src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Wed, 02 Sep 2009 00:04:29 -0700

author
ysr
date
Wed, 02 Sep 2009 00:04:29 -0700
changeset 1376
8b46c4d82093
parent 1131
f18338cf04b0
child 1415
c3c4a1d3801a
child 1428
54b3b351d6f9
permissions
-rw-r--r--

4957990: Perm heap bloat in JVM
Summary: Treat ProfileData in MDO's as a source of weak, not strong, roots. Fixes the bug for stop-world collection -- the case of concurrent collection will be fixed separately.
Reviewed-by: jcoomes, jmasa, kvn, never

duke@435 1 /*
xdono@1014 2 * Copyright 2005-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_psParallelCompact.cpp.incl"
duke@435 27
duke@435 28 #include <math.h>
duke@435 29
duke@435 30 // All sizes are in HeapWords.
jcoomes@810 31 const size_t ParallelCompactData::Log2RegionSize = 9; // 512 words
jcoomes@810 32 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize;
jcoomes@810 33 const size_t ParallelCompactData::RegionSizeBytes =
jcoomes@810 34 RegionSize << LogHeapWordSize;
jcoomes@810 35 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
jcoomes@810 36 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
jcoomes@810 37 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask;
duke@435 38
jcoomes@810 39 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 40 ParallelCompactData::RegionData::dc_shift = 27;
jcoomes@810 41
jcoomes@810 42 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 43 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
jcoomes@810 44
jcoomes@810 45 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 46 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
jcoomes@810 47
jcoomes@810 48 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 49 ParallelCompactData::RegionData::los_mask = ~dc_mask;
jcoomes@810 50
jcoomes@810 51 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 52 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
jcoomes@810 53
jcoomes@810 54 const ParallelCompactData::RegionData::region_sz_t
jcoomes@810 55 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
duke@435 56
duke@435 57 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
duke@435 58 bool PSParallelCompact::_print_phases = false;
duke@435 59
duke@435 60 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
duke@435 61 klassOop PSParallelCompact::_updated_int_array_klass_obj = NULL;
duke@435 62
duke@435 63 double PSParallelCompact::_dwl_mean;
duke@435 64 double PSParallelCompact::_dwl_std_dev;
duke@435 65 double PSParallelCompact::_dwl_first_term;
duke@435 66 double PSParallelCompact::_dwl_adjustment;
duke@435 67 #ifdef ASSERT
duke@435 68 bool PSParallelCompact::_dwl_initialized = false;
duke@435 69 #endif // #ifdef ASSERT
duke@435 70
duke@435 71 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 72 GrowableArray<void*>* PSParallelCompact::_root_refs_stack = NULL;
duke@435 73 GrowableArray<oop> * PSParallelCompact::_live_oops = NULL;
duke@435 74 GrowableArray<oop> * PSParallelCompact::_live_oops_moved_to = NULL;
duke@435 75 GrowableArray<size_t>* PSParallelCompact::_live_oops_size = NULL;
duke@435 76 size_t PSParallelCompact::_live_oops_index = 0;
duke@435 77 size_t PSParallelCompact::_live_oops_index_at_perm = 0;
coleenp@548 78 GrowableArray<void*>* PSParallelCompact::_other_refs_stack = NULL;
coleenp@548 79 GrowableArray<void*>* PSParallelCompact::_adjusted_pointers = NULL;
duke@435 80 bool PSParallelCompact::_pointer_tracking = false;
duke@435 81 bool PSParallelCompact::_root_tracking = true;
duke@435 82
duke@435 83 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
duke@435 84 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
duke@435 85 GrowableArray<size_t> * PSParallelCompact::_cur_gc_live_oops_size = NULL;
duke@435 86 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
duke@435 87 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
duke@435 88 GrowableArray<size_t> * PSParallelCompact::_last_gc_live_oops_size = NULL;
duke@435 89 #endif
duke@435 90
jcoomes@917 91 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
jcoomes@917 92 HeapWord* destination)
jcoomes@917 93 {
jcoomes@917 94 assert(src_region_idx != 0, "invalid src_region_idx");
jcoomes@917 95 assert(partial_obj_size != 0, "invalid partial_obj_size argument");
jcoomes@917 96 assert(destination != NULL, "invalid destination argument");
jcoomes@917 97
jcoomes@917 98 _src_region_idx = src_region_idx;
jcoomes@917 99 _partial_obj_size = partial_obj_size;
jcoomes@917 100 _destination = destination;
jcoomes@917 101
jcoomes@917 102 // These fields may not be updated below, so make sure they're clear.
jcoomes@917 103 assert(_dest_region_addr == NULL, "should have been cleared");
jcoomes@917 104 assert(_first_src_addr == NULL, "should have been cleared");
jcoomes@917 105
jcoomes@917 106 // Determine the number of destination regions for the partial object.
jcoomes@917 107 HeapWord* const last_word = destination + partial_obj_size - 1;
jcoomes@917 108 const ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@917 109 HeapWord* const beg_region_addr = sd.region_align_down(destination);
jcoomes@917 110 HeapWord* const end_region_addr = sd.region_align_down(last_word);
jcoomes@917 111
jcoomes@917 112 if (beg_region_addr == end_region_addr) {
jcoomes@917 113 // One destination region.
jcoomes@917 114 _destination_count = 1;
jcoomes@917 115 if (end_region_addr == destination) {
jcoomes@917 116 // The destination falls on a region boundary, thus the first word of the
jcoomes@917 117 // partial object will be the first word copied to the destination region.
jcoomes@917 118 _dest_region_addr = end_region_addr;
jcoomes@917 119 _first_src_addr = sd.region_to_addr(src_region_idx);
jcoomes@917 120 }
jcoomes@917 121 } else {
jcoomes@917 122 // Two destination regions. When copied, the partial object will cross a
jcoomes@917 123 // destination region boundary, so a word somewhere within the partial
jcoomes@917 124 // object will be the first word copied to the second destination region.
jcoomes@917 125 _destination_count = 2;
jcoomes@917 126 _dest_region_addr = end_region_addr;
jcoomes@917 127 const size_t ofs = pointer_delta(end_region_addr, destination);
jcoomes@917 128 assert(ofs < _partial_obj_size, "sanity");
jcoomes@917 129 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
jcoomes@917 130 }
jcoomes@917 131 }
jcoomes@917 132
jcoomes@917 133 void SplitInfo::clear()
jcoomes@917 134 {
jcoomes@917 135 _src_region_idx = 0;
jcoomes@917 136 _partial_obj_size = 0;
jcoomes@917 137 _destination = NULL;
jcoomes@917 138 _destination_count = 0;
jcoomes@917 139 _dest_region_addr = NULL;
jcoomes@917 140 _first_src_addr = NULL;
jcoomes@917 141 assert(!is_valid(), "sanity");
jcoomes@917 142 }
jcoomes@917 143
jcoomes@917 144 #ifdef ASSERT
jcoomes@917 145 void SplitInfo::verify_clear()
jcoomes@917 146 {
jcoomes@917 147 assert(_src_region_idx == 0, "not clear");
jcoomes@917 148 assert(_partial_obj_size == 0, "not clear");
jcoomes@917 149 assert(_destination == NULL, "not clear");
jcoomes@917 150 assert(_destination_count == 0, "not clear");
jcoomes@917 151 assert(_dest_region_addr == NULL, "not clear");
jcoomes@917 152 assert(_first_src_addr == NULL, "not clear");
jcoomes@917 153 }
jcoomes@917 154 #endif // #ifdef ASSERT
jcoomes@917 155
jcoomes@917 156
duke@435 157 #ifndef PRODUCT
duke@435 158 const char* PSParallelCompact::space_names[] = {
duke@435 159 "perm", "old ", "eden", "from", "to "
duke@435 160 };
duke@435 161
jcoomes@810 162 void PSParallelCompact::print_region_ranges()
duke@435 163 {
duke@435 164 tty->print_cr("space bottom top end new_top");
duke@435 165 tty->print_cr("------ ---------- ---------- ---------- ----------");
duke@435 166
duke@435 167 for (unsigned int id = 0; id < last_space_id; ++id) {
duke@435 168 const MutableSpace* space = _space_info[id].space();
duke@435 169 tty->print_cr("%u %s "
jcoomes@699 170 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
jcoomes@699 171 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
duke@435 172 id, space_names[id],
jcoomes@810 173 summary_data().addr_to_region_idx(space->bottom()),
jcoomes@810 174 summary_data().addr_to_region_idx(space->top()),
jcoomes@810 175 summary_data().addr_to_region_idx(space->end()),
jcoomes@810 176 summary_data().addr_to_region_idx(_space_info[id].new_top()));
duke@435 177 }
duke@435 178 }
duke@435 179
duke@435 180 void
jcoomes@810 181 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
duke@435 182 {
jcoomes@810 183 #define REGION_IDX_FORMAT SIZE_FORMAT_W(7)
jcoomes@810 184 #define REGION_DATA_FORMAT SIZE_FORMAT_W(5)
duke@435 185
duke@435 186 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 187 size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
jcoomes@810 188 tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 189 REGION_IDX_FORMAT " " PTR_FORMAT " "
jcoomes@810 190 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
jcoomes@810 191 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
duke@435 192 i, c->data_location(), dci, c->destination(),
duke@435 193 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 194 c->data_size(), c->source_region(), c->destination_count());
jcoomes@810 195
jcoomes@810 196 #undef REGION_IDX_FORMAT
jcoomes@810 197 #undef REGION_DATA_FORMAT
duke@435 198 }
duke@435 199
duke@435 200 void
duke@435 201 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 202 HeapWord* const beg_addr,
duke@435 203 HeapWord* const end_addr)
duke@435 204 {
duke@435 205 size_t total_words = 0;
jcoomes@810 206 size_t i = summary_data.addr_to_region_idx(beg_addr);
jcoomes@810 207 const size_t last = summary_data.addr_to_region_idx(end_addr);
duke@435 208 HeapWord* pdest = 0;
duke@435 209
duke@435 210 while (i <= last) {
jcoomes@810 211 ParallelCompactData::RegionData* c = summary_data.region(i);
duke@435 212 if (c->data_size() != 0 || c->destination() != pdest) {
jcoomes@810 213 print_generic_summary_region(i, c);
duke@435 214 total_words += c->data_size();
duke@435 215 pdest = c->destination();
duke@435 216 }
duke@435 217 ++i;
duke@435 218 }
duke@435 219
duke@435 220 tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
duke@435 221 }
duke@435 222
duke@435 223 void
duke@435 224 print_generic_summary_data(ParallelCompactData& summary_data,
duke@435 225 SpaceInfo* space_info)
duke@435 226 {
duke@435 227 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
duke@435 228 const MutableSpace* space = space_info[id].space();
duke@435 229 print_generic_summary_data(summary_data, space->bottom(),
duke@435 230 MAX2(space->top(), space_info[id].new_top()));
duke@435 231 }
duke@435 232 }
duke@435 233
duke@435 234 void
jcoomes@810 235 print_initial_summary_region(size_t i,
jcoomes@810 236 const ParallelCompactData::RegionData* c,
jcoomes@810 237 bool newline = true)
duke@435 238 {
jcoomes@699 239 tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
jcoomes@699 240 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
jcoomes@699 241 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
duke@435 242 i, c->destination(),
duke@435 243 c->partial_obj_size(), c->live_obj_size(),
jcoomes@810 244 c->data_size(), c->source_region(), c->destination_count());
duke@435 245 if (newline) tty->cr();
duke@435 246 }
duke@435 247
duke@435 248 void
duke@435 249 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 250 const MutableSpace* space) {
duke@435 251 if (space->top() == space->bottom()) {
duke@435 252 return;
duke@435 253 }
duke@435 254
jcoomes@810 255 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 256 typedef ParallelCompactData::RegionData RegionData;
jcoomes@810 257 HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
jcoomes@810 258 const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
jcoomes@810 259 const RegionData* c = summary_data.region(end_region - 1);
duke@435 260 HeapWord* end_addr = c->destination() + c->data_size();
duke@435 261 const size_t live_in_space = pointer_delta(end_addr, space->bottom());
duke@435 262
jcoomes@810 263 // Print (and count) the full regions at the beginning of the space.
jcoomes@810 264 size_t full_region_count = 0;
jcoomes@810 265 size_t i = summary_data.addr_to_region_idx(space->bottom());
jcoomes@810 266 while (i < end_region && summary_data.region(i)->data_size() == region_size) {
jcoomes@810 267 print_initial_summary_region(i, summary_data.region(i));
jcoomes@810 268 ++full_region_count;
duke@435 269 ++i;
duke@435 270 }
duke@435 271
jcoomes@810 272 size_t live_to_right = live_in_space - full_region_count * region_size;
duke@435 273
duke@435 274 double max_reclaimed_ratio = 0.0;
jcoomes@810 275 size_t max_reclaimed_ratio_region = 0;
duke@435 276 size_t max_dead_to_right = 0;
duke@435 277 size_t max_live_to_right = 0;
duke@435 278
jcoomes@810 279 // Print the 'reclaimed ratio' for regions while there is something live in
jcoomes@810 280 // the region or to the right of it. The remaining regions are empty (and
duke@435 281 // uninteresting), and computing the ratio will result in division by 0.
jcoomes@810 282 while (i < end_region && live_to_right > 0) {
jcoomes@810 283 c = summary_data.region(i);
jcoomes@810 284 HeapWord* const region_addr = summary_data.region_to_addr(i);
jcoomes@810 285 const size_t used_to_right = pointer_delta(space->top(), region_addr);
duke@435 286 const size_t dead_to_right = used_to_right - live_to_right;
duke@435 287 const double reclaimed_ratio = double(dead_to_right) / live_to_right;
duke@435 288
duke@435 289 if (reclaimed_ratio > max_reclaimed_ratio) {
duke@435 290 max_reclaimed_ratio = reclaimed_ratio;
jcoomes@810 291 max_reclaimed_ratio_region = i;
duke@435 292 max_dead_to_right = dead_to_right;
duke@435 293 max_live_to_right = live_to_right;
duke@435 294 }
duke@435 295
jcoomes@810 296 print_initial_summary_region(i, c, false);
jcoomes@699 297 tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
duke@435 298 reclaimed_ratio, dead_to_right, live_to_right);
duke@435 299
duke@435 300 live_to_right -= c->data_size();
duke@435 301 ++i;
duke@435 302 }
duke@435 303
jcoomes@810 304 // Any remaining regions are empty. Print one more if there is one.
jcoomes@810 305 if (i < end_region) {
jcoomes@810 306 print_initial_summary_region(i, summary_data.region(i));
duke@435 307 }
duke@435 308
jcoomes@699 309 tty->print_cr("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
jcoomes@699 310 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
jcoomes@810 311 max_reclaimed_ratio_region, max_dead_to_right,
duke@435 312 max_live_to_right, max_reclaimed_ratio);
duke@435 313 }
duke@435 314
duke@435 315 void
duke@435 316 print_initial_summary_data(ParallelCompactData& summary_data,
duke@435 317 SpaceInfo* space_info) {
duke@435 318 unsigned int id = PSParallelCompact::perm_space_id;
duke@435 319 const MutableSpace* space;
duke@435 320 do {
duke@435 321 space = space_info[id].space();
duke@435 322 print_initial_summary_data(summary_data, space);
duke@435 323 } while (++id < PSParallelCompact::eden_space_id);
duke@435 324
duke@435 325 do {
duke@435 326 space = space_info[id].space();
duke@435 327 print_generic_summary_data(summary_data, space->bottom(), space->top());
duke@435 328 } while (++id < PSParallelCompact::last_space_id);
duke@435 329 }
duke@435 330 #endif // #ifndef PRODUCT
duke@435 331
duke@435 332 #ifdef ASSERT
duke@435 333 size_t add_obj_count;
duke@435 334 size_t add_obj_size;
duke@435 335 size_t mark_bitmap_count;
duke@435 336 size_t mark_bitmap_size;
duke@435 337 #endif // #ifdef ASSERT
duke@435 338
duke@435 339 ParallelCompactData::ParallelCompactData()
duke@435 340 {
duke@435 341 _region_start = 0;
duke@435 342
jcoomes@810 343 _region_vspace = 0;
jcoomes@810 344 _region_data = 0;
jcoomes@810 345 _region_count = 0;
duke@435 346 }
duke@435 347
duke@435 348 bool ParallelCompactData::initialize(MemRegion covered_region)
duke@435 349 {
duke@435 350 _region_start = covered_region.start();
duke@435 351 const size_t region_size = covered_region.word_size();
duke@435 352 DEBUG_ONLY(_region_end = _region_start + region_size;)
duke@435 353
jcoomes@810 354 assert(region_align_down(_region_start) == _region_start,
duke@435 355 "region start not aligned");
jcoomes@810 356 assert((region_size & RegionSizeOffsetMask) == 0,
jcoomes@810 357 "region size not a multiple of RegionSize");
jcoomes@810 358
jcoomes@810 359 bool result = initialize_region_data(region_size);
duke@435 360
duke@435 361 return result;
duke@435 362 }
duke@435 363
duke@435 364 PSVirtualSpace*
duke@435 365 ParallelCompactData::create_vspace(size_t count, size_t element_size)
duke@435 366 {
duke@435 367 const size_t raw_bytes = count * element_size;
duke@435 368 const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
duke@435 369 const size_t granularity = os::vm_allocation_granularity();
duke@435 370 const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
duke@435 371
duke@435 372 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
duke@435 373 MAX2(page_sz, granularity);
jcoomes@514 374 ReservedSpace rs(bytes, rs_align, rs_align > 0);
duke@435 375 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
duke@435 376 rs.size());
duke@435 377 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
duke@435 378 if (vspace != 0) {
duke@435 379 if (vspace->expand_by(bytes)) {
duke@435 380 return vspace;
duke@435 381 }
duke@435 382 delete vspace;
coleenp@672 383 // Release memory reserved in the space.
coleenp@672 384 rs.release();
duke@435 385 }
duke@435 386
duke@435 387 return 0;
duke@435 388 }
duke@435 389
jcoomes@810 390 bool ParallelCompactData::initialize_region_data(size_t region_size)
duke@435 391 {
jcoomes@810 392 const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
jcoomes@810 393 _region_vspace = create_vspace(count, sizeof(RegionData));
jcoomes@810 394 if (_region_vspace != 0) {
jcoomes@810 395 _region_data = (RegionData*)_region_vspace->reserved_low_addr();
jcoomes@810 396 _region_count = count;
duke@435 397 return true;
duke@435 398 }
duke@435 399 return false;
duke@435 400 }
duke@435 401
duke@435 402 void ParallelCompactData::clear()
duke@435 403 {
jcoomes@810 404 memset(_region_data, 0, _region_vspace->committed_size());
duke@435 405 }
duke@435 406
jcoomes@810 407 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
jcoomes@810 408 assert(beg_region <= _region_count, "beg_region out of range");
jcoomes@810 409 assert(end_region <= _region_count, "end_region out of range");
jcoomes@810 410
jcoomes@810 411 const size_t region_cnt = end_region - beg_region;
jcoomes@810 412 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
duke@435 413 }
duke@435 414
jcoomes@810 415 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
duke@435 416 {
jcoomes@810 417 const RegionData* cur_cp = region(region_idx);
jcoomes@810 418 const RegionData* const end_cp = region(region_count() - 1);
jcoomes@810 419
jcoomes@810 420 HeapWord* result = region_to_addr(region_idx);
duke@435 421 if (cur_cp < end_cp) {
duke@435 422 do {
duke@435 423 result += cur_cp->partial_obj_size();
jcoomes@810 424 } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
duke@435 425 }
duke@435 426 return result;
duke@435 427 }
duke@435 428
duke@435 429 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
duke@435 430 {
duke@435 431 const size_t obj_ofs = pointer_delta(addr, _region_start);
jcoomes@810 432 const size_t beg_region = obj_ofs >> Log2RegionSize;
jcoomes@810 433 const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
duke@435 434
duke@435 435 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
duke@435 436 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
duke@435 437
jcoomes@810 438 if (beg_region == end_region) {
jcoomes@810 439 // All in one region.
jcoomes@810 440 _region_data[beg_region].add_live_obj(len);
duke@435 441 return;
duke@435 442 }
duke@435 443
jcoomes@810 444 // First region.
jcoomes@810 445 const size_t beg_ofs = region_offset(addr);
jcoomes@810 446 _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
duke@435 447
duke@435 448 klassOop klass = ((oop)addr)->klass();
jcoomes@810 449 // Middle regions--completely spanned by this object.
jcoomes@810 450 for (size_t region = beg_region + 1; region < end_region; ++region) {
jcoomes@810 451 _region_data[region].set_partial_obj_size(RegionSize);
jcoomes@810 452 _region_data[region].set_partial_obj_addr(addr);
duke@435 453 }
duke@435 454
jcoomes@810 455 // Last region.
jcoomes@810 456 const size_t end_ofs = region_offset(addr + len - 1);
jcoomes@810 457 _region_data[end_region].set_partial_obj_size(end_ofs + 1);
jcoomes@810 458 _region_data[end_region].set_partial_obj_addr(addr);
duke@435 459 }
duke@435 460
duke@435 461 void
duke@435 462 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
duke@435 463 {
jcoomes@810 464 assert(region_offset(beg) == 0, "not RegionSize aligned");
jcoomes@810 465 assert(region_offset(end) == 0, "not RegionSize aligned");
jcoomes@810 466
jcoomes@810 467 size_t cur_region = addr_to_region_idx(beg);
jcoomes@810 468 const size_t end_region = addr_to_region_idx(end);
duke@435 469 HeapWord* addr = beg;
jcoomes@810 470 while (cur_region < end_region) {
jcoomes@810 471 _region_data[cur_region].set_destination(addr);
jcoomes@810 472 _region_data[cur_region].set_destination_count(0);
jcoomes@810 473 _region_data[cur_region].set_source_region(cur_region);
jcoomes@810 474 _region_data[cur_region].set_data_location(addr);
jcoomes@810 475
jcoomes@810 476 // Update live_obj_size so the region appears completely full.
jcoomes@810 477 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
jcoomes@810 478 _region_data[cur_region].set_live_obj_size(live_size);
jcoomes@810 479
jcoomes@810 480 ++cur_region;
jcoomes@810 481 addr += RegionSize;
duke@435 482 }
duke@435 483 }
duke@435 484
jcoomes@917 485 // Find the point at which a space can be split and, if necessary, record the
jcoomes@917 486 // split point.
jcoomes@917 487 //
jcoomes@917 488 // If the current src region (which overflowed the destination space) doesn't
jcoomes@917 489 // have a partial object, the split point is at the beginning of the current src
jcoomes@917 490 // region (an "easy" split, no extra bookkeeping required).
jcoomes@917 491 //
jcoomes@917 492 // If the current src region has a partial object, the split point is in the
jcoomes@917 493 // region where that partial object starts (call it the split_region). If
jcoomes@917 494 // split_region has a partial object, then the split point is just after that
jcoomes@917 495 // partial object (a "hard" split where we have to record the split data and
jcoomes@917 496 // zero the partial_obj_size field). With a "hard" split, we know that the
jcoomes@917 497 // partial_obj ends within split_region because the partial object that caused
jcoomes@917 498 // the overflow starts in split_region. If split_region doesn't have a partial
jcoomes@917 499 // obj, then the split is at the beginning of split_region (another "easy"
jcoomes@917 500 // split).
jcoomes@917 501 HeapWord*
jcoomes@917 502 ParallelCompactData::summarize_split_space(size_t src_region,
jcoomes@917 503 SplitInfo& split_info,
jcoomes@917 504 HeapWord* destination,
jcoomes@917 505 HeapWord* target_end,
jcoomes@917 506 HeapWord** target_next)
jcoomes@917 507 {
jcoomes@917 508 assert(destination <= target_end, "sanity");
jcoomes@917 509 assert(destination + _region_data[src_region].data_size() > target_end,
jcoomes@917 510 "region should not fit into target space");
jcoomes@1131 511 assert(is_region_aligned(target_end), "sanity");
jcoomes@917 512
jcoomes@917 513 size_t split_region = src_region;
jcoomes@917 514 HeapWord* split_destination = destination;
jcoomes@917 515 size_t partial_obj_size = _region_data[src_region].partial_obj_size();
jcoomes@917 516
jcoomes@917 517 if (destination + partial_obj_size > target_end) {
jcoomes@917 518 // The split point is just after the partial object (if any) in the
jcoomes@917 519 // src_region that contains the start of the object that overflowed the
jcoomes@917 520 // destination space.
jcoomes@917 521 //
jcoomes@917 522 // Find the start of the "overflow" object and set split_region to the
jcoomes@917 523 // region containing it.
jcoomes@917 524 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
jcoomes@917 525 split_region = addr_to_region_idx(overflow_obj);
jcoomes@917 526
jcoomes@917 527 // Clear the source_region field of all destination regions whose first word
jcoomes@917 528 // came from data after the split point (a non-null source_region field
jcoomes@917 529 // implies a region must be filled).
jcoomes@917 530 //
jcoomes@917 531 // An alternative to the simple loop below: clear during post_compact(),
jcoomes@917 532 // which uses memcpy instead of individual stores, and is easy to
jcoomes@917 533 // parallelize. (The downside is that it clears the entire RegionData
jcoomes@917 534 // object as opposed to just one field.)
jcoomes@917 535 //
jcoomes@917 536 // post_compact() would have to clear the summary data up to the highest
jcoomes@917 537 // address that was written during the summary phase, which would be
jcoomes@917 538 //
jcoomes@917 539 // max(top, max(new_top, clear_top))
jcoomes@917 540 //
jcoomes@917 541 // where clear_top is a new field in SpaceInfo. Would have to set clear_top
jcoomes@1131 542 // to target_end.
jcoomes@917 543 const RegionData* const sr = region(split_region);
jcoomes@917 544 const size_t beg_idx =
jcoomes@917 545 addr_to_region_idx(region_align_up(sr->destination() +
jcoomes@917 546 sr->partial_obj_size()));
jcoomes@1131 547 const size_t end_idx = addr_to_region_idx(target_end);
jcoomes@917 548
jcoomes@917 549 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 550 gclog_or_tty->print_cr("split: clearing source_region field in ["
jcoomes@917 551 SIZE_FORMAT ", " SIZE_FORMAT ")",
jcoomes@917 552 beg_idx, end_idx);
jcoomes@917 553 }
jcoomes@917 554 for (size_t idx = beg_idx; idx < end_idx; ++idx) {
jcoomes@917 555 _region_data[idx].set_source_region(0);
jcoomes@917 556 }
jcoomes@917 557
jcoomes@917 558 // Set split_destination and partial_obj_size to reflect the split region.
jcoomes@917 559 split_destination = sr->destination();
jcoomes@917 560 partial_obj_size = sr->partial_obj_size();
jcoomes@917 561 }
jcoomes@917 562
jcoomes@917 563 // The split is recorded only if a partial object extends onto the region.
jcoomes@917 564 if (partial_obj_size != 0) {
jcoomes@917 565 _region_data[split_region].set_partial_obj_size(0);
jcoomes@917 566 split_info.record(split_region, partial_obj_size, split_destination);
jcoomes@917 567 }
jcoomes@917 568
jcoomes@917 569 // Setup the continuation addresses.
jcoomes@917 570 *target_next = split_destination + partial_obj_size;
jcoomes@917 571 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
jcoomes@917 572
jcoomes@917 573 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 574 const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
jcoomes@917 575 gclog_or_tty->print_cr("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT
jcoomes@917 576 " pos=" SIZE_FORMAT,
jcoomes@917 577 split_type, source_next, split_region,
jcoomes@917 578 partial_obj_size);
jcoomes@917 579 gclog_or_tty->print_cr("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
jcoomes@917 580 " tn=" PTR_FORMAT,
jcoomes@917 581 split_type, split_destination,
jcoomes@917 582 addr_to_region_idx(split_destination),
jcoomes@917 583 *target_next);
jcoomes@917 584
jcoomes@917 585 if (partial_obj_size != 0) {
jcoomes@917 586 HeapWord* const po_beg = split_info.destination();
jcoomes@917 587 HeapWord* const po_end = po_beg + split_info.partial_obj_size();
jcoomes@917 588 gclog_or_tty->print_cr("%s split: "
jcoomes@917 589 "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
jcoomes@917 590 "po_end=" PTR_FORMAT " " SIZE_FORMAT,
jcoomes@917 591 split_type,
jcoomes@917 592 po_beg, addr_to_region_idx(po_beg),
jcoomes@917 593 po_end, addr_to_region_idx(po_end));
jcoomes@917 594 }
jcoomes@917 595 }
jcoomes@917 596
jcoomes@917 597 return source_next;
jcoomes@917 598 }
jcoomes@917 599
jcoomes@917 600 bool ParallelCompactData::summarize(SplitInfo& split_info,
duke@435 601 HeapWord* source_beg, HeapWord* source_end,
jcoomes@917 602 HeapWord** source_next,
jcoomes@917 603 HeapWord* target_beg, HeapWord* target_end,
jcoomes@917 604 HeapWord** target_next)
jcoomes@917 605 {
duke@435 606 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 607 HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
jcoomes@917 608 tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
jcoomes@917 609 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
jcoomes@917 610 source_beg, source_end, source_next_val,
jcoomes@917 611 target_beg, target_end, *target_next);
duke@435 612 }
duke@435 613
jcoomes@810 614 size_t cur_region = addr_to_region_idx(source_beg);
jcoomes@810 615 const size_t end_region = addr_to_region_idx(region_align_up(source_end));
duke@435 616
duke@435 617 HeapWord *dest_addr = target_beg;
jcoomes@810 618 while (cur_region < end_region) {
jcoomes@917 619 // The destination must be set even if the region has no data.
jcoomes@917 620 _region_data[cur_region].set_destination(dest_addr);
jcoomes@917 621
jcoomes@810 622 size_t words = _region_data[cur_region].data_size();
duke@435 623 if (words > 0) {
jcoomes@917 624 // If cur_region does not fit entirely into the target space, find a point
jcoomes@917 625 // at which the source space can be 'split' so that part is copied to the
jcoomes@917 626 // target space and the rest is copied elsewhere.
jcoomes@917 627 if (dest_addr + words > target_end) {
jcoomes@917 628 assert(source_next != NULL, "source_next is NULL when splitting");
jcoomes@917 629 *source_next = summarize_split_space(cur_region, split_info, dest_addr,
jcoomes@917 630 target_end, target_next);
jcoomes@917 631 return false;
jcoomes@917 632 }
jcoomes@917 633
jcoomes@917 634 // Compute the destination_count for cur_region, and if necessary, update
jcoomes@917 635 // source_region for a destination region. The source_region field is
jcoomes@917 636 // updated if cur_region is the first (left-most) region to be copied to a
jcoomes@917 637 // destination region.
jcoomes@917 638 //
jcoomes@917 639 // The destination_count calculation is a bit subtle. A region that has
jcoomes@917 640 // data that compacts into itself does not count itself as a destination.
jcoomes@917 641 // This maintains the invariant that a zero count means the region is
jcoomes@917 642 // available and can be claimed and then filled.
jcoomes@917 643 uint destination_count = 0;
jcoomes@917 644 if (split_info.is_split(cur_region)) {
jcoomes@917 645 // The current region has been split: the partial object will be copied
jcoomes@917 646 // to one destination space and the remaining data will be copied to
jcoomes@917 647 // another destination space. Adjust the initial destination_count and,
jcoomes@917 648 // if necessary, set the source_region field if the partial object will
jcoomes@917 649 // cross a destination region boundary.
jcoomes@917 650 destination_count = split_info.destination_count();
jcoomes@917 651 if (destination_count == 2) {
jcoomes@917 652 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
jcoomes@917 653 _region_data[dest_idx].set_source_region(cur_region);
jcoomes@917 654 }
jcoomes@917 655 }
jcoomes@917 656
duke@435 657 HeapWord* const last_addr = dest_addr + words - 1;
jcoomes@810 658 const size_t dest_region_1 = addr_to_region_idx(dest_addr);
jcoomes@810 659 const size_t dest_region_2 = addr_to_region_idx(last_addr);
jcoomes@917 660
jcoomes@810 661 // Initially assume that the destination regions will be the same and
duke@435 662 // adjust the value below if necessary. Under this assumption, if
jcoomes@810 663 // cur_region == dest_region_2, then cur_region will be compacted
jcoomes@810 664 // completely into itself.
jcoomes@917 665 destination_count += cur_region == dest_region_2 ? 0 : 1;
jcoomes@810 666 if (dest_region_1 != dest_region_2) {
jcoomes@810 667 // Destination regions differ; adjust destination_count.
duke@435 668 destination_count += 1;
jcoomes@810 669 // Data from cur_region will be copied to the start of dest_region_2.
jcoomes@810 670 _region_data[dest_region_2].set_source_region(cur_region);
jcoomes@810 671 } else if (region_offset(dest_addr) == 0) {
jcoomes@810 672 // Data from cur_region will be copied to the start of the destination
jcoomes@810 673 // region.
jcoomes@810 674 _region_data[dest_region_1].set_source_region(cur_region);
duke@435 675 }
duke@435 676
jcoomes@810 677 _region_data[cur_region].set_destination_count(destination_count);
jcoomes@810 678 _region_data[cur_region].set_data_location(region_to_addr(cur_region));
duke@435 679 dest_addr += words;
duke@435 680 }
duke@435 681
jcoomes@810 682 ++cur_region;
duke@435 683 }
duke@435 684
duke@435 685 *target_next = dest_addr;
duke@435 686 return true;
duke@435 687 }
duke@435 688
duke@435 689 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
duke@435 690 assert(addr != NULL, "Should detect NULL oop earlier");
duke@435 691 assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
duke@435 692 #ifdef ASSERT
duke@435 693 if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
duke@435 694 gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
duke@435 695 }
duke@435 696 #endif
duke@435 697 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
duke@435 698
jcoomes@810 699 // Region covering the object.
jcoomes@810 700 size_t region_index = addr_to_region_idx(addr);
jcoomes@810 701 const RegionData* const region_ptr = region(region_index);
jcoomes@810 702 HeapWord* const region_addr = region_align_down(addr);
jcoomes@810 703
jcoomes@810 704 assert(addr < region_addr + RegionSize, "Region does not cover object");
jcoomes@810 705 assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
jcoomes@810 706
jcoomes@810 707 HeapWord* result = region_ptr->destination();
jcoomes@810 708
jcoomes@810 709 // If all the data in the region is live, then the new location of the object
jcoomes@810 710 // can be calculated from the destination of the region plus the offset of the
jcoomes@810 711 // object in the region.
jcoomes@810 712 if (region_ptr->data_size() == RegionSize) {
jcoomes@810 713 result += pointer_delta(addr, region_addr);
duke@435 714 return result;
duke@435 715 }
duke@435 716
duke@435 717 // The new location of the object is
jcoomes@810 718 // region destination +
jcoomes@810 719 // size of the partial object extending onto the region +
jcoomes@810 720 // sizes of the live objects in the Region that are to the left of addr
jcoomes@810 721 const size_t partial_obj_size = region_ptr->partial_obj_size();
jcoomes@810 722 HeapWord* const search_start = region_addr + partial_obj_size;
duke@435 723
duke@435 724 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
duke@435 725 size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
duke@435 726
duke@435 727 result += partial_obj_size + live_to_left;
jcoomes@930 728 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result);)
duke@435 729 return result;
duke@435 730 }
duke@435 731
duke@435 732 klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
duke@435 733 klassOop updated_klass;
duke@435 734 if (PSParallelCompact::should_update_klass(old_klass)) {
duke@435 735 updated_klass = (klassOop) calc_new_pointer(old_klass);
duke@435 736 } else {
duke@435 737 updated_klass = old_klass;
duke@435 738 }
duke@435 739
duke@435 740 return updated_klass;
duke@435 741 }
duke@435 742
duke@435 743 #ifdef ASSERT
duke@435 744 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
duke@435 745 {
duke@435 746 const size_t* const beg = (const size_t*)vspace->committed_low_addr();
duke@435 747 const size_t* const end = (const size_t*)vspace->committed_high_addr();
duke@435 748 for (const size_t* p = beg; p < end; ++p) {
duke@435 749 assert(*p == 0, "not zero");
duke@435 750 }
duke@435 751 }
duke@435 752
duke@435 753 void ParallelCompactData::verify_clear()
duke@435 754 {
jcoomes@810 755 verify_clear(_region_vspace);
duke@435 756 }
duke@435 757 #endif // #ifdef ASSERT
duke@435 758
duke@435 759 #ifdef NOT_PRODUCT
jcoomes@810 760 ParallelCompactData::RegionData* debug_region(size_t region_index) {
duke@435 761 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 762 return sd.region(region_index);
duke@435 763 }
duke@435 764 #endif
duke@435 765
duke@435 766 elapsedTimer PSParallelCompact::_accumulated_time;
duke@435 767 unsigned int PSParallelCompact::_total_invocations = 0;
duke@435 768 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0;
duke@435 769 jlong PSParallelCompact::_time_of_last_gc = 0;
duke@435 770 CollectorCounters* PSParallelCompact::_counters = NULL;
duke@435 771 ParMarkBitMap PSParallelCompact::_mark_bitmap;
duke@435 772 ParallelCompactData PSParallelCompact::_summary_data;
duke@435 773
duke@435 774 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
coleenp@548 775
coleenp@548 776 void PSParallelCompact::IsAliveClosure::do_object(oop p) { ShouldNotReachHere(); }
coleenp@548 777 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
coleenp@548 778
coleenp@548 779 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 780 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
coleenp@548 781
duke@435 782 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
duke@435 783 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
duke@435 784
coleenp@548 785 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p, _is_root); }
coleenp@548 786 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
coleenp@548 787
coleenp@548 788 void PSParallelCompact::FollowStackClosure::do_void() { follow_stack(_compaction_manager); }
coleenp@548 789
coleenp@548 790 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) { mark_and_push(_compaction_manager, p); }
coleenp@548 791 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
duke@435 792
duke@435 793 void PSParallelCompact::post_initialize() {
duke@435 794 ParallelScavengeHeap* heap = gc_heap();
duke@435 795 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 796
duke@435 797 MemRegion mr = heap->reserved_region();
duke@435 798 _ref_processor = ReferenceProcessor::create_ref_processor(
duke@435 799 mr, // span
duke@435 800 true, // atomic_discovery
duke@435 801 true, // mt_discovery
duke@435 802 &_is_alive_closure,
duke@435 803 ParallelGCThreads,
duke@435 804 ParallelRefProcEnabled);
duke@435 805 _counters = new CollectorCounters("PSParallelCompact", 1);
duke@435 806
duke@435 807 // Initialize static fields in ParCompactionManager.
duke@435 808 ParCompactionManager::initialize(mark_bitmap());
duke@435 809 }
duke@435 810
duke@435 811 bool PSParallelCompact::initialize() {
duke@435 812 ParallelScavengeHeap* heap = gc_heap();
duke@435 813 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 814 MemRegion mr = heap->reserved_region();
duke@435 815
duke@435 816 // Was the old gen get allocated successfully?
duke@435 817 if (!heap->old_gen()->is_allocated()) {
duke@435 818 return false;
duke@435 819 }
duke@435 820
duke@435 821 initialize_space_info();
duke@435 822 initialize_dead_wood_limiter();
duke@435 823
duke@435 824 if (!_mark_bitmap.initialize(mr)) {
duke@435 825 vm_shutdown_during_initialization("Unable to allocate bit map for "
duke@435 826 "parallel garbage collection for the requested heap size.");
duke@435 827 return false;
duke@435 828 }
duke@435 829
duke@435 830 if (!_summary_data.initialize(mr)) {
duke@435 831 vm_shutdown_during_initialization("Unable to allocate tables for "
duke@435 832 "parallel garbage collection for the requested heap size.");
duke@435 833 return false;
duke@435 834 }
duke@435 835
duke@435 836 return true;
duke@435 837 }
duke@435 838
duke@435 839 void PSParallelCompact::initialize_space_info()
duke@435 840 {
duke@435 841 memset(&_space_info, 0, sizeof(_space_info));
duke@435 842
duke@435 843 ParallelScavengeHeap* heap = gc_heap();
duke@435 844 PSYoungGen* young_gen = heap->young_gen();
duke@435 845 MutableSpace* perm_space = heap->perm_gen()->object_space();
duke@435 846
duke@435 847 _space_info[perm_space_id].set_space(perm_space);
duke@435 848 _space_info[old_space_id].set_space(heap->old_gen()->object_space());
duke@435 849 _space_info[eden_space_id].set_space(young_gen->eden_space());
duke@435 850 _space_info[from_space_id].set_space(young_gen->from_space());
duke@435 851 _space_info[to_space_id].set_space(young_gen->to_space());
duke@435 852
duke@435 853 _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
duke@435 854 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
duke@435 855
duke@435 856 _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
duke@435 857 if (TraceParallelOldGCDensePrefix) {
duke@435 858 tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
duke@435 859 _space_info[perm_space_id].min_dense_prefix());
duke@435 860 }
duke@435 861 }
duke@435 862
duke@435 863 void PSParallelCompact::initialize_dead_wood_limiter()
duke@435 864 {
duke@435 865 const size_t max = 100;
duke@435 866 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
duke@435 867 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
duke@435 868 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
duke@435 869 DEBUG_ONLY(_dwl_initialized = true;)
duke@435 870 _dwl_adjustment = normal_distribution(1.0);
duke@435 871 }
duke@435 872
duke@435 873 // Simple class for storing info about the heap at the start of GC, to be used
duke@435 874 // after GC for comparison/printing.
duke@435 875 class PreGCValues {
duke@435 876 public:
duke@435 877 PreGCValues() { }
duke@435 878 PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
duke@435 879
duke@435 880 void fill(ParallelScavengeHeap* heap) {
duke@435 881 _heap_used = heap->used();
duke@435 882 _young_gen_used = heap->young_gen()->used_in_bytes();
duke@435 883 _old_gen_used = heap->old_gen()->used_in_bytes();
duke@435 884 _perm_gen_used = heap->perm_gen()->used_in_bytes();
duke@435 885 };
duke@435 886
duke@435 887 size_t heap_used() const { return _heap_used; }
duke@435 888 size_t young_gen_used() const { return _young_gen_used; }
duke@435 889 size_t old_gen_used() const { return _old_gen_used; }
duke@435 890 size_t perm_gen_used() const { return _perm_gen_used; }
duke@435 891
duke@435 892 private:
duke@435 893 size_t _heap_used;
duke@435 894 size_t _young_gen_used;
duke@435 895 size_t _old_gen_used;
duke@435 896 size_t _perm_gen_used;
duke@435 897 };
duke@435 898
duke@435 899 void
duke@435 900 PSParallelCompact::clear_data_covering_space(SpaceId id)
duke@435 901 {
duke@435 902 // At this point, top is the value before GC, new_top() is the value that will
duke@435 903 // be set at the end of GC. The marking bitmap is cleared to top; nothing
duke@435 904 // should be marked above top. The summary data is cleared to the larger of
duke@435 905 // top & new_top.
duke@435 906 MutableSpace* const space = _space_info[id].space();
duke@435 907 HeapWord* const bot = space->bottom();
duke@435 908 HeapWord* const top = space->top();
duke@435 909 HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
duke@435 910
duke@435 911 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
duke@435 912 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
duke@435 913 _mark_bitmap.clear_range(beg_bit, end_bit);
duke@435 914
jcoomes@810 915 const size_t beg_region = _summary_data.addr_to_region_idx(bot);
jcoomes@810 916 const size_t end_region =
jcoomes@810 917 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
jcoomes@810 918 _summary_data.clear_range(beg_region, end_region);
jcoomes@917 919
jcoomes@917 920 // Clear the data used to 'split' regions.
jcoomes@917 921 SplitInfo& split_info = _space_info[id].split_info();
jcoomes@917 922 if (split_info.is_valid()) {
jcoomes@917 923 split_info.clear();
jcoomes@917 924 }
jcoomes@917 925 DEBUG_ONLY(split_info.verify_clear();)
duke@435 926 }
duke@435 927
duke@435 928 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
duke@435 929 {
duke@435 930 // Update the from & to space pointers in space_info, since they are swapped
duke@435 931 // at each young gen gc. Do the update unconditionally (even though a
duke@435 932 // promotion failure does not swap spaces) because an unknown number of minor
duke@435 933 // collections will have swapped the spaces an unknown number of times.
duke@435 934 TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
duke@435 935 ParallelScavengeHeap* heap = gc_heap();
duke@435 936 _space_info[from_space_id].set_space(heap->young_gen()->from_space());
duke@435 937 _space_info[to_space_id].set_space(heap->young_gen()->to_space());
duke@435 938
duke@435 939 pre_gc_values->fill(heap);
duke@435 940
duke@435 941 ParCompactionManager::reset();
duke@435 942 NOT_PRODUCT(_mark_bitmap.reset_counters());
duke@435 943 DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
duke@435 944 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
duke@435 945
duke@435 946 // Increment the invocation count
apetrusenko@574 947 heap->increment_total_collections(true);
duke@435 948
duke@435 949 // We need to track unique mark sweep invocations as well.
duke@435 950 _total_invocations++;
duke@435 951
duke@435 952 if (PrintHeapAtGC) {
duke@435 953 Universe::print_heap_before_gc();
duke@435 954 }
duke@435 955
duke@435 956 // Fill in TLABs
duke@435 957 heap->accumulate_statistics_all_tlabs();
duke@435 958 heap->ensure_parsability(true); // retire TLABs
duke@435 959
duke@435 960 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 961 HandleMark hm; // Discard invalid handles created during verification
duke@435 962 gclog_or_tty->print(" VerifyBeforeGC:");
duke@435 963 Universe::verify(true);
duke@435 964 }
duke@435 965
duke@435 966 // Verify object start arrays
duke@435 967 if (VerifyObjectStartArray &&
duke@435 968 VerifyBeforeGC) {
duke@435 969 heap->old_gen()->verify_object_start_array();
duke@435 970 heap->perm_gen()->verify_object_start_array();
duke@435 971 }
duke@435 972
duke@435 973 DEBUG_ONLY(mark_bitmap()->verify_clear();)
duke@435 974 DEBUG_ONLY(summary_data().verify_clear();)
jcoomes@645 975
jcoomes@645 976 // Have worker threads release resources the next time they run a task.
jcoomes@645 977 gc_task_manager()->release_all_resources();
duke@435 978 }
duke@435 979
duke@435 980 void PSParallelCompact::post_compact()
duke@435 981 {
duke@435 982 TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
duke@435 983
duke@435 984 for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
jcoomes@917 985 // Clear the marking bitmap, summary data and split info.
duke@435 986 clear_data_covering_space(SpaceId(id));
jcoomes@917 987 // Update top(). Must be done after clearing the bitmap and summary data.
jcoomes@917 988 _space_info[id].publish_new_top();
duke@435 989 }
duke@435 990
duke@435 991 MutableSpace* const eden_space = _space_info[eden_space_id].space();
duke@435 992 MutableSpace* const from_space = _space_info[from_space_id].space();
duke@435 993 MutableSpace* const to_space = _space_info[to_space_id].space();
duke@435 994
duke@435 995 ParallelScavengeHeap* heap = gc_heap();
duke@435 996 bool eden_empty = eden_space->is_empty();
duke@435 997 if (!eden_empty) {
duke@435 998 eden_empty = absorb_live_data_from_eden(heap->size_policy(),
duke@435 999 heap->young_gen(), heap->old_gen());
duke@435 1000 }
duke@435 1001
duke@435 1002 // Update heap occupancy information which is used as input to the soft ref
duke@435 1003 // clearing policy at the next gc.
duke@435 1004 Universe::update_heap_info_at_gc();
duke@435 1005
duke@435 1006 bool young_gen_empty = eden_empty && from_space->is_empty() &&
duke@435 1007 to_space->is_empty();
duke@435 1008
duke@435 1009 BarrierSet* bs = heap->barrier_set();
duke@435 1010 if (bs->is_a(BarrierSet::ModRef)) {
duke@435 1011 ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
duke@435 1012 MemRegion old_mr = heap->old_gen()->reserved();
duke@435 1013 MemRegion perm_mr = heap->perm_gen()->reserved();
duke@435 1014 assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
duke@435 1015
duke@435 1016 if (young_gen_empty) {
duke@435 1017 modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
duke@435 1018 } else {
duke@435 1019 modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
duke@435 1020 }
duke@435 1021 }
duke@435 1022
duke@435 1023 Threads::gc_epilogue();
duke@435 1024 CodeCache::gc_epilogue();
duke@435 1025
duke@435 1026 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
duke@435 1027
duke@435 1028 ref_processor()->enqueue_discovered_references(NULL);
duke@435 1029
jmasa@698 1030 if (ZapUnusedHeapArea) {
jmasa@698 1031 heap->gen_mangle_unused_area();
jmasa@698 1032 }
jmasa@698 1033
duke@435 1034 // Update time of last GC
duke@435 1035 reset_millis_since_last_gc();
duke@435 1036 }
duke@435 1037
duke@435 1038 HeapWord*
duke@435 1039 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
duke@435 1040 bool maximum_compaction)
duke@435 1041 {
jcoomes@810 1042 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1043 const ParallelCompactData& sd = summary_data();
duke@435 1044
duke@435 1045 const MutableSpace* const space = _space_info[id].space();
jcoomes@810 1046 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 1047 const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
jcoomes@810 1048 const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1049
jcoomes@810 1050 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1051 // of the dense prefix.
duke@435 1052 size_t full_count = 0;
jcoomes@810 1053 const RegionData* cp;
jcoomes@810 1054 for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
duke@435 1055 ++full_count;
duke@435 1056 }
duke@435 1057
duke@435 1058 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1059 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1060 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
duke@435 1061 if (maximum_compaction || cp == end_cp || interval_ended) {
duke@435 1062 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1063 return sd.region_to_addr(cp);
duke@435 1064 }
duke@435 1065
duke@435 1066 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1067 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1068 const size_t space_used = space->used_in_words();
duke@435 1069 const size_t space_capacity = space->capacity_in_words();
duke@435 1070
duke@435 1071 const double cur_density = double(space_live) / space_capacity;
duke@435 1072 const double deadwood_density =
duke@435 1073 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
duke@435 1074 const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
duke@435 1075
duke@435 1076 if (TraceParallelOldGCDensePrefix) {
duke@435 1077 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
duke@435 1078 cur_density, deadwood_density, deadwood_goal);
duke@435 1079 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1080 "space_cap=" SIZE_FORMAT,
duke@435 1081 space_live, space_used,
duke@435 1082 space_capacity);
duke@435 1083 }
duke@435 1084
duke@435 1085 // XXX - Use binary search?
jcoomes@810 1086 HeapWord* dense_prefix = sd.region_to_addr(cp);
jcoomes@810 1087 const RegionData* full_cp = cp;
jcoomes@810 1088 const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
duke@435 1089 while (cp < end_cp) {
jcoomes@810 1090 HeapWord* region_destination = cp->destination();
jcoomes@810 1091 const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
duke@435 1092 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1093 tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
jcoomes@699 1094 "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
jcoomes@810 1095 sd.region(cp), region_destination,
duke@435 1096 dense_prefix, cur_deadwood);
duke@435 1097 }
duke@435 1098
duke@435 1099 if (cur_deadwood >= deadwood_goal) {
jcoomes@810 1100 // Found the region that has the correct amount of deadwood to the left.
jcoomes@810 1101 // This typically occurs after crossing a fairly sparse set of regions, so
jcoomes@810 1102 // iterate backwards over those sparse regions, looking for the region
jcoomes@810 1103 // that has the lowest density of live objects 'to the right.'
jcoomes@810 1104 size_t space_to_left = sd.region(cp) * region_size;
duke@435 1105 size_t live_to_left = space_to_left - cur_deadwood;
duke@435 1106 size_t space_to_right = space_capacity - space_to_left;
duke@435 1107 size_t live_to_right = space_live - live_to_left;
duke@435 1108 double density_to_right = double(live_to_right) / space_to_right;
duke@435 1109 while (cp > full_cp) {
duke@435 1110 --cp;
jcoomes@810 1111 const size_t prev_region_live_to_right = live_to_right -
jcoomes@810 1112 cp->data_size();
jcoomes@810 1113 const size_t prev_region_space_to_right = space_to_right + region_size;
jcoomes@810 1114 double prev_region_density_to_right =
jcoomes@810 1115 double(prev_region_live_to_right) / prev_region_space_to_right;
jcoomes@810 1116 if (density_to_right <= prev_region_density_to_right) {
duke@435 1117 return dense_prefix;
duke@435 1118 }
duke@435 1119 if (TraceParallelOldGCDensePrefix && Verbose) {
jcoomes@699 1120 tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
jcoomes@810 1121 "pc_d2r=%10.8f", sd.region(cp), density_to_right,
jcoomes@810 1122 prev_region_density_to_right);
duke@435 1123 }
jcoomes@810 1124 dense_prefix -= region_size;
jcoomes@810 1125 live_to_right = prev_region_live_to_right;
jcoomes@810 1126 space_to_right = prev_region_space_to_right;
jcoomes@810 1127 density_to_right = prev_region_density_to_right;
duke@435 1128 }
duke@435 1129 return dense_prefix;
duke@435 1130 }
duke@435 1131
jcoomes@810 1132 dense_prefix += region_size;
duke@435 1133 ++cp;
duke@435 1134 }
duke@435 1135
duke@435 1136 return dense_prefix;
duke@435 1137 }
duke@435 1138
duke@435 1139 #ifndef PRODUCT
duke@435 1140 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
duke@435 1141 const SpaceId id,
duke@435 1142 const bool maximum_compaction,
duke@435 1143 HeapWord* const addr)
duke@435 1144 {
jcoomes@810 1145 const size_t region_idx = summary_data().addr_to_region_idx(addr);
jcoomes@810 1146 RegionData* const cp = summary_data().region(region_idx);
duke@435 1147 const MutableSpace* const space = _space_info[id].space();
duke@435 1148 HeapWord* const new_top = _space_info[id].new_top();
duke@435 1149
duke@435 1150 const size_t space_live = pointer_delta(new_top, space->bottom());
duke@435 1151 const size_t dead_to_left = pointer_delta(addr, cp->destination());
duke@435 1152 const size_t space_cap = space->capacity_in_words();
duke@435 1153 const double dead_to_left_pct = double(dead_to_left) / space_cap;
duke@435 1154 const size_t live_to_right = new_top - cp->destination();
duke@435 1155 const size_t dead_to_right = space->top() - addr - live_to_right;
duke@435 1156
jcoomes@699 1157 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
duke@435 1158 "spl=" SIZE_FORMAT " "
duke@435 1159 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
duke@435 1160 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
duke@435 1161 " ratio=%10.8f",
jcoomes@810 1162 algorithm, addr, region_idx,
duke@435 1163 space_live,
duke@435 1164 dead_to_left, dead_to_left_pct,
duke@435 1165 dead_to_right, live_to_right,
duke@435 1166 double(dead_to_right) / live_to_right);
duke@435 1167 }
duke@435 1168 #endif // #ifndef PRODUCT
duke@435 1169
duke@435 1170 // Return a fraction indicating how much of the generation can be treated as
duke@435 1171 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution
duke@435 1172 // based on the density of live objects in the generation to determine a limit,
duke@435 1173 // which is then adjusted so the return value is min_percent when the density is
duke@435 1174 // 1.
duke@435 1175 //
duke@435 1176 // The following table shows some return values for a different values of the
duke@435 1177 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
duke@435 1178 // min_percent is 1.
duke@435 1179 //
duke@435 1180 // fraction allowed as dead wood
duke@435 1181 // -----------------------------------------------------------------
duke@435 1182 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
duke@435 1183 // ------- ---------- ---------- ---------- ---------- ---------- ----------
duke@435 1184 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1185 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1186 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1187 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1188 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1189 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1190 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1191 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1192 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1193 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1194 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
duke@435 1195 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
duke@435 1196 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
duke@435 1197 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
duke@435 1198 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
duke@435 1199 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
duke@435 1200 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
duke@435 1201 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
duke@435 1202 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
duke@435 1203 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
duke@435 1204 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
duke@435 1205
duke@435 1206 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
duke@435 1207 {
duke@435 1208 assert(_dwl_initialized, "uninitialized");
duke@435 1209
duke@435 1210 // The raw limit is the value of the normal distribution at x = density.
duke@435 1211 const double raw_limit = normal_distribution(density);
duke@435 1212
duke@435 1213 // Adjust the raw limit so it becomes the minimum when the density is 1.
duke@435 1214 //
duke@435 1215 // First subtract the adjustment value (which is simply the precomputed value
duke@435 1216 // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
duke@435 1217 // Then add the minimum value, so the minimum is returned when the density is
duke@435 1218 // 1. Finally, prevent negative values, which occur when the mean is not 0.5.
duke@435 1219 const double min = double(min_percent) / 100.0;
duke@435 1220 const double limit = raw_limit - _dwl_adjustment + min;
duke@435 1221 return MAX2(limit, 0.0);
duke@435 1222 }
duke@435 1223
jcoomes@810 1224 ParallelCompactData::RegionData*
jcoomes@810 1225 PSParallelCompact::first_dead_space_region(const RegionData* beg,
jcoomes@810 1226 const RegionData* end)
duke@435 1227 {
jcoomes@810 1228 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1229 ParallelCompactData& sd = summary_data();
jcoomes@810 1230 size_t left = sd.region(beg);
jcoomes@810 1231 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1232
duke@435 1233 // Binary search.
duke@435 1234 while (left < right) {
duke@435 1235 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1236 const size_t middle = left + (right - left) / 2;
jcoomes@810 1237 RegionData* const middle_ptr = sd.region(middle);
duke@435 1238 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1239 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1240 assert(dest != NULL, "sanity");
duke@435 1241 assert(dest <= addr, "must move left");
duke@435 1242
duke@435 1243 if (middle > left && dest < addr) {
duke@435 1244 right = middle - 1;
jcoomes@810 1245 } else if (middle < right && middle_ptr->data_size() == region_size) {
duke@435 1246 left = middle + 1;
duke@435 1247 } else {
duke@435 1248 return middle_ptr;
duke@435 1249 }
duke@435 1250 }
jcoomes@810 1251 return sd.region(left);
duke@435 1252 }
duke@435 1253
jcoomes@810 1254 ParallelCompactData::RegionData*
jcoomes@810 1255 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
jcoomes@810 1256 const RegionData* end,
jcoomes@810 1257 size_t dead_words)
duke@435 1258 {
duke@435 1259 ParallelCompactData& sd = summary_data();
jcoomes@810 1260 size_t left = sd.region(beg);
jcoomes@810 1261 size_t right = end > beg ? sd.region(end) - 1 : left;
duke@435 1262
duke@435 1263 // Binary search.
duke@435 1264 while (left < right) {
duke@435 1265 // Equivalent to (left + right) / 2, but does not overflow.
duke@435 1266 const size_t middle = left + (right - left) / 2;
jcoomes@810 1267 RegionData* const middle_ptr = sd.region(middle);
duke@435 1268 HeapWord* const dest = middle_ptr->destination();
jcoomes@810 1269 HeapWord* const addr = sd.region_to_addr(middle);
duke@435 1270 assert(dest != NULL, "sanity");
duke@435 1271 assert(dest <= addr, "must move left");
duke@435 1272
duke@435 1273 const size_t dead_to_left = pointer_delta(addr, dest);
duke@435 1274 if (middle > left && dead_to_left > dead_words) {
duke@435 1275 right = middle - 1;
duke@435 1276 } else if (middle < right && dead_to_left < dead_words) {
duke@435 1277 left = middle + 1;
duke@435 1278 } else {
duke@435 1279 return middle_ptr;
duke@435 1280 }
duke@435 1281 }
jcoomes@810 1282 return sd.region(left);
duke@435 1283 }
duke@435 1284
duke@435 1285 // The result is valid during the summary phase, after the initial summarization
duke@435 1286 // of each space into itself, and before final summarization.
duke@435 1287 inline double
jcoomes@810 1288 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
duke@435 1289 HeapWord* const bottom,
duke@435 1290 HeapWord* const top,
duke@435 1291 HeapWord* const new_top)
duke@435 1292 {
duke@435 1293 ParallelCompactData& sd = summary_data();
duke@435 1294
duke@435 1295 assert(cp != NULL, "sanity");
duke@435 1296 assert(bottom != NULL, "sanity");
duke@435 1297 assert(top != NULL, "sanity");
duke@435 1298 assert(new_top != NULL, "sanity");
duke@435 1299 assert(top >= new_top, "summary data problem?");
duke@435 1300 assert(new_top > bottom, "space is empty; should not be here");
duke@435 1301 assert(new_top >= cp->destination(), "sanity");
jcoomes@810 1302 assert(top >= sd.region_to_addr(cp), "sanity");
duke@435 1303
duke@435 1304 HeapWord* const destination = cp->destination();
duke@435 1305 const size_t dense_prefix_live = pointer_delta(destination, bottom);
duke@435 1306 const size_t compacted_region_live = pointer_delta(new_top, destination);
jcoomes@810 1307 const size_t compacted_region_used = pointer_delta(top,
jcoomes@810 1308 sd.region_to_addr(cp));
duke@435 1309 const size_t reclaimable = compacted_region_used - compacted_region_live;
duke@435 1310
duke@435 1311 const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
duke@435 1312 return double(reclaimable) / divisor;
duke@435 1313 }
duke@435 1314
duke@435 1315 // Return the address of the end of the dense prefix, a.k.a. the start of the
jcoomes@810 1316 // compacted region. The address is always on a region boundary.
duke@435 1317 //
jcoomes@810 1318 // Completely full regions at the left are skipped, since no compaction can
jcoomes@810 1319 // occur in those regions. Then the maximum amount of dead wood to allow is
jcoomes@810 1320 // computed, based on the density (amount live / capacity) of the generation;
jcoomes@810 1321 // the region with approximately that amount of dead space to the left is
jcoomes@810 1322 // identified as the limit region. Regions between the last completely full
jcoomes@810 1323 // region and the limit region are scanned and the one that has the best
jcoomes@810 1324 // (maximum) reclaimed_ratio() is selected.
duke@435 1325 HeapWord*
duke@435 1326 PSParallelCompact::compute_dense_prefix(const SpaceId id,
duke@435 1327 bool maximum_compaction)
duke@435 1328 {
jcoomes@918 1329 if (ParallelOldGCSplitALot) {
jcoomes@918 1330 if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
jcoomes@918 1331 // The value was chosen to provoke splitting a young gen space; use it.
jcoomes@918 1332 return _space_info[id].dense_prefix();
jcoomes@918 1333 }
jcoomes@918 1334 }
jcoomes@918 1335
jcoomes@810 1336 const size_t region_size = ParallelCompactData::RegionSize;
duke@435 1337 const ParallelCompactData& sd = summary_data();
duke@435 1338
duke@435 1339 const MutableSpace* const space = _space_info[id].space();
duke@435 1340 HeapWord* const top = space->top();
jcoomes@810 1341 HeapWord* const top_aligned_up = sd.region_align_up(top);
duke@435 1342 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1343 HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
duke@435 1344 HeapWord* const bottom = space->bottom();
jcoomes@810 1345 const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
jcoomes@810 1346 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 1347 const RegionData* const new_top_cp =
jcoomes@810 1348 sd.addr_to_region_ptr(new_top_aligned_up);
jcoomes@810 1349
jcoomes@810 1350 // Skip full regions at the beginning of the space--they are necessarily part
duke@435 1351 // of the dense prefix.
jcoomes@810 1352 const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
jcoomes@810 1353 assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
duke@435 1354 space->is_empty(), "no dead space allowed to the left");
jcoomes@810 1355 assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
jcoomes@810 1356 "region must have dead space");
duke@435 1357
duke@435 1358 // The gc number is saved whenever a maximum compaction is done, and used to
duke@435 1359 // determine when the maximum compaction interval has expired. This avoids
duke@435 1360 // successive max compactions for different reasons.
duke@435 1361 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
duke@435 1362 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
duke@435 1363 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
duke@435 1364 total_invocations() == HeapFirstMaximumCompactionCount;
duke@435 1365 if (maximum_compaction || full_cp == top_cp || interval_ended) {
duke@435 1366 _maximum_compaction_gc_num = total_invocations();
jcoomes@810 1367 return sd.region_to_addr(full_cp);
duke@435 1368 }
duke@435 1369
duke@435 1370 const size_t space_live = pointer_delta(new_top, bottom);
duke@435 1371 const size_t space_used = space->used_in_words();
duke@435 1372 const size_t space_capacity = space->capacity_in_words();
duke@435 1373
duke@435 1374 const double density = double(space_live) / double(space_capacity);
duke@435 1375 const size_t min_percent_free =
duke@435 1376 id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
duke@435 1377 const double limiter = dead_wood_limiter(density, min_percent_free);
duke@435 1378 const size_t dead_wood_max = space_used - space_live;
duke@435 1379 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
duke@435 1380 dead_wood_max);
duke@435 1381
duke@435 1382 if (TraceParallelOldGCDensePrefix) {
duke@435 1383 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
duke@435 1384 "space_cap=" SIZE_FORMAT,
duke@435 1385 space_live, space_used,
duke@435 1386 space_capacity);
duke@435 1387 tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
duke@435 1388 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
duke@435 1389 density, min_percent_free, limiter,
duke@435 1390 dead_wood_max, dead_wood_limit);
duke@435 1391 }
duke@435 1392
jcoomes@810 1393 // Locate the region with the desired amount of dead space to the left.
jcoomes@810 1394 const RegionData* const limit_cp =
jcoomes@810 1395 dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
jcoomes@810 1396
jcoomes@810 1397 // Scan from the first region with dead space to the limit region and find the
duke@435 1398 // one with the best (largest) reclaimed ratio.
duke@435 1399 double best_ratio = 0.0;
jcoomes@810 1400 const RegionData* best_cp = full_cp;
jcoomes@810 1401 for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
duke@435 1402 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
duke@435 1403 if (tmp_ratio > best_ratio) {
duke@435 1404 best_cp = cp;
duke@435 1405 best_ratio = tmp_ratio;
duke@435 1406 }
duke@435 1407 }
duke@435 1408
duke@435 1409 #if 0
jcoomes@810 1410 // Something to consider: if the region with the best ratio is 'close to' the
jcoomes@810 1411 // first region w/free space, choose the first region with free space
jcoomes@810 1412 // ("first-free"). The first-free region is usually near the start of the
duke@435 1413 // heap, which means we are copying most of the heap already, so copy a bit
duke@435 1414 // more to get complete compaction.
jcoomes@810 1415 if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
duke@435 1416 _maximum_compaction_gc_num = total_invocations();
duke@435 1417 best_cp = full_cp;
duke@435 1418 }
duke@435 1419 #endif // #if 0
duke@435 1420
jcoomes@810 1421 return sd.region_to_addr(best_cp);
duke@435 1422 }
duke@435 1423
jcoomes@918 1424 #ifndef PRODUCT
jcoomes@918 1425 void
jcoomes@918 1426 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
jcoomes@918 1427 size_t words)
jcoomes@918 1428 {
jcoomes@918 1429 if (TraceParallelOldGCSummaryPhase) {
jcoomes@918 1430 tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
jcoomes@918 1431 SIZE_FORMAT, start, start + words, words);
jcoomes@918 1432 }
jcoomes@918 1433
jcoomes@918 1434 ObjectStartArray* const start_array = _space_info[id].start_array();
jcoomes@918 1435 CollectedHeap::fill_with_objects(start, words);
jcoomes@918 1436 for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
jcoomes@918 1437 _mark_bitmap.mark_obj(p, words);
jcoomes@918 1438 _summary_data.add_obj(p, words);
jcoomes@918 1439 start_array->allocate_block(p);
jcoomes@918 1440 }
jcoomes@918 1441 }
jcoomes@918 1442
jcoomes@918 1443 void
jcoomes@918 1444 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
jcoomes@918 1445 {
jcoomes@918 1446 ParallelCompactData& sd = summary_data();
jcoomes@918 1447 MutableSpace* space = _space_info[id].space();
jcoomes@918 1448
jcoomes@918 1449 // Find the source and destination start addresses.
jcoomes@918 1450 HeapWord* const src_addr = sd.region_align_down(start);
jcoomes@918 1451 HeapWord* dst_addr;
jcoomes@918 1452 if (src_addr < start) {
jcoomes@918 1453 dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
jcoomes@918 1454 } else if (src_addr > space->bottom()) {
jcoomes@918 1455 // The start (the original top() value) is aligned to a region boundary so
jcoomes@918 1456 // the associated region does not have a destination. Compute the
jcoomes@918 1457 // destination from the previous region.
jcoomes@918 1458 RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
jcoomes@918 1459 dst_addr = cp->destination() + cp->data_size();
jcoomes@918 1460 } else {
jcoomes@918 1461 // Filling the entire space.
jcoomes@918 1462 dst_addr = space->bottom();
jcoomes@918 1463 }
jcoomes@918 1464 assert(dst_addr != NULL, "sanity");
jcoomes@918 1465
jcoomes@918 1466 // Update the summary data.
jcoomes@918 1467 bool result = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@918 1468 src_addr, space->top(), NULL,
jcoomes@918 1469 dst_addr, space->end(),
jcoomes@918 1470 _space_info[id].new_top_addr());
jcoomes@918 1471 assert(result, "should not fail: bad filler object size");
jcoomes@918 1472 }
jcoomes@918 1473
jcoomes@918 1474 void
jcoomes@931 1475 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
jcoomes@931 1476 {
jcoomes@931 1477 if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
jcoomes@931 1478 return;
jcoomes@931 1479 }
jcoomes@931 1480
jcoomes@931 1481 MutableSpace* const space = _space_info[id].space();
jcoomes@931 1482 if (space->is_empty()) {
jcoomes@931 1483 HeapWord* b = space->bottom();
jcoomes@931 1484 HeapWord* t = b + space->capacity_in_words() / 2;
jcoomes@931 1485 space->set_top(t);
jcoomes@931 1486 if (ZapUnusedHeapArea) {
jcoomes@931 1487 space->set_top_for_allocations();
jcoomes@931 1488 }
jcoomes@931 1489
jcoomes@931 1490 size_t obj_len = 8;
jcoomes@931 1491 while (b + obj_len <= t) {
jcoomes@931 1492 CollectedHeap::fill_with_object(b, obj_len);
jcoomes@931 1493 mark_bitmap()->mark_obj(b, obj_len);
jcoomes@931 1494 summary_data().add_obj(b, obj_len);
jcoomes@931 1495 b += obj_len;
jcoomes@931 1496 obj_len = (obj_len & 0x18) + 8; // 8 16 24 32 8 16 24 32 ...
jcoomes@931 1497 }
jcoomes@931 1498 if (b < t) {
jcoomes@931 1499 // The loop didn't completely fill to t (top); adjust top downward.
jcoomes@931 1500 space->set_top(b);
jcoomes@931 1501 if (ZapUnusedHeapArea) {
jcoomes@931 1502 space->set_top_for_allocations();
jcoomes@931 1503 }
jcoomes@931 1504 }
jcoomes@931 1505
jcoomes@931 1506 HeapWord** nta = _space_info[id].new_top_addr();
jcoomes@931 1507 bool result = summary_data().summarize(_space_info[id].split_info(),
jcoomes@931 1508 space->bottom(), space->top(), NULL,
jcoomes@931 1509 space->bottom(), space->end(), nta);
jcoomes@931 1510 assert(result, "space must fit into itself");
jcoomes@931 1511 }
jcoomes@931 1512 }
jcoomes@931 1513
jcoomes@931 1514 void
jcoomes@918 1515 PSParallelCompact::provoke_split(bool & max_compaction)
jcoomes@918 1516 {
jcoomes@931 1517 if (total_invocations() % ParallelOldGCSplitInterval != 0) {
jcoomes@931 1518 return;
jcoomes@931 1519 }
jcoomes@931 1520
jcoomes@918 1521 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@918 1522 ParallelCompactData& sd = summary_data();
jcoomes@918 1523
jcoomes@918 1524 MutableSpace* const eden_space = _space_info[eden_space_id].space();
jcoomes@918 1525 MutableSpace* const from_space = _space_info[from_space_id].space();
jcoomes@918 1526 const size_t eden_live = pointer_delta(eden_space->top(),
jcoomes@918 1527 _space_info[eden_space_id].new_top());
jcoomes@918 1528 const size_t from_live = pointer_delta(from_space->top(),
jcoomes@918 1529 _space_info[from_space_id].new_top());
jcoomes@918 1530
jcoomes@918 1531 const size_t min_fill_size = CollectedHeap::min_fill_size();
jcoomes@918 1532 const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
jcoomes@918 1533 const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
jcoomes@918 1534 const size_t from_free = pointer_delta(from_space->end(), from_space->top());
jcoomes@918 1535 const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
jcoomes@918 1536
jcoomes@918 1537 // Choose the space to split; need at least 2 regions live (or fillable).
jcoomes@918 1538 SpaceId id;
jcoomes@918 1539 MutableSpace* space;
jcoomes@918 1540 size_t live_words;
jcoomes@918 1541 size_t fill_words;
jcoomes@918 1542 if (eden_live + eden_fillable >= region_size * 2) {
jcoomes@918 1543 id = eden_space_id;
jcoomes@918 1544 space = eden_space;
jcoomes@918 1545 live_words = eden_live;
jcoomes@918 1546 fill_words = eden_fillable;
jcoomes@918 1547 } else if (from_live + from_fillable >= region_size * 2) {
jcoomes@918 1548 id = from_space_id;
jcoomes@918 1549 space = from_space;
jcoomes@918 1550 live_words = from_live;
jcoomes@918 1551 fill_words = from_fillable;
jcoomes@918 1552 } else {
jcoomes@918 1553 return; // Give up.
jcoomes@918 1554 }
jcoomes@918 1555 assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
jcoomes@918 1556
jcoomes@918 1557 if (live_words < region_size * 2) {
jcoomes@918 1558 // Fill from top() to end() w/live objects of mixed sizes.
jcoomes@918 1559 HeapWord* const fill_start = space->top();
jcoomes@918 1560 live_words += fill_words;
jcoomes@918 1561
jcoomes@918 1562 space->set_top(fill_start + fill_words);
jcoomes@918 1563 if (ZapUnusedHeapArea) {
jcoomes@918 1564 space->set_top_for_allocations();
jcoomes@918 1565 }
jcoomes@918 1566
jcoomes@918 1567 HeapWord* cur_addr = fill_start;
jcoomes@918 1568 while (fill_words > 0) {
jcoomes@918 1569 const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
jcoomes@918 1570 size_t cur_size = MIN2(align_object_size_(r), fill_words);
jcoomes@918 1571 if (fill_words - cur_size < min_fill_size) {
jcoomes@918 1572 cur_size = fill_words; // Avoid leaving a fragment too small to fill.
jcoomes@918 1573 }
jcoomes@918 1574
jcoomes@918 1575 CollectedHeap::fill_with_object(cur_addr, cur_size);
jcoomes@918 1576 mark_bitmap()->mark_obj(cur_addr, cur_size);
jcoomes@918 1577 sd.add_obj(cur_addr, cur_size);
jcoomes@918 1578
jcoomes@918 1579 cur_addr += cur_size;
jcoomes@918 1580 fill_words -= cur_size;
jcoomes@918 1581 }
jcoomes@918 1582
jcoomes@918 1583 summarize_new_objects(id, fill_start);
jcoomes@918 1584 }
jcoomes@918 1585
jcoomes@918 1586 max_compaction = false;
jcoomes@918 1587
jcoomes@918 1588 // Manipulate the old gen so that it has room for about half of the live data
jcoomes@918 1589 // in the target young gen space (live_words / 2).
jcoomes@918 1590 id = old_space_id;
jcoomes@918 1591 space = _space_info[id].space();
jcoomes@918 1592 const size_t free_at_end = space->free_in_words();
jcoomes@918 1593 const size_t free_target = align_object_size(live_words / 2);
jcoomes@918 1594 const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
jcoomes@918 1595
jcoomes@918 1596 if (free_at_end >= free_target + min_fill_size) {
jcoomes@918 1597 // Fill space above top() and set the dense prefix so everything survives.
jcoomes@918 1598 HeapWord* const fill_start = space->top();
jcoomes@918 1599 const size_t fill_size = free_at_end - free_target;
jcoomes@918 1600 space->set_top(space->top() + fill_size);
jcoomes@918 1601 if (ZapUnusedHeapArea) {
jcoomes@918 1602 space->set_top_for_allocations();
jcoomes@918 1603 }
jcoomes@918 1604 fill_with_live_objects(id, fill_start, fill_size);
jcoomes@918 1605 summarize_new_objects(id, fill_start);
jcoomes@918 1606 _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
jcoomes@918 1607 } else if (dead + free_at_end > free_target) {
jcoomes@918 1608 // Find a dense prefix that makes the right amount of space available.
jcoomes@918 1609 HeapWord* cur = sd.region_align_down(space->top());
jcoomes@918 1610 HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
jcoomes@918 1611 size_t dead_to_right = pointer_delta(space->end(), cur_destination);
jcoomes@918 1612 while (dead_to_right < free_target) {
jcoomes@918 1613 cur -= region_size;
jcoomes@918 1614 cur_destination = sd.addr_to_region_ptr(cur)->destination();
jcoomes@918 1615 dead_to_right = pointer_delta(space->end(), cur_destination);
jcoomes@918 1616 }
jcoomes@918 1617 _space_info[id].set_dense_prefix(cur);
jcoomes@918 1618 }
jcoomes@918 1619 }
jcoomes@918 1620 #endif // #ifndef PRODUCT
jcoomes@918 1621
duke@435 1622 void PSParallelCompact::summarize_spaces_quick()
duke@435 1623 {
duke@435 1624 for (unsigned int i = 0; i < last_space_id; ++i) {
duke@435 1625 const MutableSpace* space = _space_info[i].space();
jcoomes@917 1626 HeapWord** nta = _space_info[i].new_top_addr();
jcoomes@917 1627 bool result = _summary_data.summarize(_space_info[i].split_info(),
jcoomes@917 1628 space->bottom(), space->top(), NULL,
jcoomes@917 1629 space->bottom(), space->end(), nta);
jcoomes@917 1630 assert(result, "space must fit into itself");
duke@435 1631 _space_info[i].set_dense_prefix(space->bottom());
duke@435 1632 }
jcoomes@931 1633
jcoomes@931 1634 #ifndef PRODUCT
jcoomes@931 1635 if (ParallelOldGCSplitALot) {
jcoomes@931 1636 provoke_split_fill_survivor(to_space_id);
jcoomes@931 1637 }
jcoomes@931 1638 #endif // #ifndef PRODUCT
duke@435 1639 }
duke@435 1640
duke@435 1641 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
duke@435 1642 {
duke@435 1643 HeapWord* const dense_prefix_end = dense_prefix(id);
jcoomes@810 1644 const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
duke@435 1645 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
jcoomes@810 1646 if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
duke@435 1647 // Only enough dead space is filled so that any remaining dead space to the
duke@435 1648 // left is larger than the minimum filler object. (The remainder is filled
duke@435 1649 // during the copy/update phase.)
duke@435 1650 //
duke@435 1651 // The size of the dead space to the right of the boundary is not a
duke@435 1652 // concern, since compaction will be able to use whatever space is
duke@435 1653 // available.
duke@435 1654 //
duke@435 1655 // Here '||' is the boundary, 'x' represents a don't care bit and a box
duke@435 1656 // surrounds the space to be filled with an object.
duke@435 1657 //
duke@435 1658 // In the 32-bit VM, each bit represents two 32-bit words:
duke@435 1659 // +---+
duke@435 1660 // a) beg_bits: ... x x x | 0 | || 0 x x ...
duke@435 1661 // end_bits: ... x x x | 0 | || 0 x x ...
duke@435 1662 // +---+
duke@435 1663 //
duke@435 1664 // In the 64-bit VM, each bit represents one 64-bit word:
duke@435 1665 // +------------+
duke@435 1666 // b) beg_bits: ... x x x | 0 || 0 | x x ...
duke@435 1667 // end_bits: ... x x 1 | 0 || 0 | x x ...
duke@435 1668 // +------------+
duke@435 1669 // +-------+
duke@435 1670 // c) beg_bits: ... x x | 0 0 | || 0 x x ...
duke@435 1671 // end_bits: ... x 1 | 0 0 | || 0 x x ...
duke@435 1672 // +-------+
duke@435 1673 // +-----------+
duke@435 1674 // d) beg_bits: ... x | 0 0 0 | || 0 x x ...
duke@435 1675 // end_bits: ... 1 | 0 0 0 | || 0 x x ...
duke@435 1676 // +-----------+
duke@435 1677 // +-------+
duke@435 1678 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1679 // end_bits: ... 0 0 | 0 0 | || 0 x x ...
duke@435 1680 // +-------+
duke@435 1681
duke@435 1682 // Initially assume case a, c or e will apply.
duke@435 1683 size_t obj_len = (size_t)oopDesc::header_size();
duke@435 1684 HeapWord* obj_beg = dense_prefix_end - obj_len;
duke@435 1685
duke@435 1686 #ifdef _LP64
duke@435 1687 if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
duke@435 1688 // Case b above.
duke@435 1689 obj_beg = dense_prefix_end - 1;
duke@435 1690 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
duke@435 1691 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
duke@435 1692 // Case d above.
duke@435 1693 obj_beg = dense_prefix_end - 3;
duke@435 1694 obj_len = 3;
duke@435 1695 }
duke@435 1696 #endif // #ifdef _LP64
duke@435 1697
jcoomes@917 1698 CollectedHeap::fill_with_object(obj_beg, obj_len);
duke@435 1699 _mark_bitmap.mark_obj(obj_beg, obj_len);
duke@435 1700 _summary_data.add_obj(obj_beg, obj_len);
duke@435 1701 assert(start_array(id) != NULL, "sanity");
duke@435 1702 start_array(id)->allocate_block(obj_beg);
duke@435 1703 }
duke@435 1704 }
duke@435 1705
duke@435 1706 void
jcoomes@917 1707 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
jcoomes@917 1708 {
jcoomes@917 1709 RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
jcoomes@917 1710 HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
jcoomes@917 1711 RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
jcoomes@917 1712 for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
jcoomes@917 1713 cur->set_source_region(0);
jcoomes@917 1714 }
jcoomes@917 1715 }
jcoomes@917 1716
jcoomes@917 1717 void
duke@435 1718 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
duke@435 1719 {
duke@435 1720 assert(id < last_space_id, "id out of range");
jcoomes@918 1721 assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
jcoomes@918 1722 ParallelOldGCSplitALot && id == old_space_id,
jcoomes@918 1723 "should have been reset in summarize_spaces_quick()");
duke@435 1724
duke@435 1725 const MutableSpace* space = _space_info[id].space();
jcoomes@700 1726 if (_space_info[id].new_top() != space->bottom()) {
jcoomes@700 1727 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
jcoomes@700 1728 _space_info[id].set_dense_prefix(dense_prefix_end);
duke@435 1729
duke@435 1730 #ifndef PRODUCT
jcoomes@700 1731 if (TraceParallelOldGCDensePrefix) {
jcoomes@700 1732 print_dense_prefix_stats("ratio", id, maximum_compaction,
jcoomes@700 1733 dense_prefix_end);
jcoomes@700 1734 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
jcoomes@700 1735 print_dense_prefix_stats("density", id, maximum_compaction, addr);
jcoomes@700 1736 }
jcoomes@700 1737 #endif // #ifndef PRODUCT
jcoomes@700 1738
jcoomes@918 1739 // Recompute the summary data, taking into account the dense prefix. If
jcoomes@918 1740 // every last byte will be reclaimed, then the existing summary data which
jcoomes@918 1741 // compacts everything can be left in place.
jcoomes@700 1742 if (!maximum_compaction && dense_prefix_end != space->bottom()) {
jcoomes@917 1743 // If dead space crosses the dense prefix boundary, it is (at least
jcoomes@917 1744 // partially) filled with a dummy object, marked live and added to the
jcoomes@917 1745 // summary data. This simplifies the copy/update phase and must be done
jcoomes@918 1746 // before the final locations of objects are determined, to prevent
jcoomes@918 1747 // leaving a fragment of dead space that is too small to fill.
jcoomes@700 1748 fill_dense_prefix_end(id);
jcoomes@917 1749
jcoomes@917 1750 // Compute the destination of each Region, and thus each object.
jcoomes@917 1751 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
jcoomes@917 1752 _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1753 dense_prefix_end, space->top(), NULL,
jcoomes@917 1754 dense_prefix_end, space->end(),
jcoomes@917 1755 _space_info[id].new_top_addr());
jcoomes@700 1756 }
duke@435 1757 }
duke@435 1758
duke@435 1759 if (TraceParallelOldGCSummaryPhase) {
jcoomes@810 1760 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@700 1761 HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
jcoomes@810 1762 const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
duke@435 1763 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
jcoomes@700 1764 HeapWord* const new_top = _space_info[id].new_top();
jcoomes@810 1765 const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
duke@435 1766 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
duke@435 1767 tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
jcoomes@810 1768 "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
duke@435 1769 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
duke@435 1770 id, space->capacity_in_words(), dense_prefix_end,
jcoomes@810 1771 dp_region, dp_words / region_size,
jcoomes@810 1772 cr_words / region_size, new_top);
duke@435 1773 }
duke@435 1774 }
duke@435 1775
jcoomes@917 1776 #ifndef PRODUCT
jcoomes@917 1777 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
jcoomes@917 1778 HeapWord* dst_beg, HeapWord* dst_end,
jcoomes@917 1779 SpaceId src_space_id,
jcoomes@917 1780 HeapWord* src_beg, HeapWord* src_end)
jcoomes@917 1781 {
jcoomes@917 1782 if (TraceParallelOldGCSummaryPhase) {
jcoomes@917 1783 tty->print_cr("summarizing %d [%s] into %d [%s]: "
jcoomes@917 1784 "src=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1785 SIZE_FORMAT "-" SIZE_FORMAT " "
jcoomes@917 1786 "dst=" PTR_FORMAT "-" PTR_FORMAT " "
jcoomes@917 1787 SIZE_FORMAT "-" SIZE_FORMAT,
jcoomes@917 1788 src_space_id, space_names[src_space_id],
jcoomes@917 1789 dst_space_id, space_names[dst_space_id],
jcoomes@917 1790 src_beg, src_end,
jcoomes@917 1791 _summary_data.addr_to_region_idx(src_beg),
jcoomes@917 1792 _summary_data.addr_to_region_idx(src_end),
jcoomes@917 1793 dst_beg, dst_end,
jcoomes@917 1794 _summary_data.addr_to_region_idx(dst_beg),
jcoomes@917 1795 _summary_data.addr_to_region_idx(dst_end));
jcoomes@917 1796 }
jcoomes@917 1797 }
jcoomes@917 1798 #endif // #ifndef PRODUCT
jcoomes@917 1799
duke@435 1800 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
duke@435 1801 bool maximum_compaction)
duke@435 1802 {
duke@435 1803 EventMark m("2 summarize");
duke@435 1804 TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
duke@435 1805 // trace("2");
duke@435 1806
duke@435 1807 #ifdef ASSERT
duke@435 1808 if (TraceParallelOldGCMarkingPhase) {
duke@435 1809 tty->print_cr("add_obj_count=" SIZE_FORMAT " "
duke@435 1810 "add_obj_bytes=" SIZE_FORMAT,
duke@435 1811 add_obj_count, add_obj_size * HeapWordSize);
duke@435 1812 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
duke@435 1813 "mark_bitmap_bytes=" SIZE_FORMAT,
duke@435 1814 mark_bitmap_count, mark_bitmap_size * HeapWordSize);
duke@435 1815 }
duke@435 1816 #endif // #ifdef ASSERT
duke@435 1817
duke@435 1818 // Quick summarization of each space into itself, to see how much is live.
duke@435 1819 summarize_spaces_quick();
duke@435 1820
duke@435 1821 if (TraceParallelOldGCSummaryPhase) {
duke@435 1822 tty->print_cr("summary_phase: after summarizing each space to self");
duke@435 1823 Universe::print();
jcoomes@810 1824 NOT_PRODUCT(print_region_ranges());
duke@435 1825 if (Verbose) {
duke@435 1826 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
duke@435 1827 }
duke@435 1828 }
duke@435 1829
duke@435 1830 // The amount of live data that will end up in old space (assuming it fits).
duke@435 1831 size_t old_space_total_live = 0;
jcoomes@917 1832 assert(perm_space_id < old_space_id, "should not count perm data here");
jcoomes@917 1833 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 1834 old_space_total_live += pointer_delta(_space_info[id].new_top(),
duke@435 1835 _space_info[id].space()->bottom());
duke@435 1836 }
duke@435 1837
jcoomes@917 1838 MutableSpace* const old_space = _space_info[old_space_id].space();
jcoomes@918 1839 const size_t old_capacity = old_space->capacity_in_words();
jcoomes@918 1840 if (old_space_total_live > old_capacity) {
duke@435 1841 // XXX - should also try to expand
duke@435 1842 maximum_compaction = true;
duke@435 1843 }
jcoomes@918 1844 #ifndef PRODUCT
jcoomes@918 1845 if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
jcoomes@931 1846 provoke_split(maximum_compaction);
jcoomes@918 1847 }
jcoomes@918 1848 #endif // #ifndef PRODUCT
duke@435 1849
duke@435 1850 // Permanent and Old generations.
duke@435 1851 summarize_space(perm_space_id, maximum_compaction);
duke@435 1852 summarize_space(old_space_id, maximum_compaction);
duke@435 1853
jcoomes@917 1854 // Summarize the remaining spaces in the young gen. The initial target space
jcoomes@917 1855 // is the old gen. If a space does not fit entirely into the target, then the
jcoomes@917 1856 // remainder is compacted into the space itself and that space becomes the new
jcoomes@917 1857 // target.
jcoomes@917 1858 SpaceId dst_space_id = old_space_id;
jcoomes@917 1859 HeapWord* dst_space_end = old_space->end();
jcoomes@917 1860 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
jcoomes@917 1861 for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
duke@435 1862 const MutableSpace* space = _space_info[id].space();
duke@435 1863 const size_t live = pointer_delta(_space_info[id].new_top(),
duke@435 1864 space->bottom());
jcoomes@917 1865 const size_t available = pointer_delta(dst_space_end, *new_top_addr);
jcoomes@917 1866
jcoomes@917 1867 NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
jcoomes@917 1868 SpaceId(id), space->bottom(), space->top());)
jcoomes@701 1869 if (live > 0 && live <= available) {
duke@435 1870 // All the live data will fit.
jcoomes@917 1871 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1872 space->bottom(), space->top(),
jcoomes@917 1873 NULL,
jcoomes@917 1874 *new_top_addr, dst_space_end,
jcoomes@917 1875 new_top_addr);
jcoomes@917 1876 assert(done, "space must fit into old gen");
jcoomes@917 1877
jcoomes@701 1878 // Reset the new_top value for the space.
jcoomes@701 1879 _space_info[id].set_new_top(space->bottom());
jcoomes@917 1880 } else if (live > 0) {
jcoomes@917 1881 // Attempt to fit part of the source space into the target space.
jcoomes@917 1882 HeapWord* next_src_addr = NULL;
jcoomes@917 1883 bool done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1884 space->bottom(), space->top(),
jcoomes@917 1885 &next_src_addr,
jcoomes@917 1886 *new_top_addr, dst_space_end,
jcoomes@917 1887 new_top_addr);
jcoomes@917 1888 assert(!done, "space should not fit into old gen");
jcoomes@917 1889 assert(next_src_addr != NULL, "sanity");
jcoomes@917 1890
jcoomes@917 1891 // The source space becomes the new target, so the remainder is compacted
jcoomes@917 1892 // within the space itself.
jcoomes@917 1893 dst_space_id = SpaceId(id);
jcoomes@917 1894 dst_space_end = space->end();
jcoomes@917 1895 new_top_addr = _space_info[id].new_top_addr();
jcoomes@917 1896 NOT_PRODUCT(summary_phase_msg(dst_space_id,
jcoomes@917 1897 space->bottom(), dst_space_end,
jcoomes@917 1898 SpaceId(id), next_src_addr, space->top());)
jcoomes@917 1899 done = _summary_data.summarize(_space_info[id].split_info(),
jcoomes@917 1900 next_src_addr, space->top(),
jcoomes@917 1901 NULL,
jcoomes@917 1902 space->bottom(), dst_space_end,
jcoomes@917 1903 new_top_addr);
jcoomes@917 1904 assert(done, "space must fit when compacted into itself");
jcoomes@917 1905 assert(*new_top_addr <= space->top(), "usage should not grow");
duke@435 1906 }
duke@435 1907 }
duke@435 1908
duke@435 1909 if (TraceParallelOldGCSummaryPhase) {
duke@435 1910 tty->print_cr("summary_phase: after final summarization");
duke@435 1911 Universe::print();
jcoomes@810 1912 NOT_PRODUCT(print_region_ranges());
duke@435 1913 if (Verbose) {
duke@435 1914 NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
duke@435 1915 }
duke@435 1916 }
duke@435 1917 }
duke@435 1918
duke@435 1919 // This method should contain all heap-specific policy for invoking a full
duke@435 1920 // collection. invoke_no_policy() will only attempt to compact the heap; it
duke@435 1921 // will do nothing further. If we need to bail out for policy reasons, scavenge
duke@435 1922 // before full gc, or any other specialized behavior, it needs to be added here.
duke@435 1923 //
duke@435 1924 // Note that this method should only be called from the vm_thread while at a
duke@435 1925 // safepoint.
duke@435 1926 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
duke@435 1927 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 1928 assert(Thread::current() == (Thread*)VMThread::vm_thread(),
duke@435 1929 "should be in vm thread");
duke@435 1930 ParallelScavengeHeap* heap = gc_heap();
duke@435 1931 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1932 assert(!heap->is_gc_active(), "not reentrant");
duke@435 1933
duke@435 1934 PSAdaptiveSizePolicy* policy = heap->size_policy();
duke@435 1935
duke@435 1936 // Before each allocation/collection attempt, find out from the
duke@435 1937 // policy object if GCs are, on the whole, taking too long. If so,
duke@435 1938 // bail out without attempting a collection. The exceptions are
duke@435 1939 // for explicitly requested GC's.
duke@435 1940 if (!policy->gc_time_limit_exceeded() ||
duke@435 1941 GCCause::is_user_requested_gc(gc_cause) ||
duke@435 1942 GCCause::is_serviceability_requested_gc(gc_cause)) {
duke@435 1943 IsGCActiveMark mark;
duke@435 1944
duke@435 1945 if (ScavengeBeforeFullGC) {
duke@435 1946 PSScavenge::invoke_no_policy();
duke@435 1947 }
duke@435 1948
duke@435 1949 PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
duke@435 1950 }
duke@435 1951 }
duke@435 1952
jcoomes@810 1953 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
jcoomes@810 1954 size_t addr_region_index = addr_to_region_idx(addr);
jcoomes@810 1955 return region_index == addr_region_index;
duke@435 1956 }
duke@435 1957
duke@435 1958 // This method contains no policy. You should probably
duke@435 1959 // be calling invoke() instead.
duke@435 1960 void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
duke@435 1961 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
duke@435 1962 assert(ref_processor() != NULL, "Sanity");
duke@435 1963
apetrusenko@574 1964 if (GC_locker::check_active_before_gc()) {
duke@435 1965 return;
duke@435 1966 }
duke@435 1967
duke@435 1968 TimeStamp marking_start;
duke@435 1969 TimeStamp compaction_start;
duke@435 1970 TimeStamp collection_exit;
duke@435 1971
duke@435 1972 ParallelScavengeHeap* heap = gc_heap();
duke@435 1973 GCCause::Cause gc_cause = heap->gc_cause();
duke@435 1974 PSYoungGen* young_gen = heap->young_gen();
duke@435 1975 PSOldGen* old_gen = heap->old_gen();
duke@435 1976 PSPermGen* perm_gen = heap->perm_gen();
duke@435 1977 PSAdaptiveSizePolicy* size_policy = heap->size_policy();
duke@435 1978
jmasa@698 1979 if (ZapUnusedHeapArea) {
jmasa@698 1980 // Save information needed to minimize mangling
jmasa@698 1981 heap->record_gen_tops_before_GC();
jmasa@698 1982 }
jmasa@698 1983
ysr@1050 1984 heap->pre_full_gc_dump();
ysr@1050 1985
duke@435 1986 _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
duke@435 1987
duke@435 1988 // Make sure data structures are sane, make the heap parsable, and do other
duke@435 1989 // miscellaneous bookkeeping.
duke@435 1990 PreGCValues pre_gc_values;
duke@435 1991 pre_compact(&pre_gc_values);
duke@435 1992
jcoomes@645 1993 // Get the compaction manager reserved for the VM thread.
jcoomes@645 1994 ParCompactionManager* const vmthread_cm =
jcoomes@645 1995 ParCompactionManager::manager_array(gc_task_manager()->workers());
jcoomes@645 1996
duke@435 1997 // Place after pre_compact() where the number of invocations is incremented.
duke@435 1998 AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
duke@435 1999
duke@435 2000 {
duke@435 2001 ResourceMark rm;
duke@435 2002 HandleMark hm;
duke@435 2003
duke@435 2004 const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
duke@435 2005
duke@435 2006 // This is useful for debugging but don't change the output the
duke@435 2007 // the customer sees.
duke@435 2008 const char* gc_cause_str = "Full GC";
duke@435 2009 if (is_system_gc && PrintGCDetails) {
duke@435 2010 gc_cause_str = "Full GC (System)";
duke@435 2011 }
duke@435 2012 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
duke@435 2013 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
duke@435 2014 TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
duke@435 2015 TraceCollectorStats tcs(counters());
duke@435 2016 TraceMemoryManagerStats tms(true /* Full GC */);
duke@435 2017
duke@435 2018 if (TraceGen1Time) accumulated_time()->start();
duke@435 2019
duke@435 2020 // Let the size policy know we're starting
duke@435 2021 size_policy->major_collection_begin();
duke@435 2022
duke@435 2023 // When collecting the permanent generation methodOops may be moving,
duke@435 2024 // so we either have to flush all bcp data or convert it into bci.
duke@435 2025 CodeCache::gc_prologue();
duke@435 2026 Threads::gc_prologue();
duke@435 2027
duke@435 2028 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
duke@435 2029 COMPILER2_PRESENT(DerivedPointerTable::clear());
duke@435 2030
duke@435 2031 ref_processor()->enable_discovery();
ysr@892 2032 ref_processor()->setup_policy(maximum_heap_compaction);
duke@435 2033
duke@435 2034 bool marked_for_unloading = false;
duke@435 2035
duke@435 2036 marking_start.update();
jcoomes@645 2037 marking_phase(vmthread_cm, maximum_heap_compaction);
duke@435 2038
duke@435 2039 #ifndef PRODUCT
duke@435 2040 if (TraceParallelOldGCMarkingPhase) {
duke@435 2041 gclog_or_tty->print_cr("marking_phase: cas_tries %d cas_retries %d "
duke@435 2042 "cas_by_another %d",
duke@435 2043 mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
duke@435 2044 mark_bitmap()->cas_by_another());
duke@435 2045 }
duke@435 2046 #endif // #ifndef PRODUCT
duke@435 2047
duke@435 2048 bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
jcoomes@645 2049 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
duke@435 2050
duke@435 2051 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
duke@435 2052 COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
duke@435 2053
duke@435 2054 // adjust_roots() updates Universe::_intArrayKlassObj which is
duke@435 2055 // needed by the compaction for filling holes in the dense prefix.
duke@435 2056 adjust_roots();
duke@435 2057
duke@435 2058 compaction_start.update();
duke@435 2059 // Does the perm gen always have to be done serially because
duke@435 2060 // klasses are used in the update of an object?
jcoomes@645 2061 compact_perm(vmthread_cm);
duke@435 2062
duke@435 2063 if (UseParallelOldGCCompacting) {
duke@435 2064 compact();
duke@435 2065 } else {
jcoomes@645 2066 compact_serial(vmthread_cm);
duke@435 2067 }
duke@435 2068
duke@435 2069 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be
duke@435 2070 // done before resizing.
duke@435 2071 post_compact();
duke@435 2072
duke@435 2073 // Let the size policy know we're done
duke@435 2074 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
duke@435 2075
duke@435 2076 if (UseAdaptiveSizePolicy) {
duke@435 2077 if (PrintAdaptiveSizePolicy) {
duke@435 2078 gclog_or_tty->print("AdaptiveSizeStart: ");
duke@435 2079 gclog_or_tty->stamp();
duke@435 2080 gclog_or_tty->print_cr(" collection: %d ",
duke@435 2081 heap->total_collections());
duke@435 2082 if (Verbose) {
duke@435 2083 gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
duke@435 2084 " perm_gen_capacity: %d ",
duke@435 2085 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
duke@435 2086 perm_gen->capacity_in_bytes());
duke@435 2087 }
duke@435 2088 }
duke@435 2089
duke@435 2090 // Don't check if the size_policy is ready here. Let
duke@435 2091 // the size_policy check that internally.
duke@435 2092 if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
duke@435 2093 ((gc_cause != GCCause::_java_lang_system_gc) ||
duke@435 2094 UseAdaptiveSizePolicyWithSystemGC)) {
duke@435 2095 // Calculate optimal free space amounts
duke@435 2096 assert(young_gen->max_size() >
duke@435 2097 young_gen->from_space()->capacity_in_bytes() +
duke@435 2098 young_gen->to_space()->capacity_in_bytes(),
duke@435 2099 "Sizes of space in young gen are out-of-bounds");
duke@435 2100 size_t max_eden_size = young_gen->max_size() -
duke@435 2101 young_gen->from_space()->capacity_in_bytes() -
duke@435 2102 young_gen->to_space()->capacity_in_bytes();
jmasa@698 2103 size_policy->compute_generation_free_space(
jmasa@698 2104 young_gen->used_in_bytes(),
jmasa@698 2105 young_gen->eden_space()->used_in_bytes(),
jmasa@698 2106 old_gen->used_in_bytes(),
jmasa@698 2107 perm_gen->used_in_bytes(),
jmasa@698 2108 young_gen->eden_space()->capacity_in_bytes(),
jmasa@698 2109 old_gen->max_gen_size(),
jmasa@698 2110 max_eden_size,
jmasa@698 2111 true /* full gc*/,
jmasa@698 2112 gc_cause);
jmasa@698 2113
jmasa@698 2114 heap->resize_old_gen(
jmasa@698 2115 size_policy->calculated_old_free_size_in_bytes());
duke@435 2116
duke@435 2117 // Don't resize the young generation at an major collection. A
duke@435 2118 // desired young generation size may have been calculated but
duke@435 2119 // resizing the young generation complicates the code because the
duke@435 2120 // resizing of the old generation may have moved the boundary
duke@435 2121 // between the young generation and the old generation. Let the
duke@435 2122 // young generation resizing happen at the minor collections.
duke@435 2123 }
duke@435 2124 if (PrintAdaptiveSizePolicy) {
duke@435 2125 gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
duke@435 2126 heap->total_collections());
duke@435 2127 }
duke@435 2128 }
duke@435 2129
duke@435 2130 if (UsePerfData) {
duke@435 2131 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
duke@435 2132 counters->update_counters();
duke@435 2133 counters->update_old_capacity(old_gen->capacity_in_bytes());
duke@435 2134 counters->update_young_capacity(young_gen->capacity_in_bytes());
duke@435 2135 }
duke@435 2136
duke@435 2137 heap->resize_all_tlabs();
duke@435 2138
duke@435 2139 // We collected the perm gen, so we'll resize it here.
duke@435 2140 perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
duke@435 2141
duke@435 2142 if (TraceGen1Time) accumulated_time()->stop();
duke@435 2143
duke@435 2144 if (PrintGC) {
duke@435 2145 if (PrintGCDetails) {
duke@435 2146 // No GC timestamp here. This is after GC so it would be confusing.
duke@435 2147 young_gen->print_used_change(pre_gc_values.young_gen_used());
duke@435 2148 old_gen->print_used_change(pre_gc_values.old_gen_used());
duke@435 2149 heap->print_heap_change(pre_gc_values.heap_used());
duke@435 2150 // Print perm gen last (print_heap_change() excludes the perm gen).
duke@435 2151 perm_gen->print_used_change(pre_gc_values.perm_gen_used());
duke@435 2152 } else {
duke@435 2153 heap->print_heap_change(pre_gc_values.heap_used());
duke@435 2154 }
duke@435 2155 }
duke@435 2156
duke@435 2157 // Track memory usage and detect low memory
duke@435 2158 MemoryService::track_memory_usage();
duke@435 2159 heap->update_counters();
duke@435 2160
duke@435 2161 if (PrintGCDetails) {
duke@435 2162 if (size_policy->print_gc_time_limit_would_be_exceeded()) {
duke@435 2163 if (size_policy->gc_time_limit_exceeded()) {
duke@435 2164 gclog_or_tty->print_cr(" GC time is exceeding GCTimeLimit "
duke@435 2165 "of %d%%", GCTimeLimit);
duke@435 2166 } else {
duke@435 2167 gclog_or_tty->print_cr(" GC time would exceed GCTimeLimit "
duke@435 2168 "of %d%%", GCTimeLimit);
duke@435 2169 }
duke@435 2170 }
duke@435 2171 size_policy->set_print_gc_time_limit_would_be_exceeded(false);
duke@435 2172 }
duke@435 2173 }
duke@435 2174
duke@435 2175 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
duke@435 2176 HandleMark hm; // Discard invalid handles created during verification
duke@435 2177 gclog_or_tty->print(" VerifyAfterGC:");
duke@435 2178 Universe::verify(false);
duke@435 2179 }
duke@435 2180
duke@435 2181 // Re-verify object start arrays
duke@435 2182 if (VerifyObjectStartArray &&
duke@435 2183 VerifyAfterGC) {
duke@435 2184 old_gen->verify_object_start_array();
duke@435 2185 perm_gen->verify_object_start_array();
duke@435 2186 }
duke@435 2187
jmasa@698 2188 if (ZapUnusedHeapArea) {
jmasa@698 2189 old_gen->object_space()->check_mangled_unused_area_complete();
jmasa@698 2190 perm_gen->object_space()->check_mangled_unused_area_complete();
jmasa@698 2191 }
jmasa@698 2192
duke@435 2193 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
duke@435 2194
duke@435 2195 collection_exit.update();
duke@435 2196
duke@435 2197 if (PrintHeapAtGC) {
duke@435 2198 Universe::print_heap_after_gc();
duke@435 2199 }
duke@435 2200 if (PrintGCTaskTimeStamps) {
duke@435 2201 gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
duke@435 2202 INT64_FORMAT,
duke@435 2203 marking_start.ticks(), compaction_start.ticks(),
duke@435 2204 collection_exit.ticks());
duke@435 2205 gc_task_manager()->print_task_time_stamps();
duke@435 2206 }
jmasa@981 2207
ysr@1050 2208 heap->post_full_gc_dump();
ysr@1050 2209
jmasa@981 2210 #ifdef TRACESPINNING
jmasa@981 2211 ParallelTaskTerminator::print_termination_counts();
jmasa@981 2212 #endif
duke@435 2213 }
duke@435 2214
duke@435 2215 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
duke@435 2216 PSYoungGen* young_gen,
duke@435 2217 PSOldGen* old_gen) {
duke@435 2218 MutableSpace* const eden_space = young_gen->eden_space();
duke@435 2219 assert(!eden_space->is_empty(), "eden must be non-empty");
duke@435 2220 assert(young_gen->virtual_space()->alignment() ==
duke@435 2221 old_gen->virtual_space()->alignment(), "alignments do not match");
duke@435 2222
duke@435 2223 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
duke@435 2224 return false;
duke@435 2225 }
duke@435 2226
duke@435 2227 // Both generations must be completely committed.
duke@435 2228 if (young_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2229 return false;
duke@435 2230 }
duke@435 2231 if (old_gen->virtual_space()->uncommitted_size() != 0) {
duke@435 2232 return false;
duke@435 2233 }
duke@435 2234
duke@435 2235 // Figure out how much to take from eden. Include the average amount promoted
duke@435 2236 // in the total; otherwise the next young gen GC will simply bail out to a
duke@435 2237 // full GC.
duke@435 2238 const size_t alignment = old_gen->virtual_space()->alignment();
duke@435 2239 const size_t eden_used = eden_space->used_in_bytes();
duke@435 2240 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
duke@435 2241 const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
duke@435 2242 const size_t eden_capacity = eden_space->capacity_in_bytes();
duke@435 2243
duke@435 2244 if (absorb_size >= eden_capacity) {
duke@435 2245 return false; // Must leave some space in eden.
duke@435 2246 }
duke@435 2247
duke@435 2248 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
duke@435 2249 if (new_young_size < young_gen->min_gen_size()) {
duke@435 2250 return false; // Respect young gen minimum size.
duke@435 2251 }
duke@435 2252
duke@435 2253 if (TraceAdaptiveGCBoundary && Verbose) {
duke@435 2254 gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: "
duke@435 2255 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
duke@435 2256 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
duke@435 2257 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
duke@435 2258 absorb_size / K,
duke@435 2259 eden_capacity / K, (eden_capacity - absorb_size) / K,
duke@435 2260 young_gen->from_space()->used_in_bytes() / K,
duke@435 2261 young_gen->to_space()->used_in_bytes() / K,
duke@435 2262 young_gen->capacity_in_bytes() / K, new_young_size / K);
duke@435 2263 }
duke@435 2264
duke@435 2265 // Fill the unused part of the old gen.
duke@435 2266 MutableSpace* const old_space = old_gen->object_space();
jcoomes@916 2267 HeapWord* const unused_start = old_space->top();
jcoomes@916 2268 size_t const unused_words = pointer_delta(old_space->end(), unused_start);
jcoomes@916 2269
jcoomes@916 2270 if (unused_words > 0) {
jcoomes@916 2271 if (unused_words < CollectedHeap::min_fill_size()) {
jcoomes@916 2272 return false; // If the old gen cannot be filled, must give up.
jcoomes@916 2273 }
jcoomes@916 2274 CollectedHeap::fill_with_objects(unused_start, unused_words);
duke@435 2275 }
duke@435 2276
duke@435 2277 // Take the live data from eden and set both top and end in the old gen to
duke@435 2278 // eden top. (Need to set end because reset_after_change() mangles the region
duke@435 2279 // from end to virtual_space->high() in debug builds).
duke@435 2280 HeapWord* const new_top = eden_space->top();
duke@435 2281 old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
duke@435 2282 absorb_size);
duke@435 2283 young_gen->reset_after_change();
duke@435 2284 old_space->set_top(new_top);
duke@435 2285 old_space->set_end(new_top);
duke@435 2286 old_gen->reset_after_change();
duke@435 2287
duke@435 2288 // Update the object start array for the filler object and the data from eden.
duke@435 2289 ObjectStartArray* const start_array = old_gen->start_array();
jcoomes@916 2290 for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
jcoomes@916 2291 start_array->allocate_block(p);
duke@435 2292 }
duke@435 2293
duke@435 2294 // Could update the promoted average here, but it is not typically updated at
duke@435 2295 // full GCs and the value to use is unclear. Something like
duke@435 2296 //
duke@435 2297 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
duke@435 2298
duke@435 2299 size_policy->set_bytes_absorbed_from_eden(absorb_size);
duke@435 2300 return true;
duke@435 2301 }
duke@435 2302
duke@435 2303 GCTaskManager* const PSParallelCompact::gc_task_manager() {
duke@435 2304 assert(ParallelScavengeHeap::gc_task_manager() != NULL,
duke@435 2305 "shouldn't return NULL");
duke@435 2306 return ParallelScavengeHeap::gc_task_manager();
duke@435 2307 }
duke@435 2308
duke@435 2309 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
duke@435 2310 bool maximum_heap_compaction) {
duke@435 2311 // Recursively traverse all live objects and mark them
duke@435 2312 EventMark m("1 mark object");
duke@435 2313 TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
duke@435 2314
duke@435 2315 ParallelScavengeHeap* heap = gc_heap();
duke@435 2316 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jcoomes@810 2317 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
duke@435 2318 ParallelTaskTerminator terminator(parallel_gc_threads, qset);
duke@435 2319
duke@435 2320 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
duke@435 2321 PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
duke@435 2322
duke@435 2323 {
duke@435 2324 TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
duke@435 2325
duke@435 2326 GCTaskQueue* q = GCTaskQueue::create();
duke@435 2327
duke@435 2328 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
duke@435 2329 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
duke@435 2330 // We scan the thread roots in parallel
duke@435 2331 Threads::create_thread_roots_marking_tasks(q);
duke@435 2332 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
duke@435 2333 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
duke@435 2334 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
duke@435 2335 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
duke@435 2336 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
duke@435 2337 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));
duke@435 2338
duke@435 2339 if (parallel_gc_threads > 1) {
duke@435 2340 for (uint j = 0; j < parallel_gc_threads; j++) {
duke@435 2341 q->enqueue(new StealMarkingTask(&terminator));
duke@435 2342 }
duke@435 2343 }
duke@435 2344
duke@435 2345 WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
duke@435 2346 q->enqueue(fin);
duke@435 2347
duke@435 2348 gc_task_manager()->add_list(q);
duke@435 2349
duke@435 2350 fin->wait_for();
duke@435 2351
duke@435 2352 // We have to release the barrier tasks!
duke@435 2353 WaitForBarrierGCTask::destroy(fin);
duke@435 2354 }
duke@435 2355
duke@435 2356 // Process reference objects found during marking
duke@435 2357 {
duke@435 2358 TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
duke@435 2359 if (ref_processor()->processing_is_mt()) {
duke@435 2360 RefProcTaskExecutor task_executor;
duke@435 2361 ref_processor()->process_discovered_references(
ysr@888 2362 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
ysr@888 2363 &task_executor);
duke@435 2364 } else {
duke@435 2365 ref_processor()->process_discovered_references(
ysr@888 2366 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL);
duke@435 2367 }
duke@435 2368 }
duke@435 2369
duke@435 2370 TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
duke@435 2371 // Follow system dictionary roots and unload classes.
duke@435 2372 bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
duke@435 2373
duke@435 2374 // Follow code cache roots.
duke@435 2375 CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
duke@435 2376 purged_class);
duke@435 2377 follow_stack(cm); // Flush marking stack.
duke@435 2378
duke@435 2379 // Update subklass/sibling/implementor links of live klasses
duke@435 2380 // revisit_klass_stack is used in follow_weak_klass_links().
ysr@1376 2381 follow_weak_klass_links();
ysr@1376 2382
ysr@1376 2383 // Revisit memoized MDO's and clear any unmarked weak refs
ysr@1376 2384 follow_mdo_weak_refs();
duke@435 2385
duke@435 2386 // Visit symbol and interned string tables and delete unmarked oops
duke@435 2387 SymbolTable::unlink(is_alive_closure());
duke@435 2388 StringTable::unlink(is_alive_closure());
duke@435 2389
duke@435 2390 assert(cm->marking_stack()->size() == 0, "stack should be empty by now");
duke@435 2391 assert(cm->overflow_stack()->is_empty(), "stack should be empty by now");
duke@435 2392 }
duke@435 2393
duke@435 2394 // This should be moved to the shared markSweep code!
duke@435 2395 class PSAlwaysTrueClosure: public BoolObjectClosure {
duke@435 2396 public:
duke@435 2397 void do_object(oop p) { ShouldNotReachHere(); }
duke@435 2398 bool do_object_b(oop p) { return true; }
duke@435 2399 };
duke@435 2400 static PSAlwaysTrueClosure always_true;
duke@435 2401
duke@435 2402 void PSParallelCompact::adjust_roots() {
duke@435 2403 // Adjust the pointers to reflect the new locations
duke@435 2404 EventMark m("3 adjust roots");
duke@435 2405 TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
duke@435 2406
duke@435 2407 // General strong roots.
duke@435 2408 Universe::oops_do(adjust_root_pointer_closure());
duke@435 2409 ReferenceProcessor::oops_do(adjust_root_pointer_closure());
duke@435 2410 JNIHandles::oops_do(adjust_root_pointer_closure()); // Global (strong) JNI handles
duke@435 2411 Threads::oops_do(adjust_root_pointer_closure());
duke@435 2412 ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
duke@435 2413 FlatProfiler::oops_do(adjust_root_pointer_closure());
duke@435 2414 Management::oops_do(adjust_root_pointer_closure());
duke@435 2415 JvmtiExport::oops_do(adjust_root_pointer_closure());
duke@435 2416 // SO_AllClasses
duke@435 2417 SystemDictionary::oops_do(adjust_root_pointer_closure());
duke@435 2418 vmSymbols::oops_do(adjust_root_pointer_closure());
duke@435 2419
duke@435 2420 // Now adjust pointers in remaining weak roots. (All of which should
duke@435 2421 // have been cleared if they pointed to non-surviving objects.)
duke@435 2422 // Global (weak) JNI handles
duke@435 2423 JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
duke@435 2424
duke@435 2425 CodeCache::oops_do(adjust_pointer_closure());
duke@435 2426 SymbolTable::oops_do(adjust_root_pointer_closure());
duke@435 2427 StringTable::oops_do(adjust_root_pointer_closure());
duke@435 2428 ref_processor()->weak_oops_do(adjust_root_pointer_closure());
duke@435 2429 // Roots were visited so references into the young gen in roots
duke@435 2430 // may have been scanned. Process them also.
duke@435 2431 // Should the reference processor have a span that excludes
duke@435 2432 // young gen objects?
duke@435 2433 PSScavenge::reference_processor()->weak_oops_do(
duke@435 2434 adjust_root_pointer_closure());
duke@435 2435 }
duke@435 2436
duke@435 2437 void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
duke@435 2438 EventMark m("4 compact perm");
duke@435 2439 TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
duke@435 2440 // trace("4");
duke@435 2441
duke@435 2442 gc_heap()->perm_gen()->start_array()->reset();
duke@435 2443 move_and_update(cm, perm_space_id);
duke@435 2444 }
duke@435 2445
jcoomes@810 2446 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
jcoomes@810 2447 uint parallel_gc_threads)
jcoomes@810 2448 {
duke@435 2449 TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
duke@435 2450
duke@435 2451 const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
duke@435 2452 for (unsigned int j = 0; j < task_count; j++) {
duke@435 2453 q->enqueue(new DrainStacksCompactionTask());
duke@435 2454 }
duke@435 2455
jcoomes@810 2456 // Find all regions that are available (can be filled immediately) and
duke@435 2457 // distribute them to the thread stacks. The iteration is done in reverse
jcoomes@810 2458 // order (high to low) so the regions will be removed in ascending order.
duke@435 2459
duke@435 2460 const ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2461
jcoomes@810 2462 size_t fillable_regions = 0; // A count for diagnostic purposes.
duke@435 2463 unsigned int which = 0; // The worker thread number.
duke@435 2464
duke@435 2465 for (unsigned int id = to_space_id; id > perm_space_id; --id) {
duke@435 2466 SpaceInfo* const space_info = _space_info + id;
duke@435 2467 MutableSpace* const space = space_info->space();
duke@435 2468 HeapWord* const new_top = space_info->new_top();
duke@435 2469
jcoomes@810 2470 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
jcoomes@810 2471 const size_t end_region =
jcoomes@810 2472 sd.addr_to_region_idx(sd.region_align_up(new_top));
jcoomes@810 2473 assert(end_region > 0, "perm gen cannot be empty");
jcoomes@810 2474
jcoomes@810 2475 for (size_t cur = end_region - 1; cur >= beg_region; --cur) {
jcoomes@810 2476 if (sd.region(cur)->claim_unsafe()) {
duke@435 2477 ParCompactionManager* cm = ParCompactionManager::manager_array(which);
duke@435 2478 cm->save_for_processing(cur);
duke@435 2479
duke@435 2480 if (TraceParallelOldGCCompactionPhase && Verbose) {
jcoomes@810 2481 const size_t count_mod_8 = fillable_regions & 7;
duke@435 2482 if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
jcoomes@699 2483 gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
duke@435 2484 if (count_mod_8 == 7) gclog_or_tty->cr();
duke@435 2485 }
duke@435 2486
jcoomes@810 2487 NOT_PRODUCT(++fillable_regions;)
jcoomes@810 2488
jcoomes@810 2489 // Assign regions to threads in round-robin fashion.
duke@435 2490 if (++which == task_count) {
duke@435 2491 which = 0;
duke@435 2492 }
duke@435 2493 }
duke@435 2494 }
duke@435 2495 }
duke@435 2496
duke@435 2497 if (TraceParallelOldGCCompactionPhase) {
jcoomes@810 2498 if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
jcoomes@810 2499 gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
duke@435 2500 }
duke@435 2501 }
duke@435 2502
duke@435 2503 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
duke@435 2504
duke@435 2505 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
duke@435 2506 uint parallel_gc_threads) {
duke@435 2507 TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
duke@435 2508
duke@435 2509 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 2510
duke@435 2511 // Iterate over all the spaces adding tasks for updating
jcoomes@810 2512 // regions in the dense prefix. Assume that 1 gc thread
duke@435 2513 // will work on opening the gaps and the remaining gc threads
duke@435 2514 // will work on the dense prefix.
jcoomes@917 2515 unsigned int space_id;
jcoomes@917 2516 for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
duke@435 2517 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
duke@435 2518 const MutableSpace* const space = _space_info[space_id].space();
duke@435 2519
duke@435 2520 if (dense_prefix_end == space->bottom()) {
duke@435 2521 // There is no dense prefix for this space.
duke@435 2522 continue;
duke@435 2523 }
duke@435 2524
jcoomes@810 2525 // The dense prefix is before this region.
jcoomes@810 2526 size_t region_index_end_dense_prefix =
jcoomes@810 2527 sd.addr_to_region_idx(dense_prefix_end);
jcoomes@810 2528 RegionData* const dense_prefix_cp =
jcoomes@810 2529 sd.region(region_index_end_dense_prefix);
duke@435 2530 assert(dense_prefix_end == space->end() ||
duke@435 2531 dense_prefix_cp->available() ||
duke@435 2532 dense_prefix_cp->claimed(),
jcoomes@810 2533 "The region after the dense prefix should always be ready to fill");
jcoomes@810 2534
jcoomes@810 2535 size_t region_index_start = sd.addr_to_region_idx(space->bottom());
duke@435 2536
duke@435 2537 // Is there dense prefix work?
jcoomes@810 2538 size_t total_dense_prefix_regions =
jcoomes@810 2539 region_index_end_dense_prefix - region_index_start;
jcoomes@810 2540 // How many regions of the dense prefix should be given to
duke@435 2541 // each thread?
jcoomes@810 2542 if (total_dense_prefix_regions > 0) {
duke@435 2543 uint tasks_for_dense_prefix = 1;
duke@435 2544 if (UseParallelDensePrefixUpdate) {
jcoomes@810 2545 if (total_dense_prefix_regions <=
duke@435 2546 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
duke@435 2547 // Don't over partition. This assumes that
duke@435 2548 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
jcoomes@810 2549 // so there are not many regions to process.
duke@435 2550 tasks_for_dense_prefix = parallel_gc_threads;
duke@435 2551 } else {
duke@435 2552 // Over partition
duke@435 2553 tasks_for_dense_prefix = parallel_gc_threads *
duke@435 2554 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
duke@435 2555 }
duke@435 2556 }
jcoomes@810 2557 size_t regions_per_thread = total_dense_prefix_regions /
duke@435 2558 tasks_for_dense_prefix;
jcoomes@810 2559 // Give each thread at least 1 region.
jcoomes@810 2560 if (regions_per_thread == 0) {
jcoomes@810 2561 regions_per_thread = 1;
duke@435 2562 }
duke@435 2563
duke@435 2564 for (uint k = 0; k < tasks_for_dense_prefix; k++) {
jcoomes@810 2565 if (region_index_start >= region_index_end_dense_prefix) {
duke@435 2566 break;
duke@435 2567 }
jcoomes@810 2568 // region_index_end is not processed
jcoomes@810 2569 size_t region_index_end = MIN2(region_index_start + regions_per_thread,
jcoomes@810 2570 region_index_end_dense_prefix);
jcoomes@917 2571 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2572 region_index_start,
jcoomes@917 2573 region_index_end));
jcoomes@810 2574 region_index_start = region_index_end;
duke@435 2575 }
duke@435 2576 }
duke@435 2577 // This gets any part of the dense prefix that did not
duke@435 2578 // fit evenly.
jcoomes@810 2579 if (region_index_start < region_index_end_dense_prefix) {
jcoomes@917 2580 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
jcoomes@917 2581 region_index_start,
jcoomes@917 2582 region_index_end_dense_prefix));
duke@435 2583 }
jcoomes@917 2584 }
duke@435 2585 }
duke@435 2586
jcoomes@810 2587 void PSParallelCompact::enqueue_region_stealing_tasks(
duke@435 2588 GCTaskQueue* q,
duke@435 2589 ParallelTaskTerminator* terminator_ptr,
duke@435 2590 uint parallel_gc_threads) {
duke@435 2591 TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
duke@435 2592
jcoomes@810 2593 // Once a thread has drained it's stack, it should try to steal regions from
duke@435 2594 // other threads.
duke@435 2595 if (parallel_gc_threads > 1) {
duke@435 2596 for (uint j = 0; j < parallel_gc_threads; j++) {
jcoomes@810 2597 q->enqueue(new StealRegionCompactionTask(terminator_ptr));
duke@435 2598 }
duke@435 2599 }
duke@435 2600 }
duke@435 2601
duke@435 2602 void PSParallelCompact::compact() {
duke@435 2603 EventMark m("5 compact");
duke@435 2604 // trace("5");
duke@435 2605 TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
duke@435 2606
duke@435 2607 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 2608 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 2609 PSOldGen* old_gen = heap->old_gen();
duke@435 2610 old_gen->start_array()->reset();
duke@435 2611 uint parallel_gc_threads = heap->gc_task_manager()->workers();
jcoomes@810 2612 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
duke@435 2613 ParallelTaskTerminator terminator(parallel_gc_threads, qset);
duke@435 2614
duke@435 2615 GCTaskQueue* q = GCTaskQueue::create();
jcoomes@810 2616 enqueue_region_draining_tasks(q, parallel_gc_threads);
duke@435 2617 enqueue_dense_prefix_tasks(q, parallel_gc_threads);
jcoomes@810 2618 enqueue_region_stealing_tasks(q, &terminator, parallel_gc_threads);
duke@435 2619
duke@435 2620 {
duke@435 2621 TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
duke@435 2622
duke@435 2623 WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
duke@435 2624 q->enqueue(fin);
duke@435 2625
duke@435 2626 gc_task_manager()->add_list(q);
duke@435 2627
duke@435 2628 fin->wait_for();
duke@435 2629
duke@435 2630 // We have to release the barrier tasks!
duke@435 2631 WaitForBarrierGCTask::destroy(fin);
duke@435 2632
duke@435 2633 #ifdef ASSERT
jcoomes@810 2634 // Verify that all regions have been processed before the deferred updates.
duke@435 2635 // Note that perm_space_id is skipped; this type of verification is not
jcoomes@810 2636 // valid until the perm gen is compacted by regions.
duke@435 2637 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2638 verify_complete(SpaceId(id));
duke@435 2639 }
duke@435 2640 #endif
duke@435 2641 }
duke@435 2642
duke@435 2643 {
duke@435 2644 // Update the deferred objects, if any. Any compaction manager can be used.
duke@435 2645 TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
duke@435 2646 ParCompactionManager* cm = ParCompactionManager::manager_array(0);
duke@435 2647 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
duke@435 2648 update_deferred_objects(cm, SpaceId(id));
duke@435 2649 }
duke@435 2650 }
duke@435 2651 }
duke@435 2652
duke@435 2653 #ifdef ASSERT
duke@435 2654 void PSParallelCompact::verify_complete(SpaceId space_id) {
jcoomes@810 2655 // All Regions between space bottom() to new_top() should be marked as filled
jcoomes@810 2656 // and all Regions between new_top() and top() should be available (i.e.,
duke@435 2657 // should have been emptied).
duke@435 2658 ParallelCompactData& sd = summary_data();
duke@435 2659 SpaceInfo si = _space_info[space_id];
jcoomes@810 2660 HeapWord* new_top_addr = sd.region_align_up(si.new_top());
jcoomes@810 2661 HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
jcoomes@810 2662 const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
jcoomes@810 2663 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
jcoomes@810 2664 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
duke@435 2665
duke@435 2666 bool issued_a_warning = false;
duke@435 2667
jcoomes@810 2668 size_t cur_region;
jcoomes@810 2669 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
jcoomes@810 2670 const RegionData* const c = sd.region(cur_region);
duke@435 2671 if (!c->completed()) {
jcoomes@810 2672 warning("region " SIZE_FORMAT " not filled: "
duke@435 2673 "destination_count=" SIZE_FORMAT,
jcoomes@810 2674 cur_region, c->destination_count());
duke@435 2675 issued_a_warning = true;
duke@435 2676 }
duke@435 2677 }
duke@435 2678
jcoomes@810 2679 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
jcoomes@810 2680 const RegionData* const c = sd.region(cur_region);
duke@435 2681 if (!c->available()) {
jcoomes@810 2682 warning("region " SIZE_FORMAT " not empty: "
duke@435 2683 "destination_count=" SIZE_FORMAT,
jcoomes@810 2684 cur_region, c->destination_count());
duke@435 2685 issued_a_warning = true;
duke@435 2686 }
duke@435 2687 }
duke@435 2688
duke@435 2689 if (issued_a_warning) {
jcoomes@810 2690 print_region_ranges();
duke@435 2691 }
duke@435 2692 }
duke@435 2693 #endif // #ifdef ASSERT
duke@435 2694
duke@435 2695 void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
duke@435 2696 EventMark m("5 compact serial");
duke@435 2697 TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);
duke@435 2698
duke@435 2699 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 2700 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 2701
duke@435 2702 PSYoungGen* young_gen = heap->young_gen();
duke@435 2703 PSOldGen* old_gen = heap->old_gen();
duke@435 2704
duke@435 2705 old_gen->start_array()->reset();
duke@435 2706 old_gen->move_and_update(cm);
duke@435 2707 young_gen->move_and_update(cm);
duke@435 2708 }
duke@435 2709
duke@435 2710
duke@435 2711 void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
duke@435 2712 while(!cm->overflow_stack()->is_empty()) {
duke@435 2713 oop obj = cm->overflow_stack()->pop();
duke@435 2714 obj->follow_contents(cm);
duke@435 2715 }
duke@435 2716
duke@435 2717 oop obj;
duke@435 2718 // obj is a reference!!!
duke@435 2719 while (cm->marking_stack()->pop_local(obj)) {
duke@435 2720 // It would be nice to assert about the type of objects we might
duke@435 2721 // pop, but they can come from anywhere, unfortunately.
duke@435 2722 obj->follow_contents(cm);
duke@435 2723 }
duke@435 2724 }
duke@435 2725
duke@435 2726 void
ysr@1376 2727 PSParallelCompact::follow_weak_klass_links() {
duke@435 2728 // All klasses on the revisit stack are marked at this point.
duke@435 2729 // Update and follow all subklass, sibling and implementor links.
ysr@1376 2730 if (PrintRevisitStats) {
ysr@1376 2731 gclog_or_tty->print_cr("#classes in system dictionary = %d", SystemDictionary::number_of_classes());
ysr@1376 2732 }
ysr@1376 2733 for (uint i = 0; i < ParallelGCThreads + 1; i++) {
duke@435 2734 ParCompactionManager* cm = ParCompactionManager::manager_array(i);
duke@435 2735 KeepAliveClosure keep_alive_closure(cm);
ysr@1376 2736 int length = cm->revisit_klass_stack()->length();
ysr@1376 2737 if (PrintRevisitStats) {
ysr@1376 2738 gclog_or_tty->print_cr("Revisit klass stack[%d] length = %d", i, length);
ysr@1376 2739 }
ysr@1376 2740 for (int j = 0; j < length; j++) {
ysr@1376 2741 cm->revisit_klass_stack()->at(j)->follow_weak_klass_links(
duke@435 2742 is_alive_closure(),
duke@435 2743 &keep_alive_closure);
duke@435 2744 }
ysr@1376 2745 // revisit_klass_stack is cleared in reset()
duke@435 2746 follow_stack(cm);
duke@435 2747 }
duke@435 2748 }
duke@435 2749
duke@435 2750 void
duke@435 2751 PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
duke@435 2752 cm->revisit_klass_stack()->push(k);
duke@435 2753 }
duke@435 2754
ysr@1376 2755 #if ( defined(COMPILER1) || defined(COMPILER2) )
ysr@1376 2756 void PSParallelCompact::revisit_mdo(ParCompactionManager* cm, DataLayout* p) {
ysr@1376 2757 cm->revisit_mdo_stack()->push(p);
ysr@1376 2758 }
ysr@1376 2759
ysr@1376 2760 void PSParallelCompact::follow_mdo_weak_refs() {
ysr@1376 2761 // All strongly reachable oops have been marked at this point;
ysr@1376 2762 // we can visit and clear any weak references from MDO's which
ysr@1376 2763 // we memoized during the strong marking phase.
ysr@1376 2764 if (PrintRevisitStats) {
ysr@1376 2765 gclog_or_tty->print_cr("#classes in system dictionary = %d", SystemDictionary::number_of_classes());
ysr@1376 2766 }
ysr@1376 2767 for (uint i = 0; i < ParallelGCThreads + 1; i++) {
ysr@1376 2768 ParCompactionManager* cm = ParCompactionManager::manager_array(i);
ysr@1376 2769 GrowableArray<DataLayout*>* rms = cm->revisit_mdo_stack();
ysr@1376 2770 int length = rms->length();
ysr@1376 2771 if (PrintRevisitStats) {
ysr@1376 2772 gclog_or_tty->print_cr("Revisit MDO stack[%d] length = %d", i, length);
ysr@1376 2773 }
ysr@1376 2774 for (int j = 0; j < length; j++) {
ysr@1376 2775 rms->at(j)->follow_weak_refs(is_alive_closure());
ysr@1376 2776 }
ysr@1376 2777 // revisit_mdo_stack is cleared in reset()
ysr@1376 2778 follow_stack(cm);
ysr@1376 2779 }
ysr@1376 2780 }
ysr@1376 2781 #endif // ( COMPILER1 || COMPILER2 )
ysr@1376 2782
ysr@1376 2783
duke@435 2784 #ifdef VALIDATE_MARK_SWEEP
duke@435 2785
coleenp@548 2786 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
duke@435 2787 if (!ValidateMarkSweep)
duke@435 2788 return;
duke@435 2789
duke@435 2790 if (!isroot) {
duke@435 2791 if (_pointer_tracking) {
duke@435 2792 guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
duke@435 2793 _adjusted_pointers->remove(p);
duke@435 2794 }
duke@435 2795 } else {
duke@435 2796 ptrdiff_t index = _root_refs_stack->find(p);
duke@435 2797 if (index != -1) {
duke@435 2798 int l = _root_refs_stack->length();
duke@435 2799 if (l > 0 && l - 1 != index) {
coleenp@548 2800 void* last = _root_refs_stack->pop();
duke@435 2801 assert(last != p, "should be different");
duke@435 2802 _root_refs_stack->at_put(index, last);
duke@435 2803 } else {
duke@435 2804 _root_refs_stack->remove(p);
duke@435 2805 }
duke@435 2806 }
duke@435 2807 }
duke@435 2808 }
duke@435 2809
duke@435 2810
coleenp@548 2811 void PSParallelCompact::check_adjust_pointer(void* p) {
duke@435 2812 _adjusted_pointers->push(p);
duke@435 2813 }
duke@435 2814
duke@435 2815
duke@435 2816 class AdjusterTracker: public OopClosure {
duke@435 2817 public:
duke@435 2818 AdjusterTracker() {};
coleenp@548 2819 void do_oop(oop* o) { PSParallelCompact::check_adjust_pointer(o); }
coleenp@548 2820 void do_oop(narrowOop* o) { PSParallelCompact::check_adjust_pointer(o); }
duke@435 2821 };
duke@435 2822
duke@435 2823
duke@435 2824 void PSParallelCompact::track_interior_pointers(oop obj) {
duke@435 2825 if (ValidateMarkSweep) {
duke@435 2826 _adjusted_pointers->clear();
duke@435 2827 _pointer_tracking = true;
duke@435 2828
duke@435 2829 AdjusterTracker checker;
duke@435 2830 obj->oop_iterate(&checker);
duke@435 2831 }
duke@435 2832 }
duke@435 2833
duke@435 2834
duke@435 2835 void PSParallelCompact::check_interior_pointers() {
duke@435 2836 if (ValidateMarkSweep) {
duke@435 2837 _pointer_tracking = false;
duke@435 2838 guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
duke@435 2839 }
duke@435 2840 }
duke@435 2841
duke@435 2842
duke@435 2843 void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
duke@435 2844 if (ValidateMarkSweep) {
duke@435 2845 guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
duke@435 2846 _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
duke@435 2847 }
duke@435 2848 }
duke@435 2849
duke@435 2850
duke@435 2851 void PSParallelCompact::register_live_oop(oop p, size_t size) {
duke@435 2852 if (ValidateMarkSweep) {
duke@435 2853 _live_oops->push(p);
duke@435 2854 _live_oops_size->push(size);
duke@435 2855 _live_oops_index++;
duke@435 2856 }
duke@435 2857 }
duke@435 2858
duke@435 2859 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
duke@435 2860 if (ValidateMarkSweep) {
duke@435 2861 oop obj = _live_oops->at((int)_live_oops_index);
duke@435 2862 guarantee(obj == p, "should be the same object");
duke@435 2863 guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
duke@435 2864 _live_oops_index++;
duke@435 2865 }
duke@435 2866 }
duke@435 2867
duke@435 2868 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
duke@435 2869 HeapWord* compaction_top) {
duke@435 2870 assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
duke@435 2871 "should be moved to forwarded location");
duke@435 2872 if (ValidateMarkSweep) {
duke@435 2873 PSParallelCompact::validate_live_oop(oop(q), size);
duke@435 2874 _live_oops_moved_to->push(oop(compaction_top));
duke@435 2875 }
duke@435 2876 if (RecordMarkSweepCompaction) {
duke@435 2877 _cur_gc_live_oops->push(q);
duke@435 2878 _cur_gc_live_oops_moved_to->push(compaction_top);
duke@435 2879 _cur_gc_live_oops_size->push(size);
duke@435 2880 }
duke@435 2881 }
duke@435 2882
duke@435 2883
duke@435 2884 void PSParallelCompact::compaction_complete() {
duke@435 2885 if (RecordMarkSweepCompaction) {
duke@435 2886 GrowableArray<HeapWord*>* _tmp_live_oops = _cur_gc_live_oops;
duke@435 2887 GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
duke@435 2888 GrowableArray<size_t> * _tmp_live_oops_size = _cur_gc_live_oops_size;
duke@435 2889
duke@435 2890 _cur_gc_live_oops = _last_gc_live_oops;
duke@435 2891 _cur_gc_live_oops_moved_to = _last_gc_live_oops_moved_to;
duke@435 2892 _cur_gc_live_oops_size = _last_gc_live_oops_size;
duke@435 2893 _last_gc_live_oops = _tmp_live_oops;
duke@435 2894 _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
duke@435 2895 _last_gc_live_oops_size = _tmp_live_oops_size;
duke@435 2896 }
duke@435 2897 }
duke@435 2898
duke@435 2899
duke@435 2900 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
duke@435 2901 if (!RecordMarkSweepCompaction) {
duke@435 2902 tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
duke@435 2903 return;
duke@435 2904 }
duke@435 2905
duke@435 2906 if (_last_gc_live_oops == NULL) {
duke@435 2907 tty->print_cr("No compaction information gathered yet");
duke@435 2908 return;
duke@435 2909 }
duke@435 2910
duke@435 2911 for (int i = 0; i < _last_gc_live_oops->length(); i++) {
duke@435 2912 HeapWord* old_oop = _last_gc_live_oops->at(i);
duke@435 2913 size_t sz = _last_gc_live_oops_size->at(i);
duke@435 2914 if (old_oop <= q && q < (old_oop + sz)) {
duke@435 2915 HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
duke@435 2916 size_t offset = (q - old_oop);
duke@435 2917 tty->print_cr("Address " PTR_FORMAT, q);
duke@435 2918 tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
duke@435 2919 tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
duke@435 2920 return;
duke@435 2921 }
duke@435 2922 }
duke@435 2923
duke@435 2924 tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
duke@435 2925 }
duke@435 2926 #endif //VALIDATE_MARK_SWEEP
duke@435 2927
jcoomes@810 2928 // Update interior oops in the ranges of regions [beg_region, end_region).
duke@435 2929 void
duke@435 2930 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
duke@435 2931 SpaceId space_id,
jcoomes@810 2932 size_t beg_region,
jcoomes@810 2933 size_t end_region) {
duke@435 2934 ParallelCompactData& sd = summary_data();
duke@435 2935 ParMarkBitMap* const mbm = mark_bitmap();
duke@435 2936
jcoomes@810 2937 HeapWord* beg_addr = sd.region_to_addr(beg_region);
jcoomes@810 2938 HeapWord* const end_addr = sd.region_to_addr(end_region);
jcoomes@810 2939 assert(beg_region <= end_region, "bad region range");
duke@435 2940 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
duke@435 2941
duke@435 2942 #ifdef ASSERT
jcoomes@810 2943 // Claim the regions to avoid triggering an assert when they are marked as
duke@435 2944 // filled.
jcoomes@810 2945 for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
jcoomes@810 2946 assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
duke@435 2947 }
duke@435 2948 #endif // #ifdef ASSERT
duke@435 2949
duke@435 2950 if (beg_addr != space(space_id)->bottom()) {
duke@435 2951 // Find the first live object or block of dead space that *starts* in this
jcoomes@810 2952 // range of regions. If a partial object crosses onto the region, skip it;
jcoomes@810 2953 // it will be marked for 'deferred update' when the object head is
jcoomes@810 2954 // processed. If dead space crosses onto the region, it is also skipped; it
jcoomes@810 2955 // will be filled when the prior region is processed. If neither of those
jcoomes@810 2956 // apply, the first word in the region is the start of a live object or dead
jcoomes@810 2957 // space.
duke@435 2958 assert(beg_addr > space(space_id)->bottom(), "sanity");
jcoomes@810 2959 const RegionData* const cp = sd.region(beg_region);
duke@435 2960 if (cp->partial_obj_size() != 0) {
jcoomes@810 2961 beg_addr = sd.partial_obj_end(beg_region);
duke@435 2962 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
duke@435 2963 beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
duke@435 2964 }
duke@435 2965 }
duke@435 2966
duke@435 2967 if (beg_addr < end_addr) {
jcoomes@810 2968 // A live object or block of dead space starts in this range of Regions.
duke@435 2969 HeapWord* const dense_prefix_end = dense_prefix(space_id);
duke@435 2970
duke@435 2971 // Create closures and iterate.
duke@435 2972 UpdateOnlyClosure update_closure(mbm, cm, space_id);
duke@435 2973 FillClosure fill_closure(cm, space_id);
duke@435 2974 ParMarkBitMap::IterationStatus status;
duke@435 2975 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
duke@435 2976 dense_prefix_end);
duke@435 2977 if (status == ParMarkBitMap::incomplete) {
duke@435 2978 update_closure.do_addr(update_closure.source());
duke@435 2979 }
duke@435 2980 }
duke@435 2981
jcoomes@810 2982 // Mark the regions as filled.
jcoomes@810 2983 RegionData* const beg_cp = sd.region(beg_region);
jcoomes@810 2984 RegionData* const end_cp = sd.region(end_region);
jcoomes@810 2985 for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
duke@435 2986 cp->set_completed();
duke@435 2987 }
duke@435 2988 }
duke@435 2989
duke@435 2990 // Return the SpaceId for the space containing addr. If addr is not in the
duke@435 2991 // heap, last_space_id is returned. In debug mode it expects the address to be
duke@435 2992 // in the heap and asserts such.
duke@435 2993 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
duke@435 2994 assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
duke@435 2995
duke@435 2996 for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
duke@435 2997 if (_space_info[id].space()->contains(addr)) {
duke@435 2998 return SpaceId(id);
duke@435 2999 }
duke@435 3000 }
duke@435 3001
duke@435 3002 assert(false, "no space contains the addr");
duke@435 3003 return last_space_id;
duke@435 3004 }
duke@435 3005
duke@435 3006 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
duke@435 3007 SpaceId id) {
duke@435 3008 assert(id < last_space_id, "bad space id");
duke@435 3009
duke@435 3010 ParallelCompactData& sd = summary_data();
duke@435 3011 const SpaceInfo* const space_info = _space_info + id;
duke@435 3012 ObjectStartArray* const start_array = space_info->start_array();
duke@435 3013
duke@435 3014 const MutableSpace* const space = space_info->space();
duke@435 3015 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
duke@435 3016 HeapWord* const beg_addr = space_info->dense_prefix();
jcoomes@810 3017 HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
jcoomes@810 3018
jcoomes@810 3019 const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
jcoomes@810 3020 const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
jcoomes@810 3021 const RegionData* cur_region;
jcoomes@810 3022 for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
jcoomes@810 3023 HeapWord* const addr = cur_region->deferred_obj_addr();
duke@435 3024 if (addr != NULL) {
duke@435 3025 if (start_array != NULL) {
duke@435 3026 start_array->allocate_block(addr);
duke@435 3027 }
duke@435 3028 oop(addr)->update_contents(cm);
duke@435 3029 assert(oop(addr)->is_oop_or_null(), "should be an oop now");
duke@435 3030 }
duke@435 3031 }
duke@435 3032 }
duke@435 3033
duke@435 3034 // Skip over count live words starting from beg, and return the address of the
duke@435 3035 // next live word. Unless marked, the word corresponding to beg is assumed to
duke@435 3036 // be dead. Callers must either ensure beg does not correspond to the middle of
duke@435 3037 // an object, or account for those live words in some other way. Callers must
duke@435 3038 // also ensure that there are enough live words in the range [beg, end) to skip.
duke@435 3039 HeapWord*
duke@435 3040 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
duke@435 3041 {
duke@435 3042 assert(count > 0, "sanity");
duke@435 3043
duke@435 3044 ParMarkBitMap* m = mark_bitmap();
duke@435 3045 idx_t bits_to_skip = m->words_to_bits(count);
duke@435 3046 idx_t cur_beg = m->addr_to_bit(beg);
duke@435 3047 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
duke@435 3048
duke@435 3049 do {
duke@435 3050 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 3051 idx_t cur_end = m->find_obj_end(cur_beg, search_end);
duke@435 3052 const size_t obj_bits = cur_end - cur_beg + 1;
duke@435 3053 if (obj_bits > bits_to_skip) {
duke@435 3054 return m->bit_to_addr(cur_beg + bits_to_skip);
duke@435 3055 }
duke@435 3056 bits_to_skip -= obj_bits;
duke@435 3057 cur_beg = cur_end + 1;
duke@435 3058 } while (bits_to_skip > 0);
duke@435 3059
duke@435 3060 // Skipping the desired number of words landed just past the end of an object.
duke@435 3061 // Find the start of the next object.
duke@435 3062 cur_beg = m->find_obj_beg(cur_beg, search_end);
duke@435 3063 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
duke@435 3064 return m->bit_to_addr(cur_beg);
duke@435 3065 }
duke@435 3066
jcoomes@917 3067 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
jcoomes@917 3068 SpaceId src_space_id,
jcoomes@917 3069 size_t src_region_idx)
duke@435 3070 {
jcoomes@917 3071 assert(summary_data().is_region_aligned(dest_addr), "not aligned");
jcoomes@917 3072
jcoomes@917 3073 const SplitInfo& split_info = _space_info[src_space_id].split_info();
jcoomes@917 3074 if (split_info.dest_region_addr() == dest_addr) {
jcoomes@917 3075 // The partial object ending at the split point contains the first word to
jcoomes@917 3076 // be copied to dest_addr.
jcoomes@917 3077 return split_info.first_src_addr();
jcoomes@917 3078 }
jcoomes@917 3079
jcoomes@917 3080 const ParallelCompactData& sd = summary_data();
duke@435 3081 ParMarkBitMap* const bitmap = mark_bitmap();
jcoomes@810 3082 const size_t RegionSize = ParallelCompactData::RegionSize;
jcoomes@810 3083
jcoomes@810 3084 assert(sd.is_region_aligned(dest_addr), "not aligned");
jcoomes@810 3085 const RegionData* const src_region_ptr = sd.region(src_region_idx);
jcoomes@810 3086 const size_t partial_obj_size = src_region_ptr->partial_obj_size();
jcoomes@810 3087 HeapWord* const src_region_destination = src_region_ptr->destination();
jcoomes@810 3088
jcoomes@810 3089 assert(dest_addr >= src_region_destination, "wrong src region");
jcoomes@810 3090 assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
jcoomes@810 3091
jcoomes@810 3092 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
jcoomes@810 3093 HeapWord* const src_region_end = src_region_beg + RegionSize;
jcoomes@810 3094
jcoomes@810 3095 HeapWord* addr = src_region_beg;
jcoomes@810 3096 if (dest_addr == src_region_destination) {
jcoomes@810 3097 // Return the first live word in the source region.
duke@435 3098 if (partial_obj_size == 0) {
jcoomes@810 3099 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 3100 assert(addr < src_region_end, "no objects start in src region");
duke@435 3101 }
duke@435 3102 return addr;
duke@435 3103 }
duke@435 3104
duke@435 3105 // Must skip some live data.
jcoomes@810 3106 size_t words_to_skip = dest_addr - src_region_destination;
jcoomes@810 3107 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
duke@435 3108
duke@435 3109 if (partial_obj_size >= words_to_skip) {
duke@435 3110 // All the live words to skip are part of the partial object.
duke@435 3111 addr += words_to_skip;
duke@435 3112 if (partial_obj_size == words_to_skip) {
duke@435 3113 // Find the first live word past the partial object.
jcoomes@810 3114 addr = bitmap->find_obj_beg(addr, src_region_end);
jcoomes@810 3115 assert(addr < src_region_end, "wrong src region");
duke@435 3116 }
duke@435 3117 return addr;
duke@435 3118 }
duke@435 3119
duke@435 3120 // Skip over the partial object (if any).
duke@435 3121 if (partial_obj_size != 0) {
duke@435 3122 words_to_skip -= partial_obj_size;
duke@435 3123 addr += partial_obj_size;
duke@435 3124 }
duke@435 3125
jcoomes@810 3126 // Skip over live words due to objects that start in the region.
jcoomes@810 3127 addr = skip_live_words(addr, src_region_end, words_to_skip);
jcoomes@810 3128 assert(addr < src_region_end, "wrong src region");
duke@435 3129 return addr;
duke@435 3130 }
duke@435 3131
duke@435 3132 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
jcoomes@930 3133 SpaceId src_space_id,
jcoomes@810 3134 size_t beg_region,
duke@435 3135 HeapWord* end_addr)
duke@435 3136 {
duke@435 3137 ParallelCompactData& sd = summary_data();
jcoomes@930 3138
jcoomes@930 3139 #ifdef ASSERT
jcoomes@930 3140 MutableSpace* const src_space = _space_info[src_space_id].space();
jcoomes@930 3141 HeapWord* const beg_addr = sd.region_to_addr(beg_region);
jcoomes@930 3142 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
jcoomes@930 3143 "src_space_id does not match beg_addr");
jcoomes@930 3144 assert(src_space->contains(end_addr) || end_addr == src_space->end(),
jcoomes@930 3145 "src_space_id does not match end_addr");
jcoomes@930 3146 #endif // #ifdef ASSERT
jcoomes@930 3147
jcoomes@810 3148 RegionData* const beg = sd.region(beg_region);
jcoomes@930 3149 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
jcoomes@930 3150
jcoomes@930 3151 // Regions up to new_top() are enqueued if they become available.
jcoomes@930 3152 HeapWord* const new_top = _space_info[src_space_id].new_top();
jcoomes@930 3153 RegionData* const enqueue_end =
jcoomes@930 3154 sd.addr_to_region_ptr(sd.region_align_up(new_top));
jcoomes@930 3155
jcoomes@930 3156 for (RegionData* cur = beg; cur < end; ++cur) {
jcoomes@810 3157 assert(cur->data_size() > 0, "region must have live data");
duke@435 3158 cur->decrement_destination_count();
jcoomes@930 3159 if (cur < enqueue_end && cur->available() && cur->claim()) {
jcoomes@930 3160 cm->save_for_processing(sd.region(cur));
duke@435 3161 }
duke@435 3162 }
duke@435 3163 }
duke@435 3164
jcoomes@810 3165 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
jcoomes@810 3166 SpaceId& src_space_id,
jcoomes@810 3167 HeapWord*& src_space_top,
jcoomes@810 3168 HeapWord* end_addr)
duke@435 3169 {
jcoomes@810 3170 typedef ParallelCompactData::RegionData RegionData;
duke@435 3171
duke@435 3172 ParallelCompactData& sd = PSParallelCompact::summary_data();
jcoomes@810 3173 const size_t region_size = ParallelCompactData::RegionSize;
jcoomes@810 3174
jcoomes@810 3175 size_t src_region_idx = 0;
jcoomes@810 3176
jcoomes@810 3177 // Skip empty regions (if any) up to the top of the space.
jcoomes@810 3178 HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
jcoomes@810 3179 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
jcoomes@810 3180 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
jcoomes@810 3181 const RegionData* const top_region_ptr =
jcoomes@810 3182 sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 3183 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
jcoomes@810 3184 ++src_region_ptr;
duke@435 3185 }
duke@435 3186
jcoomes@810 3187 if (src_region_ptr < top_region_ptr) {
jcoomes@810 3188 // The next source region is in the current space. Update src_region_idx
jcoomes@810 3189 // and the source address to match src_region_ptr.
jcoomes@810 3190 src_region_idx = sd.region(src_region_ptr);
jcoomes@810 3191 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
jcoomes@810 3192 if (src_region_addr > closure.source()) {
jcoomes@810 3193 closure.set_source(src_region_addr);
duke@435 3194 }
jcoomes@810 3195 return src_region_idx;
duke@435 3196 }
duke@435 3197
jcoomes@810 3198 // Switch to a new source space and find the first non-empty region.
duke@435 3199 unsigned int space_id = src_space_id + 1;
duke@435 3200 assert(space_id < last_space_id, "not enough spaces");
duke@435 3201
duke@435 3202 HeapWord* const destination = closure.destination();
duke@435 3203
duke@435 3204 do {
duke@435 3205 MutableSpace* space = _space_info[space_id].space();
duke@435 3206 HeapWord* const bottom = space->bottom();
jcoomes@810 3207 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
duke@435 3208
duke@435 3209 // Iterate over the spaces that do not compact into themselves.
duke@435 3210 if (bottom_cp->destination() != bottom) {
jcoomes@810 3211 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
jcoomes@810 3212 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
jcoomes@810 3213
jcoomes@810 3214 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
duke@435 3215 if (src_cp->live_obj_size() > 0) {
duke@435 3216 // Found it.
duke@435 3217 assert(src_cp->destination() == destination,
duke@435 3218 "first live obj in the space must match the destination");
duke@435 3219 assert(src_cp->partial_obj_size() == 0,
duke@435 3220 "a space cannot begin with a partial obj");
duke@435 3221
duke@435 3222 src_space_id = SpaceId(space_id);
duke@435 3223 src_space_top = space->top();
jcoomes@810 3224 const size_t src_region_idx = sd.region(src_cp);
jcoomes@810 3225 closure.set_source(sd.region_to_addr(src_region_idx));
jcoomes@810 3226 return src_region_idx;
duke@435 3227 } else {
duke@435 3228 assert(src_cp->data_size() == 0, "sanity");
duke@435 3229 }
duke@435 3230 }
duke@435 3231 }
duke@435 3232 } while (++space_id < last_space_id);
duke@435 3233
jcoomes@810 3234 assert(false, "no source region was found");
duke@435 3235 return 0;
duke@435 3236 }
duke@435 3237
jcoomes@810 3238 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
duke@435 3239 {
duke@435 3240 typedef ParMarkBitMap::IterationStatus IterationStatus;
jcoomes@810 3241 const size_t RegionSize = ParallelCompactData::RegionSize;
duke@435 3242 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3243 ParallelCompactData& sd = summary_data();
jcoomes@810 3244 RegionData* const region_ptr = sd.region(region_idx);
duke@435 3245
duke@435 3246 // Get the items needed to construct the closure.
jcoomes@810 3247 HeapWord* dest_addr = sd.region_to_addr(region_idx);
duke@435 3248 SpaceId dest_space_id = space_id(dest_addr);
duke@435 3249 ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
duke@435 3250 HeapWord* new_top = _space_info[dest_space_id].new_top();
duke@435 3251 assert(dest_addr < new_top, "sanity");
jcoomes@810 3252 const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
jcoomes@810 3253
jcoomes@810 3254 // Get the source region and related info.
jcoomes@810 3255 size_t src_region_idx = region_ptr->source_region();
jcoomes@810 3256 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
duke@435 3257 HeapWord* src_space_top = _space_info[src_space_id].space()->top();
duke@435 3258
duke@435 3259 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
jcoomes@917 3260 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
jcoomes@810 3261
jcoomes@810 3262 // Adjust src_region_idx to prepare for decrementing destination counts (the
jcoomes@810 3263 // destination count is not decremented when a region is copied to itself).
jcoomes@810 3264 if (src_region_idx == region_idx) {
jcoomes@810 3265 src_region_idx += 1;
duke@435 3266 }
duke@435 3267
duke@435 3268 if (bitmap->is_unmarked(closure.source())) {
duke@435 3269 // The first source word is in the middle of an object; copy the remainder
duke@435 3270 // of the object or as much as will fit. The fact that pointer updates were
duke@435 3271 // deferred will be noted when the object header is processed.
duke@435 3272 HeapWord* const old_src_addr = closure.source();
duke@435 3273 closure.copy_partial_obj();
duke@435 3274 if (closure.is_full()) {
jcoomes@930 3275 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3276 closure.source());
jcoomes@810 3277 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3278 region_ptr->set_completed();
duke@435 3279 return;
duke@435 3280 }
duke@435 3281
jcoomes@810 3282 HeapWord* const end_addr = sd.region_align_down(closure.source());
jcoomes@810 3283 if (sd.region_align_down(old_src_addr) != end_addr) {
jcoomes@810 3284 // The partial object was copied from more than one source region.
jcoomes@930 3285 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
jcoomes@810 3286
jcoomes@810 3287 // Move to the next source region, possibly switching spaces as well. All
duke@435 3288 // args except end_addr may be modified.
jcoomes@810 3289 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3290 end_addr);
duke@435 3291 }
duke@435 3292 }
duke@435 3293
duke@435 3294 do {
duke@435 3295 HeapWord* const cur_addr = closure.source();
jcoomes@810 3296 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
duke@435 3297 src_space_top);
duke@435 3298 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
duke@435 3299
duke@435 3300 if (status == ParMarkBitMap::incomplete) {
jcoomes@810 3301 // The last obj that starts in the source region does not end in the
jcoomes@810 3302 // region.
duke@435 3303 assert(closure.source() < end_addr, "sanity")
duke@435 3304 HeapWord* const obj_beg = closure.source();
duke@435 3305 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
duke@435 3306 src_space_top);
duke@435 3307 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
duke@435 3308 if (obj_end < range_end) {
duke@435 3309 // The end was found; the entire object will fit.
duke@435 3310 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
duke@435 3311 assert(status != ParMarkBitMap::would_overflow, "sanity");
duke@435 3312 } else {
duke@435 3313 // The end was not found; the object will not fit.
duke@435 3314 assert(range_end < src_space_top, "obj cannot cross space boundary");
duke@435 3315 status = ParMarkBitMap::would_overflow;
duke@435 3316 }
duke@435 3317 }
duke@435 3318
duke@435 3319 if (status == ParMarkBitMap::would_overflow) {
duke@435 3320 // The last object did not fit. Note that interior oop updates were
jcoomes@810 3321 // deferred, then copy enough of the object to fill the region.
jcoomes@810 3322 region_ptr->set_deferred_obj_addr(closure.destination());
duke@435 3323 status = closure.copy_until_full(); // copies from closure.source()
duke@435 3324
jcoomes@930 3325 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3326 closure.source());
jcoomes@810 3327 region_ptr->set_completed();
duke@435 3328 return;
duke@435 3329 }
duke@435 3330
duke@435 3331 if (status == ParMarkBitMap::full) {
jcoomes@930 3332 decrement_destination_counts(cm, src_space_id, src_region_idx,
jcoomes@930 3333 closure.source());
jcoomes@810 3334 region_ptr->set_deferred_obj_addr(NULL);
jcoomes@810 3335 region_ptr->set_completed();
duke@435 3336 return;
duke@435 3337 }
duke@435 3338
jcoomes@930 3339 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
jcoomes@810 3340
jcoomes@810 3341 // Move to the next source region, possibly switching spaces as well. All
duke@435 3342 // args except end_addr may be modified.
jcoomes@810 3343 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
jcoomes@810 3344 end_addr);
duke@435 3345 } while (true);
duke@435 3346 }
duke@435 3347
duke@435 3348 void
duke@435 3349 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
duke@435 3350 const MutableSpace* sp = space(space_id);
duke@435 3351 if (sp->is_empty()) {
duke@435 3352 return;
duke@435 3353 }
duke@435 3354
duke@435 3355 ParallelCompactData& sd = PSParallelCompact::summary_data();
duke@435 3356 ParMarkBitMap* const bitmap = mark_bitmap();
duke@435 3357 HeapWord* const dp_addr = dense_prefix(space_id);
duke@435 3358 HeapWord* beg_addr = sp->bottom();
duke@435 3359 HeapWord* end_addr = sp->top();
duke@435 3360
duke@435 3361 #ifdef ASSERT
duke@435 3362 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
duke@435 3363 if (cm->should_verify_only()) {
duke@435 3364 VerifyUpdateClosure verify_update(cm, sp);
duke@435 3365 bitmap->iterate(&verify_update, beg_addr, end_addr);
duke@435 3366 return;
duke@435 3367 }
duke@435 3368
duke@435 3369 if (cm->should_reset_only()) {
duke@435 3370 ResetObjectsClosure reset_objects(cm);
duke@435 3371 bitmap->iterate(&reset_objects, beg_addr, end_addr);
duke@435 3372 return;
duke@435 3373 }
duke@435 3374 #endif
duke@435 3375
jcoomes@810 3376 const size_t beg_region = sd.addr_to_region_idx(beg_addr);
jcoomes@810 3377 const size_t dp_region = sd.addr_to_region_idx(dp_addr);
jcoomes@810 3378 if (beg_region < dp_region) {
jcoomes@810 3379 update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
duke@435 3380 }
duke@435 3381
jcoomes@810 3382 // The destination of the first live object that starts in the region is one
jcoomes@810 3383 // past the end of the partial object entering the region (if any).
jcoomes@810 3384 HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
duke@435 3385 HeapWord* const new_top = _space_info[space_id].new_top();
duke@435 3386 assert(new_top >= dest_addr, "bad new_top value");
duke@435 3387 const size_t words = pointer_delta(new_top, dest_addr);
duke@435 3388
duke@435 3389 if (words > 0) {
duke@435 3390 ObjectStartArray* start_array = _space_info[space_id].start_array();
duke@435 3391 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
duke@435 3392
duke@435 3393 ParMarkBitMap::IterationStatus status;
duke@435 3394 status = bitmap->iterate(&closure, dest_addr, end_addr);
duke@435 3395 assert(status == ParMarkBitMap::full, "iteration not complete");
duke@435 3396 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
duke@435 3397 "live objects skipped because closure is full");
duke@435 3398 }
duke@435 3399 }
duke@435 3400
duke@435 3401 jlong PSParallelCompact::millis_since_last_gc() {
duke@435 3402 jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
duke@435 3403 // XXX See note in genCollectedHeap::millis_since_last_gc().
duke@435 3404 if (ret_val < 0) {
duke@435 3405 NOT_PRODUCT(warning("time warp: %d", ret_val);)
duke@435 3406 return 0;
duke@435 3407 }
duke@435 3408 return ret_val;
duke@435 3409 }
duke@435 3410
duke@435 3411 void PSParallelCompact::reset_millis_since_last_gc() {
duke@435 3412 _time_of_last_gc = os::javaTimeMillis();
duke@435 3413 }
duke@435 3414
duke@435 3415 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
duke@435 3416 {
duke@435 3417 if (source() != destination()) {
jcoomes@930 3418 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3419 Copy::aligned_conjoint_words(source(), destination(), words_remaining());
duke@435 3420 }
duke@435 3421 update_state(words_remaining());
duke@435 3422 assert(is_full(), "sanity");
duke@435 3423 return ParMarkBitMap::full;
duke@435 3424 }
duke@435 3425
duke@435 3426 void MoveAndUpdateClosure::copy_partial_obj()
duke@435 3427 {
duke@435 3428 size_t words = words_remaining();
duke@435 3429
duke@435 3430 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
duke@435 3431 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
duke@435 3432 if (end_addr < range_end) {
duke@435 3433 words = bitmap()->obj_size(source(), end_addr);
duke@435 3434 }
duke@435 3435
duke@435 3436 // This test is necessary; if omitted, the pointer updates to a partial object
duke@435 3437 // that crosses the dense prefix boundary could be overwritten.
duke@435 3438 if (source() != destination()) {
jcoomes@930 3439 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3440 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3441 }
duke@435 3442 update_state(words);
duke@435 3443 }
duke@435 3444
duke@435 3445 ParMarkBitMapClosure::IterationStatus
duke@435 3446 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3447 assert(destination() != NULL, "sanity");
duke@435 3448 assert(bitmap()->obj_size(addr) == words, "bad size");
duke@435 3449
duke@435 3450 _source = addr;
duke@435 3451 assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
duke@435 3452 destination(), "wrong destination");
duke@435 3453
duke@435 3454 if (words > words_remaining()) {
duke@435 3455 return ParMarkBitMap::would_overflow;
duke@435 3456 }
duke@435 3457
duke@435 3458 // The start_array must be updated even if the object is not moving.
duke@435 3459 if (_start_array != NULL) {
duke@435 3460 _start_array->allocate_block(destination());
duke@435 3461 }
duke@435 3462
duke@435 3463 if (destination() != source()) {
jcoomes@930 3464 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
duke@435 3465 Copy::aligned_conjoint_words(source(), destination(), words);
duke@435 3466 }
duke@435 3467
duke@435 3468 oop moved_oop = (oop) destination();
duke@435 3469 moved_oop->update_contents(compaction_manager());
duke@435 3470 assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
duke@435 3471
duke@435 3472 update_state(words);
duke@435 3473 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
duke@435 3474 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
duke@435 3475 }
duke@435 3476
duke@435 3477 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
duke@435 3478 ParCompactionManager* cm,
duke@435 3479 PSParallelCompact::SpaceId space_id) :
duke@435 3480 ParMarkBitMapClosure(mbm, cm),
duke@435 3481 _space_id(space_id),
duke@435 3482 _start_array(PSParallelCompact::start_array(space_id))
duke@435 3483 {
duke@435 3484 }
duke@435 3485
duke@435 3486 // Updates the references in the object to their new values.
duke@435 3487 ParMarkBitMapClosure::IterationStatus
duke@435 3488 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3489 do_addr(addr);
duke@435 3490 return ParMarkBitMap::incomplete;
duke@435 3491 }
duke@435 3492
duke@435 3493 // Verify the new location using the forwarding pointer
duke@435 3494 // from MarkSweep::mark_sweep_phase2(). Set the mark_word
duke@435 3495 // to the initial value.
duke@435 3496 ParMarkBitMapClosure::IterationStatus
duke@435 3497 PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3498 // The second arg (words) is not used.
duke@435 3499 oop obj = (oop) addr;
duke@435 3500 HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
duke@435 3501 HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
duke@435 3502 if (forwarding_ptr == NULL) {
duke@435 3503 // The object is dead or not moving.
duke@435 3504 assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
duke@435 3505 "Object liveness is wrong.");
duke@435 3506 return ParMarkBitMap::incomplete;
duke@435 3507 }
duke@435 3508 assert(UseParallelOldGCDensePrefix ||
duke@435 3509 (HeapMaximumCompactionInterval > 1) ||
duke@435 3510 (MarkSweepAlwaysCompactCount > 1) ||
duke@435 3511 (forwarding_ptr == new_pointer),
duke@435 3512 "Calculation of new location is incorrect");
duke@435 3513 return ParMarkBitMap::incomplete;
duke@435 3514 }
duke@435 3515
duke@435 3516 // Reset objects modified for debug checking.
duke@435 3517 ParMarkBitMapClosure::IterationStatus
duke@435 3518 PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
duke@435 3519 // The second arg (words) is not used.
duke@435 3520 oop obj = (oop) addr;
duke@435 3521 obj->init_mark();
duke@435 3522 return ParMarkBitMap::incomplete;
duke@435 3523 }
duke@435 3524
duke@435 3525 // Prepare for compaction. This method is executed once
duke@435 3526 // (i.e., by a single thread) before compaction.
duke@435 3527 // Save the updated location of the intArrayKlassObj for
duke@435 3528 // filling holes in the dense prefix.
duke@435 3529 void PSParallelCompact::compact_prologue() {
duke@435 3530 _updated_int_array_klass_obj = (klassOop)
duke@435 3531 summary_data().calc_new_pointer(Universe::intArrayKlassObj());
duke@435 3532 }
duke@435 3533

mercurial