src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Fri, 16 Mar 2012 16:14:04 +0100

author
nloodin
date
Fri, 16 Mar 2012 16:14:04 +0100
changeset 3665
8a729074feae
parent 3540
ab4422d0ed59
child 3767
9d679effd28c
permissions
-rw-r--r--

7154517: Build error in hotspot-gc without precompiled headers
Reviewed-by: jcoomes, brutisso

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
    32 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
    33 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    34 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
    35 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    36 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
    37 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
    38 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    39 #include "gc_implementation/parallelScavenge/psPermGen.hpp"
    40 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
    41 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    42 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    43 #include "gc_implementation/shared/isGCActiveMark.hpp"
    44 #include "gc_interface/gcCause.hpp"
    45 #include "memory/gcLocker.inline.hpp"
    46 #include "memory/referencePolicy.hpp"
    47 #include "memory/referenceProcessor.hpp"
    48 #include "oops/methodDataOop.hpp"
    49 #include "oops/oop.inline.hpp"
    50 #include "oops/oop.pcgc.inline.hpp"
    51 #include "runtime/fprofiler.hpp"
    52 #include "runtime/safepoint.hpp"
    53 #include "runtime/vmThread.hpp"
    54 #include "services/management.hpp"
    55 #include "services/memoryService.hpp"
    56 #include "utilities/events.hpp"
    57 #include "utilities/stack.inline.hpp"
    59 #include <math.h>
    61 // All sizes are in HeapWords.
    62 const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
    63 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
    64 const size_t ParallelCompactData::RegionSizeBytes =
    65   RegionSize << LogHeapWordSize;
    66 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
    67 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
    68 const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
    70 const ParallelCompactData::RegionData::region_sz_t
    71 ParallelCompactData::RegionData::dc_shift = 27;
    73 const ParallelCompactData::RegionData::region_sz_t
    74 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
    76 const ParallelCompactData::RegionData::region_sz_t
    77 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
    79 const ParallelCompactData::RegionData::region_sz_t
    80 ParallelCompactData::RegionData::los_mask = ~dc_mask;
    82 const ParallelCompactData::RegionData::region_sz_t
    83 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
    85 const ParallelCompactData::RegionData::region_sz_t
    86 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
    88 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
    89 bool      PSParallelCompact::_print_phases = false;
    91 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
    92 klassOop            PSParallelCompact::_updated_int_array_klass_obj = NULL;
    94 double PSParallelCompact::_dwl_mean;
    95 double PSParallelCompact::_dwl_std_dev;
    96 double PSParallelCompact::_dwl_first_term;
    97 double PSParallelCompact::_dwl_adjustment;
    98 #ifdef  ASSERT
    99 bool   PSParallelCompact::_dwl_initialized = false;
   100 #endif  // #ifdef ASSERT
   102 #ifdef VALIDATE_MARK_SWEEP
   103 GrowableArray<void*>*   PSParallelCompact::_root_refs_stack = NULL;
   104 GrowableArray<oop> *    PSParallelCompact::_live_oops = NULL;
   105 GrowableArray<oop> *    PSParallelCompact::_live_oops_moved_to = NULL;
   106 GrowableArray<size_t>*  PSParallelCompact::_live_oops_size = NULL;
   107 size_t                  PSParallelCompact::_live_oops_index = 0;
   108 size_t                  PSParallelCompact::_live_oops_index_at_perm = 0;
   109 GrowableArray<void*>*   PSParallelCompact::_other_refs_stack = NULL;
   110 GrowableArray<void*>*   PSParallelCompact::_adjusted_pointers = NULL;
   111 bool                    PSParallelCompact::_pointer_tracking = false;
   112 bool                    PSParallelCompact::_root_tracking = true;
   114 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
   115 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
   116 GrowableArray<size_t>   * PSParallelCompact::_cur_gc_live_oops_size = NULL;
   117 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
   118 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
   119 GrowableArray<size_t>   * PSParallelCompact::_last_gc_live_oops_size = NULL;
   120 #endif
   122 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
   123                        HeapWord* destination)
   124 {
   125   assert(src_region_idx != 0, "invalid src_region_idx");
   126   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
   127   assert(destination != NULL, "invalid destination argument");
   129   _src_region_idx = src_region_idx;
   130   _partial_obj_size = partial_obj_size;
   131   _destination = destination;
   133   // These fields may not be updated below, so make sure they're clear.
   134   assert(_dest_region_addr == NULL, "should have been cleared");
   135   assert(_first_src_addr == NULL, "should have been cleared");
   137   // Determine the number of destination regions for the partial object.
   138   HeapWord* const last_word = destination + partial_obj_size - 1;
   139   const ParallelCompactData& sd = PSParallelCompact::summary_data();
   140   HeapWord* const beg_region_addr = sd.region_align_down(destination);
   141   HeapWord* const end_region_addr = sd.region_align_down(last_word);
   143   if (beg_region_addr == end_region_addr) {
   144     // One destination region.
   145     _destination_count = 1;
   146     if (end_region_addr == destination) {
   147       // The destination falls on a region boundary, thus the first word of the
   148       // partial object will be the first word copied to the destination region.
   149       _dest_region_addr = end_region_addr;
   150       _first_src_addr = sd.region_to_addr(src_region_idx);
   151     }
   152   } else {
   153     // Two destination regions.  When copied, the partial object will cross a
   154     // destination region boundary, so a word somewhere within the partial
   155     // object will be the first word copied to the second destination region.
   156     _destination_count = 2;
   157     _dest_region_addr = end_region_addr;
   158     const size_t ofs = pointer_delta(end_region_addr, destination);
   159     assert(ofs < _partial_obj_size, "sanity");
   160     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
   161   }
   162 }
   164 void SplitInfo::clear()
   165 {
   166   _src_region_idx = 0;
   167   _partial_obj_size = 0;
   168   _destination = NULL;
   169   _destination_count = 0;
   170   _dest_region_addr = NULL;
   171   _first_src_addr = NULL;
   172   assert(!is_valid(), "sanity");
   173 }
   175 #ifdef  ASSERT
   176 void SplitInfo::verify_clear()
   177 {
   178   assert(_src_region_idx == 0, "not clear");
   179   assert(_partial_obj_size == 0, "not clear");
   180   assert(_destination == NULL, "not clear");
   181   assert(_destination_count == 0, "not clear");
   182   assert(_dest_region_addr == NULL, "not clear");
   183   assert(_first_src_addr == NULL, "not clear");
   184 }
   185 #endif  // #ifdef ASSERT
   188 #ifndef PRODUCT
   189 const char* PSParallelCompact::space_names[] = {
   190   "perm", "old ", "eden", "from", "to  "
   191 };
   193 void PSParallelCompact::print_region_ranges()
   194 {
   195   tty->print_cr("space  bottom     top        end        new_top");
   196   tty->print_cr("------ ---------- ---------- ---------- ----------");
   198   for (unsigned int id = 0; id < last_space_id; ++id) {
   199     const MutableSpace* space = _space_info[id].space();
   200     tty->print_cr("%u %s "
   201                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
   202                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
   203                   id, space_names[id],
   204                   summary_data().addr_to_region_idx(space->bottom()),
   205                   summary_data().addr_to_region_idx(space->top()),
   206                   summary_data().addr_to_region_idx(space->end()),
   207                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
   208   }
   209 }
   211 void
   212 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
   213 {
   214 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
   215 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
   217   ParallelCompactData& sd = PSParallelCompact::summary_data();
   218   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
   219   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
   220                 REGION_IDX_FORMAT " " PTR_FORMAT " "
   221                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
   222                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
   223                 i, c->data_location(), dci, c->destination(),
   224                 c->partial_obj_size(), c->live_obj_size(),
   225                 c->data_size(), c->source_region(), c->destination_count());
   227 #undef  REGION_IDX_FORMAT
   228 #undef  REGION_DATA_FORMAT
   229 }
   231 void
   232 print_generic_summary_data(ParallelCompactData& summary_data,
   233                            HeapWord* const beg_addr,
   234                            HeapWord* const end_addr)
   235 {
   236   size_t total_words = 0;
   237   size_t i = summary_data.addr_to_region_idx(beg_addr);
   238   const size_t last = summary_data.addr_to_region_idx(end_addr);
   239   HeapWord* pdest = 0;
   241   while (i <= last) {
   242     ParallelCompactData::RegionData* c = summary_data.region(i);
   243     if (c->data_size() != 0 || c->destination() != pdest) {
   244       print_generic_summary_region(i, c);
   245       total_words += c->data_size();
   246       pdest = c->destination();
   247     }
   248     ++i;
   249   }
   251   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
   252 }
   254 void
   255 print_generic_summary_data(ParallelCompactData& summary_data,
   256                            SpaceInfo* space_info)
   257 {
   258   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
   259     const MutableSpace* space = space_info[id].space();
   260     print_generic_summary_data(summary_data, space->bottom(),
   261                                MAX2(space->top(), space_info[id].new_top()));
   262   }
   263 }
   265 void
   266 print_initial_summary_region(size_t i,
   267                              const ParallelCompactData::RegionData* c,
   268                              bool newline = true)
   269 {
   270   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
   271              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
   272              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
   273              i, c->destination(),
   274              c->partial_obj_size(), c->live_obj_size(),
   275              c->data_size(), c->source_region(), c->destination_count());
   276   if (newline) tty->cr();
   277 }
   279 void
   280 print_initial_summary_data(ParallelCompactData& summary_data,
   281                            const MutableSpace* space) {
   282   if (space->top() == space->bottom()) {
   283     return;
   284   }
   286   const size_t region_size = ParallelCompactData::RegionSize;
   287   typedef ParallelCompactData::RegionData RegionData;
   288   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
   289   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
   290   const RegionData* c = summary_data.region(end_region - 1);
   291   HeapWord* end_addr = c->destination() + c->data_size();
   292   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
   294   // Print (and count) the full regions at the beginning of the space.
   295   size_t full_region_count = 0;
   296   size_t i = summary_data.addr_to_region_idx(space->bottom());
   297   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
   298     print_initial_summary_region(i, summary_data.region(i));
   299     ++full_region_count;
   300     ++i;
   301   }
   303   size_t live_to_right = live_in_space - full_region_count * region_size;
   305   double max_reclaimed_ratio = 0.0;
   306   size_t max_reclaimed_ratio_region = 0;
   307   size_t max_dead_to_right = 0;
   308   size_t max_live_to_right = 0;
   310   // Print the 'reclaimed ratio' for regions while there is something live in
   311   // the region or to the right of it.  The remaining regions are empty (and
   312   // uninteresting), and computing the ratio will result in division by 0.
   313   while (i < end_region && live_to_right > 0) {
   314     c = summary_data.region(i);
   315     HeapWord* const region_addr = summary_data.region_to_addr(i);
   316     const size_t used_to_right = pointer_delta(space->top(), region_addr);
   317     const size_t dead_to_right = used_to_right - live_to_right;
   318     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
   320     if (reclaimed_ratio > max_reclaimed_ratio) {
   321             max_reclaimed_ratio = reclaimed_ratio;
   322             max_reclaimed_ratio_region = i;
   323             max_dead_to_right = dead_to_right;
   324             max_live_to_right = live_to_right;
   325     }
   327     print_initial_summary_region(i, c, false);
   328     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
   329                   reclaimed_ratio, dead_to_right, live_to_right);
   331     live_to_right -= c->data_size();
   332     ++i;
   333   }
   335   // Any remaining regions are empty.  Print one more if there is one.
   336   if (i < end_region) {
   337     print_initial_summary_region(i, summary_data.region(i));
   338   }
   340   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
   341                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
   342                 max_reclaimed_ratio_region, max_dead_to_right,
   343                 max_live_to_right, max_reclaimed_ratio);
   344 }
   346 void
   347 print_initial_summary_data(ParallelCompactData& summary_data,
   348                            SpaceInfo* space_info) {
   349   unsigned int id = PSParallelCompact::perm_space_id;
   350   const MutableSpace* space;
   351   do {
   352     space = space_info[id].space();
   353     print_initial_summary_data(summary_data, space);
   354   } while (++id < PSParallelCompact::eden_space_id);
   356   do {
   357     space = space_info[id].space();
   358     print_generic_summary_data(summary_data, space->bottom(), space->top());
   359   } while (++id < PSParallelCompact::last_space_id);
   360 }
   361 #endif  // #ifndef PRODUCT
   363 #ifdef  ASSERT
   364 size_t add_obj_count;
   365 size_t add_obj_size;
   366 size_t mark_bitmap_count;
   367 size_t mark_bitmap_size;
   368 #endif  // #ifdef ASSERT
   370 ParallelCompactData::ParallelCompactData()
   371 {
   372   _region_start = 0;
   374   _region_vspace = 0;
   375   _region_data = 0;
   376   _region_count = 0;
   377 }
   379 bool ParallelCompactData::initialize(MemRegion covered_region)
   380 {
   381   _region_start = covered_region.start();
   382   const size_t region_size = covered_region.word_size();
   383   DEBUG_ONLY(_region_end = _region_start + region_size;)
   385   assert(region_align_down(_region_start) == _region_start,
   386          "region start not aligned");
   387   assert((region_size & RegionSizeOffsetMask) == 0,
   388          "region size not a multiple of RegionSize");
   390   bool result = initialize_region_data(region_size);
   392   return result;
   393 }
   395 PSVirtualSpace*
   396 ParallelCompactData::create_vspace(size_t count, size_t element_size)
   397 {
   398   const size_t raw_bytes = count * element_size;
   399   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
   400   const size_t granularity = os::vm_allocation_granularity();
   401   const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
   403   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
   404     MAX2(page_sz, granularity);
   405   ReservedSpace rs(bytes, rs_align, rs_align > 0);
   406   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
   407                        rs.size());
   408   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
   409   if (vspace != 0) {
   410     if (vspace->expand_by(bytes)) {
   411       return vspace;
   412     }
   413     delete vspace;
   414     // Release memory reserved in the space.
   415     rs.release();
   416   }
   418   return 0;
   419 }
   421 bool ParallelCompactData::initialize_region_data(size_t region_size)
   422 {
   423   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
   424   _region_vspace = create_vspace(count, sizeof(RegionData));
   425   if (_region_vspace != 0) {
   426     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
   427     _region_count = count;
   428     return true;
   429   }
   430   return false;
   431 }
   433 void ParallelCompactData::clear()
   434 {
   435   memset(_region_data, 0, _region_vspace->committed_size());
   436 }
   438 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
   439   assert(beg_region <= _region_count, "beg_region out of range");
   440   assert(end_region <= _region_count, "end_region out of range");
   442   const size_t region_cnt = end_region - beg_region;
   443   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
   444 }
   446 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
   447 {
   448   const RegionData* cur_cp = region(region_idx);
   449   const RegionData* const end_cp = region(region_count() - 1);
   451   HeapWord* result = region_to_addr(region_idx);
   452   if (cur_cp < end_cp) {
   453     do {
   454       result += cur_cp->partial_obj_size();
   455     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
   456   }
   457   return result;
   458 }
   460 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
   461 {
   462   const size_t obj_ofs = pointer_delta(addr, _region_start);
   463   const size_t beg_region = obj_ofs >> Log2RegionSize;
   464   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
   466   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
   467   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
   469   if (beg_region == end_region) {
   470     // All in one region.
   471     _region_data[beg_region].add_live_obj(len);
   472     return;
   473   }
   475   // First region.
   476   const size_t beg_ofs = region_offset(addr);
   477   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
   479   klassOop klass = ((oop)addr)->klass();
   480   // Middle regions--completely spanned by this object.
   481   for (size_t region = beg_region + 1; region < end_region; ++region) {
   482     _region_data[region].set_partial_obj_size(RegionSize);
   483     _region_data[region].set_partial_obj_addr(addr);
   484   }
   486   // Last region.
   487   const size_t end_ofs = region_offset(addr + len - 1);
   488   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
   489   _region_data[end_region].set_partial_obj_addr(addr);
   490 }
   492 void
   493 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
   494 {
   495   assert(region_offset(beg) == 0, "not RegionSize aligned");
   496   assert(region_offset(end) == 0, "not RegionSize aligned");
   498   size_t cur_region = addr_to_region_idx(beg);
   499   const size_t end_region = addr_to_region_idx(end);
   500   HeapWord* addr = beg;
   501   while (cur_region < end_region) {
   502     _region_data[cur_region].set_destination(addr);
   503     _region_data[cur_region].set_destination_count(0);
   504     _region_data[cur_region].set_source_region(cur_region);
   505     _region_data[cur_region].set_data_location(addr);
   507     // Update live_obj_size so the region appears completely full.
   508     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
   509     _region_data[cur_region].set_live_obj_size(live_size);
   511     ++cur_region;
   512     addr += RegionSize;
   513   }
   514 }
   516 // Find the point at which a space can be split and, if necessary, record the
   517 // split point.
   518 //
   519 // If the current src region (which overflowed the destination space) doesn't
   520 // have a partial object, the split point is at the beginning of the current src
   521 // region (an "easy" split, no extra bookkeeping required).
   522 //
   523 // If the current src region has a partial object, the split point is in the
   524 // region where that partial object starts (call it the split_region).  If
   525 // split_region has a partial object, then the split point is just after that
   526 // partial object (a "hard" split where we have to record the split data and
   527 // zero the partial_obj_size field).  With a "hard" split, we know that the
   528 // partial_obj ends within split_region because the partial object that caused
   529 // the overflow starts in split_region.  If split_region doesn't have a partial
   530 // obj, then the split is at the beginning of split_region (another "easy"
   531 // split).
   532 HeapWord*
   533 ParallelCompactData::summarize_split_space(size_t src_region,
   534                                            SplitInfo& split_info,
   535                                            HeapWord* destination,
   536                                            HeapWord* target_end,
   537                                            HeapWord** target_next)
   538 {
   539   assert(destination <= target_end, "sanity");
   540   assert(destination + _region_data[src_region].data_size() > target_end,
   541     "region should not fit into target space");
   542   assert(is_region_aligned(target_end), "sanity");
   544   size_t split_region = src_region;
   545   HeapWord* split_destination = destination;
   546   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
   548   if (destination + partial_obj_size > target_end) {
   549     // The split point is just after the partial object (if any) in the
   550     // src_region that contains the start of the object that overflowed the
   551     // destination space.
   552     //
   553     // Find the start of the "overflow" object and set split_region to the
   554     // region containing it.
   555     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
   556     split_region = addr_to_region_idx(overflow_obj);
   558     // Clear the source_region field of all destination regions whose first word
   559     // came from data after the split point (a non-null source_region field
   560     // implies a region must be filled).
   561     //
   562     // An alternative to the simple loop below:  clear during post_compact(),
   563     // which uses memcpy instead of individual stores, and is easy to
   564     // parallelize.  (The downside is that it clears the entire RegionData
   565     // object as opposed to just one field.)
   566     //
   567     // post_compact() would have to clear the summary data up to the highest
   568     // address that was written during the summary phase, which would be
   569     //
   570     //         max(top, max(new_top, clear_top))
   571     //
   572     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
   573     // to target_end.
   574     const RegionData* const sr = region(split_region);
   575     const size_t beg_idx =
   576       addr_to_region_idx(region_align_up(sr->destination() +
   577                                          sr->partial_obj_size()));
   578     const size_t end_idx = addr_to_region_idx(target_end);
   580     if (TraceParallelOldGCSummaryPhase) {
   581         gclog_or_tty->print_cr("split:  clearing source_region field in ["
   582                                SIZE_FORMAT ", " SIZE_FORMAT ")",
   583                                beg_idx, end_idx);
   584     }
   585     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
   586       _region_data[idx].set_source_region(0);
   587     }
   589     // Set split_destination and partial_obj_size to reflect the split region.
   590     split_destination = sr->destination();
   591     partial_obj_size = sr->partial_obj_size();
   592   }
   594   // The split is recorded only if a partial object extends onto the region.
   595   if (partial_obj_size != 0) {
   596     _region_data[split_region].set_partial_obj_size(0);
   597     split_info.record(split_region, partial_obj_size, split_destination);
   598   }
   600   // Setup the continuation addresses.
   601   *target_next = split_destination + partial_obj_size;
   602   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
   604   if (TraceParallelOldGCSummaryPhase) {
   605     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
   606     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
   607                            " pos=" SIZE_FORMAT,
   608                            split_type, source_next, split_region,
   609                            partial_obj_size);
   610     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
   611                            " tn=" PTR_FORMAT,
   612                            split_type, split_destination,
   613                            addr_to_region_idx(split_destination),
   614                            *target_next);
   616     if (partial_obj_size != 0) {
   617       HeapWord* const po_beg = split_info.destination();
   618       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
   619       gclog_or_tty->print_cr("%s split:  "
   620                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
   621                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
   622                              split_type,
   623                              po_beg, addr_to_region_idx(po_beg),
   624                              po_end, addr_to_region_idx(po_end));
   625     }
   626   }
   628   return source_next;
   629 }
   631 bool ParallelCompactData::summarize(SplitInfo& split_info,
   632                                     HeapWord* source_beg, HeapWord* source_end,
   633                                     HeapWord** source_next,
   634                                     HeapWord* target_beg, HeapWord* target_end,
   635                                     HeapWord** target_next)
   636 {
   637   if (TraceParallelOldGCSummaryPhase) {
   638     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
   639     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
   640                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
   641                   source_beg, source_end, source_next_val,
   642                   target_beg, target_end, *target_next);
   643   }
   645   size_t cur_region = addr_to_region_idx(source_beg);
   646   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
   648   HeapWord *dest_addr = target_beg;
   649   while (cur_region < end_region) {
   650     // The destination must be set even if the region has no data.
   651     _region_data[cur_region].set_destination(dest_addr);
   653     size_t words = _region_data[cur_region].data_size();
   654     if (words > 0) {
   655       // If cur_region does not fit entirely into the target space, find a point
   656       // at which the source space can be 'split' so that part is copied to the
   657       // target space and the rest is copied elsewhere.
   658       if (dest_addr + words > target_end) {
   659         assert(source_next != NULL, "source_next is NULL when splitting");
   660         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
   661                                              target_end, target_next);
   662         return false;
   663       }
   665       // Compute the destination_count for cur_region, and if necessary, update
   666       // source_region for a destination region.  The source_region field is
   667       // updated if cur_region is the first (left-most) region to be copied to a
   668       // destination region.
   669       //
   670       // The destination_count calculation is a bit subtle.  A region that has
   671       // data that compacts into itself does not count itself as a destination.
   672       // This maintains the invariant that a zero count means the region is
   673       // available and can be claimed and then filled.
   674       uint destination_count = 0;
   675       if (split_info.is_split(cur_region)) {
   676         // The current region has been split:  the partial object will be copied
   677         // to one destination space and the remaining data will be copied to
   678         // another destination space.  Adjust the initial destination_count and,
   679         // if necessary, set the source_region field if the partial object will
   680         // cross a destination region boundary.
   681         destination_count = split_info.destination_count();
   682         if (destination_count == 2) {
   683           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
   684           _region_data[dest_idx].set_source_region(cur_region);
   685         }
   686       }
   688       HeapWord* const last_addr = dest_addr + words - 1;
   689       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
   690       const size_t dest_region_2 = addr_to_region_idx(last_addr);
   692       // Initially assume that the destination regions will be the same and
   693       // adjust the value below if necessary.  Under this assumption, if
   694       // cur_region == dest_region_2, then cur_region will be compacted
   695       // completely into itself.
   696       destination_count += cur_region == dest_region_2 ? 0 : 1;
   697       if (dest_region_1 != dest_region_2) {
   698         // Destination regions differ; adjust destination_count.
   699         destination_count += 1;
   700         // Data from cur_region will be copied to the start of dest_region_2.
   701         _region_data[dest_region_2].set_source_region(cur_region);
   702       } else if (region_offset(dest_addr) == 0) {
   703         // Data from cur_region will be copied to the start of the destination
   704         // region.
   705         _region_data[dest_region_1].set_source_region(cur_region);
   706       }
   708       _region_data[cur_region].set_destination_count(destination_count);
   709       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
   710       dest_addr += words;
   711     }
   713     ++cur_region;
   714   }
   716   *target_next = dest_addr;
   717   return true;
   718 }
   720 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
   721   assert(addr != NULL, "Should detect NULL oop earlier");
   722   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
   723 #ifdef ASSERT
   724   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
   725     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
   726   }
   727 #endif
   728   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
   730   // Region covering the object.
   731   size_t region_index = addr_to_region_idx(addr);
   732   const RegionData* const region_ptr = region(region_index);
   733   HeapWord* const region_addr = region_align_down(addr);
   735   assert(addr < region_addr + RegionSize, "Region does not cover object");
   736   assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
   738   HeapWord* result = region_ptr->destination();
   740   // If all the data in the region is live, then the new location of the object
   741   // can be calculated from the destination of the region plus the offset of the
   742   // object in the region.
   743   if (region_ptr->data_size() == RegionSize) {
   744     result += pointer_delta(addr, region_addr);
   745     DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
   746     return result;
   747   }
   749   // The new location of the object is
   750   //    region destination +
   751   //    size of the partial object extending onto the region +
   752   //    sizes of the live objects in the Region that are to the left of addr
   753   const size_t partial_obj_size = region_ptr->partial_obj_size();
   754   HeapWord* const search_start = region_addr + partial_obj_size;
   756   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   757   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
   759   result += partial_obj_size + live_to_left;
   760   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
   761   return result;
   762 }
   764 klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
   765   klassOop updated_klass;
   766   if (PSParallelCompact::should_update_klass(old_klass)) {
   767     updated_klass = (klassOop) calc_new_pointer(old_klass);
   768   } else {
   769     updated_klass = old_klass;
   770   }
   772   return updated_klass;
   773 }
   775 #ifdef  ASSERT
   776 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
   777 {
   778   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
   779   const size_t* const end = (const size_t*)vspace->committed_high_addr();
   780   for (const size_t* p = beg; p < end; ++p) {
   781     assert(*p == 0, "not zero");
   782   }
   783 }
   785 void ParallelCompactData::verify_clear()
   786 {
   787   verify_clear(_region_vspace);
   788 }
   789 #endif  // #ifdef ASSERT
   791 #ifdef NOT_PRODUCT
   792 ParallelCompactData::RegionData* debug_region(size_t region_index) {
   793   ParallelCompactData& sd = PSParallelCompact::summary_data();
   794   return sd.region(region_index);
   795 }
   796 #endif
   798 elapsedTimer        PSParallelCompact::_accumulated_time;
   799 unsigned int        PSParallelCompact::_total_invocations = 0;
   800 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
   801 jlong               PSParallelCompact::_time_of_last_gc = 0;
   802 CollectorCounters*  PSParallelCompact::_counters = NULL;
   803 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
   804 ParallelCompactData PSParallelCompact::_summary_data;
   806 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
   808 void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
   809 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
   811 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   812 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   814 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
   815 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
   817 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p, _is_root); }
   818 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
   820 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
   822 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       { mark_and_push(_compaction_manager, p); }
   823 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
   825 void PSParallelCompact::post_initialize() {
   826   ParallelScavengeHeap* heap = gc_heap();
   827   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   829   MemRegion mr = heap->reserved_region();
   830   _ref_processor =
   831     new ReferenceProcessor(mr,            // span
   832                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
   833                            (int) ParallelGCThreads, // mt processing degree
   834                            true,          // mt discovery
   835                            (int) ParallelGCThreads, // mt discovery degree
   836                            true,          // atomic_discovery
   837                            &_is_alive_closure, // non-header is alive closure
   838                            false);        // write barrier for next field updates
   839   _counters = new CollectorCounters("PSParallelCompact", 1);
   841   // Initialize static fields in ParCompactionManager.
   842   ParCompactionManager::initialize(mark_bitmap());
   843 }
   845 bool PSParallelCompact::initialize() {
   846   ParallelScavengeHeap* heap = gc_heap();
   847   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   848   MemRegion mr = heap->reserved_region();
   850   // Was the old gen get allocated successfully?
   851   if (!heap->old_gen()->is_allocated()) {
   852     return false;
   853   }
   855   initialize_space_info();
   856   initialize_dead_wood_limiter();
   858   if (!_mark_bitmap.initialize(mr)) {
   859     vm_shutdown_during_initialization("Unable to allocate bit map for "
   860       "parallel garbage collection for the requested heap size.");
   861     return false;
   862   }
   864   if (!_summary_data.initialize(mr)) {
   865     vm_shutdown_during_initialization("Unable to allocate tables for "
   866       "parallel garbage collection for the requested heap size.");
   867     return false;
   868   }
   870   return true;
   871 }
   873 void PSParallelCompact::initialize_space_info()
   874 {
   875   memset(&_space_info, 0, sizeof(_space_info));
   877   ParallelScavengeHeap* heap = gc_heap();
   878   PSYoungGen* young_gen = heap->young_gen();
   879   MutableSpace* perm_space = heap->perm_gen()->object_space();
   881   _space_info[perm_space_id].set_space(perm_space);
   882   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
   883   _space_info[eden_space_id].set_space(young_gen->eden_space());
   884   _space_info[from_space_id].set_space(young_gen->from_space());
   885   _space_info[to_space_id].set_space(young_gen->to_space());
   887   _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
   888   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
   890   _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
   891   if (TraceParallelOldGCDensePrefix) {
   892     tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
   893                   _space_info[perm_space_id].min_dense_prefix());
   894   }
   895 }
   897 void PSParallelCompact::initialize_dead_wood_limiter()
   898 {
   899   const size_t max = 100;
   900   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
   901   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
   902   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
   903   DEBUG_ONLY(_dwl_initialized = true;)
   904   _dwl_adjustment = normal_distribution(1.0);
   905 }
   907 // Simple class for storing info about the heap at the start of GC, to be used
   908 // after GC for comparison/printing.
   909 class PreGCValues {
   910 public:
   911   PreGCValues() { }
   912   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
   914   void fill(ParallelScavengeHeap* heap) {
   915     _heap_used      = heap->used();
   916     _young_gen_used = heap->young_gen()->used_in_bytes();
   917     _old_gen_used   = heap->old_gen()->used_in_bytes();
   918     _perm_gen_used  = heap->perm_gen()->used_in_bytes();
   919   };
   921   size_t heap_used() const      { return _heap_used; }
   922   size_t young_gen_used() const { return _young_gen_used; }
   923   size_t old_gen_used() const   { return _old_gen_used; }
   924   size_t perm_gen_used() const  { return _perm_gen_used; }
   926 private:
   927   size_t _heap_used;
   928   size_t _young_gen_used;
   929   size_t _old_gen_used;
   930   size_t _perm_gen_used;
   931 };
   933 void
   934 PSParallelCompact::clear_data_covering_space(SpaceId id)
   935 {
   936   // At this point, top is the value before GC, new_top() is the value that will
   937   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
   938   // should be marked above top.  The summary data is cleared to the larger of
   939   // top & new_top.
   940   MutableSpace* const space = _space_info[id].space();
   941   HeapWord* const bot = space->bottom();
   942   HeapWord* const top = space->top();
   943   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
   945   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
   946   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
   947   _mark_bitmap.clear_range(beg_bit, end_bit);
   949   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
   950   const size_t end_region =
   951     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
   952   _summary_data.clear_range(beg_region, end_region);
   954   // Clear the data used to 'split' regions.
   955   SplitInfo& split_info = _space_info[id].split_info();
   956   if (split_info.is_valid()) {
   957     split_info.clear();
   958   }
   959   DEBUG_ONLY(split_info.verify_clear();)
   960 }
   962 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
   963 {
   964   // Update the from & to space pointers in space_info, since they are swapped
   965   // at each young gen gc.  Do the update unconditionally (even though a
   966   // promotion failure does not swap spaces) because an unknown number of minor
   967   // collections will have swapped the spaces an unknown number of times.
   968   TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
   969   ParallelScavengeHeap* heap = gc_heap();
   970   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
   971   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
   973   pre_gc_values->fill(heap);
   975   ParCompactionManager::reset();
   976   NOT_PRODUCT(_mark_bitmap.reset_counters());
   977   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
   978   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
   980   // Increment the invocation count
   981   heap->increment_total_collections(true);
   983   // We need to track unique mark sweep invocations as well.
   984   _total_invocations++;
   986   heap->print_heap_before_gc();
   988   // Fill in TLABs
   989   heap->accumulate_statistics_all_tlabs();
   990   heap->ensure_parsability(true);  // retire TLABs
   992   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   993     HandleMark hm;  // Discard invalid handles created during verification
   994     gclog_or_tty->print(" VerifyBeforeGC:");
   995     Universe::verify(true);
   996   }
   998   // Verify object start arrays
   999   if (VerifyObjectStartArray &&
  1000       VerifyBeforeGC) {
  1001     heap->old_gen()->verify_object_start_array();
  1002     heap->perm_gen()->verify_object_start_array();
  1005   DEBUG_ONLY(mark_bitmap()->verify_clear();)
  1006   DEBUG_ONLY(summary_data().verify_clear();)
  1008   // Have worker threads release resources the next time they run a task.
  1009   gc_task_manager()->release_all_resources();
  1012 void PSParallelCompact::post_compact()
  1014   TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
  1016   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
  1017     // Clear the marking bitmap, summary data and split info.
  1018     clear_data_covering_space(SpaceId(id));
  1019     // Update top().  Must be done after clearing the bitmap and summary data.
  1020     _space_info[id].publish_new_top();
  1023   MutableSpace* const eden_space = _space_info[eden_space_id].space();
  1024   MutableSpace* const from_space = _space_info[from_space_id].space();
  1025   MutableSpace* const to_space   = _space_info[to_space_id].space();
  1027   ParallelScavengeHeap* heap = gc_heap();
  1028   bool eden_empty = eden_space->is_empty();
  1029   if (!eden_empty) {
  1030     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
  1031                                             heap->young_gen(), heap->old_gen());
  1034   // Update heap occupancy information which is used as input to the soft ref
  1035   // clearing policy at the next gc.
  1036   Universe::update_heap_info_at_gc();
  1038   bool young_gen_empty = eden_empty && from_space->is_empty() &&
  1039     to_space->is_empty();
  1041   BarrierSet* bs = heap->barrier_set();
  1042   if (bs->is_a(BarrierSet::ModRef)) {
  1043     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
  1044     MemRegion old_mr = heap->old_gen()->reserved();
  1045     MemRegion perm_mr = heap->perm_gen()->reserved();
  1046     assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
  1048     if (young_gen_empty) {
  1049       modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
  1050     } else {
  1051       modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
  1055   Threads::gc_epilogue();
  1056   CodeCache::gc_epilogue();
  1057   JvmtiExport::gc_epilogue();
  1059   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1061   ref_processor()->enqueue_discovered_references(NULL);
  1063   if (ZapUnusedHeapArea) {
  1064     heap->gen_mangle_unused_area();
  1067   // Update time of last GC
  1068   reset_millis_since_last_gc();
  1071 HeapWord*
  1072 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
  1073                                                     bool maximum_compaction)
  1075   const size_t region_size = ParallelCompactData::RegionSize;
  1076   const ParallelCompactData& sd = summary_data();
  1078   const MutableSpace* const space = _space_info[id].space();
  1079   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  1080   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
  1081   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
  1083   // Skip full regions at the beginning of the space--they are necessarily part
  1084   // of the dense prefix.
  1085   size_t full_count = 0;
  1086   const RegionData* cp;
  1087   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
  1088     ++full_count;
  1091   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1092   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1093   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
  1094   if (maximum_compaction || cp == end_cp || interval_ended) {
  1095     _maximum_compaction_gc_num = total_invocations();
  1096     return sd.region_to_addr(cp);
  1099   HeapWord* const new_top = _space_info[id].new_top();
  1100   const size_t space_live = pointer_delta(new_top, space->bottom());
  1101   const size_t space_used = space->used_in_words();
  1102   const size_t space_capacity = space->capacity_in_words();
  1104   const double cur_density = double(space_live) / space_capacity;
  1105   const double deadwood_density =
  1106     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
  1107   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
  1109   if (TraceParallelOldGCDensePrefix) {
  1110     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
  1111                   cur_density, deadwood_density, deadwood_goal);
  1112     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1113                   "space_cap=" SIZE_FORMAT,
  1114                   space_live, space_used,
  1115                   space_capacity);
  1118   // XXX - Use binary search?
  1119   HeapWord* dense_prefix = sd.region_to_addr(cp);
  1120   const RegionData* full_cp = cp;
  1121   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
  1122   while (cp < end_cp) {
  1123     HeapWord* region_destination = cp->destination();
  1124     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
  1125     if (TraceParallelOldGCDensePrefix && Verbose) {
  1126       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
  1127                     "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
  1128                     sd.region(cp), region_destination,
  1129                     dense_prefix, cur_deadwood);
  1132     if (cur_deadwood >= deadwood_goal) {
  1133       // Found the region that has the correct amount of deadwood to the left.
  1134       // This typically occurs after crossing a fairly sparse set of regions, so
  1135       // iterate backwards over those sparse regions, looking for the region
  1136       // that has the lowest density of live objects 'to the right.'
  1137       size_t space_to_left = sd.region(cp) * region_size;
  1138       size_t live_to_left = space_to_left - cur_deadwood;
  1139       size_t space_to_right = space_capacity - space_to_left;
  1140       size_t live_to_right = space_live - live_to_left;
  1141       double density_to_right = double(live_to_right) / space_to_right;
  1142       while (cp > full_cp) {
  1143         --cp;
  1144         const size_t prev_region_live_to_right = live_to_right -
  1145           cp->data_size();
  1146         const size_t prev_region_space_to_right = space_to_right + region_size;
  1147         double prev_region_density_to_right =
  1148           double(prev_region_live_to_right) / prev_region_space_to_right;
  1149         if (density_to_right <= prev_region_density_to_right) {
  1150           return dense_prefix;
  1152         if (TraceParallelOldGCDensePrefix && Verbose) {
  1153           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
  1154                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
  1155                         prev_region_density_to_right);
  1157         dense_prefix -= region_size;
  1158         live_to_right = prev_region_live_to_right;
  1159         space_to_right = prev_region_space_to_right;
  1160         density_to_right = prev_region_density_to_right;
  1162       return dense_prefix;
  1165     dense_prefix += region_size;
  1166     ++cp;
  1169   return dense_prefix;
  1172 #ifndef PRODUCT
  1173 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
  1174                                                  const SpaceId id,
  1175                                                  const bool maximum_compaction,
  1176                                                  HeapWord* const addr)
  1178   const size_t region_idx = summary_data().addr_to_region_idx(addr);
  1179   RegionData* const cp = summary_data().region(region_idx);
  1180   const MutableSpace* const space = _space_info[id].space();
  1181   HeapWord* const new_top = _space_info[id].new_top();
  1183   const size_t space_live = pointer_delta(new_top, space->bottom());
  1184   const size_t dead_to_left = pointer_delta(addr, cp->destination());
  1185   const size_t space_cap = space->capacity_in_words();
  1186   const double dead_to_left_pct = double(dead_to_left) / space_cap;
  1187   const size_t live_to_right = new_top - cp->destination();
  1188   const size_t dead_to_right = space->top() - addr - live_to_right;
  1190   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
  1191                 "spl=" SIZE_FORMAT " "
  1192                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
  1193                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
  1194                 " ratio=%10.8f",
  1195                 algorithm, addr, region_idx,
  1196                 space_live,
  1197                 dead_to_left, dead_to_left_pct,
  1198                 dead_to_right, live_to_right,
  1199                 double(dead_to_right) / live_to_right);
  1201 #endif  // #ifndef PRODUCT
  1203 // Return a fraction indicating how much of the generation can be treated as
  1204 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
  1205 // based on the density of live objects in the generation to determine a limit,
  1206 // which is then adjusted so the return value is min_percent when the density is
  1207 // 1.
  1208 //
  1209 // The following table shows some return values for a different values of the
  1210 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
  1211 // min_percent is 1.
  1212 //
  1213 //                          fraction allowed as dead wood
  1214 //         -----------------------------------------------------------------
  1215 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
  1216 // ------- ---------- ---------- ---------- ---------- ---------- ----------
  1217 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1218 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1219 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1220 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1221 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1222 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1223 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1224 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1225 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1226 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1227 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
  1228 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1229 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1230 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1231 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1232 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1233 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1234 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1235 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1236 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1237 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1239 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
  1241   assert(_dwl_initialized, "uninitialized");
  1243   // The raw limit is the value of the normal distribution at x = density.
  1244   const double raw_limit = normal_distribution(density);
  1246   // Adjust the raw limit so it becomes the minimum when the density is 1.
  1247   //
  1248   // First subtract the adjustment value (which is simply the precomputed value
  1249   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  1250   // Then add the minimum value, so the minimum is returned when the density is
  1251   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  1252   const double min = double(min_percent) / 100.0;
  1253   const double limit = raw_limit - _dwl_adjustment + min;
  1254   return MAX2(limit, 0.0);
  1257 ParallelCompactData::RegionData*
  1258 PSParallelCompact::first_dead_space_region(const RegionData* beg,
  1259                                            const RegionData* end)
  1261   const size_t region_size = ParallelCompactData::RegionSize;
  1262   ParallelCompactData& sd = summary_data();
  1263   size_t left = sd.region(beg);
  1264   size_t right = end > beg ? sd.region(end) - 1 : left;
  1266   // Binary search.
  1267   while (left < right) {
  1268     // Equivalent to (left + right) / 2, but does not overflow.
  1269     const size_t middle = left + (right - left) / 2;
  1270     RegionData* const middle_ptr = sd.region(middle);
  1271     HeapWord* const dest = middle_ptr->destination();
  1272     HeapWord* const addr = sd.region_to_addr(middle);
  1273     assert(dest != NULL, "sanity");
  1274     assert(dest <= addr, "must move left");
  1276     if (middle > left && dest < addr) {
  1277       right = middle - 1;
  1278     } else if (middle < right && middle_ptr->data_size() == region_size) {
  1279       left = middle + 1;
  1280     } else {
  1281       return middle_ptr;
  1284   return sd.region(left);
  1287 ParallelCompactData::RegionData*
  1288 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
  1289                                           const RegionData* end,
  1290                                           size_t dead_words)
  1292   ParallelCompactData& sd = summary_data();
  1293   size_t left = sd.region(beg);
  1294   size_t right = end > beg ? sd.region(end) - 1 : left;
  1296   // Binary search.
  1297   while (left < right) {
  1298     // Equivalent to (left + right) / 2, but does not overflow.
  1299     const size_t middle = left + (right - left) / 2;
  1300     RegionData* const middle_ptr = sd.region(middle);
  1301     HeapWord* const dest = middle_ptr->destination();
  1302     HeapWord* const addr = sd.region_to_addr(middle);
  1303     assert(dest != NULL, "sanity");
  1304     assert(dest <= addr, "must move left");
  1306     const size_t dead_to_left = pointer_delta(addr, dest);
  1307     if (middle > left && dead_to_left > dead_words) {
  1308       right = middle - 1;
  1309     } else if (middle < right && dead_to_left < dead_words) {
  1310       left = middle + 1;
  1311     } else {
  1312       return middle_ptr;
  1315   return sd.region(left);
  1318 // The result is valid during the summary phase, after the initial summarization
  1319 // of each space into itself, and before final summarization.
  1320 inline double
  1321 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
  1322                                    HeapWord* const bottom,
  1323                                    HeapWord* const top,
  1324                                    HeapWord* const new_top)
  1326   ParallelCompactData& sd = summary_data();
  1328   assert(cp != NULL, "sanity");
  1329   assert(bottom != NULL, "sanity");
  1330   assert(top != NULL, "sanity");
  1331   assert(new_top != NULL, "sanity");
  1332   assert(top >= new_top, "summary data problem?");
  1333   assert(new_top > bottom, "space is empty; should not be here");
  1334   assert(new_top >= cp->destination(), "sanity");
  1335   assert(top >= sd.region_to_addr(cp), "sanity");
  1337   HeapWord* const destination = cp->destination();
  1338   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  1339   const size_t compacted_region_live = pointer_delta(new_top, destination);
  1340   const size_t compacted_region_used = pointer_delta(top,
  1341                                                      sd.region_to_addr(cp));
  1342   const size_t reclaimable = compacted_region_used - compacted_region_live;
  1344   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  1345   return double(reclaimable) / divisor;
  1348 // Return the address of the end of the dense prefix, a.k.a. the start of the
  1349 // compacted region.  The address is always on a region boundary.
  1350 //
  1351 // Completely full regions at the left are skipped, since no compaction can
  1352 // occur in those regions.  Then the maximum amount of dead wood to allow is
  1353 // computed, based on the density (amount live / capacity) of the generation;
  1354 // the region with approximately that amount of dead space to the left is
  1355 // identified as the limit region.  Regions between the last completely full
  1356 // region and the limit region are scanned and the one that has the best
  1357 // (maximum) reclaimed_ratio() is selected.
  1358 HeapWord*
  1359 PSParallelCompact::compute_dense_prefix(const SpaceId id,
  1360                                         bool maximum_compaction)
  1362   if (ParallelOldGCSplitALot) {
  1363     if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
  1364       // The value was chosen to provoke splitting a young gen space; use it.
  1365       return _space_info[id].dense_prefix();
  1369   const size_t region_size = ParallelCompactData::RegionSize;
  1370   const ParallelCompactData& sd = summary_data();
  1372   const MutableSpace* const space = _space_info[id].space();
  1373   HeapWord* const top = space->top();
  1374   HeapWord* const top_aligned_up = sd.region_align_up(top);
  1375   HeapWord* const new_top = _space_info[id].new_top();
  1376   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
  1377   HeapWord* const bottom = space->bottom();
  1378   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
  1379   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  1380   const RegionData* const new_top_cp =
  1381     sd.addr_to_region_ptr(new_top_aligned_up);
  1383   // Skip full regions at the beginning of the space--they are necessarily part
  1384   // of the dense prefix.
  1385   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
  1386   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
  1387          space->is_empty(), "no dead space allowed to the left");
  1388   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
  1389          "region must have dead space");
  1391   // The gc number is saved whenever a maximum compaction is done, and used to
  1392   // determine when the maximum compaction interval has expired.  This avoids
  1393   // successive max compactions for different reasons.
  1394   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1395   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1396   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
  1397     total_invocations() == HeapFirstMaximumCompactionCount;
  1398   if (maximum_compaction || full_cp == top_cp || interval_ended) {
  1399     _maximum_compaction_gc_num = total_invocations();
  1400     return sd.region_to_addr(full_cp);
  1403   const size_t space_live = pointer_delta(new_top, bottom);
  1404   const size_t space_used = space->used_in_words();
  1405   const size_t space_capacity = space->capacity_in_words();
  1407   const double density = double(space_live) / double(space_capacity);
  1408   const size_t min_percent_free =
  1409           id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
  1410   const double limiter = dead_wood_limiter(density, min_percent_free);
  1411   const size_t dead_wood_max = space_used - space_live;
  1412   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
  1413                                       dead_wood_max);
  1415   if (TraceParallelOldGCDensePrefix) {
  1416     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1417                   "space_cap=" SIZE_FORMAT,
  1418                   space_live, space_used,
  1419                   space_capacity);
  1420     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
  1421                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
  1422                   density, min_percent_free, limiter,
  1423                   dead_wood_max, dead_wood_limit);
  1426   // Locate the region with the desired amount of dead space to the left.
  1427   const RegionData* const limit_cp =
  1428     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
  1430   // Scan from the first region with dead space to the limit region and find the
  1431   // one with the best (largest) reclaimed ratio.
  1432   double best_ratio = 0.0;
  1433   const RegionData* best_cp = full_cp;
  1434   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
  1435     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
  1436     if (tmp_ratio > best_ratio) {
  1437       best_cp = cp;
  1438       best_ratio = tmp_ratio;
  1442 #if     0
  1443   // Something to consider:  if the region with the best ratio is 'close to' the
  1444   // first region w/free space, choose the first region with free space
  1445   // ("first-free").  The first-free region is usually near the start of the
  1446   // heap, which means we are copying most of the heap already, so copy a bit
  1447   // more to get complete compaction.
  1448   if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
  1449     _maximum_compaction_gc_num = total_invocations();
  1450     best_cp = full_cp;
  1452 #endif  // #if 0
  1454   return sd.region_to_addr(best_cp);
  1457 #ifndef PRODUCT
  1458 void
  1459 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
  1460                                           size_t words)
  1462   if (TraceParallelOldGCSummaryPhase) {
  1463     tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
  1464                   SIZE_FORMAT, start, start + words, words);
  1467   ObjectStartArray* const start_array = _space_info[id].start_array();
  1468   CollectedHeap::fill_with_objects(start, words);
  1469   for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
  1470     _mark_bitmap.mark_obj(p, words);
  1471     _summary_data.add_obj(p, words);
  1472     start_array->allocate_block(p);
  1476 void
  1477 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
  1479   ParallelCompactData& sd = summary_data();
  1480   MutableSpace* space = _space_info[id].space();
  1482   // Find the source and destination start addresses.
  1483   HeapWord* const src_addr = sd.region_align_down(start);
  1484   HeapWord* dst_addr;
  1485   if (src_addr < start) {
  1486     dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
  1487   } else if (src_addr > space->bottom()) {
  1488     // The start (the original top() value) is aligned to a region boundary so
  1489     // the associated region does not have a destination.  Compute the
  1490     // destination from the previous region.
  1491     RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
  1492     dst_addr = cp->destination() + cp->data_size();
  1493   } else {
  1494     // Filling the entire space.
  1495     dst_addr = space->bottom();
  1497   assert(dst_addr != NULL, "sanity");
  1499   // Update the summary data.
  1500   bool result = _summary_data.summarize(_space_info[id].split_info(),
  1501                                         src_addr, space->top(), NULL,
  1502                                         dst_addr, space->end(),
  1503                                         _space_info[id].new_top_addr());
  1504   assert(result, "should not fail:  bad filler object size");
  1507 void
  1508 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
  1510   if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
  1511     return;
  1514   MutableSpace* const space = _space_info[id].space();
  1515   if (space->is_empty()) {
  1516     HeapWord* b = space->bottom();
  1517     HeapWord* t = b + space->capacity_in_words() / 2;
  1518     space->set_top(t);
  1519     if (ZapUnusedHeapArea) {
  1520       space->set_top_for_allocations();
  1523     size_t min_size = CollectedHeap::min_fill_size();
  1524     size_t obj_len = min_size;
  1525     while (b + obj_len <= t) {
  1526       CollectedHeap::fill_with_object(b, obj_len);
  1527       mark_bitmap()->mark_obj(b, obj_len);
  1528       summary_data().add_obj(b, obj_len);
  1529       b += obj_len;
  1530       obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
  1532     if (b < t) {
  1533       // The loop didn't completely fill to t (top); adjust top downward.
  1534       space->set_top(b);
  1535       if (ZapUnusedHeapArea) {
  1536         space->set_top_for_allocations();
  1540     HeapWord** nta = _space_info[id].new_top_addr();
  1541     bool result = summary_data().summarize(_space_info[id].split_info(),
  1542                                            space->bottom(), space->top(), NULL,
  1543                                            space->bottom(), space->end(), nta);
  1544     assert(result, "space must fit into itself");
  1548 void
  1549 PSParallelCompact::provoke_split(bool & max_compaction)
  1551   if (total_invocations() % ParallelOldGCSplitInterval != 0) {
  1552     return;
  1555   const size_t region_size = ParallelCompactData::RegionSize;
  1556   ParallelCompactData& sd = summary_data();
  1558   MutableSpace* const eden_space = _space_info[eden_space_id].space();
  1559   MutableSpace* const from_space = _space_info[from_space_id].space();
  1560   const size_t eden_live = pointer_delta(eden_space->top(),
  1561                                          _space_info[eden_space_id].new_top());
  1562   const size_t from_live = pointer_delta(from_space->top(),
  1563                                          _space_info[from_space_id].new_top());
  1565   const size_t min_fill_size = CollectedHeap::min_fill_size();
  1566   const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
  1567   const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
  1568   const size_t from_free = pointer_delta(from_space->end(), from_space->top());
  1569   const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
  1571   // Choose the space to split; need at least 2 regions live (or fillable).
  1572   SpaceId id;
  1573   MutableSpace* space;
  1574   size_t live_words;
  1575   size_t fill_words;
  1576   if (eden_live + eden_fillable >= region_size * 2) {
  1577     id = eden_space_id;
  1578     space = eden_space;
  1579     live_words = eden_live;
  1580     fill_words = eden_fillable;
  1581   } else if (from_live + from_fillable >= region_size * 2) {
  1582     id = from_space_id;
  1583     space = from_space;
  1584     live_words = from_live;
  1585     fill_words = from_fillable;
  1586   } else {
  1587     return; // Give up.
  1589   assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
  1591   if (live_words < region_size * 2) {
  1592     // Fill from top() to end() w/live objects of mixed sizes.
  1593     HeapWord* const fill_start = space->top();
  1594     live_words += fill_words;
  1596     space->set_top(fill_start + fill_words);
  1597     if (ZapUnusedHeapArea) {
  1598       space->set_top_for_allocations();
  1601     HeapWord* cur_addr = fill_start;
  1602     while (fill_words > 0) {
  1603       const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
  1604       size_t cur_size = MIN2(align_object_size_(r), fill_words);
  1605       if (fill_words - cur_size < min_fill_size) {
  1606         cur_size = fill_words; // Avoid leaving a fragment too small to fill.
  1609       CollectedHeap::fill_with_object(cur_addr, cur_size);
  1610       mark_bitmap()->mark_obj(cur_addr, cur_size);
  1611       sd.add_obj(cur_addr, cur_size);
  1613       cur_addr += cur_size;
  1614       fill_words -= cur_size;
  1617     summarize_new_objects(id, fill_start);
  1620   max_compaction = false;
  1622   // Manipulate the old gen so that it has room for about half of the live data
  1623   // in the target young gen space (live_words / 2).
  1624   id = old_space_id;
  1625   space = _space_info[id].space();
  1626   const size_t free_at_end = space->free_in_words();
  1627   const size_t free_target = align_object_size(live_words / 2);
  1628   const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
  1630   if (free_at_end >= free_target + min_fill_size) {
  1631     // Fill space above top() and set the dense prefix so everything survives.
  1632     HeapWord* const fill_start = space->top();
  1633     const size_t fill_size = free_at_end - free_target;
  1634     space->set_top(space->top() + fill_size);
  1635     if (ZapUnusedHeapArea) {
  1636       space->set_top_for_allocations();
  1638     fill_with_live_objects(id, fill_start, fill_size);
  1639     summarize_new_objects(id, fill_start);
  1640     _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
  1641   } else if (dead + free_at_end > free_target) {
  1642     // Find a dense prefix that makes the right amount of space available.
  1643     HeapWord* cur = sd.region_align_down(space->top());
  1644     HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
  1645     size_t dead_to_right = pointer_delta(space->end(), cur_destination);
  1646     while (dead_to_right < free_target) {
  1647       cur -= region_size;
  1648       cur_destination = sd.addr_to_region_ptr(cur)->destination();
  1649       dead_to_right = pointer_delta(space->end(), cur_destination);
  1651     _space_info[id].set_dense_prefix(cur);
  1654 #endif // #ifndef PRODUCT
  1656 void PSParallelCompact::summarize_spaces_quick()
  1658   for (unsigned int i = 0; i < last_space_id; ++i) {
  1659     const MutableSpace* space = _space_info[i].space();
  1660     HeapWord** nta = _space_info[i].new_top_addr();
  1661     bool result = _summary_data.summarize(_space_info[i].split_info(),
  1662                                           space->bottom(), space->top(), NULL,
  1663                                           space->bottom(), space->end(), nta);
  1664     assert(result, "space must fit into itself");
  1665     _space_info[i].set_dense_prefix(space->bottom());
  1668 #ifndef PRODUCT
  1669   if (ParallelOldGCSplitALot) {
  1670     provoke_split_fill_survivor(to_space_id);
  1672 #endif // #ifndef PRODUCT
  1675 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
  1677   HeapWord* const dense_prefix_end = dense_prefix(id);
  1678   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
  1679   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
  1680   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
  1681     // Only enough dead space is filled so that any remaining dead space to the
  1682     // left is larger than the minimum filler object.  (The remainder is filled
  1683     // during the copy/update phase.)
  1684     //
  1685     // The size of the dead space to the right of the boundary is not a
  1686     // concern, since compaction will be able to use whatever space is
  1687     // available.
  1688     //
  1689     // Here '||' is the boundary, 'x' represents a don't care bit and a box
  1690     // surrounds the space to be filled with an object.
  1691     //
  1692     // In the 32-bit VM, each bit represents two 32-bit words:
  1693     //                              +---+
  1694     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1695     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1696     //                              +---+
  1697     //
  1698     // In the 64-bit VM, each bit represents one 64-bit word:
  1699     //                              +------------+
  1700     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
  1701     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
  1702     //                              +------------+
  1703     //                          +-------+
  1704     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
  1705     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
  1706     //                          +-------+
  1707     //                      +-----------+
  1708     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
  1709     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
  1710     //                      +-----------+
  1711     //                          +-------+
  1712     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1713     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1714     //                          +-------+
  1716     // Initially assume case a, c or e will apply.
  1717     size_t obj_len = CollectedHeap::min_fill_size();
  1718     HeapWord* obj_beg = dense_prefix_end - obj_len;
  1720 #ifdef  _LP64
  1721     if (MinObjAlignment > 1) { // object alignment > heap word size
  1722       // Cases a, c or e.
  1723     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
  1724       // Case b above.
  1725       obj_beg = dense_prefix_end - 1;
  1726     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
  1727                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
  1728       // Case d above.
  1729       obj_beg = dense_prefix_end - 3;
  1730       obj_len = 3;
  1732 #endif  // #ifdef _LP64
  1734     CollectedHeap::fill_with_object(obj_beg, obj_len);
  1735     _mark_bitmap.mark_obj(obj_beg, obj_len);
  1736     _summary_data.add_obj(obj_beg, obj_len);
  1737     assert(start_array(id) != NULL, "sanity");
  1738     start_array(id)->allocate_block(obj_beg);
  1742 void
  1743 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
  1745   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
  1746   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
  1747   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
  1748   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
  1749     cur->set_source_region(0);
  1753 void
  1754 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
  1756   assert(id < last_space_id, "id out of range");
  1757   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
  1758          ParallelOldGCSplitALot && id == old_space_id,
  1759          "should have been reset in summarize_spaces_quick()");
  1761   const MutableSpace* space = _space_info[id].space();
  1762   if (_space_info[id].new_top() != space->bottom()) {
  1763     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
  1764     _space_info[id].set_dense_prefix(dense_prefix_end);
  1766 #ifndef PRODUCT
  1767     if (TraceParallelOldGCDensePrefix) {
  1768       print_dense_prefix_stats("ratio", id, maximum_compaction,
  1769                                dense_prefix_end);
  1770       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
  1771       print_dense_prefix_stats("density", id, maximum_compaction, addr);
  1773 #endif  // #ifndef PRODUCT
  1775     // Recompute the summary data, taking into account the dense prefix.  If
  1776     // every last byte will be reclaimed, then the existing summary data which
  1777     // compacts everything can be left in place.
  1778     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
  1779       // If dead space crosses the dense prefix boundary, it is (at least
  1780       // partially) filled with a dummy object, marked live and added to the
  1781       // summary data.  This simplifies the copy/update phase and must be done
  1782       // before the final locations of objects are determined, to prevent
  1783       // leaving a fragment of dead space that is too small to fill.
  1784       fill_dense_prefix_end(id);
  1786       // Compute the destination of each Region, and thus each object.
  1787       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
  1788       _summary_data.summarize(_space_info[id].split_info(),
  1789                               dense_prefix_end, space->top(), NULL,
  1790                               dense_prefix_end, space->end(),
  1791                               _space_info[id].new_top_addr());
  1795   if (TraceParallelOldGCSummaryPhase) {
  1796     const size_t region_size = ParallelCompactData::RegionSize;
  1797     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
  1798     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
  1799     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
  1800     HeapWord* const new_top = _space_info[id].new_top();
  1801     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
  1802     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
  1803     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
  1804                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
  1805                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
  1806                   id, space->capacity_in_words(), dense_prefix_end,
  1807                   dp_region, dp_words / region_size,
  1808                   cr_words / region_size, new_top);
  1812 #ifndef PRODUCT
  1813 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
  1814                                           HeapWord* dst_beg, HeapWord* dst_end,
  1815                                           SpaceId src_space_id,
  1816                                           HeapWord* src_beg, HeapWord* src_end)
  1818   if (TraceParallelOldGCSummaryPhase) {
  1819     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
  1820                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
  1821                   SIZE_FORMAT "-" SIZE_FORMAT " "
  1822                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
  1823                   SIZE_FORMAT "-" SIZE_FORMAT,
  1824                   src_space_id, space_names[src_space_id],
  1825                   dst_space_id, space_names[dst_space_id],
  1826                   src_beg, src_end,
  1827                   _summary_data.addr_to_region_idx(src_beg),
  1828                   _summary_data.addr_to_region_idx(src_end),
  1829                   dst_beg, dst_end,
  1830                   _summary_data.addr_to_region_idx(dst_beg),
  1831                   _summary_data.addr_to_region_idx(dst_end));
  1834 #endif  // #ifndef PRODUCT
  1836 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
  1837                                       bool maximum_compaction)
  1839   TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  1840   // trace("2");
  1842 #ifdef  ASSERT
  1843   if (TraceParallelOldGCMarkingPhase) {
  1844     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
  1845                   "add_obj_bytes=" SIZE_FORMAT,
  1846                   add_obj_count, add_obj_size * HeapWordSize);
  1847     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
  1848                   "mark_bitmap_bytes=" SIZE_FORMAT,
  1849                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  1851 #endif  // #ifdef ASSERT
  1853   // Quick summarization of each space into itself, to see how much is live.
  1854   summarize_spaces_quick();
  1856   if (TraceParallelOldGCSummaryPhase) {
  1857     tty->print_cr("summary_phase:  after summarizing each space to self");
  1858     Universe::print();
  1859     NOT_PRODUCT(print_region_ranges());
  1860     if (Verbose) {
  1861       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
  1865   // The amount of live data that will end up in old space (assuming it fits).
  1866   size_t old_space_total_live = 0;
  1867   assert(perm_space_id < old_space_id, "should not count perm data here");
  1868   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  1869     old_space_total_live += pointer_delta(_space_info[id].new_top(),
  1870                                           _space_info[id].space()->bottom());
  1873   MutableSpace* const old_space = _space_info[old_space_id].space();
  1874   const size_t old_capacity = old_space->capacity_in_words();
  1875   if (old_space_total_live > old_capacity) {
  1876     // XXX - should also try to expand
  1877     maximum_compaction = true;
  1879 #ifndef PRODUCT
  1880   if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
  1881     provoke_split(maximum_compaction);
  1883 #endif // #ifndef PRODUCT
  1885   // Permanent and Old generations.
  1886   summarize_space(perm_space_id, maximum_compaction);
  1887   summarize_space(old_space_id, maximum_compaction);
  1889   // Summarize the remaining spaces in the young gen.  The initial target space
  1890   // is the old gen.  If a space does not fit entirely into the target, then the
  1891   // remainder is compacted into the space itself and that space becomes the new
  1892   // target.
  1893   SpaceId dst_space_id = old_space_id;
  1894   HeapWord* dst_space_end = old_space->end();
  1895   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
  1896   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
  1897     const MutableSpace* space = _space_info[id].space();
  1898     const size_t live = pointer_delta(_space_info[id].new_top(),
  1899                                       space->bottom());
  1900     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
  1902     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
  1903                                   SpaceId(id), space->bottom(), space->top());)
  1904     if (live > 0 && live <= available) {
  1905       // All the live data will fit.
  1906       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1907                                           space->bottom(), space->top(),
  1908                                           NULL,
  1909                                           *new_top_addr, dst_space_end,
  1910                                           new_top_addr);
  1911       assert(done, "space must fit into old gen");
  1913       // Reset the new_top value for the space.
  1914       _space_info[id].set_new_top(space->bottom());
  1915     } else if (live > 0) {
  1916       // Attempt to fit part of the source space into the target space.
  1917       HeapWord* next_src_addr = NULL;
  1918       bool done = _summary_data.summarize(_space_info[id].split_info(),
  1919                                           space->bottom(), space->top(),
  1920                                           &next_src_addr,
  1921                                           *new_top_addr, dst_space_end,
  1922                                           new_top_addr);
  1923       assert(!done, "space should not fit into old gen");
  1924       assert(next_src_addr != NULL, "sanity");
  1926       // The source space becomes the new target, so the remainder is compacted
  1927       // within the space itself.
  1928       dst_space_id = SpaceId(id);
  1929       dst_space_end = space->end();
  1930       new_top_addr = _space_info[id].new_top_addr();
  1931       NOT_PRODUCT(summary_phase_msg(dst_space_id,
  1932                                     space->bottom(), dst_space_end,
  1933                                     SpaceId(id), next_src_addr, space->top());)
  1934       done = _summary_data.summarize(_space_info[id].split_info(),
  1935                                      next_src_addr, space->top(),
  1936                                      NULL,
  1937                                      space->bottom(), dst_space_end,
  1938                                      new_top_addr);
  1939       assert(done, "space must fit when compacted into itself");
  1940       assert(*new_top_addr <= space->top(), "usage should not grow");
  1944   if (TraceParallelOldGCSummaryPhase) {
  1945     tty->print_cr("summary_phase:  after final summarization");
  1946     Universe::print();
  1947     NOT_PRODUCT(print_region_ranges());
  1948     if (Verbose) {
  1949       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
  1954 // This method should contain all heap-specific policy for invoking a full
  1955 // collection.  invoke_no_policy() will only attempt to compact the heap; it
  1956 // will do nothing further.  If we need to bail out for policy reasons, scavenge
  1957 // before full gc, or any other specialized behavior, it needs to be added here.
  1958 //
  1959 // Note that this method should only be called from the vm_thread while at a
  1960 // safepoint.
  1961 //
  1962 // Note that the all_soft_refs_clear flag in the collector policy
  1963 // may be true because this method can be called without intervening
  1964 // activity.  For example when the heap space is tight and full measure
  1965 // are being taken to free space.
  1966 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  1967   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1968   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
  1969          "should be in vm thread");
  1971   ParallelScavengeHeap* heap = gc_heap();
  1972   GCCause::Cause gc_cause = heap->gc_cause();
  1973   assert(!heap->is_gc_active(), "not reentrant");
  1975   PSAdaptiveSizePolicy* policy = heap->size_policy();
  1976   IsGCActiveMark mark;
  1978   if (ScavengeBeforeFullGC) {
  1979     PSScavenge::invoke_no_policy();
  1982   const bool clear_all_soft_refs =
  1983     heap->collector_policy()->should_clear_all_soft_refs();
  1985   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
  1986                                       maximum_heap_compaction);
  1989 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
  1990   size_t addr_region_index = addr_to_region_idx(addr);
  1991   return region_index == addr_region_index;
  1994 // This method contains no policy. You should probably
  1995 // be calling invoke() instead.
  1996 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  1997   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  1998   assert(ref_processor() != NULL, "Sanity");
  2000   if (GC_locker::check_active_before_gc()) {
  2001     return false;
  2004   TimeStamp marking_start;
  2005   TimeStamp compaction_start;
  2006   TimeStamp collection_exit;
  2008   ParallelScavengeHeap* heap = gc_heap();
  2009   GCCause::Cause gc_cause = heap->gc_cause();
  2010   PSYoungGen* young_gen = heap->young_gen();
  2011   PSOldGen* old_gen = heap->old_gen();
  2012   PSPermGen* perm_gen = heap->perm_gen();
  2013   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
  2015   // The scope of casr should end after code that can change
  2016   // CollectorPolicy::_should_clear_all_soft_refs.
  2017   ClearedAllSoftRefs casr(maximum_heap_compaction,
  2018                           heap->collector_policy());
  2020   if (ZapUnusedHeapArea) {
  2021     // Save information needed to minimize mangling
  2022     heap->record_gen_tops_before_GC();
  2025   heap->pre_full_gc_dump();
  2027   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
  2029   // Make sure data structures are sane, make the heap parsable, and do other
  2030   // miscellaneous bookkeeping.
  2031   PreGCValues pre_gc_values;
  2032   pre_compact(&pre_gc_values);
  2034   // Get the compaction manager reserved for the VM thread.
  2035   ParCompactionManager* const vmthread_cm =
  2036     ParCompactionManager::manager_array(gc_task_manager()->workers());
  2038   // Place after pre_compact() where the number of invocations is incremented.
  2039   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
  2042     ResourceMark rm;
  2043     HandleMark hm;
  2045     // Set the number of GC threads to be used in this collection
  2046     gc_task_manager()->set_active_gang();
  2047     gc_task_manager()->task_idle_workers();
  2048     heap->set_par_threads(gc_task_manager()->active_workers());
  2050     const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
  2052     // This is useful for debugging but don't change the output the
  2053     // the customer sees.
  2054     const char* gc_cause_str = "Full GC";
  2055     if (is_system_gc && PrintGCDetails) {
  2056       gc_cause_str = "Full GC (System)";
  2058     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2059     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2060     TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
  2061     TraceCollectorStats tcs(counters());
  2062     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
  2064     if (TraceGen1Time) accumulated_time()->start();
  2066     // Let the size policy know we're starting
  2067     size_policy->major_collection_begin();
  2069     // When collecting the permanent generation methodOops may be moving,
  2070     // so we either have to flush all bcp data or convert it into bci.
  2071     CodeCache::gc_prologue();
  2072     Threads::gc_prologue();
  2074     COMPILER2_PRESENT(DerivedPointerTable::clear());
  2076     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  2077     ref_processor()->setup_policy(maximum_heap_compaction);
  2079     bool marked_for_unloading = false;
  2081     marking_start.update();
  2082     marking_phase(vmthread_cm, maximum_heap_compaction);
  2084 #ifndef PRODUCT
  2085     if (TraceParallelOldGCMarkingPhase) {
  2086       gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
  2087         "cas_by_another %d",
  2088         mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
  2089         mark_bitmap()->cas_by_another());
  2091 #endif  // #ifndef PRODUCT
  2093     bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
  2094     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
  2096     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
  2097     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
  2099     // adjust_roots() updates Universe::_intArrayKlassObj which is
  2100     // needed by the compaction for filling holes in the dense prefix.
  2101     adjust_roots();
  2103     compaction_start.update();
  2104     // Does the perm gen always have to be done serially because
  2105     // klasses are used in the update of an object?
  2106     compact_perm(vmthread_cm);
  2108     compact();
  2110     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
  2111     // done before resizing.
  2112     post_compact();
  2114     // Let the size policy know we're done
  2115     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
  2117     if (UseAdaptiveSizePolicy) {
  2118       if (PrintAdaptiveSizePolicy) {
  2119         gclog_or_tty->print("AdaptiveSizeStart: ");
  2120         gclog_or_tty->stamp();
  2121         gclog_or_tty->print_cr(" collection: %d ",
  2122                        heap->total_collections());
  2123         if (Verbose) {
  2124           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
  2125             " perm_gen_capacity: %d ",
  2126             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
  2127             perm_gen->capacity_in_bytes());
  2131       // Don't check if the size_policy is ready here.  Let
  2132       // the size_policy check that internally.
  2133       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
  2134           ((gc_cause != GCCause::_java_lang_system_gc) ||
  2135             UseAdaptiveSizePolicyWithSystemGC)) {
  2136         // Calculate optimal free space amounts
  2137         assert(young_gen->max_size() >
  2138           young_gen->from_space()->capacity_in_bytes() +
  2139           young_gen->to_space()->capacity_in_bytes(),
  2140           "Sizes of space in young gen are out-of-bounds");
  2141         size_t max_eden_size = young_gen->max_size() -
  2142           young_gen->from_space()->capacity_in_bytes() -
  2143           young_gen->to_space()->capacity_in_bytes();
  2144         size_policy->compute_generation_free_space(
  2145                               young_gen->used_in_bytes(),
  2146                               young_gen->eden_space()->used_in_bytes(),
  2147                               old_gen->used_in_bytes(),
  2148                               perm_gen->used_in_bytes(),
  2149                               young_gen->eden_space()->capacity_in_bytes(),
  2150                               old_gen->max_gen_size(),
  2151                               max_eden_size,
  2152                               true /* full gc*/,
  2153                               gc_cause,
  2154                               heap->collector_policy());
  2156         heap->resize_old_gen(
  2157           size_policy->calculated_old_free_size_in_bytes());
  2159         // Don't resize the young generation at an major collection.  A
  2160         // desired young generation size may have been calculated but
  2161         // resizing the young generation complicates the code because the
  2162         // resizing of the old generation may have moved the boundary
  2163         // between the young generation and the old generation.  Let the
  2164         // young generation resizing happen at the minor collections.
  2166       if (PrintAdaptiveSizePolicy) {
  2167         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
  2168                        heap->total_collections());
  2172     if (UsePerfData) {
  2173       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
  2174       counters->update_counters();
  2175       counters->update_old_capacity(old_gen->capacity_in_bytes());
  2176       counters->update_young_capacity(young_gen->capacity_in_bytes());
  2179     heap->resize_all_tlabs();
  2181     // We collected the perm gen, so we'll resize it here.
  2182     perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
  2184     if (TraceGen1Time) accumulated_time()->stop();
  2186     if (PrintGC) {
  2187       if (PrintGCDetails) {
  2188         // No GC timestamp here.  This is after GC so it would be confusing.
  2189         young_gen->print_used_change(pre_gc_values.young_gen_used());
  2190         old_gen->print_used_change(pre_gc_values.old_gen_used());
  2191         heap->print_heap_change(pre_gc_values.heap_used());
  2192         // Print perm gen last (print_heap_change() excludes the perm gen).
  2193         perm_gen->print_used_change(pre_gc_values.perm_gen_used());
  2194       } else {
  2195         heap->print_heap_change(pre_gc_values.heap_used());
  2199     // Track memory usage and detect low memory
  2200     MemoryService::track_memory_usage();
  2201     heap->update_counters();
  2202     gc_task_manager()->release_idle_workers();
  2205 #ifdef ASSERT
  2206   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
  2207     ParCompactionManager* const cm =
  2208       ParCompactionManager::manager_array(int(i));
  2209     assert(cm->marking_stack()->is_empty(),       "should be empty");
  2210     assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
  2211     assert(cm->revisit_klass_stack()->is_empty(), "should be empty");
  2213 #endif // ASSERT
  2215   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
  2216     HandleMark hm;  // Discard invalid handles created during verification
  2217     gclog_or_tty->print(" VerifyAfterGC:");
  2218     Universe::verify(false);
  2221   // Re-verify object start arrays
  2222   if (VerifyObjectStartArray &&
  2223       VerifyAfterGC) {
  2224     old_gen->verify_object_start_array();
  2225     perm_gen->verify_object_start_array();
  2228   if (ZapUnusedHeapArea) {
  2229     old_gen->object_space()->check_mangled_unused_area_complete();
  2230     perm_gen->object_space()->check_mangled_unused_area_complete();
  2233   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  2235   collection_exit.update();
  2237   heap->print_heap_after_gc();
  2238   if (PrintGCTaskTimeStamps) {
  2239     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
  2240                            INT64_FORMAT,
  2241                            marking_start.ticks(), compaction_start.ticks(),
  2242                            collection_exit.ticks());
  2243     gc_task_manager()->print_task_time_stamps();
  2246   heap->post_full_gc_dump();
  2248 #ifdef TRACESPINNING
  2249   ParallelTaskTerminator::print_termination_counts();
  2250 #endif
  2252   return true;
  2255 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  2256                                              PSYoungGen* young_gen,
  2257                                              PSOldGen* old_gen) {
  2258   MutableSpace* const eden_space = young_gen->eden_space();
  2259   assert(!eden_space->is_empty(), "eden must be non-empty");
  2260   assert(young_gen->virtual_space()->alignment() ==
  2261          old_gen->virtual_space()->alignment(), "alignments do not match");
  2263   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
  2264     return false;
  2267   // Both generations must be completely committed.
  2268   if (young_gen->virtual_space()->uncommitted_size() != 0) {
  2269     return false;
  2271   if (old_gen->virtual_space()->uncommitted_size() != 0) {
  2272     return false;
  2275   // Figure out how much to take from eden.  Include the average amount promoted
  2276   // in the total; otherwise the next young gen GC will simply bail out to a
  2277   // full GC.
  2278   const size_t alignment = old_gen->virtual_space()->alignment();
  2279   const size_t eden_used = eden_space->used_in_bytes();
  2280   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  2281   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  2282   const size_t eden_capacity = eden_space->capacity_in_bytes();
  2284   if (absorb_size >= eden_capacity) {
  2285     return false; // Must leave some space in eden.
  2288   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  2289   if (new_young_size < young_gen->min_gen_size()) {
  2290     return false; // Respect young gen minimum size.
  2293   if (TraceAdaptiveGCBoundary && Verbose) {
  2294     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
  2295                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
  2296                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
  2297                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
  2298                         absorb_size / K,
  2299                         eden_capacity / K, (eden_capacity - absorb_size) / K,
  2300                         young_gen->from_space()->used_in_bytes() / K,
  2301                         young_gen->to_space()->used_in_bytes() / K,
  2302                         young_gen->capacity_in_bytes() / K, new_young_size / K);
  2305   // Fill the unused part of the old gen.
  2306   MutableSpace* const old_space = old_gen->object_space();
  2307   HeapWord* const unused_start = old_space->top();
  2308   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
  2310   if (unused_words > 0) {
  2311     if (unused_words < CollectedHeap::min_fill_size()) {
  2312       return false;  // If the old gen cannot be filled, must give up.
  2314     CollectedHeap::fill_with_objects(unused_start, unused_words);
  2317   // Take the live data from eden and set both top and end in the old gen to
  2318   // eden top.  (Need to set end because reset_after_change() mangles the region
  2319   // from end to virtual_space->high() in debug builds).
  2320   HeapWord* const new_top = eden_space->top();
  2321   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
  2322                                         absorb_size);
  2323   young_gen->reset_after_change();
  2324   old_space->set_top(new_top);
  2325   old_space->set_end(new_top);
  2326   old_gen->reset_after_change();
  2328   // Update the object start array for the filler object and the data from eden.
  2329   ObjectStartArray* const start_array = old_gen->start_array();
  2330   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
  2331     start_array->allocate_block(p);
  2334   // Could update the promoted average here, but it is not typically updated at
  2335   // full GCs and the value to use is unclear.  Something like
  2336   //
  2337   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
  2339   size_policy->set_bytes_absorbed_from_eden(absorb_size);
  2340   return true;
  2343 GCTaskManager* const PSParallelCompact::gc_task_manager() {
  2344   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
  2345     "shouldn't return NULL");
  2346   return ParallelScavengeHeap::gc_task_manager();
  2349 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
  2350                                       bool maximum_heap_compaction) {
  2351   // Recursively traverse all live objects and mark them
  2352   TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
  2354   ParallelScavengeHeap* heap = gc_heap();
  2355   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2356   uint active_gc_threads = heap->gc_task_manager()->active_workers();
  2357   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2358   ParallelTaskTerminator terminator(active_gc_threads, qset);
  2360   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  2361   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
  2364     TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
  2365     ParallelScavengeHeap::ParStrongRootsScope psrs;
  2367     GCTaskQueue* q = GCTaskQueue::create();
  2369     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
  2370     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
  2371     // We scan the thread roots in parallel
  2372     Threads::create_thread_roots_marking_tasks(q);
  2373     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
  2374     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
  2375     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
  2376     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
  2377     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
  2378     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
  2380     if (active_gc_threads > 1) {
  2381       for (uint j = 0; j < active_gc_threads; j++) {
  2382         q->enqueue(new StealMarkingTask(&terminator));
  2386     gc_task_manager()->execute_and_wait(q);
  2389   // Process reference objects found during marking
  2391     TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
  2392     if (ref_processor()->processing_is_mt()) {
  2393       RefProcTaskExecutor task_executor;
  2394       ref_processor()->process_discovered_references(
  2395         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
  2396         &task_executor);
  2397     } else {
  2398       ref_processor()->process_discovered_references(
  2399         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
  2403   TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
  2404   // Follow system dictionary roots and unload classes.
  2405   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
  2407   // Follow code cache roots.
  2408   CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
  2409                           purged_class);
  2410   cm->follow_marking_stacks(); // Flush marking stack.
  2412   // Update subklass/sibling/implementor links of live klasses
  2413   // revisit_klass_stack is used in follow_weak_klass_links().
  2414   follow_weak_klass_links();
  2416   // Revisit memoized MDO's and clear any unmarked weak refs
  2417   follow_mdo_weak_refs();
  2419   // Visit interned string tables and delete unmarked oops
  2420   StringTable::unlink(is_alive_closure());
  2421   // Clean up unreferenced symbols in symbol table.
  2422   SymbolTable::unlink();
  2424   assert(cm->marking_stacks_empty(), "marking stacks should be empty");
  2427 // This should be moved to the shared markSweep code!
  2428 class PSAlwaysTrueClosure: public BoolObjectClosure {
  2429 public:
  2430   void do_object(oop p) { ShouldNotReachHere(); }
  2431   bool do_object_b(oop p) { return true; }
  2432 };
  2433 static PSAlwaysTrueClosure always_true;
  2435 void PSParallelCompact::adjust_roots() {
  2436   // Adjust the pointers to reflect the new locations
  2437   TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
  2439   // General strong roots.
  2440   Universe::oops_do(adjust_root_pointer_closure());
  2441   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
  2442   Threads::oops_do(adjust_root_pointer_closure(), NULL);
  2443   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
  2444   FlatProfiler::oops_do(adjust_root_pointer_closure());
  2445   Management::oops_do(adjust_root_pointer_closure());
  2446   JvmtiExport::oops_do(adjust_root_pointer_closure());
  2447   // SO_AllClasses
  2448   SystemDictionary::oops_do(adjust_root_pointer_closure());
  2450   // Now adjust pointers in remaining weak roots.  (All of which should
  2451   // have been cleared if they pointed to non-surviving objects.)
  2452   // Global (weak) JNI handles
  2453   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
  2455   CodeCache::oops_do(adjust_pointer_closure());
  2456   StringTable::oops_do(adjust_root_pointer_closure());
  2457   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
  2458   // Roots were visited so references into the young gen in roots
  2459   // may have been scanned.  Process them also.
  2460   // Should the reference processor have a span that excludes
  2461   // young gen objects?
  2462   PSScavenge::reference_processor()->weak_oops_do(
  2463                                               adjust_root_pointer_closure());
  2466 void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
  2467   TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
  2468   // trace("4");
  2470   gc_heap()->perm_gen()->start_array()->reset();
  2471   move_and_update(cm, perm_space_id);
  2474 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
  2475                                                       uint parallel_gc_threads)
  2477   TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
  2479   // Find the threads that are active
  2480   unsigned int which = 0;
  2482   const uint task_count = MAX2(parallel_gc_threads, 1U);
  2483   for (uint j = 0; j < task_count; j++) {
  2484     q->enqueue(new DrainStacksCompactionTask(j));
  2485     ParCompactionManager::verify_region_list_empty(j);
  2486     // Set the region stacks variables to "no" region stack values
  2487     // so that they will be recognized and needing a region stack
  2488     // in the stealing tasks if they do not get one by executing
  2489     // a draining stack.
  2490     ParCompactionManager* cm = ParCompactionManager::manager_array(j);
  2491     cm->set_region_stack(NULL);
  2492     cm->set_region_stack_index((uint)max_uintx);
  2494   ParCompactionManager::reset_recycled_stack_index();
  2496   // Find all regions that are available (can be filled immediately) and
  2497   // distribute them to the thread stacks.  The iteration is done in reverse
  2498   // order (high to low) so the regions will be removed in ascending order.
  2500   const ParallelCompactData& sd = PSParallelCompact::summary_data();
  2502   size_t fillable_regions = 0;   // A count for diagnostic purposes.
  2503   // A region index which corresponds to the tasks created above.
  2504   // "which" must be 0 <= which < task_count
  2506   which = 0;
  2507   for (unsigned int id = to_space_id; id > perm_space_id; --id) {
  2508     SpaceInfo* const space_info = _space_info + id;
  2509     MutableSpace* const space = space_info->space();
  2510     HeapWord* const new_top = space_info->new_top();
  2512     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
  2513     const size_t end_region =
  2514       sd.addr_to_region_idx(sd.region_align_up(new_top));
  2515     assert(end_region > 0, "perm gen cannot be empty");
  2517     for (size_t cur = end_region - 1; cur >= beg_region; --cur) {
  2518       if (sd.region(cur)->claim_unsafe()) {
  2519         ParCompactionManager::region_list_push(which, cur);
  2521         if (TraceParallelOldGCCompactionPhase && Verbose) {
  2522           const size_t count_mod_8 = fillable_regions & 7;
  2523           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
  2524           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
  2525           if (count_mod_8 == 7) gclog_or_tty->cr();
  2528         NOT_PRODUCT(++fillable_regions;)
  2530         // Assign regions to tasks in round-robin fashion.
  2531         if (++which == task_count) {
  2532           assert(which <= parallel_gc_threads,
  2533             "Inconsistent number of workers");
  2534           which = 0;
  2540   if (TraceParallelOldGCCompactionPhase) {
  2541     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
  2542     gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
  2546 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
  2548 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
  2549                                                     uint parallel_gc_threads) {
  2550   TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
  2552   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2554   // Iterate over all the spaces adding tasks for updating
  2555   // regions in the dense prefix.  Assume that 1 gc thread
  2556   // will work on opening the gaps and the remaining gc threads
  2557   // will work on the dense prefix.
  2558   unsigned int space_id;
  2559   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
  2560     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
  2561     const MutableSpace* const space = _space_info[space_id].space();
  2563     if (dense_prefix_end == space->bottom()) {
  2564       // There is no dense prefix for this space.
  2565       continue;
  2568     // The dense prefix is before this region.
  2569     size_t region_index_end_dense_prefix =
  2570         sd.addr_to_region_idx(dense_prefix_end);
  2571     RegionData* const dense_prefix_cp =
  2572       sd.region(region_index_end_dense_prefix);
  2573     assert(dense_prefix_end == space->end() ||
  2574            dense_prefix_cp->available() ||
  2575            dense_prefix_cp->claimed(),
  2576            "The region after the dense prefix should always be ready to fill");
  2578     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
  2580     // Is there dense prefix work?
  2581     size_t total_dense_prefix_regions =
  2582       region_index_end_dense_prefix - region_index_start;
  2583     // How many regions of the dense prefix should be given to
  2584     // each thread?
  2585     if (total_dense_prefix_regions > 0) {
  2586       uint tasks_for_dense_prefix = 1;
  2587       if (total_dense_prefix_regions <=
  2588           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
  2589         // Don't over partition.  This assumes that
  2590         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
  2591         // so there are not many regions to process.
  2592         tasks_for_dense_prefix = parallel_gc_threads;
  2593       } else {
  2594         // Over partition
  2595         tasks_for_dense_prefix = parallel_gc_threads *
  2596           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
  2598       size_t regions_per_thread = total_dense_prefix_regions /
  2599         tasks_for_dense_prefix;
  2600       // Give each thread at least 1 region.
  2601       if (regions_per_thread == 0) {
  2602         regions_per_thread = 1;
  2605       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
  2606         if (region_index_start >= region_index_end_dense_prefix) {
  2607           break;
  2609         // region_index_end is not processed
  2610         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
  2611                                        region_index_end_dense_prefix);
  2612         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2613                                              region_index_start,
  2614                                              region_index_end));
  2615         region_index_start = region_index_end;
  2618     // This gets any part of the dense prefix that did not
  2619     // fit evenly.
  2620     if (region_index_start < region_index_end_dense_prefix) {
  2621       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
  2622                                            region_index_start,
  2623                                            region_index_end_dense_prefix));
  2628 void PSParallelCompact::enqueue_region_stealing_tasks(
  2629                                      GCTaskQueue* q,
  2630                                      ParallelTaskTerminator* terminator_ptr,
  2631                                      uint parallel_gc_threads) {
  2632   TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
  2634   // Once a thread has drained it's stack, it should try to steal regions from
  2635   // other threads.
  2636   if (parallel_gc_threads > 1) {
  2637     for (uint j = 0; j < parallel_gc_threads; j++) {
  2638       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
  2643 void PSParallelCompact::compact() {
  2644   // trace("5");
  2645   TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
  2647   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2648   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2649   PSOldGen* old_gen = heap->old_gen();
  2650   old_gen->start_array()->reset();
  2651   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2652   uint active_gc_threads = heap->gc_task_manager()->active_workers();
  2653   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2654   ParallelTaskTerminator terminator(active_gc_threads, qset);
  2656   GCTaskQueue* q = GCTaskQueue::create();
  2657   enqueue_region_draining_tasks(q, active_gc_threads);
  2658   enqueue_dense_prefix_tasks(q, active_gc_threads);
  2659   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
  2662     TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
  2664     gc_task_manager()->execute_and_wait(q);
  2666 #ifdef  ASSERT
  2667     // Verify that all regions have been processed before the deferred updates.
  2668     // Note that perm_space_id is skipped; this type of verification is not
  2669     // valid until the perm gen is compacted by regions.
  2670     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2671       verify_complete(SpaceId(id));
  2673 #endif
  2677     // Update the deferred objects, if any.  Any compaction manager can be used.
  2678     TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
  2679     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
  2680     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2681       update_deferred_objects(cm, SpaceId(id));
  2686 #ifdef  ASSERT
  2687 void PSParallelCompact::verify_complete(SpaceId space_id) {
  2688   // All Regions between space bottom() to new_top() should be marked as filled
  2689   // and all Regions between new_top() and top() should be available (i.e.,
  2690   // should have been emptied).
  2691   ParallelCompactData& sd = summary_data();
  2692   SpaceInfo si = _space_info[space_id];
  2693   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
  2694   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
  2695   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
  2696   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
  2697   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
  2699   bool issued_a_warning = false;
  2701   size_t cur_region;
  2702   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
  2703     const RegionData* const c = sd.region(cur_region);
  2704     if (!c->completed()) {
  2705       warning("region " SIZE_FORMAT " not filled:  "
  2706               "destination_count=" SIZE_FORMAT,
  2707               cur_region, c->destination_count());
  2708       issued_a_warning = true;
  2712   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
  2713     const RegionData* const c = sd.region(cur_region);
  2714     if (!c->available()) {
  2715       warning("region " SIZE_FORMAT " not empty:   "
  2716               "destination_count=" SIZE_FORMAT,
  2717               cur_region, c->destination_count());
  2718       issued_a_warning = true;
  2722   if (issued_a_warning) {
  2723     print_region_ranges();
  2726 #endif  // #ifdef ASSERT
  2728 void
  2729 PSParallelCompact::follow_weak_klass_links() {
  2730   // All klasses on the revisit stack are marked at this point.
  2731   // Update and follow all subklass, sibling and implementor links.
  2732   // Check all the stacks here even if not all the workers are active.
  2733   // There is no accounting which indicates which stacks might have
  2734   // contents to be followed.
  2735   if (PrintRevisitStats) {
  2736     gclog_or_tty->print_cr("#classes in system dictionary = %d",
  2737                            SystemDictionary::number_of_classes());
  2739   for (uint i = 0; i < ParallelGCThreads + 1; i++) {
  2740     ParCompactionManager* cm = ParCompactionManager::manager_array(i);
  2741     KeepAliveClosure keep_alive_closure(cm);
  2742     Stack<Klass*>* const rks = cm->revisit_klass_stack();
  2743     if (PrintRevisitStats) {
  2744       gclog_or_tty->print_cr("Revisit klass stack[%u] length = " SIZE_FORMAT,
  2745                              i, rks->size());
  2747     while (!rks->is_empty()) {
  2748       Klass* const k = rks->pop();
  2749       k->follow_weak_klass_links(is_alive_closure(), &keep_alive_closure);
  2752     cm->follow_marking_stacks();
  2756 void
  2757 PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
  2758   cm->revisit_klass_stack()->push(k);
  2761 void PSParallelCompact::revisit_mdo(ParCompactionManager* cm, DataLayout* p) {
  2762   cm->revisit_mdo_stack()->push(p);
  2765 void PSParallelCompact::follow_mdo_weak_refs() {
  2766   // All strongly reachable oops have been marked at this point;
  2767   // we can visit and clear any weak references from MDO's which
  2768   // we memoized during the strong marking phase.
  2769   if (PrintRevisitStats) {
  2770     gclog_or_tty->print_cr("#classes in system dictionary = %d",
  2771                            SystemDictionary::number_of_classes());
  2773   for (uint i = 0; i < ParallelGCThreads + 1; i++) {
  2774     ParCompactionManager* cm = ParCompactionManager::manager_array(i);
  2775     Stack<DataLayout*>* rms = cm->revisit_mdo_stack();
  2776     if (PrintRevisitStats) {
  2777       gclog_or_tty->print_cr("Revisit MDO stack[%u] size = " SIZE_FORMAT,
  2778                              i, rms->size());
  2780     while (!rms->is_empty()) {
  2781       rms->pop()->follow_weak_refs(is_alive_closure());
  2784     cm->follow_marking_stacks();
  2789 #ifdef VALIDATE_MARK_SWEEP
  2791 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
  2792   if (!ValidateMarkSweep)
  2793     return;
  2795   if (!isroot) {
  2796     if (_pointer_tracking) {
  2797       guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
  2798       _adjusted_pointers->remove(p);
  2800   } else {
  2801     ptrdiff_t index = _root_refs_stack->find(p);
  2802     if (index != -1) {
  2803       int l = _root_refs_stack->length();
  2804       if (l > 0 && l - 1 != index) {
  2805         void* last = _root_refs_stack->pop();
  2806         assert(last != p, "should be different");
  2807         _root_refs_stack->at_put(index, last);
  2808       } else {
  2809         _root_refs_stack->remove(p);
  2816 void PSParallelCompact::check_adjust_pointer(void* p) {
  2817   _adjusted_pointers->push(p);
  2821 class AdjusterTracker: public OopClosure {
  2822  public:
  2823   AdjusterTracker() {};
  2824   void do_oop(oop* o)         { PSParallelCompact::check_adjust_pointer(o); }
  2825   void do_oop(narrowOop* o)   { PSParallelCompact::check_adjust_pointer(o); }
  2826 };
  2829 void PSParallelCompact::track_interior_pointers(oop obj) {
  2830   if (ValidateMarkSweep) {
  2831     _adjusted_pointers->clear();
  2832     _pointer_tracking = true;
  2834     AdjusterTracker checker;
  2835     obj->oop_iterate(&checker);
  2840 void PSParallelCompact::check_interior_pointers() {
  2841   if (ValidateMarkSweep) {
  2842     _pointer_tracking = false;
  2843     guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
  2848 void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
  2849   if (ValidateMarkSweep) {
  2850     guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
  2851     _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
  2856 void PSParallelCompact::register_live_oop(oop p, size_t size) {
  2857   if (ValidateMarkSweep) {
  2858     _live_oops->push(p);
  2859     _live_oops_size->push(size);
  2860     _live_oops_index++;
  2864 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
  2865   if (ValidateMarkSweep) {
  2866     oop obj = _live_oops->at((int)_live_oops_index);
  2867     guarantee(obj == p, "should be the same object");
  2868     guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
  2869     _live_oops_index++;
  2873 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
  2874                                   HeapWord* compaction_top) {
  2875   assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
  2876          "should be moved to forwarded location");
  2877   if (ValidateMarkSweep) {
  2878     PSParallelCompact::validate_live_oop(oop(q), size);
  2879     _live_oops_moved_to->push(oop(compaction_top));
  2881   if (RecordMarkSweepCompaction) {
  2882     _cur_gc_live_oops->push(q);
  2883     _cur_gc_live_oops_moved_to->push(compaction_top);
  2884     _cur_gc_live_oops_size->push(size);
  2889 void PSParallelCompact::compaction_complete() {
  2890   if (RecordMarkSweepCompaction) {
  2891     GrowableArray<HeapWord*>* _tmp_live_oops          = _cur_gc_live_oops;
  2892     GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
  2893     GrowableArray<size_t>   * _tmp_live_oops_size     = _cur_gc_live_oops_size;
  2895     _cur_gc_live_oops           = _last_gc_live_oops;
  2896     _cur_gc_live_oops_moved_to  = _last_gc_live_oops_moved_to;
  2897     _cur_gc_live_oops_size      = _last_gc_live_oops_size;
  2898     _last_gc_live_oops          = _tmp_live_oops;
  2899     _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
  2900     _last_gc_live_oops_size     = _tmp_live_oops_size;
  2905 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
  2906   if (!RecordMarkSweepCompaction) {
  2907     tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
  2908     return;
  2911   if (_last_gc_live_oops == NULL) {
  2912     tty->print_cr("No compaction information gathered yet");
  2913     return;
  2916   for (int i = 0; i < _last_gc_live_oops->length(); i++) {
  2917     HeapWord* old_oop = _last_gc_live_oops->at(i);
  2918     size_t    sz      = _last_gc_live_oops_size->at(i);
  2919     if (old_oop <= q && q < (old_oop + sz)) {
  2920       HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
  2921       size_t offset = (q - old_oop);
  2922       tty->print_cr("Address " PTR_FORMAT, q);
  2923       tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
  2924       tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
  2925       return;
  2929   tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
  2931 #endif //VALIDATE_MARK_SWEEP
  2933 // Update interior oops in the ranges of regions [beg_region, end_region).
  2934 void
  2935 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  2936                                                        SpaceId space_id,
  2937                                                        size_t beg_region,
  2938                                                        size_t end_region) {
  2939   ParallelCompactData& sd = summary_data();
  2940   ParMarkBitMap* const mbm = mark_bitmap();
  2942   HeapWord* beg_addr = sd.region_to_addr(beg_region);
  2943   HeapWord* const end_addr = sd.region_to_addr(end_region);
  2944   assert(beg_region <= end_region, "bad region range");
  2945   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
  2947 #ifdef  ASSERT
  2948   // Claim the regions to avoid triggering an assert when they are marked as
  2949   // filled.
  2950   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
  2951     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
  2953 #endif  // #ifdef ASSERT
  2955   if (beg_addr != space(space_id)->bottom()) {
  2956     // Find the first live object or block of dead space that *starts* in this
  2957     // range of regions.  If a partial object crosses onto the region, skip it;
  2958     // it will be marked for 'deferred update' when the object head is
  2959     // processed.  If dead space crosses onto the region, it is also skipped; it
  2960     // will be filled when the prior region is processed.  If neither of those
  2961     // apply, the first word in the region is the start of a live object or dead
  2962     // space.
  2963     assert(beg_addr > space(space_id)->bottom(), "sanity");
  2964     const RegionData* const cp = sd.region(beg_region);
  2965     if (cp->partial_obj_size() != 0) {
  2966       beg_addr = sd.partial_obj_end(beg_region);
  2967     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
  2968       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
  2972   if (beg_addr < end_addr) {
  2973     // A live object or block of dead space starts in this range of Regions.
  2974      HeapWord* const dense_prefix_end = dense_prefix(space_id);
  2976     // Create closures and iterate.
  2977     UpdateOnlyClosure update_closure(mbm, cm, space_id);
  2978     FillClosure fill_closure(cm, space_id);
  2979     ParMarkBitMap::IterationStatus status;
  2980     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
  2981                           dense_prefix_end);
  2982     if (status == ParMarkBitMap::incomplete) {
  2983       update_closure.do_addr(update_closure.source());
  2987   // Mark the regions as filled.
  2988   RegionData* const beg_cp = sd.region(beg_region);
  2989   RegionData* const end_cp = sd.region(end_region);
  2990   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
  2991     cp->set_completed();
  2995 // Return the SpaceId for the space containing addr.  If addr is not in the
  2996 // heap, last_space_id is returned.  In debug mode it expects the address to be
  2997 // in the heap and asserts such.
  2998 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  2999   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
  3001   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
  3002     if (_space_info[id].space()->contains(addr)) {
  3003       return SpaceId(id);
  3007   assert(false, "no space contains the addr");
  3008   return last_space_id;
  3011 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
  3012                                                 SpaceId id) {
  3013   assert(id < last_space_id, "bad space id");
  3015   ParallelCompactData& sd = summary_data();
  3016   const SpaceInfo* const space_info = _space_info + id;
  3017   ObjectStartArray* const start_array = space_info->start_array();
  3019   const MutableSpace* const space = space_info->space();
  3020   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  3021   HeapWord* const beg_addr = space_info->dense_prefix();
  3022   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
  3024   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
  3025   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
  3026   const RegionData* cur_region;
  3027   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
  3028     HeapWord* const addr = cur_region->deferred_obj_addr();
  3029     if (addr != NULL) {
  3030       if (start_array != NULL) {
  3031         start_array->allocate_block(addr);
  3033       oop(addr)->update_contents(cm);
  3034       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
  3039 // Skip over count live words starting from beg, and return the address of the
  3040 // next live word.  Unless marked, the word corresponding to beg is assumed to
  3041 // be dead.  Callers must either ensure beg does not correspond to the middle of
  3042 // an object, or account for those live words in some other way.  Callers must
  3043 // also ensure that there are enough live words in the range [beg, end) to skip.
  3044 HeapWord*
  3045 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
  3047   assert(count > 0, "sanity");
  3049   ParMarkBitMap* m = mark_bitmap();
  3050   idx_t bits_to_skip = m->words_to_bits(count);
  3051   idx_t cur_beg = m->addr_to_bit(beg);
  3052   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
  3054   do {
  3055     cur_beg = m->find_obj_beg(cur_beg, search_end);
  3056     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
  3057     const size_t obj_bits = cur_end - cur_beg + 1;
  3058     if (obj_bits > bits_to_skip) {
  3059       return m->bit_to_addr(cur_beg + bits_to_skip);
  3061     bits_to_skip -= obj_bits;
  3062     cur_beg = cur_end + 1;
  3063   } while (bits_to_skip > 0);
  3065   // Skipping the desired number of words landed just past the end of an object.
  3066   // Find the start of the next object.
  3067   cur_beg = m->find_obj_beg(cur_beg, search_end);
  3068   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  3069   return m->bit_to_addr(cur_beg);
  3072 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
  3073                                             SpaceId src_space_id,
  3074                                             size_t src_region_idx)
  3076   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
  3078   const SplitInfo& split_info = _space_info[src_space_id].split_info();
  3079   if (split_info.dest_region_addr() == dest_addr) {
  3080     // The partial object ending at the split point contains the first word to
  3081     // be copied to dest_addr.
  3082     return split_info.first_src_addr();
  3085   const ParallelCompactData& sd = summary_data();
  3086   ParMarkBitMap* const bitmap = mark_bitmap();
  3087   const size_t RegionSize = ParallelCompactData::RegionSize;
  3089   assert(sd.is_region_aligned(dest_addr), "not aligned");
  3090   const RegionData* const src_region_ptr = sd.region(src_region_idx);
  3091   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
  3092   HeapWord* const src_region_destination = src_region_ptr->destination();
  3094   assert(dest_addr >= src_region_destination, "wrong src region");
  3095   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
  3097   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
  3098   HeapWord* const src_region_end = src_region_beg + RegionSize;
  3100   HeapWord* addr = src_region_beg;
  3101   if (dest_addr == src_region_destination) {
  3102     // Return the first live word in the source region.
  3103     if (partial_obj_size == 0) {
  3104       addr = bitmap->find_obj_beg(addr, src_region_end);
  3105       assert(addr < src_region_end, "no objects start in src region");
  3107     return addr;
  3110   // Must skip some live data.
  3111   size_t words_to_skip = dest_addr - src_region_destination;
  3112   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
  3114   if (partial_obj_size >= words_to_skip) {
  3115     // All the live words to skip are part of the partial object.
  3116     addr += words_to_skip;
  3117     if (partial_obj_size == words_to_skip) {
  3118       // Find the first live word past the partial object.
  3119       addr = bitmap->find_obj_beg(addr, src_region_end);
  3120       assert(addr < src_region_end, "wrong src region");
  3122     return addr;
  3125   // Skip over the partial object (if any).
  3126   if (partial_obj_size != 0) {
  3127     words_to_skip -= partial_obj_size;
  3128     addr += partial_obj_size;
  3131   // Skip over live words due to objects that start in the region.
  3132   addr = skip_live_words(addr, src_region_end, words_to_skip);
  3133   assert(addr < src_region_end, "wrong src region");
  3134   return addr;
  3137 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
  3138                                                      SpaceId src_space_id,
  3139                                                      size_t beg_region,
  3140                                                      HeapWord* end_addr)
  3142   ParallelCompactData& sd = summary_data();
  3144 #ifdef ASSERT
  3145   MutableSpace* const src_space = _space_info[src_space_id].space();
  3146   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
  3147   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
  3148          "src_space_id does not match beg_addr");
  3149   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
  3150          "src_space_id does not match end_addr");
  3151 #endif // #ifdef ASSERT
  3153   RegionData* const beg = sd.region(beg_region);
  3154   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
  3156   // Regions up to new_top() are enqueued if they become available.
  3157   HeapWord* const new_top = _space_info[src_space_id].new_top();
  3158   RegionData* const enqueue_end =
  3159     sd.addr_to_region_ptr(sd.region_align_up(new_top));
  3161   for (RegionData* cur = beg; cur < end; ++cur) {
  3162     assert(cur->data_size() > 0, "region must have live data");
  3163     cur->decrement_destination_count();
  3164     if (cur < enqueue_end && cur->available() && cur->claim()) {
  3165       cm->push_region(sd.region(cur));
  3170 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
  3171                                           SpaceId& src_space_id,
  3172                                           HeapWord*& src_space_top,
  3173                                           HeapWord* end_addr)
  3175   typedef ParallelCompactData::RegionData RegionData;
  3177   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3178   const size_t region_size = ParallelCompactData::RegionSize;
  3180   size_t src_region_idx = 0;
  3182   // Skip empty regions (if any) up to the top of the space.
  3183   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
  3184   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
  3185   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
  3186   const RegionData* const top_region_ptr =
  3187     sd.addr_to_region_ptr(top_aligned_up);
  3188   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
  3189     ++src_region_ptr;
  3192   if (src_region_ptr < top_region_ptr) {
  3193     // The next source region is in the current space.  Update src_region_idx
  3194     // and the source address to match src_region_ptr.
  3195     src_region_idx = sd.region(src_region_ptr);
  3196     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
  3197     if (src_region_addr > closure.source()) {
  3198       closure.set_source(src_region_addr);
  3200     return src_region_idx;
  3203   // Switch to a new source space and find the first non-empty region.
  3204   unsigned int space_id = src_space_id + 1;
  3205   assert(space_id < last_space_id, "not enough spaces");
  3207   HeapWord* const destination = closure.destination();
  3209   do {
  3210     MutableSpace* space = _space_info[space_id].space();
  3211     HeapWord* const bottom = space->bottom();
  3212     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
  3214     // Iterate over the spaces that do not compact into themselves.
  3215     if (bottom_cp->destination() != bottom) {
  3216       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  3217       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  3219       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
  3220         if (src_cp->live_obj_size() > 0) {
  3221           // Found it.
  3222           assert(src_cp->destination() == destination,
  3223                  "first live obj in the space must match the destination");
  3224           assert(src_cp->partial_obj_size() == 0,
  3225                  "a space cannot begin with a partial obj");
  3227           src_space_id = SpaceId(space_id);
  3228           src_space_top = space->top();
  3229           const size_t src_region_idx = sd.region(src_cp);
  3230           closure.set_source(sd.region_to_addr(src_region_idx));
  3231           return src_region_idx;
  3232         } else {
  3233           assert(src_cp->data_size() == 0, "sanity");
  3237   } while (++space_id < last_space_id);
  3239   assert(false, "no source region was found");
  3240   return 0;
  3243 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
  3245   typedef ParMarkBitMap::IterationStatus IterationStatus;
  3246   const size_t RegionSize = ParallelCompactData::RegionSize;
  3247   ParMarkBitMap* const bitmap = mark_bitmap();
  3248   ParallelCompactData& sd = summary_data();
  3249   RegionData* const region_ptr = sd.region(region_idx);
  3251   // Get the items needed to construct the closure.
  3252   HeapWord* dest_addr = sd.region_to_addr(region_idx);
  3253   SpaceId dest_space_id = space_id(dest_addr);
  3254   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  3255   HeapWord* new_top = _space_info[dest_space_id].new_top();
  3256   assert(dest_addr < new_top, "sanity");
  3257   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
  3259   // Get the source region and related info.
  3260   size_t src_region_idx = region_ptr->source_region();
  3261   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
  3262   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
  3264   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3265   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
  3267   // Adjust src_region_idx to prepare for decrementing destination counts (the
  3268   // destination count is not decremented when a region is copied to itself).
  3269   if (src_region_idx == region_idx) {
  3270     src_region_idx += 1;
  3273   if (bitmap->is_unmarked(closure.source())) {
  3274     // The first source word is in the middle of an object; copy the remainder
  3275     // of the object or as much as will fit.  The fact that pointer updates were
  3276     // deferred will be noted when the object header is processed.
  3277     HeapWord* const old_src_addr = closure.source();
  3278     closure.copy_partial_obj();
  3279     if (closure.is_full()) {
  3280       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3281                                    closure.source());
  3282       region_ptr->set_deferred_obj_addr(NULL);
  3283       region_ptr->set_completed();
  3284       return;
  3287     HeapWord* const end_addr = sd.region_align_down(closure.source());
  3288     if (sd.region_align_down(old_src_addr) != end_addr) {
  3289       // The partial object was copied from more than one source region.
  3290       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
  3292       // Move to the next source region, possibly switching spaces as well.  All
  3293       // args except end_addr may be modified.
  3294       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3295                                        end_addr);
  3299   do {
  3300     HeapWord* const cur_addr = closure.source();
  3301     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
  3302                                     src_space_top);
  3303     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
  3305     if (status == ParMarkBitMap::incomplete) {
  3306       // The last obj that starts in the source region does not end in the
  3307       // region.
  3308       assert(closure.source() < end_addr, "sanity");
  3309       HeapWord* const obj_beg = closure.source();
  3310       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
  3311                                        src_space_top);
  3312       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
  3313       if (obj_end < range_end) {
  3314         // The end was found; the entire object will fit.
  3315         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
  3316         assert(status != ParMarkBitMap::would_overflow, "sanity");
  3317       } else {
  3318         // The end was not found; the object will not fit.
  3319         assert(range_end < src_space_top, "obj cannot cross space boundary");
  3320         status = ParMarkBitMap::would_overflow;
  3324     if (status == ParMarkBitMap::would_overflow) {
  3325       // The last object did not fit.  Note that interior oop updates were
  3326       // deferred, then copy enough of the object to fill the region.
  3327       region_ptr->set_deferred_obj_addr(closure.destination());
  3328       status = closure.copy_until_full(); // copies from closure.source()
  3330       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3331                                    closure.source());
  3332       region_ptr->set_completed();
  3333       return;
  3336     if (status == ParMarkBitMap::full) {
  3337       decrement_destination_counts(cm, src_space_id, src_region_idx,
  3338                                    closure.source());
  3339       region_ptr->set_deferred_obj_addr(NULL);
  3340       region_ptr->set_completed();
  3341       return;
  3344     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
  3346     // Move to the next source region, possibly switching spaces as well.  All
  3347     // args except end_addr may be modified.
  3348     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  3349                                      end_addr);
  3350   } while (true);
  3353 void
  3354 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  3355   const MutableSpace* sp = space(space_id);
  3356   if (sp->is_empty()) {
  3357     return;
  3360   ParallelCompactData& sd = PSParallelCompact::summary_data();
  3361   ParMarkBitMap* const bitmap = mark_bitmap();
  3362   HeapWord* const dp_addr = dense_prefix(space_id);
  3363   HeapWord* beg_addr = sp->bottom();
  3364   HeapWord* end_addr = sp->top();
  3366   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
  3368   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
  3369   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
  3370   if (beg_region < dp_region) {
  3371     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
  3374   // The destination of the first live object that starts in the region is one
  3375   // past the end of the partial object entering the region (if any).
  3376   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
  3377   HeapWord* const new_top = _space_info[space_id].new_top();
  3378   assert(new_top >= dest_addr, "bad new_top value");
  3379   const size_t words = pointer_delta(new_top, dest_addr);
  3381   if (words > 0) {
  3382     ObjectStartArray* start_array = _space_info[space_id].start_array();
  3383     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  3385     ParMarkBitMap::IterationStatus status;
  3386     status = bitmap->iterate(&closure, dest_addr, end_addr);
  3387     assert(status == ParMarkBitMap::full, "iteration not complete");
  3388     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
  3389            "live objects skipped because closure is full");
  3393 jlong PSParallelCompact::millis_since_last_gc() {
  3394   // We need a monotonically non-deccreasing time in ms but
  3395   // os::javaTimeMillis() does not guarantee monotonicity.
  3396   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  3397   jlong ret_val = now - _time_of_last_gc;
  3398   // XXX See note in genCollectedHeap::millis_since_last_gc().
  3399   if (ret_val < 0) {
  3400     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
  3401     return 0;
  3403   return ret_val;
  3406 void PSParallelCompact::reset_millis_since_last_gc() {
  3407   // We need a monotonically non-deccreasing time in ms but
  3408   // os::javaTimeMillis() does not guarantee monotonicity.
  3409   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  3412 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
  3414   if (source() != destination()) {
  3415     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3416     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  3418   update_state(words_remaining());
  3419   assert(is_full(), "sanity");
  3420   return ParMarkBitMap::full;
  3423 void MoveAndUpdateClosure::copy_partial_obj()
  3425   size_t words = words_remaining();
  3427   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  3428   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  3429   if (end_addr < range_end) {
  3430     words = bitmap()->obj_size(source(), end_addr);
  3433   // This test is necessary; if omitted, the pointer updates to a partial object
  3434   // that crosses the dense prefix boundary could be overwritten.
  3435   if (source() != destination()) {
  3436     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3437     Copy::aligned_conjoint_words(source(), destination(), words);
  3439   update_state(words);
  3442 ParMarkBitMapClosure::IterationStatus
  3443 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  3444   assert(destination() != NULL, "sanity");
  3445   assert(bitmap()->obj_size(addr) == words, "bad size");
  3447   _source = addr;
  3448   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
  3449          destination(), "wrong destination");
  3451   if (words > words_remaining()) {
  3452     return ParMarkBitMap::would_overflow;
  3455   // The start_array must be updated even if the object is not moving.
  3456   if (_start_array != NULL) {
  3457     _start_array->allocate_block(destination());
  3460   if (destination() != source()) {
  3461     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
  3462     Copy::aligned_conjoint_words(source(), destination(), words);
  3465   oop moved_oop = (oop) destination();
  3466   moved_oop->update_contents(compaction_manager());
  3467   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
  3469   update_state(words);
  3470   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  3471   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
  3474 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
  3475                                      ParCompactionManager* cm,
  3476                                      PSParallelCompact::SpaceId space_id) :
  3477   ParMarkBitMapClosure(mbm, cm),
  3478   _space_id(space_id),
  3479   _start_array(PSParallelCompact::start_array(space_id))
  3483 // Updates the references in the object to their new values.
  3484 ParMarkBitMapClosure::IterationStatus
  3485 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  3486   do_addr(addr);
  3487   return ParMarkBitMap::incomplete;
  3490 // Prepare for compaction.  This method is executed once
  3491 // (i.e., by a single thread) before compaction.
  3492 // Save the updated location of the intArrayKlassObj for
  3493 // filling holes in the dense prefix.
  3494 void PSParallelCompact::compact_prologue() {
  3495   _updated_int_array_klass_obj = (klassOop)
  3496     summary_data().calc_new_pointer(Universe::intArrayKlassObj());

mercurial