresov@2138 2652 // tmp is used to hold the counters on SPARC
iveresov@2138 2653 LIR_Opr tmp = new_pointer_register();
duke@435 2654 if (x->recv() != NULL) {
duke@435 2655 LIRItem value(x->recv(), this);
duke@435 2656 value.load_item();
duke@435 2657 recv = new_register(T_OBJECT);
duke@435 2658 __ move(value.result(), recv);
duke@435 2659 }
duke@435 2660 __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
duke@435 2661 }
duke@435 2662
iveresov@2138 2663 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
iveresov@2138 2664 // We can safely ignore accessors here, since c2 will inline them anyway,
iveresov@2138 2665 // accessors are also always mature.
iveresov@2138 2666 if (!x->inlinee()->is_accessor()) {
iveresov@2138 2667 CodeEmitInfo* info = state_for(x, x->state(), true);
iveresov@2138 2668 // Increment invocation counter, don't notify the runtime, because we don't inline loops,
iveresov@2138 2669 increment_event_counter_impl(info, x->inlinee(), 0, InvocationEntryBci, false, false);
iveresov@2138 2670 }
duke@435 2671 }
duke@435 2672
iveresov@2138 2673 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
iveresov@2138 2674 int freq_log;
iveresov@2138 2675 int level = compilation()->env()->comp_level();
iveresov@2138 2676 if (level == CompLevel_limited_profile) {
iveresov@2138 2677 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
iveresov@2138 2678 } else if (level == CompLevel_full_profile) {
iveresov@2138 2679 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
iveresov@2138 2680 } else {
iveresov@2138 2681 ShouldNotReachHere();
iveresov@2138 2682 }
iveresov@2138 2683 // Increment the appropriate invocation/backedge counter and notify the runtime.
iveresov@2138 2684 increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
iveresov@2138 2685 }
iveresov@2138 2686
iveresov@2138 2687 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
iveresov@2138 2688 ciMethod *method, int frequency,
iveresov@2138 2689 int bci, bool backedge, bool notify) {
iveresov@2138 2690 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
iveresov@2138 2691 int level = _compilation->env()->comp_level();
iveresov@2138 2692 assert(level > CompLevel_simple, "Shouldn't be here");
iveresov@2138 2693
iveresov@2138 2694 int offset = -1;
iveresov@2138 2695 LIR_Opr counter_holder = new_register(T_OBJECT);
iveresov@2138 2696 LIR_Opr meth;
iveresov@2138 2697 if (level == CompLevel_limited_profile) {
iveresov@2138 2698 offset = in_bytes(backedge ? methodOopDesc::backedge_counter_offset() :
iveresov@2138 2699 methodOopDesc::invocation_counter_offset());
iveresov@2138 2700 __ oop2reg(method->constant_encoding(), counter_holder);
iveresov@2138 2701 meth = counter_holder;
iveresov@2138 2702 } else if (level == CompLevel_full_profile) {
iveresov@2138 2703 offset = in_bytes(backedge ? methodDataOopDesc::backedge_counter_offset() :
iveresov@2138 2704 methodDataOopDesc::invocation_counter_offset());
iveresov@2138 2705 __ oop2reg(method->method_data()->constant_encoding(), counter_holder);
iveresov@2138 2706 meth = new_register(T_OBJECT);
iveresov@2138 2707 __ oop2reg(method->constant_encoding(), meth);
iveresov@2138 2708 } else {
iveresov@2138 2709 ShouldNotReachHere();
iveresov@2138 2710 }
iveresov@2138 2711 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
iveresov@2138 2712 LIR_Opr result = new_register(T_INT);
iveresov@2138 2713 __ load(counter, result);
iveresov@2138 2714 __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
iveresov@2138 2715 __ store(result, counter);
iveresov@2138 2716 if (notify) {
iveresov@2138 2717 LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
iveresov@2138 2718 __ logical_and(result, mask, result);
iveresov@2138 2719 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
iveresov@2138 2720 // The bci for info can point to cmp for if's we want the if bci
iveresov@2138 2721 CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
iveresov@2138 2722 __ branch(lir_cond_equal, T_INT, overflow);
iveresov@2138 2723 __ branch_destination(overflow->continuation());
iveresov@2138 2724 }
iveresov@2138 2725 }
duke@435 2726
duke@435 2727 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2728 LIRItemList args(1);
duke@435 2729 LIRItem value(arg1, this);
duke@435 2730 args.append(&value);
duke@435 2731 BasicTypeList signature;
duke@435 2732 signature.append(as_BasicType(arg1->type()));
duke@435 2733
duke@435 2734 return call_runtime(&signature, &args, entry, result_type, info);
duke@435 2735 }
duke@435 2736
duke@435 2737
duke@435 2738 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2739 LIRItemList args(2);
duke@435 2740 LIRItem value1(arg1, this);
duke@435 2741 LIRItem value2(arg2, this);
duke@435 2742 args.append(&value1);
duke@435 2743 args.append(&value2);
duke@435 2744 BasicTypeList signature;
duke@435 2745 signature.append(as_BasicType(arg1->type()));
duke@435 2746 signature.append(as_BasicType(arg2->type()));
duke@435 2747
duke@435 2748 return call_runtime(&signature, &args, entry, result_type, info);
duke@435 2749 }
duke@435 2750
duke@435 2751
duke@435 2752 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
duke@435 2753 address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2754 // get a result register
duke@435 2755 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
duke@435 2756 LIR_Opr result = LIR_OprFact::illegalOpr;
duke@435 2757 if (result_type->tag() != voidTag) {
duke@435 2758 result = new_register(result_type);
duke@435 2759 phys_reg = result_register_for(result_type);
duke@435 2760 }
duke@435 2761
duke@435 2762 // move the arguments into the correct location
duke@435 2763 CallingConvention* cc = frame_map()->c_calling_convention(signature);
duke@435 2764 assert(cc->length() == args->length(), "argument mismatch");
duke@435 2765 for (int i = 0; i < args->length(); i++) {
duke@435 2766 LIR_Opr arg = args->at(i);
duke@435 2767 LIR_Opr loc = cc->at(i);
duke@435 2768 if (loc->is_register()) {
duke@435 2769 __ move(arg, loc);
duke@435 2770 } else {
duke@435 2771 LIR_Address* addr = loc->as_address_ptr();
duke@435 2772 // if (!can_store_as_constant(arg)) {
duke@435 2773 // LIR_Opr tmp = new_register(arg->type());
duke@435 2774 // __ move(arg, tmp);
duke@435 2775 // arg = tmp;
duke@435 2776 // }
duke@435 2777 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 2778 __ unaligned_move(arg, addr);
duke@435 2779 } else {
duke@435 2780 __ move(arg, addr);
duke@435 2781 }
duke@435 2782 }
duke@435 2783 }
duke@435 2784
duke@435 2785 if (info) {
duke@435 2786 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
duke@435 2787 } else {
duke@435 2788 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
duke@435 2789 }
duke@435 2790 if (result->is_valid()) {
duke@435 2791 __ move(phys_reg, result);
duke@435 2792 }
duke@435 2793 return result;
duke@435 2794 }
duke@435 2795
duke@435 2796
duke@435 2797 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
duke@435 2798 address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2799 // get a result register
duke@435 2800 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
duke@435 2801 LIR_Opr result = LIR_OprFact::illegalOpr;
duke@435 2802 if (result_type->tag() != voidTag) {
duke@435 2803 result = new_register(result_type);
duke@435 2804 phys_reg = result_register_for(result_type);
duke@435 2805 }
duke@435 2806
duke@435 2807 // move the arguments into the correct location
duke@435 2808 CallingConvention* cc = frame_map()->c_calling_convention(signature);
duke@435 2809
duke@435 2810 assert(cc->length() == args->length(), "argument mismatch");
duke@435 2811 for (int i = 0; i < args->length(); i++) {
duke@435 2812 LIRItem* arg = args->at(i);
duke@435 2813 LIR_Opr loc = cc->at(i);
duke@435 2814 if (loc->is_register()) {
duke@435 2815 arg->load_item_force(loc);
duke@435 2816 } else {
duke@435 2817 LIR_Address* addr = loc->as_address_ptr();
duke@435 2818 arg->load_for_store(addr->type());
duke@435 2819 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 2820 __ unaligned_move(arg->result(), addr);
duke@435 2821 } else {
duke@435 2822 __ move(arg->result(), addr);
duke@435 2823 }
duke@435 2824 }
duke@435 2825 }
duke@435 2826
duke@435 2827 if (info) {
duke@435 2828 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
duke@435 2829 } else {
duke@435 2830 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
duke@435 2831 }
duke@435 2832 if (result->is_valid()) {
duke@435 2833 __ move(phys_reg, result);
duke@435 2834 }
duke@435 2835 return result;
duke@435 2836 }

mercurial