src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Fri, 16 Mar 2012 16:14:04 +0100

author
nloodin
date
Fri, 16 Mar 2012 16:14:04 +0100
changeset 3665
8a729074feae
parent 3540
ab4422d0ed59
child 3767
9d679effd28c
permissions
-rw-r--r--

7154517: Build error in hotspot-gc without precompiled headers
Reviewed-by: jcoomes, brutisso

duke@435 1 /*
never@3499 2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/symbolTable.hpp"
stefank@2314 27 #include "classfile/systemDictionary.hpp"
stefank@2314 28 #include "code/codeCache.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
stefank@2314 30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
stefank@2314 31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
stefank@2314 32 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
stefank@2314 33 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
stefank@2314 34 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
stefank@2314 35 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
stefank@2314 36 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
stefank@2314 37 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
stefank@2314 38 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
stefank@2314 39 #include "gc_implementation/parallelScavenge/psPermGen.hpp"
stefank@2314 40 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
stefank@2314 41 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
stefank@2314 42 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
stefank@2314 43 #include "gc_implementation/shared/isGCActiveMark.hpp"
stefank@2314 44 #include "gc_interface/gcCause.hpp"
stefank@2314 45 #include "memory/gcLocker.inline.hpp"
stefank@2314 46 #include "memory/referencePolicy.hpp"
stefank@2314 47 #include "memory/referenceProcessor.hpp"
stefank@2314 48 #include "oops/methodDataOop.hpp"
stefank@2314 49 #include "oops/oop.inline.hpp"
stefank@2314 50 #include "oops/oop.pcgc.inline.hpp"
stefank@2314 51 #include "runtime/fprofiler.hpp"
stefank@2314 52 #include "runtime/safepoint.hpp"
stefank@2314 53 #include "runtime/vmThread.hpp"
stefank@2314 54 #include "services/management.hpp"
stefank@2314 55 #include "services/memoryService.hpp"
stefank@2314 56 #include "utilities/events.hpp"
stefank@2314 57 #include "utilities/stack.inline.hpp"
duke@435 58
duke@435 59 #include <math.h>
duke@435 60
duke@435 61 // All sizes are in HeapWords.
jcoomes@810 62 const size_t ParallelCompactData::Log2RegionSize = 9; // 512 words
jcoomes@810 63 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize;
jcoomes@810 64 const size_t ParallelCompactData::RegionSizeBytes =
jcoomes@810 65 RegionSize << LogHeapWordSize;
jcoomes@810 66 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
jcoomes@810 67 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
jcoomes@810 68 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask;
duke@435 69
jcoomes@810 70 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 71 ParallelCompactData::RegionData::dc_shift = 27;
jcoomes@810 72
jcoomes@810 73 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 74 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
jcoomes@810 75
jcoomes@810 76 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 77 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
jcoomes@810 78
jcoomes@810 79 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 80 ParallelCompactData::RegionData::los_mask = ~dc_mask;
jcoomes@810 81
jcoomes@810 82 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 83 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
jcoomes@810 84
jcoomes@810 85 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 86 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
duke@435 87
duke@435 88 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
duke@435 89 bool PSParallelCompact::_print_phases = false;
duke@435 90
duke@435 91 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
duke@435 92 klassOop PSParallelCompact::_updated_int_array_klass_obj = NULL;
duke@435 93
duke@435 94 double PSParallelCompact::_dwl_mean;
duke@435 95 double PSParallelCompact::_dwl_std_dev;
duke@435 96 double PSParallelCompact::_dwl_first_term;
duke@435 97 double PSParallelCompact::_dwl_adjustment;
duke@435 98 #ifdef ASSERT
duke@435 99 bool PSParallelCompact::_dwl_initialized = false;
duke@435 100 #endif // #ifdef ASSERT
duke@435 101
duke@435 102 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 103 GrowableArray<void*>* PSParallelCompact::_root_refs_stack = NULL;
duke@435 104 GrowableArray<oop> * PSParallelCompact::_live_oops = NULL;
duke@435 105 GrowableArray<oop> * PSParallelCompact::_live_oops_moved_to = NULL;
duke@435 106 GrowableArray<size_t>* PSParallelCompact::_live_oops_size = NULL;
duke@435 107 size_t PSParallelCompact::_live_oops_index = 0;
duke@435 108 size_t PSParallelCompact::_live_oops_index_at_perm = 0;
coleenp@548 109 GrowableArray<void*>* PSParallelCompact::_other_refs_stack = NULL;
coleenp@548 110 GrowableArray<void*>* PSParallelCompact::_adjusted_pointers = NULL;
duke@435 111 bool PSParallelCompact::_pointer_tracking = false;
duke@435 112 bool PSParallelCompact::_root_tracking = true;
duke@435 113
duke@435 114 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
duke@435 115 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
duke@435 116 GrowableArray<size_t> * PSParallelCompact::_cur_gc_live_oops_size = NULL;
duke@435 117 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
duke@435 118 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
duke@435 119 GrowableArray<size_t> * PSParallelCompact::_last_gc_live_oops_size = NULL;
duke@435 120 #endif
duke@435 121
jcoomes@917 122 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
jcoomes@917 123 HeapWord* destination)
jcoomes@917 124 {
jcoomes@917 125 assert(src_region_idx != 0, "invalid src_region_idx");
jcoomes@917 126 assert(partial_obj_size != 0, "invalid partial_obj_size argument");
jcoomes@917 127 assert(destination != NULL, "invalid destination argument");
jcoomes@917 128
jcoomes@917 129 _src_region_idx = src_region_idx;
jcoomes@917 130 _partial_obj_size = partial_obj_size;
jcoomes@917 131 _destination = destination;
jcoomes@917 132
jcoomes@917 133 // These fields may not be updated below, so make sure they're clear.
jcoomes@917 134 assert(_dest_region_addr == NULL, "should have been cleared");
jcoomes@917 135 assert(_first_src_addr == NULL, "should have been cleared");
jcoomes@917 136
jcoomes@917 137 // Determine the number of destination regions for the partial object.
jcoomes@917 138 HeapWord* const last_word = destination + partial_obj_size - 1;
jcoomes@917 139 const ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@917 140 HeapWord* const beg_region_addr = sd.region_align_down(destination);
jcoomes@917 141 HeapWord* const end_region_addr = sd.region_align_down(last_word);
jcoomes@917 142
jcoomes@917 143 if (beg_region_addr == end_region_addr) {
jcoomes@917 144 // One destination region.
jcoomes@917 145 _destination_count = 1;
jcoomes@917 146 if (end_region_addr == destination) {
jcoomes@917 147 // The destination falls on a region boundary, thus the first word of the
jcoomes@917 148 // partial object will be the first word copied to the destination region.
jcoomes@917 149 _dest_region_addr = end_region_addr;
jcoomes@917 150 _first_src_addr = sd.region_to_addr(src_region_idx);
jcoomes@917 151 }
jcoomes@917 152 } else {
jcoomes@917 153 // Two destination regions. When copied, the partial object will cross a
jcoomes@917 154 // destination region boundary, so a word somewhere within the partial
jcoomes@917 155 // object will be the first word copied to the second destination region.
jcoomes@917 156 _destination_count = 2;
jcoomes@917 157 _dest_region_addr = end_region_addr;
jcoomes@917 158 const size_t ofs = pointer_delta(end_region_addr, destination);
jcoomes@917 159 assert(ofs < _partial_obj_size, "sanity");
jcoomes@917 160 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
jcoomes@917 161 }
jcoomes@917 162 }
jcoomes@917 163
jcoomes@917 164 void SplitInfo::clear()
jcoomes@917 165 {
jcoomes@917 166 _src_region_idx = 0;
jcoomes@917 167 _partial_obj_size = 0;
jcoomes@917 168 _destination = NULL;
jcoomes@917 169 _destination_count = 0;
jcoomes@917 170 _dest_region_addr = NULL;
jcoomes@917 171 _first_src_addr = NULL;
jcoomes@917 172 assert(!is_valid(), "sanity");
jcoomes@917 173 }
jcoomes@917 174
jcoomes@917 175 #ifdef ASSERT
jcoomes@917 176 void SplitInfo::verify_clear()
jcoomes@917 177 {
jcoomes@917 178 assert(_src_region_idx == 0, "not clear");
jcoomes@917 179 assert(_partial_obj_size == 0, "not clear");
jcoomes@917 180 assert(_destination == NULL, "not clear");
jcoomes@917 181 assert(_destination_count == 0, "not clear");
jcoomes@917 182 assert(_dest_region_addr == NULL, "not clear");
jcoomes@917 183 assert(_first_src_addr == NULL, "not clear");
jcoomes@917 184 }
jcoomes@917 185 #endif // #ifdef ASSERT
jcoomes@917 186
jcoomes@917 187
duke@435 188 #ifndef PRODUCT
duke@435 189 const char* PSParallelCompact::space_names[] = {
duke@435 190 "perm", "old ", "eden", "from", "to "
duke@435 191 };
duke@435 192
jcoomes@810 193 void PSParallelCompact::print_region_ranges()
duke@435 194 {
duke@435 195 tty->print_cr("space bottom top end new_top");
duke@435 196 tty->print_cr("------ ---------- ---------- ---------- ----------");
duke@435 197
duke@435 198 for (unsigned int id = 0; id < last_space_id; ++id) {
duke@435 199 const MutableSpace* space = _space_info[id].space();
duke@435 200 tty->print_cr("%u %s "
jcoomes@699 201 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
jcoomes@699 202 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
duke@435 203 id, space_names[id],
jcoomes@810 204 summary_data().addr_to_region_idx(space->bottom()),
jcoomes@810 205 summary_data().addr_to_region_idx(space->top()),
jcoomes@810 206 summary_data().addr_to_region_idx(space->end()),
jcoomes@810 207 summary_data().addr_to_region_idx(_space_info[id].new_top()));
duke@435 208 }
duke@435 209 }
duke@435 210
duke@435 211 void
jcoomes@810 212 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
duke@435 213 {
jcoomes@810 214 #define REGION_IDX_FORMAT SIZE_FORMAT_W(7)
jcoomes@810 215 #define REGION_DATA_FORMAT SIZE_FORMAT_W(5)
duke@435 216
duke@435 217 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 218 size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
jcoomes@810 219 tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 220 REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 221 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
jcoomes@810 222 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
duke@435 223 i, c->data_location(), dci, c->destination(),
duke@435 224 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 225 c->data_size(), c->source_region(), c->destination_count());
jcoomes@810 226
jcoomes@810 227 #undef REGION_IDX_FORMAT
jcoomes@810 228 #undef REGION_DATA_FORMAT
duke@435 229 }
duke@435 230
duke@435 231 void
duke@435 232 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 233 HeapWord* const beg_addr,
duke@435 234 HeapWord* const end_addr)
duke@435 235 {
duke@435 236 size_t total_words = 0;
jcoomes@810 237 size_t i = summary_data.addr_to_region_idx(beg_addr);
jcoomes@810 238 const size_t last = summary_data.addr_to_region_idx(end_addr);
duke@435 239 HeapWord* pdest = 0;
duke@435 240
duke@435 241 while (i <= last) {
jcoomes@810 242 ParallelCompactData::RegionData* c = summary_data.region(i);
duke@435 243 if (c->data_size() != 0 || c->destination() != pdest) {
jcoomes@810 244 print_generic_summary_region(i, c);
duke@435 245 total_words += c->data_size();
duke@435 246 pdest = c->destination();
duke@435 247 }
duke@435 248 ++i;
duke@435 249 }
duke@435 250
duke@435 251 tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
duke@435 252 }
duke@435 253
duke@435 254 void
duke@435 255 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 256 SpaceInfo* space_info)
duke@435 257 {
duke@435 258 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
duke@435 259 const MutableSpace* space = space_info[id].space();
duke@435 260 print_generic_summary_data(summary_data, space->bottom(),
duke@435 261 MAX2(space->top(), space_info[id].new_top()));
duke@435 262 }
duke@435 263 }
duke@435 264
duke@435 265 void
jcoomes@810 266 print_initial_summary_region(size_t i,
jcoomes@810 267 const ParallelCompactData::RegionData* c,
jcoomes@810 268 bool newline = true)
duke@435 269 {
jcoomes@699 270 tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
jcoomes@699 271 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
jcoomes@699 272 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
duke@435 273 i, c->destination(),
duke@435 274 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 275 c->data_size(), c->source_region(), c->destination_count());
duke@435 276 if (newline) tty->cr();
duke@435 277 }
duke@435 278
duke@435 279 void
duke@435 280 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 281 const MutableSpace* space) {
duke@435 282 if (space->top() == space->bottom()) {
duke@435 283 return;
duke@435 284 }
duke@435 285
jcoomes@810 286 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 287 typedef ParallelCompactData::RegionData RegionData;
jcoomes@810 288 HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
jcoomes@810 289 const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
jcoomes@810 290 const RegionData* c = summary_data.region(end_region - 1);
duke@435 291 HeapWord* end_addr = c->destination() + c->data_size();
duke@435 292 const size_t live_in_space = pointer_delta(end_addr, space->bottom());
duke@435 293
jcoomes@810 294 // Print (and count) the full regions at the beginning of the space.
jcoomes@810 295 size_t full_region_count = 0;
jcoomes@810 296 size_t i = summary_data.addr_to_region_idx(space->bottom());
jcoomes@810 297 while (i < end_region && summary_data.region(i)->data_size() == region_size) {
jcoomes@810 298 print_initial_summary_region(i, summary_data.region(i));
jcoomes@810 299 ++full_region_count;
duke@435 300 ++i;
duke@435 301 }
duke@435 302
jcoomes@810 303 size_t live_to_right = live_in_space - full_region_count * region_size;
duke@435 304
duke@435 305 double max_reclaimed_ratio = 0.0;
jcoomes@810 306 size_t max_reclaimed_ratio_region = 0;
duke@435 307 size_t max_dead_to_right = 0;
duke@435 308 size_t max_live_to_right = 0;
duke@435 309
jcoomes@810 310 // Print the 'reclaimed ratio' for regions while there is something live in
jcoomes@810 311 // the region or to the right of it. The remaining regions are empty (and
duke@435 312 // uninteresting), and computing the ratio will result in division by 0.
jcoomes@810 313 while (i < end_region && live_to_right > 0) {
jcoomes@810 314 c = summary_data.region(i);
jcoomes@810 315 HeapWord* const region_addr = summary_data.region_to_addr(i);
jcoomes@810 316 const size_t used_to_right = pointer_delta(space->top(), region_addr);
duke@435 317 const size_t dead_to_right = used_to_right - live_to_right;
duke@435 318 const double reclaimed_ratio = double(dead_to_right) / live_to_right;
duke@435 319
duke@435 320 if (reclaimed_ratio > max_reclaimed_ratio) {
duke@435 321 max_reclaimed_ratio = reclaimed_ratio;
jcoomes@810 322 max_reclaimed_ratio_region = i;
duke@435 323 max_dead_to_right = dead_to_right;
duke@435 324 max_live_to_right = live_to_right;
duke@435 325 }
duke@435 326
jcoomes@810 327 print_initial_summary_region(i, c, false);
jcoomes@699 328 tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
duke@435 329 reclaimed_ratio, dead_to_right, live_to_right);
duke@435 330
duke@435 331 live_to_right -= c->data_size();
duke@435 332 ++i;
duke@435 333 }
duke@435 334
jcoomes@810 335 // Any remaining regions are empty. Print one more if there is one.
jcoomes@810 336 if (i < end_region) {
jcoomes@810 337 print_initial_summary_region(i, summary_data.region(i));
duke@435 338 }
duke@435 339
jcoomes@699 340 tty->print_cr("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
jcoomes@699 341 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
jcoomes@810 342 max_reclaimed_ratio_region, max_dead_to_right,
duke@435 343 max_live_to_right, max_reclaimed_ratio);
duke@435 344 }
duke@435 345
duke@435 346 void
duke@435 347 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 348 SpaceInfo* space_info) {
duke@435 349 unsigned int id = PSParallelCompact::perm_space_id;
duke@435 350 const MutableSpace* space;
duke@435 351 do {
duke@435 352 space = space_info[id].space();
duke@435 353 print_initial_summary_data(summary_data, space);
duke@435 354 } while (++id < PSParallelCompact::eden_space_id);
duke@435 355
duke@435 356 do {
duke@435 357 space = space_info[id].space();
duke@435 358 print_generic_summary_data(summary_data, space->bottom(), space->top());
duke@435 359 } while (++id < PSParallelCompact::last_space_id);
duke@435 360 }
duke@435 361 #endif // #ifndef PRODUCT
duke@435 362
duke@435 363 #ifdef ASSERT
duke@435 364 size_t add_obj_count;
duke@435 365 size_t add_obj_size;
duke@435 366 size_t mark_bitmap_count;
duke@435 367 size_t mark_bitmap_size;
duke@435 368 #endif // #ifdef ASSERT
duke@435 369
duke@435 370 ParallelCompactData::ParallelCompactData()
duke@435 371 {
duke@435 372 _region_start = 0;
duke@435 373
jcoomes@810 374 _region_vspace = 0;
jcoomes@810 375 _region_data = 0;
jcoomes@810 376 _region_count = 0;
duke@435 377 }
duke@435 378
duke@435 379 bool ParallelCompactData::initialize(MemRegion covered_region)
duke@435 380 {
duke@435 381 _region_start = covered_region.start();
duke@435 382 const size_t region_size = covered_region.word_size();
duke@435 383 DEBUG_ONLY(_region_end = _region_start + region_size;)
duke@435 384
jcoomes@810 385 assert(region_align_down(_region_start) == _region_start,
duke@435 386 "region start not aligned");
jcoomes@810 387 assert((region_size & RegionSizeOffsetMask) == 0,
jcoomes@810 388 "region size not a multiple of RegionSize");
jcoomes@810 389
jcoomes@810 390 bool result = initialize_region_data(region_size);
duke@435 391
duke@435 392 return result;
duke@435 393 }
duke@435 394
duke@435 395 PSVirtualSpace*
duke@435 396 ParallelCompactData::create_vspace(size_t count, size_t element_size)
duke@435 397 {
duke@435 398 const size_t raw_bytes = count * element_size;
duke@435 399 const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
duke@435 400 const size_t granularity = os::vm_allocation_granularity();
duke@435 401 const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
duke@435 402
duke@435 403 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
duke@435 404 MAX2(page_sz, granularity);
jcoomes@514 405 ReservedSpace rs(bytes, rs_align, rs_align > 0);
duke@435 406 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
duke@435 407 rs.size());
duke@435 408 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
duke@435 409 if (vspace != 0) {
duke@435 410 if (vspace->expand_by(bytes)) {
duke@435 411 return vspace;
duke@435 412 }
duke@435 413 delete vspace;
coleenp@672 414 // Release memory reserved in the space.
coleenp@672 415 rs.release();
duke@435 416 }
duke@435 417
duke@435 418 return 0;
duke@435 419 }
duke@435 420
jcoomes@810 421 bool ParallelCompactData::initialize_region_data(size_t region_size)
duke@435 422 {
jcoomes@810 423 const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
jcoomes@810 424 _region_vspace = create_vspace(count, sizeof(RegionData));
jcoomes@810 425 if (_region_vspace != 0) {
jcoomes@810 426 _region_data = (RegionData*)_region_vspace->reserved_low_addr();
jcoomes@810 427 _region_count = count;
duke@435 428 return true;
duke@435 429 }
duke@435 430 return false;
duke@435 431 }
duke@435 432
duke@435 433 void ParallelCompactData::clear()
duke@435 434 {
jcoomes@810 435 memset(_region_data, 0, _region_vspace->committed_size());
duke@435 436 }
duke@435 437
jcoomes@810 438 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
jcoomes@810 439 assert(beg_region <= _region_count, "beg_region out of range");
jcoomes@810 440 assert(end_region <= _region_count, "end_region out of range");
jcoomes@810 441
jcoomes@810 442 const size_t region_cnt = end_region - beg_region;
jcoomes@810 443 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
duke@435 444 }
duke@435 445
jcoomes@810 446 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
duke@435 447 {
jcoomes@810 448 const RegionData* cur_cp = region(region_idx);
jcoomes@810 449 const RegionData* const end_cp = region(region_count() - 1);
jcoomes@810 450
jcoomes@810 451 HeapWord* result = region_to_addr(region_idx);
duke@435 452 if (cur_cp < end_cp) {
duke@435 453 do {
duke@435 454 result += cur_cp->partial_obj_size();
jcoomes@810 455 } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
duke@435 456 }
duke@435 457 return result;
duke@435 458 }
duke@435 459
duke@435 460 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
duke@435 461 {
duke@435 462 const size_t obj_ofs = pointer_delta(addr, _region_start);
jcoomes@810 463 const size_t beg_region = obj_ofs >> Log2RegionSize;
jcoomes@810 464 const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
duke@435 465
duke@435 466 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
duke@435 467 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
duke@435 468
jcoomes@810 469 if (beg_region == end_region) {
jcoomes@810 470 // All in one region.
jcoomes@810 471 _region_data[beg_region].add_live_obj(len);
duke@435 472 return;
duke@435 473 }
duke@435 474
jcoomes@810 475 // First region.
jcoomes@810 476 const size_t beg_ofs = region_offset(addr);
jcoomes@810 477 _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
duke@435 478
duke@435 479 klassOop klass = ((oop)addr)->klass();
jcoomes@810 480 // Middle regions--completely spanned by this object.
jcoomes@810 481 for (size_t region = beg_region + 1; region < end_region; ++region) {
jcoomes@810 482 _region_data[region].set_partial_obj_size(RegionSize);
jcoomes@810 483 _region_data[region].set_partial_obj_addr(addr);
duke@435 484 }
duke@435 485
jcoomes@810 486 // Last region.
jcoomes@810 487 const size_t end_ofs = region_offset(addr + len - 1);
jcoomes@810 488 _region_data[end_region].set_partial_obj_size(end_ofs + 1);
jcoomes@810 489 _region_data[end_region].set_partial_obj_addr(addr);
duke@435 490 }
duke@435 491
duke@435 492 void
duke@435 493 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
duke@435 494 {
jcoomes@810 495 assert(region_offset(beg) == 0, "not RegionSize aligned");
jcoomes@810 496 assert(region_offset(end) == 0, "not RegionSize aligned");
jcoomes@810 497
jcoomes@810 498 size_t cur_region = addr_to_region_idx(beg);
jcoomes@810 499 const size_t end_region = addr_to_region_idx(end);
duke@435 500 HeapWord* addr = beg;
jcoomes@810 501 while (cur_region < end_region) {
jcoomes@810 502 _region_data[cur_region].set_destination(addr);
jcoomes@810 503 _region_data[cur_region].set_destination_count(0);
jcoomes@810 504 _region_data[cur_region].set_source_region(cur_region);
jcoomes@810 505 _region_data[cur_region].set_data_location(addr);
jcoomes@810 506
jcoomes@810 507 // Update live_obj_size so the region appears completely full.
jcoomes@810 508 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
jcoomes@810 509 _region_data[cur_region].set_live_obj_size(live_size);
jcoomes@810 510
jcoomes@810 511 ++cur_region;
jcoomes@810 512 addr += RegionSize;
duke@435 513 }
duke@435 514 }
duke@435 515
jcoomes@917 516 // Find the point at which a space can be split and, if necessary, record the
jcoomes@917 517 // split point.
jcoomes@917 518 //
jcoomes@917 519 // If the current src region (which overflowed the destination space) doesn't
jcoomes@917 520 // have a partial object, the split point is at the beginning of the current src
jcoomes@917 521 // region (an "easy" split, no extra bookkeeping required).
jcoomes@917 522 //
jcoomes@917 523 // If the current src region has a partial object, the split point is in the
jcoomes@917 524 // region where that partial object starts (call it the split_region). If
jcoomes@917 525 // split_region has a partial object, then the split point is just after that
jcoomes@917 526 // partial object (a "hard" split where we have to record the split data and
jcoomes@917 527 // zero the partial_obj_size field). With a "hard" split, we know that the
jcoomes@917 528 // partial_obj ends within split_region because the partial object that caused
jcoomes@917 529 // the overflow starts in split_region. If split_region doesn't have a partial
jcoomes@917 530 // obj, then the split is at the beginning of split_region (another "easy"
jcoomes@917 531 // split).
jcoomes@917 532 HeapWord*
jcoomes@917 533 ParallelCompactData::summarize_split_space(size_t src_region,
jcoomes@917 534 SplitInfo& split_info,
jcoomes@917 535 HeapWord* destination,
jcoomes@917 536 HeapWord* target_end,
jcoomes@917 537 HeapWord** target_next)
jcoomes@917 538 {
jcoomes@917 539 assert(destination <= target_end, "sanity");
jcoomes@917 540 assert(destination + _region_data[src_region].data_size() > target_end,
jcoomes@917 541 "region should not fit into target space");
jcoomes@1131 542 assert(is_region_aligned(target_end), "sanity");
jcoomes@917 543
jcoomes@917 544 size_t split_region = src_region;
jcoomes@917 545 HeapWord* split_destination = destination;
jcoomes@917 546 size_t partial_obj_size = _region_data[src_region].partial_obj_size();
jcoomes@917 547
jcoomes@917 548 if (destination + partial_obj_size > target_end) {
jcoomes@917 549 // The split point is just after the partial object (if any) in the
jcoomes@917 550 // src_region that contains the start of the object that overflowed the
jcoomes@917 551 // destination space.
jcoomes@917 552 //
jcoomes@917 553 // Find the start of the "overflow" object and set split_region to the
jcoomes@917 554 // region containing it.
jcoomes@917 555 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
jcoomes@917 556 split_region = addr_to_region_idx(overflow_obj);
jcoomes@917 557
jcoomes@917 558 // Clear the source_region field of all destination regions whose first word
jcoomes@917 559 // came from data after the split point (a non-null source_region field
jcoomes@917 560 // implies a region must be filled).
jcoomes@917 561 //
jcoomes@917 562 // An alternative to the simple loop below: clear during post_compact(),
jcoomes@917 563 // which uses memcpy instead of individual stores, and is easy to
jcoomes@917 564 // parallelize. (The downside is that it clears the entire RegionData
jcoomes@917 565 // object as opposed to just one field.)
jcoomes@917 566 //
jcoomes@917 567 // post_compact() would have to clear the summary data up to the highest
jcoomes@917 568 // address that was written during the summary phase, which would be
jcoomes@917 569 //
jcoomes@917 570 // max(top, max(new_top, clear_top))
jcoomes@917 571 //
jcoomes@917 572 // where clear_top is a new field in SpaceInfo. Would have to set clear_top
jcoomes@1131 573 // to target_end.
jcoomes@917 574 const RegionData* const sr = region(split_region);
jcoomes@917 575 const size_t beg_idx =
jcoomes@917 576 addr_to_region_idx(region_align_up(sr->destination() +
jcoomes@917 577 sr->partial_obj_size()));
jcoomes@1131 578 const size_t end_idx = addr_to_region_idx(target_end);
jcoomes@917 579
jcoomes@917 580 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 581 gclog_or_tty->print_cr("split: clearing source_region field in ["
jcoomes@917 582 SIZE_FORMAT ", " SIZE_FORMAT ")",
jcoomes@917 583 beg_idx, end_idx);
jcoomes@917 584 }
jcoomes@917 585 for (size_t idx = beg_idx; idx < end_idx; ++idx) {
jcoomes@917 586 _region_data[idx].set_source_region(0);
jcoomes@917 587 }
jcoomes@917 588
jcoomes@917 589 // Set split_destination and partial_obj_size to reflect the split region.
jcoomes@917 590 split_destination = sr->destination();
jcoomes@917 591 partial_obj_size = sr->partial_obj_size();
jcoomes@917 592 }
jcoomes@917 593
jcoomes@917 594 // The split is recorded only if a partial object extends onto the region.
jcoomes@917 595 if (partial_obj_size != 0) {
jcoomes@917 596 _region_data[split_region].set_partial_obj_size(0);
jcoomes@917 597 split_info.record(split_region, partial_obj_size, split_destination);
jcoomes@917 598 }
jcoomes@917 599
jcoomes@917 600 // Setup the continuation addresses.
jcoomes@917 601 *target_next = split_destination + partial_obj_size;
jcoomes@917 602 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
jcoomes@917 603
jcoomes@917 604 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 605 const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
jcoomes@917 606 gclog_or_tty->print_cr("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT
jcoomes@917 607 " pos=" SIZE_FORMAT,
jcoomes@917 608 split_type, source_next, split_region,
jcoomes@917 609 partial_obj_size);
jcoomes@917 610 gclog_or_tty->print_cr("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
jcoomes@917 611 " tn=" PTR_FORMAT,
jcoomes@917 612 split_type, split_destination,
jcoomes@917 613 addr_to_region_idx(split_destination),
jcoomes@917 614 *target_next);
jcoomes@917 615
jcoomes@917 616 if (partial_obj_size != 0) {
jcoomes@917 617 HeapWord* const po_beg = split_info.destination();
jcoomes@917 618 HeapWord* const po_end = po_beg + split_info.partial_obj_size();
jcoomes@917 619 gclog_or_tty->print_cr("%s split: "
jcoomes@917 620 "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
jcoomes@917 621 "po_end=" PTR_FORMAT " " SIZE_FORMAT,
jcoomes@917 622 split_type,
jcoomes@917 623 po_beg, addr_to_region_idx(po_beg),
jcoomes@917 624 po_end, addr_to_region_idx(po_end));
jcoomes@917 625 }
jcoomes@917 626 }
jcoomes@917 627
jcoomes@917 628 return source_next;
jcoomes@917 629 }
jcoomes@917 630
jcoomes@917 631 bool ParallelCompactData::summarize(SplitInfo& split_info,
duke@435 632 HeapWord* source_beg, HeapWord* source_end,
jcoomes@917 633 HeapWord** source_next,
jcoomes@917 634 HeapWord* target_beg, HeapWord* target_end,
jcoomes@917 635 HeapWord** target_next)
jcoomes@917 636 {
duke@435 637 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 638 HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
jcoomes@917 639 tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
jcoomes@917 640 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
jcoomes@917 641 source_beg, source_end, source_next_val,
jcoomes@917 642 target_beg, target_end, *target_next);
duke@435 643 }
duke@435 644
jcoomes@810 645 size_t cur_region = addr_to_region_idx(source_beg);
jcoomes@810 646 const size_t end_region = addr_to_region_idx(region_align_up(source_end));
duke@435 647
duke@435 648 HeapWord *dest_addr = target_beg;
jcoomes@810 649 while (cur_region < end_region) {
jcoomes@917 650 // The destination must be set even if the region has no data.
jcoomes@917 651 _region_data[cur_region].set_destination(dest_addr);
jcoomes@917 652
jcoomes@810 653 size_t words = _region_data[cur_region].data_size();
duke@435 654 if (words > 0) {
jcoomes@917 655 // If cur_region does not fit entirely into the target space, find a point
jcoomes@917 656 // at which the source space can be 'split' so that part is copied to the
jcoomes@917 657 // target space and the rest is copied elsewhere.
jcoomes@917 658 if (dest_addr + words > target_end) {
jcoomes@917 659 assert(source_next != NULL, "source_next is NULL when splitting");
jcoomes@917 660 *source_next = summarize_split_space(cur_region, split_info, dest_addr,
jcoomes@917 661 target_end, target_next);
jcoomes@917 662 return false;
jcoomes@917 663 }
jcoomes@917 664
jcoomes@917 665 // Compute the destination_count for cur_region, and if necessary, update
jcoomes@917 666 // source_region for a destination region. The source_region field is
jcoomes@917 667 // updated if cur_region is the first (left-most) region to be copied to a
jcoomes@917 668 // destination region.
jcoomes@917 669 //
jcoomes@917 670 // The destination_count calculation is a bit subtle. A region that has
jcoomes@917 671 // data that compacts into itself does not count itself as a destination.
jcoomes@917 672 // This maintains the invariant that a zero count means the region is
jcoomes@917 673 // available and can be claimed and then filled.
jcoomes@917 674 uint destination_count = 0;
jcoomes@917 675 if (split_info.is_split(cur_region)) {
jcoomes@917 676 // The current region has been split: the partial object will be copied
jcoomes@917 677 // to one destination space and the remaining data will be copied to
jcoomes@917 678 // another destination space. Adjust the initial destination_count and,
jcoomes@917 679 // if necessary, set the source_region field if the partial object will
jcoomes@917 680 // cross a destination region boundary.
jcoomes@917 681 destination_count = split_info.destination_count();
jcoomes@917 682 if (destination_count == 2) {
jcoomes@917 683 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
jcoomes@917 684 _region_data[dest_idx].set_source_region(cur_region);
jcoomes@917 685 }
jcoomes@917 686 }
jcoomes@917 687
duke@435 688 HeapWord* const last_addr = dest_addr + words - 1;
jcoomes@810 689 const size_t dest_region_1 = addr_to_region_idx(dest_addr);
jcoomes@810 690 const size_t dest_region_2 = addr_to_region_idx(last_addr);
jcoomes@917 691
jcoomes@810 692 // Initially assume that the destination regions will be the same and
duke@435 693 // adjust the value below if necessary. Under this assumption, if
jcoomes@810 694 // cur_region == dest_region_2, then cur_region will be compacted
jcoomes@810 695 // completely into itself.
jcoomes@917 696 destination_count += cur_region == dest_region_2 ? 0 : 1;
jcoomes@810 697 if (dest_region_1 != dest_region_2) {
jcoomes@810 698 // Destination regions differ; adjust destination_count.
duke@435 699 destination_count += 1;
jcoomes@810 700 // Data from cur_region will be copied to the start of dest_region_2.
jcoomes@810 701 _region_data[dest_region_2].set_source_region(cur_region);
jcoomes@810 702 } else if (region_offset(dest_addr) == 0) {
jcoomes@810 703 // Data from cur_region will be copied to the start of the destination
jcoomes@810 704 // region.
jcoomes@810 705 _region_data[dest_region_1].set_source_region(cur_region);
duke@435 706 }
duke@435 707
jcoomes@810 708 _region_data[cur_region].set_destination_count(destination_count);
jcoomes@810 709 _region_data[cur_region].set_data_location(region_to_addr(cur_region));
duke@435 710 dest_addr += words;
duke@435 711 }
duke@435 712
jcoomes@810 713 ++cur_region;
duke@435 714 }
duke@435 715
duke@435 716 *target_next = dest_addr;
duke@435 717 return true;
duke@435 718 }
duke@435 719
duke@435 720 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
duke@435 721 assert(addr != NULL, "Should detect NULL oop earlier");
duke@435 722 assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
duke@435 723 #ifdef ASSERT
duke@435 724 if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
duke@435 725 gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
duke@435 726 }
duke@435 727 #endif
duke@435 728 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
duke@435 729
jcoomes@810 730 // Region covering the object.
jcoomes@810 731 size_t region_index = addr_to_region_idx(addr);
jcoomes@810 732 const RegionData* const region_ptr = region(region_index);
jcoomes@810 733 HeapWord* const region_addr = region_align_down(addr);
jcoomes@810 734
jcoomes@810 735 assert(addr < region_addr + RegionSize, "Region does not cover object");
jcoomes@810 736 assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
jcoomes@810 737
jcoomes@810 738 HeapWord* result = region_ptr->destination();
jcoomes@810 739
jcoomes@810 740 // If all the data in the region is live, then the new location of the object
jcoomes@810 741 // can be calculated from the destination of the region plus the offset of the
jcoomes@810 742 // object in the region.
jcoomes@810 743 if (region_ptr->data_size() == RegionSize) {
jcoomes@810 744 result += pointer_delta(addr, region_addr);
kvn@1926 745 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
duke@435 746 return result;
duke@435 747 }
duke@435 748
duke@435 749 // The new location of the object is
jcoomes@810 750 // region destination +
jcoomes@810 751 // size of the partial object extending onto the region +
jcoomes@810 752 // sizes of the live objects in the Region that are to the left of addr
jcoomes@810 753 const size_t partial_obj_size = region_ptr->partial_obj_size();
jcoomes@810 754 HeapWord* const search_start = region_addr + partial_obj_size;
duke@435 755
duke@435 756 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
duke@435 757 size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
duke@435 758
duke@435 759 result += partial_obj_size + live_to_left;
jcoomes@930 760 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
duke@435 761 return result;
duke@435 762 }
duke@435 763
duke@435 764 klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
duke@435 765 klassOop updated_klass;
duke@435 766 if (PSParallelCompact::should_update_klass(old_klass)) {
duke@435 767 updated_klass = (klassOop) calc_new_pointer(old_klass);
duke@435 768 } else {
duke@435 769 updated_klass = old_klass;
duke@435 770 }
duke@435 771
duke@435 772 return updated_klass;
duke@435 773 }
duke@435 774
duke@435 775 #ifdef ASSERT
duke@435 776 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
duke@435 777 {
duke@435 778 const size_t* const beg = (const size_t*)vspace->committed_low_addr();
duke@435 779 const size_t* const end = (const size_t*)vspace->committed_high_addr();
duke@435 780 for (const size_t* p = beg; p < end; ++p) {
duke@435 781 assert(*p == 0, "not zero");
duke@435 782 }
duke@435 783 }
duke@435 784
duke@435 785 void ParallelCompactData::verify_clear()
duke@435 786 {
jcoomes@810 787 verify_clear(_region_vspace);
duke@435 788 }
duke@435 789 #endif // #ifdef ASSERT
duke@435 790
duke@435 791 #ifdef NOT_PRODUCT
jcoomes@810 792 ParallelCompactData::RegionData* debug_region(size_t region_index) {
duke@435 793 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 794 return sd.region(region_index);
duke@435 795 }
duke@435 796 #endif
duke@435 797
duke@435 798 elapsedTimer PSParallelCompact::_accumulated_time;
duke@435 799 unsigned int PSParallelCompact::_total_invocations = 0;
duke@435 800 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0;
duke@435 801 jlong PSParallelCompact::_time_of_last_gc = 0;
duke@435 802 CollectorCounters* PSParallelCompact::_counters = NULL;
duke@435 803 ParMarkBitMap PSParallelCompact::_mark_bitmap;
duke@435 804 ParallelCompactData PSParallelCompact::_summary_data;
duke@435 805
duke@435 806 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
coleenp@548 807
coleenp@548 808 void PSParallelCompact::IsAliveClosure::do_object(oop p) { ShouldNotReachHere(); }
coleenp@548 809 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
coleenp@548 810
coleenp@548 811 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 812 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 813
duke@435 814 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
duke@435 815 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
duke@435 816
coleenp@548 817 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p, _is_root); }
coleenp@548 818 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
coleenp@548 819
jcoomes@1746 820 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
coleenp@548 821
coleenp@548 822 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) { mark_and_push(_compaction_manager, p); }
coleenp@548 823 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
duke@435 824
duke@435 825 void PSParallelCompact::post_initialize() {
duke@435 826 ParallelScavengeHeap* heap = gc_heap();
duke@435 827 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 828
duke@435 829 MemRegion mr = heap->reserved_region();
ysr@2651 830 _ref_processor =
ysr@2651 831 new ReferenceProcessor(mr, // span
ysr@2651 832 ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
ysr@2651 833 (int) ParallelGCThreads, // mt processing degree
ysr@2651 834 true, // mt discovery
ysr@2651 835 (int) ParallelGCThreads, // mt discovery degree
ysr@2651 836 true, // atomic_discovery
ysr@2651 837 &_is_alive_closure, // non-header is alive closure
ysr@2651 838 false); // write barrier for next field updates
duke@435 839 _counters = new CollectorCounters("PSParallelCompact", 1);
duke@435 840
duke@435 841 // Initialize static fields in ParCompactionManager.
duke@435 842 ParCompactionManager::initialize(mark_bitmap());
duke@435 843 }
duke@435 844
duke@435 845 bool PSParallelCompact::initialize() {
duke@435 846 ParallelScavengeHeap* heap = gc_heap();
duke@435 847 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 848 MemRegion mr = heap->reserved_region();
duke@435 849
duke@435 850 // Was the old gen get allocated successfully?
duke@435 851 if (!heap->old_gen()->is_allocated()) {
duke@435 852 return false;
duke@435 853 }
duke@435 854
duke@435 855 initialize_space_info();
duke@435 856 initialize_dead_wood_limiter();
duke@435 857
duke@435 858 if (!_mark_bitmap.initialize(mr)) {
duke@435 859 vm_shutdown_during_initialization("Unable to allocate bit map for "
duke@435 860 "parallel garbage collection for the requested heap size.");
duke@435 861 return false;
duke@435 862 }
duke@435 863
duke@435 864 if (!_summary_data.initialize(mr)) {
duke@435 865 vm_shutdown_during_initialization("Unable to allocate tables for "
duke@435 866 "parallel garbage collection for the requested heap size.");
duke@435 867 return false;
duke@435 868 }
duke@435 869
duke@435 870 return true;
duke@435 871 }
duke@435 872
duke@435 873 void PSParallelCompact::initialize_space_info()
duke@435 874 {
duke@435 875 memset(&_space_info, 0, sizeof(_space_info));
duke@435 876
duke@435 877 ParallelScavengeHeap* heap = gc_heap();
duke@435 878 PSYoungGen* young_gen = heap->young_gen();
duke@435 879 MutableSpace* perm_space = heap->perm_gen()->object_space();
duke@435 880
duke@435 881 _space_info[perm_space_id].set_space(perm_space);
duke@435 882 _space_info[old_space_id].set_space(heap->old_gen()->object_space());
duke@435 883 _space_info[eden_space_id].set_space(young_gen->eden_space());
duke@435 884 _space_info[from_space_id].set_space(young_gen->from_space());
duke@435 885 _space_info[to_space_id].set_space(young_gen->to_space());
duke@435 886
duke@435 887 _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
duke@435 888 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
duke@435 889
duke@435 890 _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
duke@435 891 if (TraceParallelOldGCDensePrefix) {
duke@435 892 tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
duke@435 893 _space_info[perm_space_id].min_dense_prefix());
duke@435 894 }
duke@435 895 }
duke@435 896
duke@435 897 void PSParallelCompact::initialize_dead_wood_limiter()
duke@435 898 {
duke@435 899 const size_t max = 100;
duke@435 900 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
duke@435 901 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
duke@435 902 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
duke@435 903 DEBUG_ONLY(_dwl_initialized = true;)
duke@435 904 _dwl_adjustment = normal_distribution(1.0);
duke@435 905 }
duke@435 906
duke@435 907 // Simple class for storing info about the heap at the start of GC, to be used
duke@435 908 // after GC for comparison/printing.
duke@435 909 class PreGCValues {
duke@435 910 public:
duke@435 911 PreGCValues() { }
duke@435 912 PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
duke@435 913
duke@435 914 void fill(ParallelScavengeHeap* heap) {
duke@435 915 _heap_used = heap->used();
duke@435 916 _young_gen_used = heap->young_gen()->used_in_bytes();
duke@435 917 _old_gen_used = heap->old_gen()->used_in_bytes();
duke@435 918 _perm_gen_used = heap->perm_gen()->used_in_bytes();
duke@435 919 };
duke@435 920
duke@435 921 size_t heap_used() const { return _heap_used; }
duke@435 922 size_t young_gen_used() const { return _young_gen_used; }
duke@435 923 size_t old_gen_used() const { return _old_gen_used; }
duke@435 924 size_t perm_gen_used() const { return _perm_gen_used; }
duke@435 925
duke@435 926 private:
duke@435 927 size_t _heap_used;
duke@435 928 size_t _young_gen_used;
duke@435 929 size_t _old_gen_used;
duke@435 930 size_t _perm_gen_used;
duke@435 931 };
duke@435 932
duke@435 933 void
duke@435 934 PSParallelCompact::clear_data_covering_space(SpaceId id)
duke@435 935 {
duke@435 936 // At this point, top is the value before GC, new_top() is the value that will
duke@435 937 // be set at the end of GC. The marking bitmap is cleared to top; nothing
duke@435 938 // should be marked above top. The summary data is cleared to the larger of
duke@435 939 // top & new_top.
duke@435 940 MutableSpace* const space = _space_info[id].space();
duke@435 941 HeapWord* const bot = space->bottom();
duke@435 942 HeapWord* const top = space->top();
duke@435 943 HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
duke@435 944
duke@435 945 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
duke@435 946 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
duke@435 947 _mark_bitmap.clear_range(beg_bit, end_bit);
duke@435 948
jcoomes@810 949 const size_t beg_region = _summary_data.addr_to_region_idx(bot);
jcoomes@810 950 const size_t end_region =
jcoomes@810 951 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
jcoomes@810 952 _summary_data.clear_range(beg_region, end_region);
jcoomes@917 953
jcoomes@917 954 // Clear the data used to 'split' regions.
jcoomes@917 955 SplitInfo& split_info = _space_info[id].split_info();
jcoomes@917 956 if (split_info.is_valid()) {
jcoomes@917 957 split_info.clear();
jcoomes@917 958 }
jcoomes@917 959 DEBUG_ONLY(split_info.verify_clear();)
duke@435 960 }
duke@435 961
duke@435 962 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
duke@435 963 {
duke@435 964 // Update the from & to space pointers in space_info, since they are swapped
duke@435 965 // at each young gen gc. Do the update unconditionally (even though a
duke@435 966 // promotion failure does not swap spaces) because an unknown number of minor
duke@435 967 // collections will have swapped the spaces an unknown number of times.
duke@435 968 TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
duke@435 969 ParallelScavengeHeap* heap = gc_heap();
duke@435 970 _space_info[from_space_id].set_space(heap->young_gen()->from_space());
duke@435 971 _space_info[to_space_id].set_space(heap->young_gen()->to_space());
duke@435 972
duke@435 973 pre_gc_values->fill(heap);
duke@435 974
duke@435 975 ParCompactionManager::reset();
duke@435 976 NOT_PRODUCT(_mark_bitmap.reset_counters());
duke@435 977 DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
duke@435 978 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
duke@435 979
duke@435 980 // Increment the invocation count
apetrusenko@574 981 heap->increment_total_collections(true);
duke@435 982
duke@435 983 // We need to track unique mark sweep invocations as well.
duke@435 984 _total_invocations++;
duke@435 985
never@3499 986 heap->print_heap_before_gc();
duke@435 987
duke@435 988 // Fill in TLABs
duke@435 989 heap->accumulate_statistics_all_tlabs();
duke@435 990 heap->ensure_parsability(true); // retire TLABs
duke@435 991
duke@435 992 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 993 HandleMark hm; // Discard invalid handles created during verification
duke@435 994 gclog_or_tty->print(" VerifyBeforeGC:");
duke@435 995 Universe::verify(true);
duke@435 996 }
duke@435 997
duke@435 998 // Verify object start arrays
duke@435 999 if (VerifyObjectStartArray &&
duke@435 1000 VerifyBeforeGC) {
duke@435 1001 heap->old_gen()->verify_object_start_array();
duke@435 1002 heap->perm_gen()->verify_object_start_array();
duke@435 1003 }
duke@435 1004
duke@435 1005 DEBUG_ONLY(mark_bitmap()->verify_clear();)
duke@435 1006 DEBUG_ONLY(summary_data().verify_clear();)
jcoomes@645 1007
jcoomes@645 1008 // Have worker threads release resources the next time they run a task.
jcoomes@645 1009 gc_task_manager()->release_all_resources();
duke@435 1010 }
duke@435 1011
duke@435 1012 void PSParallelCompact::post_compact()
duke@435 1013 {
duke@435 1014 TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
duke@435 1015
duke@435 1016 for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
jcoomes@917 1017 // Clear the marking bitmap, summary data and split info.
duke@435 1018 clear_data_covering_space(SpaceId(id));
jcoomes@917 1019 // Update top(). Must be done after clearing the bitmap and summary data.
jcoomes@917 1020 _space_info[id].publish_new_top();
duke@435 1021 }
duke@435 1022
duke@435 1023 MutableSpace* const eden_space = _space_info[eden_space_id].space();
duke@435 1024 MutableSpace* const from_space = _space_info[from_space_id].space();
duke@435 1025 MutableSpace* const to_space = _space_info[to_space_id].space();
duke@435 1026
duke@435 1027 ParallelScavengeHeap* heap = gc_heap();
duke@435 1028 bool eden_empty = eden_space->is_empty();
duke@435 1029 if (!eden_empty) {
duke@435 1030 eden_empty = absorb_live_data_from_eden(heap->size_policy(),
duke@435 1031 heap->young_gen(), heap->old_gen());
duke@435 1032 }
duke@435 1033
duke@435 1034 // Update heap occupancy information which is used as input to the soft ref
duke@435 1035 // clearing policy at the next gc.
duke@435 1036 Universe::update_heap_info_at_gc();
duke@435 1037
duke@435 1038 bool young_gen_empty = eden_empty && from_space->is_empty() &&
duke@435 1039 to_space->is_empty();
duke@435 1040
duke@435 1041 BarrierSet* bs = heap->barrier_set();
duke@435 1042 if (bs->is_a(BarrierSet::ModRef)) {
duke@435 1043 ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
duke@435 1044 MemRegion old_mr = heap->old_gen()->reserved();
duke@435 1045 MemRegion perm_mr = heap->perm_gen()->reserved();
duke@435 1046 assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
duke@435 1047
duke@435 1048 if (young_gen_empty) {
duke@435 1049 modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
duke@435 1050 } else {
duke@435 1051 modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
duke@435 1052 }
duke@435 1053 }
duke@435 1054
duke@435 1055 Threads::gc_epilogue();
duke@435 1056 CodeCache::gc_epilogue();
kamg@2467 1057 JvmtiExport::gc_epilogue();
duke@435 1058
duke@435 1059 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
duke@435 1060
duke@435 1061 ref_processor()->enqueue_discovered_references(NULL);
duke@435 1062
jmasa@698 1063 if (ZapUnusedHeapArea) {
jmasa@698 1064 heap->gen_mangle_unused_area();
jmasa@698 1065 }
jmasa@698 1066
duke@435 1067 // Update time of last GC
duke@435 1068 reset_millis_since_last_gc();
duke@435 1069 }
duke@435 1070
duke@435 1071 HeapWord*
duke@435 1072 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
duke@435 1073 bool maximum_compaction)
duke@435 1074 {
jcoomes@810 1075 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1076 const ParallelCompactData& sd = summary_data();
duke@435 1077
duke@435 1078 const MutableSpace* const space = _space_info[id].space();
jcoomes@810 1079 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 1080 const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
jcoomes@810 1081 const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1082
jcoomes@810 1083 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1084 // of the dense prefix.
duke@435 1085 size_t full_count = 0;
jcoomes@810 1086 const RegionData* cp;
jcoomes@810 1087 for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
duke@435 1088 ++full_count;
duke@435 1089 }
duke@435 1090
duke@435 1091 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1092 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1093 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
duke@435 1094 if (maximum_compaction || cp == end_cp || interval_ended) {
duke@435 1095 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1096 return sd.region_to_addr(cp);
duke@435 1097 }
duke@435 1098
duke@435 1099 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1100 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1101 const size_t space_used = space->used_in_words();
duke@435 1102 const size_t space_capacity = space->capacity_in_words();
duke@435 1103
duke@435 1104 const double cur_density = double(space_live) / space_capacity;
duke@435 1105 const double deadwood_density =
duke@435 1106 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
duke@435 1107 const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
duke@435 1108
duke@435 1109 if (TraceParallelOldGCDensePrefix) {
duke@435 1110 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
duke@435 1111 cur_density, deadwood_density, deadwood_goal);
duke@435 1112 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1113 "space_cap=" SIZE_FORMAT,
duke@435 1114 space_live, space_used,
duke@435 1115 space_capacity);
duke@435 1116 }
duke@435 1117
duke@435 1118 // XXX - Use binary search?
jcoomes@810 1119 HeapWord* dense_prefix = sd.region_to_addr(cp);
jcoomes@810 1120 const RegionData* full_cp = cp;
jcoomes@810 1121 const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
duke@435 1122 while (cp < end_cp) {
jcoomes@810 1123 HeapWord* region_destination = cp->destination();
jcoomes@810 1124 const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
duke@435 1125 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1126 tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
jcoomes@699 1127 "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
jcoomes@810 1128 sd.region(cp), region_destination,
duke@435 1129 dense_prefix, cur_deadwood);
duke@435 1130 }
duke@435 1131
duke@435 1132 if (cur_deadwood >= deadwood_goal) {
jcoomes@810 1133 // Found the region that has the correct amount of deadwood to the left.
jcoomes@810 1134 // This typically occurs after crossing a fairly sparse set of regions, so
jcoomes@810 1135 // iterate backwards over those sparse regions, looking for the region
jcoomes@810 1136 // that has the lowest density of live objects 'to the right.'
jcoomes@810 1137 size_t space_to_left = sd.region(cp) * region_size;
duke@435 1138 size_t live_to_left = space_to_left - cur_deadwood;
duke@435 1139 size_t space_to_right = space_capacity - space_to_left;
duke@435 1140 size_t live_to_right = space_live - live_to_left;
duke@435 1141 double density_to_right = double(live_to_right) / space_to_right;
duke@435 1142 while (cp > full_cp) {
duke@435 1143 --cp;
jcoomes@810 1144 const size_t prev_region_live_to_right = live_to_right -
jcoomes@810 1145 cp->data_size();
jcoomes@810 1146 const size_t prev_region_space_to_right = space_to_right + region_size;
jcoomes@810 1147 double prev_region_density_to_right =
jcoomes@810 1148 double(prev_region_live_to_right) / prev_region_space_to_right;
jcoomes@810 1149 if (density_to_right <= prev_region_density_to_right) {
duke@435 1150 return dense_prefix;
duke@435 1151 }
duke@435 1152 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1153 tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
jcoomes@810 1154 "pc_d2r=%10.8f", sd.region(cp), density_to_right,
jcoomes@810 1155 prev_region_density_to_right);
duke@435 1156 }
jcoomes@810 1157 dense_prefix -= region_size;
jcoomes@810 1158 live_to_right = prev_region_live_to_right;
jcoomes@810 1159 space_to_right = prev_region_space_to_right;
jcoomes@810 1160 density_to_right = prev_region_density_to_right;
duke@435 1161 }
duke@435 1162 return dense_prefix;
duke@435 1163 }
duke@435 1164
jcoomes@810 1165 dense_prefix += region_size;
duke@435 1166 ++cp;
duke@435 1167 }
duke@435 1168
duke@435 1169 return dense_prefix;
duke@435 1170 }
duke@435 1171
duke@435 1172 #ifndef PRODUCT
duke@435 1173 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
duke@435 1174 const SpaceId id,
duke@435 1175 const bool maximum_compaction,
duke@435 1176 HeapWord* const addr)
duke@435 1177 {
jcoomes@810 1178 const size_t region_idx = summary_data().addr_to_region_idx(addr);
jcoomes@810 1179 RegionData* const cp = summary_data().region(region_idx);
duke@435 1180 const MutableSpace* const space = _space_info[id].space();
duke@435 1181 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1182
duke@435 1183 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1184 const size_t dead_to_left = pointer_delta(addr, cp->destination());
duke@435 1185 const size_t space_cap = space->capacity_in_words();
duke@435 1186 const double dead_to_left_pct = double(dead_to_left) / space_cap;
duke@435 1187 const size_t live_to_right = new_top - cp->destination();
duke@435 1188 const size_t dead_to_right = space->top() - addr - live_to_right;
duke@435 1189
jcoomes@699 1190 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
duke@435 1191 "spl=" SIZE_FORMAT " "
duke@435 1192 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
duke@435 1193 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
duke@435 1194 " ratio=%10.8f",
jcoomes@810 1195 algorithm, addr, region_idx,
duke@435 1196 space_live,
duke@435 1197 dead_to_left, dead_to_left_pct,
duke@435 1198 dead_to_right, live_to_right,
duke@435 1199 double(dead_to_right) / live_to_right);
duke@435 1200 }
duke@435 1201 #endif // #ifndef PRODUCT
duke@435 1202
duke@435 1203 // Return a fraction indicating how much of the generation can be treated as
duke@435 1204 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution
duke@435 1205 // based on the density of live objects in the generation to determine a limit,
duke@435 1206 // which is then adjusted so the return value is min_percent when the density is
duke@435 1207 // 1.
duke@435 1208 //
duke@435 1209 // The following table shows some return values for a different values of the
duke@435 1210 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
duke@435 1211 // min_percent is 1.
duke@435 1212 //
duke@435 1213 // fraction allowed as dead wood
duke@435 1214 // -----------------------------------------------------------------
duke@435 1215 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
duke@435 1216 // ------- ---------- ---------- ---------- ---------- ---------- ----------
duke@435 1217 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1218 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1219 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1220 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1221 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1222 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1223 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1224 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1225 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1226 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1227 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
duke@435 1228 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1229 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1230 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1231 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1232 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1233 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1234 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1235 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1236 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1237 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1238
duke@435 1239 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
duke@435 1240 {
duke@435 1241 assert(_dwl_initialized, "uninitialized");
duke@435 1242
duke@435 1243 // The raw limit is the value of the normal distribution at x = density.
duke@435 1244 const double raw_limit = normal_distribution(density);
duke@435 1245
duke@435 1246 // Adjust the raw limit so it becomes the minimum when the density is 1.
duke@435 1247 //
duke@435 1248 // First subtract the adjustment value (which is simply the precomputed value
duke@435 1249 // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
duke@435 1250 // Then add the minimum value, so the minimum is returned when the density is
duke@435 1251 // 1. Finally, prevent negative values, which occur when the mean is not 0.5.
duke@435 1252 const double min = double(min_percent) / 100.0;
duke@435 1253 const double limit = raw_limit - _dwl_adjustment + min;
duke@435 1254 return MAX2(limit, 0.0);
duke@435 1255 }
duke@435 1256
jcoomes@810 1257 ParallelCompactData::RegionData*
jcoomes@810 1258 PSParallelCompact::first_dead_space_region(const RegionData* beg,
jcoomes@810 1259 const RegionData* end)
duke@435 1260 {
jcoomes@810 1261 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1262 ParallelCompactData& sd = summary_data();
jcoomes@810 1263 size_t left = sd.region(beg);
jcoomes@810 1264 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1265
duke@435 1266 // Binary search.
duke@435 1267 while (left < right) {
duke@435 1268 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1269 const size_t middle = left + (right - left) / 2;
jcoomes@810 1270 RegionData* const middle_ptr = sd.region(middle);
duke@435 1271 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1272 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1273 assert(dest != NULL, "sanity");
duke@435 1274 assert(dest <= addr, "must move left");
duke@435 1275
duke@435 1276 if (middle > left && dest < addr) {
duke@435 1277 right = middle - 1;
jcoomes@810 1278 } else if (middle < right && middle_ptr->data_size() == region_size) {
duke@435 1279 left = middle + 1;
duke@435 1280 } else {
duke@435 1281 return middle_ptr;
duke@435 1282 }
duke@435 1283 }
jcoomes@810 1284 return sd.region(left);
duke@435 1285 }
duke@435 1286
jcoomes@810 1287 ParallelCompactData::RegionData*
jcoomes@810 1288 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
jcoomes@810 1289 const RegionData* end,
jcoomes@810 1290 size_t dead_words)
duke@435 1291 {
duke@435 1292 ParallelCompactData& sd = summary_data();
jcoomes@810 1293 size_t left = sd.region(beg);
jcoomes@810 1294 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1295
duke@435 1296 // Binary search.
duke@435 1297 while (left < right) {
duke@435 1298 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1299 const size_t middle = left + (right - left) / 2;
jcoomes@810 1300 RegionData* const middle_ptr = sd.region(middle);
duke@435 1301 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1302 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1303 assert(dest != NULL, "sanity");
duke@435 1304 assert(dest <= addr, "must move left");
duke@435 1305
duke@435 1306 const size_t dead_to_left = pointer_delta(addr, dest);
duke@435 1307 if (middle > left && dead_to_left > dead_words) {
duke@435 1308 right = middle - 1;
duke@435 1309 } else if (middle < right && dead_to_left < dead_words) {
duke@435 1310 left = middle + 1;
duke@435 1311 } else {
duke@435 1312 return middle_ptr;
duke@435 1313 }
duke@435 1314 }
jcoomes@810 1315 return sd.region(left);
duke@435 1316 }
duke@435 1317
duke@435 1318 // The result is valid during the summary phase, after the initial summarization
duke@435 1319 // of each space into itself, and before final summarization.
duke@435 1320 inline double
jcoomes@810 1321 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
duke@435 1322 HeapWord* const bottom,
duke@435 1323 HeapWord* const top,
duke@435 1324 HeapWord* const new_top)
duke@435 1325 {
duke@435 1326 ParallelCompactData& sd = summary_data();
duke@435 1327
duke@435 1328 assert(cp != NULL, "sanity");
duke@435 1329 assert(bottom != NULL, "sanity");
duke@435 1330 assert(top != NULL, "sanity");
duke@435 1331 assert(new_top != NULL, "sanity");
duke@435 1332 assert(top >= new_top, "summary data problem?");
duke@435 1333 assert(new_top > bottom, "space is empty; should not be here");
duke@435 1334 assert(new_top >= cp->destination(), "sanity");
jcoomes@810 1335 assert(top >= sd.region_to_addr(cp), "sanity");
duke@435 1336
duke@435 1337 HeapWord* const destination = cp->destination();
duke@435 1338 const size_t dense_prefix_live = pointer_delta(destination, bottom);
duke@435 1339 const size_t compacted_region_live = pointer_delta(new_top, destination);
jcoomes@810 1340 const size_t compacted_region_used = pointer_delta(top,
jcoomes@810 1341 sd.region_to_addr(cp));
duke@435 1342 const size_t reclaimable = compacted_region_used - compacted_region_live;
duke@435 1343
duke@435 1344 const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
duke@435 1345 return double(reclaimable) / divisor;
duke@435 1346 }
duke@435 1347
duke@435 1348 // Return the address of the end of the dense prefix, a.k.a. the start of the
jcoomes@810 1349 // compacted region. The address is always on a region boundary.
duke@435 1350 //
jcoomes@810 1351 // Completely full regions at the left are skipped, since no compaction can
jcoomes@810 1352 // occur in those regions. Then the maximum amount of dead wood to allow is
jcoomes@810 1353 // computed, based on the density (amount live / capacity) of the generation;
jcoomes@810 1354 // the region with approximately that amount of dead space to the left is
jcoomes@810 1355 // identified as the limit region. Regions between the last completely full
jcoomes@810 1356 // region and the limit region are scanned and the one that has the best
jcoomes@810 1357 // (maximum) reclaimed_ratio() is selected.
duke@435 1358 HeapWord*
duke@435 1359 PSParallelCompact::compute_dense_prefix(const SpaceId id,
duke@435 1360 bool maximum_compaction)
duke@435 1361 {
jcoomes@918 1362 if (ParallelOldGCSplitALot) {
jcoomes@918 1363 if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
jcoomes@918 1364 // The value was chosen to provoke splitting a young gen space; use it.
jcoomes@918 1365 return _space_info[id].dense_prefix();
jcoomes@918 1366 }
jcoomes@918 1367 }
jcoomes@918 1368
jcoomes@810 1369 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1370 const ParallelCompactData& sd = summary_data();
duke@435 1371
duke@435 1372 const MutableSpace* const space = _space_info[id].space();
duke@435 1373 HeapWord* const top = space->top();
jcoomes@810 1374 HeapWord* const top_aligned_up = sd.region_align_up(top);
duke@435 1375 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1376 HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
duke@435 1377 HeapWord* const bottom = space->bottom();
jcoomes@810 1378 const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
jcoomes@810 1379 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1380 const RegionData* const new_top_cp =
jcoomes@810 1381 sd.addr_to_region_ptr(new_top_aligned_up);
jcoomes@810 1382
jcoomes@810 1383 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1384 // of the dense prefix.
jcoomes@810 1385 const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
jcoomes@810 1386 assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
duke@435 1387 space->is_empty(), "no dead space allowed to the left");
jcoomes@810 1388 assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
jcoomes@810 1389 "region must have dead space");
duke@435 1390
duke@435 1391 // The gc number is saved whenever a maximum compaction is done, and used to
duke@435 1392 // determine when the maximum compaction interval has expired. This avoids
duke@435 1393 // successive max compactions for different reasons.
duke@435 1394 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1395 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1396 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
duke@435 1397 total_invocations() == HeapFirstMaximumCompactionCount;
duke@435 1398 if (maximum_compaction || full_cp == top_cp || interval_ended) {
duke@435 1399 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1400 return sd.region_to_addr(full_cp);
duke@435 1401 }
duke@435 1402
duke@435 1403 const size_t space_live = pointer_delta(new_top, bottom);
duke@435 1404 const size_t space_used = space->used_in_words();
duke@435 1405 const size_t space_capacity = space->capacity_in_words();
duke@435 1406
duke@435 1407 const double density = double(space_live) / double(space_capacity);
duke@435 1408 const size_t min_percent_free =
duke@435 1409 id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
duke@435 1410 const double limiter = dead_wood_limiter(density, min_percent_free);
duke@435 1411 const size_t dead_wood_max = space_used - space_live;
duke@435 1412 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
duke@435 1413 dead_wood_max);
duke@435 1414
duke@435 1415 if (TraceParallelOldGCDensePrefix) {
duke@435 1416 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1417 "space_cap=" SIZE_FORMAT,
duke@435 1418 space_live, space_used,
duke@435 1419 space_capacity);
duke@435 1420 tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
duke@435 1421 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
duke@435 1422 density, min_percent_free, limiter,
duke@435 1423 dead_wood_max, dead_wood_limit);
duke@435 1424 }
duke@435 1425
jcoomes@810 1426 // Locate the region with the desired amount of dead space to the left.
jcoomes@810 1427 const RegionData* const limit_cp =
jcoomes@810 1428 dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
jcoomes@810 1429
jcoomes@810 1430 // Scan from the first region with dead space to the limit region and find the
duke@435 1431 // one with the best (largest) reclaimed ratio.
duke@435 1432 double best_ratio = 0.0;
jcoomes@810 1433 const RegionData* best_cp = full_cp;
jcoomes@810 1434 for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
duke@435 1435 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
duke@435 1436 if (tmp_ratio > best_ratio) {
duke@435 1437 best_cp = cp;
duke@435 1438 best_ratio = tmp_ratio;
duke@435 1439 }
duke@435 1440 }
duke@435 1441
duke@435 1442 #if 0
jcoomes@810 1443 // Something to consider: if the region with the best ratio is 'close to' the
jcoomes@810 1444 // first region w/free space, choose the first region with free space
jcoomes@810 1445 // ("first-free"). The first-free region is usually near the start of the
duke@435 1446 // heap, which means we are copying most of the heap already, so copy a bit
duke@435 1447 // more to get complete compaction.
jcoomes@810 1448 if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
duke@435 1449 _maximum_compaction_gc_num = total_invocations();
duke@435 1450 best_cp = full_cp;
duke@435 1451 }
duke@435 1452 #endif // #if 0
duke@435 1453
jcoomes@810 1454 return sd.region_to_addr(best_cp);
duke@435 1455 }
duke@435 1456
jcoomes@918 1457 #ifndef PRODUCT
jcoomes@918 1458 void
jcoomes@918 1459 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
jcoomes@918 1460 size_t words)
jcoomes@918 1461 {
jcoomes@918 1462 if (TraceParallelOldGCSummaryPhase) {
jcoomes@918 1463 tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
jcoomes@918 1464 SIZE_FORMAT, start, start + words, words);
jcoomes@918 1465 }
jcoomes@918 1466
jcoomes@918 1467 ObjectStartArray* const start_array = _space_info[id].start_array();
jcoomes@918 1468 CollectedHeap::fill_with_objects(start, words);
jcoomes@918 1469 for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
jcoomes@918 1470 _mark_bitmap.mark_obj(p, words);
jcoomes@918 1471 _summary_data.add_obj(p, words);
jcoomes@918 1472 start_array->allocate_block(p);
jcoomes@918 1473 }
jcoomes@918 1474 }
jcoomes@918 1475
jcoomes@918 1476 void
jcoomes@918 1477 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
jcoomes@918 1478 {
jcoomes@918 1479 ParallelCompactData& sd = summary_data();
jcoomes@918 1480 MutableSpace* space = _space_info[id].space();
jcoomes@918 1481
jcoomes@918 1482 // Find the source and destination start addresses.
jcoomes@918 1483 HeapWord* const src_addr = sd.region_align_down(start);
jcoomes@918 1484 HeapWord* dst_addr;
jcoomes@918 1485 if (src_addr < start) {
jcoomes@918 1486 dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
jcoomes@918 1487 } else if (src_addr > space->bottom()) {
jcoomes@918 1488 // The start (the original top() value) is aligned to a region boundary so
jcoomes@918 1489 // the associated region does not have a destination. Compute the
jcoomes@918 1490 // destination from the previous region.
jcoomes@918 1491 RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
jcoomes@918 1492 dst_addr = cp->destination() + cp->data_size();
jcoomes@918 1493 } else {
jcoomes@918 1494 // Filling the entire space.
jcoomes@918 1495 dst_addr = space->bottom();
jcoomes@918 1496 }
jcoomes@918 1497 assert(dst_addr != NULL, "sanity");
jcoomes@918 1498
jcoomes@918 1499 // Update the summary data.
jcoomes@918 1500 bool result = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@918 1501 src_addr, space->top(), NULL,
jcoomes@918 1502 dst_addr, space->end(),
jcoomes@918 1503 _space_info[id].new_top_addr());
jcoomes@918 1504 assert(result, "should not fail: bad filler object size");
jcoomes@918 1505 }
jcoomes@918 1506
jcoomes@918 1507 void
jcoomes@931 1508 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
jcoomes@931 1509 {
jcoomes@931 1510 if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
jcoomes@931 1511 return;
jcoomes@931 1512 }
jcoomes@931 1513
jcoomes@931 1514 MutableSpace* const space = _space_info[id].space();
jcoomes@931 1515 if (space->is_empty()) {
jcoomes@931 1516 HeapWord* b = space->bottom();
jcoomes@931 1517 HeapWord* t = b + space->capacity_in_words() / 2;
jcoomes@931 1518 space->set_top(t);
jcoomes@931 1519 if (ZapUnusedHeapArea) {
jcoomes@931 1520 space->set_top_for_allocations();
jcoomes@931 1521 }
jcoomes@931 1522
kvn@1926 1523 size_t min_size = CollectedHeap::min_fill_size();
kvn@1926 1524 size_t obj_len = min_size;
jcoomes@931 1525 while (b + obj_len <= t) {
jcoomes@931 1526 CollectedHeap::fill_with_object(b, obj_len);
jcoomes@931 1527 mark_bitmap()->mark_obj(b, obj_len);
jcoomes@931 1528 summary_data().add_obj(b, obj_len);
jcoomes@931 1529 b += obj_len;
kvn@1926 1530 obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
jcoomes@931 1531 }
jcoomes@931 1532 if (b < t) {
jcoomes@931 1533 // The loop didn't completely fill to t (top); adjust top downward.
jcoomes@931 1534 space->set_top(b);
jcoomes@931 1535 if (ZapUnusedHeapArea) {
jcoomes@931 1536 space->set_top_for_allocations();
jcoomes@931 1537 }
jcoomes@931 1538 }
jcoomes@931 1539
jcoomes@931 1540 HeapWord** nta = _space_info[id].new_top_addr();
jcoomes@931 1541 bool result = summary_data().summarize(_space_info[id].split_info(),
jcoomes@931 1542 space->bottom(), space->top(), NULL,
jcoomes@931 1543 space->bottom(), space->end(), nta);
jcoomes@931 1544 assert(result, "space must fit into itself");
jcoomes@931 1545 }
jcoomes@931 1546 }
jcoomes@931 1547
jcoomes@931 1548 void
jcoomes@918 1549 PSParallelCompact::provoke_split(bool & max_compaction)
jcoomes@918 1550 {
jcoomes@931 1551 if (total_invocations() % ParallelOldGCSplitInterval != 0) {
jcoomes@931 1552 return;
jcoomes@931 1553 }
jcoomes@931 1554
jcoomes@918 1555 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@918 1556 ParallelCompactData& sd = summary_data();
jcoomes@918 1557
jcoomes@918 1558 MutableSpace* const eden_space = _space_info[eden_space_id].space();
jcoomes@918 1559 MutableSpace* const from_space = _space_info[from_space_id].space();
jcoomes@918 1560 const size_t eden_live = pointer_delta(eden_space->top(),
jcoomes@918 1561 _space_info[eden_space_id].new_top());
jcoomes@918 1562 const size_t from_live = pointer_delta(from_space->top(),
jcoomes@918 1563 _space_info[from_space_id].new_top());
jcoomes@918 1564
jcoomes@918 1565 const size_t min_fill_size = CollectedHeap::min_fill_size();
jcoomes@918 1566 const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
jcoomes@918 1567 const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
jcoomes@918 1568 const size_t from_free = pointer_delta(from_space->end(), from_space->top());
jcoomes@918 1569 const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
jcoomes@918 1570
jcoomes@918 1571 // Choose the space to split; need at least 2 regions live (or fillable).
jcoomes@918 1572 SpaceId id;
jcoomes@918 1573 MutableSpace* space;
jcoomes@918 1574 size_t live_words;
jcoomes@918 1575 size_t fill_words;
jcoomes@918 1576 if (eden_live + eden_fillable >= region_size * 2) {
jcoomes@918 1577 id = eden_space_id;
jcoomes@918 1578 space = eden_space;
jcoomes@918 1579 live_words = eden_live;
jcoomes@918 1580 fill_words = eden_fillable;
jcoomes@918 1581 } else if (from_live + from_fillable >= region_size * 2) {
jcoomes@918 1582 id = from_space_id;
jcoomes@918 1583 space = from_space;
jcoomes@918 1584 live_words = from_live;
jcoomes@918 1585 fill_words = from_fillable;
jcoomes@918 1586 } else {
jcoomes@918 1587 return; // Give up.
jcoomes@918 1588 }
jcoomes@918 1589 assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
jcoomes@918 1590
jcoomes@918 1591 if (live_words < region_size * 2) {
jcoomes@918 1592 // Fill from top() to end() w/live objects of mixed sizes.
jcoomes@918 1593 HeapWord* const fill_start = space->top();
jcoomes@918 1594 live_words += fill_words;
jcoomes@918 1595
jcoomes@918 1596 space->set_top(fill_start + fill_words);
jcoomes@918 1597 if (ZapUnusedHeapArea) {
jcoomes@918 1598 space->set_top_for_allocations();
jcoomes@918 1599 }
jcoomes@918 1600
jcoomes@918 1601 HeapWord* cur_addr = fill_start;
jcoomes@918 1602 while (fill_words > 0) {
jcoomes@918 1603 const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
jcoomes@918 1604 size_t cur_size = MIN2(align_object_size_(r), fill_words);
jcoomes@918 1605 if (fill_words - cur_size < min_fill_size) {
jcoomes@918 1606 cur_size = fill_words; // Avoid leaving a fragment too small to fill.
jcoomes@918 1607 }
jcoomes@918 1608
jcoomes@918 1609 CollectedHeap::fill_with_object(cur_addr, cur_size);
jcoomes@918 1610 mark_bitmap()->mark_obj(cur_addr, cur_size);
jcoomes@918 1611 sd.add_obj(cur_addr, cur_size);
jcoomes@918 1612
jcoomes@918 1613 cur_addr += cur_size;
jcoomes@918 1614 fill_words -= cur_size;
jcoomes@918 1615 }
jcoomes@918 1616
jcoomes@918 1617 summarize_new_objects(id, fill_start);
jcoomes@918 1618 }
jcoomes@918 1619
jcoomes@918 1620 max_compaction = false;
jcoomes@918 1621
jcoomes@918 1622 // Manipulate the old gen so that it has room for about half of the live data
jcoomes@918 1623 // in the target young gen space (live_words / 2).
jcoomes@918 1624 id = old_space_id;
jcoomes@918 1625 space = _space_info[id].space();
jcoomes@918 1626 const size_t free_at_end = space->free_in_words();
jcoomes@918 1627 const size_t free_target = align_object_size(live_words / 2);
jcoomes@918 1628 const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
jcoomes@918 1629
jcoomes@918 1630 if (free_at_end >= free_target + min_fill_size) {
jcoomes@918 1631 // Fill space above top() and set the dense prefix so everything survives.
jcoomes@918 1632 HeapWord* const fill_start = space->top();
jcoomes@918 1633 const size_t fill_size = free_at_end - free_target;
jcoomes@918 1634 space->set_top(space->top() + fill_size);
jcoomes@918 1635 if (ZapUnusedHeapArea) {
jcoomes@918 1636 space->set_top_for_allocations();
jcoomes@918 1637 }
jcoomes@918 1638 fill_with_live_objects(id, fill_start, fill_size);
jcoomes@918 1639 summarize_new_objects(id, fill_start);
jcoomes@918 1640 _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
jcoomes@918 1641 } else if (dead + free_at_end > free_target) {
jcoomes@918 1642 // Find a dense prefix that makes the right amount of space available.
jcoomes@918 1643 HeapWord* cur = sd.region_align_down(space->top());
jcoomes@918 1644 HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
jcoomes@918 1645 size_t dead_to_right = pointer_delta(space->end(), cur_destination);
jcoomes@918 1646 while (dead_to_right < free_target) {
jcoomes@918 1647 cur -= region_size;
jcoomes@918 1648 cur_destination = sd.addr_to_region_ptr(cur)->destination();
jcoomes@918 1649 dead_to_right = pointer_delta(space->end(), cur_destination);
jcoomes@918 1650 }
jcoomes@918 1651 _space_info[id].set_dense_prefix(cur);
jcoomes@918 1652 }
jcoomes@918 1653 }
jcoomes@918 1654 #endif // #ifndef PRODUCT
jcoomes@918 1655
duke@435 1656 void PSParallelCompact::summarize_spaces_quick()
duke@435 1657 {
duke@435 1658 for (unsigned int i = 0; i < last_space_id; ++i) {
duke@435 1659 const MutableSpace* space = _space_info[i].space();
jcoomes@917 1660 HeapWord** nta = _space_info[i].new_top_addr();
jcoomes@917 1661 bool result = _summary_data.summarize(_space_info[i].split_info(),
jcoomes@917 1662 space->bottom(), space->top(), NULL,
jcoomes@917 1663 space->bottom(), space->end(), nta);
jcoomes@917 1664 assert(result, "space must fit into itself");
duke@435 1665 _space_info[i].set_dense_prefix(space->bottom());
duke@435 1666 }
jcoomes@931 1667
jcoomes@931 1668 #ifndef PRODUCT
jcoomes@931 1669 if (ParallelOldGCSplitALot) {
jcoomes@931 1670 provoke_split_fill_survivor(to_space_id);
jcoomes@931 1671 }
jcoomes@931 1672 #endif // #ifndef PRODUCT
duke@435 1673 }
duke@435 1674
duke@435 1675 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
duke@435 1676 {
duke@435 1677 HeapWord* const dense_prefix_end = dense_prefix(id);
jcoomes@810 1678 const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
duke@435 1679 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
jcoomes@810 1680 if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
duke@435 1681 // Only enough dead space is filled so that any remaining dead space to the
duke@435 1682 // left is larger than the minimum filler object. (The remainder is filled
duke@435 1683 // during the copy/update phase.)
duke@435 1684 //
duke@435 1685 // The size of the dead space to the right of the boundary is not a
duke@435 1686 // concern, since compaction will be able to use whatever space is
duke@435 1687 // available.
duke@435 1688 //
duke@435 1689 // Here '||' is the boundary, 'x' represents a don't care bit and a box
duke@435 1690 // surrounds the space to be filled with an object.
duke@435 1691 //
duke@435 1692 // In the 32-bit VM, each bit represents two 32-bit words:
duke@435 1693 // +---+
duke@435 1694 // a) beg_bits: ... x x x | 0 | || 0 x x ...
duke@435 1695 // end_bits: ... x x x | 0 | || 0 x x ...
duke@435 1696 // +---+
duke@435 1697 //
duke@435 1698 // In the 64-bit VM, each bit represents one 64-bit word:
duke@435 1699 // +------------+
duke@435 1700 // b) beg_bits: ... x x x | 0 || 0 | x x ...
duke@435 1701 // end_bits: ... x x 1 | 0 || 0 | x x ...
duke@435 1702 // +------------+
duke@435 1703 // +-------+
duke@435 1704 // c) beg_bits: ... x x | 0 0 | || 0 x x ...
duke@435 1705 // end_bits: ... x 1 | 0 0 | || 0 x x ...
duke@435 1706 // +-------+
duke@435 1707 // +-----------+
duke@435 1708 // d) beg_bits: ... x | 0 0 0 | || 0 x x ...
duke@435 1709 // end_bits: ... 1 | 0 0 0 | || 0 x x ...
duke@435 1710 // +-----------+
duke@435 1711 // +-------+
duke@435 1712 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1713 // end_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1714 // +-------+
duke@435 1715
duke@435 1716 // Initially assume case a, c or e will apply.
kvn@1926 1717 size_t obj_len = CollectedHeap::min_fill_size();
duke@435 1718 HeapWord* obj_beg = dense_prefix_end - obj_len;
duke@435 1719
duke@435 1720 #ifdef _LP64
kvn@1926 1721 if (MinObjAlignment > 1) { // object alignment > heap word size
kvn@1926 1722 // Cases a, c or e.
kvn@1926 1723 } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
duke@435 1724 // Case b above.
duke@435 1725 obj_beg = dense_prefix_end - 1;
duke@435 1726 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
duke@435 1727 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
duke@435 1728 // Case d above.
duke@435 1729 obj_beg = dense_prefix_end - 3;
duke@435 1730 obj_len = 3;
duke@435 1731 }
duke@435 1732 #endif // #ifdef _LP64
duke@435 1733
jcoomes@917 1734 CollectedHeap::fill_with_object(obj_beg, obj_len);
duke@435 1735 _mark_bitmap.mark_obj(obj_beg, obj_len);
duke@435 1736 _summary_data.add_obj(obj_beg, obj_len);
duke@435 1737 assert(start_array(id) != NULL, "sanity");
duke@435 1738 start_array(id)->allocate_block(obj_beg);
duke@435 1739 }
duke@435 1740 }
duke@435 1741
duke@435 1742 void
jcoomes@917 1743 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
jcoomes@917 1744 {
jcoomes@917 1745 RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
jcoomes@917 1746 HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
jcoomes@917 1747 RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
jcoomes@917 1748 for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
jcoomes@917 1749 cur->set_source_region(0);
jcoomes@917 1750 }
jcoomes@917 1751 }
jcoomes@917 1752
jcoomes@917 1753 void
duke@435 1754 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
duke@435 1755 {
duke@435 1756 assert(id < last_space_id, "id out of range");
jcoomes@918 1757 assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
jcoomes@918 1758 ParallelOldGCSplitALot && id == old_space_id,
jcoomes@918 1759 "should have been reset in summarize_spaces_quick()");
duke@435 1760
duke@435 1761 const MutableSpace* space = _space_info[id].space();
jcoomes@700 1762 if (_space_info[id].new_top() != space->bottom()) {
jcoomes@700 1763 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
jcoomes@700 1764 _space_info[id].set_dense_prefix(dense_prefix_end);
duke@435 1765
duke@435 1766 #ifndef PRODUCT
jcoomes@700 1767 if (TraceParallelOldGCDensePrefix) {
jcoomes@700 1768 print_dense_prefix_stats("ratio", id, maximum_compaction,
jcoomes@700 1769 dense_prefix_end);
jcoomes@700 1770 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
jcoomes@700 1771 print_dense_prefix_stats("density", id, maximum_compaction, addr);
jcoomes@700 1772 }
jcoomes@700 1773 #endif // #ifndef PRODUCT
jcoomes@700 1774
jcoomes@918 1775 // Recompute the summary data, taking into account the dense prefix. If
jcoomes@918 1776 // every last byte will be reclaimed, then the existing summary data which
jcoomes@918 1777 // compacts everything can be left in place.
jcoomes@700 1778 if (!maximum_compaction && dense_prefix_end != space->bottom()) {
jcoomes@917 1779 // If dead space crosses the dense prefix boundary, it is (at least
jcoomes@917 1780 // partially) filled with a dummy object, marked live and added to the
jcoomes@917 1781 // summary data. This simplifies the copy/update phase and must be done
jcoomes@918 1782 // before the final locations of objects are determined, to prevent
jcoomes@918 1783 // leaving a fragment of dead space that is too small to fill.
jcoomes@700 1784 fill_dense_prefix_end(id);
jcoomes@917 1785
jcoomes@917 1786 // Compute the destination of each Region, and thus each object.
jcoomes@917 1787 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
jcoomes@917 1788 _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1789 dense_prefix_end, space->top(), NULL,
jcoomes@917 1790 dense_prefix_end, space->end(),
jcoomes@917 1791 _space_info[id].new_top_addr());
jcoomes@700 1792 }
duke@435 1793 }
duke@435 1794
duke@435 1795 if (TraceParallelOldGCSummaryPhase) {
jcoomes@810 1796 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@700 1797 HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
jcoomes@810 1798 const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
duke@435 1799 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
jcoomes@700 1800 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1801 const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
duke@435 1802 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
duke@435 1803 tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
jcoomes@810 1804 "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
duke@435 1805 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
duke@435 1806 id, space->capacity_in_words(), dense_prefix_end,
jcoomes@810 1807 dp_region, dp_words / region_size,
jcoomes@810 1808 cr_words / region_size, new_top);
duke@435 1809 }
duke@435 1810 }
duke@435 1811
jcoomes@917 1812 #ifndef PRODUCT
jcoomes@917 1813 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
jcoomes@917 1814 HeapWord* dst_beg, HeapWord* dst_end,
jcoomes@917 1815 SpaceId src_space_id,
jcoomes@917 1816 HeapWord* src_beg, HeapWord* src_end)
jcoomes@917 1817 {
jcoomes@917 1818 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 1819 tty->print_cr("summarizing %d [%s] into %d [%s]: "
jcoomes@917 1820 "src=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1821 SIZE_FORMAT "-" SIZE_FORMAT " "
jcoomes@917 1822 "dst=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1823 SIZE_FORMAT "-" SIZE_FORMAT,
jcoomes@917 1824 src_space_id, space_names[src_space_id],
jcoomes@917 1825 dst_space_id, space_names[dst_space_id],
jcoomes@917 1826 src_beg, src_end,
jcoomes@917 1827 _summary_data.addr_to_region_idx(src_beg),
jcoomes@917 1828 _summary_data.addr_to_region_idx(src_end),
jcoomes@917 1829 dst_beg, dst_end,
jcoomes@917 1830 _summary_data.addr_to_region_idx(dst_beg),
jcoomes@917 1831 _summary_data.addr_to_region_idx(dst_end));
jcoomes@917 1832 }
jcoomes@917 1833 }
jcoomes@917 1834 #endif // #ifndef PRODUCT
jcoomes@917 1835
duke@435 1836 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
duke@435 1837 bool maximum_compaction)
duke@435 1838 {
duke@435 1839 TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
duke@435 1840 // trace("2");
duke@435 1841
duke@435 1842 #ifdef ASSERT
duke@435 1843 if (TraceParallelOldGCMarkingPhase) {
duke@435 1844 tty->print_cr("add_obj_count=" SIZE_FORMAT " "
duke@435 1845 "add_obj_bytes=" SIZE_FORMAT,
duke@435 1846 add_obj_count, add_obj_size * HeapWordSize);
duke@435 1847 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
duke@435 1848 "mark_bitmap_bytes=" SIZE_FORMAT,
duke@435 1849 mark_bitmap_count, mark_bitmap_size * HeapWordSize);
duke@435 1850 }
duke@435 1851 #endif // #ifdef ASSERT
duke@435 1852
duke@435 1853 // Quick summarization of each space into itself, to see how much is live.
duke@435 1854 summarize_spaces_quick();
duke@435 1855
duke@435 1856 if (TraceParallelOldGCSummaryPhase) {
duke@435 1857 tty->print_cr("summary_phase: after summarizing each space to self");
duke@435 1858 Universe::print();
jcoomes@810 1859 NOT_PRODUCT(print_region_ranges());
duke@435 1860 if (Verbose) {
duke@435 1861 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
duke@435 1862 }
duke@435 1863 }
duke@435 1864
duke@435 1865 // The amount of live data that will end up in old space (assuming it fits).
duke@435 1866 size_t old_space_total_live = 0;
jcoomes@917 1867 assert(perm_space_id < old_space_id, "should not count perm data here");
jcoomes@917 1868 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 1869 old_space_total_live += pointer_delta(_space_info[id].new_top(),
duke@435 1870 _space_info[id].space()->bottom());
duke@435 1871 }
duke@435 1872
jcoomes@917 1873 MutableSpace* const old_space = _space_info[old_space_id].space();
jcoomes@918 1874 const size_t old_capacity = old_space->capacity_in_words();
jcoomes@918 1875 if (old_space_total_live > old_capacity) {
duke@435 1876 // XXX - should also try to expand
duke@435 1877 maximum_compaction = true;
duke@435 1878 }
jcoomes@918 1879 #ifndef PRODUCT
jcoomes@918 1880 if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
jcoomes@931 1881 provoke_split(maximum_compaction);
jcoomes@918 1882 }
jcoomes@918 1883 #endif // #ifndef PRODUCT
duke@435 1884
duke@435 1885 // Permanent and Old generations.
duke@435 1886 summarize_space(perm_space_id, maximum_compaction);
duke@435 1887 summarize_space(old_space_id, maximum_compaction);
duke@435 1888
jcoomes@917 1889 // Summarize the remaining spaces in the young gen. The initial target space
jcoomes@917 1890 // is the old gen. If a space does not fit entirely into the target, then the
jcoomes@917 1891 // remainder is compacted into the space itself and that space becomes the new
jcoomes@917 1892 // target.
jcoomes@917 1893 SpaceId dst_space_id = old_space_id;
jcoomes@917 1894 HeapWord* dst_space_end = old_space->end();
jcoomes@917 1895 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
jcoomes@917 1896 for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
duke@435 1897 const MutableSpace* space = _space_info[id].space();
duke@435 1898 const size_t live = pointer_delta(_space_info[id].new_top(),
duke@435 1899 space->bottom());
jcoomes@917 1900 const size_t available = pointer_delta(dst_space_end, *new_top_addr);
jcoomes@917 1901
jcoomes@917 1902 NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
jcoomes@917 1903 SpaceId(id), space->bottom(), space->top());)
jcoomes@701 1904 if (live > 0 && live <= available) {
duke@435 1905 // All the live data will fit.
jcoomes@917 1906 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1907 space->bottom(), space->top(),
jcoomes@917 1908 NULL,
jcoomes@917 1909 *new_top_addr, dst_space_end,
jcoomes@917 1910 new_top_addr);
jcoomes@917 1911 assert(done, "space must fit into old gen");
jcoomes@917 1912
jcoomes@701 1913 // Reset the new_top value for the space.
jcoomes@701 1914 _space_info[id].set_new_top(space->bottom());
jcoomes@917 1915 } else if (live > 0) {
jcoomes@917 1916 // Attempt to fit part of the source space into the target space.
jcoomes@917 1917 HeapWord* next_src_addr = NULL;
jcoomes@917 1918 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1919 space->bottom(), space->top(),
jcoomes@917 1920 &next_src_addr,
jcoomes@917 1921 *new_top_addr, dst_space_end,
jcoomes@917 1922 new_top_addr);
jcoomes@917 1923 assert(!done, "space should not fit into old gen");
jcoomes@917 1924 assert(next_src_addr != NULL, "sanity");
jcoomes@917 1925
jcoomes@917 1926 // The source space becomes the new target, so the remainder is compacted
jcoomes@917 1927 // within the space itself.
jcoomes@917 1928 dst_space_id = SpaceId(id);
jcoomes@917 1929 dst_space_end = space->end();
jcoomes@917 1930 new_top_addr = _space_info[id].new_top_addr();
jcoomes@917 1931 NOT_PRODUCT(summary_phase_msg(dst_space_id,
jcoomes@917 1932 space->bottom(), dst_space_end,
jcoomes@917 1933 SpaceId(id), next_src_addr, space->top());)
jcoomes@917 1934 done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1935 next_src_addr, space->top(),
jcoomes@917 1936 NULL,
jcoomes@917 1937 space->bottom(), dst_space_end,
jcoomes@917 1938 new_top_addr);
jcoomes@917 1939 assert(done, "space must fit when compacted into itself");
jcoomes@917 1940 assert(*new_top_addr <= space->top(), "usage should not grow");
duke@435 1941 }
duke@435 1942 }
duke@435 1943
duke@435 1944 if (TraceParallelOldGCSummaryPhase) {
duke@435 1945 tty->print_cr("summary_phase: after final summarization");
duke@435 1946 Universe::print();
jcoomes@810 1947 NOT_PRODUCT(print_region_ranges());
duke@435 1948 if (Verbose) {
duke@435 1949 NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
duke@435 1950 }
duke@435 1951 }
duke@435 1952 }
duke@435 1953
duke@435 1954 // This method should contain all heap-specific policy for invoking a full
duke@435 1955 // collection. invoke_no_policy() will only attempt to compact the heap; it
duke@435 1956 // will do nothing further. If we need to bail out for policy reasons, scavenge
duke@435 1957 // before full gc, or any other specialized behavior, it needs to be added here.
duke@435 1958 //
duke@435 1959 // Note that this method should only be called from the vm_thread while at a
duke@435 1960 // safepoint.
jmasa@1822 1961 //
jmasa@1822 1962 // Note that the all_soft_refs_clear flag in the collector policy
jmasa@1822 1963 // may be true because this method can be called without intervening
jmasa@1822 1964 // activity. For example when the heap space is tight and full measure
jmasa@1822 1965 // are being taken to free space.
duke@435 1966 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
duke@435 1967 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 1968 assert(Thread::current() == (Thread*)VMThread::vm_thread(),
duke@435 1969 "should be in vm thread");
jmasa@1822 1970
duke@435 1971 ParallelScavengeHeap* heap = gc_heap();
duke@435 1972 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1973 assert(!heap->is_gc_active(), "not reentrant");
duke@435 1974
duke@435 1975 PSAdaptiveSizePolicy* policy = heap->size_policy();
jmasa@1822 1976 IsGCActiveMark mark;
jmasa@1822 1977
jmasa@1822 1978 if (ScavengeBeforeFullGC) {
jmasa@1822 1979 PSScavenge::invoke_no_policy();
duke@435 1980 }
jmasa@1822 1981
jmasa@1822 1982 const bool clear_all_soft_refs =
jmasa@1822 1983 heap->collector_policy()->should_clear_all_soft_refs();
jmasa@1822 1984
jmasa@1822 1985 PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
jmasa@1822 1986 maximum_heap_compaction);
duke@435 1987 }
duke@435 1988
jcoomes@810 1989 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
jcoomes@810 1990 size_t addr_region_index = addr_to_region_idx(addr);
jcoomes@810 1991 return region_index == addr_region_index;
duke@435 1992 }
duke@435 1993
duke@435 1994 // This method contains no policy. You should probably
duke@435 1995 // be calling invoke() instead.
jcoomes@3540 1996 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
duke@435 1997 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
duke@435 1998 assert(ref_processor() != NULL, "Sanity");
duke@435 1999
apetrusenko@574 2000 if (GC_locker::check_active_before_gc()) {
jcoomes@3540 2001 return false;
duke@435 2002 }
duke@435 2003
duke@435 2004 TimeStamp marking_start;
duke@435 2005 TimeStamp compaction_start;
duke@435 2006 TimeStamp collection_exit;
duke@435 2007
duke@435 2008 ParallelScavengeHeap* heap = gc_heap();
duke@435 2009 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 2010 PSYoungGen* young_gen = heap->young_gen();
duke@435 2011 PSOldGen* old_gen = heap->old_gen();
duke@435 2012 PSPermGen* perm_gen = heap->perm_gen();
duke@435 2013 PSAdaptiveSizePolicy* size_policy = heap->size_policy();
duke@435 2014
jmasa@1822 2015 // The scope of casr should end after code that can change
jmasa@1822 2016 // CollectorPolicy::_should_clear_all_soft_refs.
jmasa@1822 2017 ClearedAllSoftRefs casr(maximum_heap_compaction,
jmasa@1822 2018 heap->collector_policy());
jmasa@1822 2019
jmasa@698 2020 if (ZapUnusedHeapArea) {
jmasa@698 2021 // Save information needed to minimize mangling
jmasa@698 2022 heap->record_gen_tops_before_GC();
jmasa@698 2023 }
jmasa@698 2024
ysr@1050 2025 heap->pre_full_gc_dump();
ysr@1050 2026
duke@435 2027 _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
duke@435 2028
duke@435 2029 // Make sure data structures are sane, make the heap parsable, and do other
duke@435 2030 // miscellaneous bookkeeping.
duke@435 2031 PreGCValues pre_gc_values;
duke@435 2032 pre_compact(&pre_gc_values);
duke@435 2033
jcoomes@645 2034 // Get the compaction manager reserved for the VM thread.
jcoomes@645 2035 ParCompactionManager* const vmthread_cm =
jcoomes@645 2036 ParCompactionManager::manager_array(gc_task_manager()->workers());
jcoomes@645 2037
duke@435 2038 // Place after pre_compact() where the number of invocations is incremented.
duke@435 2039 AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
duke@435 2040
duke@435 2041 {
duke@435 2042 ResourceMark rm;
duke@435 2043 HandleMark hm;
duke@435 2044
jmasa@3294 2045 // Set the number of GC threads to be used in this collection
jmasa@3294 2046 gc_task_manager()->set_active_gang();
jmasa@3294 2047 gc_task_manager()->task_idle_workers();
jmasa@3294 2048 heap->set_par_threads(gc_task_manager()->active_workers());
jmasa@3294 2049
duke@435 2050 const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
duke@435 2051
duke@435 2052 // This is useful for debugging but don't change the output the
duke@435 2053 // the customer sees.
duke@435 2054 const char* gc_cause_str = "Full GC";
duke@435 2055 if (is_system_gc && PrintGCDetails) {
duke@435 2056 gc_cause_str = "Full GC (System)";
duke@435 2057 }
duke@435 2058 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
duke@435 2059 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
duke@435 2060 TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
duke@435 2061 TraceCollectorStats tcs(counters());
fparain@2888 2062 TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
duke@435 2063
duke@435 2064 if (TraceGen1Time) accumulated_time()->start();
duke@435 2065
duke@435 2066 // Let the size policy know we're starting
duke@435 2067 size_policy->major_collection_begin();
duke@435 2068
duke@435 2069 // When collecting the permanent generation methodOops may be moving,
duke@435 2070 // so we either have to flush all bcp data or convert it into bci.
duke@435 2071 CodeCache::gc_prologue();
duke@435 2072 Threads::gc_prologue();
duke@435 2073
duke@435 2074 COMPILER2_PRESENT(DerivedPointerTable::clear());
duke@435 2075
johnc@3175 2076 ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
ysr@892 2077 ref_processor()->setup_policy(maximum_heap_compaction);
duke@435 2078
duke@435 2079 bool marked_for_unloading = false;
duke@435 2080
duke@435 2081 marking_start.update();
jcoomes@645 2082 marking_phase(vmthread_cm, maximum_heap_compaction);
duke@435 2083
duke@435 2084 #ifndef PRODUCT
duke@435 2085 if (TraceParallelOldGCMarkingPhase) {
duke@435 2086 gclog_or_tty->print_cr("marking_phase: cas_tries %d cas_retries %d "
duke@435 2087 "cas_by_another %d",
duke@435 2088 mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
duke@435 2089 mark_bitmap()->cas_by_another());
duke@435 2090 }
duke@435 2091 #endif // #ifndef PRODUCT
duke@435 2092
duke@435 2093 bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
jcoomes@645 2094 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
duke@435 2095
duke@435 2096 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
duke@435 2097 COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
duke@435 2098
duke@435 2099 // adjust_roots() updates Universe::_intArrayKlassObj which is
duke@435 2100 // needed by the compaction for filling holes in the dense prefix.
duke@435 2101 adjust_roots();
duke@435 2102
duke@435 2103 compaction_start.update();
duke@435 2104 // Does the perm gen always have to be done serially because
duke@435 2105 // klasses are used in the update of an object?
jcoomes@645 2106 compact_perm(vmthread_cm);
duke@435 2107
jcoomes@2783 2108 compact();
duke@435 2109
duke@435 2110 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be
duke@435 2111 // done before resizing.
duke@435 2112 post_compact();
duke@435 2113
duke@435 2114 // Let the size policy know we're done
duke@435 2115 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
duke@435 2116
duke@435 2117 if (UseAdaptiveSizePolicy) {
duke@435 2118 if (PrintAdaptiveSizePolicy) {
duke@435 2119 gclog_or_tty->print("AdaptiveSizeStart: ");
duke@435 2120 gclog_or_tty->stamp();
duke@435 2121 gclog_or_tty->print_cr(" collection: %d ",
duke@435 2122 heap->total_collections());
duke@435 2123 if (Verbose) {
duke@435 2124 gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
duke@435 2125 " perm_gen_capacity: %d ",
duke@435 2126 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
duke@435 2127 perm_gen->capacity_in_bytes());
duke@435 2128 }
duke@435 2129 }
duke@435 2130
duke@435 2131 // Don't check if the size_policy is ready here. Let
duke@435 2132 // the size_policy check that internally.
duke@435 2133 if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
duke@435 2134 ((gc_cause != GCCause::_java_lang_system_gc) ||
duke@435 2135 UseAdaptiveSizePolicyWithSystemGC)) {
duke@435 2136 // Calculate optimal free space amounts
duke@435 2137 assert(young_gen->max_size() >
duke@435 2138 young_gen->from_space()->capacity_in_bytes() +
duke@435 2139 young_gen->to_space()->capacity_in_bytes(),
duke@435 2140 "Sizes of space in young gen are out-of-bounds");
duke@435 2141 size_t max_eden_size = young_gen->max_size() -
duke@435 2142 young_gen->from_space()->capacity_in_bytes() -
duke@435 2143 young_gen->to_space()->capacity_in_bytes();
jmasa@698 2144 size_policy->compute_generation_free_space(
jmasa@698 2145 young_gen->used_in_bytes(),
jmasa@698 2146 young_gen->eden_space()->used_in_bytes(),
jmasa@698 2147 old_gen->used_in_bytes(),
jmasa@698 2148 perm_gen->used_in_bytes(),
jmasa@698 2149 young_gen->eden_space()->capacity_in_bytes(),
jmasa@698 2150 old_gen->max_gen_size(),
jmasa@698 2151 max_eden_size,
jmasa@698 2152 true /* full gc*/,
jmasa@1822 2153 gc_cause,
jmasa@1822 2154 heap->collector_policy());
jmasa@698 2155
jmasa@698 2156 heap->resize_old_gen(
jmasa@698 2157 size_policy->calculated_old_free_size_in_bytes());
duke@435 2158
duke@435 2159 // Don't resize the young generation at an major collection. A
duke@435 2160 // desired young generation size may have been calculated but
duke@435 2161 // resizing the young generation complicates the code because the
duke@435 2162 // resizing of the old generation may have moved the boundary
duke@435 2163 // between the young generation and the old generation. Let the
duke@435 2164 // young generation resizing happen at the minor collections.
duke@435 2165 }
duke@435 2166 if (PrintAdaptiveSizePolicy) {
duke@435 2167 gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
duke@435 2168 heap->total_collections());
duke@435 2169 }
duke@435 2170 }
duke@435 2171
duke@435 2172 if (UsePerfData) {
duke@435 2173 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
duke@435 2174 counters->update_counters();
duke@435 2175 counters->update_old_capacity(old_gen->capacity_in_bytes());
duke@435 2176 counters->update_young_capacity(young_gen->capacity_in_bytes());
duke@435 2177 }
duke@435 2178
duke@435 2179 heap->resize_all_tlabs();
duke@435 2180
duke@435 2181 // We collected the perm gen, so we'll resize it here.
duke@435 2182 perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
duke@435 2183
duke@435 2184 if (TraceGen1Time) accumulated_time()->stop();
duke@435 2185
duke@435 2186 if (PrintGC) {
duke@435 2187 if (PrintGCDetails) {
duke@435 2188 // No GC timestamp here. This is after GC so it would be confusing.
duke@435 2189 young_gen->print_used_change(pre_gc_values.young_gen_used());
duke@435 2190 old_gen->print_used_change(pre_gc_values.old_gen_used());
duke@435 2191 heap->print_heap_change(pre_gc_values.heap_used());
duke@435 2192 // Print perm gen last (print_heap_change() excludes the perm gen).
duke@435 2193 perm_gen->print_used_change(pre_gc_values.perm_gen_used());
duke@435 2194 } else {
duke@435 2195 heap->print_heap_change(pre_gc_values.heap_used());
duke@435 2196 }
duke@435 2197 }
duke@435 2198
duke@435 2199 // Track memory usage and detect low memory
duke@435 2200 MemoryService::track_memory_usage();
duke@435 2201 heap->update_counters();
jmasa@3294 2202 gc_task_manager()->release_idle_workers();
duke@435 2203 }
duke@435 2204
jcoomes@2191 2205 #ifdef ASSERT
jcoomes@2191 2206 for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
jcoomes@2191 2207 ParCompactionManager* const cm =
jcoomes@2191 2208 ParCompactionManager::manager_array(int(i));
jcoomes@2191 2209 assert(cm->marking_stack()->is_empty(), "should be empty");
jmasa@3294 2210 assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
jcoomes@2191 2211 assert(cm->revisit_klass_stack()->is_empty(), "should be empty");
jcoomes@2191 2212 }
jcoomes@2191 2213 #endif // ASSERT
jcoomes@2191 2214
duke@435 2215 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 2216 HandleMark hm; // Discard invalid handles created during verification
duke@435 2217 gclog_or_tty->print(" VerifyAfterGC:");
duke@435 2218 Universe::verify(false);
duke@435 2219 }
duke@435 2220
duke@435 2221 // Re-verify object start arrays
duke@435 2222 if (VerifyObjectStartArray &&
duke@435 2223 VerifyAfterGC) {
duke@435 2224 old_gen->verify_object_start_array();
duke@435 2225 perm_gen->verify_object_start_array();
duke@435 2226 }
duke@435 2227
jmasa@698 2228 if (ZapUnusedHeapArea) {
jmasa@698 2229 old_gen->object_space()->check_mangled_unused_area_complete();
jmasa@698 2230 perm_gen->object_space()->check_mangled_unused_area_complete();
jmasa@698 2231 }
jmasa@698 2232
duke@435 2233 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
duke@435 2234
duke@435 2235 collection_exit.update();
duke@435 2236
never@3499 2237 heap->print_heap_after_gc();
duke@435 2238 if (PrintGCTaskTimeStamps) {
duke@435 2239 gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
duke@435 2240 INT64_FORMAT,
duke@435 2241 marking_start.ticks(), compaction_start.ticks(),
duke@435 2242 collection_exit.ticks());
duke@435 2243 gc_task_manager()->print_task_time_stamps();
duke@435 2244 }
jmasa@981 2245
ysr@1050 2246 heap->post_full_gc_dump();
ysr@1050 2247
jmasa@981 2248 #ifdef TRACESPINNING
jmasa@981 2249 ParallelTaskTerminator::print_termination_counts();
jmasa@981 2250 #endif
jcoomes@3540 2251
jcoomes@3540 2252 return true;
duke@435 2253 }
duke@435 2254
duke@435 2255 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
duke@435 2256 PSYoungGen* young_gen,
duke@435 2257 PSOldGen* old_gen) {
duke@435 2258 MutableSpace* const eden_space = young_gen->eden_space();
duke@435 2259 assert(!eden_space->is_empty(), "eden must be non-empty");
duke@435 2260 assert(young_gen->virtual_space()->alignment() ==
duke@435 2261 old_gen->virtual_space()->alignment(), "alignments do not match");
duke@435 2262
duke@435 2263 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
duke@435 2264 return false;
duke@435 2265 }
duke@435 2266
duke@435 2267 // Both generations must be completely committed.
duke@435 2268 if (young_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2269 return false;
duke@435 2270 }
duke@435 2271 if (old_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2272 return false;
duke@435 2273 }
duke@435 2274
duke@435 2275 // Figure out how much to take from eden. Include the average amount promoted
duke@435 2276 // in the total; otherwise the next young gen GC will simply bail out to a
duke@435 2277 // full GC.
duke@435 2278 const size_t alignment = old_gen->virtual_space()->alignment();
duke@435 2279 const size_t eden_used = eden_space->used_in_bytes();
duke@435 2280 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
duke@435 2281 const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
duke@435 2282 const size_t eden_capacity = eden_space->capacity_in_bytes();
duke@435 2283
duke@435 2284 if (absorb_size >= eden_capacity) {
duke@435 2285 return false; // Must leave some space in eden.
duke@435 2286 }
duke@435 2287
duke@435 2288 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
duke@435 2289 if (new_young_size < young_gen->min_gen_size()) {
duke@435 2290 return false; // Respect young gen minimum size.
duke@435 2291 }
duke@435 2292
duke@435 2293 if (TraceAdaptiveGCBoundary && Verbose) {
duke@435 2294 gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: "
duke@435 2295 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
duke@435 2296 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
duke@435 2297 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
duke@435 2298 absorb_size / K,
duke@435 2299 eden_capacity / K, (eden_capacity - absorb_size) / K,
duke@435 2300 young_gen->from_space()->used_in_bytes() / K,
duke@435 2301 young_gen->to_space()->used_in_bytes() / K,
duke@435 2302 young_gen->capacity_in_bytes() / K, new_young_size / K);
duke@435 2303 }
duke@435 2304
duke@435 2305 // Fill the unused part of the old gen.
duke@435 2306 MutableSpace* const old_space = old_gen->object_space();
jcoomes@916 2307 HeapWord* const unused_start = old_space->top();
jcoomes@916 2308 size_t const unused_words = pointer_delta(old_space->end(), unused_start);
jcoomes@916 2309
jcoomes@916 2310 if (unused_words > 0) {
jcoomes@916 2311 if (unused_words < CollectedHeap::min_fill_size()) {
jcoomes@916 2312 return false; // If the old gen cannot be filled, must give up.
jcoomes@916 2313 }
jcoomes@916 2314 CollectedHeap::fill_with_objects(unused_start, unused_words);
duke@435 2315 }
duke@435 2316
duke@435 2317 // Take the live data from eden and set both top and end in the old gen to
duke@435 2318 // eden top. (Need to set end because reset_after_change() mangles the region
duke@435 2319 // from end to virtual_space->high() in debug builds).
duke@435 2320 HeapWord* const new_top = eden_space->top();
duke@435 2321 old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
duke@435 2322 absorb_size);
duke@435 2323 young_gen->reset_after_change();
duke@435 2324 old_space->set_top(new_top);
duke@435 2325 old_space->set_end(new_top);
duke@435 2326 old_gen->reset_after_change();
duke@435 2327
duke@435 2328 // Update the object start array for the filler object and the data from eden.
duke@435 2329 ObjectStartArray* const start_array = old_gen->start_array();
jcoomes@916 2330 for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
jcoomes@916 2331 start_array->allocate_block(p);
duke@435 2332 }
duke@435 2333
duke@435 2334 // Could update the promoted average here, but it is not typically updated at
duke@435 2335 // full GCs and the value to use is unclear. Something like
duke@435 2336 //
duke@435 2337 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
duke@435 2338
duke@435 2339 size_policy->set_bytes_absorbed_from_eden(absorb_size);
duke@435 2340 return true;
duke@435 2341 }
duke@435 2342
duke@435 2343 GCTaskManager* const PSParallelCompact::gc_task_manager() {
duke@435 2344 assert(ParallelScavengeHeap::gc_task_manager() != NULL,
duke@435 2345 "shouldn't return NULL");
duke@435 2346 return ParallelScavengeHeap::gc_task_manager();
duke@435 2347 }
duke@435 2348
duke@435 2349 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
duke@435 2350 bool maximum_heap_compaction) {
duke@435 2351 // Recursively traverse all live objects and mark them
duke@435 2352 TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
duke@435 2353
duke@435 2354 ParallelScavengeHeap* heap = gc_heap();
duke@435 2355 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jmasa@3294 2356 uint active_gc_threads = heap->gc_task_manager()->active_workers();
jcoomes@810 2357 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
jmasa@3294 2358 ParallelTaskTerminator terminator(active_gc_threads, qset);
duke@435 2359
duke@435 2360 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
duke@435 2361 PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
duke@435 2362
duke@435 2363 {
duke@435 2364 TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
jrose@1424 2365 ParallelScavengeHeap::ParStrongRootsScope psrs;
duke@435 2366
duke@435 2367 GCTaskQueue* q = GCTaskQueue::create();
duke@435 2368
duke@435 2369 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
duke@435 2370 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
duke@435 2371 // We scan the thread roots in parallel
duke@435 2372 Threads::create_thread_roots_marking_tasks(q);
duke@435 2373 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
duke@435 2374 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
duke@435 2375 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
duke@435 2376 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
duke@435 2377 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
jrose@1424 2378 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
duke@435 2379
jmasa@3294 2380 if (active_gc_threads > 1) {
jmasa@3294 2381 for (uint j = 0; j < active_gc_threads; j++) {
duke@435 2382 q->enqueue(new StealMarkingTask(&terminator));
duke@435 2383 }
duke@435 2384 }
duke@435 2385
jmasa@3294 2386 gc_task_manager()->execute_and_wait(q);
duke@435 2387 }
duke@435 2388
duke@435 2389 // Process reference objects found during marking
duke@435 2390 {
duke@435 2391 TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
duke@435 2392 if (ref_processor()->processing_is_mt()) {
duke@435 2393 RefProcTaskExecutor task_executor;
duke@435 2394 ref_processor()->process_discovered_references(
ysr@888 2395 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
ysr@888 2396 &task_executor);
duke@435 2397 } else {
duke@435 2398 ref_processor()->process_discovered_references(
ysr@888 2399 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
duke@435 2400 }
duke@435 2401 }
duke@435 2402
duke@435 2403 TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
duke@435 2404 // Follow system dictionary roots and unload classes.
duke@435 2405 bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
duke@435 2406
duke@435 2407 // Follow code cache roots.
duke@435 2408 CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
duke@435 2409 purged_class);
jcoomes@1746 2410 cm->follow_marking_stacks(); // Flush marking stack.
duke@435 2411
duke@435 2412 // Update subklass/sibling/implementor links of live klasses
duke@435 2413 // revisit_klass_stack is used in follow_weak_klass_links().
ysr@1376 2414 follow_weak_klass_links();
ysr@1376 2415
ysr@1376 2416 // Revisit memoized MDO's and clear any unmarked weak refs
ysr@1376 2417 follow_mdo_weak_refs();
duke@435 2418
coleenp@2497 2419 // Visit interned string tables and delete unmarked oops
duke@435 2420 StringTable::unlink(is_alive_closure());
coleenp@2497 2421 // Clean up unreferenced symbols in symbol table.
coleenp@2497 2422 SymbolTable::unlink();
duke@435 2423
jcoomes@1746 2424 assert(cm->marking_stacks_empty(), "marking stacks should be empty");
duke@435 2425 }
duke@435 2426
duke@435 2427 // This should be moved to the shared markSweep code!
duke@435 2428 class PSAlwaysTrueClosure: public BoolObjectClosure {
duke@435 2429 public:
duke@435 2430 void do_object(oop p) { ShouldNotReachHere(); }
duke@435 2431 bool do_object_b(oop p) { return true; }
duke@435 2432 };
duke@435 2433 static PSAlwaysTrueClosure always_true;
duke@435 2434
duke@435 2435 void PSParallelCompact::adjust_roots() {
duke@435 2436 // Adjust the pointers to reflect the new locations
duke@435 2437 TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
duke@435 2438
duke@435 2439 // General strong roots.
duke@435 2440 Universe::oops_do(adjust_root_pointer_closure());
duke@435 2441 JNIHandles::oops_do(adjust_root_pointer_closure()); // Global (strong) JNI handles
jrose@1424 2442 Threads::oops_do(adjust_root_pointer_closure(), NULL);
duke@435 2443 ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
duke@435 2444 FlatProfiler::oops_do(adjust_root_pointer_closure());
duke@435 2445 Management::oops_do(adjust_root_pointer_closure());
duke@435 2446 JvmtiExport::oops_do(adjust_root_pointer_closure());
duke@435 2447 // SO_AllClasses
duke@435 2448 SystemDictionary::oops_do(adjust_root_pointer_closure());
duke@435 2449
duke@435 2450 // Now adjust pointers in remaining weak roots. (All of which should
duke@435 2451 // have been cleared if they pointed to non-surviving objects.)
duke@435 2452 // Global (weak) JNI handles
duke@435 2453 JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
duke@435 2454
duke@435 2455 CodeCache::oops_do(adjust_pointer_closure());
duke@435 2456 StringTable::oops_do(adjust_root_pointer_closure());
duke@435 2457 ref_processor()->weak_oops_do(adjust_root_pointer_closure());
duke@435 2458 // Roots were visited so references into the young gen in roots
duke@435 2459 // may have been scanned. Process them also.
duke@435 2460 // Should the reference processor have a span that excludes
duke@435 2461 // young gen objects?
duke@435 2462 PSScavenge::reference_processor()->weak_oops_do(
duke@435 2463 adjust_root_pointer_closure());
duke@435 2464 }
duke@435 2465
duke@435 2466 void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
duke@435 2467 TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
duke@435 2468 // trace("4");
duke@435 2469
duke@435 2470 gc_heap()->perm_gen()->start_array()->reset();
duke@435 2471 move_and_update(cm, perm_space_id);
duke@435 2472 }
duke@435 2473
jcoomes@810 2474 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
jcoomes@810 2475 uint parallel_gc_threads)
jcoomes@810 2476 {
duke@435 2477 TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
duke@435 2478
jmasa@3294 2479 // Find the threads that are active
jmasa@3294 2480 unsigned int which = 0;
jmasa@3294 2481
jmasa@3294 2482 const uint task_count = MAX2(parallel_gc_threads, 1U);
jmasa@3294 2483 for (uint j = 0; j < task_count; j++) {
jmasa@2188 2484 q->enqueue(new DrainStacksCompactionTask(j));
jmasa@3294 2485 ParCompactionManager::verify_region_list_empty(j);
jmasa@3294 2486 // Set the region stacks variables to "no" region stack values
jmasa@3294 2487 // so that they will be recognized and needing a region stack
jmasa@3294 2488 // in the stealing tasks if they do not get one by executing
jmasa@3294 2489 // a draining stack.
jmasa@3294 2490 ParCompactionManager* cm = ParCompactionManager::manager_array(j);
jmasa@3294 2491 cm->set_region_stack(NULL);
jmasa@3294 2492 cm->set_region_stack_index((uint)max_uintx);
duke@435 2493 }
jmasa@3294 2494 ParCompactionManager::reset_recycled_stack_index();
duke@435 2495
jcoomes@810 2496 // Find all regions that are available (can be filled immediately) and
duke@435 2497 // distribute them to the thread stacks. The iteration is done in reverse
jcoomes@810 2498 // order (high to low) so the regions will be removed in ascending order.
duke@435 2499
duke@435 2500 const ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2501
jcoomes@810 2502 size_t fillable_regions = 0; // A count for diagnostic purposes.
jmasa@3294 2503 // A region index which corresponds to the tasks created above.
jmasa@3294 2504 // "which" must be 0 <= which < task_count
jmasa@3294 2505
jmasa@3294 2506 which = 0;
duke@435 2507 for (unsigned int id = to_space_id; id > perm_space_id; --id) {
duke@435 2508 SpaceInfo* const space_info = _space_info + id;
duke@435 2509 MutableSpace* const space = space_info->space();
duke@435 2510 HeapWord* const new_top = space_info->new_top();
duke@435 2511
jcoomes@810 2512 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
jcoomes@810 2513 const size_t end_region =
jcoomes@810 2514 sd.addr_to_region_idx(sd.region_align_up(new_top));
jcoomes@810 2515 assert(end_region > 0, "perm gen cannot be empty");
jcoomes@810 2516
jcoomes@810 2517 for (size_t cur = end_region - 1; cur >= beg_region; --cur) {
jcoomes@810 2518 if (sd.region(cur)->claim_unsafe()) {
jmasa@3294 2519 ParCompactionManager::region_list_push(which, cur);
duke@435 2520
duke@435 2521 if (TraceParallelOldGCCompactionPhase && Verbose) {
jcoomes@810 2522 const size_t count_mod_8 = fillable_regions & 7;
duke@435 2523 if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
jcoomes@699 2524 gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
duke@435 2525 if (count_mod_8 == 7) gclog_or_tty->cr();
duke@435 2526 }
duke@435 2527
jcoomes@810 2528 NOT_PRODUCT(++fillable_regions;)
jcoomes@810 2529
jmasa@3294 2530 // Assign regions to tasks in round-robin fashion.
duke@435 2531 if (++which == task_count) {
jmasa@3294 2532 assert(which <= parallel_gc_threads,
jmasa@3294 2533 "Inconsistent number of workers");
duke@435 2534 which = 0;
duke@435 2535 }
duke@435 2536 }
duke@435 2537 }
duke@435 2538 }
duke@435 2539
duke@435 2540 if (TraceParallelOldGCCompactionPhase) {
jcoomes@810 2541 if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
jcoomes@810 2542 gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
duke@435 2543 }
duke@435 2544 }
duke@435 2545
duke@435 2546 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
duke@435 2547
duke@435 2548 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
duke@435 2549 uint parallel_gc_threads) {
duke@435 2550 TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
duke@435 2551
duke@435 2552 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2553
duke@435 2554 // Iterate over all the spaces adding tasks for updating
jcoomes@810 2555 // regions in the dense prefix. Assume that 1 gc thread
duke@435 2556 // will work on opening the gaps and the remaining gc threads
duke@435 2557 // will work on the dense prefix.
jcoomes@917 2558 unsigned int space_id;
jcoomes@917 2559 for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
duke@435 2560 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
duke@435 2561 const MutableSpace* const space = _space_info[space_id].space();
duke@435 2562
duke@435 2563 if (dense_prefix_end == space->bottom()) {
duke@435 2564 // There is no dense prefix for this space.
duke@435 2565 continue;
duke@435 2566 }
duke@435 2567
jcoomes@810 2568 // The dense prefix is before this region.
jcoomes@810 2569 size_t region_index_end_dense_prefix =
jcoomes@810 2570 sd.addr_to_region_idx(dense_prefix_end);
jcoomes@810 2571 RegionData* const dense_prefix_cp =
jcoomes@810 2572 sd.region(region_index_end_dense_prefix);
duke@435 2573 assert(dense_prefix_end == space->end() ||
duke@435 2574 dense_prefix_cp->available() ||
duke@435 2575 dense_prefix_cp->claimed(),
jcoomes@810 2576 "The region after the dense prefix should always be ready to fill");
jcoomes@810 2577
jcoomes@810 2578 size_t region_index_start = sd.addr_to_region_idx(space->bottom());
duke@435 2579
duke@435 2580 // Is there dense prefix work?
jcoomes@810 2581 size_t total_dense_prefix_regions =
jcoomes@810 2582 region_index_end_dense_prefix - region_index_start;
jcoomes@810 2583 // How many regions of the dense prefix should be given to
duke@435 2584 // each thread?
jcoomes@810 2585 if (total_dense_prefix_regions > 0) {
duke@435 2586 uint tasks_for_dense_prefix = 1;
jcoomes@2783 2587 if (total_dense_prefix_regions <=
jcoomes@2783 2588 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
jcoomes@2783 2589 // Don't over partition. This assumes that
jcoomes@2783 2590 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
jcoomes@2783 2591 // so there are not many regions to process.
jcoomes@2783 2592 tasks_for_dense_prefix = parallel_gc_threads;
jcoomes@2783 2593 } else {
jcoomes@2783 2594 // Over partition
jcoomes@2783 2595 tasks_for_dense_prefix = parallel_gc_threads *
jcoomes@2783 2596 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
duke@435 2597 }
jcoomes@810 2598 size_t regions_per_thread = total_dense_prefix_regions /
duke@435 2599 tasks_for_dense_prefix;
jcoomes@810 2600 // Give each thread at least 1 region.
jcoomes@810 2601 if (regions_per_thread == 0) {
jcoomes@810 2602 regions_per_thread = 1;
duke@435 2603 }
duke@435 2604
duke@435 2605 for (uint k = 0; k < tasks_for_dense_prefix; k++) {
jcoomes@810 2606 if (region_index_start >= region_index_end_dense_prefix) {
duke@435 2607 break;
duke@435 2608 }
jcoomes@810 2609 // region_index_end is not processed
jcoomes@810 2610 size_t region_index_end = MIN2(region_index_start + regions_per_thread,
jcoomes@810 2611 region_index_end_dense_prefix);
jcoomes@917 2612 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2613 region_index_start,
jcoomes@917 2614 region_index_end));
jcoomes@810 2615 region_index_start = region_index_end;
duke@435 2616 }
duke@435 2617 }
duke@435 2618 // This gets any part of the dense prefix that did not
duke@435 2619 // fit evenly.
jcoomes@810 2620 if (region_index_start < region_index_end_dense_prefix) {
jcoomes@917 2621 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2622 region_index_start,
jcoomes@917 2623 region_index_end_dense_prefix));
duke@435 2624 }
jcoomes@917 2625 }
duke@435 2626 }
duke@435 2627
jcoomes@810 2628 void PSParallelCompact::enqueue_region_stealing_tasks(
duke@435 2629 GCTaskQueue* q,
duke@435 2630 ParallelTaskTerminator* terminator_ptr,
duke@435 2631 uint parallel_gc_threads) {
duke@435 2632 TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
duke@435 2633
jcoomes@810 2634 // Once a thread has drained it's stack, it should try to steal regions from
duke@435 2635 // other threads.
duke@435 2636 if (parallel_gc_threads > 1) {
duke@435 2637 for (uint j = 0; j < parallel_gc_threads; j++) {
jcoomes@810 2638 q->enqueue(new StealRegionCompactionTask(terminator_ptr));
duke@435 2639 }
duke@435 2640 }
duke@435 2641 }
duke@435 2642
duke@435 2643 void PSParallelCompact::compact() {
duke@435 2644 // trace("5");
duke@435 2645 TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
duke@435 2646
duke@435 2647 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 2648 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 2649 PSOldGen* old_gen = heap->old_gen();
duke@435 2650 old_gen->start_array()->reset();
duke@435 2651 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jmasa@3294 2652 uint active_gc_threads = heap->gc_task_manager()->active_workers();
jcoomes@810 2653 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
jmasa@3294 2654 ParallelTaskTerminator terminator(active_gc_threads, qset);
duke@435 2655
duke@435 2656 GCTaskQueue* q = GCTaskQueue::create();
jmasa@3294 2657 enqueue_region_draining_tasks(q, active_gc_threads);
jmasa@3294 2658 enqueue_dense_prefix_tasks(q, active_gc_threads);
jmasa@3294 2659 enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
duke@435 2660
duke@435 2661 {
duke@435 2662 TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
duke@435 2663
jmasa@3294 2664 gc_task_manager()->execute_and_wait(q);
duke@435 2665
duke@435 2666 #ifdef ASSERT
jcoomes@810 2667 // Verify that all regions have been processed before the deferred updates.
duke@435 2668 // Note that perm_space_id is skipped; this type of verification is not
jcoomes@810 2669 // valid until the perm gen is compacted by regions.
duke@435 2670 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2671 verify_complete(SpaceId(id));
duke@435 2672 }
duke@435 2673 #endif
duke@435 2674 }
duke@435 2675
duke@435 2676 {
duke@435 2677 // Update the deferred objects, if any. Any compaction manager can be used.
duke@435 2678 TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
duke@435 2679 ParCompactionManager* cm = ParCompactionManager::manager_array(0);
duke@435 2680 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2681 update_deferred_objects(cm, SpaceId(id));
duke@435 2682 }
duke@435 2683 }
duke@435 2684 }
duke@435 2685
duke@435 2686 #ifdef ASSERT
duke@435 2687 void PSParallelCompact::verify_complete(SpaceId space_id) {
jcoomes@810 2688 // All Regions between space bottom() to new_top() should be marked as filled
jcoomes@810 2689 // and all Regions between new_top() and top() should be available (i.e.,
duke@435 2690 // should have been emptied).
duke@435 2691 ParallelCompactData& sd = summary_data();
duke@435 2692 SpaceInfo si = _space_info[space_id];
jcoomes@810 2693 HeapWord* new_top_addr = sd.region_align_up(si.new_top());
jcoomes@810 2694 HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
jcoomes@810 2695 const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
jcoomes@810 2696 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
jcoomes@810 2697 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
duke@435 2698
duke@435 2699 bool issued_a_warning = false;
duke@435 2700
jcoomes@810 2701 size_t cur_region;
jcoomes@810 2702 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
jcoomes@810 2703 const RegionData* const c = sd.region(cur_region);
duke@435 2704 if (!c->completed()) {
jcoomes@810 2705 warning("region " SIZE_FORMAT " not filled: "
duke@435 2706 "destination_count=" SIZE_FORMAT,
jcoomes@810 2707 cur_region, c->destination_count());
duke@435 2708 issued_a_warning = true;
duke@435 2709 }
duke@435 2710 }
duke@435 2711
jcoomes@810 2712 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
jcoomes@810 2713 const RegionData* const c = sd.region(cur_region);
duke@435 2714 if (!c->available()) {
jcoomes@810 2715 warning("region " SIZE_FORMAT " not empty: "
duke@435 2716 "destination_count=" SIZE_FORMAT,
jcoomes@810 2717 cur_region, c->destination_count());
duke@435 2718 issued_a_warning = true;
duke@435 2719 }
duke@435 2720 }
duke@435 2721
duke@435 2722 if (issued_a_warning) {
jcoomes@810 2723 print_region_ranges();
duke@435 2724 }
duke@435 2725 }
duke@435 2726 #endif // #ifdef ASSERT
duke@435 2727
duke@435 2728 void
ysr@1376 2729 PSParallelCompact::follow_weak_klass_links() {
duke@435 2730 // All klasses on the revisit stack are marked at this point.
duke@435 2731 // Update and follow all subklass, sibling and implementor links.
jmasa@3294 2732 // Check all the stacks here even if not all the workers are active.
jmasa@3294 2733 // There is no accounting which indicates which stacks might have
jmasa@3294 2734 // contents to be followed.
ysr@1376 2735 if (PrintRevisitStats) {
jcoomes@2191 2736 gclog_or_tty->print_cr("#classes in system dictionary = %d",
jcoomes@2191 2737 SystemDictionary::number_of_classes());
ysr@1376 2738 }
ysr@1376 2739 for (uint i = 0; i < ParallelGCThreads + 1; i++) {
duke@435 2740 ParCompactionManager* cm = ParCompactionManager::manager_array(i);
duke@435 2741 KeepAliveClosure keep_alive_closure(cm);
jcoomes@2191 2742 Stack<Klass*>* const rks = cm->revisit_klass_stack();
ysr@1376 2743 if (PrintRevisitStats) {
jcoomes@2191 2744 gclog_or_tty->print_cr("Revisit klass stack[%u] length = " SIZE_FORMAT,
jcoomes@2191 2745 i, rks->size());
ysr@1376 2746 }
jcoomes@2191 2747 while (!rks->is_empty()) {
jcoomes@2191 2748 Klass* const k = rks->pop();
jcoomes@2191 2749 k->follow_weak_klass_links(is_alive_closure(), &keep_alive_closure);
duke@435 2750 }
jcoomes@2191 2751
jcoomes@1746 2752 cm->follow_marking_stacks();
duke@435 2753 }
duke@435 2754 }
duke@435 2755
duke@435 2756 void
duke@435 2757 PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
duke@435 2758 cm->revisit_klass_stack()->push(k);
duke@435 2759 }
duke@435 2760
ysr@1376 2761 void PSParallelCompact::revisit_mdo(ParCompactionManager* cm, DataLayout* p) {
ysr@1376 2762 cm->revisit_mdo_stack()->push(p);
ysr@1376 2763 }
ysr@1376 2764
ysr@1376 2765 void PSParallelCompact::follow_mdo_weak_refs() {
ysr@1376 2766 // All strongly reachable oops have been marked at this point;
ysr@1376 2767 // we can visit and clear any weak references from MDO's which
ysr@1376 2768 // we memoized during the strong marking phase.
ysr@1376 2769 if (PrintRevisitStats) {
jcoomes@2191 2770 gclog_or_tty->print_cr("#classes in system dictionary = %d",
jcoomes@2191 2771 SystemDictionary::number_of_classes());
ysr@1376 2772 }
ysr@1376 2773 for (uint i = 0; i < ParallelGCThreads + 1; i++) {
ysr@1376 2774 ParCompactionManager* cm = ParCompactionManager::manager_array(i);
jcoomes@2191 2775 Stack<DataLayout*>* rms = cm->revisit_mdo_stack();
ysr@1376 2776 if (PrintRevisitStats) {
jcoomes@2191 2777 gclog_or_tty->print_cr("Revisit MDO stack[%u] size = " SIZE_FORMAT,
jcoomes@2191 2778 i, rms->size());
ysr@1376 2779 }
jcoomes@2191 2780 while (!rms->is_empty()) {
jcoomes@2191 2781 rms->pop()->follow_weak_refs(is_alive_closure());
ysr@1376 2782 }
jcoomes@2191 2783
jcoomes@1746 2784 cm->follow_marking_stacks();
ysr@1376 2785 }
ysr@1376 2786 }
ysr@1376 2787
ysr@1376 2788
duke@435 2789 #ifdef VALIDATE_MARK_SWEEP
duke@435 2790
coleenp@548 2791 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
duke@435 2792 if (!ValidateMarkSweep)
duke@435 2793 return;
duke@435 2794
duke@435 2795 if (!isroot) {
duke@435 2796 if (_pointer_tracking) {
duke@435 2797 guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
duke@435 2798 _adjusted_pointers->remove(p);
duke@435 2799 }
duke@435 2800 } else {
duke@435 2801 ptrdiff_t index = _root_refs_stack->find(p);
duke@435 2802 if (index != -1) {
duke@435 2803 int l = _root_refs_stack->length();
duke@435 2804 if (l > 0 && l - 1 != index) {
coleenp@548 2805 void* last = _root_refs_stack->pop();
duke@435 2806 assert(last != p, "should be different");
duke@435 2807 _root_refs_stack->at_put(index, last);
duke@435 2808 } else {
duke@435 2809 _root_refs_stack->remove(p);
duke@435 2810 }
duke@435 2811 }
duke@435 2812 }
duke@435 2813 }
duke@435 2814
duke@435 2815
coleenp@548 2816 void PSParallelCompact::check_adjust_pointer(void* p) {
duke@435 2817 _adjusted_pointers->push(p);
duke@435 2818 }
duke@435 2819
duke@435 2820
duke@435 2821 class AdjusterTracker: public OopClosure {
duke@435 2822 public:
duke@435 2823 AdjusterTracker() {};
coleenp@548 2824 void do_oop(oop* o) { PSParallelCompact::check_adjust_pointer(o); }
coleenp@548 2825 void do_oop(narrowOop* o) { PSParallelCompact::check_adjust_pointer(o); }
duke@435 2826 };
duke@435 2827
duke@435 2828
duke@435 2829 void PSParallelCompact::track_interior_pointers(oop obj) {
duke@435 2830 if (ValidateMarkSweep) {
duke@435 2831 _adjusted_pointers->clear();
duke@435 2832 _pointer_tracking = true;
duke@435 2833
duke@435 2834 AdjusterTracker checker;
duke@435 2835 obj->oop_iterate(&checker);
duke@435 2836 }
duke@435 2837 }
duke@435 2838
duke@435 2839
duke@435 2840 void PSParallelCompact::check_interior_pointers() {
duke@435 2841 if (ValidateMarkSweep) {
duke@435 2842 _pointer_tracking = false;
duke@435 2843 guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
duke@435 2844 }
duke@435 2845 }
duke@435 2846
duke@435 2847
duke@435 2848 void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
duke@435 2849 if (ValidateMarkSweep) {
duke@435 2850 guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
duke@435 2851 _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
duke@435 2852 }
duke@435 2853 }
duke@435 2854
duke@435 2855
duke@435 2856 void PSParallelCompact::register_live_oop(oop p, size_t size) {
duke@435 2857 if (ValidateMarkSweep) {
duke@435 2858 _live_oops->push(p);
duke@435 2859 _live_oops_size->push(size);
duke@435 2860 _live_oops_index++;
duke@435 2861 }
duke@435 2862 }
duke@435 2863
duke@435 2864 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
duke@435 2865 if (ValidateMarkSweep) {
duke@435 2866 oop obj = _live_oops->at((int)_live_oops_index);
duke@435 2867 guarantee(obj == p, "should be the same object");
duke@435 2868 guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
duke@435 2869 _live_oops_index++;
duke@435 2870 }
duke@435 2871 }
duke@435 2872
duke@435 2873 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
duke@435 2874 HeapWord* compaction_top) {
duke@435 2875 assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
duke@435 2876 "should be moved to forwarded location");
duke@435 2877 if (ValidateMarkSweep) {
duke@435 2878 PSParallelCompact::validate_live_oop(oop(q), size);
duke@435 2879 _live_oops_moved_to->push(oop(compaction_top));
duke@435 2880 }
duke@435 2881 if (RecordMarkSweepCompaction) {
duke@435 2882 _cur_gc_live_oops->push(q);
duke@435 2883 _cur_gc_live_oops_moved_to->push(compaction_top);
duke@435 2884 _cur_gc_live_oops_size->push(size);
duke@435 2885 }
duke@435 2886 }
duke@435 2887
duke@435 2888
duke@435 2889 void PSParallelCompact::compaction_complete() {
duke@435 2890 if (RecordMarkSweepCompaction) {
duke@435 2891 GrowableArray<HeapWord*>* _tmp_live_oops = _cur_gc_live_oops;
duke@435 2892 GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
duke@435 2893 GrowableArray<size_t> * _tmp_live_oops_size = _cur_gc_live_oops_size;
duke@435 2894
duke@435 2895 _cur_gc_live_oops = _last_gc_live_oops;
duke@435 2896 _cur_gc_live_oops_moved_to = _last_gc_live_oops_moved_to;
duke@435 2897 _cur_gc_live_oops_size = _last_gc_live_oops_size;
duke@435 2898 _last_gc_live_oops = _tmp_live_oops;
duke@435 2899 _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
duke@435 2900 _last_gc_live_oops_size = _tmp_live_oops_size;
duke@435 2901 }
duke@435 2902 }
duke@435 2903
duke@435 2904
duke@435 2905 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
duke@435 2906 if (!RecordMarkSweepCompaction) {
duke@435 2907 tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
duke@435 2908 return;
duke@435 2909 }
duke@435 2910
duke@435 2911 if (_last_gc_live_oops == NULL) {
duke@435 2912 tty->print_cr("No compaction information gathered yet");
duke@435 2913 return;
duke@435 2914 }
duke@435 2915
duke@435 2916 for (int i = 0; i < _last_gc_live_oops->length(); i++) {
duke@435 2917 HeapWord* old_oop = _last_gc_live_oops->at(i);
duke@435 2918 size_t sz = _last_gc_live_oops_size->at(i);
duke@435 2919 if (old_oop <= q && q < (old_oop + sz)) {
duke@435 2920 HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
duke@435 2921 size_t offset = (q - old_oop);
duke@435 2922 tty->print_cr("Address " PTR_FORMAT, q);
duke@435 2923 tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
duke@435 2924 tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
duke@435 2925 return;
duke@435 2926 }
duke@435 2927 }
duke@435 2928
duke@435 2929 tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
duke@435 2930 }
duke@435 2931 #endif //VALIDATE_MARK_SWEEP
duke@435 2932
jcoomes@810 2933 // Update interior oops in the ranges of regions [beg_region, end_region).
duke@435 2934 void
duke@435 2935 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
duke@435 2936 SpaceId space_id,
jcoomes@810 2937 size_t beg_region,
jcoomes@810 2938 size_t end_region) {
duke@435 2939 ParallelCompactData& sd = summary_data();
duke@435 2940 ParMarkBitMap* const mbm = mark_bitmap();
duke@435 2941
jcoomes@810 2942 HeapWord* beg_addr = sd.region_to_addr(beg_region);
jcoomes@810 2943 HeapWord* const end_addr = sd.region_to_addr(end_region);
jcoomes@810 2944 assert(beg_region <= end_region, "bad region range");
duke@435 2945 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
duke@435 2946
duke@435 2947 #ifdef ASSERT
jcoomes@810 2948 // Claim the regions to avoid triggering an assert when they are marked as
duke@435 2949 // filled.
jcoomes@810 2950 for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
jcoomes@810 2951 assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
duke@435 2952 }
duke@435 2953 #endif // #ifdef ASSERT
duke@435 2954
duke@435 2955 if (beg_addr != space(space_id)->bottom()) {
duke@435 2956 // Find the first live object or block of dead space that *starts* in this
jcoomes@810 2957 // range of regions. If a partial object crosses onto the region, skip it;
jcoomes@810 2958 // it will be marked for 'deferred update' when the object head is
jcoomes@810 2959 // processed. If dead space crosses onto the region, it is also skipped; it
jcoomes@810 2960 // will be filled when the prior region is processed. If neither of those
jcoomes@810 2961 // apply, the first word in the region is the start of a live object or dead
jcoomes@810 2962 // space.
duke@435 2963 assert(beg_addr > space(space_id)->bottom(), "sanity");
jcoomes@810 2964 const RegionData* const cp = sd.region(beg_region);
duke@435 2965 if (cp->partial_obj_size() != 0) {
jcoomes@810 2966 beg_addr = sd.partial_obj_end(beg_region);
duke@435 2967 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
duke@435 2968 beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
duke@435 2969 }
duke@435 2970 }
duke@435 2971
duke@435 2972 if (beg_addr < end_addr) {
jcoomes@810 2973 // A live object or block of dead space starts in this range of Regions.
duke@435 2974 HeapWord* const dense_prefix_end = dense_prefix(space_id);
duke@435 2975
duke@435 2976 // Create closures and iterate.
duke@435 2977 UpdateOnlyClosure update_closure(mbm, cm, space_id);
duke@435 2978 FillClosure fill_closure(cm, space_id);
duke@435 2979 ParMarkBitMap::IterationStatus status;
duke@435 2980 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
duke@435 2981 dense_prefix_end);
duke@435 2982 if (status == ParMarkBitMap::incomplete) {
duke@435 2983 update_closure.do_addr(update_closure.source());
duke@435 2984 }
duke@435 2985 }
duke@435 2986
jcoomes@810 2987 // Mark the regions as filled.
jcoomes@810 2988 RegionData* const beg_cp = sd.region(beg_region);
jcoomes@810 2989 RegionData* const end_cp = sd.region(end_region);
jcoomes@810 2990 for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
duke@435 2991 cp->set_completed();
duke@435 2992 }
duke@435 2993 }
duke@435 2994
duke@435 2995 // Return the SpaceId for the space containing addr. If addr is not in the
duke@435 2996 // heap, last_space_id is returned. In debug mode it expects the address to be
duke@435 2997 // in the heap and asserts such.
duke@435 2998 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
duke@435 2999 assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
duke@435 3000
duke@435 3001 for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
duke@435 3002 if (_space_info[id].space()->contains(addr)) {
duke@435 3003 return SpaceId(id);
duke@435 3004 }
duke@435 3005 }
duke@435 3006
duke@435 3007 assert(false, "no space contains the addr");
duke@435 3008 return last_space_id;
duke@435 3009 }
duke@435 3010
duke@435 3011 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
duke@435 3012 SpaceId id) {
duke@435 3013 assert(id < last_space_id, "bad space id");
duke@435 3014
duke@435 3015 ParallelCompactData& sd = summary_data();
duke@435 3016 const SpaceInfo* const space_info = _space_info + id;
duke@435 3017 ObjectStartArray* const start_array = space_info->start_array();
duke@435 3018
duke@435 3019 const MutableSpace* const space = space_info->space();
duke@435 3020 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
duke@435 3021 HeapWord* const beg_addr = space_info->dense_prefix();
jcoomes@810 3022 HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
jcoomes@810 3023
jcoomes@810 3024 const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
jcoomes@810 3025 const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
jcoomes@810 3026 const RegionData* cur_region;
jcoomes@810 3027 for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
jcoomes@810 3028 HeapWord* const addr = cur_region->deferred_obj_addr();
duke@435 3029 if (addr != NULL) {
duke@435 3030 if (start_array != NULL) {
duke@435 3031 start_array->allocate_block(addr);
duke@435 3032 }
duke@435 3033 oop(addr)->update_contents(cm);
duke@435 3034 assert(oop(addr)->is_oop_or_null(), "should be an oop now");
duke@435 3035 }
duke@435 3036 }
duke@435 3037 }
duke@435 3038
duke@435 3039 // Skip over count live words starting from beg, and return the address of the
duke@435 3040 // next live word. Unless marked, the word corresponding to beg is assumed to
duke@435 3041 // be dead. Callers must either ensure beg does not correspond to the middle of
duke@435 3042 // an object, or account for those live words in some other way. Callers must
duke@435 3043 // also ensure that there are enough live words in the range [beg, end) to skip.
duke@435 3044 HeapWord*
duke@435 3045 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
duke@435 3046 {
duke@435 3047 assert(count > 0, "sanity");
duke@435 3048
duke@435 3049 ParMarkBitMap* m = mark_bitmap();
duke@435 3050 idx_t bits_to_skip = m->words_to_bits(count);
duke@435 3051 idx_t cur_beg = m->addr_to_bit(beg);
duke@435 3052 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
duke@435 3053
duke@435 3054 do {
duke@435 3055 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 3056 idx_t cur_end = m->find_obj_end(cur_beg, search_end);
duke@435 3057 const size_t obj_bits = cur_end - cur_beg + 1;
duke@435 3058 if (obj_bits > bits_to_skip) {
duke@435 3059 return m->bit_to_addr(cur_beg + bits_to_skip);
duke@435 3060 }
duke@435 3061 bits_to_skip -= obj_bits;
duke@435 3062 cur_beg = cur_end + 1;
duke@435 3063 } while (bits_to_skip > 0);
duke@435 3064
duke@435 3065 // Skipping the desired number of words landed just past the end of an object.
duke@435 3066 // Find the start of the next object.
duke@435 3067 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 3068 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
duke@435 3069 return m->bit_to_addr(cur_beg);
duke@435 3070 }
duke@435 3071
jcoomes@917 3072 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
jcoomes@917 3073 SpaceId src_space_id,
jcoomes@917 3074 size_t src_region_idx)
duke@435 3075 {
jcoomes@917 3076 assert(summary_data().is_region_aligned(dest_addr), "not aligned");
jcoomes@917 3077
jcoomes@917 3078 const SplitInfo& split_info = _space_info[src_space_id].split_info();
jcoomes@917 3079 if (split_info.dest_region_addr() == dest_addr) {
jcoomes@917 3080 // The partial object ending at the split point contains the first word to
jcoomes@917 3081 // be copied to dest_addr.
jcoomes@917 3082 return split_info.first_src_addr();
jcoomes@917 3083 }
jcoomes@917 3084
jcoomes@917 3085 const ParallelCompactData& sd = summary_data();
duke@435 3086 ParMarkBitMap* const bitmap = mark_bitmap();
jcoomes@810 3087 const size_t RegionSize = ParallelCompactData::RegionSize;
jcoomes@810 3088
jcoomes@810 3089 assert(sd.is_region_aligned(dest_addr), "not aligned");
jcoomes@810 3090 const RegionData* const src_region_ptr = sd.region(src_region_idx);
jcoomes@810 3091 const size_t partial_obj_size = src_region_ptr->partial_obj_size();
jcoomes@810 3092 HeapWord* const src_region_destination = src_region_ptr->destination();
jcoomes@810 3093
jcoomes@810 3094 assert(dest_addr >= src_region_destination, "wrong src region");
jcoomes@810 3095 assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
jcoomes@810 3096
jcoomes@810 3097 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
jcoomes@810 3098 HeapWord* const src_region_end = src_region_beg + RegionSize;
jcoomes@810 3099
jcoomes@810 3100 HeapWord* addr = src_region_beg;
jcoomes@810 3101 if (dest_addr == src_region_destination) {
jcoomes@810 3102 // Return the first live word in the source region.
duke@435 3103 if (partial_obj_size == 0) {
jcoomes@810 3104 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 3105 assert(addr < src_region_end, "no objects start in src region");
duke@435 3106 }
duke@435 3107 return addr;
duke@435 3108 }
duke@435 3109
duke@435 3110 // Must skip some live data.
jcoomes@810 3111 size_t words_to_skip = dest_addr - src_region_destination;
jcoomes@810 3112 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
duke@435 3113
duke@435 3114 if (partial_obj_size >= words_to_skip) {
duke@435 3115 // All the live words to skip are part of the partial object.
duke@435 3116 addr += words_to_skip;
duke@435 3117 if (partial_obj_size == words_to_skip) {
duke@435 3118 // Find the first live word past the partial object.
jcoomes@810 3119 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 3120 assert(addr < src_region_end, "wrong src region");
duke@435 3121 }
duke@435 3122 return addr;
duke@435 3123 }
duke@435 3124
duke@435 3125 // Skip over the partial object (if any).
duke@435 3126 if (partial_obj_size != 0) {
duke@435 3127 words_to_skip -= partial_obj_size;
duke@435 3128 addr += partial_obj_size;
duke@435 3129 }
duke@435 3130
jcoomes@810 3131 // Skip over live words due to objects that start in the region.
jcoomes@810 3132 addr = skip_live_words(addr, src_region_end, words_to_skip);
jcoomes@810 3133 assert(addr < src_region_end, "wrong src region");
duke@435 3134 return addr;
duke@435 3135 }
duke@435 3136
duke@435 3137 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
jcoomes@930 3138 SpaceId src_space_id,
jcoomes@810 3139 size_t beg_region,
duke@435 3140 HeapWord* end_addr)
duke@435 3141 {
duke@435 3142 ParallelCompactData& sd = summary_data();
jcoomes@930 3143
jcoomes@930 3144 #ifdef ASSERT
jcoomes@930 3145 MutableSpace* const src_space = _space_info[src_space_id].space();
jcoomes@930 3146 HeapWord* const beg_addr = sd.region_to_addr(beg_region);
jcoomes@930 3147 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
jcoomes@930 3148 "src_space_id does not match beg_addr");
jcoomes@930 3149 assert(src_space->contains(end_addr) || end_addr == src_space->end(),
jcoomes@930 3150 "src_space_id does not match end_addr");
jcoomes@930 3151 #endif // #ifdef ASSERT
jcoomes@930 3152
jcoomes@810 3153 RegionData* const beg = sd.region(beg_region);
jcoomes@930 3154 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
jcoomes@930 3155
jcoomes@930 3156 // Regions up to new_top() are enqueued if they become available.
jcoomes@930 3157 HeapWord* const new_top = _space_info[src_space_id].new_top();
jcoomes@930 3158 RegionData* const enqueue_end =
jcoomes@930 3159 sd.addr_to_region_ptr(sd.region_align_up(new_top));
jcoomes@930 3160
jcoomes@930 3161 for (RegionData* cur = beg; cur < end; ++cur) {
jcoomes@810 3162 assert(cur->data_size() > 0, "region must have live data");
duke@435 3163 cur->decrement_destination_count();
jcoomes@930 3164 if (cur < enqueue_end && cur->available() && cur->claim()) {
jcoomes@1993 3165 cm->push_region(sd.region(cur));
duke@435 3166 }
duke@435 3167 }
duke@435 3168 }
duke@435 3169
jcoomes@810 3170 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
jcoomes@810 3171 SpaceId& src_space_id,
jcoomes@810 3172 HeapWord*& src_space_top,
jcoomes@810 3173 HeapWord* end_addr)
duke@435 3174 {
jcoomes@810 3175 typedef ParallelCompactData::RegionData RegionData;
duke@435 3176
duke@435 3177 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 3178 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 3179
jcoomes@810 3180 size_t src_region_idx = 0;
jcoomes@810 3181
jcoomes@810 3182 // Skip empty regions (if any) up to the top of the space.
jcoomes@810 3183 HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
jcoomes@810 3184 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
jcoomes@810 3185 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
jcoomes@810 3186 const RegionData* const top_region_ptr =
jcoomes@810 3187 sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 3188 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
jcoomes@810 3189 ++src_region_ptr;
duke@435 3190 }
duke@435 3191
jcoomes@810 3192 if (src_region_ptr < top_region_ptr) {
jcoomes@810 3193 // The next source region is in the current space. Update src_region_idx
jcoomes@810 3194 // and the source address to match src_region_ptr.
jcoomes@810 3195 src_region_idx = sd.region(src_region_ptr);
jcoomes@810 3196 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
jcoomes@810 3197 if (src_region_addr > closure.source()) {
jcoomes@810 3198 closure.set_source(src_region_addr);
duke@435 3199 }
jcoomes@810 3200 return src_region_idx;
duke@435 3201 }
duke@435 3202
jcoomes@810 3203 // Switch to a new source space and find the first non-empty region.
duke@435 3204 unsigned int space_id = src_space_id + 1;
duke@435 3205 assert(space_id < last_space_id, "not enough spaces");
duke@435 3206
duke@435 3207 HeapWord* const destination = closure.destination();
duke@435 3208
duke@435 3209 do {
duke@435 3210 MutableSpace* space = _space_info[space_id].space();
duke@435 3211 HeapWord* const bottom = space->bottom();
jcoomes@810 3212 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
duke@435 3213
duke@435 3214 // Iterate over the spaces that do not compact into themselves.
duke@435 3215 if (bottom_cp->destination() != bottom) {
jcoomes@810 3216 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 3217 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 3218
jcoomes@810 3219 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
duke@435 3220 if (src_cp->live_obj_size() > 0) {
duke@435 3221 // Found it.
duke@435 3222 assert(src_cp->destination() == destination,
duke@435 3223 "first live obj in the space must match the destination");
duke@435 3224 assert(src_cp->partial_obj_size() == 0,
duke@435 3225 "a space cannot begin with a partial obj");
duke@435 3226
duke@435 3227 src_space_id = SpaceId(space_id);
duke@435 3228 src_space_top = space->top();
jcoomes@810 3229 const size_t src_region_idx = sd.region(src_cp);
jcoomes@810 3230 closure.set_source(sd.region_to_addr(src_region_idx));
jcoomes@810 3231 return src_region_idx;
duke@435 3232 } else {
duke@435 3233 assert(src_cp->data_size() == 0, "sanity");
duke@435 3234 }
duke@435 3235 }
duke@435 3236 }
duke@435 3237 } while (++space_id < last_space_id);
duke@435 3238
jcoomes@810 3239 assert(false, "no source region was found");
duke@435 3240 return 0;
duke@435 3241 }
duke@435 3242
jcoomes@810 3243 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
duke@435 3244 {
duke@435 3245 typedef ParMarkBitMap::IterationStatus IterationStatus;
jcoomes@810 3246 const size_t RegionSize = ParallelCompactData::RegionSize;
duke@435 3247 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3248 ParallelCompactData& sd = summary_data();
jcoomes@810 3249 RegionData* const region_ptr = sd.region(region_idx);
duke@435 3250
duke@435 3251 // Get the items needed to construct the closure.
jcoomes@810 3252 HeapWord* dest_addr = sd.region_to_addr(region_idx);
duke@435 3253 SpaceId dest_space_id = space_id(dest_addr);
duke@435 3254 ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
duke@435 3255 HeapWord* new_top = _space_info[dest_space_id].new_top();
duke@435 3256 assert(dest_addr < new_top, "sanity");
jcoomes@810 3257 const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
jcoomes@810 3258
jcoomes@810 3259 // Get the source region and related info.
jcoomes@810 3260 size_t src_region_idx = region_ptr->source_region();
jcoomes@810 3261 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
duke@435 3262 HeapWord* src_space_top = _space_info[src_space_id].space()->top();
duke@435 3263
duke@435 3264 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
jcoomes@917 3265 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
jcoomes@810 3266
jcoomes@810 3267 // Adjust src_region_idx to prepare for decrementing destination counts (the
jcoomes@810 3268 // destination count is not decremented when a region is copied to itself).
jcoomes@810 3269 if (src_region_idx == region_idx) {
jcoomes@810 3270 src_region_idx += 1;
duke@435 3271 }
duke@435 3272
duke@435 3273 if (bitmap->is_unmarked(closure.source())) {
duke@435 3274 // The first source word is in the middle of an object; copy the remainder
duke@435 3275 // of the object or as much as will fit. The fact that pointer updates were
duke@435 3276 // deferred will be noted when the object header is processed.
duke@435 3277 HeapWord* const old_src_addr = closure.source();
duke@435 3278 closure.copy_partial_obj();
duke@435 3279 if (closure.is_full()) {
jcoomes@930 3280 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3281 closure.source());
jcoomes@810 3282 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3283 region_ptr->set_completed();
duke@435 3284 return;
duke@435 3285 }
duke@435 3286
jcoomes@810 3287 HeapWord* const end_addr = sd.region_align_down(closure.source());
jcoomes@810 3288 if (sd.region_align_down(old_src_addr) != end_addr) {
jcoomes@810 3289 // The partial object was copied from more than one source region.
jcoomes@930 3290 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
jcoomes@810 3291
jcoomes@810 3292 // Move to the next source region, possibly switching spaces as well. All
duke@435 3293 // args except end_addr may be modified.
jcoomes@810 3294 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3295 end_addr);
duke@435 3296 }
duke@435 3297 }
duke@435 3298
duke@435 3299 do {
duke@435 3300 HeapWord* const cur_addr = closure.source();
jcoomes@810 3301 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
duke@435 3302 src_space_top);
duke@435 3303 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
duke@435 3304
duke@435 3305 if (status == ParMarkBitMap::incomplete) {
jcoomes@810 3306 // The last obj that starts in the source region does not end in the
jcoomes@810 3307 // region.
jcoomes@1844 3308 assert(closure.source() < end_addr, "sanity");
duke@435 3309 HeapWord* const obj_beg = closure.source();
duke@435 3310 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
duke@435 3311 src_space_top);
duke@435 3312 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
duke@435 3313 if (obj_end < range_end) {
duke@435 3314 // The end was found; the entire object will fit.
duke@435 3315 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
duke@435 3316 assert(status != ParMarkBitMap::would_overflow, "sanity");
duke@435 3317 } else {
duke@435 3318 // The end was not found; the object will not fit.
duke@435 3319 assert(range_end < src_space_top, "obj cannot cross space boundary");
duke@435 3320 status = ParMarkBitMap::would_overflow;
duke@435 3321 }
duke@435 3322 }
duke@435 3323
duke@435 3324 if (status == ParMarkBitMap::would_overflow) {
duke@435 3325 // The last object did not fit. Note that interior oop updates were
jcoomes@810 3326 // deferred, then copy enough of the object to fill the region.
jcoomes@810 3327 region_ptr->set_deferred_obj_addr(closure.destination());
duke@435 3328 status = closure.copy_until_full(); // copies from closure.source()
duke@435 3329
jcoomes@930 3330 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3331 closure.source());
jcoomes@810 3332 region_ptr->set_completed();
duke@435 3333 return;
duke@435 3334 }
duke@435 3335
duke@435 3336 if (status == ParMarkBitMap::full) {
jcoomes@930 3337 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3338 closure.source());
jcoomes@810 3339 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3340 region_ptr->set_completed();
duke@435 3341 return;
duke@435 3342 }
duke@435 3343
jcoomes@930 3344 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
jcoomes@810 3345
jcoomes@810 3346 // Move to the next source region, possibly switching spaces as well. All
duke@435 3347 // args except end_addr may be modified.
jcoomes@810 3348 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3349 end_addr);
duke@435 3350 } while (true);
duke@435 3351 }
duke@435 3352
duke@435 3353 void
duke@435 3354 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
duke@435 3355 const MutableSpace* sp = space(space_id);
duke@435 3356 if (sp->is_empty()) {
duke@435 3357 return;
duke@435 3358 }
duke@435 3359
duke@435 3360 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 3361 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3362 HeapWord* const dp_addr = dense_prefix(space_id);
duke@435 3363 HeapWord* beg_addr = sp->bottom();
duke@435 3364 HeapWord* end_addr = sp->top();
duke@435 3365
duke@435 3366 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
duke@435 3367
jcoomes@810 3368 const size_t beg_region = sd.addr_to_region_idx(beg_addr);
jcoomes@810 3369 const size_t dp_region = sd.addr_to_region_idx(dp_addr);
jcoomes@810 3370 if (beg_region < dp_region) {
jcoomes@810 3371 update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
duke@435 3372 }
duke@435 3373
jcoomes@810 3374 // The destination of the first live object that starts in the region is one
jcoomes@810 3375 // past the end of the partial object entering the region (if any).
jcoomes@810 3376 HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
duke@435 3377 HeapWord* const new_top = _space_info[space_id].new_top();
duke@435 3378 assert(new_top >= dest_addr, "bad new_top value");
duke@435 3379 const size_t words = pointer_delta(new_top, dest_addr);
duke@435 3380
duke@435 3381 if (words > 0) {
duke@435 3382 ObjectStartArray* start_array = _space_info[space_id].start_array();
duke@435 3383 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
duke@435 3384
duke@435 3385 ParMarkBitMap::IterationStatus status;
duke@435 3386 status = bitmap->iterate(&closure, dest_addr, end_addr);
duke@435 3387 assert(status == ParMarkBitMap::full, "iteration not complete");
duke@435 3388 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
duke@435 3389 "live objects skipped because closure is full");
duke@435 3390 }
duke@435 3391 }
duke@435 3392
duke@435 3393 jlong PSParallelCompact::millis_since_last_gc() {
johnc@3339 3394 // We need a monotonically non-deccreasing time in ms but
johnc@3339 3395 // os::javaTimeMillis() does not guarantee monotonicity.
johnc@3339 3396 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
johnc@3339 3397 jlong ret_val = now - _time_of_last_gc;
duke@435 3398 // XXX See note in genCollectedHeap::millis_since_last_gc().
duke@435 3399 if (ret_val < 0) {
johnc@3339 3400 NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
duke@435 3401 return 0;
duke@435 3402 }
duke@435 3403 return ret_val;
duke@435 3404 }
duke@435 3405
duke@435 3406 void PSParallelCompact::reset_millis_since_last_gc() {
johnc@3339 3407 // We need a monotonically non-deccreasing time in ms but
johnc@3339 3408 // os::javaTimeMillis() does not guarantee monotonicity.
johnc@3339 3409 _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
duke@435 3410 }
duke@435 3411
duke@435 3412 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
duke@435 3413 {
duke@435 3414 if (source() != destination()) {
jcoomes@930 3415 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3416 Copy::aligned_conjoint_words(source(), destination(), words_remaining());
duke@435 3417 }
duke@435 3418 update_state(words_remaining());
duke@435 3419 assert(is_full(), "sanity");
duke@435 3420 return ParMarkBitMap::full;
duke@435 3421 }
duke@435 3422
duke@435 3423 void MoveAndUpdateClosure::copy_partial_obj()
duke@435 3424 {
duke@435 3425 size_t words = words_remaining();
duke@435 3426
duke@435 3427 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
duke@435 3428 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
duke@435 3429 if (end_addr < range_end) {
duke@435 3430 words = bitmap()->obj_size(source(), end_addr);
duke@435 3431 }
duke@435 3432
duke@435 3433 // This test is necessary; if omitted, the pointer updates to a partial object
duke@435 3434 // that crosses the dense prefix boundary could be overwritten.
duke@435 3435 if (source() != destination()) {
jcoomes@930 3436 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3437 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3438 }
duke@435 3439 update_state(words);
duke@435 3440 }
duke@435 3441
duke@435 3442 ParMarkBitMapClosure::IterationStatus
duke@435 3443 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3444 assert(destination() != NULL, "sanity");
duke@435 3445 assert(bitmap()->obj_size(addr) == words, "bad size");
duke@435 3446
duke@435 3447 _source = addr;
duke@435 3448 assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
duke@435 3449 destination(), "wrong destination");
duke@435 3450
duke@435 3451 if (words > words_remaining()) {
duke@435 3452 return ParMarkBitMap::would_overflow;
duke@435 3453 }
duke@435 3454
duke@435 3455 // The start_array must be updated even if the object is not moving.
duke@435 3456 if (_start_array != NULL) {
duke@435 3457 _start_array->allocate_block(destination());
duke@435 3458 }
duke@435 3459
duke@435 3460 if (destination() != source()) {
jcoomes@930 3461 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3462 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3463 }
duke@435 3464
duke@435 3465 oop moved_oop = (oop) destination();
duke@435 3466 moved_oop->update_contents(compaction_manager());
duke@435 3467 assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
duke@435 3468
duke@435 3469 update_state(words);
duke@435 3470 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
duke@435 3471 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
duke@435 3472 }
duke@435 3473
duke@435 3474 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
duke@435 3475 ParCompactionManager* cm,
duke@435 3476 PSParallelCompact::SpaceId space_id) :
duke@435 3477 ParMarkBitMapClosure(mbm, cm),
duke@435 3478 _space_id(space_id),
duke@435 3479 _start_array(PSParallelCompact::start_array(space_id))
duke@435 3480 {
duke@435 3481 }
duke@435 3482
duke@435 3483 // Updates the references in the object to their new values.
duke@435 3484 ParMarkBitMapClosure::IterationStatus
duke@435 3485 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3486 do_addr(addr);
duke@435 3487 return ParMarkBitMap::incomplete;
duke@435 3488 }
duke@435 3489
duke@435 3490 // Prepare for compaction. This method is executed once
duke@435 3491 // (i.e., by a single thread) before compaction.
duke@435 3492 // Save the updated location of the intArrayKlassObj for
duke@435 3493 // filling holes in the dense prefix.
duke@435 3494 void PSParallelCompact::compact_prologue() {
duke@435 3495 _updated_int_array_klass_obj = (klassOop)
duke@435 3496 summary_data().calc_new_pointer(Universe::intArrayKlassObj());
duke@435 3497 }

mercurial