src/share/vm/gc_implementation/g1/heapRegion.hpp

Wed, 25 Apr 2012 10:23:12 -0700

author
johnc
date
Wed, 25 Apr 2012 10:23:12 -0700
changeset 3731
8a2e5a6a19a4
parent 3714
f7a8920427a6
child 3957
a2f7274eb6ef
permissions
-rw-r--r--

7143490: G1: Remove HeapRegion::_top_at_conc_mark_count
Summary: Removed the HeapRegion::_top_at_conc_mark_count field. It is no longer needed as a result of the changes for 6888336 and 7127706. Refactored the closures that finalize and verify the liveness counting data so that common functionality was placed into a base class.
Reviewed-by: brutisso, tonyp

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    36 #ifndef SERIALGC
    38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    39 // can be collected independently.
    41 // NOTE: Although a HeapRegion is a Space, its
    42 // Space::initDirtyCardClosure method must not be called.
    43 // The problem is that the existence of this method breaks
    44 // the independence of barrier sets from remembered sets.
    45 // The solution is to remove this method from the definition
    46 // of a Space.
    48 class CompactibleSpace;
    49 class ContiguousSpace;
    50 class HeapRegionRemSet;
    51 class HeapRegionRemSetIterator;
    52 class HeapRegion;
    53 class HeapRegionSetBase;
    55 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    56 #define HR_FORMAT_PARAMS(_hr_) \
    57                 (_hr_)->hrs_index(), \
    58                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : "-", \
    59                 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
    61 // sentinel value for hrs_index
    62 #define G1_NULL_HRS_INDEX ((uint) -1)
    64 // A dirty card to oop closure for heap regions. It
    65 // knows how to get the G1 heap and how to use the bitmap
    66 // in the concurrent marker used by G1 to filter remembered
    67 // sets.
    69 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    70 public:
    71   // Specification of possible DirtyCardToOopClosure filtering.
    72   enum FilterKind {
    73     NoFilterKind,
    74     IntoCSFilterKind,
    75     OutOfRegionFilterKind
    76   };
    78 protected:
    79   HeapRegion* _hr;
    80   FilterKind _fk;
    81   G1CollectedHeap* _g1;
    83   void walk_mem_region_with_cl(MemRegion mr,
    84                                HeapWord* bottom, HeapWord* top,
    85                                OopClosure* cl);
    87   // We don't specialize this for FilteringClosure; filtering is handled by
    88   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    89   // warning.
    90   void walk_mem_region_with_cl(MemRegion mr,
    91                                HeapWord* bottom, HeapWord* top,
    92                                FilteringClosure* cl) {
    93     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    94                                                        (OopClosure*)cl);
    95   }
    97   // Get the actual top of the area on which the closure will
    98   // operate, given where the top is assumed to be (the end of the
    99   // memory region passed to do_MemRegion) and where the object
   100   // at the top is assumed to start. For example, an object may
   101   // start at the top but actually extend past the assumed top,
   102   // in which case the top becomes the end of the object.
   103   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
   104     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
   105   }
   107   // Walk the given memory region from bottom to (actual) top
   108   // looking for objects and applying the oop closure (_cl) to
   109   // them. The base implementation of this treats the area as
   110   // blocks, where a block may or may not be an object. Sub-
   111   // classes should override this to provide more accurate
   112   // or possibly more efficient walking.
   113   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
   114     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
   115   }
   117 public:
   118   HeapRegionDCTOC(G1CollectedHeap* g1,
   119                   HeapRegion* hr, OopClosure* cl,
   120                   CardTableModRefBS::PrecisionStyle precision,
   121                   FilterKind fk);
   122 };
   124 // The complicating factor is that BlockOffsetTable diverged
   125 // significantly, and we need functionality that is only in the G1 version.
   126 // So I copied that code, which led to an alternate G1 version of
   127 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   128 // be reconciled, then G1OffsetTableContigSpace could go away.
   130 // The idea behind time stamps is the following. Doing a save_marks on
   131 // all regions at every GC pause is time consuming (if I remember
   132 // well, 10ms or so). So, we would like to do that only for regions
   133 // that are GC alloc regions. To achieve this, we use time
   134 // stamps. For every evacuation pause, G1CollectedHeap generates a
   135 // unique time stamp (essentially a counter that gets
   136 // incremented). Every time we want to call save_marks on a region,
   137 // we set the saved_mark_word to top and also copy the current GC
   138 // time stamp to the time stamp field of the space. Reading the
   139 // saved_mark_word involves checking the time stamp of the
   140 // region. If it is the same as the current GC time stamp, then we
   141 // can safely read the saved_mark_word field, as it is valid. If the
   142 // time stamp of the region is not the same as the current GC time
   143 // stamp, then we instead read top, as the saved_mark_word field is
   144 // invalid. Time stamps (on the regions and also on the
   145 // G1CollectedHeap) are reset at every cleanup (we iterate over
   146 // the regions anyway) and at the end of a Full GC. The current scheme
   147 // that uses sequential unsigned ints will fail only if we have 4b
   148 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   150 class G1OffsetTableContigSpace: public ContiguousSpace {
   151   friend class VMStructs;
   152  protected:
   153   G1BlockOffsetArrayContigSpace _offsets;
   154   Mutex _par_alloc_lock;
   155   volatile unsigned _gc_time_stamp;
   156   // When we need to retire an allocation region, while other threads
   157   // are also concurrently trying to allocate into it, we typically
   158   // allocate a dummy object at the end of the region to ensure that
   159   // no more allocations can take place in it. However, sometimes we
   160   // want to know where the end of the last "real" object we allocated
   161   // into the region was and this is what this keeps track.
   162   HeapWord* _pre_dummy_top;
   164  public:
   165   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
   166   // assumed to contain zeros.
   167   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   168                            MemRegion mr, bool is_zeroed = false);
   170   void set_bottom(HeapWord* value);
   171   void set_end(HeapWord* value);
   173   virtual HeapWord* saved_mark_word() const;
   174   virtual void set_saved_mark();
   175   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   177   // See the comment above in the declaration of _pre_dummy_top for an
   178   // explanation of what it is.
   179   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   180     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   181     _pre_dummy_top = pre_dummy_top;
   182   }
   183   HeapWord* pre_dummy_top() {
   184     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   185   }
   186   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   188   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   189   virtual void clear(bool mangle_space);
   191   HeapWord* block_start(const void* p);
   192   HeapWord* block_start_const(const void* p) const;
   194   // Add offset table update.
   195   virtual HeapWord* allocate(size_t word_size);
   196   HeapWord* par_allocate(size_t word_size);
   198   // MarkSweep support phase3
   199   virtual HeapWord* initialize_threshold();
   200   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   202   virtual void print() const;
   204   void reset_bot() {
   205     _offsets.zero_bottom_entry();
   206     _offsets.initialize_threshold();
   207   }
   209   void update_bot_for_object(HeapWord* start, size_t word_size) {
   210     _offsets.alloc_block(start, word_size);
   211   }
   213   void print_bot_on(outputStream* out) {
   214     _offsets.print_on(out);
   215   }
   216 };
   218 class HeapRegion: public G1OffsetTableContigSpace {
   219   friend class VMStructs;
   220  private:
   222   enum HumongousType {
   223     NotHumongous = 0,
   224     StartsHumongous,
   225     ContinuesHumongous
   226   };
   228   // Requires that the region "mr" be dense with objects, and begin and end
   229   // with an object.
   230   void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
   232   // The remembered set for this region.
   233   // (Might want to make this "inline" later, to avoid some alloc failure
   234   // issues.)
   235   HeapRegionRemSet* _rem_set;
   237   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   239  protected:
   240   // The index of this region in the heap region sequence.
   241   uint  _hrs_index;
   243   HumongousType _humongous_type;
   244   // For a humongous region, region in which it starts.
   245   HeapRegion* _humongous_start_region;
   246   // For the start region of a humongous sequence, it's original end().
   247   HeapWord* _orig_end;
   249   // True iff the region is in current collection_set.
   250   bool _in_collection_set;
   252   // True iff an attempt to evacuate an object in the region failed.
   253   bool _evacuation_failed;
   255   // A heap region may be a member one of a number of special subsets, each
   256   // represented as linked lists through the field below.  Currently, these
   257   // sets include:
   258   //   The collection set.
   259   //   The set of allocation regions used in a collection pause.
   260   //   Spaces that may contain gray objects.
   261   HeapRegion* _next_in_special_set;
   263   // next region in the young "generation" region set
   264   HeapRegion* _next_young_region;
   266   // Next region whose cards need cleaning
   267   HeapRegion* _next_dirty_cards_region;
   269   // Fields used by the HeapRegionSetBase class and subclasses.
   270   HeapRegion* _next;
   271 #ifdef ASSERT
   272   HeapRegionSetBase* _containing_set;
   273 #endif // ASSERT
   274   bool _pending_removal;
   276   // For parallel heapRegion traversal.
   277   jint _claimed;
   279   // We use concurrent marking to determine the amount of live data
   280   // in each heap region.
   281   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   282   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   284   // The calculated GC efficiency of the region.
   285   double _gc_efficiency;
   287   enum YoungType {
   288     NotYoung,                   // a region is not young
   289     Young,                      // a region is young
   290     Survivor                    // a region is young and it contains survivors
   291   };
   293   volatile YoungType _young_type;
   294   int  _young_index_in_cset;
   295   SurvRateGroup* _surv_rate_group;
   296   int  _age_index;
   298   // The start of the unmarked area. The unmarked area extends from this
   299   // word until the top and/or end of the region, and is the part
   300   // of the region for which no marking was done, i.e. objects may
   301   // have been allocated in this part since the last mark phase.
   302   // "prev" is the top at the start of the last completed marking.
   303   // "next" is the top at the start of the in-progress marking (if any.)
   304   HeapWord* _prev_top_at_mark_start;
   305   HeapWord* _next_top_at_mark_start;
   306   // If a collection pause is in progress, this is the top at the start
   307   // of that pause.
   309   void init_top_at_mark_start() {
   310     assert(_prev_marked_bytes == 0 &&
   311            _next_marked_bytes == 0,
   312            "Must be called after zero_marked_bytes.");
   313     HeapWord* bot = bottom();
   314     _prev_top_at_mark_start = bot;
   315     _next_top_at_mark_start = bot;
   316   }
   318   void set_young_type(YoungType new_type) {
   319     //assert(_young_type != new_type, "setting the same type" );
   320     // TODO: add more assertions here
   321     _young_type = new_type;
   322   }
   324   // Cached attributes used in the collection set policy information
   326   // The RSet length that was added to the total value
   327   // for the collection set.
   328   size_t _recorded_rs_length;
   330   // The predicted elapsed time that was added to total value
   331   // for the collection set.
   332   double _predicted_elapsed_time_ms;
   334   // The predicted number of bytes to copy that was added to
   335   // the total value for the collection set.
   336   size_t _predicted_bytes_to_copy;
   338  public:
   339   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
   340   HeapRegion(uint hrs_index,
   341              G1BlockOffsetSharedArray* sharedOffsetArray,
   342              MemRegion mr, bool is_zeroed);
   344   static int    LogOfHRGrainBytes;
   345   static int    LogOfHRGrainWords;
   347   static size_t GrainBytes;
   348   static size_t GrainWords;
   349   static size_t CardsPerRegion;
   351   static size_t align_up_to_region_byte_size(size_t sz) {
   352     return (sz + (size_t) GrainBytes - 1) &
   353                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   354   }
   356   // It sets up the heap region size (GrainBytes / GrainWords), as
   357   // well as other related fields that are based on the heap region
   358   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   359   // CardsPerRegion). All those fields are considered constant
   360   // throughout the JVM's execution, therefore they should only be set
   361   // up once during initialization time.
   362   static void setup_heap_region_size(uintx min_heap_size);
   364   enum ClaimValues {
   365     InitialClaimValue          = 0,
   366     FinalCountClaimValue       = 1,
   367     NoteEndClaimValue          = 2,
   368     ScrubRemSetClaimValue      = 3,
   369     ParVerifyClaimValue        = 4,
   370     RebuildRSClaimValue        = 5,
   371     ParEvacFailureClaimValue   = 6,
   372     AggregateCountClaimValue   = 7,
   373     VerifyCountClaimValue      = 8
   374   };
   376   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
   377     assert(is_young(), "we can only skip BOT updates on young regions");
   378     return ContiguousSpace::par_allocate(word_size);
   379   }
   380   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
   381     assert(is_young(), "we can only skip BOT updates on young regions");
   382     return ContiguousSpace::allocate(word_size);
   383   }
   385   // If this region is a member of a HeapRegionSeq, the index in that
   386   // sequence, otherwise -1.
   387   uint hrs_index() const { return _hrs_index; }
   389   // The number of bytes marked live in the region in the last marking phase.
   390   size_t marked_bytes()    { return _prev_marked_bytes; }
   391   size_t live_bytes() {
   392     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   393   }
   395   // The number of bytes counted in the next marking.
   396   size_t next_marked_bytes() { return _next_marked_bytes; }
   397   // The number of bytes live wrt the next marking.
   398   size_t next_live_bytes() {
   399     return
   400       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   401   }
   403   // A lower bound on the amount of garbage bytes in the region.
   404   size_t garbage_bytes() {
   405     size_t used_at_mark_start_bytes =
   406       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   407     assert(used_at_mark_start_bytes >= marked_bytes(),
   408            "Can't mark more than we have.");
   409     return used_at_mark_start_bytes - marked_bytes();
   410   }
   412   // Return the amount of bytes we'll reclaim if we collect this
   413   // region. This includes not only the known garbage bytes in the
   414   // region but also any unallocated space in it, i.e., [top, end),
   415   // since it will also be reclaimed if we collect the region.
   416   size_t reclaimable_bytes() {
   417     size_t known_live_bytes = live_bytes();
   418     assert(known_live_bytes <= capacity(), "sanity");
   419     return capacity() - known_live_bytes;
   420   }
   422   // An upper bound on the number of live bytes in the region.
   423   size_t max_live_bytes() { return used() - garbage_bytes(); }
   425   void add_to_marked_bytes(size_t incr_bytes) {
   426     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   427     assert(_next_marked_bytes <= used(), "invariant" );
   428   }
   430   void zero_marked_bytes()      {
   431     _prev_marked_bytes = _next_marked_bytes = 0;
   432   }
   434   bool isHumongous() const { return _humongous_type != NotHumongous; }
   435   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   436   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   437   // For a humongous region, region in which it starts.
   438   HeapRegion* humongous_start_region() const {
   439     return _humongous_start_region;
   440   }
   442   // Same as Space::is_in_reserved, but will use the original size of the region.
   443   // The original size is different only for start humongous regions. They get
   444   // their _end set up to be the end of the last continues region of the
   445   // corresponding humongous object.
   446   bool is_in_reserved_raw(const void* p) const {
   447     return _bottom <= p && p < _orig_end;
   448   }
   450   // Makes the current region be a "starts humongous" region, i.e.,
   451   // the first region in a series of one or more contiguous regions
   452   // that will contain a single "humongous" object. The two parameters
   453   // are as follows:
   454   //
   455   // new_top : The new value of the top field of this region which
   456   // points to the end of the humongous object that's being
   457   // allocated. If there is more than one region in the series, top
   458   // will lie beyond this region's original end field and on the last
   459   // region in the series.
   460   //
   461   // new_end : The new value of the end field of this region which
   462   // points to the end of the last region in the series. If there is
   463   // one region in the series (namely: this one) end will be the same
   464   // as the original end of this region.
   465   //
   466   // Updating top and end as described above makes this region look as
   467   // if it spans the entire space taken up by all the regions in the
   468   // series and an single allocation moved its top to new_top. This
   469   // ensures that the space (capacity / allocated) taken up by all
   470   // humongous regions can be calculated by just looking at the
   471   // "starts humongous" regions and by ignoring the "continues
   472   // humongous" regions.
   473   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   475   // Makes the current region be a "continues humongous'
   476   // region. first_hr is the "start humongous" region of the series
   477   // which this region will be part of.
   478   void set_continuesHumongous(HeapRegion* first_hr);
   480   // Unsets the humongous-related fields on the region.
   481   void set_notHumongous();
   483   // If the region has a remembered set, return a pointer to it.
   484   HeapRegionRemSet* rem_set() const {
   485     return _rem_set;
   486   }
   488   // True iff the region is in current collection_set.
   489   bool in_collection_set() const {
   490     return _in_collection_set;
   491   }
   492   void set_in_collection_set(bool b) {
   493     _in_collection_set = b;
   494   }
   495   HeapRegion* next_in_collection_set() {
   496     assert(in_collection_set(), "should only invoke on member of CS.");
   497     assert(_next_in_special_set == NULL ||
   498            _next_in_special_set->in_collection_set(),
   499            "Malformed CS.");
   500     return _next_in_special_set;
   501   }
   502   void set_next_in_collection_set(HeapRegion* r) {
   503     assert(in_collection_set(), "should only invoke on member of CS.");
   504     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   505     _next_in_special_set = r;
   506   }
   508   // Methods used by the HeapRegionSetBase class and subclasses.
   510   // Getter and setter for the next field used to link regions into
   511   // linked lists.
   512   HeapRegion* next()              { return _next; }
   514   void set_next(HeapRegion* next) { _next = next; }
   516   // Every region added to a set is tagged with a reference to that
   517   // set. This is used for doing consistency checking to make sure that
   518   // the contents of a set are as they should be and it's only
   519   // available in non-product builds.
   520 #ifdef ASSERT
   521   void set_containing_set(HeapRegionSetBase* containing_set) {
   522     assert((containing_set == NULL && _containing_set != NULL) ||
   523            (containing_set != NULL && _containing_set == NULL),
   524            err_msg("containing_set: "PTR_FORMAT" "
   525                    "_containing_set: "PTR_FORMAT,
   526                    containing_set, _containing_set));
   528     _containing_set = containing_set;
   529   }
   531   HeapRegionSetBase* containing_set() { return _containing_set; }
   532 #else // ASSERT
   533   void set_containing_set(HeapRegionSetBase* containing_set) { }
   535   // containing_set() is only used in asserts so there's no reason
   536   // to provide a dummy version of it.
   537 #endif // ASSERT
   539   // If we want to remove regions from a list in bulk we can simply tag
   540   // them with the pending_removal tag and call the
   541   // remove_all_pending() method on the list.
   543   bool pending_removal() { return _pending_removal; }
   545   void set_pending_removal(bool pending_removal) {
   546     if (pending_removal) {
   547       assert(!_pending_removal && containing_set() != NULL,
   548              "can only set pending removal to true if it's false and "
   549              "the region belongs to a region set");
   550     } else {
   551       assert( _pending_removal && containing_set() == NULL,
   552               "can only set pending removal to false if it's true and "
   553               "the region does not belong to a region set");
   554     }
   556     _pending_removal = pending_removal;
   557   }
   559   HeapRegion* get_next_young_region() { return _next_young_region; }
   560   void set_next_young_region(HeapRegion* hr) {
   561     _next_young_region = hr;
   562   }
   564   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   565   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   566   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   567   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   569   HeapWord* orig_end() { return _orig_end; }
   571   // Allows logical separation between objects allocated before and after.
   572   void save_marks();
   574   // Reset HR stuff to default values.
   575   void hr_clear(bool par, bool clear_space);
   576   void par_clear();
   578   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   580   // Get the start of the unmarked area in this region.
   581   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   582   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   584   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   585   // allocated in the current region before the last call to "save_mark".
   586   void oop_before_save_marks_iterate(OopClosure* cl);
   588   // Note the start or end of marking. This tells the heap region
   589   // that the collector is about to start or has finished (concurrently)
   590   // marking the heap.
   592   // Notify the region that concurrent marking is starting. Initialize
   593   // all fields related to the next marking info.
   594   inline void note_start_of_marking();
   596   // Notify the region that concurrent marking has finished. Copy the
   597   // (now finalized) next marking info fields into the prev marking
   598   // info fields.
   599   inline void note_end_of_marking();
   601   // Notify the region that it will be used as to-space during a GC
   602   // and we are about to start copying objects into it.
   603   inline void note_start_of_copying(bool during_initial_mark);
   605   // Notify the region that it ceases being to-space during a GC and
   606   // we will not copy objects into it any more.
   607   inline void note_end_of_copying(bool during_initial_mark);
   609   // Notify the region that we are about to start processing
   610   // self-forwarded objects during evac failure handling.
   611   void note_self_forwarding_removal_start(bool during_initial_mark,
   612                                           bool during_conc_mark);
   614   // Notify the region that we have finished processing self-forwarded
   615   // objects during evac failure handling.
   616   void note_self_forwarding_removal_end(bool during_initial_mark,
   617                                         bool during_conc_mark,
   618                                         size_t marked_bytes);
   620   // Returns "false" iff no object in the region was allocated when the
   621   // last mark phase ended.
   622   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   624   void reset_during_compaction() {
   625     guarantee( isHumongous() && startsHumongous(),
   626                "should only be called for humongous regions");
   628     zero_marked_bytes();
   629     init_top_at_mark_start();
   630   }
   632   void calc_gc_efficiency(void);
   633   double gc_efficiency() { return _gc_efficiency;}
   635   bool is_young() const     { return _young_type != NotYoung; }
   636   bool is_survivor() const  { return _young_type == Survivor; }
   638   int  young_index_in_cset() const { return _young_index_in_cset; }
   639   void set_young_index_in_cset(int index) {
   640     assert( (index == -1) || is_young(), "pre-condition" );
   641     _young_index_in_cset = index;
   642   }
   644   int age_in_surv_rate_group() {
   645     assert( _surv_rate_group != NULL, "pre-condition" );
   646     assert( _age_index > -1, "pre-condition" );
   647     return _surv_rate_group->age_in_group(_age_index);
   648   }
   650   void record_surv_words_in_group(size_t words_survived) {
   651     assert( _surv_rate_group != NULL, "pre-condition" );
   652     assert( _age_index > -1, "pre-condition" );
   653     int age_in_group = age_in_surv_rate_group();
   654     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   655   }
   657   int age_in_surv_rate_group_cond() {
   658     if (_surv_rate_group != NULL)
   659       return age_in_surv_rate_group();
   660     else
   661       return -1;
   662   }
   664   SurvRateGroup* surv_rate_group() {
   665     return _surv_rate_group;
   666   }
   668   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   669     assert( surv_rate_group != NULL, "pre-condition" );
   670     assert( _surv_rate_group == NULL, "pre-condition" );
   671     assert( is_young(), "pre-condition" );
   673     _surv_rate_group = surv_rate_group;
   674     _age_index = surv_rate_group->next_age_index();
   675   }
   677   void uninstall_surv_rate_group() {
   678     if (_surv_rate_group != NULL) {
   679       assert( _age_index > -1, "pre-condition" );
   680       assert( is_young(), "pre-condition" );
   682       _surv_rate_group = NULL;
   683       _age_index = -1;
   684     } else {
   685       assert( _age_index == -1, "pre-condition" );
   686     }
   687   }
   689   void set_young() { set_young_type(Young); }
   691   void set_survivor() { set_young_type(Survivor); }
   693   void set_not_young() { set_young_type(NotYoung); }
   695   // Determine if an object has been allocated since the last
   696   // mark performed by the collector. This returns true iff the object
   697   // is within the unmarked area of the region.
   698   bool obj_allocated_since_prev_marking(oop obj) const {
   699     return (HeapWord *) obj >= prev_top_at_mark_start();
   700   }
   701   bool obj_allocated_since_next_marking(oop obj) const {
   702     return (HeapWord *) obj >= next_top_at_mark_start();
   703   }
   705   // For parallel heapRegion traversal.
   706   bool claimHeapRegion(int claimValue);
   707   jint claim_value() { return _claimed; }
   708   // Use this carefully: only when you're sure no one is claiming...
   709   void set_claim_value(int claimValue) { _claimed = claimValue; }
   711   // Returns the "evacuation_failed" property of the region.
   712   bool evacuation_failed() { return _evacuation_failed; }
   714   // Sets the "evacuation_failed" property of the region.
   715   void set_evacuation_failed(bool b) {
   716     _evacuation_failed = b;
   718     if (b) {
   719       _next_marked_bytes = 0;
   720     }
   721   }
   723   // Requires that "mr" be entirely within the region.
   724   // Apply "cl->do_object" to all objects that intersect with "mr".
   725   // If the iteration encounters an unparseable portion of the region,
   726   // or if "cl->abort()" is true after a closure application,
   727   // terminate the iteration and return the address of the start of the
   728   // subregion that isn't done.  (The two can be distinguished by querying
   729   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   730   // completed.
   731   HeapWord*
   732   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   734   // filter_young: if true and the region is a young region then we
   735   // skip the iteration.
   736   // card_ptr: if not NULL, and we decide that the card is not young
   737   // and we iterate over it, we'll clean the card before we start the
   738   // iteration.
   739   HeapWord*
   740   oops_on_card_seq_iterate_careful(MemRegion mr,
   741                                    FilterOutOfRegionClosure* cl,
   742                                    bool filter_young,
   743                                    jbyte* card_ptr);
   745   // A version of block start that is guaranteed to find *some* block
   746   // boundary at or before "p", but does not object iteration, and may
   747   // therefore be used safely when the heap is unparseable.
   748   HeapWord* block_start_careful(const void* p) const {
   749     return _offsets.block_start_careful(p);
   750   }
   752   // Requires that "addr" is within the region.  Returns the start of the
   753   // first ("careful") block that starts at or after "addr", or else the
   754   // "end" of the region if there is no such block.
   755   HeapWord* next_block_start_careful(HeapWord* addr);
   757   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   758   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   759   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   761   void set_recorded_rs_length(size_t rs_length) {
   762     _recorded_rs_length = rs_length;
   763   }
   765   void set_predicted_elapsed_time_ms(double ms) {
   766     _predicted_elapsed_time_ms = ms;
   767   }
   769   void set_predicted_bytes_to_copy(size_t bytes) {
   770     _predicted_bytes_to_copy = bytes;
   771   }
   773 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   774   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   775   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   777   CompactibleSpace* next_compaction_space() const;
   779   virtual void reset_after_compaction();
   781   void print() const;
   782   void print_on(outputStream* st) const;
   784   // vo == UsePrevMarking  -> use "prev" marking information,
   785   // vo == UseNextMarking -> use "next" marking information
   786   // vo == UseMarkWord    -> use the mark word in the object header
   787   //
   788   // NOTE: Only the "prev" marking information is guaranteed to be
   789   // consistent most of the time, so most calls to this should use
   790   // vo == UsePrevMarking.
   791   // Currently, there is only one case where this is called with
   792   // vo == UseNextMarking, which is to verify the "next" marking
   793   // information at the end of remark.
   794   // Currently there is only one place where this is called with
   795   // vo == UseMarkWord, which is to verify the marking during a
   796   // full GC.
   797   void verify(VerifyOption vo, bool *failures) const;
   799   // Override; it uses the "prev" marking information
   800   virtual void verify() const;
   801 };
   803 // HeapRegionClosure is used for iterating over regions.
   804 // Terminates the iteration when the "doHeapRegion" method returns "true".
   805 class HeapRegionClosure : public StackObj {
   806   friend class HeapRegionSeq;
   807   friend class G1CollectedHeap;
   809   bool _complete;
   810   void incomplete() { _complete = false; }
   812  public:
   813   HeapRegionClosure(): _complete(true) {}
   815   // Typically called on each region until it returns true.
   816   virtual bool doHeapRegion(HeapRegion* r) = 0;
   818   // True after iteration if the closure was applied to all heap regions
   819   // and returned "false" in all cases.
   820   bool complete() { return _complete; }
   821 };
   823 #endif // SERIALGC
   825 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial