src/share/vm/gc_implementation/g1/heapRegion.hpp

Wed, 25 Apr 2012 10:23:12 -0700

author
johnc
date
Wed, 25 Apr 2012 10:23:12 -0700
changeset 3731
8a2e5a6a19a4
parent 3714
f7a8920427a6
child 3957
a2f7274eb6ef
permissions
-rw-r--r--

7143490: G1: Remove HeapRegion::_top_at_conc_mark_count
Summary: Removed the HeapRegion::_top_at_conc_mark_count field. It is no longer needed as a result of the changes for 6888336 and 7127706. Refactored the closures that finalize and verify the liveness counting data so that common functionality was placed into a base class.
Reviewed-by: brutisso, tonyp

ysr@777 1 /*
johnc@3412 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
stefank@2314 30 #include "gc_implementation/g1/survRateGroup.hpp"
stefank@2314 31 #include "gc_implementation/shared/ageTable.hpp"
stefank@2314 32 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 33 #include "memory/space.inline.hpp"
stefank@2314 34 #include "memory/watermark.hpp"
stefank@2314 35
ysr@777 36 #ifndef SERIALGC
ysr@777 37
ysr@777 38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
ysr@777 39 // can be collected independently.
ysr@777 40
ysr@777 41 // NOTE: Although a HeapRegion is a Space, its
ysr@777 42 // Space::initDirtyCardClosure method must not be called.
ysr@777 43 // The problem is that the existence of this method breaks
ysr@777 44 // the independence of barrier sets from remembered sets.
ysr@777 45 // The solution is to remove this method from the definition
ysr@777 46 // of a Space.
ysr@777 47
ysr@777 48 class CompactibleSpace;
ysr@777 49 class ContiguousSpace;
ysr@777 50 class HeapRegionRemSet;
ysr@777 51 class HeapRegionRemSetIterator;
ysr@777 52 class HeapRegion;
tonyp@2472 53 class HeapRegionSetBase;
tonyp@2472 54
tonyp@3713 55 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
tonyp@2963 56 #define HR_FORMAT_PARAMS(_hr_) \
tonyp@2963 57 (_hr_)->hrs_index(), \
tonyp@2963 58 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : "-", \
tonyp@2963 59 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
ysr@777 60
tonyp@3713 61 // sentinel value for hrs_index
tonyp@3713 62 #define G1_NULL_HRS_INDEX ((uint) -1)
tonyp@3713 63
ysr@777 64 // A dirty card to oop closure for heap regions. It
ysr@777 65 // knows how to get the G1 heap and how to use the bitmap
ysr@777 66 // in the concurrent marker used by G1 to filter remembered
ysr@777 67 // sets.
ysr@777 68
ysr@777 69 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
ysr@777 70 public:
ysr@777 71 // Specification of possible DirtyCardToOopClosure filtering.
ysr@777 72 enum FilterKind {
ysr@777 73 NoFilterKind,
ysr@777 74 IntoCSFilterKind,
ysr@777 75 OutOfRegionFilterKind
ysr@777 76 };
ysr@777 77
ysr@777 78 protected:
ysr@777 79 HeapRegion* _hr;
ysr@777 80 FilterKind _fk;
ysr@777 81 G1CollectedHeap* _g1;
ysr@777 82
ysr@777 83 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 84 HeapWord* bottom, HeapWord* top,
ysr@777 85 OopClosure* cl);
ysr@777 86
ysr@777 87 // We don't specialize this for FilteringClosure; filtering is handled by
ysr@777 88 // the "FilterKind" mechanism. But we provide this to avoid a compiler
ysr@777 89 // warning.
ysr@777 90 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 91 HeapWord* bottom, HeapWord* top,
ysr@777 92 FilteringClosure* cl) {
ysr@777 93 HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
ysr@777 94 (OopClosure*)cl);
ysr@777 95 }
ysr@777 96
ysr@777 97 // Get the actual top of the area on which the closure will
ysr@777 98 // operate, given where the top is assumed to be (the end of the
ysr@777 99 // memory region passed to do_MemRegion) and where the object
ysr@777 100 // at the top is assumed to start. For example, an object may
ysr@777 101 // start at the top but actually extend past the assumed top,
ysr@777 102 // in which case the top becomes the end of the object.
ysr@777 103 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
ysr@777 104 return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
ysr@777 105 }
ysr@777 106
ysr@777 107 // Walk the given memory region from bottom to (actual) top
ysr@777 108 // looking for objects and applying the oop closure (_cl) to
ysr@777 109 // them. The base implementation of this treats the area as
ysr@777 110 // blocks, where a block may or may not be an object. Sub-
ysr@777 111 // classes should override this to provide more accurate
ysr@777 112 // or possibly more efficient walking.
ysr@777 113 void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
ysr@777 114 Filtering_DCTOC::walk_mem_region(mr, bottom, top);
ysr@777 115 }
ysr@777 116
ysr@777 117 public:
ysr@777 118 HeapRegionDCTOC(G1CollectedHeap* g1,
ysr@777 119 HeapRegion* hr, OopClosure* cl,
ysr@777 120 CardTableModRefBS::PrecisionStyle precision,
ysr@777 121 FilterKind fk);
ysr@777 122 };
ysr@777 123
ysr@777 124 // The complicating factor is that BlockOffsetTable diverged
ysr@777 125 // significantly, and we need functionality that is only in the G1 version.
ysr@777 126 // So I copied that code, which led to an alternate G1 version of
ysr@777 127 // OffsetTableContigSpace. If the two versions of BlockOffsetTable could
ysr@777 128 // be reconciled, then G1OffsetTableContigSpace could go away.
ysr@777 129
ysr@777 130 // The idea behind time stamps is the following. Doing a save_marks on
ysr@777 131 // all regions at every GC pause is time consuming (if I remember
ysr@777 132 // well, 10ms or so). So, we would like to do that only for regions
ysr@777 133 // that are GC alloc regions. To achieve this, we use time
ysr@777 134 // stamps. For every evacuation pause, G1CollectedHeap generates a
ysr@777 135 // unique time stamp (essentially a counter that gets
ysr@777 136 // incremented). Every time we want to call save_marks on a region,
ysr@777 137 // we set the saved_mark_word to top and also copy the current GC
ysr@777 138 // time stamp to the time stamp field of the space. Reading the
ysr@777 139 // saved_mark_word involves checking the time stamp of the
ysr@777 140 // region. If it is the same as the current GC time stamp, then we
ysr@777 141 // can safely read the saved_mark_word field, as it is valid. If the
ysr@777 142 // time stamp of the region is not the same as the current GC time
ysr@777 143 // stamp, then we instead read top, as the saved_mark_word field is
ysr@777 144 // invalid. Time stamps (on the regions and also on the
ysr@777 145 // G1CollectedHeap) are reset at every cleanup (we iterate over
ysr@777 146 // the regions anyway) and at the end of a Full GC. The current scheme
ysr@777 147 // that uses sequential unsigned ints will fail only if we have 4b
ysr@777 148 // evacuation pauses between two cleanups, which is _highly_ unlikely.
ysr@777 149
ysr@777 150 class G1OffsetTableContigSpace: public ContiguousSpace {
ysr@777 151 friend class VMStructs;
ysr@777 152 protected:
ysr@777 153 G1BlockOffsetArrayContigSpace _offsets;
ysr@777 154 Mutex _par_alloc_lock;
ysr@777 155 volatile unsigned _gc_time_stamp;
tonyp@2715 156 // When we need to retire an allocation region, while other threads
tonyp@2715 157 // are also concurrently trying to allocate into it, we typically
tonyp@2715 158 // allocate a dummy object at the end of the region to ensure that
tonyp@2715 159 // no more allocations can take place in it. However, sometimes we
tonyp@2715 160 // want to know where the end of the last "real" object we allocated
tonyp@2715 161 // into the region was and this is what this keeps track.
tonyp@2715 162 HeapWord* _pre_dummy_top;
ysr@777 163
ysr@777 164 public:
ysr@777 165 // Constructor. If "is_zeroed" is true, the MemRegion "mr" may be
ysr@777 166 // assumed to contain zeros.
ysr@777 167 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 168 MemRegion mr, bool is_zeroed = false);
ysr@777 169
ysr@777 170 void set_bottom(HeapWord* value);
ysr@777 171 void set_end(HeapWord* value);
ysr@777 172
ysr@777 173 virtual HeapWord* saved_mark_word() const;
ysr@777 174 virtual void set_saved_mark();
ysr@777 175 void reset_gc_time_stamp() { _gc_time_stamp = 0; }
ysr@777 176
tonyp@2715 177 // See the comment above in the declaration of _pre_dummy_top for an
tonyp@2715 178 // explanation of what it is.
tonyp@2715 179 void set_pre_dummy_top(HeapWord* pre_dummy_top) {
tonyp@2715 180 assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
tonyp@2715 181 _pre_dummy_top = pre_dummy_top;
tonyp@2715 182 }
tonyp@2715 183 HeapWord* pre_dummy_top() {
tonyp@2715 184 return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
tonyp@2715 185 }
tonyp@2715 186 void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
tonyp@2715 187
tonyp@791 188 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
tonyp@791 189 virtual void clear(bool mangle_space);
ysr@777 190
ysr@777 191 HeapWord* block_start(const void* p);
ysr@777 192 HeapWord* block_start_const(const void* p) const;
ysr@777 193
ysr@777 194 // Add offset table update.
ysr@777 195 virtual HeapWord* allocate(size_t word_size);
ysr@777 196 HeapWord* par_allocate(size_t word_size);
ysr@777 197
ysr@777 198 // MarkSweep support phase3
ysr@777 199 virtual HeapWord* initialize_threshold();
ysr@777 200 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
ysr@777 201
ysr@777 202 virtual void print() const;
tonyp@2453 203
tonyp@2453 204 void reset_bot() {
tonyp@2453 205 _offsets.zero_bottom_entry();
tonyp@2453 206 _offsets.initialize_threshold();
tonyp@2453 207 }
tonyp@2453 208
tonyp@2453 209 void update_bot_for_object(HeapWord* start, size_t word_size) {
tonyp@2453 210 _offsets.alloc_block(start, word_size);
tonyp@2453 211 }
tonyp@2453 212
tonyp@2453 213 void print_bot_on(outputStream* out) {
tonyp@2453 214 _offsets.print_on(out);
tonyp@2453 215 }
ysr@777 216 };
ysr@777 217
ysr@777 218 class HeapRegion: public G1OffsetTableContigSpace {
ysr@777 219 friend class VMStructs;
ysr@777 220 private:
ysr@777 221
tonyp@790 222 enum HumongousType {
tonyp@790 223 NotHumongous = 0,
tonyp@790 224 StartsHumongous,
tonyp@790 225 ContinuesHumongous
tonyp@790 226 };
tonyp@790 227
ysr@777 228 // Requires that the region "mr" be dense with objects, and begin and end
ysr@777 229 // with an object.
ysr@777 230 void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
ysr@777 231
ysr@777 232 // The remembered set for this region.
ysr@777 233 // (Might want to make this "inline" later, to avoid some alloc failure
ysr@777 234 // issues.)
ysr@777 235 HeapRegionRemSet* _rem_set;
ysr@777 236
ysr@777 237 G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
ysr@777 238
ysr@777 239 protected:
tonyp@2963 240 // The index of this region in the heap region sequence.
tonyp@3713 241 uint _hrs_index;
ysr@777 242
tonyp@790 243 HumongousType _humongous_type;
ysr@777 244 // For a humongous region, region in which it starts.
ysr@777 245 HeapRegion* _humongous_start_region;
ysr@777 246 // For the start region of a humongous sequence, it's original end().
ysr@777 247 HeapWord* _orig_end;
ysr@777 248
ysr@777 249 // True iff the region is in current collection_set.
ysr@777 250 bool _in_collection_set;
ysr@777 251
ysr@777 252 // True iff an attempt to evacuate an object in the region failed.
ysr@777 253 bool _evacuation_failed;
ysr@777 254
ysr@777 255 // A heap region may be a member one of a number of special subsets, each
ysr@777 256 // represented as linked lists through the field below. Currently, these
ysr@777 257 // sets include:
ysr@777 258 // The collection set.
ysr@777 259 // The set of allocation regions used in a collection pause.
ysr@777 260 // Spaces that may contain gray objects.
ysr@777 261 HeapRegion* _next_in_special_set;
ysr@777 262
ysr@777 263 // next region in the young "generation" region set
ysr@777 264 HeapRegion* _next_young_region;
ysr@777 265
apetrusenko@1231 266 // Next region whose cards need cleaning
apetrusenko@1231 267 HeapRegion* _next_dirty_cards_region;
apetrusenko@1231 268
tonyp@2472 269 // Fields used by the HeapRegionSetBase class and subclasses.
tonyp@2472 270 HeapRegion* _next;
tonyp@2472 271 #ifdef ASSERT
tonyp@2472 272 HeapRegionSetBase* _containing_set;
tonyp@2472 273 #endif // ASSERT
tonyp@2472 274 bool _pending_removal;
tonyp@2472 275
ysr@777 276 // For parallel heapRegion traversal.
ysr@777 277 jint _claimed;
ysr@777 278
ysr@777 279 // We use concurrent marking to determine the amount of live data
ysr@777 280 // in each heap region.
ysr@777 281 size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
ysr@777 282 size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
ysr@777 283
tonyp@3714 284 // The calculated GC efficiency of the region.
ysr@777 285 double _gc_efficiency;
ysr@777 286
ysr@777 287 enum YoungType {
ysr@777 288 NotYoung, // a region is not young
ysr@777 289 Young, // a region is young
tonyp@2963 290 Survivor // a region is young and it contains survivors
ysr@777 291 };
ysr@777 292
johnc@2021 293 volatile YoungType _young_type;
ysr@777 294 int _young_index_in_cset;
ysr@777 295 SurvRateGroup* _surv_rate_group;
ysr@777 296 int _age_index;
ysr@777 297
ysr@777 298 // The start of the unmarked area. The unmarked area extends from this
ysr@777 299 // word until the top and/or end of the region, and is the part
ysr@777 300 // of the region for which no marking was done, i.e. objects may
ysr@777 301 // have been allocated in this part since the last mark phase.
ysr@777 302 // "prev" is the top at the start of the last completed marking.
ysr@777 303 // "next" is the top at the start of the in-progress marking (if any.)
ysr@777 304 HeapWord* _prev_top_at_mark_start;
ysr@777 305 HeapWord* _next_top_at_mark_start;
ysr@777 306 // If a collection pause is in progress, this is the top at the start
ysr@777 307 // of that pause.
ysr@777 308
ysr@777 309 void init_top_at_mark_start() {
ysr@777 310 assert(_prev_marked_bytes == 0 &&
ysr@777 311 _next_marked_bytes == 0,
ysr@777 312 "Must be called after zero_marked_bytes.");
ysr@777 313 HeapWord* bot = bottom();
ysr@777 314 _prev_top_at_mark_start = bot;
ysr@777 315 _next_top_at_mark_start = bot;
ysr@777 316 }
ysr@777 317
ysr@777 318 void set_young_type(YoungType new_type) {
ysr@777 319 //assert(_young_type != new_type, "setting the same type" );
ysr@777 320 // TODO: add more assertions here
ysr@777 321 _young_type = new_type;
ysr@777 322 }
ysr@777 323
johnc@1829 324 // Cached attributes used in the collection set policy information
johnc@1829 325
johnc@1829 326 // The RSet length that was added to the total value
johnc@1829 327 // for the collection set.
johnc@1829 328 size_t _recorded_rs_length;
johnc@1829 329
johnc@1829 330 // The predicted elapsed time that was added to total value
johnc@1829 331 // for the collection set.
johnc@1829 332 double _predicted_elapsed_time_ms;
johnc@1829 333
johnc@1829 334 // The predicted number of bytes to copy that was added to
johnc@1829 335 // the total value for the collection set.
johnc@1829 336 size_t _predicted_bytes_to_copy;
johnc@1829 337
ysr@777 338 public:
ysr@777 339 // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
tonyp@3713 340 HeapRegion(uint hrs_index,
tonyp@2963 341 G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 342 MemRegion mr, bool is_zeroed);
ysr@777 343
johnc@3182 344 static int LogOfHRGrainBytes;
johnc@3182 345 static int LogOfHRGrainWords;
johnc@3182 346
johnc@3182 347 static size_t GrainBytes;
johnc@3182 348 static size_t GrainWords;
johnc@3182 349 static size_t CardsPerRegion;
tonyp@1377 350
tonyp@3176 351 static size_t align_up_to_region_byte_size(size_t sz) {
tonyp@3176 352 return (sz + (size_t) GrainBytes - 1) &
tonyp@3176 353 ~((1 << (size_t) LogOfHRGrainBytes) - 1);
tonyp@3176 354 }
tonyp@3176 355
tonyp@1377 356 // It sets up the heap region size (GrainBytes / GrainWords), as
tonyp@1377 357 // well as other related fields that are based on the heap region
tonyp@1377 358 // size (LogOfHRGrainBytes / LogOfHRGrainWords /
tonyp@1377 359 // CardsPerRegion). All those fields are considered constant
tonyp@1377 360 // throughout the JVM's execution, therefore they should only be set
tonyp@1377 361 // up once during initialization time.
tonyp@1377 362 static void setup_heap_region_size(uintx min_heap_size);
ysr@777 363
tonyp@790 364 enum ClaimValues {
johnc@3296 365 InitialClaimValue = 0,
johnc@3296 366 FinalCountClaimValue = 1,
johnc@3296 367 NoteEndClaimValue = 2,
johnc@3296 368 ScrubRemSetClaimValue = 3,
johnc@3296 369 ParVerifyClaimValue = 4,
johnc@3296 370 RebuildRSClaimValue = 5,
tonyp@3691 371 ParEvacFailureClaimValue = 6,
tonyp@3691 372 AggregateCountClaimValue = 7,
tonyp@3691 373 VerifyCountClaimValue = 8
tonyp@790 374 };
tonyp@790 375
tonyp@2454 376 inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
tonyp@2454 377 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 378 return ContiguousSpace::par_allocate(word_size);
tonyp@2454 379 }
tonyp@2454 380 inline HeapWord* allocate_no_bot_updates(size_t word_size) {
tonyp@2454 381 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 382 return ContiguousSpace::allocate(word_size);
tonyp@2454 383 }
tonyp@2454 384
ysr@777 385 // If this region is a member of a HeapRegionSeq, the index in that
ysr@777 386 // sequence, otherwise -1.
tonyp@3713 387 uint hrs_index() const { return _hrs_index; }
ysr@777 388
ysr@777 389 // The number of bytes marked live in the region in the last marking phase.
ysr@777 390 size_t marked_bytes() { return _prev_marked_bytes; }
tonyp@2717 391 size_t live_bytes() {
tonyp@2717 392 return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
tonyp@2717 393 }
tonyp@2717 394
ysr@777 395 // The number of bytes counted in the next marking.
ysr@777 396 size_t next_marked_bytes() { return _next_marked_bytes; }
ysr@777 397 // The number of bytes live wrt the next marking.
ysr@777 398 size_t next_live_bytes() {
tonyp@2717 399 return
tonyp@2717 400 (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
ysr@777 401 }
ysr@777 402
ysr@777 403 // A lower bound on the amount of garbage bytes in the region.
ysr@777 404 size_t garbage_bytes() {
ysr@777 405 size_t used_at_mark_start_bytes =
ysr@777 406 (prev_top_at_mark_start() - bottom()) * HeapWordSize;
ysr@777 407 assert(used_at_mark_start_bytes >= marked_bytes(),
ysr@777 408 "Can't mark more than we have.");
ysr@777 409 return used_at_mark_start_bytes - marked_bytes();
ysr@777 410 }
ysr@777 411
tonyp@3539 412 // Return the amount of bytes we'll reclaim if we collect this
tonyp@3539 413 // region. This includes not only the known garbage bytes in the
tonyp@3539 414 // region but also any unallocated space in it, i.e., [top, end),
tonyp@3539 415 // since it will also be reclaimed if we collect the region.
tonyp@3539 416 size_t reclaimable_bytes() {
tonyp@3539 417 size_t known_live_bytes = live_bytes();
tonyp@3539 418 assert(known_live_bytes <= capacity(), "sanity");
tonyp@3539 419 return capacity() - known_live_bytes;
tonyp@3539 420 }
tonyp@3539 421
ysr@777 422 // An upper bound on the number of live bytes in the region.
ysr@777 423 size_t max_live_bytes() { return used() - garbage_bytes(); }
ysr@777 424
ysr@777 425 void add_to_marked_bytes(size_t incr_bytes) {
ysr@777 426 _next_marked_bytes = _next_marked_bytes + incr_bytes;
johnc@3292 427 assert(_next_marked_bytes <= used(), "invariant" );
ysr@777 428 }
ysr@777 429
ysr@777 430 void zero_marked_bytes() {
ysr@777 431 _prev_marked_bytes = _next_marked_bytes = 0;
ysr@777 432 }
ysr@777 433
tonyp@790 434 bool isHumongous() const { return _humongous_type != NotHumongous; }
tonyp@790 435 bool startsHumongous() const { return _humongous_type == StartsHumongous; }
tonyp@790 436 bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
ysr@777 437 // For a humongous region, region in which it starts.
ysr@777 438 HeapRegion* humongous_start_region() const {
ysr@777 439 return _humongous_start_region;
ysr@777 440 }
ysr@777 441
brutisso@3216 442 // Same as Space::is_in_reserved, but will use the original size of the region.
brutisso@3216 443 // The original size is different only for start humongous regions. They get
brutisso@3216 444 // their _end set up to be the end of the last continues region of the
brutisso@3216 445 // corresponding humongous object.
brutisso@3216 446 bool is_in_reserved_raw(const void* p) const {
brutisso@3216 447 return _bottom <= p && p < _orig_end;
brutisso@3216 448 }
brutisso@3216 449
tonyp@2453 450 // Makes the current region be a "starts humongous" region, i.e.,
tonyp@2453 451 // the first region in a series of one or more contiguous regions
tonyp@2453 452 // that will contain a single "humongous" object. The two parameters
tonyp@2453 453 // are as follows:
tonyp@2453 454 //
tonyp@2453 455 // new_top : The new value of the top field of this region which
tonyp@2453 456 // points to the end of the humongous object that's being
tonyp@2453 457 // allocated. If there is more than one region in the series, top
tonyp@2453 458 // will lie beyond this region's original end field and on the last
tonyp@2453 459 // region in the series.
tonyp@2453 460 //
tonyp@2453 461 // new_end : The new value of the end field of this region which
tonyp@2453 462 // points to the end of the last region in the series. If there is
tonyp@2453 463 // one region in the series (namely: this one) end will be the same
tonyp@2453 464 // as the original end of this region.
tonyp@2453 465 //
tonyp@2453 466 // Updating top and end as described above makes this region look as
tonyp@2453 467 // if it spans the entire space taken up by all the regions in the
tonyp@2453 468 // series and an single allocation moved its top to new_top. This
tonyp@2453 469 // ensures that the space (capacity / allocated) taken up by all
tonyp@2453 470 // humongous regions can be calculated by just looking at the
tonyp@2453 471 // "starts humongous" regions and by ignoring the "continues
tonyp@2453 472 // humongous" regions.
tonyp@2453 473 void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
ysr@777 474
tonyp@2453 475 // Makes the current region be a "continues humongous'
tonyp@2453 476 // region. first_hr is the "start humongous" region of the series
tonyp@2453 477 // which this region will be part of.
tonyp@2453 478 void set_continuesHumongous(HeapRegion* first_hr);
ysr@777 479
tonyp@2472 480 // Unsets the humongous-related fields on the region.
tonyp@2472 481 void set_notHumongous();
tonyp@2472 482
ysr@777 483 // If the region has a remembered set, return a pointer to it.
ysr@777 484 HeapRegionRemSet* rem_set() const {
ysr@777 485 return _rem_set;
ysr@777 486 }
ysr@777 487
ysr@777 488 // True iff the region is in current collection_set.
ysr@777 489 bool in_collection_set() const {
ysr@777 490 return _in_collection_set;
ysr@777 491 }
ysr@777 492 void set_in_collection_set(bool b) {
ysr@777 493 _in_collection_set = b;
ysr@777 494 }
ysr@777 495 HeapRegion* next_in_collection_set() {
ysr@777 496 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 497 assert(_next_in_special_set == NULL ||
ysr@777 498 _next_in_special_set->in_collection_set(),
ysr@777 499 "Malformed CS.");
ysr@777 500 return _next_in_special_set;
ysr@777 501 }
ysr@777 502 void set_next_in_collection_set(HeapRegion* r) {
ysr@777 503 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 504 assert(r == NULL || r->in_collection_set(), "Malformed CS.");
ysr@777 505 _next_in_special_set = r;
ysr@777 506 }
ysr@777 507
tonyp@2472 508 // Methods used by the HeapRegionSetBase class and subclasses.
tonyp@2472 509
tonyp@2472 510 // Getter and setter for the next field used to link regions into
tonyp@2472 511 // linked lists.
tonyp@2472 512 HeapRegion* next() { return _next; }
tonyp@2472 513
tonyp@2472 514 void set_next(HeapRegion* next) { _next = next; }
tonyp@2472 515
tonyp@2472 516 // Every region added to a set is tagged with a reference to that
tonyp@2472 517 // set. This is used for doing consistency checking to make sure that
tonyp@2472 518 // the contents of a set are as they should be and it's only
tonyp@2472 519 // available in non-product builds.
tonyp@2472 520 #ifdef ASSERT
tonyp@2472 521 void set_containing_set(HeapRegionSetBase* containing_set) {
tonyp@2472 522 assert((containing_set == NULL && _containing_set != NULL) ||
tonyp@2472 523 (containing_set != NULL && _containing_set == NULL),
tonyp@2472 524 err_msg("containing_set: "PTR_FORMAT" "
tonyp@2472 525 "_containing_set: "PTR_FORMAT,
tonyp@2472 526 containing_set, _containing_set));
tonyp@2472 527
tonyp@2472 528 _containing_set = containing_set;
tonyp@2643 529 }
tonyp@2472 530
tonyp@2472 531 HeapRegionSetBase* containing_set() { return _containing_set; }
tonyp@2472 532 #else // ASSERT
tonyp@2472 533 void set_containing_set(HeapRegionSetBase* containing_set) { }
tonyp@2472 534
tonyp@2643 535 // containing_set() is only used in asserts so there's no reason
tonyp@2472 536 // to provide a dummy version of it.
tonyp@2472 537 #endif // ASSERT
tonyp@2472 538
tonyp@2472 539 // If we want to remove regions from a list in bulk we can simply tag
tonyp@2472 540 // them with the pending_removal tag and call the
tonyp@2472 541 // remove_all_pending() method on the list.
tonyp@2472 542
tonyp@2472 543 bool pending_removal() { return _pending_removal; }
tonyp@2472 544
tonyp@2472 545 void set_pending_removal(bool pending_removal) {
tonyp@2643 546 if (pending_removal) {
tonyp@2643 547 assert(!_pending_removal && containing_set() != NULL,
tonyp@2643 548 "can only set pending removal to true if it's false and "
tonyp@2643 549 "the region belongs to a region set");
tonyp@2643 550 } else {
tonyp@2643 551 assert( _pending_removal && containing_set() == NULL,
tonyp@2643 552 "can only set pending removal to false if it's true and "
tonyp@2643 553 "the region does not belong to a region set");
tonyp@2643 554 }
tonyp@2472 555
tonyp@2472 556 _pending_removal = pending_removal;
ysr@777 557 }
ysr@777 558
ysr@777 559 HeapRegion* get_next_young_region() { return _next_young_region; }
ysr@777 560 void set_next_young_region(HeapRegion* hr) {
ysr@777 561 _next_young_region = hr;
ysr@777 562 }
ysr@777 563
apetrusenko@1231 564 HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
apetrusenko@1231 565 HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
apetrusenko@1231 566 void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
apetrusenko@1231 567 bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
apetrusenko@1231 568
tonyp@2963 569 HeapWord* orig_end() { return _orig_end; }
tonyp@2963 570
ysr@777 571 // Allows logical separation between objects allocated before and after.
ysr@777 572 void save_marks();
ysr@777 573
ysr@777 574 // Reset HR stuff to default values.
ysr@777 575 void hr_clear(bool par, bool clear_space);
tonyp@2849 576 void par_clear();
ysr@777 577
tonyp@791 578 void initialize(MemRegion mr, bool clear_space, bool mangle_space);
ysr@777 579
ysr@777 580 // Get the start of the unmarked area in this region.
ysr@777 581 HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
ysr@777 582 HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
ysr@777 583
ysr@777 584 // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
ysr@777 585 // allocated in the current region before the last call to "save_mark".
ysr@777 586 void oop_before_save_marks_iterate(OopClosure* cl);
ysr@777 587
ysr@777 588 // Note the start or end of marking. This tells the heap region
ysr@777 589 // that the collector is about to start or has finished (concurrently)
ysr@777 590 // marking the heap.
ysr@777 591
tonyp@3416 592 // Notify the region that concurrent marking is starting. Initialize
tonyp@3416 593 // all fields related to the next marking info.
tonyp@3416 594 inline void note_start_of_marking();
ysr@777 595
tonyp@3416 596 // Notify the region that concurrent marking has finished. Copy the
tonyp@3416 597 // (now finalized) next marking info fields into the prev marking
tonyp@3416 598 // info fields.
tonyp@3416 599 inline void note_end_of_marking();
ysr@777 600
tonyp@3416 601 // Notify the region that it will be used as to-space during a GC
tonyp@3416 602 // and we are about to start copying objects into it.
tonyp@3416 603 inline void note_start_of_copying(bool during_initial_mark);
ysr@777 604
tonyp@3416 605 // Notify the region that it ceases being to-space during a GC and
tonyp@3416 606 // we will not copy objects into it any more.
tonyp@3416 607 inline void note_end_of_copying(bool during_initial_mark);
tonyp@3416 608
tonyp@3416 609 // Notify the region that we are about to start processing
tonyp@3416 610 // self-forwarded objects during evac failure handling.
tonyp@3416 611 void note_self_forwarding_removal_start(bool during_initial_mark,
tonyp@3416 612 bool during_conc_mark);
tonyp@3416 613
tonyp@3416 614 // Notify the region that we have finished processing self-forwarded
tonyp@3416 615 // objects during evac failure handling.
tonyp@3416 616 void note_self_forwarding_removal_end(bool during_initial_mark,
tonyp@3416 617 bool during_conc_mark,
tonyp@3416 618 size_t marked_bytes);
ysr@777 619
ysr@777 620 // Returns "false" iff no object in the region was allocated when the
ysr@777 621 // last mark phase ended.
ysr@777 622 bool is_marked() { return _prev_top_at_mark_start != bottom(); }
ysr@777 623
ysr@777 624 void reset_during_compaction() {
ysr@777 625 guarantee( isHumongous() && startsHumongous(),
ysr@777 626 "should only be called for humongous regions");
ysr@777 627
ysr@777 628 zero_marked_bytes();
ysr@777 629 init_top_at_mark_start();
ysr@777 630 }
ysr@777 631
ysr@777 632 void calc_gc_efficiency(void);
ysr@777 633 double gc_efficiency() { return _gc_efficiency;}
ysr@777 634
ysr@777 635 bool is_young() const { return _young_type != NotYoung; }
ysr@777 636 bool is_survivor() const { return _young_type == Survivor; }
ysr@777 637
ysr@777 638 int young_index_in_cset() const { return _young_index_in_cset; }
ysr@777 639 void set_young_index_in_cset(int index) {
ysr@777 640 assert( (index == -1) || is_young(), "pre-condition" );
ysr@777 641 _young_index_in_cset = index;
ysr@777 642 }
ysr@777 643
ysr@777 644 int age_in_surv_rate_group() {
ysr@777 645 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 646 assert( _age_index > -1, "pre-condition" );
ysr@777 647 return _surv_rate_group->age_in_group(_age_index);
ysr@777 648 }
ysr@777 649
ysr@777 650 void record_surv_words_in_group(size_t words_survived) {
ysr@777 651 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 652 assert( _age_index > -1, "pre-condition" );
ysr@777 653 int age_in_group = age_in_surv_rate_group();
ysr@777 654 _surv_rate_group->record_surviving_words(age_in_group, words_survived);
ysr@777 655 }
ysr@777 656
ysr@777 657 int age_in_surv_rate_group_cond() {
ysr@777 658 if (_surv_rate_group != NULL)
ysr@777 659 return age_in_surv_rate_group();
ysr@777 660 else
ysr@777 661 return -1;
ysr@777 662 }
ysr@777 663
ysr@777 664 SurvRateGroup* surv_rate_group() {
ysr@777 665 return _surv_rate_group;
ysr@777 666 }
ysr@777 667
ysr@777 668 void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
ysr@777 669 assert( surv_rate_group != NULL, "pre-condition" );
ysr@777 670 assert( _surv_rate_group == NULL, "pre-condition" );
ysr@777 671 assert( is_young(), "pre-condition" );
ysr@777 672
ysr@777 673 _surv_rate_group = surv_rate_group;
ysr@777 674 _age_index = surv_rate_group->next_age_index();
ysr@777 675 }
ysr@777 676
ysr@777 677 void uninstall_surv_rate_group() {
ysr@777 678 if (_surv_rate_group != NULL) {
ysr@777 679 assert( _age_index > -1, "pre-condition" );
ysr@777 680 assert( is_young(), "pre-condition" );
ysr@777 681
ysr@777 682 _surv_rate_group = NULL;
ysr@777 683 _age_index = -1;
ysr@777 684 } else {
ysr@777 685 assert( _age_index == -1, "pre-condition" );
ysr@777 686 }
ysr@777 687 }
ysr@777 688
ysr@777 689 void set_young() { set_young_type(Young); }
ysr@777 690
ysr@777 691 void set_survivor() { set_young_type(Survivor); }
ysr@777 692
ysr@777 693 void set_not_young() { set_young_type(NotYoung); }
ysr@777 694
ysr@777 695 // Determine if an object has been allocated since the last
ysr@777 696 // mark performed by the collector. This returns true iff the object
ysr@777 697 // is within the unmarked area of the region.
ysr@777 698 bool obj_allocated_since_prev_marking(oop obj) const {
ysr@777 699 return (HeapWord *) obj >= prev_top_at_mark_start();
ysr@777 700 }
ysr@777 701 bool obj_allocated_since_next_marking(oop obj) const {
ysr@777 702 return (HeapWord *) obj >= next_top_at_mark_start();
ysr@777 703 }
ysr@777 704
ysr@777 705 // For parallel heapRegion traversal.
ysr@777 706 bool claimHeapRegion(int claimValue);
ysr@777 707 jint claim_value() { return _claimed; }
ysr@777 708 // Use this carefully: only when you're sure no one is claiming...
ysr@777 709 void set_claim_value(int claimValue) { _claimed = claimValue; }
ysr@777 710
ysr@777 711 // Returns the "evacuation_failed" property of the region.
ysr@777 712 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 713
ysr@777 714 // Sets the "evacuation_failed" property of the region.
ysr@777 715 void set_evacuation_failed(bool b) {
ysr@777 716 _evacuation_failed = b;
ysr@777 717
ysr@777 718 if (b) {
ysr@777 719 _next_marked_bytes = 0;
ysr@777 720 }
ysr@777 721 }
ysr@777 722
ysr@777 723 // Requires that "mr" be entirely within the region.
ysr@777 724 // Apply "cl->do_object" to all objects that intersect with "mr".
ysr@777 725 // If the iteration encounters an unparseable portion of the region,
ysr@777 726 // or if "cl->abort()" is true after a closure application,
ysr@777 727 // terminate the iteration and return the address of the start of the
ysr@777 728 // subregion that isn't done. (The two can be distinguished by querying
ysr@777 729 // "cl->abort()".) Return of "NULL" indicates that the iteration
ysr@777 730 // completed.
ysr@777 731 HeapWord*
ysr@777 732 object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
ysr@777 733
tonyp@2849 734 // filter_young: if true and the region is a young region then we
tonyp@2849 735 // skip the iteration.
tonyp@2849 736 // card_ptr: if not NULL, and we decide that the card is not young
tonyp@2849 737 // and we iterate over it, we'll clean the card before we start the
tonyp@2849 738 // iteration.
ysr@777 739 HeapWord*
ysr@777 740 oops_on_card_seq_iterate_careful(MemRegion mr,
johnc@2021 741 FilterOutOfRegionClosure* cl,
tonyp@2849 742 bool filter_young,
tonyp@2849 743 jbyte* card_ptr);
ysr@777 744
ysr@777 745 // A version of block start that is guaranteed to find *some* block
ysr@777 746 // boundary at or before "p", but does not object iteration, and may
ysr@777 747 // therefore be used safely when the heap is unparseable.
ysr@777 748 HeapWord* block_start_careful(const void* p) const {
ysr@777 749 return _offsets.block_start_careful(p);
ysr@777 750 }
ysr@777 751
ysr@777 752 // Requires that "addr" is within the region. Returns the start of the
ysr@777 753 // first ("careful") block that starts at or after "addr", or else the
ysr@777 754 // "end" of the region if there is no such block.
ysr@777 755 HeapWord* next_block_start_careful(HeapWord* addr);
ysr@777 756
johnc@1829 757 size_t recorded_rs_length() const { return _recorded_rs_length; }
johnc@1829 758 double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
johnc@1829 759 size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; }
johnc@1829 760
johnc@1829 761 void set_recorded_rs_length(size_t rs_length) {
johnc@1829 762 _recorded_rs_length = rs_length;
johnc@1829 763 }
johnc@1829 764
johnc@1829 765 void set_predicted_elapsed_time_ms(double ms) {
johnc@1829 766 _predicted_elapsed_time_ms = ms;
johnc@1829 767 }
johnc@1829 768
johnc@1829 769 void set_predicted_bytes_to_copy(size_t bytes) {
johnc@1829 770 _predicted_bytes_to_copy = bytes;
johnc@1829 771 }
johnc@1829 772
ysr@777 773 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
ysr@777 774 virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
ysr@777 775 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
ysr@777 776
ysr@777 777 CompactibleSpace* next_compaction_space() const;
ysr@777 778
ysr@777 779 virtual void reset_after_compaction();
ysr@777 780
ysr@777 781 void print() const;
ysr@777 782 void print_on(outputStream* st) const;
ysr@777 783
johnc@2969 784 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 785 // vo == UseNextMarking -> use "next" marking information
johnc@2969 786 // vo == UseMarkWord -> use the mark word in the object header
johnc@2969 787 //
tonyp@1246 788 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 789 // consistent most of the time, so most calls to this should use
johnc@2969 790 // vo == UsePrevMarking.
johnc@2969 791 // Currently, there is only one case where this is called with
johnc@2969 792 // vo == UseNextMarking, which is to verify the "next" marking
johnc@2969 793 // information at the end of remark.
johnc@2969 794 // Currently there is only one place where this is called with
johnc@2969 795 // vo == UseMarkWord, which is to verify the marking during a
johnc@2969 796 // full GC.
brutisso@3711 797 void verify(VerifyOption vo, bool *failures) const;
tonyp@1246 798
tonyp@1246 799 // Override; it uses the "prev" marking information
brutisso@3711 800 virtual void verify() const;
ysr@777 801 };
ysr@777 802
ysr@777 803 // HeapRegionClosure is used for iterating over regions.
ysr@777 804 // Terminates the iteration when the "doHeapRegion" method returns "true".
ysr@777 805 class HeapRegionClosure : public StackObj {
ysr@777 806 friend class HeapRegionSeq;
ysr@777 807 friend class G1CollectedHeap;
ysr@777 808
ysr@777 809 bool _complete;
ysr@777 810 void incomplete() { _complete = false; }
ysr@777 811
ysr@777 812 public:
ysr@777 813 HeapRegionClosure(): _complete(true) {}
ysr@777 814
ysr@777 815 // Typically called on each region until it returns true.
ysr@777 816 virtual bool doHeapRegion(HeapRegion* r) = 0;
ysr@777 817
ysr@777 818 // True after iteration if the closure was applied to all heap regions
ysr@777 819 // and returned "false" in all cases.
ysr@777 820 bool complete() { return _complete; }
ysr@777 821 };
ysr@777 822
ysr@777 823 #endif // SERIALGC
stefank@2314 824
stefank@2314 825 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial