src/share/vm/c1/c1_LIRGenerator.cpp

Wed, 27 Aug 2008 00:21:55 -0700

author
never
date
Wed, 27 Aug 2008 00:21:55 -0700
changeset 739
dc7f315e41f7
parent 435
a61af66fc99e
child 772
9ee9cf798b59
child 797
f8199438385b
permissions
-rw-r--r--

5108146: Merge i486 and amd64 cpu directories
6459804: Want client (c1) compiler for x86_64 (amd64) for faster start-up
Reviewed-by: kvn

duke@435 1 /*
duke@435 2 * Copyright 2005-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRGenerator.cpp.incl"
duke@435 27
duke@435 28 #ifdef ASSERT
duke@435 29 #define __ gen()->lir(__FILE__, __LINE__)->
duke@435 30 #else
duke@435 31 #define __ gen()->lir()->
duke@435 32 #endif
duke@435 33
duke@435 34
duke@435 35 void PhiResolverState::reset(int max_vregs) {
duke@435 36 // Initialize array sizes
duke@435 37 _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 38 _virtual_operands.trunc_to(0);
duke@435 39 _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 40 _other_operands.trunc_to(0);
duke@435 41 _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
duke@435 42 _vreg_table.trunc_to(0);
duke@435 43 }
duke@435 44
duke@435 45
duke@435 46
duke@435 47 //--------------------------------------------------------------
duke@435 48 // PhiResolver
duke@435 49
duke@435 50 // Resolves cycles:
duke@435 51 //
duke@435 52 // r1 := r2 becomes temp := r1
duke@435 53 // r2 := r1 r1 := r2
duke@435 54 // r2 := temp
duke@435 55 // and orders moves:
duke@435 56 //
duke@435 57 // r2 := r3 becomes r1 := r2
duke@435 58 // r1 := r2 r2 := r3
duke@435 59
duke@435 60 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
duke@435 61 : _gen(gen)
duke@435 62 , _state(gen->resolver_state())
duke@435 63 , _temp(LIR_OprFact::illegalOpr)
duke@435 64 {
duke@435 65 // reinitialize the shared state arrays
duke@435 66 _state.reset(max_vregs);
duke@435 67 }
duke@435 68
duke@435 69
duke@435 70 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
duke@435 71 assert(src->is_valid(), "");
duke@435 72 assert(dest->is_valid(), "");
duke@435 73 __ move(src, dest);
duke@435 74 }
duke@435 75
duke@435 76
duke@435 77 void PhiResolver::move_temp_to(LIR_Opr dest) {
duke@435 78 assert(_temp->is_valid(), "");
duke@435 79 emit_move(_temp, dest);
duke@435 80 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
duke@435 81 }
duke@435 82
duke@435 83
duke@435 84 void PhiResolver::move_to_temp(LIR_Opr src) {
duke@435 85 assert(_temp->is_illegal(), "");
duke@435 86 _temp = _gen->new_register(src->type());
duke@435 87 emit_move(src, _temp);
duke@435 88 }
duke@435 89
duke@435 90
duke@435 91 // Traverse assignment graph in depth first order and generate moves in post order
duke@435 92 // ie. two assignments: b := c, a := b start with node c:
duke@435 93 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
duke@435 94 // Generates moves in this order: move b to a and move c to b
duke@435 95 // ie. cycle a := b, b := a start with node a
duke@435 96 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
duke@435 97 // Generates moves in this order: move b to temp, move a to b, move temp to a
duke@435 98 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
duke@435 99 if (!dest->visited()) {
duke@435 100 dest->set_visited();
duke@435 101 for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
duke@435 102 move(dest, dest->destination_at(i));
duke@435 103 }
duke@435 104 } else if (!dest->start_node()) {
duke@435 105 // cylce in graph detected
duke@435 106 assert(_loop == NULL, "only one loop valid!");
duke@435 107 _loop = dest;
duke@435 108 move_to_temp(src->operand());
duke@435 109 return;
duke@435 110 } // else dest is a start node
duke@435 111
duke@435 112 if (!dest->assigned()) {
duke@435 113 if (_loop == dest) {
duke@435 114 move_temp_to(dest->operand());
duke@435 115 dest->set_assigned();
duke@435 116 } else if (src != NULL) {
duke@435 117 emit_move(src->operand(), dest->operand());
duke@435 118 dest->set_assigned();
duke@435 119 }
duke@435 120 }
duke@435 121 }
duke@435 122
duke@435 123
duke@435 124 PhiResolver::~PhiResolver() {
duke@435 125 int i;
duke@435 126 // resolve any cycles in moves from and to virtual registers
duke@435 127 for (i = virtual_operands().length() - 1; i >= 0; i --) {
duke@435 128 ResolveNode* node = virtual_operands()[i];
duke@435 129 if (!node->visited()) {
duke@435 130 _loop = NULL;
duke@435 131 move(NULL, node);
duke@435 132 node->set_start_node();
duke@435 133 assert(_temp->is_illegal(), "move_temp_to() call missing");
duke@435 134 }
duke@435 135 }
duke@435 136
duke@435 137 // generate move for move from non virtual register to abitrary destination
duke@435 138 for (i = other_operands().length() - 1; i >= 0; i --) {
duke@435 139 ResolveNode* node = other_operands()[i];
duke@435 140 for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
duke@435 141 emit_move(node->operand(), node->destination_at(j)->operand());
duke@435 142 }
duke@435 143 }
duke@435 144 }
duke@435 145
duke@435 146
duke@435 147 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
duke@435 148 ResolveNode* node;
duke@435 149 if (opr->is_virtual()) {
duke@435 150 int vreg_num = opr->vreg_number();
duke@435 151 node = vreg_table().at_grow(vreg_num, NULL);
duke@435 152 assert(node == NULL || node->operand() == opr, "");
duke@435 153 if (node == NULL) {
duke@435 154 node = new ResolveNode(opr);
duke@435 155 vreg_table()[vreg_num] = node;
duke@435 156 }
duke@435 157 // Make sure that all virtual operands show up in the list when
duke@435 158 // they are used as the source of a move.
duke@435 159 if (source && !virtual_operands().contains(node)) {
duke@435 160 virtual_operands().append(node);
duke@435 161 }
duke@435 162 } else {
duke@435 163 assert(source, "");
duke@435 164 node = new ResolveNode(opr);
duke@435 165 other_operands().append(node);
duke@435 166 }
duke@435 167 return node;
duke@435 168 }
duke@435 169
duke@435 170
duke@435 171 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
duke@435 172 assert(dest->is_virtual(), "");
duke@435 173 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
duke@435 174 assert(src->is_valid(), "");
duke@435 175 assert(dest->is_valid(), "");
duke@435 176 ResolveNode* source = source_node(src);
duke@435 177 source->append(destination_node(dest));
duke@435 178 }
duke@435 179
duke@435 180
duke@435 181 //--------------------------------------------------------------
duke@435 182 // LIRItem
duke@435 183
duke@435 184 void LIRItem::set_result(LIR_Opr opr) {
duke@435 185 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
duke@435 186 value()->set_operand(opr);
duke@435 187
duke@435 188 if (opr->is_virtual()) {
duke@435 189 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
duke@435 190 }
duke@435 191
duke@435 192 _result = opr;
duke@435 193 }
duke@435 194
duke@435 195 void LIRItem::load_item() {
duke@435 196 if (result()->is_illegal()) {
duke@435 197 // update the items result
duke@435 198 _result = value()->operand();
duke@435 199 }
duke@435 200 if (!result()->is_register()) {
duke@435 201 LIR_Opr reg = _gen->new_register(value()->type());
duke@435 202 __ move(result(), reg);
duke@435 203 if (result()->is_constant()) {
duke@435 204 _result = reg;
duke@435 205 } else {
duke@435 206 set_result(reg);
duke@435 207 }
duke@435 208 }
duke@435 209 }
duke@435 210
duke@435 211
duke@435 212 void LIRItem::load_for_store(BasicType type) {
duke@435 213 if (_gen->can_store_as_constant(value(), type)) {
duke@435 214 _result = value()->operand();
duke@435 215 if (!_result->is_constant()) {
duke@435 216 _result = LIR_OprFact::value_type(value()->type());
duke@435 217 }
duke@435 218 } else if (type == T_BYTE || type == T_BOOLEAN) {
duke@435 219 load_byte_item();
duke@435 220 } else {
duke@435 221 load_item();
duke@435 222 }
duke@435 223 }
duke@435 224
duke@435 225 void LIRItem::load_item_force(LIR_Opr reg) {
duke@435 226 LIR_Opr r = result();
duke@435 227 if (r != reg) {
duke@435 228 if (r->type() != reg->type()) {
duke@435 229 // moves between different types need an intervening spill slot
duke@435 230 LIR_Opr tmp = _gen->force_to_spill(r, reg->type());
duke@435 231 __ move(tmp, reg);
duke@435 232 } else {
duke@435 233 __ move(r, reg);
duke@435 234 }
duke@435 235 _result = reg;
duke@435 236 }
duke@435 237 }
duke@435 238
duke@435 239 ciObject* LIRItem::get_jobject_constant() const {
duke@435 240 ObjectType* oc = type()->as_ObjectType();
duke@435 241 if (oc) {
duke@435 242 return oc->constant_value();
duke@435 243 }
duke@435 244 return NULL;
duke@435 245 }
duke@435 246
duke@435 247
duke@435 248 jint LIRItem::get_jint_constant() const {
duke@435 249 assert(is_constant() && value() != NULL, "");
duke@435 250 assert(type()->as_IntConstant() != NULL, "type check");
duke@435 251 return type()->as_IntConstant()->value();
duke@435 252 }
duke@435 253
duke@435 254
duke@435 255 jint LIRItem::get_address_constant() const {
duke@435 256 assert(is_constant() && value() != NULL, "");
duke@435 257 assert(type()->as_AddressConstant() != NULL, "type check");
duke@435 258 return type()->as_AddressConstant()->value();
duke@435 259 }
duke@435 260
duke@435 261
duke@435 262 jfloat LIRItem::get_jfloat_constant() const {
duke@435 263 assert(is_constant() && value() != NULL, "");
duke@435 264 assert(type()->as_FloatConstant() != NULL, "type check");
duke@435 265 return type()->as_FloatConstant()->value();
duke@435 266 }
duke@435 267
duke@435 268
duke@435 269 jdouble LIRItem::get_jdouble_constant() const {
duke@435 270 assert(is_constant() && value() != NULL, "");
duke@435 271 assert(type()->as_DoubleConstant() != NULL, "type check");
duke@435 272 return type()->as_DoubleConstant()->value();
duke@435 273 }
duke@435 274
duke@435 275
duke@435 276 jlong LIRItem::get_jlong_constant() const {
duke@435 277 assert(is_constant() && value() != NULL, "");
duke@435 278 assert(type()->as_LongConstant() != NULL, "type check");
duke@435 279 return type()->as_LongConstant()->value();
duke@435 280 }
duke@435 281
duke@435 282
duke@435 283
duke@435 284 //--------------------------------------------------------------
duke@435 285
duke@435 286
duke@435 287 void LIRGenerator::init() {
duke@435 288 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 289 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
duke@435 290 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 291 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 292
duke@435 293 #ifdef _LP64
duke@435 294 _card_table_base = new LIR_Const((jlong)ct->byte_map_base);
duke@435 295 #else
duke@435 296 _card_table_base = new LIR_Const((jint)ct->byte_map_base);
duke@435 297 #endif
duke@435 298 }
duke@435 299
duke@435 300
duke@435 301 void LIRGenerator::block_do_prolog(BlockBegin* block) {
duke@435 302 #ifndef PRODUCT
duke@435 303 if (PrintIRWithLIR) {
duke@435 304 block->print();
duke@435 305 }
duke@435 306 #endif
duke@435 307
duke@435 308 // set up the list of LIR instructions
duke@435 309 assert(block->lir() == NULL, "LIR list already computed for this block");
duke@435 310 _lir = new LIR_List(compilation(), block);
duke@435 311 block->set_lir(_lir);
duke@435 312
duke@435 313 __ branch_destination(block->label());
duke@435 314
duke@435 315 if (LIRTraceExecution &&
duke@435 316 Compilation::current_compilation()->hir()->start()->block_id() != block->block_id() &&
duke@435 317 !block->is_set(BlockBegin::exception_entry_flag)) {
duke@435 318 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
duke@435 319 trace_block_entry(block);
duke@435 320 }
duke@435 321 }
duke@435 322
duke@435 323
duke@435 324 void LIRGenerator::block_do_epilog(BlockBegin* block) {
duke@435 325 #ifndef PRODUCT
duke@435 326 if (PrintIRWithLIR) {
duke@435 327 tty->cr();
duke@435 328 }
duke@435 329 #endif
duke@435 330
duke@435 331 // LIR_Opr for unpinned constants shouldn't be referenced by other
duke@435 332 // blocks so clear them out after processing the block.
duke@435 333 for (int i = 0; i < _unpinned_constants.length(); i++) {
duke@435 334 _unpinned_constants.at(i)->clear_operand();
duke@435 335 }
duke@435 336 _unpinned_constants.trunc_to(0);
duke@435 337
duke@435 338 // clear our any registers for other local constants
duke@435 339 _constants.trunc_to(0);
duke@435 340 _reg_for_constants.trunc_to(0);
duke@435 341 }
duke@435 342
duke@435 343
duke@435 344 void LIRGenerator::block_do(BlockBegin* block) {
duke@435 345 CHECK_BAILOUT();
duke@435 346
duke@435 347 block_do_prolog(block);
duke@435 348 set_block(block);
duke@435 349
duke@435 350 for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
duke@435 351 if (instr->is_pinned()) do_root(instr);
duke@435 352 }
duke@435 353
duke@435 354 set_block(NULL);
duke@435 355 block_do_epilog(block);
duke@435 356 }
duke@435 357
duke@435 358
duke@435 359 //-------------------------LIRGenerator-----------------------------
duke@435 360
duke@435 361 // This is where the tree-walk starts; instr must be root;
duke@435 362 void LIRGenerator::do_root(Value instr) {
duke@435 363 CHECK_BAILOUT();
duke@435 364
duke@435 365 InstructionMark im(compilation(), instr);
duke@435 366
duke@435 367 assert(instr->is_pinned(), "use only with roots");
duke@435 368 assert(instr->subst() == instr, "shouldn't have missed substitution");
duke@435 369
duke@435 370 instr->visit(this);
duke@435 371
duke@435 372 assert(!instr->has_uses() || instr->operand()->is_valid() ||
duke@435 373 instr->as_Constant() != NULL || bailed_out(), "invalid item set");
duke@435 374 }
duke@435 375
duke@435 376
duke@435 377 // This is called for each node in tree; the walk stops if a root is reached
duke@435 378 void LIRGenerator::walk(Value instr) {
duke@435 379 InstructionMark im(compilation(), instr);
duke@435 380 //stop walk when encounter a root
duke@435 381 if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
duke@435 382 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
duke@435 383 } else {
duke@435 384 assert(instr->subst() == instr, "shouldn't have missed substitution");
duke@435 385 instr->visit(this);
duke@435 386 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
duke@435 387 }
duke@435 388 }
duke@435 389
duke@435 390
duke@435 391 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
duke@435 392 int index;
duke@435 393 Value value;
duke@435 394 for_each_stack_value(state, index, value) {
duke@435 395 assert(value->subst() == value, "missed substition");
duke@435 396 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
duke@435 397 walk(value);
duke@435 398 assert(value->operand()->is_valid(), "must be evaluated now");
duke@435 399 }
duke@435 400 }
duke@435 401 ValueStack* s = state;
duke@435 402 int bci = x->bci();
duke@435 403 for_each_state(s) {
duke@435 404 IRScope* scope = s->scope();
duke@435 405 ciMethod* method = scope->method();
duke@435 406
duke@435 407 MethodLivenessResult liveness = method->liveness_at_bci(bci);
duke@435 408 if (bci == SynchronizationEntryBCI) {
duke@435 409 if (x->as_ExceptionObject() || x->as_Throw()) {
duke@435 410 // all locals are dead on exit from the synthetic unlocker
duke@435 411 liveness.clear();
duke@435 412 } else {
duke@435 413 assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
duke@435 414 }
duke@435 415 }
duke@435 416 if (!liveness.is_valid()) {
duke@435 417 // Degenerate or breakpointed method.
duke@435 418 bailout("Degenerate or breakpointed method");
duke@435 419 } else {
duke@435 420 assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
duke@435 421 for_each_local_value(s, index, value) {
duke@435 422 assert(value->subst() == value, "missed substition");
duke@435 423 if (liveness.at(index) && !value->type()->is_illegal()) {
duke@435 424 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
duke@435 425 walk(value);
duke@435 426 assert(value->operand()->is_valid(), "must be evaluated now");
duke@435 427 }
duke@435 428 } else {
duke@435 429 // NULL out this local so that linear scan can assume that all non-NULL values are live.
duke@435 430 s->invalidate_local(index);
duke@435 431 }
duke@435 432 }
duke@435 433 }
duke@435 434 bci = scope->caller_bci();
duke@435 435 }
duke@435 436
duke@435 437 return new CodeEmitInfo(x->bci(), state, ignore_xhandler ? NULL : x->exception_handlers());
duke@435 438 }
duke@435 439
duke@435 440
duke@435 441 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
duke@435 442 return state_for(x, x->lock_stack());
duke@435 443 }
duke@435 444
duke@435 445
duke@435 446 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
duke@435 447 if (!obj->is_loaded() || PatchALot) {
duke@435 448 assert(info != NULL, "info must be set if class is not loaded");
duke@435 449 __ oop2reg_patch(NULL, r, info);
duke@435 450 } else {
duke@435 451 // no patching needed
duke@435 452 __ oop2reg(obj->encoding(), r);
duke@435 453 }
duke@435 454 }
duke@435 455
duke@435 456
duke@435 457 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
duke@435 458 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
duke@435 459 CodeStub* stub = new RangeCheckStub(range_check_info, index);
duke@435 460 if (index->is_constant()) {
duke@435 461 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
duke@435 462 index->as_jint(), null_check_info);
duke@435 463 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
duke@435 464 } else {
duke@435 465 cmp_reg_mem(lir_cond_aboveEqual, index, array,
duke@435 466 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
duke@435 467 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
duke@435 468 }
duke@435 469 }
duke@435 470
duke@435 471
duke@435 472 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
duke@435 473 CodeStub* stub = new RangeCheckStub(info, index, true);
duke@435 474 if (index->is_constant()) {
duke@435 475 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
duke@435 476 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
duke@435 477 } else {
duke@435 478 cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
duke@435 479 java_nio_Buffer::limit_offset(), T_INT, info);
duke@435 480 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
duke@435 481 }
duke@435 482 __ move(index, result);
duke@435 483 }
duke@435 484
duke@435 485
duke@435 486 // increment a counter returning the incremented value
duke@435 487 LIR_Opr LIRGenerator::increment_and_return_counter(LIR_Opr base, int offset, int increment) {
duke@435 488 LIR_Address* counter = new LIR_Address(base, offset, T_INT);
duke@435 489 LIR_Opr result = new_register(T_INT);
duke@435 490 __ load(counter, result);
duke@435 491 __ add(result, LIR_OprFact::intConst(increment), result);
duke@435 492 __ store(result, counter);
duke@435 493 return result;
duke@435 494 }
duke@435 495
duke@435 496
duke@435 497 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
duke@435 498 LIR_Opr result_op = result;
duke@435 499 LIR_Opr left_op = left;
duke@435 500 LIR_Opr right_op = right;
duke@435 501
duke@435 502 if (TwoOperandLIRForm && left_op != result_op) {
duke@435 503 assert(right_op != result_op, "malformed");
duke@435 504 __ move(left_op, result_op);
duke@435 505 left_op = result_op;
duke@435 506 }
duke@435 507
duke@435 508 switch(code) {
duke@435 509 case Bytecodes::_dadd:
duke@435 510 case Bytecodes::_fadd:
duke@435 511 case Bytecodes::_ladd:
duke@435 512 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
duke@435 513 case Bytecodes::_fmul:
duke@435 514 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
duke@435 515
duke@435 516 case Bytecodes::_dmul:
duke@435 517 {
duke@435 518 if (is_strictfp) {
duke@435 519 __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
duke@435 520 } else {
duke@435 521 __ mul(left_op, right_op, result_op); break;
duke@435 522 }
duke@435 523 }
duke@435 524 break;
duke@435 525
duke@435 526 case Bytecodes::_imul:
duke@435 527 {
duke@435 528 bool did_strength_reduce = false;
duke@435 529
duke@435 530 if (right->is_constant()) {
duke@435 531 int c = right->as_jint();
duke@435 532 if (is_power_of_2(c)) {
duke@435 533 // do not need tmp here
duke@435 534 __ shift_left(left_op, exact_log2(c), result_op);
duke@435 535 did_strength_reduce = true;
duke@435 536 } else {
duke@435 537 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
duke@435 538 }
duke@435 539 }
duke@435 540 // we couldn't strength reduce so just emit the multiply
duke@435 541 if (!did_strength_reduce) {
duke@435 542 __ mul(left_op, right_op, result_op);
duke@435 543 }
duke@435 544 }
duke@435 545 break;
duke@435 546
duke@435 547 case Bytecodes::_dsub:
duke@435 548 case Bytecodes::_fsub:
duke@435 549 case Bytecodes::_lsub:
duke@435 550 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
duke@435 551
duke@435 552 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
duke@435 553 // ldiv and lrem are implemented with a direct runtime call
duke@435 554
duke@435 555 case Bytecodes::_ddiv:
duke@435 556 {
duke@435 557 if (is_strictfp) {
duke@435 558 __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
duke@435 559 } else {
duke@435 560 __ div (left_op, right_op, result_op); break;
duke@435 561 }
duke@435 562 }
duke@435 563 break;
duke@435 564
duke@435 565 case Bytecodes::_drem:
duke@435 566 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
duke@435 567
duke@435 568 default: ShouldNotReachHere();
duke@435 569 }
duke@435 570 }
duke@435 571
duke@435 572
duke@435 573 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
duke@435 574 arithmetic_op(code, result, left, right, false, tmp);
duke@435 575 }
duke@435 576
duke@435 577
duke@435 578 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
duke@435 579 arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
duke@435 580 }
duke@435 581
duke@435 582
duke@435 583 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
duke@435 584 arithmetic_op(code, result, left, right, is_strictfp, tmp);
duke@435 585 }
duke@435 586
duke@435 587
duke@435 588 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
duke@435 589 if (TwoOperandLIRForm && value != result_op) {
duke@435 590 assert(count != result_op, "malformed");
duke@435 591 __ move(value, result_op);
duke@435 592 value = result_op;
duke@435 593 }
duke@435 594
duke@435 595 assert(count->is_constant() || count->is_register(), "must be");
duke@435 596 switch(code) {
duke@435 597 case Bytecodes::_ishl:
duke@435 598 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
duke@435 599 case Bytecodes::_ishr:
duke@435 600 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
duke@435 601 case Bytecodes::_iushr:
duke@435 602 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
duke@435 603 default: ShouldNotReachHere();
duke@435 604 }
duke@435 605 }
duke@435 606
duke@435 607
duke@435 608 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
duke@435 609 if (TwoOperandLIRForm && left_op != result_op) {
duke@435 610 assert(right_op != result_op, "malformed");
duke@435 611 __ move(left_op, result_op);
duke@435 612 left_op = result_op;
duke@435 613 }
duke@435 614
duke@435 615 switch(code) {
duke@435 616 case Bytecodes::_iand:
duke@435 617 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
duke@435 618
duke@435 619 case Bytecodes::_ior:
duke@435 620 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
duke@435 621
duke@435 622 case Bytecodes::_ixor:
duke@435 623 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
duke@435 624
duke@435 625 default: ShouldNotReachHere();
duke@435 626 }
duke@435 627 }
duke@435 628
duke@435 629
duke@435 630 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
duke@435 631 if (!GenerateSynchronizationCode) return;
duke@435 632 // for slow path, use debug info for state after successful locking
duke@435 633 CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
duke@435 634 __ load_stack_address_monitor(monitor_no, lock);
duke@435 635 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
duke@435 636 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
duke@435 637 }
duke@435 638
duke@435 639
duke@435 640 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, int monitor_no) {
duke@435 641 if (!GenerateSynchronizationCode) return;
duke@435 642 // setup registers
duke@435 643 LIR_Opr hdr = lock;
duke@435 644 lock = new_hdr;
duke@435 645 CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
duke@435 646 __ load_stack_address_monitor(monitor_no, lock);
duke@435 647 __ unlock_object(hdr, object, lock, slow_path);
duke@435 648 }
duke@435 649
duke@435 650
duke@435 651 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
duke@435 652 jobject2reg_with_patching(klass_reg, klass, info);
duke@435 653 // If klass is not loaded we do not know if the klass has finalizers:
duke@435 654 if (UseFastNewInstance && klass->is_loaded()
duke@435 655 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
duke@435 656
duke@435 657 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
duke@435 658
duke@435 659 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
duke@435 660
duke@435 661 assert(klass->is_loaded(), "must be loaded");
duke@435 662 // allocate space for instance
duke@435 663 assert(klass->size_helper() >= 0, "illegal instance size");
duke@435 664 const int instance_size = align_object_size(klass->size_helper());
duke@435 665 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
duke@435 666 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
duke@435 667 } else {
duke@435 668 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
duke@435 669 __ branch(lir_cond_always, T_ILLEGAL, slow_path);
duke@435 670 __ branch_destination(slow_path->continuation());
duke@435 671 }
duke@435 672 }
duke@435 673
duke@435 674
duke@435 675 static bool is_constant_zero(Instruction* inst) {
duke@435 676 IntConstant* c = inst->type()->as_IntConstant();
duke@435 677 if (c) {
duke@435 678 return (c->value() == 0);
duke@435 679 }
duke@435 680 return false;
duke@435 681 }
duke@435 682
duke@435 683
duke@435 684 static bool positive_constant(Instruction* inst) {
duke@435 685 IntConstant* c = inst->type()->as_IntConstant();
duke@435 686 if (c) {
duke@435 687 return (c->value() >= 0);
duke@435 688 }
duke@435 689 return false;
duke@435 690 }
duke@435 691
duke@435 692
duke@435 693 static ciArrayKlass* as_array_klass(ciType* type) {
duke@435 694 if (type != NULL && type->is_array_klass() && type->is_loaded()) {
duke@435 695 return (ciArrayKlass*)type;
duke@435 696 } else {
duke@435 697 return NULL;
duke@435 698 }
duke@435 699 }
duke@435 700
duke@435 701 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
duke@435 702 Instruction* src = x->argument_at(0);
duke@435 703 Instruction* src_pos = x->argument_at(1);
duke@435 704 Instruction* dst = x->argument_at(2);
duke@435 705 Instruction* dst_pos = x->argument_at(3);
duke@435 706 Instruction* length = x->argument_at(4);
duke@435 707
duke@435 708 // first try to identify the likely type of the arrays involved
duke@435 709 ciArrayKlass* expected_type = NULL;
duke@435 710 bool is_exact = false;
duke@435 711 {
duke@435 712 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
duke@435 713 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
duke@435 714 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
duke@435 715 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
duke@435 716 if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
duke@435 717 // the types exactly match so the type is fully known
duke@435 718 is_exact = true;
duke@435 719 expected_type = src_exact_type;
duke@435 720 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
duke@435 721 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
duke@435 722 ciArrayKlass* src_type = NULL;
duke@435 723 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
duke@435 724 src_type = (ciArrayKlass*) src_exact_type;
duke@435 725 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
duke@435 726 src_type = (ciArrayKlass*) src_declared_type;
duke@435 727 }
duke@435 728 if (src_type != NULL) {
duke@435 729 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
duke@435 730 is_exact = true;
duke@435 731 expected_type = dst_type;
duke@435 732 }
duke@435 733 }
duke@435 734 }
duke@435 735 // at least pass along a good guess
duke@435 736 if (expected_type == NULL) expected_type = dst_exact_type;
duke@435 737 if (expected_type == NULL) expected_type = src_declared_type;
duke@435 738 if (expected_type == NULL) expected_type = dst_declared_type;
duke@435 739 }
duke@435 740
duke@435 741 // if a probable array type has been identified, figure out if any
duke@435 742 // of the required checks for a fast case can be elided.
duke@435 743 int flags = LIR_OpArrayCopy::all_flags;
duke@435 744 if (expected_type != NULL) {
duke@435 745 // try to skip null checks
duke@435 746 if (src->as_NewArray() != NULL)
duke@435 747 flags &= ~LIR_OpArrayCopy::src_null_check;
duke@435 748 if (dst->as_NewArray() != NULL)
duke@435 749 flags &= ~LIR_OpArrayCopy::dst_null_check;
duke@435 750
duke@435 751 // check from incoming constant values
duke@435 752 if (positive_constant(src_pos))
duke@435 753 flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
duke@435 754 if (positive_constant(dst_pos))
duke@435 755 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
duke@435 756 if (positive_constant(length))
duke@435 757 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 758
duke@435 759 // see if the range check can be elided, which might also imply
duke@435 760 // that src or dst is non-null.
duke@435 761 ArrayLength* al = length->as_ArrayLength();
duke@435 762 if (al != NULL) {
duke@435 763 if (al->array() == src) {
duke@435 764 // it's the length of the source array
duke@435 765 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 766 flags &= ~LIR_OpArrayCopy::src_null_check;
duke@435 767 if (is_constant_zero(src_pos))
duke@435 768 flags &= ~LIR_OpArrayCopy::src_range_check;
duke@435 769 }
duke@435 770 if (al->array() == dst) {
duke@435 771 // it's the length of the destination array
duke@435 772 flags &= ~LIR_OpArrayCopy::length_positive_check;
duke@435 773 flags &= ~LIR_OpArrayCopy::dst_null_check;
duke@435 774 if (is_constant_zero(dst_pos))
duke@435 775 flags &= ~LIR_OpArrayCopy::dst_range_check;
duke@435 776 }
duke@435 777 }
duke@435 778 if (is_exact) {
duke@435 779 flags &= ~LIR_OpArrayCopy::type_check;
duke@435 780 }
duke@435 781 }
duke@435 782
duke@435 783 if (src == dst) {
duke@435 784 // moving within a single array so no type checks are needed
duke@435 785 if (flags & LIR_OpArrayCopy::type_check) {
duke@435 786 flags &= ~LIR_OpArrayCopy::type_check;
duke@435 787 }
duke@435 788 }
duke@435 789 *flagsp = flags;
duke@435 790 *expected_typep = (ciArrayKlass*)expected_type;
duke@435 791 }
duke@435 792
duke@435 793
duke@435 794 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
duke@435 795 assert(opr->is_register(), "why spill if item is not register?");
duke@435 796
duke@435 797 if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
duke@435 798 LIR_Opr result = new_register(T_FLOAT);
duke@435 799 set_vreg_flag(result, must_start_in_memory);
duke@435 800 assert(opr->is_register(), "only a register can be spilled");
duke@435 801 assert(opr->value_type()->is_float(), "rounding only for floats available");
duke@435 802 __ roundfp(opr, LIR_OprFact::illegalOpr, result);
duke@435 803 return result;
duke@435 804 }
duke@435 805 return opr;
duke@435 806 }
duke@435 807
duke@435 808
duke@435 809 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
duke@435 810 assert(type2size[t] == type2size[value->type()], "size mismatch");
duke@435 811 if (!value->is_register()) {
duke@435 812 // force into a register
duke@435 813 LIR_Opr r = new_register(value->type());
duke@435 814 __ move(value, r);
duke@435 815 value = r;
duke@435 816 }
duke@435 817
duke@435 818 // create a spill location
duke@435 819 LIR_Opr tmp = new_register(t);
duke@435 820 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
duke@435 821
duke@435 822 // move from register to spill
duke@435 823 __ move(value, tmp);
duke@435 824 return tmp;
duke@435 825 }
duke@435 826
duke@435 827
duke@435 828 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
duke@435 829 if (if_instr->should_profile()) {
duke@435 830 ciMethod* method = if_instr->profiled_method();
duke@435 831 assert(method != NULL, "method should be set if branch is profiled");
duke@435 832 ciMethodData* md = method->method_data();
duke@435 833 if (md == NULL) {
duke@435 834 bailout("out of memory building methodDataOop");
duke@435 835 return;
duke@435 836 }
duke@435 837 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
duke@435 838 assert(data != NULL, "must have profiling data");
duke@435 839 assert(data->is_BranchData(), "need BranchData for two-way branches");
duke@435 840 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
duke@435 841 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
duke@435 842 LIR_Opr md_reg = new_register(T_OBJECT);
duke@435 843 __ move(LIR_OprFact::oopConst(md->encoding()), md_reg);
duke@435 844 LIR_Opr data_offset_reg = new_register(T_INT);
duke@435 845 __ cmove(lir_cond(cond),
duke@435 846 LIR_OprFact::intConst(taken_count_offset),
duke@435 847 LIR_OprFact::intConst(not_taken_count_offset),
duke@435 848 data_offset_reg);
duke@435 849 LIR_Opr data_reg = new_register(T_INT);
duke@435 850 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, T_INT);
duke@435 851 __ move(LIR_OprFact::address(data_addr), data_reg);
duke@435 852 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
duke@435 853 // Use leal instead of add to avoid destroying condition codes on x86
duke@435 854 __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
duke@435 855 __ move(data_reg, LIR_OprFact::address(data_addr));
duke@435 856 }
duke@435 857 }
duke@435 858
duke@435 859
duke@435 860 // Phi technique:
duke@435 861 // This is about passing live values from one basic block to the other.
duke@435 862 // In code generated with Java it is rather rare that more than one
duke@435 863 // value is on the stack from one basic block to the other.
duke@435 864 // We optimize our technique for efficient passing of one value
duke@435 865 // (of type long, int, double..) but it can be extended.
duke@435 866 // When entering or leaving a basic block, all registers and all spill
duke@435 867 // slots are release and empty. We use the released registers
duke@435 868 // and spill slots to pass the live values from one block
duke@435 869 // to the other. The topmost value, i.e., the value on TOS of expression
duke@435 870 // stack is passed in registers. All other values are stored in spilling
duke@435 871 // area. Every Phi has an index which designates its spill slot
duke@435 872 // At exit of a basic block, we fill the register(s) and spill slots.
duke@435 873 // At entry of a basic block, the block_prolog sets up the content of phi nodes
duke@435 874 // and locks necessary registers and spilling slots.
duke@435 875
duke@435 876
duke@435 877 // move current value to referenced phi function
duke@435 878 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
duke@435 879 Phi* phi = sux_val->as_Phi();
duke@435 880 // cur_val can be null without phi being null in conjunction with inlining
duke@435 881 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
duke@435 882 LIR_Opr operand = cur_val->operand();
duke@435 883 if (cur_val->operand()->is_illegal()) {
duke@435 884 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
duke@435 885 "these can be produced lazily");
duke@435 886 operand = operand_for_instruction(cur_val);
duke@435 887 }
duke@435 888 resolver->move(operand, operand_for_instruction(phi));
duke@435 889 }
duke@435 890 }
duke@435 891
duke@435 892
duke@435 893 // Moves all stack values into their PHI position
duke@435 894 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
duke@435 895 BlockBegin* bb = block();
duke@435 896 if (bb->number_of_sux() == 1) {
duke@435 897 BlockBegin* sux = bb->sux_at(0);
duke@435 898 assert(sux->number_of_preds() > 0, "invalid CFG");
duke@435 899
duke@435 900 // a block with only one predecessor never has phi functions
duke@435 901 if (sux->number_of_preds() > 1) {
duke@435 902 int max_phis = cur_state->stack_size() + cur_state->locals_size();
duke@435 903 PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
duke@435 904
duke@435 905 ValueStack* sux_state = sux->state();
duke@435 906 Value sux_value;
duke@435 907 int index;
duke@435 908
duke@435 909 for_each_stack_value(sux_state, index, sux_value) {
duke@435 910 move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
duke@435 911 }
duke@435 912
duke@435 913 // Inlining may cause the local state not to match up, so walk up
duke@435 914 // the caller state until we get to the same scope as the
duke@435 915 // successor and then start processing from there.
duke@435 916 while (cur_state->scope() != sux_state->scope()) {
duke@435 917 cur_state = cur_state->caller_state();
duke@435 918 assert(cur_state != NULL, "scopes don't match up");
duke@435 919 }
duke@435 920
duke@435 921 for_each_local_value(sux_state, index, sux_value) {
duke@435 922 move_to_phi(&resolver, cur_state->local_at(index), sux_value);
duke@435 923 }
duke@435 924
duke@435 925 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
duke@435 926 }
duke@435 927 }
duke@435 928 }
duke@435 929
duke@435 930
duke@435 931 LIR_Opr LIRGenerator::new_register(BasicType type) {
duke@435 932 int vreg = _virtual_register_number;
duke@435 933 // add a little fudge factor for the bailout, since the bailout is
duke@435 934 // only checked periodically. This gives a few extra registers to
duke@435 935 // hand out before we really run out, which helps us keep from
duke@435 936 // tripping over assertions.
duke@435 937 if (vreg + 20 >= LIR_OprDesc::vreg_max) {
duke@435 938 bailout("out of virtual registers");
duke@435 939 if (vreg + 2 >= LIR_OprDesc::vreg_max) {
duke@435 940 // wrap it around
duke@435 941 _virtual_register_number = LIR_OprDesc::vreg_base;
duke@435 942 }
duke@435 943 }
duke@435 944 _virtual_register_number += 1;
duke@435 945 if (type == T_ADDRESS) type = T_INT;
duke@435 946 return LIR_OprFact::virtual_register(vreg, type);
duke@435 947 }
duke@435 948
duke@435 949
duke@435 950 // Try to lock using register in hint
duke@435 951 LIR_Opr LIRGenerator::rlock(Value instr) {
duke@435 952 return new_register(instr->type());
duke@435 953 }
duke@435 954
duke@435 955
duke@435 956 // does an rlock and sets result
duke@435 957 LIR_Opr LIRGenerator::rlock_result(Value x) {
duke@435 958 LIR_Opr reg = rlock(x);
duke@435 959 set_result(x, reg);
duke@435 960 return reg;
duke@435 961 }
duke@435 962
duke@435 963
duke@435 964 // does an rlock and sets result
duke@435 965 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
duke@435 966 LIR_Opr reg;
duke@435 967 switch (type) {
duke@435 968 case T_BYTE:
duke@435 969 case T_BOOLEAN:
duke@435 970 reg = rlock_byte(type);
duke@435 971 break;
duke@435 972 default:
duke@435 973 reg = rlock(x);
duke@435 974 break;
duke@435 975 }
duke@435 976
duke@435 977 set_result(x, reg);
duke@435 978 return reg;
duke@435 979 }
duke@435 980
duke@435 981
duke@435 982 //---------------------------------------------------------------------
duke@435 983 ciObject* LIRGenerator::get_jobject_constant(Value value) {
duke@435 984 ObjectType* oc = value->type()->as_ObjectType();
duke@435 985 if (oc) {
duke@435 986 return oc->constant_value();
duke@435 987 }
duke@435 988 return NULL;
duke@435 989 }
duke@435 990
duke@435 991
duke@435 992 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
duke@435 993 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
duke@435 994 assert(block()->next() == x, "ExceptionObject must be first instruction of block");
duke@435 995
duke@435 996 // no moves are created for phi functions at the begin of exception
duke@435 997 // handlers, so assign operands manually here
duke@435 998 for_each_phi_fun(block(), phi,
duke@435 999 operand_for_instruction(phi));
duke@435 1000
duke@435 1001 LIR_Opr thread_reg = getThreadPointer();
duke@435 1002 __ move(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
duke@435 1003 exceptionOopOpr());
duke@435 1004 __ move(LIR_OprFact::oopConst(NULL),
duke@435 1005 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
duke@435 1006 __ move(LIR_OprFact::oopConst(NULL),
duke@435 1007 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
duke@435 1008
duke@435 1009 LIR_Opr result = new_register(T_OBJECT);
duke@435 1010 __ move(exceptionOopOpr(), result);
duke@435 1011 set_result(x, result);
duke@435 1012 }
duke@435 1013
duke@435 1014
duke@435 1015 //----------------------------------------------------------------------
duke@435 1016 //----------------------------------------------------------------------
duke@435 1017 //----------------------------------------------------------------------
duke@435 1018 //----------------------------------------------------------------------
duke@435 1019 // visitor functions
duke@435 1020 //----------------------------------------------------------------------
duke@435 1021 //----------------------------------------------------------------------
duke@435 1022 //----------------------------------------------------------------------
duke@435 1023 //----------------------------------------------------------------------
duke@435 1024
duke@435 1025 void LIRGenerator::do_Phi(Phi* x) {
duke@435 1026 // phi functions are never visited directly
duke@435 1027 ShouldNotReachHere();
duke@435 1028 }
duke@435 1029
duke@435 1030
duke@435 1031 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
duke@435 1032 void LIRGenerator::do_Constant(Constant* x) {
duke@435 1033 if (x->state() != NULL) {
duke@435 1034 // Any constant with a ValueStack requires patching so emit the patch here
duke@435 1035 LIR_Opr reg = rlock_result(x);
duke@435 1036 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1037 __ oop2reg_patch(NULL, reg, info);
duke@435 1038 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
duke@435 1039 if (!x->is_pinned()) {
duke@435 1040 // unpinned constants are handled specially so that they can be
duke@435 1041 // put into registers when they are used multiple times within a
duke@435 1042 // block. After the block completes their operand will be
duke@435 1043 // cleared so that other blocks can't refer to that register.
duke@435 1044 set_result(x, load_constant(x));
duke@435 1045 } else {
duke@435 1046 LIR_Opr res = x->operand();
duke@435 1047 if (!res->is_valid()) {
duke@435 1048 res = LIR_OprFact::value_type(x->type());
duke@435 1049 }
duke@435 1050 if (res->is_constant()) {
duke@435 1051 LIR_Opr reg = rlock_result(x);
duke@435 1052 __ move(res, reg);
duke@435 1053 } else {
duke@435 1054 set_result(x, res);
duke@435 1055 }
duke@435 1056 }
duke@435 1057 } else {
duke@435 1058 set_result(x, LIR_OprFact::value_type(x->type()));
duke@435 1059 }
duke@435 1060 }
duke@435 1061
duke@435 1062
duke@435 1063 void LIRGenerator::do_Local(Local* x) {
duke@435 1064 // operand_for_instruction has the side effect of setting the result
duke@435 1065 // so there's no need to do it here.
duke@435 1066 operand_for_instruction(x);
duke@435 1067 }
duke@435 1068
duke@435 1069
duke@435 1070 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
duke@435 1071 Unimplemented();
duke@435 1072 }
duke@435 1073
duke@435 1074
duke@435 1075 void LIRGenerator::do_Return(Return* x) {
duke@435 1076 if (DTraceMethodProbes) {
duke@435 1077 BasicTypeList signature;
duke@435 1078 signature.append(T_INT); // thread
duke@435 1079 signature.append(T_OBJECT); // methodOop
duke@435 1080 LIR_OprList* args = new LIR_OprList();
duke@435 1081 args->append(getThreadPointer());
duke@435 1082 LIR_Opr meth = new_register(T_OBJECT);
duke@435 1083 __ oop2reg(method()->encoding(), meth);
duke@435 1084 args->append(meth);
duke@435 1085 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
duke@435 1086 }
duke@435 1087
duke@435 1088 if (x->type()->is_void()) {
duke@435 1089 __ return_op(LIR_OprFact::illegalOpr);
duke@435 1090 } else {
duke@435 1091 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
duke@435 1092 LIRItem result(x->result(), this);
duke@435 1093
duke@435 1094 result.load_item_force(reg);
duke@435 1095 __ return_op(result.result());
duke@435 1096 }
duke@435 1097 set_no_result(x);
duke@435 1098 }
duke@435 1099
duke@435 1100
duke@435 1101 // Example: object.getClass ()
duke@435 1102 void LIRGenerator::do_getClass(Intrinsic* x) {
duke@435 1103 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 1104
duke@435 1105 LIRItem rcvr(x->argument_at(0), this);
duke@435 1106 rcvr.load_item();
duke@435 1107 LIR_Opr result = rlock_result(x);
duke@435 1108
duke@435 1109 // need to perform the null check on the rcvr
duke@435 1110 CodeEmitInfo* info = NULL;
duke@435 1111 if (x->needs_null_check()) {
duke@435 1112 info = state_for(x, x->state()->copy_locks());
duke@435 1113 }
duke@435 1114 __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
duke@435 1115 __ move(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
duke@435 1116 klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
duke@435 1117 }
duke@435 1118
duke@435 1119
duke@435 1120 // Example: Thread.currentThread()
duke@435 1121 void LIRGenerator::do_currentThread(Intrinsic* x) {
duke@435 1122 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 1123 LIR_Opr reg = rlock_result(x);
duke@435 1124 __ load(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
duke@435 1125 }
duke@435 1126
duke@435 1127
duke@435 1128 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
duke@435 1129 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 1130 LIRItem receiver(x->argument_at(0), this);
duke@435 1131
duke@435 1132 receiver.load_item();
duke@435 1133 BasicTypeList signature;
duke@435 1134 signature.append(T_OBJECT); // receiver
duke@435 1135 LIR_OprList* args = new LIR_OprList();
duke@435 1136 args->append(receiver.result());
duke@435 1137 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1138 call_runtime(&signature, args,
duke@435 1139 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
duke@435 1140 voidType, info);
duke@435 1141
duke@435 1142 set_no_result(x);
duke@435 1143 }
duke@435 1144
duke@435 1145
duke@435 1146 //------------------------local access--------------------------------------
duke@435 1147
duke@435 1148 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
duke@435 1149 if (x->operand()->is_illegal()) {
duke@435 1150 Constant* c = x->as_Constant();
duke@435 1151 if (c != NULL) {
duke@435 1152 x->set_operand(LIR_OprFact::value_type(c->type()));
duke@435 1153 } else {
duke@435 1154 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
duke@435 1155 // allocate a virtual register for this local or phi
duke@435 1156 x->set_operand(rlock(x));
duke@435 1157 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
duke@435 1158 }
duke@435 1159 }
duke@435 1160 return x->operand();
duke@435 1161 }
duke@435 1162
duke@435 1163
duke@435 1164 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
duke@435 1165 if (opr->is_virtual()) {
duke@435 1166 return instruction_for_vreg(opr->vreg_number());
duke@435 1167 }
duke@435 1168 return NULL;
duke@435 1169 }
duke@435 1170
duke@435 1171
duke@435 1172 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
duke@435 1173 if (reg_num < _instruction_for_operand.length()) {
duke@435 1174 return _instruction_for_operand.at(reg_num);
duke@435 1175 }
duke@435 1176 return NULL;
duke@435 1177 }
duke@435 1178
duke@435 1179
duke@435 1180 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
duke@435 1181 if (_vreg_flags.size_in_bits() == 0) {
duke@435 1182 BitMap2D temp(100, num_vreg_flags);
duke@435 1183 temp.clear();
duke@435 1184 _vreg_flags = temp;
duke@435 1185 }
duke@435 1186 _vreg_flags.at_put_grow(vreg_num, f, true);
duke@435 1187 }
duke@435 1188
duke@435 1189 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
duke@435 1190 if (!_vreg_flags.is_valid_index(vreg_num, f)) {
duke@435 1191 return false;
duke@435 1192 }
duke@435 1193 return _vreg_flags.at(vreg_num, f);
duke@435 1194 }
duke@435 1195
duke@435 1196
duke@435 1197 // Block local constant handling. This code is useful for keeping
duke@435 1198 // unpinned constants and constants which aren't exposed in the IR in
duke@435 1199 // registers. Unpinned Constant instructions have their operands
duke@435 1200 // cleared when the block is finished so that other blocks can't end
duke@435 1201 // up referring to their registers.
duke@435 1202
duke@435 1203 LIR_Opr LIRGenerator::load_constant(Constant* x) {
duke@435 1204 assert(!x->is_pinned(), "only for unpinned constants");
duke@435 1205 _unpinned_constants.append(x);
duke@435 1206 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
duke@435 1207 }
duke@435 1208
duke@435 1209
duke@435 1210 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
duke@435 1211 BasicType t = c->type();
duke@435 1212 for (int i = 0; i < _constants.length(); i++) {
duke@435 1213 LIR_Const* other = _constants.at(i);
duke@435 1214 if (t == other->type()) {
duke@435 1215 switch (t) {
duke@435 1216 case T_INT:
duke@435 1217 case T_FLOAT:
duke@435 1218 if (c->as_jint_bits() != other->as_jint_bits()) continue;
duke@435 1219 break;
duke@435 1220 case T_LONG:
duke@435 1221 case T_DOUBLE:
duke@435 1222 if (c->as_jint_hi_bits() != other->as_jint_lo_bits()) continue;
duke@435 1223 if (c->as_jint_lo_bits() != other->as_jint_hi_bits()) continue;
duke@435 1224 break;
duke@435 1225 case T_OBJECT:
duke@435 1226 if (c->as_jobject() != other->as_jobject()) continue;
duke@435 1227 break;
duke@435 1228 }
duke@435 1229 return _reg_for_constants.at(i);
duke@435 1230 }
duke@435 1231 }
duke@435 1232
duke@435 1233 LIR_Opr result = new_register(t);
duke@435 1234 __ move((LIR_Opr)c, result);
duke@435 1235 _constants.append(c);
duke@435 1236 _reg_for_constants.append(result);
duke@435 1237 return result;
duke@435 1238 }
duke@435 1239
duke@435 1240 // Various barriers
duke@435 1241
duke@435 1242 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
duke@435 1243 switch (Universe::heap()->barrier_set()->kind()) {
duke@435 1244 case BarrierSet::CardTableModRef:
duke@435 1245 case BarrierSet::CardTableExtension:
duke@435 1246 CardTableModRef_post_barrier(addr, new_val);
duke@435 1247 break;
duke@435 1248 case BarrierSet::ModRef:
duke@435 1249 case BarrierSet::Other:
duke@435 1250 // No post barriers
duke@435 1251 break;
duke@435 1252 default :
duke@435 1253 ShouldNotReachHere();
duke@435 1254 }
duke@435 1255 }
duke@435 1256
duke@435 1257 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
duke@435 1258
duke@435 1259 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1260 assert(sizeof(*((CardTableModRefBS*)bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1261 LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)bs)->byte_map_base);
duke@435 1262 if (addr->is_address()) {
duke@435 1263 LIR_Address* address = addr->as_address_ptr();
duke@435 1264 LIR_Opr ptr = new_register(T_OBJECT);
duke@435 1265 if (!address->index()->is_valid() && address->disp() == 0) {
duke@435 1266 __ move(address->base(), ptr);
duke@435 1267 } else {
duke@435 1268 assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
duke@435 1269 __ leal(addr, ptr);
duke@435 1270 }
duke@435 1271 addr = ptr;
duke@435 1272 }
duke@435 1273 assert(addr->is_register(), "must be a register at this point");
duke@435 1274
duke@435 1275 LIR_Opr tmp = new_pointer_register();
duke@435 1276 if (TwoOperandLIRForm) {
duke@435 1277 __ move(addr, tmp);
duke@435 1278 __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
duke@435 1279 } else {
duke@435 1280 __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
duke@435 1281 }
duke@435 1282 if (can_inline_as_constant(card_table_base)) {
duke@435 1283 __ move(LIR_OprFact::intConst(0),
duke@435 1284 new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
duke@435 1285 } else {
duke@435 1286 __ move(LIR_OprFact::intConst(0),
duke@435 1287 new LIR_Address(tmp, load_constant(card_table_base),
duke@435 1288 T_BYTE));
duke@435 1289 }
duke@435 1290 }
duke@435 1291
duke@435 1292
duke@435 1293 //------------------------field access--------------------------------------
duke@435 1294
duke@435 1295 // Comment copied form templateTable_i486.cpp
duke@435 1296 // ----------------------------------------------------------------------------
duke@435 1297 // Volatile variables demand their effects be made known to all CPU's in
duke@435 1298 // order. Store buffers on most chips allow reads & writes to reorder; the
duke@435 1299 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
duke@435 1300 // memory barrier (i.e., it's not sufficient that the interpreter does not
duke@435 1301 // reorder volatile references, the hardware also must not reorder them).
duke@435 1302 //
duke@435 1303 // According to the new Java Memory Model (JMM):
duke@435 1304 // (1) All volatiles are serialized wrt to each other.
duke@435 1305 // ALSO reads & writes act as aquire & release, so:
duke@435 1306 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
duke@435 1307 // the read float up to before the read. It's OK for non-volatile memory refs
duke@435 1308 // that happen before the volatile read to float down below it.
duke@435 1309 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
duke@435 1310 // that happen BEFORE the write float down to after the write. It's OK for
duke@435 1311 // non-volatile memory refs that happen after the volatile write to float up
duke@435 1312 // before it.
duke@435 1313 //
duke@435 1314 // We only put in barriers around volatile refs (they are expensive), not
duke@435 1315 // _between_ memory refs (that would require us to track the flavor of the
duke@435 1316 // previous memory refs). Requirements (2) and (3) require some barriers
duke@435 1317 // before volatile stores and after volatile loads. These nearly cover
duke@435 1318 // requirement (1) but miss the volatile-store-volatile-load case. This final
duke@435 1319 // case is placed after volatile-stores although it could just as well go
duke@435 1320 // before volatile-loads.
duke@435 1321
duke@435 1322
duke@435 1323 void LIRGenerator::do_StoreField(StoreField* x) {
duke@435 1324 bool needs_patching = x->needs_patching();
duke@435 1325 bool is_volatile = x->field()->is_volatile();
duke@435 1326 BasicType field_type = x->field_type();
duke@435 1327 bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
duke@435 1328
duke@435 1329 CodeEmitInfo* info = NULL;
duke@435 1330 if (needs_patching) {
duke@435 1331 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
duke@435 1332 info = state_for(x, x->state_before());
duke@435 1333 } else if (x->needs_null_check()) {
duke@435 1334 NullCheck* nc = x->explicit_null_check();
duke@435 1335 if (nc == NULL) {
duke@435 1336 info = state_for(x, x->lock_stack());
duke@435 1337 } else {
duke@435 1338 info = state_for(nc);
duke@435 1339 }
duke@435 1340 }
duke@435 1341
duke@435 1342
duke@435 1343 LIRItem object(x->obj(), this);
duke@435 1344 LIRItem value(x->value(), this);
duke@435 1345
duke@435 1346 object.load_item();
duke@435 1347
duke@435 1348 if (is_volatile || needs_patching) {
duke@435 1349 // load item if field is volatile (fewer special cases for volatiles)
duke@435 1350 // load item if field not initialized
duke@435 1351 // load item if field not constant
duke@435 1352 // because of code patching we cannot inline constants
duke@435 1353 if (field_type == T_BYTE || field_type == T_BOOLEAN) {
duke@435 1354 value.load_byte_item();
duke@435 1355 } else {
duke@435 1356 value.load_item();
duke@435 1357 }
duke@435 1358 } else {
duke@435 1359 value.load_for_store(field_type);
duke@435 1360 }
duke@435 1361
duke@435 1362 set_no_result(x);
duke@435 1363
duke@435 1364 if (PrintNotLoaded && needs_patching) {
duke@435 1365 tty->print_cr(" ###class not loaded at store_%s bci %d",
duke@435 1366 x->is_static() ? "static" : "field", x->bci());
duke@435 1367 }
duke@435 1368
duke@435 1369 if (x->needs_null_check() &&
duke@435 1370 (needs_patching ||
duke@435 1371 MacroAssembler::needs_explicit_null_check(x->offset()))) {
duke@435 1372 // emit an explicit null check because the offset is too large
duke@435 1373 __ null_check(object.result(), new CodeEmitInfo(info));
duke@435 1374 }
duke@435 1375
duke@435 1376 LIR_Address* address;
duke@435 1377 if (needs_patching) {
duke@435 1378 // we need to patch the offset in the instruction so don't allow
duke@435 1379 // generate_address to try to be smart about emitting the -1.
duke@435 1380 // Otherwise the patching code won't know how to find the
duke@435 1381 // instruction to patch.
duke@435 1382 address = new LIR_Address(object.result(), max_jint, field_type);
duke@435 1383 } else {
duke@435 1384 address = generate_address(object.result(), x->offset(), field_type);
duke@435 1385 }
duke@435 1386
duke@435 1387 if (is_volatile && os::is_MP()) {
duke@435 1388 __ membar_release();
duke@435 1389 }
duke@435 1390
duke@435 1391 if (is_volatile) {
duke@435 1392 assert(!needs_patching && x->is_loaded(),
duke@435 1393 "how do we know it's volatile if it's not loaded");
duke@435 1394 volatile_field_store(value.result(), address, info);
duke@435 1395 } else {
duke@435 1396 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
duke@435 1397 __ store(value.result(), address, info, patch_code);
duke@435 1398 }
duke@435 1399
duke@435 1400 if (is_oop) {
duke@435 1401 post_barrier(object.result(), value.result());
duke@435 1402 }
duke@435 1403
duke@435 1404 if (is_volatile && os::is_MP()) {
duke@435 1405 __ membar();
duke@435 1406 }
duke@435 1407 }
duke@435 1408
duke@435 1409
duke@435 1410 void LIRGenerator::do_LoadField(LoadField* x) {
duke@435 1411 bool needs_patching = x->needs_patching();
duke@435 1412 bool is_volatile = x->field()->is_volatile();
duke@435 1413 BasicType field_type = x->field_type();
duke@435 1414
duke@435 1415 CodeEmitInfo* info = NULL;
duke@435 1416 if (needs_patching) {
duke@435 1417 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
duke@435 1418 info = state_for(x, x->state_before());
duke@435 1419 } else if (x->needs_null_check()) {
duke@435 1420 NullCheck* nc = x->explicit_null_check();
duke@435 1421 if (nc == NULL) {
duke@435 1422 info = state_for(x, x->lock_stack());
duke@435 1423 } else {
duke@435 1424 info = state_for(nc);
duke@435 1425 }
duke@435 1426 }
duke@435 1427
duke@435 1428 LIRItem object(x->obj(), this);
duke@435 1429
duke@435 1430 object.load_item();
duke@435 1431
duke@435 1432 if (PrintNotLoaded && needs_patching) {
duke@435 1433 tty->print_cr(" ###class not loaded at load_%s bci %d",
duke@435 1434 x->is_static() ? "static" : "field", x->bci());
duke@435 1435 }
duke@435 1436
duke@435 1437 if (x->needs_null_check() &&
duke@435 1438 (needs_patching ||
duke@435 1439 MacroAssembler::needs_explicit_null_check(x->offset()))) {
duke@435 1440 // emit an explicit null check because the offset is too large
duke@435 1441 __ null_check(object.result(), new CodeEmitInfo(info));
duke@435 1442 }
duke@435 1443
duke@435 1444 LIR_Opr reg = rlock_result(x, field_type);
duke@435 1445 LIR_Address* address;
duke@435 1446 if (needs_patching) {
duke@435 1447 // we need to patch the offset in the instruction so don't allow
duke@435 1448 // generate_address to try to be smart about emitting the -1.
duke@435 1449 // Otherwise the patching code won't know how to find the
duke@435 1450 // instruction to patch.
duke@435 1451 address = new LIR_Address(object.result(), max_jint, field_type);
duke@435 1452 } else {
duke@435 1453 address = generate_address(object.result(), x->offset(), field_type);
duke@435 1454 }
duke@435 1455
duke@435 1456 if (is_volatile) {
duke@435 1457 assert(!needs_patching && x->is_loaded(),
duke@435 1458 "how do we know it's volatile if it's not loaded");
duke@435 1459 volatile_field_load(address, reg, info);
duke@435 1460 } else {
duke@435 1461 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
duke@435 1462 __ load(address, reg, info, patch_code);
duke@435 1463 }
duke@435 1464
duke@435 1465 if (is_volatile && os::is_MP()) {
duke@435 1466 __ membar_acquire();
duke@435 1467 }
duke@435 1468 }
duke@435 1469
duke@435 1470
duke@435 1471 //------------------------java.nio.Buffer.checkIndex------------------------
duke@435 1472
duke@435 1473 // int java.nio.Buffer.checkIndex(int)
duke@435 1474 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
duke@435 1475 // NOTE: by the time we are in checkIndex() we are guaranteed that
duke@435 1476 // the buffer is non-null (because checkIndex is package-private and
duke@435 1477 // only called from within other methods in the buffer).
duke@435 1478 assert(x->number_of_arguments() == 2, "wrong type");
duke@435 1479 LIRItem buf (x->argument_at(0), this);
duke@435 1480 LIRItem index(x->argument_at(1), this);
duke@435 1481 buf.load_item();
duke@435 1482 index.load_item();
duke@435 1483
duke@435 1484 LIR_Opr result = rlock_result(x);
duke@435 1485 if (GenerateRangeChecks) {
duke@435 1486 CodeEmitInfo* info = state_for(x);
duke@435 1487 CodeStub* stub = new RangeCheckStub(info, index.result(), true);
duke@435 1488 if (index.result()->is_constant()) {
duke@435 1489 cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
duke@435 1490 __ branch(lir_cond_belowEqual, T_INT, stub);
duke@435 1491 } else {
duke@435 1492 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
duke@435 1493 java_nio_Buffer::limit_offset(), T_INT, info);
duke@435 1494 __ branch(lir_cond_aboveEqual, T_INT, stub);
duke@435 1495 }
duke@435 1496 __ move(index.result(), result);
duke@435 1497 } else {
duke@435 1498 // Just load the index into the result register
duke@435 1499 __ move(index.result(), result);
duke@435 1500 }
duke@435 1501 }
duke@435 1502
duke@435 1503
duke@435 1504 //------------------------array access--------------------------------------
duke@435 1505
duke@435 1506
duke@435 1507 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
duke@435 1508 LIRItem array(x->array(), this);
duke@435 1509 array.load_item();
duke@435 1510 LIR_Opr reg = rlock_result(x);
duke@435 1511
duke@435 1512 CodeEmitInfo* info = NULL;
duke@435 1513 if (x->needs_null_check()) {
duke@435 1514 NullCheck* nc = x->explicit_null_check();
duke@435 1515 if (nc == NULL) {
duke@435 1516 info = state_for(x);
duke@435 1517 } else {
duke@435 1518 info = state_for(nc);
duke@435 1519 }
duke@435 1520 }
duke@435 1521 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
duke@435 1522 }
duke@435 1523
duke@435 1524
duke@435 1525 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
duke@435 1526 bool use_length = x->length() != NULL;
duke@435 1527 LIRItem array(x->array(), this);
duke@435 1528 LIRItem index(x->index(), this);
duke@435 1529 LIRItem length(this);
duke@435 1530 bool needs_range_check = true;
duke@435 1531
duke@435 1532 if (use_length) {
duke@435 1533 needs_range_check = x->compute_needs_range_check();
duke@435 1534 if (needs_range_check) {
duke@435 1535 length.set_instruction(x->length());
duke@435 1536 length.load_item();
duke@435 1537 }
duke@435 1538 }
duke@435 1539
duke@435 1540 array.load_item();
duke@435 1541 if (index.is_constant() && can_inline_as_constant(x->index())) {
duke@435 1542 // let it be a constant
duke@435 1543 index.dont_load_item();
duke@435 1544 } else {
duke@435 1545 index.load_item();
duke@435 1546 }
duke@435 1547
duke@435 1548 CodeEmitInfo* range_check_info = state_for(x);
duke@435 1549 CodeEmitInfo* null_check_info = NULL;
duke@435 1550 if (x->needs_null_check()) {
duke@435 1551 NullCheck* nc = x->explicit_null_check();
duke@435 1552 if (nc != NULL) {
duke@435 1553 null_check_info = state_for(nc);
duke@435 1554 } else {
duke@435 1555 null_check_info = range_check_info;
duke@435 1556 }
duke@435 1557 }
duke@435 1558
duke@435 1559 // emit array address setup early so it schedules better
duke@435 1560 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
duke@435 1561
duke@435 1562 if (GenerateRangeChecks && needs_range_check) {
duke@435 1563 if (use_length) {
duke@435 1564 // TODO: use a (modified) version of array_range_check that does not require a
duke@435 1565 // constant length to be loaded to a register
duke@435 1566 __ cmp(lir_cond_belowEqual, length.result(), index.result());
duke@435 1567 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
duke@435 1568 } else {
duke@435 1569 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
duke@435 1570 // The range check performs the null check, so clear it out for the load
duke@435 1571 null_check_info = NULL;
duke@435 1572 }
duke@435 1573 }
duke@435 1574
duke@435 1575 __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
duke@435 1576 }
duke@435 1577
duke@435 1578
duke@435 1579 void LIRGenerator::do_NullCheck(NullCheck* x) {
duke@435 1580 if (x->can_trap()) {
duke@435 1581 LIRItem value(x->obj(), this);
duke@435 1582 value.load_item();
duke@435 1583 CodeEmitInfo* info = state_for(x);
duke@435 1584 __ null_check(value.result(), info);
duke@435 1585 }
duke@435 1586 }
duke@435 1587
duke@435 1588
duke@435 1589 void LIRGenerator::do_Throw(Throw* x) {
duke@435 1590 LIRItem exception(x->exception(), this);
duke@435 1591 exception.load_item();
duke@435 1592 set_no_result(x);
duke@435 1593 LIR_Opr exception_opr = exception.result();
duke@435 1594 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1595
duke@435 1596 #ifndef PRODUCT
duke@435 1597 if (PrintC1Statistics) {
duke@435 1598 increment_counter(Runtime1::throw_count_address());
duke@435 1599 }
duke@435 1600 #endif
duke@435 1601
duke@435 1602 // check if the instruction has an xhandler in any of the nested scopes
duke@435 1603 bool unwind = false;
duke@435 1604 if (info->exception_handlers()->length() == 0) {
duke@435 1605 // this throw is not inside an xhandler
duke@435 1606 unwind = true;
duke@435 1607 } else {
duke@435 1608 // get some idea of the throw type
duke@435 1609 bool type_is_exact = true;
duke@435 1610 ciType* throw_type = x->exception()->exact_type();
duke@435 1611 if (throw_type == NULL) {
duke@435 1612 type_is_exact = false;
duke@435 1613 throw_type = x->exception()->declared_type();
duke@435 1614 }
duke@435 1615 if (throw_type != NULL && throw_type->is_instance_klass()) {
duke@435 1616 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
duke@435 1617 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
duke@435 1618 }
duke@435 1619 }
duke@435 1620
duke@435 1621 // do null check before moving exception oop into fixed register
duke@435 1622 // to avoid a fixed interval with an oop during the null check.
duke@435 1623 // Use a copy of the CodeEmitInfo because debug information is
duke@435 1624 // different for null_check and throw.
duke@435 1625 if (GenerateCompilerNullChecks &&
duke@435 1626 (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
duke@435 1627 // if the exception object wasn't created using new then it might be null.
duke@435 1628 __ null_check(exception_opr, new CodeEmitInfo(info, true));
duke@435 1629 }
duke@435 1630
duke@435 1631 if (JvmtiExport::can_post_exceptions() &&
duke@435 1632 !block()->is_set(BlockBegin::default_exception_handler_flag)) {
duke@435 1633 // we need to go through the exception lookup path to get JVMTI
duke@435 1634 // notification done
duke@435 1635 unwind = false;
duke@435 1636 }
duke@435 1637
duke@435 1638 assert(!block()->is_set(BlockBegin::default_exception_handler_flag) || unwind,
duke@435 1639 "should be no more handlers to dispatch to");
duke@435 1640
duke@435 1641 if (DTraceMethodProbes &&
duke@435 1642 block()->is_set(BlockBegin::default_exception_handler_flag)) {
duke@435 1643 // notify that this frame is unwinding
duke@435 1644 BasicTypeList signature;
duke@435 1645 signature.append(T_INT); // thread
duke@435 1646 signature.append(T_OBJECT); // methodOop
duke@435 1647 LIR_OprList* args = new LIR_OprList();
duke@435 1648 args->append(getThreadPointer());
duke@435 1649 LIR_Opr meth = new_register(T_OBJECT);
duke@435 1650 __ oop2reg(method()->encoding(), meth);
duke@435 1651 args->append(meth);
duke@435 1652 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
duke@435 1653 }
duke@435 1654
duke@435 1655 // move exception oop into fixed register
duke@435 1656 __ move(exception_opr, exceptionOopOpr());
duke@435 1657
duke@435 1658 if (unwind) {
duke@435 1659 __ unwind_exception(LIR_OprFact::illegalOpr, exceptionOopOpr(), info);
duke@435 1660 } else {
duke@435 1661 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
duke@435 1662 }
duke@435 1663 }
duke@435 1664
duke@435 1665
duke@435 1666 void LIRGenerator::do_RoundFP(RoundFP* x) {
duke@435 1667 LIRItem input(x->input(), this);
duke@435 1668 input.load_item();
duke@435 1669 LIR_Opr input_opr = input.result();
duke@435 1670 assert(input_opr->is_register(), "why round if value is not in a register?");
duke@435 1671 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
duke@435 1672 if (input_opr->is_single_fpu()) {
duke@435 1673 set_result(x, round_item(input_opr)); // This code path not currently taken
duke@435 1674 } else {
duke@435 1675 LIR_Opr result = new_register(T_DOUBLE);
duke@435 1676 set_vreg_flag(result, must_start_in_memory);
duke@435 1677 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
duke@435 1678 set_result(x, result);
duke@435 1679 }
duke@435 1680 }
duke@435 1681
duke@435 1682 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
duke@435 1683 LIRItem base(x->base(), this);
duke@435 1684 LIRItem idx(this);
duke@435 1685
duke@435 1686 base.load_item();
duke@435 1687 if (x->has_index()) {
duke@435 1688 idx.set_instruction(x->index());
duke@435 1689 idx.load_nonconstant();
duke@435 1690 }
duke@435 1691
duke@435 1692 LIR_Opr reg = rlock_result(x, x->basic_type());
duke@435 1693
duke@435 1694 int log2_scale = 0;
duke@435 1695 if (x->has_index()) {
duke@435 1696 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
duke@435 1697 log2_scale = x->log2_scale();
duke@435 1698 }
duke@435 1699
duke@435 1700 assert(!x->has_index() || idx.value() == x->index(), "should match");
duke@435 1701
duke@435 1702 LIR_Opr base_op = base.result();
duke@435 1703 #ifndef _LP64
duke@435 1704 if (x->base()->type()->tag() == longTag) {
duke@435 1705 base_op = new_register(T_INT);
duke@435 1706 __ convert(Bytecodes::_l2i, base.result(), base_op);
duke@435 1707 } else {
duke@435 1708 assert(x->base()->type()->tag() == intTag, "must be");
duke@435 1709 }
duke@435 1710 #endif
duke@435 1711
duke@435 1712 BasicType dst_type = x->basic_type();
duke@435 1713 LIR_Opr index_op = idx.result();
duke@435 1714
duke@435 1715 LIR_Address* addr;
duke@435 1716 if (index_op->is_constant()) {
duke@435 1717 assert(log2_scale == 0, "must not have a scale");
duke@435 1718 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
duke@435 1719 } else {
never@739 1720 #ifdef X86
duke@435 1721 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
duke@435 1722 #else
duke@435 1723 if (index_op->is_illegal() || log2_scale == 0) {
duke@435 1724 addr = new LIR_Address(base_op, index_op, dst_type);
duke@435 1725 } else {
duke@435 1726 LIR_Opr tmp = new_register(T_INT);
duke@435 1727 __ shift_left(index_op, log2_scale, tmp);
duke@435 1728 addr = new LIR_Address(base_op, tmp, dst_type);
duke@435 1729 }
duke@435 1730 #endif
duke@435 1731 }
duke@435 1732
duke@435 1733 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
duke@435 1734 __ unaligned_move(addr, reg);
duke@435 1735 } else {
duke@435 1736 __ move(addr, reg);
duke@435 1737 }
duke@435 1738 }
duke@435 1739
duke@435 1740
duke@435 1741 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
duke@435 1742 int log2_scale = 0;
duke@435 1743 BasicType type = x->basic_type();
duke@435 1744
duke@435 1745 if (x->has_index()) {
duke@435 1746 assert(x->index()->type()->tag() == intTag, "should not find non-int index");
duke@435 1747 log2_scale = x->log2_scale();
duke@435 1748 }
duke@435 1749
duke@435 1750 LIRItem base(x->base(), this);
duke@435 1751 LIRItem value(x->value(), this);
duke@435 1752 LIRItem idx(this);
duke@435 1753
duke@435 1754 base.load_item();
duke@435 1755 if (x->has_index()) {
duke@435 1756 idx.set_instruction(x->index());
duke@435 1757 idx.load_item();
duke@435 1758 }
duke@435 1759
duke@435 1760 if (type == T_BYTE || type == T_BOOLEAN) {
duke@435 1761 value.load_byte_item();
duke@435 1762 } else {
duke@435 1763 value.load_item();
duke@435 1764 }
duke@435 1765
duke@435 1766 set_no_result(x);
duke@435 1767
duke@435 1768 LIR_Opr base_op = base.result();
duke@435 1769 #ifndef _LP64
duke@435 1770 if (x->base()->type()->tag() == longTag) {
duke@435 1771 base_op = new_register(T_INT);
duke@435 1772 __ convert(Bytecodes::_l2i, base.result(), base_op);
duke@435 1773 } else {
duke@435 1774 assert(x->base()->type()->tag() == intTag, "must be");
duke@435 1775 }
duke@435 1776 #endif
duke@435 1777
duke@435 1778 LIR_Opr index_op = idx.result();
duke@435 1779 if (log2_scale != 0) {
duke@435 1780 // temporary fix (platform dependent code without shift on Intel would be better)
duke@435 1781 index_op = new_register(T_INT);
duke@435 1782 __ move(idx.result(), index_op);
duke@435 1783 __ shift_left(index_op, log2_scale, index_op);
duke@435 1784 }
duke@435 1785
duke@435 1786 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
duke@435 1787 __ move(value.result(), addr);
duke@435 1788 }
duke@435 1789
duke@435 1790
duke@435 1791 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
duke@435 1792 BasicType type = x->basic_type();
duke@435 1793 LIRItem src(x->object(), this);
duke@435 1794 LIRItem off(x->offset(), this);
duke@435 1795
duke@435 1796 off.load_item();
duke@435 1797 src.load_item();
duke@435 1798
duke@435 1799 LIR_Opr reg = reg = rlock_result(x, x->basic_type());
duke@435 1800
duke@435 1801 if (x->is_volatile() && os::is_MP()) __ membar_acquire();
duke@435 1802 get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
duke@435 1803 if (x->is_volatile() && os::is_MP()) __ membar();
duke@435 1804 }
duke@435 1805
duke@435 1806
duke@435 1807 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
duke@435 1808 BasicType type = x->basic_type();
duke@435 1809 LIRItem src(x->object(), this);
duke@435 1810 LIRItem off(x->offset(), this);
duke@435 1811 LIRItem data(x->value(), this);
duke@435 1812
duke@435 1813 src.load_item();
duke@435 1814 if (type == T_BOOLEAN || type == T_BYTE) {
duke@435 1815 data.load_byte_item();
duke@435 1816 } else {
duke@435 1817 data.load_item();
duke@435 1818 }
duke@435 1819 off.load_item();
duke@435 1820
duke@435 1821 set_no_result(x);
duke@435 1822
duke@435 1823 if (x->is_volatile() && os::is_MP()) __ membar_release();
duke@435 1824 put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
duke@435 1825 }
duke@435 1826
duke@435 1827
duke@435 1828 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
duke@435 1829 LIRItem src(x->object(), this);
duke@435 1830 LIRItem off(x->offset(), this);
duke@435 1831
duke@435 1832 src.load_item();
duke@435 1833 if (off.is_constant() && can_inline_as_constant(x->offset())) {
duke@435 1834 // let it be a constant
duke@435 1835 off.dont_load_item();
duke@435 1836 } else {
duke@435 1837 off.load_item();
duke@435 1838 }
duke@435 1839
duke@435 1840 set_no_result(x);
duke@435 1841
duke@435 1842 LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
duke@435 1843 __ prefetch(addr, is_store);
duke@435 1844 }
duke@435 1845
duke@435 1846
duke@435 1847 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
duke@435 1848 do_UnsafePrefetch(x, false);
duke@435 1849 }
duke@435 1850
duke@435 1851
duke@435 1852 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
duke@435 1853 do_UnsafePrefetch(x, true);
duke@435 1854 }
duke@435 1855
duke@435 1856
duke@435 1857 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
duke@435 1858 int lng = x->length();
duke@435 1859
duke@435 1860 for (int i = 0; i < lng; i++) {
duke@435 1861 SwitchRange* one_range = x->at(i);
duke@435 1862 int low_key = one_range->low_key();
duke@435 1863 int high_key = one_range->high_key();
duke@435 1864 BlockBegin* dest = one_range->sux();
duke@435 1865 if (low_key == high_key) {
duke@435 1866 __ cmp(lir_cond_equal, value, low_key);
duke@435 1867 __ branch(lir_cond_equal, T_INT, dest);
duke@435 1868 } else if (high_key - low_key == 1) {
duke@435 1869 __ cmp(lir_cond_equal, value, low_key);
duke@435 1870 __ branch(lir_cond_equal, T_INT, dest);
duke@435 1871 __ cmp(lir_cond_equal, value, high_key);
duke@435 1872 __ branch(lir_cond_equal, T_INT, dest);
duke@435 1873 } else {
duke@435 1874 LabelObj* L = new LabelObj();
duke@435 1875 __ cmp(lir_cond_less, value, low_key);
duke@435 1876 __ branch(lir_cond_less, L->label());
duke@435 1877 __ cmp(lir_cond_lessEqual, value, high_key);
duke@435 1878 __ branch(lir_cond_lessEqual, T_INT, dest);
duke@435 1879 __ branch_destination(L->label());
duke@435 1880 }
duke@435 1881 }
duke@435 1882 __ jump(default_sux);
duke@435 1883 }
duke@435 1884
duke@435 1885
duke@435 1886 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
duke@435 1887 SwitchRangeList* res = new SwitchRangeList();
duke@435 1888 int len = x->length();
duke@435 1889 if (len > 0) {
duke@435 1890 BlockBegin* sux = x->sux_at(0);
duke@435 1891 int key = x->lo_key();
duke@435 1892 BlockBegin* default_sux = x->default_sux();
duke@435 1893 SwitchRange* range = new SwitchRange(key, sux);
duke@435 1894 for (int i = 0; i < len; i++, key++) {
duke@435 1895 BlockBegin* new_sux = x->sux_at(i);
duke@435 1896 if (sux == new_sux) {
duke@435 1897 // still in same range
duke@435 1898 range->set_high_key(key);
duke@435 1899 } else {
duke@435 1900 // skip tests which explicitly dispatch to the default
duke@435 1901 if (sux != default_sux) {
duke@435 1902 res->append(range);
duke@435 1903 }
duke@435 1904 range = new SwitchRange(key, new_sux);
duke@435 1905 }
duke@435 1906 sux = new_sux;
duke@435 1907 }
duke@435 1908 if (res->length() == 0 || res->last() != range) res->append(range);
duke@435 1909 }
duke@435 1910 return res;
duke@435 1911 }
duke@435 1912
duke@435 1913
duke@435 1914 // we expect the keys to be sorted by increasing value
duke@435 1915 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
duke@435 1916 SwitchRangeList* res = new SwitchRangeList();
duke@435 1917 int len = x->length();
duke@435 1918 if (len > 0) {
duke@435 1919 BlockBegin* default_sux = x->default_sux();
duke@435 1920 int key = x->key_at(0);
duke@435 1921 BlockBegin* sux = x->sux_at(0);
duke@435 1922 SwitchRange* range = new SwitchRange(key, sux);
duke@435 1923 for (int i = 1; i < len; i++) {
duke@435 1924 int new_key = x->key_at(i);
duke@435 1925 BlockBegin* new_sux = x->sux_at(i);
duke@435 1926 if (key+1 == new_key && sux == new_sux) {
duke@435 1927 // still in same range
duke@435 1928 range->set_high_key(new_key);
duke@435 1929 } else {
duke@435 1930 // skip tests which explicitly dispatch to the default
duke@435 1931 if (range->sux() != default_sux) {
duke@435 1932 res->append(range);
duke@435 1933 }
duke@435 1934 range = new SwitchRange(new_key, new_sux);
duke@435 1935 }
duke@435 1936 key = new_key;
duke@435 1937 sux = new_sux;
duke@435 1938 }
duke@435 1939 if (res->length() == 0 || res->last() != range) res->append(range);
duke@435 1940 }
duke@435 1941 return res;
duke@435 1942 }
duke@435 1943
duke@435 1944
duke@435 1945 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
duke@435 1946 LIRItem tag(x->tag(), this);
duke@435 1947 tag.load_item();
duke@435 1948 set_no_result(x);
duke@435 1949
duke@435 1950 if (x->is_safepoint()) {
duke@435 1951 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
duke@435 1952 }
duke@435 1953
duke@435 1954 // move values into phi locations
duke@435 1955 move_to_phi(x->state());
duke@435 1956
duke@435 1957 int lo_key = x->lo_key();
duke@435 1958 int hi_key = x->hi_key();
duke@435 1959 int len = x->length();
duke@435 1960 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1961 LIR_Opr value = tag.result();
duke@435 1962 if (UseTableRanges) {
duke@435 1963 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
duke@435 1964 } else {
duke@435 1965 for (int i = 0; i < len; i++) {
duke@435 1966 __ cmp(lir_cond_equal, value, i + lo_key);
duke@435 1967 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
duke@435 1968 }
duke@435 1969 __ jump(x->default_sux());
duke@435 1970 }
duke@435 1971 }
duke@435 1972
duke@435 1973
duke@435 1974 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
duke@435 1975 LIRItem tag(x->tag(), this);
duke@435 1976 tag.load_item();
duke@435 1977 set_no_result(x);
duke@435 1978
duke@435 1979 if (x->is_safepoint()) {
duke@435 1980 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
duke@435 1981 }
duke@435 1982
duke@435 1983 // move values into phi locations
duke@435 1984 move_to_phi(x->state());
duke@435 1985
duke@435 1986 LIR_Opr value = tag.result();
duke@435 1987 if (UseTableRanges) {
duke@435 1988 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
duke@435 1989 } else {
duke@435 1990 int len = x->length();
duke@435 1991 for (int i = 0; i < len; i++) {
duke@435 1992 __ cmp(lir_cond_equal, value, x->key_at(i));
duke@435 1993 __ branch(lir_cond_equal, T_INT, x->sux_at(i));
duke@435 1994 }
duke@435 1995 __ jump(x->default_sux());
duke@435 1996 }
duke@435 1997 }
duke@435 1998
duke@435 1999
duke@435 2000 void LIRGenerator::do_Goto(Goto* x) {
duke@435 2001 set_no_result(x);
duke@435 2002
duke@435 2003 if (block()->next()->as_OsrEntry()) {
duke@435 2004 // need to free up storage used for OSR entry point
duke@435 2005 LIR_Opr osrBuffer = block()->next()->operand();
duke@435 2006 BasicTypeList signature;
duke@435 2007 signature.append(T_INT);
duke@435 2008 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
duke@435 2009 __ move(osrBuffer, cc->args()->at(0));
duke@435 2010 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
duke@435 2011 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
duke@435 2012 }
duke@435 2013
duke@435 2014 if (x->is_safepoint()) {
duke@435 2015 ValueStack* state = x->state_before() ? x->state_before() : x->state();
duke@435 2016
duke@435 2017 // increment backedge counter if needed
duke@435 2018 increment_backedge_counter(state_for(x, state));
duke@435 2019
duke@435 2020 CodeEmitInfo* safepoint_info = state_for(x, state);
duke@435 2021 __ safepoint(safepoint_poll_register(), safepoint_info);
duke@435 2022 }
duke@435 2023
duke@435 2024 // emit phi-instruction move after safepoint since this simplifies
duke@435 2025 // describing the state as the safepoint.
duke@435 2026 move_to_phi(x->state());
duke@435 2027
duke@435 2028 __ jump(x->default_sux());
duke@435 2029 }
duke@435 2030
duke@435 2031
duke@435 2032 void LIRGenerator::do_Base(Base* x) {
duke@435 2033 __ std_entry(LIR_OprFact::illegalOpr);
duke@435 2034 // Emit moves from physical registers / stack slots to virtual registers
duke@435 2035 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
duke@435 2036 IRScope* irScope = compilation()->hir()->top_scope();
duke@435 2037 int java_index = 0;
duke@435 2038 for (int i = 0; i < args->length(); i++) {
duke@435 2039 LIR_Opr src = args->at(i);
duke@435 2040 assert(!src->is_illegal(), "check");
duke@435 2041 BasicType t = src->type();
duke@435 2042
duke@435 2043 // Types which are smaller than int are passed as int, so
duke@435 2044 // correct the type which passed.
duke@435 2045 switch (t) {
duke@435 2046 case T_BYTE:
duke@435 2047 case T_BOOLEAN:
duke@435 2048 case T_SHORT:
duke@435 2049 case T_CHAR:
duke@435 2050 t = T_INT;
duke@435 2051 break;
duke@435 2052 }
duke@435 2053
duke@435 2054 LIR_Opr dest = new_register(t);
duke@435 2055 __ move(src, dest);
duke@435 2056
duke@435 2057 // Assign new location to Local instruction for this local
duke@435 2058 Local* local = x->state()->local_at(java_index)->as_Local();
duke@435 2059 assert(local != NULL, "Locals for incoming arguments must have been created");
duke@435 2060 assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
duke@435 2061 local->set_operand(dest);
duke@435 2062 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
duke@435 2063 java_index += type2size[t];
duke@435 2064 }
duke@435 2065
duke@435 2066 if (DTraceMethodProbes) {
duke@435 2067 BasicTypeList signature;
duke@435 2068 signature.append(T_INT); // thread
duke@435 2069 signature.append(T_OBJECT); // methodOop
duke@435 2070 LIR_OprList* args = new LIR_OprList();
duke@435 2071 args->append(getThreadPointer());
duke@435 2072 LIR_Opr meth = new_register(T_OBJECT);
duke@435 2073 __ oop2reg(method()->encoding(), meth);
duke@435 2074 args->append(meth);
duke@435 2075 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
duke@435 2076 }
duke@435 2077
duke@435 2078 if (method()->is_synchronized()) {
duke@435 2079 LIR_Opr obj;
duke@435 2080 if (method()->is_static()) {
duke@435 2081 obj = new_register(T_OBJECT);
duke@435 2082 __ oop2reg(method()->holder()->java_mirror()->encoding(), obj);
duke@435 2083 } else {
duke@435 2084 Local* receiver = x->state()->local_at(0)->as_Local();
duke@435 2085 assert(receiver != NULL, "must already exist");
duke@435 2086 obj = receiver->operand();
duke@435 2087 }
duke@435 2088 assert(obj->is_valid(), "must be valid");
duke@435 2089
duke@435 2090 if (method()->is_synchronized() && GenerateSynchronizationCode) {
duke@435 2091 LIR_Opr lock = new_register(T_INT);
duke@435 2092 __ load_stack_address_monitor(0, lock);
duke@435 2093
duke@435 2094 CodeEmitInfo* info = new CodeEmitInfo(SynchronizationEntryBCI, scope()->start()->state(), NULL);
duke@435 2095 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
duke@435 2096
duke@435 2097 // receiver is guaranteed non-NULL so don't need CodeEmitInfo
duke@435 2098 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
duke@435 2099 }
duke@435 2100 }
duke@435 2101
duke@435 2102 // increment invocation counters if needed
duke@435 2103 increment_invocation_counter(new CodeEmitInfo(0, scope()->start()->state(), NULL));
duke@435 2104
duke@435 2105 // all blocks with a successor must end with an unconditional jump
duke@435 2106 // to the successor even if they are consecutive
duke@435 2107 __ jump(x->default_sux());
duke@435 2108 }
duke@435 2109
duke@435 2110
duke@435 2111 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
duke@435 2112 // construct our frame and model the production of incoming pointer
duke@435 2113 // to the OSR buffer.
duke@435 2114 __ osr_entry(LIR_Assembler::osrBufferPointer());
duke@435 2115 LIR_Opr result = rlock_result(x);
duke@435 2116 __ move(LIR_Assembler::osrBufferPointer(), result);
duke@435 2117 }
duke@435 2118
duke@435 2119
duke@435 2120 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
duke@435 2121 int i = x->has_receiver() ? 1 : 0;
duke@435 2122 for (; i < args->length(); i++) {
duke@435 2123 LIRItem* param = args->at(i);
duke@435 2124 LIR_Opr loc = arg_list->at(i);
duke@435 2125 if (loc->is_register()) {
duke@435 2126 param->load_item_force(loc);
duke@435 2127 } else {
duke@435 2128 LIR_Address* addr = loc->as_address_ptr();
duke@435 2129 param->load_for_store(addr->type());
duke@435 2130 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 2131 __ unaligned_move(param->result(), addr);
duke@435 2132 } else {
duke@435 2133 __ move(param->result(), addr);
duke@435 2134 }
duke@435 2135 }
duke@435 2136 }
duke@435 2137
duke@435 2138 if (x->has_receiver()) {
duke@435 2139 LIRItem* receiver = args->at(0);
duke@435 2140 LIR_Opr loc = arg_list->at(0);
duke@435 2141 if (loc->is_register()) {
duke@435 2142 receiver->load_item_force(loc);
duke@435 2143 } else {
duke@435 2144 assert(loc->is_address(), "just checking");
duke@435 2145 receiver->load_for_store(T_OBJECT);
duke@435 2146 __ move(receiver->result(), loc);
duke@435 2147 }
duke@435 2148 }
duke@435 2149 }
duke@435 2150
duke@435 2151
duke@435 2152 // Visits all arguments, returns appropriate items without loading them
duke@435 2153 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
duke@435 2154 LIRItemList* argument_items = new LIRItemList();
duke@435 2155 if (x->has_receiver()) {
duke@435 2156 LIRItem* receiver = new LIRItem(x->receiver(), this);
duke@435 2157 argument_items->append(receiver);
duke@435 2158 }
duke@435 2159 int idx = x->has_receiver() ? 1 : 0;
duke@435 2160 for (int i = 0; i < x->number_of_arguments(); i++) {
duke@435 2161 LIRItem* param = new LIRItem(x->argument_at(i), this);
duke@435 2162 argument_items->append(param);
duke@435 2163 idx += (param->type()->is_double_word() ? 2 : 1);
duke@435 2164 }
duke@435 2165 return argument_items;
duke@435 2166 }
duke@435 2167
duke@435 2168
duke@435 2169 // The invoke with receiver has following phases:
duke@435 2170 // a) traverse and load/lock receiver;
duke@435 2171 // b) traverse all arguments -> item-array (invoke_visit_argument)
duke@435 2172 // c) push receiver on stack
duke@435 2173 // d) load each of the items and push on stack
duke@435 2174 // e) unlock receiver
duke@435 2175 // f) move receiver into receiver-register %o0
duke@435 2176 // g) lock result registers and emit call operation
duke@435 2177 //
duke@435 2178 // Before issuing a call, we must spill-save all values on stack
duke@435 2179 // that are in caller-save register. "spill-save" moves thos registers
duke@435 2180 // either in a free callee-save register or spills them if no free
duke@435 2181 // callee save register is available.
duke@435 2182 //
duke@435 2183 // The problem is where to invoke spill-save.
duke@435 2184 // - if invoked between e) and f), we may lock callee save
duke@435 2185 // register in "spill-save" that destroys the receiver register
duke@435 2186 // before f) is executed
duke@435 2187 // - if we rearange the f) to be earlier, by loading %o0, it
duke@435 2188 // may destroy a value on the stack that is currently in %o0
duke@435 2189 // and is waiting to be spilled
duke@435 2190 // - if we keep the receiver locked while doing spill-save,
duke@435 2191 // we cannot spill it as it is spill-locked
duke@435 2192 //
duke@435 2193 void LIRGenerator::do_Invoke(Invoke* x) {
duke@435 2194 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
duke@435 2195
duke@435 2196 LIR_OprList* arg_list = cc->args();
duke@435 2197 LIRItemList* args = invoke_visit_arguments(x);
duke@435 2198 LIR_Opr receiver = LIR_OprFact::illegalOpr;
duke@435 2199
duke@435 2200 // setup result register
duke@435 2201 LIR_Opr result_register = LIR_OprFact::illegalOpr;
duke@435 2202 if (x->type() != voidType) {
duke@435 2203 result_register = result_register_for(x->type());
duke@435 2204 }
duke@435 2205
duke@435 2206 CodeEmitInfo* info = state_for(x, x->state());
duke@435 2207
duke@435 2208 invoke_load_arguments(x, args, arg_list);
duke@435 2209
duke@435 2210 if (x->has_receiver()) {
duke@435 2211 args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
duke@435 2212 receiver = args->at(0)->result();
duke@435 2213 }
duke@435 2214
duke@435 2215 // emit invoke code
duke@435 2216 bool optimized = x->target_is_loaded() && x->target_is_final();
duke@435 2217 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
duke@435 2218
duke@435 2219 switch (x->code()) {
duke@435 2220 case Bytecodes::_invokestatic:
duke@435 2221 __ call_static(x->target(), result_register,
duke@435 2222 SharedRuntime::get_resolve_static_call_stub(),
duke@435 2223 arg_list, info);
duke@435 2224 break;
duke@435 2225 case Bytecodes::_invokespecial:
duke@435 2226 case Bytecodes::_invokevirtual:
duke@435 2227 case Bytecodes::_invokeinterface:
duke@435 2228 // for final target we still produce an inline cache, in order
duke@435 2229 // to be able to call mixed mode
duke@435 2230 if (x->code() == Bytecodes::_invokespecial || optimized) {
duke@435 2231 __ call_opt_virtual(x->target(), receiver, result_register,
duke@435 2232 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 2233 arg_list, info);
duke@435 2234 } else if (x->vtable_index() < 0) {
duke@435 2235 __ call_icvirtual(x->target(), receiver, result_register,
duke@435 2236 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 2237 arg_list, info);
duke@435 2238 } else {
duke@435 2239 int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
duke@435 2240 int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
duke@435 2241 __ call_virtual(x->target(), receiver, result_register, vtable_offset, arg_list, info);
duke@435 2242 }
duke@435 2243 break;
duke@435 2244 default:
duke@435 2245 ShouldNotReachHere();
duke@435 2246 break;
duke@435 2247 }
duke@435 2248
duke@435 2249 if (x->type()->is_float() || x->type()->is_double()) {
duke@435 2250 // Force rounding of results from non-strictfp when in strictfp
duke@435 2251 // scope (or when we don't know the strictness of the callee, to
duke@435 2252 // be safe.)
duke@435 2253 if (method()->is_strict()) {
duke@435 2254 if (!x->target_is_loaded() || !x->target_is_strictfp()) {
duke@435 2255 result_register = round_item(result_register);
duke@435 2256 }
duke@435 2257 }
duke@435 2258 }
duke@435 2259
duke@435 2260 if (result_register->is_valid()) {
duke@435 2261 LIR_Opr result = rlock_result(x);
duke@435 2262 __ move(result_register, result);
duke@435 2263 }
duke@435 2264 }
duke@435 2265
duke@435 2266
duke@435 2267 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
duke@435 2268 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 2269 LIRItem value (x->argument_at(0), this);
duke@435 2270 LIR_Opr reg = rlock_result(x);
duke@435 2271 value.load_item();
duke@435 2272 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
duke@435 2273 __ move(tmp, reg);
duke@435 2274 }
duke@435 2275
duke@435 2276
duke@435 2277
duke@435 2278 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
duke@435 2279 void LIRGenerator::do_IfOp(IfOp* x) {
duke@435 2280 #ifdef ASSERT
duke@435 2281 {
duke@435 2282 ValueTag xtag = x->x()->type()->tag();
duke@435 2283 ValueTag ttag = x->tval()->type()->tag();
duke@435 2284 assert(xtag == intTag || xtag == objectTag, "cannot handle others");
duke@435 2285 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
duke@435 2286 assert(ttag == x->fval()->type()->tag(), "cannot handle others");
duke@435 2287 }
duke@435 2288 #endif
duke@435 2289
duke@435 2290 LIRItem left(x->x(), this);
duke@435 2291 LIRItem right(x->y(), this);
duke@435 2292 left.load_item();
duke@435 2293 if (can_inline_as_constant(right.value())) {
duke@435 2294 right.dont_load_item();
duke@435 2295 } else {
duke@435 2296 right.load_item();
duke@435 2297 }
duke@435 2298
duke@435 2299 LIRItem t_val(x->tval(), this);
duke@435 2300 LIRItem f_val(x->fval(), this);
duke@435 2301 t_val.dont_load_item();
duke@435 2302 f_val.dont_load_item();
duke@435 2303 LIR_Opr reg = rlock_result(x);
duke@435 2304
duke@435 2305 __ cmp(lir_cond(x->cond()), left.result(), right.result());
duke@435 2306 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
duke@435 2307 }
duke@435 2308
duke@435 2309
duke@435 2310 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
duke@435 2311 switch (x->id()) {
duke@435 2312 case vmIntrinsics::_intBitsToFloat :
duke@435 2313 case vmIntrinsics::_doubleToRawLongBits :
duke@435 2314 case vmIntrinsics::_longBitsToDouble :
duke@435 2315 case vmIntrinsics::_floatToRawIntBits : {
duke@435 2316 do_FPIntrinsics(x);
duke@435 2317 break;
duke@435 2318 }
duke@435 2319
duke@435 2320 case vmIntrinsics::_currentTimeMillis: {
duke@435 2321 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 2322 LIR_Opr reg = result_register_for(x->type());
duke@435 2323 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
duke@435 2324 reg, new LIR_OprList());
duke@435 2325 LIR_Opr result = rlock_result(x);
duke@435 2326 __ move(reg, result);
duke@435 2327 break;
duke@435 2328 }
duke@435 2329
duke@435 2330 case vmIntrinsics::_nanoTime: {
duke@435 2331 assert(x->number_of_arguments() == 0, "wrong type");
duke@435 2332 LIR_Opr reg = result_register_for(x->type());
duke@435 2333 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
duke@435 2334 reg, new LIR_OprList());
duke@435 2335 LIR_Opr result = rlock_result(x);
duke@435 2336 __ move(reg, result);
duke@435 2337 break;
duke@435 2338 }
duke@435 2339
duke@435 2340 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
duke@435 2341 case vmIntrinsics::_getClass: do_getClass(x); break;
duke@435 2342 case vmIntrinsics::_currentThread: do_currentThread(x); break;
duke@435 2343
duke@435 2344 case vmIntrinsics::_dlog: // fall through
duke@435 2345 case vmIntrinsics::_dlog10: // fall through
duke@435 2346 case vmIntrinsics::_dabs: // fall through
duke@435 2347 case vmIntrinsics::_dsqrt: // fall through
duke@435 2348 case vmIntrinsics::_dtan: // fall through
duke@435 2349 case vmIntrinsics::_dsin : // fall through
duke@435 2350 case vmIntrinsics::_dcos : do_MathIntrinsic(x); break;
duke@435 2351 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
duke@435 2352
duke@435 2353 // java.nio.Buffer.checkIndex
duke@435 2354 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break;
duke@435 2355
duke@435 2356 case vmIntrinsics::_compareAndSwapObject:
duke@435 2357 do_CompareAndSwap(x, objectType);
duke@435 2358 break;
duke@435 2359 case vmIntrinsics::_compareAndSwapInt:
duke@435 2360 do_CompareAndSwap(x, intType);
duke@435 2361 break;
duke@435 2362 case vmIntrinsics::_compareAndSwapLong:
duke@435 2363 do_CompareAndSwap(x, longType);
duke@435 2364 break;
duke@435 2365
duke@435 2366 // sun.misc.AtomicLongCSImpl.attemptUpdate
duke@435 2367 case vmIntrinsics::_attemptUpdate:
duke@435 2368 do_AttemptUpdate(x);
duke@435 2369 break;
duke@435 2370
duke@435 2371 default: ShouldNotReachHere(); break;
duke@435 2372 }
duke@435 2373 }
duke@435 2374
duke@435 2375
duke@435 2376 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
duke@435 2377 // Need recv in a temporary register so it interferes with the other temporaries
duke@435 2378 LIR_Opr recv = LIR_OprFact::illegalOpr;
duke@435 2379 LIR_Opr mdo = new_register(T_OBJECT);
duke@435 2380 LIR_Opr tmp = new_register(T_INT);
duke@435 2381 if (x->recv() != NULL) {
duke@435 2382 LIRItem value(x->recv(), this);
duke@435 2383 value.load_item();
duke@435 2384 recv = new_register(T_OBJECT);
duke@435 2385 __ move(value.result(), recv);
duke@435 2386 }
duke@435 2387 __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
duke@435 2388 }
duke@435 2389
duke@435 2390
duke@435 2391 void LIRGenerator::do_ProfileCounter(ProfileCounter* x) {
duke@435 2392 LIRItem mdo(x->mdo(), this);
duke@435 2393 mdo.load_item();
duke@435 2394
duke@435 2395 increment_counter(new LIR_Address(mdo.result(), x->offset(), T_INT), x->increment());
duke@435 2396 }
duke@435 2397
duke@435 2398
duke@435 2399 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2400 LIRItemList args(1);
duke@435 2401 LIRItem value(arg1, this);
duke@435 2402 args.append(&value);
duke@435 2403 BasicTypeList signature;
duke@435 2404 signature.append(as_BasicType(arg1->type()));
duke@435 2405
duke@435 2406 return call_runtime(&signature, &args, entry, result_type, info);
duke@435 2407 }
duke@435 2408
duke@435 2409
duke@435 2410 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2411 LIRItemList args(2);
duke@435 2412 LIRItem value1(arg1, this);
duke@435 2413 LIRItem value2(arg2, this);
duke@435 2414 args.append(&value1);
duke@435 2415 args.append(&value2);
duke@435 2416 BasicTypeList signature;
duke@435 2417 signature.append(as_BasicType(arg1->type()));
duke@435 2418 signature.append(as_BasicType(arg2->type()));
duke@435 2419
duke@435 2420 return call_runtime(&signature, &args, entry, result_type, info);
duke@435 2421 }
duke@435 2422
duke@435 2423
duke@435 2424 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
duke@435 2425 address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2426 // get a result register
duke@435 2427 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
duke@435 2428 LIR_Opr result = LIR_OprFact::illegalOpr;
duke@435 2429 if (result_type->tag() != voidTag) {
duke@435 2430 result = new_register(result_type);
duke@435 2431 phys_reg = result_register_for(result_type);
duke@435 2432 }
duke@435 2433
duke@435 2434 // move the arguments into the correct location
duke@435 2435 CallingConvention* cc = frame_map()->c_calling_convention(signature);
duke@435 2436 assert(cc->length() == args->length(), "argument mismatch");
duke@435 2437 for (int i = 0; i < args->length(); i++) {
duke@435 2438 LIR_Opr arg = args->at(i);
duke@435 2439 LIR_Opr loc = cc->at(i);
duke@435 2440 if (loc->is_register()) {
duke@435 2441 __ move(arg, loc);
duke@435 2442 } else {
duke@435 2443 LIR_Address* addr = loc->as_address_ptr();
duke@435 2444 // if (!can_store_as_constant(arg)) {
duke@435 2445 // LIR_Opr tmp = new_register(arg->type());
duke@435 2446 // __ move(arg, tmp);
duke@435 2447 // arg = tmp;
duke@435 2448 // }
duke@435 2449 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 2450 __ unaligned_move(arg, addr);
duke@435 2451 } else {
duke@435 2452 __ move(arg, addr);
duke@435 2453 }
duke@435 2454 }
duke@435 2455 }
duke@435 2456
duke@435 2457 if (info) {
duke@435 2458 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
duke@435 2459 } else {
duke@435 2460 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
duke@435 2461 }
duke@435 2462 if (result->is_valid()) {
duke@435 2463 __ move(phys_reg, result);
duke@435 2464 }
duke@435 2465 return result;
duke@435 2466 }
duke@435 2467
duke@435 2468
duke@435 2469 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
duke@435 2470 address entry, ValueType* result_type, CodeEmitInfo* info) {
duke@435 2471 // get a result register
duke@435 2472 LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
duke@435 2473 LIR_Opr result = LIR_OprFact::illegalOpr;
duke@435 2474 if (result_type->tag() != voidTag) {
duke@435 2475 result = new_register(result_type);
duke@435 2476 phys_reg = result_register_for(result_type);
duke@435 2477 }
duke@435 2478
duke@435 2479 // move the arguments into the correct location
duke@435 2480 CallingConvention* cc = frame_map()->c_calling_convention(signature);
duke@435 2481
duke@435 2482 assert(cc->length() == args->length(), "argument mismatch");
duke@435 2483 for (int i = 0; i < args->length(); i++) {
duke@435 2484 LIRItem* arg = args->at(i);
duke@435 2485 LIR_Opr loc = cc->at(i);
duke@435 2486 if (loc->is_register()) {
duke@435 2487 arg->load_item_force(loc);
duke@435 2488 } else {
duke@435 2489 LIR_Address* addr = loc->as_address_ptr();
duke@435 2490 arg->load_for_store(addr->type());
duke@435 2491 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
duke@435 2492 __ unaligned_move(arg->result(), addr);
duke@435 2493 } else {
duke@435 2494 __ move(arg->result(), addr);
duke@435 2495 }
duke@435 2496 }
duke@435 2497 }
duke@435 2498
duke@435 2499 if (info) {
duke@435 2500 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
duke@435 2501 } else {
duke@435 2502 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
duke@435 2503 }
duke@435 2504 if (result->is_valid()) {
duke@435 2505 __ move(phys_reg, result);
duke@435 2506 }
duke@435 2507 return result;
duke@435 2508 }
duke@435 2509
duke@435 2510
duke@435 2511
duke@435 2512 void LIRGenerator::increment_invocation_counter(CodeEmitInfo* info, bool backedge) {
duke@435 2513 #ifdef TIERED
duke@435 2514 if (_compilation->env()->comp_level() == CompLevel_fast_compile &&
duke@435 2515 (method()->code_size() >= Tier1BytecodeLimit || backedge)) {
duke@435 2516 int limit = InvocationCounter::Tier1InvocationLimit;
duke@435 2517 int offset = in_bytes(methodOopDesc::invocation_counter_offset() +
duke@435 2518 InvocationCounter::counter_offset());
duke@435 2519 if (backedge) {
duke@435 2520 limit = InvocationCounter::Tier1BackEdgeLimit;
duke@435 2521 offset = in_bytes(methodOopDesc::backedge_counter_offset() +
duke@435 2522 InvocationCounter::counter_offset());
duke@435 2523 }
duke@435 2524
duke@435 2525 LIR_Opr meth = new_register(T_OBJECT);
duke@435 2526 __ oop2reg(method()->encoding(), meth);
duke@435 2527 LIR_Opr result = increment_and_return_counter(meth, offset, InvocationCounter::count_increment);
duke@435 2528 __ cmp(lir_cond_aboveEqual, result, LIR_OprFact::intConst(limit));
duke@435 2529 CodeStub* overflow = new CounterOverflowStub(info, info->bci());
duke@435 2530 __ branch(lir_cond_aboveEqual, T_INT, overflow);
duke@435 2531 __ branch_destination(overflow->continuation());
duke@435 2532 }
duke@435 2533 #endif
duke@435 2534 }

mercurial