src/cpu/sparc/vm/assembler_sparc.cpp

Fri, 11 Mar 2011 22:34:57 -0800

author
jrose
date
Fri, 11 Mar 2011 22:34:57 -0800
changeset 2639
8033953d67ff
parent 2565
28bf941f445e
child 2781
e1162778c1c8
permissions
-rw-r--r--

7012648: move JSR 292 to package java.lang.invoke and adjust names
Summary: package and class renaming only; delete unused methods and classes
Reviewed-by: twisti

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_sparc.inline.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #ifndef SERIALGC
    40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    42 #include "gc_implementation/g1/heapRegion.hpp"
    43 #endif
    45 // Convert the raw encoding form into the form expected by the
    46 // constructor for Address.
    47 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
    48   assert(scale == 0, "not supported");
    49   RelocationHolder rspec;
    50   if (disp_is_oop) {
    51     rspec = Relocation::spec_simple(relocInfo::oop_type);
    52   }
    54   Register rindex = as_Register(index);
    55   if (rindex != G0) {
    56     Address madr(as_Register(base), rindex);
    57     madr._rspec = rspec;
    58     return madr;
    59   } else {
    60     Address madr(as_Register(base), disp);
    61     madr._rspec = rspec;
    62     return madr;
    63   }
    64 }
    66 Address Argument::address_in_frame() const {
    67   // Warning: In LP64 mode disp will occupy more than 10 bits, but
    68   //          op codes such as ld or ldx, only access disp() to get
    69   //          their simm13 argument.
    70   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    71   if (is_in())
    72     return Address(FP, disp); // In argument.
    73   else
    74     return Address(SP, disp); // Out argument.
    75 }
    77 static const char* argumentNames[][2] = {
    78   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
    79   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
    80   {"A(n>9)","P(n>9)"}
    81 };
    83 const char* Argument::name() const {
    84   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
    85   int num = number();
    86   if (num >= nofArgs)  num = nofArgs - 1;
    87   return argumentNames[num][is_in() ? 1 : 0];
    88 }
    90 void Assembler::print_instruction(int inst) {
    91   const char* s;
    92   switch (inv_op(inst)) {
    93   default:         s = "????"; break;
    94   case call_op:    s = "call"; break;
    95   case branch_op:
    96     switch (inv_op2(inst)) {
    97       case bpr_op2:    s = "bpr";  break;
    98       case fb_op2:     s = "fb";   break;
    99       case fbp_op2:    s = "fbp";  break;
   100       case br_op2:     s = "br";   break;
   101       case bp_op2:     s = "bp";   break;
   102       case cb_op2:     s = "cb";   break;
   103       default:         s = "????"; break;
   104     }
   105   }
   106   ::tty->print("%s", s);
   107 }
   110 // Patch instruction inst at offset inst_pos to refer to dest_pos
   111 // and return the resulting instruction.
   112 // We should have pcs, not offsets, but since all is relative, it will work out
   113 // OK.
   114 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
   116   int m; // mask for displacement field
   117   int v; // new value for displacement field
   118   const int word_aligned_ones = -4;
   119   switch (inv_op(inst)) {
   120   default: ShouldNotReachHere();
   121   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
   122   case branch_op:
   123     switch (inv_op2(inst)) {
   124       case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
   125       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   126       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   127       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   128       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   129       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   130       default: ShouldNotReachHere();
   131     }
   132   }
   133   return  inst & ~m  |  v;
   134 }
   136 // Return the offset of the branch destionation of instruction inst
   137 // at offset pos.
   138 // Should have pcs, but since all is relative, it works out.
   139 int Assembler::branch_destination(int inst, int pos) {
   140   int r;
   141   switch (inv_op(inst)) {
   142   default: ShouldNotReachHere();
   143   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
   144   case branch_op:
   145     switch (inv_op2(inst)) {
   146       case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
   147       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
   148       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
   149       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   150       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   151       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   152       default: ShouldNotReachHere();
   153     }
   154   }
   155   return r;
   156 }
   158 int AbstractAssembler::code_fill_byte() {
   159   return 0x00;                  // illegal instruction 0x00000000
   160 }
   162 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
   163   switch (in) {
   164   case rc_z:   return equal;
   165   case rc_lez: return lessEqual;
   166   case rc_lz:  return less;
   167   case rc_nz:  return notEqual;
   168   case rc_gz:  return greater;
   169   case rc_gez: return greaterEqual;
   170   default:
   171     ShouldNotReachHere();
   172   }
   173   return equal;
   174 }
   176 // Generate a bunch 'o stuff (including v9's
   177 #ifndef PRODUCT
   178 void Assembler::test_v9() {
   179   add(    G0, G1, G2 );
   180   add(    G3,  0, G4 );
   182   addcc(  G5, G6, G7 );
   183   addcc(  I0,  1, I1 );
   184   addc(   I2, I3, I4 );
   185   addc(   I5, -1, I6 );
   186   addccc( I7, L0, L1 );
   187   addccc( L2, (1 << 12) - 2, L3 );
   189   Label lbl1, lbl2, lbl3;
   191   bind(lbl1);
   193   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
   194   delayed()->nop();
   195   bpr( rc_lez, false, pt, L5, lbl1);
   196   delayed()->nop();
   198   fb( f_never,     true, pc() + 4,  relocInfo::none);
   199   delayed()->nop();
   200   fb( f_notEqual, false, lbl2 );
   201   delayed()->nop();
   203   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
   204   delayed()->nop();
   205   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
   206   delayed()->nop();
   208   br( equal,  true, pc() + 1024, relocInfo::none);
   209   delayed()->nop();
   210   br( lessEqual, false, lbl1 );
   211   delayed()->nop();
   212   br( never, false, lbl1 );
   213   delayed()->nop();
   215   bp( less,               true, icc, pn, pc(), relocInfo::none);
   216   delayed()->nop();
   217   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
   218   delayed()->nop();
   220   call( pc(), relocInfo::none);
   221   delayed()->nop();
   222   call( lbl3 );
   223   delayed()->nop();
   226   casa(  L6, L7, O0 );
   227   casxa( O1, O2, O3, 0 );
   229   udiv(   O4, O5, O7 );
   230   udiv(   G0, (1 << 12) - 1, G1 );
   231   sdiv(   G1, G2, G3 );
   232   sdiv(   G4, -((1 << 12) - 1), G5 );
   233   udivcc( G6, G7, I0 );
   234   udivcc( I1, -((1 << 12) - 2), I2 );
   235   sdivcc( I3, I4, I5 );
   236   sdivcc( I6, -((1 << 12) - 0), I7 );
   238   done();
   239   retry();
   241   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
   242   fsub( FloatRegisterImpl::D, F34, F0, F62 );
   244   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
   245   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
   247   ftox( FloatRegisterImpl::D, F2, F4 );
   248   ftoi( FloatRegisterImpl::Q, F4, F8 );
   250   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
   252   fxtof( FloatRegisterImpl::S, F4, F5 );
   253   fitof( FloatRegisterImpl::D, F6, F8 );
   255   fmov( FloatRegisterImpl::Q, F16, F20 );
   256   fneg( FloatRegisterImpl::S, F6, F7 );
   257   fabs( FloatRegisterImpl::D, F10, F12 );
   259   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
   260   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
   261   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
   263   fsqrt( FloatRegisterImpl::S, F13, F14 );
   265   flush( L0, L1 );
   266   flush( L2, -1 );
   268   flushw();
   270   illtrap( (1 << 22) - 2);
   272   impdep1( 17, (1 << 19) - 1 );
   273   impdep2( 3,  0 );
   275   jmpl( L3, L4, L5 );
   276   delayed()->nop();
   277   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
   278   delayed()->nop();
   281   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
   282   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
   285   ldfsr(  O3, O4 );
   286   ldfsr(  O5, -1 );
   287   ldxfsr( O6, O7 );
   288   ldxfsr( I0, -1 );
   290   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
   291   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
   293   ldsb(  I4, I5, I6 );
   294   ldsb(  I7, -1, G0 );
   295   ldsh(  G1, G3, G4 );
   296   ldsh(  G5, -1, G6 );
   297   ldsw(  G7, L0, L1 );
   298   ldsw(  L2, -1, L3 );
   299   ldub(  L4, L5, L6 );
   300   ldub(  L7, -1, O0 );
   301   lduh(  O1, O2, O3 );
   302   lduh(  O4, -1, O5 );
   303   lduw(  O6, O7, G0 );
   304   lduw(  G1, -1, G2 );
   305   ldx(   G3, G4, G5 );
   306   ldx(   G6, -1, G7 );
   307   ldd(   I0, I1, I2 );
   308   ldd(   I3, -1, I4 );
   310   ldsba(  I5, I6, 2, I7 );
   311   ldsba(  L0, -1, L1 );
   312   ldsha(  L2, L3, 3, L4 );
   313   ldsha(  L5, -1, L6 );
   314   ldswa(  L7, O0, (1 << 8) - 1, O1 );
   315   ldswa(  O2, -1, O3 );
   316   lduba(  O4, O5, 0, O6 );
   317   lduba(  O7, -1, I0 );
   318   lduha(  I1, I2, 1, I3 );
   319   lduha(  I4, -1, I5 );
   320   lduwa(  I6, I7, 2, L0 );
   321   lduwa(  L1, -1, L2 );
   322   ldxa(   L3, L4, 3, L5 );
   323   ldxa(   L6, -1, L7 );
   324   ldda(   G0, G1, 4, G2 );
   325   ldda(   G3, -1, G4 );
   327   ldstub(  G5, G6, G7 );
   328   ldstub(  O0, -1, O1 );
   330   ldstuba( O2, O3, 5, O4 );
   331   ldstuba( O5, -1, O6 );
   333   and3(    I0, L0, O0 );
   334   and3(    G7, -1, O7 );
   335   andcc(   L2, I2, G2 );
   336   andcc(   L4, -1, G4 );
   337   andn(    I5, I6, I7 );
   338   andn(    I6, -1, I7 );
   339   andncc(  I5, I6, I7 );
   340   andncc(  I7, -1, I6 );
   341   or3(     I5, I6, I7 );
   342   or3(     I7, -1, I6 );
   343   orcc(    I5, I6, I7 );
   344   orcc(    I7, -1, I6 );
   345   orn(     I5, I6, I7 );
   346   orn(     I7, -1, I6 );
   347   orncc(   I5, I6, I7 );
   348   orncc(   I7, -1, I6 );
   349   xor3(    I5, I6, I7 );
   350   xor3(    I7, -1, I6 );
   351   xorcc(   I5, I6, I7 );
   352   xorcc(   I7, -1, I6 );
   353   xnor(    I5, I6, I7 );
   354   xnor(    I7, -1, I6 );
   355   xnorcc(  I5, I6, I7 );
   356   xnorcc(  I7, -1, I6 );
   358   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
   359   membar( StoreStore );
   360   membar( LoadStore );
   361   membar( StoreLoad );
   362   membar( LoadLoad );
   363   membar( Sync );
   364   membar( MemIssue );
   365   membar( Lookaside );
   367   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
   368   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
   370   movcc( overflowClear,  false, icc, I6, L4 );
   371   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
   373   movr( rc_nz, I5, I6, I7 );
   374   movr( rc_gz, L1, -1,  L2 );
   376   mulx(  I5, I6, I7 );
   377   mulx(  I7, -1, I6 );
   378   sdivx( I5, I6, I7 );
   379   sdivx( I7, -1, I6 );
   380   udivx( I5, I6, I7 );
   381   udivx( I7, -1, I6 );
   383   umul(   I5, I6, I7 );
   384   umul(   I7, -1, I6 );
   385   smul(   I5, I6, I7 );
   386   smul(   I7, -1, I6 );
   387   umulcc( I5, I6, I7 );
   388   umulcc( I7, -1, I6 );
   389   smulcc( I5, I6, I7 );
   390   smulcc( I7, -1, I6 );
   392   mulscc(   I5, I6, I7 );
   393   mulscc(   I7, -1, I6 );
   395   nop();
   398   popc( G0,  G1);
   399   popc( -1, G2);
   401   prefetch(   L1, L2,    severalReads );
   402   prefetch(   L3, -1,    oneRead );
   403   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
   404   prefetcha(  G2, -1,    oneWrite );
   406   rett( I7, I7);
   407   delayed()->nop();
   408   rett( G0, -1, relocInfo::none);
   409   delayed()->nop();
   411   save(    I5, I6, I7 );
   412   save(    I7, -1, I6 );
   413   restore( I5, I6, I7 );
   414   restore( I7, -1, I6 );
   416   saved();
   417   restored();
   419   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
   421   sll(  I5, I6, I7 );
   422   sll(  I7, 31, I6 );
   423   srl(  I5, I6, I7 );
   424   srl(  I7,  0, I6 );
   425   sra(  I5, I6, I7 );
   426   sra(  I7, 30, I6 );
   427   sllx( I5, I6, I7 );
   428   sllx( I7, 63, I6 );
   429   srlx( I5, I6, I7 );
   430   srlx( I7,  0, I6 );
   431   srax( I5, I6, I7 );
   432   srax( I7, 62, I6 );
   434   sir( -1 );
   436   stbar();
   438   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
   439   stf(    FloatRegisterImpl::S, F18, I3, -1 );
   441   stfsr(  L1, L2 );
   442   stfsr(  I7, -1 );
   443   stxfsr( I6, I5 );
   444   stxfsr( L4, -1 );
   446   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
   447   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
   449   stb(  L5, O2, I7 );
   450   stb(  I7, I6, -1 );
   451   sth(  L5, O2, I7 );
   452   sth(  I7, I6, -1 );
   453   stw(  L5, O2, I7 );
   454   stw(  I7, I6, -1 );
   455   stx(  L5, O2, I7 );
   456   stx(  I7, I6, -1 );
   457   std(  L5, O2, I7 );
   458   std(  I7, I6, -1 );
   460   stba(  L5, O2, I7, 8 );
   461   stba(  I7, I6, -1    );
   462   stha(  L5, O2, I7, 9 );
   463   stha(  I7, I6, -1    );
   464   stwa(  L5, O2, I7, 0 );
   465   stwa(  I7, I6, -1    );
   466   stxa(  L5, O2, I7, 11 );
   467   stxa(  I7, I6, -1     );
   468   stda(  L5, O2, I7, 12 );
   469   stda(  I7, I6, -1     );
   471   sub(    I5, I6, I7 );
   472   sub(    I7, -1, I6 );
   473   subcc(  I5, I6, I7 );
   474   subcc(  I7, -1, I6 );
   475   subc(   I5, I6, I7 );
   476   subc(   I7, -1, I6 );
   477   subccc( I5, I6, I7 );
   478   subccc( I7, -1, I6 );
   480   swap( I5, I6, I7 );
   481   swap( I7, -1, I6 );
   483   swapa(   G0, G1, 13, G2 );
   484   swapa(   I7, -1,     I6 );
   486   taddcc(    I5, I6, I7 );
   487   taddcc(    I7, -1, I6 );
   488   taddcctv(  I5, I6, I7 );
   489   taddcctv(  I7, -1, I6 );
   491   tsubcc(    I5, I6, I7 );
   492   tsubcc(    I7, -1, I6 );
   493   tsubcctv(  I5, I6, I7 );
   494   tsubcctv(  I7, -1, I6 );
   496   trap( overflowClear, xcc, G0, G1 );
   497   trap( lessEqual,     icc, I7, 17 );
   499   bind(lbl2);
   500   bind(lbl3);
   502   code()->decode();
   503 }
   505 // Generate a bunch 'o stuff unique to V8
   506 void Assembler::test_v8_onlys() {
   507   Label lbl1;
   509   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
   510   delayed()->nop();
   511   cb( cp_never,    true, lbl1);
   512   delayed()->nop();
   514   cpop1(1, 2, 3, 4);
   515   cpop2(5, 6, 7, 8);
   517   ldc( I0, I1, 31);
   518   ldc( I2, -1,  0);
   520   lddc( I4, I4, 30);
   521   lddc( I6,  0, 1 );
   523   ldcsr( L0, L1, 0);
   524   ldcsr( L1, (1 << 12) - 1, 17 );
   526   stc( 31, L4, L5);
   527   stc( 30, L6, -(1 << 12) );
   529   stdc( 0, L7, G0);
   530   stdc( 1, G1, 0 );
   532   stcsr( 16, G2, G3);
   533   stcsr( 17, G4, 1 );
   535   stdcq( 4, G5, G6);
   536   stdcq( 5, G7, -1 );
   538   bind(lbl1);
   540   code()->decode();
   541 }
   542 #endif
   544 // Implementation of MacroAssembler
   546 void MacroAssembler::null_check(Register reg, int offset) {
   547   if (needs_explicit_null_check((intptr_t)offset)) {
   548     // provoke OS NULL exception if reg = NULL by
   549     // accessing M[reg] w/o changing any registers
   550     ld_ptr(reg, 0, G0);
   551   }
   552   else {
   553     // nothing to do, (later) access of M[reg + offset]
   554     // will provoke OS NULL exception if reg = NULL
   555   }
   556 }
   558 // Ring buffer jumps
   560 #ifndef PRODUCT
   561 void MacroAssembler::ret(  bool trace )   { if (trace) {
   562                                                     mov(I7, O7); // traceable register
   563                                                     JMP(O7, 2 * BytesPerInstWord);
   564                                                   } else {
   565                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   566                                                   }
   567                                                 }
   569 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   570                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   571 #endif /* PRODUCT */
   574 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
   575   assert_not_delayed();
   576   // This can only be traceable if r1 & r2 are visible after a window save
   577   if (TraceJumps) {
   578 #ifndef PRODUCT
   579     save_frame(0);
   580     verify_thread();
   581     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   582     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   583     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   584     add(O2, O1, O1);
   586     add(r1->after_save(), r2->after_save(), O2);
   587     set((intptr_t)file, O3);
   588     set(line, O4);
   589     Label L;
   590     // get nearby pc, store jmp target
   591     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   592     delayed()->st(O2, O1, 0);
   593     bind(L);
   595     // store nearby pc
   596     st(O7, O1, sizeof(intptr_t));
   597     // store file
   598     st(O3, O1, 2*sizeof(intptr_t));
   599     // store line
   600     st(O4, O1, 3*sizeof(intptr_t));
   601     add(O0, 1, O0);
   602     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   603     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   604     restore();
   605 #endif /* PRODUCT */
   606   }
   607   jmpl(r1, r2, G0);
   608 }
   609 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
   610   assert_not_delayed();
   611   // This can only be traceable if r1 is visible after a window save
   612   if (TraceJumps) {
   613 #ifndef PRODUCT
   614     save_frame(0);
   615     verify_thread();
   616     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   617     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   618     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   619     add(O2, O1, O1);
   621     add(r1->after_save(), offset, O2);
   622     set((intptr_t)file, O3);
   623     set(line, O4);
   624     Label L;
   625     // get nearby pc, store jmp target
   626     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   627     delayed()->st(O2, O1, 0);
   628     bind(L);
   630     // store nearby pc
   631     st(O7, O1, sizeof(intptr_t));
   632     // store file
   633     st(O3, O1, 2*sizeof(intptr_t));
   634     // store line
   635     st(O4, O1, 3*sizeof(intptr_t));
   636     add(O0, 1, O0);
   637     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   638     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   639     restore();
   640 #endif /* PRODUCT */
   641   }
   642   jmp(r1, offset);
   643 }
   645 // This code sequence is relocatable to any address, even on LP64.
   646 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
   647   assert_not_delayed();
   648   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   649   // variable length instruction streams.
   650   patchable_sethi(addrlit, temp);
   651   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
   652   if (TraceJumps) {
   653 #ifndef PRODUCT
   654     // Must do the add here so relocation can find the remainder of the
   655     // value to be relocated.
   656     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
   657     save_frame(0);
   658     verify_thread();
   659     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   660     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   661     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   662     add(O2, O1, O1);
   664     set((intptr_t)file, O3);
   665     set(line, O4);
   666     Label L;
   668     // get nearby pc, store jmp target
   669     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   670     delayed()->st(a.base()->after_save(), O1, 0);
   671     bind(L);
   673     // store nearby pc
   674     st(O7, O1, sizeof(intptr_t));
   675     // store file
   676     st(O3, O1, 2*sizeof(intptr_t));
   677     // store line
   678     st(O4, O1, 3*sizeof(intptr_t));
   679     add(O0, 1, O0);
   680     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   681     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   682     restore();
   683     jmpl(a.base(), G0, d);
   684 #else
   685     jmpl(a.base(), a.disp(), d);
   686 #endif /* PRODUCT */
   687   } else {
   688     jmpl(a.base(), a.disp(), d);
   689   }
   690 }
   692 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
   693   jumpl(addrlit, temp, G0, offset, file, line);
   694 }
   697 // Convert to C varargs format
   698 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
   699   // spill register-resident args to their memory slots
   700   // (SPARC calling convention requires callers to have already preallocated these)
   701   // Note that the inArg might in fact be an outgoing argument,
   702   // if a leaf routine or stub does some tricky argument shuffling.
   703   // This routine must work even though one of the saved arguments
   704   // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
   705   for (Argument savePtr = inArg;
   706        savePtr.is_register();
   707        savePtr = savePtr.successor()) {
   708     st_ptr(savePtr.as_register(), savePtr.address_in_frame());
   709   }
   710   // return the address of the first memory slot
   711   Address a = inArg.address_in_frame();
   712   add(a.base(), a.disp(), d);
   713 }
   715 // Conditional breakpoint (for assertion checks in assembly code)
   716 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
   717   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
   718 }
   720 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
   721 void MacroAssembler::breakpoint_trap() {
   722   trap(ST_RESERVED_FOR_USER_0);
   723 }
   725 // flush windows (except current) using flushw instruction if avail.
   726 void MacroAssembler::flush_windows() {
   727   if (VM_Version::v9_instructions_work())  flushw();
   728   else                                     flush_windows_trap();
   729 }
   731 // Write serialization page so VM thread can do a pseudo remote membar
   732 // We use the current thread pointer to calculate a thread specific
   733 // offset to write to within the page. This minimizes bus traffic
   734 // due to cache line collision.
   735 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
   736   srl(thread, os::get_serialize_page_shift_count(), tmp2);
   737   if (Assembler::is_simm13(os::vm_page_size())) {
   738     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
   739   }
   740   else {
   741     set((os::vm_page_size() - sizeof(int)), tmp1);
   742     and3(tmp2, tmp1, tmp2);
   743   }
   744   set(os::get_memory_serialize_page(), tmp1);
   745   st(G0, tmp1, tmp2);
   746 }
   750 void MacroAssembler::enter() {
   751   Unimplemented();
   752 }
   754 void MacroAssembler::leave() {
   755   Unimplemented();
   756 }
   758 void MacroAssembler::mult(Register s1, Register s2, Register d) {
   759   if(VM_Version::v9_instructions_work()) {
   760     mulx (s1, s2, d);
   761   } else {
   762     smul (s1, s2, d);
   763   }
   764 }
   766 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
   767   if(VM_Version::v9_instructions_work()) {
   768     mulx (s1, simm13a, d);
   769   } else {
   770     smul (s1, simm13a, d);
   771   }
   772 }
   775 #ifdef ASSERT
   776 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
   777   const Register s1 = G3_scratch;
   778   const Register s2 = G4_scratch;
   779   Label get_psr_test;
   780   // Get the condition codes the V8 way.
   781   read_ccr_trap(s1);
   782   mov(ccr_save, s2);
   783   // This is a test of V8 which has icc but not xcc
   784   // so mask off the xcc bits
   785   and3(s2, 0xf, s2);
   786   // Compare condition codes from the V8 and V9 ways.
   787   subcc(s2, s1, G0);
   788   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
   789   delayed()->breakpoint_trap();
   790   bind(get_psr_test);
   791 }
   793 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
   794   const Register s1 = G3_scratch;
   795   const Register s2 = G4_scratch;
   796   Label set_psr_test;
   797   // Write out the saved condition codes the V8 way
   798   write_ccr_trap(ccr_save, s1, s2);
   799   // Read back the condition codes using the V9 instruction
   800   rdccr(s1);
   801   mov(ccr_save, s2);
   802   // This is a test of V8 which has icc but not xcc
   803   // so mask off the xcc bits
   804   and3(s2, 0xf, s2);
   805   and3(s1, 0xf, s1);
   806   // Compare the V8 way with the V9 way.
   807   subcc(s2, s1, G0);
   808   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
   809   delayed()->breakpoint_trap();
   810   bind(set_psr_test);
   811 }
   812 #else
   813 #define read_ccr_v8_assert(x)
   814 #define write_ccr_v8_assert(x)
   815 #endif // ASSERT
   817 void MacroAssembler::read_ccr(Register ccr_save) {
   818   if (VM_Version::v9_instructions_work()) {
   819     rdccr(ccr_save);
   820     // Test code sequence used on V8.  Do not move above rdccr.
   821     read_ccr_v8_assert(ccr_save);
   822   } else {
   823     read_ccr_trap(ccr_save);
   824   }
   825 }
   827 void MacroAssembler::write_ccr(Register ccr_save) {
   828   if (VM_Version::v9_instructions_work()) {
   829     // Test code sequence used on V8.  Do not move below wrccr.
   830     write_ccr_v8_assert(ccr_save);
   831     wrccr(ccr_save);
   832   } else {
   833     const Register temp_reg1 = G3_scratch;
   834     const Register temp_reg2 = G4_scratch;
   835     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
   836   }
   837 }
   840 // Calls to C land
   842 #ifdef ASSERT
   843 // a hook for debugging
   844 static Thread* reinitialize_thread() {
   845   return ThreadLocalStorage::thread();
   846 }
   847 #else
   848 #define reinitialize_thread ThreadLocalStorage::thread
   849 #endif
   851 #ifdef ASSERT
   852 address last_get_thread = NULL;
   853 #endif
   855 // call this when G2_thread is not known to be valid
   856 void MacroAssembler::get_thread() {
   857   save_frame(0);                // to avoid clobbering O0
   858   mov(G1, L0);                  // avoid clobbering G1
   859   mov(G5_method, L1);           // avoid clobbering G5
   860   mov(G3, L2);                  // avoid clobbering G3 also
   861   mov(G4, L5);                  // avoid clobbering G4
   862 #ifdef ASSERT
   863   AddressLiteral last_get_thread_addrlit(&last_get_thread);
   864   set(last_get_thread_addrlit, L3);
   865   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
   866   st_ptr(L4, L3, 0);
   867 #endif
   868   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
   869   delayed()->nop();
   870   mov(L0, G1);
   871   mov(L1, G5_method);
   872   mov(L2, G3);
   873   mov(L5, G4);
   874   restore(O0, 0, G2_thread);
   875 }
   877 static Thread* verify_thread_subroutine(Thread* gthread_value) {
   878   Thread* correct_value = ThreadLocalStorage::thread();
   879   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
   880   return correct_value;
   881 }
   883 void MacroAssembler::verify_thread() {
   884   if (VerifyThread) {
   885     // NOTE: this chops off the heads of the 64-bit O registers.
   886 #ifdef CC_INTERP
   887     save_frame(0);
   888 #else
   889     // make sure G2_thread contains the right value
   890     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
   891     mov(G1, L1);                // avoid clobbering G1
   892     // G2 saved below
   893     mov(G3, L3);                // avoid clobbering G3
   894     mov(G4, L4);                // avoid clobbering G4
   895     mov(G5_method, L5);         // avoid clobbering G5_method
   896 #endif /* CC_INTERP */
   897 #if defined(COMPILER2) && !defined(_LP64)
   898     // Save & restore possible 64-bit Long arguments in G-regs
   899     srlx(G1,32,L0);
   900     srlx(G4,32,L6);
   901 #endif
   902     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
   903     delayed()->mov(G2_thread, O0);
   905     mov(L1, G1);                // Restore G1
   906     // G2 restored below
   907     mov(L3, G3);                // restore G3
   908     mov(L4, G4);                // restore G4
   909     mov(L5, G5_method);         // restore G5_method
   910 #if defined(COMPILER2) && !defined(_LP64)
   911     // Save & restore possible 64-bit Long arguments in G-regs
   912     sllx(L0,32,G2);             // Move old high G1 bits high in G2
   913     srl(G1, 0,G1);              // Clear current high G1 bits
   914     or3 (G1,G2,G1);             // Recover 64-bit G1
   915     sllx(L6,32,G2);             // Move old high G4 bits high in G2
   916     srl(G4, 0,G4);              // Clear current high G4 bits
   917     or3 (G4,G2,G4);             // Recover 64-bit G4
   918 #endif
   919     restore(O0, 0, G2_thread);
   920   }
   921 }
   924 void MacroAssembler::save_thread(const Register thread_cache) {
   925   verify_thread();
   926   if (thread_cache->is_valid()) {
   927     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   928     mov(G2_thread, thread_cache);
   929   }
   930   if (VerifyThread) {
   931     // smash G2_thread, as if the VM were about to anyway
   932     set(0x67676767, G2_thread);
   933   }
   934 }
   937 void MacroAssembler::restore_thread(const Register thread_cache) {
   938   if (thread_cache->is_valid()) {
   939     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   940     mov(thread_cache, G2_thread);
   941     verify_thread();
   942   } else {
   943     // do it the slow way
   944     get_thread();
   945   }
   946 }
   949 // %%% maybe get rid of [re]set_last_Java_frame
   950 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
   951   assert_not_delayed();
   952   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
   953                            JavaFrameAnchor::flags_offset());
   954   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
   956   // Always set last_Java_pc and flags first because once last_Java_sp is visible
   957   // has_last_Java_frame is true and users will look at the rest of the fields.
   958   // (Note: flags should always be zero before we get here so doesn't need to be set.)
   960 #ifdef ASSERT
   961   // Verify that flags was zeroed on return to Java
   962   Label PcOk;
   963   save_frame(0);                // to avoid clobbering O0
   964   ld_ptr(pc_addr, L0);
   965   tst(L0);
   966 #ifdef _LP64
   967   brx(Assembler::zero, false, Assembler::pt, PcOk);
   968 #else
   969   br(Assembler::zero, false, Assembler::pt, PcOk);
   970 #endif // _LP64
   971   delayed() -> nop();
   972   stop("last_Java_pc not zeroed before leaving Java");
   973   bind(PcOk);
   975   // Verify that flags was zeroed on return to Java
   976   Label FlagsOk;
   977   ld(flags, L0);
   978   tst(L0);
   979   br(Assembler::zero, false, Assembler::pt, FlagsOk);
   980   delayed() -> restore();
   981   stop("flags not zeroed before leaving Java");
   982   bind(FlagsOk);
   983 #endif /* ASSERT */
   984   //
   985   // When returning from calling out from Java mode the frame anchor's last_Java_pc
   986   // will always be set to NULL. It is set here so that if we are doing a call to
   987   // native (not VM) that we capture the known pc and don't have to rely on the
   988   // native call having a standard frame linkage where we can find the pc.
   990   if (last_Java_pc->is_valid()) {
   991     st_ptr(last_Java_pc, pc_addr);
   992   }
   994 #ifdef _LP64
   995 #ifdef ASSERT
   996   // Make sure that we have an odd stack
   997   Label StackOk;
   998   andcc(last_java_sp, 0x01, G0);
   999   br(Assembler::notZero, false, Assembler::pt, StackOk);
  1000   delayed() -> nop();
  1001   stop("Stack Not Biased in set_last_Java_frame");
  1002   bind(StackOk);
  1003 #endif // ASSERT
  1004   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
  1005   add( last_java_sp, STACK_BIAS, G4_scratch );
  1006   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
  1007 #else
  1008   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
  1009 #endif // _LP64
  1012 void MacroAssembler::reset_last_Java_frame(void) {
  1013   assert_not_delayed();
  1015   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
  1016   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1017   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  1019 #ifdef ASSERT
  1020   // check that it WAS previously set
  1021 #ifdef CC_INTERP
  1022     save_frame(0);
  1023 #else
  1024     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
  1025 #endif /* CC_INTERP */
  1026     ld_ptr(sp_addr, L0);
  1027     tst(L0);
  1028     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
  1029     restore();
  1030 #endif // ASSERT
  1032   st_ptr(G0, sp_addr);
  1033   // Always return last_Java_pc to zero
  1034   st_ptr(G0, pc_addr);
  1035   // Always null flags after return to Java
  1036   st(G0, flags);
  1040 void MacroAssembler::call_VM_base(
  1041   Register        oop_result,
  1042   Register        thread_cache,
  1043   Register        last_java_sp,
  1044   address         entry_point,
  1045   int             number_of_arguments,
  1046   bool            check_exceptions)
  1048   assert_not_delayed();
  1050   // determine last_java_sp register
  1051   if (!last_java_sp->is_valid()) {
  1052     last_java_sp = SP;
  1054   // debugging support
  1055   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1057   // 64-bit last_java_sp is biased!
  1058   set_last_Java_frame(last_java_sp, noreg);
  1059   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  1060   save_thread(thread_cache);
  1061   // do the call
  1062   call(entry_point, relocInfo::runtime_call_type);
  1063   if (!VerifyThread)
  1064     delayed()->mov(G2_thread, O0);  // pass thread as first argument
  1065   else
  1066     delayed()->nop();             // (thread already passed)
  1067   restore_thread(thread_cache);
  1068   reset_last_Java_frame();
  1070   // check for pending exceptions. use Gtemp as scratch register.
  1071   if (check_exceptions) {
  1072     check_and_forward_exception(Gtemp);
  1075   // get oop result if there is one and reset the value in the thread
  1076   if (oop_result->is_valid()) {
  1077     get_vm_result(oop_result);
  1081 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
  1083   Label L;
  1085   check_and_handle_popframe(scratch_reg);
  1086   check_and_handle_earlyret(scratch_reg);
  1088   Address exception_addr(G2_thread, Thread::pending_exception_offset());
  1089   ld_ptr(exception_addr, scratch_reg);
  1090   br_null(scratch_reg,false,pt,L);
  1091   delayed()->nop();
  1092   // we use O7 linkage so that forward_exception_entry has the issuing PC
  1093   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1094   delayed()->nop();
  1095   bind(L);
  1099 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  1103 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
  1107 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1108   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
  1112 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  1113   // O0 is reserved for the thread
  1114   mov(arg_1, O1);
  1115   call_VM(oop_result, entry_point, 1, check_exceptions);
  1119 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1120   // O0 is reserved for the thread
  1121   mov(arg_1, O1);
  1122   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1123   call_VM(oop_result, entry_point, 2, check_exceptions);
  1127 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1128   // O0 is reserved for the thread
  1129   mov(arg_1, O1);
  1130   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1131   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1132   call_VM(oop_result, entry_point, 3, check_exceptions);
  1137 // Note: The following call_VM overloadings are useful when a "save"
  1138 // has already been performed by a stub, and the last Java frame is
  1139 // the previous one.  In that case, last_java_sp must be passed as FP
  1140 // instead of SP.
  1143 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
  1144   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1148 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
  1149   // O0 is reserved for the thread
  1150   mov(arg_1, O1);
  1151   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1155 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1156   // O0 is reserved for the thread
  1157   mov(arg_1, O1);
  1158   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1159   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1163 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1164   // O0 is reserved for the thread
  1165   mov(arg_1, O1);
  1166   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1167   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1168   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1173 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
  1174   assert_not_delayed();
  1175   save_thread(thread_cache);
  1176   // do the call
  1177   call(entry_point, relocInfo::runtime_call_type);
  1178   delayed()->nop();
  1179   restore_thread(thread_cache);
  1183 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
  1184   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
  1188 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  1189   mov(arg_1, O0);
  1190   call_VM_leaf(thread_cache, entry_point, 1);
  1194 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
  1195   mov(arg_1, O0);
  1196   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
  1197   call_VM_leaf(thread_cache, entry_point, 2);
  1201 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  1202   mov(arg_1, O0);
  1203   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
  1204   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
  1205   call_VM_leaf(thread_cache, entry_point, 3);
  1209 void MacroAssembler::get_vm_result(Register oop_result) {
  1210   verify_thread();
  1211   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1212   ld_ptr(    vm_result_addr, oop_result);
  1213   st_ptr(G0, vm_result_addr);
  1214   verify_oop(oop_result);
  1218 void MacroAssembler::get_vm_result_2(Register oop_result) {
  1219   verify_thread();
  1220   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
  1221   ld_ptr(vm_result_addr_2, oop_result);
  1222   st_ptr(G0, vm_result_addr_2);
  1223   verify_oop(oop_result);
  1227 // We require that C code which does not return a value in vm_result will
  1228 // leave it undisturbed.
  1229 void MacroAssembler::set_vm_result(Register oop_result) {
  1230   verify_thread();
  1231   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1232   verify_oop(oop_result);
  1234 # ifdef ASSERT
  1235     // Check that we are not overwriting any other oop.
  1236 #ifdef CC_INTERP
  1237     save_frame(0);
  1238 #else
  1239     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
  1240 #endif /* CC_INTERP */
  1241     ld_ptr(vm_result_addr, L0);
  1242     tst(L0);
  1243     restore();
  1244     breakpoint_trap(notZero, Assembler::ptr_cc);
  1245     // }
  1246 # endif
  1248   st_ptr(oop_result, vm_result_addr);
  1252 void MacroAssembler::card_table_write(jbyte* byte_map_base,
  1253                                       Register tmp, Register obj) {
  1254 #ifdef _LP64
  1255   srlx(obj, CardTableModRefBS::card_shift, obj);
  1256 #else
  1257   srl(obj, CardTableModRefBS::card_shift, obj);
  1258 #endif
  1259   assert(tmp != obj, "need separate temp reg");
  1260   set((address) byte_map_base, tmp);
  1261   stb(G0, tmp, obj);
  1265 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1266   address save_pc;
  1267   int shiftcnt;
  1268 #ifdef _LP64
  1269 # ifdef CHECK_DELAY
  1270   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1271 # endif
  1272   v9_dep();
  1273   save_pc = pc();
  1275   int msb32 = (int) (addrlit.value() >> 32);
  1276   int lsb32 = (int) (addrlit.value());
  1278   if (msb32 == 0 && lsb32 >= 0) {
  1279     Assembler::sethi(lsb32, d, addrlit.rspec());
  1281   else if (msb32 == -1) {
  1282     Assembler::sethi(~lsb32, d, addrlit.rspec());
  1283     xor3(d, ~low10(~0), d);
  1285   else {
  1286     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
  1287     if (msb32 & 0x3ff)                            // Any bits?
  1288       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
  1289     if (lsb32 & 0xFFFFFC00) {                     // done?
  1290       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
  1291         sllx(d, 12, d);                           // Make room for next 12 bits
  1292         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
  1293         shiftcnt = 0;                             // We already shifted
  1295       else
  1296         shiftcnt = 12;
  1297       if ((lsb32 >> 10) & 0x3ff) {
  1298         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
  1299         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
  1300         shiftcnt = 0;
  1302       else
  1303         shiftcnt = 10;
  1304       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
  1306     else
  1307       sllx(d, 32, d);
  1309   // Pad out the instruction sequence so it can be patched later.
  1310   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
  1311                            addrlit.rtype() != relocInfo::runtime_call_type)) {
  1312     while (pc() < (save_pc + (7 * BytesPerInstWord)))
  1313       nop();
  1315 #else
  1316   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
  1317 #endif
  1321 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
  1322   internal_sethi(addrlit, d, false);
  1326 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
  1327   internal_sethi(addrlit, d, true);
  1331 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
  1332 #ifdef _LP64
  1333   if (worst_case)  return 7;
  1334   intptr_t iaddr = (intptr_t) a;
  1335   int msb32 = (int) (iaddr >> 32);
  1336   int lsb32 = (int) (iaddr);
  1337   int count;
  1338   if (msb32 == 0 && lsb32 >= 0)
  1339     count = 1;
  1340   else if (msb32 == -1)
  1341     count = 2;
  1342   else {
  1343     count = 2;
  1344     if (msb32 & 0x3ff)
  1345       count++;
  1346     if (lsb32 & 0xFFFFFC00 ) {
  1347       if ((lsb32 >> 20) & 0xfff)  count += 2;
  1348       if ((lsb32 >> 10) & 0x3ff)  count += 2;
  1351   return count;
  1352 #else
  1353   return 1;
  1354 #endif
  1357 int MacroAssembler::worst_case_insts_for_set() {
  1358   return insts_for_sethi(NULL, true) + 1;
  1362 // Keep in sync with MacroAssembler::insts_for_internal_set
  1363 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1364   intptr_t value = addrlit.value();
  1366   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
  1367     // can optimize
  1368     if (-4096 <= value && value <= 4095) {
  1369       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
  1370       return;
  1372     if (inv_hi22(hi22(value)) == value) {
  1373       sethi(addrlit, d);
  1374       return;
  1377   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1378   internal_sethi(addrlit, d, ForceRelocatable);
  1379   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
  1380     add(d, addrlit.low10(), d, addrlit.rspec());
  1384 // Keep in sync with MacroAssembler::internal_set
  1385 int MacroAssembler::insts_for_internal_set(intptr_t value) {
  1386   // can optimize
  1387   if (-4096 <= value && value <= 4095) {
  1388     return 1;
  1390   if (inv_hi22(hi22(value)) == value) {
  1391     return insts_for_sethi((address) value);
  1393   int count = insts_for_sethi((address) value);
  1394   AddressLiteral al(value);
  1395   if (al.low10() != 0) {
  1396     count++;
  1398   return count;
  1401 void MacroAssembler::set(const AddressLiteral& al, Register d) {
  1402   internal_set(al, d, false);
  1405 void MacroAssembler::set(intptr_t value, Register d) {
  1406   AddressLiteral al(value);
  1407   internal_set(al, d, false);
  1410 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
  1411   AddressLiteral al(addr, rspec);
  1412   internal_set(al, d, false);
  1415 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
  1416   internal_set(al, d, true);
  1419 void MacroAssembler::patchable_set(intptr_t value, Register d) {
  1420   AddressLiteral al(value);
  1421   internal_set(al, d, true);
  1425 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  1426   assert_not_delayed();
  1427   v9_dep();
  1429   int hi = (int)(value >> 32);
  1430   int lo = (int)(value & ~0);
  1431   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1432   if (Assembler::is_simm13(lo) && value == lo) {
  1433     or3(G0, lo, d);
  1434   } else if (hi == 0) {
  1435     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
  1436     if (low10(lo) != 0)
  1437       or3(d, low10(lo), d);
  1439   else if (hi == -1) {
  1440     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
  1441     xor3(d, low10(lo) ^ ~low10(~0), d);
  1443   else if (lo == 0) {
  1444     if (Assembler::is_simm13(hi)) {
  1445       or3(G0, hi, d);
  1446     } else {
  1447       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
  1448       if (low10(hi) != 0)
  1449         or3(d, low10(hi), d);
  1451     sllx(d, 32, d);
  1453   else {
  1454     Assembler::sethi(hi, tmp);
  1455     Assembler::sethi(lo,   d); // macro assembler version sign-extends
  1456     if (low10(hi) != 0)
  1457       or3 (tmp, low10(hi), tmp);
  1458     if (low10(lo) != 0)
  1459       or3 (  d, low10(lo),   d);
  1460     sllx(tmp, 32, tmp);
  1461     or3 (d, tmp, d);
  1465 int MacroAssembler::insts_for_set64(jlong value) {
  1466   v9_dep();
  1468   int hi = (int) (value >> 32);
  1469   int lo = (int) (value & ~0);
  1470   int count = 0;
  1472   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1473   if (Assembler::is_simm13(lo) && value == lo) {
  1474     count++;
  1475   } else if (hi == 0) {
  1476     count++;
  1477     if (low10(lo) != 0)
  1478       count++;
  1480   else if (hi == -1) {
  1481     count += 2;
  1483   else if (lo == 0) {
  1484     if (Assembler::is_simm13(hi)) {
  1485       count++;
  1486     } else {
  1487       count++;
  1488       if (low10(hi) != 0)
  1489         count++;
  1491     count++;
  1493   else {
  1494     count += 2;
  1495     if (low10(hi) != 0)
  1496       count++;
  1497     if (low10(lo) != 0)
  1498       count++;
  1499     count += 2;
  1501   return count;
  1504 // compute size in bytes of sparc frame, given
  1505 // number of extraWords
  1506 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
  1508   int nWords = frame::memory_parameter_word_sp_offset;
  1510   nWords += extraWords;
  1512   if (nWords & 1) ++nWords; // round up to double-word
  1514   return nWords * BytesPerWord;
  1518 // save_frame: given number of "extra" words in frame,
  1519 // issue approp. save instruction (p 200, v8 manual)
  1521 void MacroAssembler::save_frame(int extraWords = 0) {
  1522   int delta = -total_frame_size_in_bytes(extraWords);
  1523   if (is_simm13(delta)) {
  1524     save(SP, delta, SP);
  1525   } else {
  1526     set(delta, G3_scratch);
  1527     save(SP, G3_scratch, SP);
  1532 void MacroAssembler::save_frame_c1(int size_in_bytes) {
  1533   if (is_simm13(-size_in_bytes)) {
  1534     save(SP, -size_in_bytes, SP);
  1535   } else {
  1536     set(-size_in_bytes, G3_scratch);
  1537     save(SP, G3_scratch, SP);
  1542 void MacroAssembler::save_frame_and_mov(int extraWords,
  1543                                         Register s1, Register d1,
  1544                                         Register s2, Register d2) {
  1545   assert_not_delayed();
  1547   // The trick here is to use precisely the same memory word
  1548   // that trap handlers also use to save the register.
  1549   // This word cannot be used for any other purpose, but
  1550   // it works fine to save the register's value, whether or not
  1551   // an interrupt flushes register windows at any given moment!
  1552   Address s1_addr;
  1553   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
  1554     s1_addr = s1->address_in_saved_window();
  1555     st_ptr(s1, s1_addr);
  1558   Address s2_addr;
  1559   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
  1560     s2_addr = s2->address_in_saved_window();
  1561     st_ptr(s2, s2_addr);
  1564   save_frame(extraWords);
  1566   if (s1_addr.base() == SP) {
  1567     ld_ptr(s1_addr.after_save(), d1);
  1568   } else if (s1->is_valid()) {
  1569     mov(s1->after_save(), d1);
  1572   if (s2_addr.base() == SP) {
  1573     ld_ptr(s2_addr.after_save(), d2);
  1574   } else if (s2->is_valid()) {
  1575     mov(s2->after_save(), d2);
  1580 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
  1581   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1582   int oop_index = oop_recorder()->allocate_index(obj);
  1583   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1587 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
  1588   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1589   int oop_index = oop_recorder()->find_index(obj);
  1590   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1593 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
  1594   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1595   int oop_index = oop_recorder()->find_index(obj);
  1596   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  1598   assert_not_delayed();
  1599   // Relocation with special format (see relocInfo_sparc.hpp).
  1600   relocate(rspec, 1);
  1601   // Assembler::sethi(0x3fffff, d);
  1602   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
  1603   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  1604   add(d, 0x3ff, d);
  1609 void MacroAssembler::align(int modulus) {
  1610   while (offset() % modulus != 0) nop();
  1614 void MacroAssembler::safepoint() {
  1615   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
  1619 void RegistersForDebugging::print(outputStream* s) {
  1620   int j;
  1621   for ( j = 0;  j < 8;  ++j )
  1622     if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
  1623     else          s->print_cr( "fp = 0x%.16lx",    i[j]);
  1624   s->cr();
  1626   for ( j = 0;  j < 8;  ++j )
  1627     s->print_cr("l%d = 0x%.16lx", j, l[j]);
  1628   s->cr();
  1630   for ( j = 0;  j < 8;  ++j )
  1631     if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
  1632     else          s->print_cr( "sp = 0x%.16lx",    o[j]);
  1633   s->cr();
  1635   for ( j = 0;  j < 8;  ++j )
  1636     s->print_cr("g%d = 0x%.16lx", j, g[j]);
  1637   s->cr();
  1639   // print out floats with compression
  1640   for (j = 0; j < 32; ) {
  1641     jfloat val = f[j];
  1642     int last = j;
  1643     for ( ;  last+1 < 32;  ++last ) {
  1644       char b1[1024], b2[1024];
  1645       sprintf(b1, "%f", val);
  1646       sprintf(b2, "%f", f[last+1]);
  1647       if (strcmp(b1, b2))
  1648         break;
  1650     s->print("f%d", j);
  1651     if ( j != last )  s->print(" - f%d", last);
  1652     s->print(" = %f", val);
  1653     s->fill_to(25);
  1654     s->print_cr(" (0x%x)", val);
  1655     j = last + 1;
  1657   s->cr();
  1659   // and doubles (evens only)
  1660   for (j = 0; j < 32; ) {
  1661     jdouble val = d[j];
  1662     int last = j;
  1663     for ( ;  last+1 < 32;  ++last ) {
  1664       char b1[1024], b2[1024];
  1665       sprintf(b1, "%f", val);
  1666       sprintf(b2, "%f", d[last+1]);
  1667       if (strcmp(b1, b2))
  1668         break;
  1670     s->print("d%d", 2 * j);
  1671     if ( j != last )  s->print(" - d%d", last);
  1672     s->print(" = %f", val);
  1673     s->fill_to(30);
  1674     s->print("(0x%x)", *(int*)&val);
  1675     s->fill_to(42);
  1676     s->print_cr("(0x%x)", *(1 + (int*)&val));
  1677     j = last + 1;
  1679   s->cr();
  1682 void RegistersForDebugging::save_registers(MacroAssembler* a) {
  1683   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  1684   a->flush_windows();
  1685   int i;
  1686   for (i = 0; i < 8; ++i) {
  1687     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
  1688     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
  1689     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
  1690     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  1692   for (i = 0;  i < 32; ++i) {
  1693     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  1695   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
  1696     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  1700 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  1701   for (int i = 1; i < 8;  ++i) {
  1702     a->ld_ptr(r, g_offset(i), as_gRegister(i));
  1704   for (int j = 0; j < 32; ++j) {
  1705     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  1707   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
  1708     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  1713 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1714 void MacroAssembler::push_fTOS() {
  1715   // %%%%%% need to implement this
  1718 // pops double TOS element from CPU stack and pushes on FPU stack
  1719 void MacroAssembler::pop_fTOS() {
  1720   // %%%%%% need to implement this
  1723 void MacroAssembler::empty_FPU_stack() {
  1724   // %%%%%% need to implement this
  1727 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  1728   // plausibility check for oops
  1729   if (!VerifyOops) return;
  1731   if (reg == G0)  return;       // always NULL, which is always an oop
  1733   char buffer[64];
  1734 #ifdef COMPILER1
  1735   if (CommentedAssembly) {
  1736     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
  1737     block_comment(buffer);
  1739 #endif
  1741   int len = strlen(file) + strlen(msg) + 1 + 4;
  1742   sprintf(buffer, "%d", line);
  1743   len += strlen(buffer);
  1744   sprintf(buffer, " at offset %d ", offset());
  1745   len += strlen(buffer);
  1746   char * real_msg = new char[len];
  1747   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
  1749   // Call indirectly to solve generation ordering problem
  1750   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1752   // Make some space on stack above the current register window.
  1753   // Enough to hold 8 64-bit registers.
  1754   add(SP,-8*8,SP);
  1756   // Save some 64-bit registers; a normal 'save' chops the heads off
  1757   // of 64-bit longs in the 32-bit build.
  1758   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1759   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1760   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  1761   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1763   set((intptr_t)real_msg, O1);
  1764   // Load address to call to into O7
  1765   load_ptr_contents(a, O7);
  1766   // Register call to verify_oop_subroutine
  1767   callr(O7, G0);
  1768   delayed()->nop();
  1769   // recover frame size
  1770   add(SP, 8*8,SP);
  1773 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  1774   // plausibility check for oops
  1775   if (!VerifyOops) return;
  1777   char buffer[64];
  1778   sprintf(buffer, "%d", line);
  1779   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  1780   sprintf(buffer, " at SP+%d ", addr.disp());
  1781   len += strlen(buffer);
  1782   char * real_msg = new char[len];
  1783   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
  1785   // Call indirectly to solve generation ordering problem
  1786   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1788   // Make some space on stack above the current register window.
  1789   // Enough to hold 8 64-bit registers.
  1790   add(SP,-8*8,SP);
  1792   // Save some 64-bit registers; a normal 'save' chops the heads off
  1793   // of 64-bit longs in the 32-bit build.
  1794   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1795   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1796   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  1797   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1799   set((intptr_t)real_msg, O1);
  1800   // Load address to call to into O7
  1801   load_ptr_contents(a, O7);
  1802   // Register call to verify_oop_subroutine
  1803   callr(O7, G0);
  1804   delayed()->nop();
  1805   // recover frame size
  1806   add(SP, 8*8,SP);
  1809 // side-door communication with signalHandler in os_solaris.cpp
  1810 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
  1812 // This macro is expanded just once; it creates shared code.  Contract:
  1813 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
  1814 // registers, including flags.  May not use a register 'save', as this blows
  1815 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
  1816 // call.
  1817 void MacroAssembler::verify_oop_subroutine() {
  1818   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
  1820   // Leaf call; no frame.
  1821   Label succeed, fail, null_or_fail;
  1823   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  1824   // O0 is now the oop to be checked.  O7 is the return address.
  1825   Register O0_obj = O0;
  1827   // Save some more registers for temps.
  1828   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  1829   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  1830   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  1831   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
  1833   // Save flags
  1834   Register O5_save_flags = O5;
  1835   rdccr( O5_save_flags );
  1837   { // count number of verifies
  1838     Register O2_adr   = O2;
  1839     Register O3_accum = O3;
  1840     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
  1843   Register O2_mask = O2;
  1844   Register O3_bits = O3;
  1845   Register O4_temp = O4;
  1847   // mark lower end of faulting range
  1848   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  1849   _verify_oop_implicit_branch[0] = pc();
  1851   // We can't check the mark oop because it could be in the process of
  1852   // locking or unlocking while this is running.
  1853   set(Universe::verify_oop_mask (), O2_mask);
  1854   set(Universe::verify_oop_bits (), O3_bits);
  1856   // assert((obj & oop_mask) == oop_bits);
  1857   and3(O0_obj, O2_mask, O4_temp);
  1858   cmp(O4_temp, O3_bits);
  1859   brx(notEqual, false, pn, null_or_fail);
  1860   delayed()->nop();
  1862   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
  1863     // the null_or_fail case is useless; must test for null separately
  1864     br_null(O0_obj, false, pn, succeed);
  1865     delayed()->nop();
  1868   // Check the klassOop of this object for being in the right area of memory.
  1869   // Cannot do the load in the delay above slot in case O0 is null
  1870   load_klass(O0_obj, O0_obj);
  1871   // assert((klass & klass_mask) == klass_bits);
  1872   if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
  1873     set(Universe::verify_klass_mask(), O2_mask);
  1874   if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
  1875     set(Universe::verify_klass_bits(), O3_bits);
  1876   and3(O0_obj, O2_mask, O4_temp);
  1877   cmp(O4_temp, O3_bits);
  1878   brx(notEqual, false, pn, fail);
  1879   delayed()->nop();
  1880   // Check the klass's klass
  1881   load_klass(O0_obj, O0_obj);
  1882   and3(O0_obj, O2_mask, O4_temp);
  1883   cmp(O4_temp, O3_bits);
  1884   brx(notEqual, false, pn, fail);
  1885   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1887   // mark upper end of faulting range
  1888   _verify_oop_implicit_branch[1] = pc();
  1890   //-----------------------
  1891   // all tests pass
  1892   bind(succeed);
  1894   // Restore prior 64-bit registers
  1895   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  1896   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  1897   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  1898   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  1899   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  1900   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
  1902   retl();                       // Leaf return; restore prior O7 in delay slot
  1903   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
  1905   //-----------------------
  1906   bind(null_or_fail);           // nulls are less common but OK
  1907   br_null(O0_obj, false, pt, succeed);
  1908   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1910   //-----------------------
  1911   // report failure:
  1912   bind(fail);
  1913   _verify_oop_implicit_branch[2] = pc();
  1915   wrccr( O5_save_flags ); // Restore CCR's
  1917   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1919   // stop_subroutine expects message pointer in I1.
  1920   mov(I1, O1);
  1922   // Restore prior 64-bit registers
  1923   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  1924   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  1925   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  1926   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  1927   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  1928   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
  1930   // factor long stop-sequence into subroutine to save space
  1931   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1933   // call indirectly to solve generation ordering problem
  1934   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
  1935   load_ptr_contents(al, O5);
  1936   jmpl(O5, 0, O7);
  1937   delayed()->nop();
  1941 void MacroAssembler::stop(const char* msg) {
  1942   // save frame first to get O7 for return address
  1943   // add one word to size in case struct is odd number of words long
  1944   // It must be doubleword-aligned for storing doubles into it.
  1946     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1948     // stop_subroutine expects message pointer in I1.
  1949     set((intptr_t)msg, O1);
  1951     // factor long stop-sequence into subroutine to save space
  1952     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1954     // call indirectly to solve generation ordering problem
  1955     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
  1956     load_ptr_contents(a, O5);
  1957     jmpl(O5, 0, O7);
  1958     delayed()->nop();
  1960     breakpoint_trap();   // make stop actually stop rather than writing
  1961                          // unnoticeable results in the output files.
  1963     // restore(); done in callee to save space!
  1967 void MacroAssembler::warn(const char* msg) {
  1968   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1969   RegistersForDebugging::save_registers(this);
  1970   mov(O0, L0);
  1971   set((intptr_t)msg, O0);
  1972   call( CAST_FROM_FN_PTR(address, warning) );
  1973   delayed()->nop();
  1974 //  ret();
  1975 //  delayed()->restore();
  1976   RegistersForDebugging::restore_registers(this, L0);
  1977   restore();
  1981 void MacroAssembler::untested(const char* what) {
  1982   // We must be able to turn interactive prompting off
  1983   // in order to run automated test scripts on the VM
  1984   // Use the flag ShowMessageBoxOnError
  1986   char* b = new char[1024];
  1987   sprintf(b, "untested: %s", what);
  1989   if ( ShowMessageBoxOnError )   stop(b);
  1990   else                           warn(b);
  1994 void MacroAssembler::stop_subroutine() {
  1995   RegistersForDebugging::save_registers(this);
  1997   // for the sake of the debugger, stick a PC on the current frame
  1998   // (this assumes that the caller has performed an extra "save")
  1999   mov(I7, L7);
  2000   add(O7, -7 * BytesPerInt, I7);
  2002   save_frame(); // one more save to free up another O7 register
  2003   mov(I0, O1); // addr of reg save area
  2005   // We expect pointer to message in I1. Caller must set it up in O1
  2006   mov(I1, O0); // get msg
  2007   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  2008   delayed()->nop();
  2010   restore();
  2012   RegistersForDebugging::restore_registers(this, O0);
  2014   save_frame(0);
  2015   call(CAST_FROM_FN_PTR(address,breakpoint));
  2016   delayed()->nop();
  2017   restore();
  2019   mov(L7, I7);
  2020   retl();
  2021   delayed()->restore(); // see stop above
  2025 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  2026   if ( ShowMessageBoxOnError ) {
  2027       JavaThreadState saved_state = JavaThread::current()->thread_state();
  2028       JavaThread::current()->set_thread_state(_thread_in_vm);
  2030         // In order to get locks work, we need to fake a in_VM state
  2031         ttyLocker ttyl;
  2032         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
  2033         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  2034           ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
  2036         if (os::message_box(msg, "Execution stopped, print registers?"))
  2037           regs->print(::tty);
  2039       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  2041   else
  2042      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  2043   assert(false, "error");
  2047 #ifndef PRODUCT
  2048 void MacroAssembler::test() {
  2049   ResourceMark rm;
  2051   CodeBuffer cb("test", 10000, 10000);
  2052   MacroAssembler* a = new MacroAssembler(&cb);
  2053   VM_Version::allow_all();
  2054   a->test_v9();
  2055   a->test_v8_onlys();
  2056   VM_Version::revert();
  2058   StubRoutines::Sparc::test_stop_entry()();
  2060 #endif
  2063 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  2064   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  2065   Label no_extras;
  2066   br( negative, true, pt, no_extras ); // if neg, clear reg
  2067   delayed()->set(0, Rresult);          // annuled, so only if taken
  2068   bind( no_extras );
  2072 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
  2073 #ifdef _LP64
  2074   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
  2075 #else
  2076   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
  2077 #endif
  2078   bclr(1, Rresult);
  2079   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
  2083 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  2084   calc_frame_size(Rextra_words, Rresult);
  2085   neg(Rresult);
  2086   save(SP, Rresult, SP);
  2090 // ---------------------------------------------------------
  2091 Assembler::RCondition cond2rcond(Assembler::Condition c) {
  2092   switch (c) {
  2093     /*case zero: */
  2094     case Assembler::equal:        return Assembler::rc_z;
  2095     case Assembler::lessEqual:    return Assembler::rc_lez;
  2096     case Assembler::less:         return Assembler::rc_lz;
  2097     /*case notZero:*/
  2098     case Assembler::notEqual:     return Assembler::rc_nz;
  2099     case Assembler::greater:      return Assembler::rc_gz;
  2100     case Assembler::greaterEqual: return Assembler::rc_gez;
  2102   ShouldNotReachHere();
  2103   return Assembler::rc_z;
  2106 // compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
  2107 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
  2108   tst(s1);
  2109   br (c, a, p, L);
  2113 // Compares a pointer register with zero and branches on null.
  2114 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  2115 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  2116   assert_not_delayed();
  2117 #ifdef _LP64
  2118   bpr( rc_z, a, p, s1, L );
  2119 #else
  2120   tst(s1);
  2121   br ( zero, a, p, L );
  2122 #endif
  2125 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  2126   assert_not_delayed();
  2127 #ifdef _LP64
  2128   bpr( rc_nz, a, p, s1, L );
  2129 #else
  2130   tst(s1);
  2131   br ( notZero, a, p, L );
  2132 #endif
  2135 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
  2136                                      Register s1, address d,
  2137                                      relocInfo::relocType rt ) {
  2138   if (VM_Version::v9_instructions_work()) {
  2139     bpr(rc, a, p, s1, d, rt);
  2140   } else {
  2141     tst(s1);
  2142     br(reg_cond_to_cc_cond(rc), a, p, d, rt);
  2146 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
  2147                                      Register s1, Label& L ) {
  2148   if (VM_Version::v9_instructions_work()) {
  2149     bpr(rc, a, p, s1, L);
  2150   } else {
  2151     tst(s1);
  2152     br(reg_cond_to_cc_cond(rc), a, p, L);
  2157 // instruction sequences factored across compiler & interpreter
  2160 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
  2161                            Register Rb_hi, Register Rb_low,
  2162                            Register Rresult) {
  2164   Label check_low_parts, done;
  2166   cmp(Ra_hi, Rb_hi );  // compare hi parts
  2167   br(equal, true, pt, check_low_parts);
  2168   delayed()->cmp(Ra_low, Rb_low); // test low parts
  2170   // And, with an unsigned comparison, it does not matter if the numbers
  2171   // are negative or not.
  2172   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  2173   // The second one is bigger (unsignedly).
  2175   // Other notes:  The first move in each triplet can be unconditional
  2176   // (and therefore probably prefetchable).
  2177   // And the equals case for the high part does not need testing,
  2178   // since that triplet is reached only after finding the high halves differ.
  2180   if (VM_Version::v9_instructions_work()) {
  2182                                     mov  (                     -1, Rresult);
  2183     ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
  2185   else {
  2186     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
  2187     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  2190   bind( check_low_parts );
  2192   if (VM_Version::v9_instructions_work()) {
  2193     mov(                               -1, Rresult);
  2194     movcc(equal,           false, icc,  0, Rresult);
  2195     movcc(greaterUnsigned, false, icc,  1, Rresult);
  2197   else {
  2198                                                     set(-1, Rresult);
  2199     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
  2200     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  2202   bind( done );
  2205 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  2206   subcc(  G0, Rlow, Rlow );
  2207   subc(   G0, Rhi,  Rhi  );
  2210 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
  2211                            Register Rcount,
  2212                            Register Rout_high, Register Rout_low,
  2213                            Register Rtemp ) {
  2216   Register Ralt_count = Rtemp;
  2217   Register Rxfer_bits = Rtemp;
  2219   assert( Ralt_count != Rin_high
  2220       &&  Ralt_count != Rin_low
  2221       &&  Ralt_count != Rcount
  2222       &&  Rxfer_bits != Rin_low
  2223       &&  Rxfer_bits != Rin_high
  2224       &&  Rxfer_bits != Rcount
  2225       &&  Rxfer_bits != Rout_low
  2226       &&  Rout_low   != Rin_high,
  2227         "register alias checks");
  2229   Label big_shift, done;
  2231   // This code can be optimized to use the 64 bit shifts in V9.
  2232   // Here we use the 32 bit shifts.
  2234   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2235   subcc(Rcount,         31,             Ralt_count);
  2236   br(greater, true, pn, big_shift);
  2237   delayed()->
  2238   dec(Ralt_count);
  2240   // shift < 32 bits, Ralt_count = Rcount-31
  2242   // We get the transfer bits by shifting right by 32-count the low
  2243   // register. This is done by shifting right by 31-count and then by one
  2244   // more to take care of the special (rare) case where count is zero
  2245   // (shifting by 32 would not work).
  2247   neg(  Ralt_count                                 );
  2249   // The order of the next two instructions is critical in the case where
  2250   // Rin and Rout are the same and should not be reversed.
  2252   srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
  2253   if (Rcount != Rout_low) {
  2254     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2256   sll(  Rin_high,       Rcount,         Rout_high  );
  2257   if (Rcount == Rout_low) {
  2258     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2260   srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
  2261   ba (false, done);
  2262   delayed()->
  2263   or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
  2265   // shift >= 32 bits, Ralt_count = Rcount-32
  2266   bind(big_shift);
  2267   sll(  Rin_low,        Ralt_count,     Rout_high  );
  2268   clr(  Rout_low                                   );
  2270   bind(done);
  2274 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
  2275                            Register Rcount,
  2276                            Register Rout_high, Register Rout_low,
  2277                            Register Rtemp ) {
  2279   Register Ralt_count = Rtemp;
  2280   Register Rxfer_bits = Rtemp;
  2282   assert( Ralt_count != Rin_high
  2283       &&  Ralt_count != Rin_low
  2284       &&  Ralt_count != Rcount
  2285       &&  Rxfer_bits != Rin_low
  2286       &&  Rxfer_bits != Rin_high
  2287       &&  Rxfer_bits != Rcount
  2288       &&  Rxfer_bits != Rout_high
  2289       &&  Rout_high  != Rin_low,
  2290         "register alias checks");
  2292   Label big_shift, done;
  2294   // This code can be optimized to use the 64 bit shifts in V9.
  2295   // Here we use the 32 bit shifts.
  2297   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2298   subcc(Rcount,         31,             Ralt_count);
  2299   br(greater, true, pn, big_shift);
  2300   delayed()->dec(Ralt_count);
  2302   // shift < 32 bits, Ralt_count = Rcount-31
  2304   // We get the transfer bits by shifting left by 32-count the high
  2305   // register. This is done by shifting left by 31-count and then by one
  2306   // more to take care of the special (rare) case where count is zero
  2307   // (shifting by 32 would not work).
  2309   neg(  Ralt_count                                  );
  2310   if (Rcount != Rout_low) {
  2311     srl(        Rin_low,        Rcount,         Rout_low    );
  2314   // The order of the next two instructions is critical in the case where
  2315   // Rin and Rout are the same and should not be reversed.
  2317   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2318   sra(  Rin_high,       Rcount,         Rout_high   ); // high half
  2319   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2320   if (Rcount == Rout_low) {
  2321     srl(        Rin_low,        Rcount,         Rout_low    );
  2323   ba (false, done);
  2324   delayed()->
  2325   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2327   // shift >= 32 bits, Ralt_count = Rcount-32
  2328   bind(big_shift);
  2330   sra(  Rin_high,       Ralt_count,     Rout_low    );
  2331   sra(  Rin_high,       31,             Rout_high   ); // sign into hi
  2333   bind( done );
  2338 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
  2339                             Register Rcount,
  2340                             Register Rout_high, Register Rout_low,
  2341                             Register Rtemp ) {
  2343   Register Ralt_count = Rtemp;
  2344   Register Rxfer_bits = Rtemp;
  2346   assert( Ralt_count != Rin_high
  2347       &&  Ralt_count != Rin_low
  2348       &&  Ralt_count != Rcount
  2349       &&  Rxfer_bits != Rin_low
  2350       &&  Rxfer_bits != Rin_high
  2351       &&  Rxfer_bits != Rcount
  2352       &&  Rxfer_bits != Rout_high
  2353       &&  Rout_high  != Rin_low,
  2354         "register alias checks");
  2356   Label big_shift, done;
  2358   // This code can be optimized to use the 64 bit shifts in V9.
  2359   // Here we use the 32 bit shifts.
  2361   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2362   subcc(Rcount,         31,             Ralt_count);
  2363   br(greater, true, pn, big_shift);
  2364   delayed()->dec(Ralt_count);
  2366   // shift < 32 bits, Ralt_count = Rcount-31
  2368   // We get the transfer bits by shifting left by 32-count the high
  2369   // register. This is done by shifting left by 31-count and then by one
  2370   // more to take care of the special (rare) case where count is zero
  2371   // (shifting by 32 would not work).
  2373   neg(  Ralt_count                                  );
  2374   if (Rcount != Rout_low) {
  2375     srl(        Rin_low,        Rcount,         Rout_low    );
  2378   // The order of the next two instructions is critical in the case where
  2379   // Rin and Rout are the same and should not be reversed.
  2381   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2382   srl(  Rin_high,       Rcount,         Rout_high   ); // high half
  2383   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2384   if (Rcount == Rout_low) {
  2385     srl(        Rin_low,        Rcount,         Rout_low    );
  2387   ba (false, done);
  2388   delayed()->
  2389   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2391   // shift >= 32 bits, Ralt_count = Rcount-32
  2392   bind(big_shift);
  2394   srl(  Rin_high,       Ralt_count,     Rout_low    );
  2395   clr(  Rout_high                                   );
  2397   bind( done );
  2400 #ifdef _LP64
  2401 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  2402   cmp(Ra, Rb);
  2403   mov(                       -1, Rresult);
  2404   movcc(equal,   false, xcc,  0, Rresult);
  2405   movcc(greater, false, xcc,  1, Rresult);
  2407 #endif
  2410 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
  2411   switch (size_in_bytes) {
  2412   case  8:  ld_long(src, dst); break;
  2413   case  4:  ld(     src, dst); break;
  2414   case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
  2415   case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
  2416   default:  ShouldNotReachHere();
  2420 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
  2421   switch (size_in_bytes) {
  2422   case  8:  st_long(src, dst); break;
  2423   case  4:  st(     src, dst); break;
  2424   case  2:  sth(    src, dst); break;
  2425   case  1:  stb(    src, dst); break;
  2426   default:  ShouldNotReachHere();
  2431 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
  2432                                 FloatRegister Fa, FloatRegister Fb,
  2433                                 Register Rresult) {
  2435   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
  2437   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  2438   Condition eq =                          f_equal;
  2439   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
  2441   if (VM_Version::v9_instructions_work()) {
  2443     mov(                   -1, Rresult );
  2444     movcc( eq, true, fcc0,  0, Rresult );
  2445     movcc( gt, true, fcc0,  1, Rresult );
  2447   } else {
  2448     Label done;
  2450                                          set( -1, Rresult );
  2451     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
  2452     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
  2453     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
  2455     bind (done);
  2460 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2462   if (VM_Version::v9_instructions_work()) {
  2463     Assembler::fneg(w, s, d);
  2464   } else {
  2465     if (w == FloatRegisterImpl::S) {
  2466       Assembler::fneg(w, s, d);
  2467     } else if (w == FloatRegisterImpl::D) {
  2468       // number() does a sanity check on the alignment.
  2469       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2470         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2472       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2473       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2474     } else {
  2475       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2477       // number() does a sanity check on the alignment.
  2478       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2479         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2481       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2482       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2483       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2484       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2489 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2491   if (VM_Version::v9_instructions_work()) {
  2492     Assembler::fmov(w, s, d);
  2493   } else {
  2494     if (w == FloatRegisterImpl::S) {
  2495       Assembler::fmov(w, s, d);
  2496     } else if (w == FloatRegisterImpl::D) {
  2497       // number() does a sanity check on the alignment.
  2498       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2499         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2501       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2502       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2503     } else {
  2504       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2506       // number() does a sanity check on the alignment.
  2507       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2508         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2510       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2511       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2512       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2513       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2518 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2520   if (VM_Version::v9_instructions_work()) {
  2521     Assembler::fabs(w, s, d);
  2522   } else {
  2523     if (w == FloatRegisterImpl::S) {
  2524       Assembler::fabs(w, s, d);
  2525     } else if (w == FloatRegisterImpl::D) {
  2526       // number() does a sanity check on the alignment.
  2527       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2528         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2530       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2531       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2532     } else {
  2533       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2535       // number() does a sanity check on the alignment.
  2536       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2537        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2539       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2540       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2541       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2542       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2547 void MacroAssembler::save_all_globals_into_locals() {
  2548   mov(G1,L1);
  2549   mov(G2,L2);
  2550   mov(G3,L3);
  2551   mov(G4,L4);
  2552   mov(G5,L5);
  2553   mov(G6,L6);
  2554   mov(G7,L7);
  2557 void MacroAssembler::restore_globals_from_locals() {
  2558   mov(L1,G1);
  2559   mov(L2,G2);
  2560   mov(L3,G3);
  2561   mov(L4,G4);
  2562   mov(L5,G5);
  2563   mov(L6,G6);
  2564   mov(L7,G7);
  2567 // Use for 64 bit operation.
  2568 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2570   // store ptr_reg as the new top value
  2571 #ifdef _LP64
  2572   casx(top_ptr_reg, top_reg, ptr_reg);
  2573 #else
  2574   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
  2575 #endif // _LP64
  2578 // [RGV] This routine does not handle 64 bit operations.
  2579 //       use casx_under_lock() or casx directly!!!
  2580 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2582   // store ptr_reg as the new top value
  2583   if (VM_Version::v9_instructions_work()) {
  2584     cas(top_ptr_reg, top_reg, ptr_reg);
  2585   } else {
  2587     // If the register is not an out nor global, it is not visible
  2588     // after the save.  Allocate a register for it, save its
  2589     // value in the register save area (the save may not flush
  2590     // registers to the save area).
  2592     Register top_ptr_reg_after_save;
  2593     Register top_reg_after_save;
  2594     Register ptr_reg_after_save;
  2596     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
  2597       top_ptr_reg_after_save = top_ptr_reg->after_save();
  2598     } else {
  2599       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
  2600       top_ptr_reg_after_save = L0;
  2601       st(top_ptr_reg, reg_save_addr);
  2604     if (top_reg->is_out() || top_reg->is_global()) {
  2605       top_reg_after_save = top_reg->after_save();
  2606     } else {
  2607       Address reg_save_addr = top_reg->address_in_saved_window();
  2608       top_reg_after_save = L1;
  2609       st(top_reg, reg_save_addr);
  2612     if (ptr_reg->is_out() || ptr_reg->is_global()) {
  2613       ptr_reg_after_save = ptr_reg->after_save();
  2614     } else {
  2615       Address reg_save_addr = ptr_reg->address_in_saved_window();
  2616       ptr_reg_after_save = L2;
  2617       st(ptr_reg, reg_save_addr);
  2620     const Register& lock_reg = L3;
  2621     const Register& lock_ptr_reg = L4;
  2622     const Register& value_reg = L5;
  2623     const Register& yield_reg = L6;
  2624     const Register& yieldall_reg = L7;
  2626     save_frame();
  2628     if (top_ptr_reg_after_save == L0) {
  2629       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
  2632     if (top_reg_after_save == L1) {
  2633       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
  2636     if (ptr_reg_after_save == L2) {
  2637       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
  2640     Label(retry_get_lock);
  2641     Label(not_same);
  2642     Label(dont_yield);
  2644     assert(lock_addr, "lock_address should be non null for v8");
  2645     set((intptr_t)lock_addr, lock_ptr_reg);
  2646     // Initialize yield counter
  2647     mov(G0,yield_reg);
  2648     mov(G0, yieldall_reg);
  2649     set(StubRoutines::Sparc::locked, lock_reg);
  2651     bind(retry_get_lock);
  2652     cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
  2653     br(Assembler::less, false, Assembler::pt, dont_yield);
  2654     delayed()->nop();
  2656     if(use_call_vm) {
  2657       Untested("Need to verify global reg consistancy");
  2658       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
  2659     } else {
  2660       // Save the regs and make space for a C call
  2661       save(SP, -96, SP);
  2662       save_all_globals_into_locals();
  2663       call(CAST_FROM_FN_PTR(address,os::yield_all));
  2664       delayed()->mov(yieldall_reg, O0);
  2665       restore_globals_from_locals();
  2666       restore();
  2669     // reset the counter
  2670     mov(G0,yield_reg);
  2671     add(yieldall_reg, 1, yieldall_reg);
  2673     bind(dont_yield);
  2674     // try to get lock
  2675     swap(lock_ptr_reg, 0, lock_reg);
  2677     // did we get the lock?
  2678     cmp(lock_reg, StubRoutines::Sparc::unlocked);
  2679     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
  2680     delayed()->add(yield_reg,1,yield_reg);
  2682     // yes, got lock.  do we have the same top?
  2683     ld(top_ptr_reg_after_save, 0, value_reg);
  2684     cmp(value_reg, top_reg_after_save);
  2685     br(Assembler::notEqual, false, Assembler::pn, not_same);
  2686     delayed()->nop();
  2688     // yes, same top.
  2689     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
  2690     membar(Assembler::StoreStore);
  2692     bind(not_same);
  2693     mov(value_reg, ptr_reg_after_save);
  2694     st(lock_reg, lock_ptr_reg, 0); // unlock
  2696     restore();
  2700 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  2701                                                       Register tmp,
  2702                                                       int offset) {
  2703   intptr_t value = *delayed_value_addr;
  2704   if (value != 0)
  2705     return RegisterOrConstant(value + offset);
  2707   // load indirectly to solve generation ordering problem
  2708   AddressLiteral a(delayed_value_addr);
  2709   load_ptr_contents(a, tmp);
  2711 #ifdef ASSERT
  2712   tst(tmp);
  2713   breakpoint_trap(zero, xcc);
  2714 #endif
  2716   if (offset != 0)
  2717     add(tmp, offset, tmp);
  2719   return RegisterOrConstant(tmp);
  2723 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2724   assert(d.register_or_noreg() != G0, "lost side effect");
  2725   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2726       (s2.is_register() && s2.as_register() == G0)) {
  2727     // Do nothing, just move value.
  2728     if (s1.is_register()) {
  2729       if (d.is_constant())  d = temp;
  2730       mov(s1.as_register(), d.as_register());
  2731       return d;
  2732     } else {
  2733       return s1;
  2737   if (s1.is_register()) {
  2738     assert_different_registers(s1.as_register(), temp);
  2739     if (d.is_constant())  d = temp;
  2740     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2741     return d;
  2742   } else {
  2743     if (s2.is_register()) {
  2744       assert_different_registers(s2.as_register(), temp);
  2745       if (d.is_constant())  d = temp;
  2746       set(s1.as_constant(), temp);
  2747       andn(temp, s2.as_register(), d.as_register());
  2748       return d;
  2749     } else {
  2750       intptr_t res = s1.as_constant() & ~s2.as_constant();
  2751       return res;
  2756 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2757   assert(d.register_or_noreg() != G0, "lost side effect");
  2758   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2759       (s2.is_register() && s2.as_register() == G0)) {
  2760     // Do nothing, just move value.
  2761     if (s1.is_register()) {
  2762       if (d.is_constant())  d = temp;
  2763       mov(s1.as_register(), d.as_register());
  2764       return d;
  2765     } else {
  2766       return s1;
  2770   if (s1.is_register()) {
  2771     assert_different_registers(s1.as_register(), temp);
  2772     if (d.is_constant())  d = temp;
  2773     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2774     return d;
  2775   } else {
  2776     if (s2.is_register()) {
  2777       assert_different_registers(s2.as_register(), temp);
  2778       if (d.is_constant())  d = temp;
  2779       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
  2780       return d;
  2781     } else {
  2782       intptr_t res = s1.as_constant() + s2.as_constant();
  2783       return res;
  2788 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2789   assert(d.register_or_noreg() != G0, "lost side effect");
  2790   if (!is_simm13(s2.constant_or_zero()))
  2791     s2 = (s2.as_constant() & 0xFF);
  2792   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2793       (s2.is_register() && s2.as_register() == G0)) {
  2794     // Do nothing, just move value.
  2795     if (s1.is_register()) {
  2796       if (d.is_constant())  d = temp;
  2797       mov(s1.as_register(), d.as_register());
  2798       return d;
  2799     } else {
  2800       return s1;
  2804   if (s1.is_register()) {
  2805     assert_different_registers(s1.as_register(), temp);
  2806     if (d.is_constant())  d = temp;
  2807     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2808     return d;
  2809   } else {
  2810     if (s2.is_register()) {
  2811       assert_different_registers(s2.as_register(), temp);
  2812       if (d.is_constant())  d = temp;
  2813       set(s1.as_constant(), temp);
  2814       sll_ptr(temp, s2.as_register(), d.as_register());
  2815       return d;
  2816     } else {
  2817       intptr_t res = s1.as_constant() << s2.as_constant();
  2818       return res;
  2824 // Look up the method for a megamorphic invokeinterface call.
  2825 // The target method is determined by <intf_klass, itable_index>.
  2826 // The receiver klass is in recv_klass.
  2827 // On success, the result will be in method_result, and execution falls through.
  2828 // On failure, execution transfers to the given label.
  2829 void MacroAssembler::lookup_interface_method(Register recv_klass,
  2830                                              Register intf_klass,
  2831                                              RegisterOrConstant itable_index,
  2832                                              Register method_result,
  2833                                              Register scan_temp,
  2834                                              Register sethi_temp,
  2835                                              Label& L_no_such_interface) {
  2836   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  2837   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  2838          "caller must use same register for non-constant itable index as for method");
  2840   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  2841   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  2842   int scan_step   = itableOffsetEntry::size() * wordSize;
  2843   int vte_size    = vtableEntry::size() * wordSize;
  2845   lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
  2846   // %%% We should store the aligned, prescaled offset in the klassoop.
  2847   // Then the next several instructions would fold away.
  2849   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
  2850   int itb_offset = vtable_base;
  2851   if (round_to_unit != 0) {
  2852     // hoist first instruction of round_to(scan_temp, BytesPerLong):
  2853     itb_offset += round_to_unit - wordSize;
  2855   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
  2856   sll(scan_temp, itb_scale,  scan_temp);
  2857   add(scan_temp, itb_offset, scan_temp);
  2858   if (round_to_unit != 0) {
  2859     // Round up to align_object_offset boundary
  2860     // see code for instanceKlass::start_of_itable!
  2861     // Was: round_to(scan_temp, BytesPerLong);
  2862     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
  2863     and3(scan_temp, -round_to_unit, scan_temp);
  2865   add(recv_klass, scan_temp, scan_temp);
  2867   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  2868   RegisterOrConstant itable_offset = itable_index;
  2869   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
  2870   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
  2871   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
  2873   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  2874   //   if (scan->interface() == intf) {
  2875   //     result = (klass + scan->offset() + itable_index);
  2876   //   }
  2877   // }
  2878   Label search, found_method;
  2880   for (int peel = 1; peel >= 0; peel--) {
  2881     // %%%% Could load both offset and interface in one ldx, if they were
  2882     // in the opposite order.  This would save a load.
  2883     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
  2885     // Check that this entry is non-null.  A null entry means that
  2886     // the receiver class doesn't implement the interface, and wasn't the
  2887     // same as when the caller was compiled.
  2888     bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
  2889     delayed()->cmp(method_result, intf_klass);
  2891     if (peel) {
  2892       brx(Assembler::equal,    false, Assembler::pt, found_method);
  2893     } else {
  2894       brx(Assembler::notEqual, false, Assembler::pn, search);
  2895       // (invert the test to fall through to found_method...)
  2897     delayed()->add(scan_temp, scan_step, scan_temp);
  2899     if (!peel)  break;
  2901     bind(search);
  2904   bind(found_method);
  2906   // Got a hit.
  2907   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
  2908   // scan_temp[-scan_step] points to the vtable offset we need
  2909   ito_offset -= scan_step;
  2910   lduw(scan_temp, ito_offset, scan_temp);
  2911   ld_ptr(recv_klass, scan_temp, method_result);
  2915 void MacroAssembler::check_klass_subtype(Register sub_klass,
  2916                                          Register super_klass,
  2917                                          Register temp_reg,
  2918                                          Register temp2_reg,
  2919                                          Label& L_success) {
  2920   Label L_failure, L_pop_to_failure;
  2921   check_klass_subtype_fast_path(sub_klass, super_klass,
  2922                                 temp_reg, temp2_reg,
  2923                                 &L_success, &L_failure, NULL);
  2924   Register sub_2 = sub_klass;
  2925   Register sup_2 = super_klass;
  2926   if (!sub_2->is_global())  sub_2 = L0;
  2927   if (!sup_2->is_global())  sup_2 = L1;
  2929   save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  2930   check_klass_subtype_slow_path(sub_2, sup_2,
  2931                                 L2, L3, L4, L5,
  2932                                 NULL, &L_pop_to_failure);
  2934   // on success:
  2935   restore();
  2936   ba(false, L_success);
  2937   delayed()->nop();
  2939   // on failure:
  2940   bind(L_pop_to_failure);
  2941   restore();
  2942   bind(L_failure);
  2946 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  2947                                                    Register super_klass,
  2948                                                    Register temp_reg,
  2949                                                    Register temp2_reg,
  2950                                                    Label* L_success,
  2951                                                    Label* L_failure,
  2952                                                    Label* L_slow_path,
  2953                                         RegisterOrConstant super_check_offset,
  2954                                         Register instanceof_hack) {
  2955   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  2956                    Klass::secondary_super_cache_offset_in_bytes());
  2957   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2958                     Klass::super_check_offset_offset_in_bytes());
  2960   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
  2961   bool need_slow_path = (must_load_sco ||
  2962                          super_check_offset.constant_or_zero() == sco_offset);
  2964   assert_different_registers(sub_klass, super_klass, temp_reg);
  2965   if (super_check_offset.is_register()) {
  2966     assert_different_registers(sub_klass, super_klass, temp_reg,
  2967                                super_check_offset.as_register());
  2968   } else if (must_load_sco) {
  2969     assert(temp2_reg != noreg, "supply either a temp or a register offset");
  2972   Label L_fallthrough;
  2973   int label_nulls = 0;
  2974   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  2975   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  2976   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  2977   assert(label_nulls <= 1 || instanceof_hack != noreg ||
  2978          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
  2979          "at most one NULL in the batch, usually");
  2981   // Support for the instanceof hack, which uses delay slots to
  2982   // set a destination register to zero or one.
  2983   bool do_bool_sets = (instanceof_hack != noreg);
  2984 #define BOOL_SET(bool_value)                            \
  2985   if (do_bool_sets && bool_value >= 0)                  \
  2986     set(bool_value, instanceof_hack)
  2987 #define DELAYED_BOOL_SET(bool_value)                    \
  2988   if (do_bool_sets && bool_value >= 0)                  \
  2989     delayed()->set(bool_value, instanceof_hack);        \
  2990   else delayed()->nop()
  2991   // Hacked ba(), which may only be used just before L_fallthrough.
  2992 #define FINAL_JUMP(label, bool_value)                   \
  2993   if (&(label) == &L_fallthrough) {                     \
  2994     BOOL_SET(bool_value);                               \
  2995   } else {                                              \
  2996     ba((do_bool_sets && bool_value >= 0), label);       \
  2997     DELAYED_BOOL_SET(bool_value);                       \
  3000   // If the pointers are equal, we are done (e.g., String[] elements).
  3001   // This self-check enables sharing of secondary supertype arrays among
  3002   // non-primary types such as array-of-interface.  Otherwise, each such
  3003   // type would need its own customized SSA.
  3004   // We move this check to the front of the fast path because many
  3005   // type checks are in fact trivially successful in this manner,
  3006   // so we get a nicely predicted branch right at the start of the check.
  3007   cmp(super_klass, sub_klass);
  3008   brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
  3009   DELAYED_BOOL_SET(1);
  3011   // Check the supertype display:
  3012   if (must_load_sco) {
  3013     // The super check offset is always positive...
  3014     lduw(super_klass, sco_offset, temp2_reg);
  3015     super_check_offset = RegisterOrConstant(temp2_reg);
  3016     // super_check_offset is register.
  3017     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
  3019   ld_ptr(sub_klass, super_check_offset, temp_reg);
  3020   cmp(super_klass, temp_reg);
  3022   // This check has worked decisively for primary supers.
  3023   // Secondary supers are sought in the super_cache ('super_cache_addr').
  3024   // (Secondary supers are interfaces and very deeply nested subtypes.)
  3025   // This works in the same check above because of a tricky aliasing
  3026   // between the super_cache and the primary super display elements.
  3027   // (The 'super_check_addr' can address either, as the case requires.)
  3028   // Note that the cache is updated below if it does not help us find
  3029   // what we need immediately.
  3030   // So if it was a primary super, we can just fail immediately.
  3031   // Otherwise, it's the slow path for us (no success at this point).
  3033   if (super_check_offset.is_register()) {
  3034     brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
  3035     delayed(); if (do_bool_sets)  BOOL_SET(1);
  3036     // if !do_bool_sets, sneak the next cmp into the delay slot:
  3037     cmp(super_check_offset.as_register(), sc_offset);
  3039     if (L_failure == &L_fallthrough) {
  3040       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_slow_path);
  3041       delayed()->nop();
  3042       BOOL_SET(0);  // fallthrough on failure
  3043     } else {
  3044       brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
  3045       DELAYED_BOOL_SET(0);
  3046       FINAL_JUMP(*L_slow_path, -1);  // -1 => vanilla delay slot
  3048   } else if (super_check_offset.as_constant() == sc_offset) {
  3049     // Need a slow path; fast failure is impossible.
  3050     if (L_slow_path == &L_fallthrough) {
  3051       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
  3052       DELAYED_BOOL_SET(1);
  3053     } else {
  3054       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
  3055       delayed()->nop();
  3056       FINAL_JUMP(*L_success, 1);
  3058   } else {
  3059     // No slow path; it's a fast decision.
  3060     if (L_failure == &L_fallthrough) {
  3061       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
  3062       DELAYED_BOOL_SET(1);
  3063       BOOL_SET(0);
  3064     } else {
  3065       brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
  3066       DELAYED_BOOL_SET(0);
  3067       FINAL_JUMP(*L_success, 1);
  3071   bind(L_fallthrough);
  3073 #undef final_jump
  3074 #undef bool_set
  3075 #undef DELAYED_BOOL_SET
  3076 #undef final_jump
  3080 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  3081                                                    Register super_klass,
  3082                                                    Register count_temp,
  3083                                                    Register scan_temp,
  3084                                                    Register scratch_reg,
  3085                                                    Register coop_reg,
  3086                                                    Label* L_success,
  3087                                                    Label* L_failure) {
  3088   assert_different_registers(sub_klass, super_klass,
  3089                              count_temp, scan_temp, scratch_reg, coop_reg);
  3091   Label L_fallthrough, L_loop;
  3092   int label_nulls = 0;
  3093   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3094   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3095   assert(label_nulls <= 1, "at most one NULL in the batch");
  3097   // a couple of useful fields in sub_klass:
  3098   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  3099                    Klass::secondary_supers_offset_in_bytes());
  3100   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  3101                    Klass::secondary_super_cache_offset_in_bytes());
  3103   // Do a linear scan of the secondary super-klass chain.
  3104   // This code is rarely used, so simplicity is a virtue here.
  3106 #ifndef PRODUCT
  3107   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  3108   inc_counter((address) pst_counter, count_temp, scan_temp);
  3109 #endif
  3111   // We will consult the secondary-super array.
  3112   ld_ptr(sub_klass, ss_offset, scan_temp);
  3114   // Compress superclass if necessary.
  3115   Register search_key = super_klass;
  3116   bool decode_super_klass = false;
  3117   if (UseCompressedOops) {
  3118     if (coop_reg != noreg) {
  3119       encode_heap_oop_not_null(super_klass, coop_reg);
  3120       search_key = coop_reg;
  3121     } else {
  3122       encode_heap_oop_not_null(super_klass);
  3123       decode_super_klass = true; // scarce temps!
  3125     // The superclass is never null; it would be a basic system error if a null
  3126     // pointer were to sneak in here.  Note that we have already loaded the
  3127     // Klass::super_check_offset from the super_klass in the fast path,
  3128     // so if there is a null in that register, we are already in the afterlife.
  3131   // Load the array length.  (Positive movl does right thing on LP64.)
  3132   lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
  3134   // Check for empty secondary super list
  3135   tst(count_temp);
  3137   // Top of search loop
  3138   bind(L_loop);
  3139   br(Assembler::equal, false, Assembler::pn, *L_failure);
  3140   delayed()->add(scan_temp, heapOopSize, scan_temp);
  3141   assert(heapOopSize != 0, "heapOopSize should be initialized");
  3143   // Skip the array header in all array accesses.
  3144   int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
  3145   elem_offset -= heapOopSize;   // the scan pointer was pre-incremented also
  3147   // Load next super to check
  3148   if (UseCompressedOops) {
  3149     // Don't use load_heap_oop; we don't want to decode the element.
  3150     lduw(   scan_temp, elem_offset, scratch_reg );
  3151   } else {
  3152     ld_ptr( scan_temp, elem_offset, scratch_reg );
  3155   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
  3156   cmp(scratch_reg, search_key);
  3158   // A miss means we are NOT a subtype and need to keep looping
  3159   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
  3160   delayed()->deccc(count_temp); // decrement trip counter in delay slot
  3162   // Falling out the bottom means we found a hit; we ARE a subtype
  3163   if (decode_super_klass) decode_heap_oop(super_klass);
  3165   // Success.  Cache the super we found and proceed in triumph.
  3166   st_ptr(super_klass, sub_klass, sc_offset);
  3168   if (L_success != &L_fallthrough) {
  3169     ba(false, *L_success);
  3170     delayed()->nop();
  3173   bind(L_fallthrough);
  3177 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  3178                                               Register temp_reg,
  3179                                               Label& wrong_method_type) {
  3180   assert_different_registers(mtype_reg, mh_reg, temp_reg);
  3181   // compare method type against that of the receiver
  3182   RegisterOrConstant mhtype_offset = delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg);
  3183   load_heap_oop(mh_reg, mhtype_offset, temp_reg);
  3184   cmp(temp_reg, mtype_reg);
  3185   br(Assembler::notEqual, false, Assembler::pn, wrong_method_type);
  3186   delayed()->nop();
  3190 // A method handle has a "vmslots" field which gives the size of its
  3191 // argument list in JVM stack slots.  This field is either located directly
  3192 // in every method handle, or else is indirectly accessed through the
  3193 // method handle's MethodType.  This macro hides the distinction.
  3194 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  3195                                                 Register temp_reg) {
  3196   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  3197   // load mh.type.form.vmslots
  3198   if (java_lang_invoke_MethodHandle::vmslots_offset_in_bytes() != 0) {
  3199     // hoist vmslots into every mh to avoid dependent load chain
  3200     ld(           Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::vmslots_offset_in_bytes, temp_reg)),   vmslots_reg);
  3201   } else {
  3202     Register temp2_reg = vmslots_reg;
  3203     load_heap_oop(Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)),      temp2_reg);
  3204     load_heap_oop(Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)),        temp2_reg);
  3205     ld(           Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
  3210 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
  3211   assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
  3212   assert_different_registers(mh_reg, temp_reg);
  3214   // pick out the interpreted side of the handler
  3215   // NOTE: vmentry is not an oop!
  3216   ld_ptr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
  3218   // off we go...
  3219   ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
  3220   jmp(temp_reg, 0);
  3222   // for the various stubs which take control at this point,
  3223   // see MethodHandles::generate_method_handle_stub
  3225   // Some callers can fill the delay slot.
  3226   if (emit_delayed_nop) {
  3227     delayed()->nop();
  3232 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
  3233                                                    int extra_slot_offset) {
  3234   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  3235   int stackElementSize = Interpreter::stackElementSize;
  3236   int offset = extra_slot_offset * stackElementSize;
  3237   if (arg_slot.is_constant()) {
  3238     offset += arg_slot.as_constant() * stackElementSize;
  3239     return offset;
  3240   } else {
  3241     Register temp = arg_slot.as_register();
  3242     sll_ptr(temp, exact_log2(stackElementSize), temp);
  3243     if (offset != 0)
  3244       add(temp, offset, temp);
  3245     return temp;
  3250 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  3251                                          int extra_slot_offset) {
  3252   return Address(Gargs, argument_offset(arg_slot, extra_slot_offset));
  3256 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
  3257                                           Register temp_reg,
  3258                                           Label& done, Label* slow_case,
  3259                                           BiasedLockingCounters* counters) {
  3260   assert(UseBiasedLocking, "why call this otherwise?");
  3262   if (PrintBiasedLockingStatistics) {
  3263     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
  3264     if (counters == NULL)
  3265       counters = BiasedLocking::counters();
  3268   Label cas_label;
  3270   // Biased locking
  3271   // See whether the lock is currently biased toward our thread and
  3272   // whether the epoch is still valid
  3273   // Note that the runtime guarantees sufficient alignment of JavaThread
  3274   // pointers to allow age to be placed into low bits
  3275   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  3276   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3277   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  3278   brx(Assembler::notEqual, false, Assembler::pn, cas_label);
  3279   delayed()->nop();
  3281   load_klass(obj_reg, temp_reg);
  3282   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3283   or3(G2_thread, temp_reg, temp_reg);
  3284   xor3(mark_reg, temp_reg, temp_reg);
  3285   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  3286   if (counters != NULL) {
  3287     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3288     // Reload mark_reg as we may need it later
  3289     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
  3291   brx(Assembler::equal, true, Assembler::pt, done);
  3292   delayed()->nop();
  3294   Label try_revoke_bias;
  3295   Label try_rebias;
  3296   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
  3297   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3299   // At this point we know that the header has the bias pattern and
  3300   // that we are not the bias owner in the current epoch. We need to
  3301   // figure out more details about the state of the header in order to
  3302   // know what operations can be legally performed on the object's
  3303   // header.
  3305   // If the low three bits in the xor result aren't clear, that means
  3306   // the prototype header is no longer biased and we have to revoke
  3307   // the bias on this object.
  3308   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  3309   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
  3311   // Biasing is still enabled for this data type. See whether the
  3312   // epoch of the current bias is still valid, meaning that the epoch
  3313   // bits of the mark word are equal to the epoch bits of the
  3314   // prototype header. (Note that the prototype header's epoch bits
  3315   // only change at a safepoint.) If not, attempt to rebias the object
  3316   // toward the current thread. Note that we must be absolutely sure
  3317   // that the current epoch is invalid in order to do this because
  3318   // otherwise the manipulations it performs on the mark word are
  3319   // illegal.
  3320   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  3321   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
  3323   // The epoch of the current bias is still valid but we know nothing
  3324   // about the owner; it might be set or it might be clear. Try to
  3325   // acquire the bias of the object using an atomic operation. If this
  3326   // fails we will go in to the runtime to revoke the object's bias.
  3327   // Note that we first construct the presumed unbiased header so we
  3328   // don't accidentally blow away another thread's valid bias.
  3329   delayed()->and3(mark_reg,
  3330                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
  3331                   mark_reg);
  3332   or3(G2_thread, mark_reg, temp_reg);
  3333   casn(mark_addr.base(), mark_reg, temp_reg);
  3334   // If the biasing toward our thread failed, this means that
  3335   // another thread succeeded in biasing it toward itself and we
  3336   // need to revoke that bias. The revocation will occur in the
  3337   // interpreter runtime in the slow case.
  3338   cmp(mark_reg, temp_reg);
  3339   if (counters != NULL) {
  3340     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3342   if (slow_case != NULL) {
  3343     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3344     delayed()->nop();
  3346   br(Assembler::always, false, Assembler::pt, done);
  3347   delayed()->nop();
  3349   bind(try_rebias);
  3350   // At this point we know the epoch has expired, meaning that the
  3351   // current "bias owner", if any, is actually invalid. Under these
  3352   // circumstances _only_, we are allowed to use the current header's
  3353   // value as the comparison value when doing the cas to acquire the
  3354   // bias in the current epoch. In other words, we allow transfer of
  3355   // the bias from one thread to another directly in this situation.
  3356   //
  3357   // FIXME: due to a lack of registers we currently blow away the age
  3358   // bits in this situation. Should attempt to preserve them.
  3359   load_klass(obj_reg, temp_reg);
  3360   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3361   or3(G2_thread, temp_reg, temp_reg);
  3362   casn(mark_addr.base(), mark_reg, temp_reg);
  3363   // If the biasing toward our thread failed, this means that
  3364   // another thread succeeded in biasing it toward itself and we
  3365   // need to revoke that bias. The revocation will occur in the
  3366   // interpreter runtime in the slow case.
  3367   cmp(mark_reg, temp_reg);
  3368   if (counters != NULL) {
  3369     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  3371   if (slow_case != NULL) {
  3372     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3373     delayed()->nop();
  3375   br(Assembler::always, false, Assembler::pt, done);
  3376   delayed()->nop();
  3378   bind(try_revoke_bias);
  3379   // The prototype mark in the klass doesn't have the bias bit set any
  3380   // more, indicating that objects of this data type are not supposed
  3381   // to be biased any more. We are going to try to reset the mark of
  3382   // this object to the prototype value and fall through to the
  3383   // CAS-based locking scheme. Note that if our CAS fails, it means
  3384   // that another thread raced us for the privilege of revoking the
  3385   // bias of this particular object, so it's okay to continue in the
  3386   // normal locking code.
  3387   //
  3388   // FIXME: due to a lack of registers we currently blow away the age
  3389   // bits in this situation. Should attempt to preserve them.
  3390   load_klass(obj_reg, temp_reg);
  3391   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3392   casn(mark_addr.base(), mark_reg, temp_reg);
  3393   // Fall through to the normal CAS-based lock, because no matter what
  3394   // the result of the above CAS, some thread must have succeeded in
  3395   // removing the bias bit from the object's header.
  3396   if (counters != NULL) {
  3397     cmp(mark_reg, temp_reg);
  3398     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  3401   bind(cas_label);
  3404 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
  3405                                           bool allow_delay_slot_filling) {
  3406   // Check for biased locking unlock case, which is a no-op
  3407   // Note: we do not have to check the thread ID for two reasons.
  3408   // First, the interpreter checks for IllegalMonitorStateException at
  3409   // a higher level. Second, if the bias was revoked while we held the
  3410   // lock, the object could not be rebiased toward another thread, so
  3411   // the bias bit would be clear.
  3412   ld_ptr(mark_addr, temp_reg);
  3413   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3414   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  3415   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  3416   delayed();
  3417   if (!allow_delay_slot_filling) {
  3418     nop();
  3423 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
  3424 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
  3426 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
  3427   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
  3432 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
  3433 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
  3434 // The code could be tightened up considerably.
  3435 //
  3436 // box->dhw disposition - post-conditions at DONE_LABEL.
  3437 // -   Successful inflated lock:  box->dhw != 0.
  3438 //     Any non-zero value suffices.
  3439 //     Consider G2_thread, rsp, boxReg, or unused_mark()
  3440 // -   Successful Stack-lock: box->dhw == mark.
  3441 //     box->dhw must contain the displaced mark word value
  3442 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
  3443 //     The slow-path fast_enter() and slow_enter() operators
  3444 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
  3445 // -   Biased: box->dhw is undefined
  3446 //
  3447 // SPARC refworkload performance - specifically jetstream and scimark - are
  3448 // extremely sensitive to the size of the code emitted by compiler_lock_object
  3449 // and compiler_unlock_object.  Critically, the key factor is code size, not path
  3450 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
  3451 // effect).
  3454 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
  3455                                           Register Rbox, Register Rscratch,
  3456                                           BiasedLockingCounters* counters,
  3457                                           bool try_bias) {
  3458    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3460    verify_oop(Roop);
  3461    Label done ;
  3463    if (counters != NULL) {
  3464      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
  3467    if (EmitSync & 1) {
  3468      mov    (3, Rscratch) ;
  3469      st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3470      cmp    (SP, G0) ;
  3471      return ;
  3474    if (EmitSync & 2) {
  3476      // Fetch object's markword
  3477      ld_ptr(mark_addr, Rmark);
  3479      if (try_bias) {
  3480         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3483      // Save Rbox in Rscratch to be used for the cas operation
  3484      mov(Rbox, Rscratch);
  3486      // set Rmark to markOop | markOopDesc::unlocked_value
  3487      or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3489      // Initialize the box.  (Must happen before we update the object mark!)
  3490      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3492      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
  3493      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3494      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
  3495         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3497      // if compare/exchange succeeded we found an unlocked object and we now have locked it
  3498      // hence we are done
  3499      cmp(Rmark, Rscratch);
  3500 #ifdef _LP64
  3501      sub(Rscratch, STACK_BIAS, Rscratch);
  3502 #endif
  3503      brx(Assembler::equal, false, Assembler::pt, done);
  3504      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
  3506      // we did not find an unlocked object so see if this is a recursive case
  3507      // sub(Rscratch, SP, Rscratch);
  3508      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3509      andcc(Rscratch, 0xfffff003, Rscratch);
  3510      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3511      bind (done) ;
  3512      return ;
  3515    Label Egress ;
  3517    if (EmitSync & 256) {
  3518       Label IsInflated ;
  3520       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  3521       // Triage: biased, stack-locked, neutral, inflated
  3522       if (try_bias) {
  3523         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3524         // Invariant: if control reaches this point in the emitted stream
  3525         // then Rmark has not been modified.
  3528       // Store mark into displaced mark field in the on-stack basic-lock "box"
  3529       // Critically, this must happen before the CAS
  3530       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
  3531       st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3532       andcc  (Rmark, 2, G0) ;
  3533       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  3534       delayed() ->
  3536       // Try stack-lock acquisition.
  3537       // Beware: the 1st instruction is in a delay slot
  3538       mov    (Rbox,  Rscratch);
  3539       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  3540       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  3541       casn   (mark_addr.base(), Rmark, Rscratch) ;
  3542       cmp    (Rmark, Rscratch);
  3543       brx    (Assembler::equal, false, Assembler::pt, done);
  3544       delayed()->sub(Rscratch, SP, Rscratch);
  3546       // Stack-lock attempt failed - check for recursive stack-lock.
  3547       // See the comments below about how we might remove this case.
  3548 #ifdef _LP64
  3549       sub    (Rscratch, STACK_BIAS, Rscratch);
  3550 #endif
  3551       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3552       andcc  (Rscratch, 0xfffff003, Rscratch);
  3553       br     (Assembler::always, false, Assembler::pt, done) ;
  3554       delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3556       bind   (IsInflated) ;
  3557       if (EmitSync & 64) {
  3558          // If m->owner != null goto IsLocked
  3559          // Pessimistic form: Test-and-CAS vs CAS
  3560          // The optimistic form avoids RTS->RTO cache line upgrades.
  3561          ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3562          andcc  (Rscratch, Rscratch, G0) ;
  3563          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3564          delayed()->nop() ;
  3565          // m->owner == null : it's unlocked.
  3568       // Try to CAS m->owner from null to Self
  3569       // Invariant: if we acquire the lock then _recursions should be 0.
  3570       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3571       mov    (G2_thread, Rscratch) ;
  3572       casn   (Rmark, G0, Rscratch) ;
  3573       cmp    (Rscratch, G0) ;
  3574       // Intentional fall-through into done
  3575    } else {
  3576       // Aggressively avoid the Store-before-CAS penalty
  3577       // Defer the store into box->dhw until after the CAS
  3578       Label IsInflated, Recursive ;
  3580 // Anticipate CAS -- Avoid RTS->RTO upgrade
  3581 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  3583       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  3584       // Triage: biased, stack-locked, neutral, inflated
  3586       if (try_bias) {
  3587         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3588         // Invariant: if control reaches this point in the emitted stream
  3589         // then Rmark has not been modified.
  3591       andcc  (Rmark, 2, G0) ;
  3592       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  3593       delayed()->                         // Beware - dangling delay-slot
  3595       // Try stack-lock acquisition.
  3596       // Transiently install BUSY (0) encoding in the mark word.
  3597       // if the CAS of 0 into the mark was successful then we execute:
  3598       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
  3599       //   ST obj->mark = box    -- overwrite transient 0 value
  3600       // This presumes TSO, of course.
  3602       mov    (0, Rscratch) ;
  3603       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  3604       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  3605       casn   (mark_addr.base(), Rmark, Rscratch) ;
  3606 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  3607       cmp    (Rscratch, Rmark) ;
  3608       brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
  3609       delayed() ->
  3610         st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3611       if (counters != NULL) {
  3612         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3614       br     (Assembler::always, false, Assembler::pt, done);
  3615       delayed() ->
  3616         st_ptr (Rbox, mark_addr) ;
  3618       bind   (Recursive) ;
  3619       // Stack-lock attempt failed - check for recursive stack-lock.
  3620       // Tests show that we can remove the recursive case with no impact
  3621       // on refworkload 0.83.  If we need to reduce the size of the code
  3622       // emitted by compiler_lock_object() the recursive case is perfect
  3623       // candidate.
  3624       //
  3625       // A more extreme idea is to always inflate on stack-lock recursion.
  3626       // This lets us eliminate the recursive checks in compiler_lock_object
  3627       // and compiler_unlock_object and the (box->dhw == 0) encoding.
  3628       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
  3629       // and showed a performance *increase*.  In the same experiment I eliminated
  3630       // the fast-path stack-lock code from the interpreter and always passed
  3631       // control to the "slow" operators in synchronizer.cpp.
  3633       // RScratch contains the fetched obj->mark value from the failed CASN.
  3634 #ifdef _LP64
  3635       sub    (Rscratch, STACK_BIAS, Rscratch);
  3636 #endif
  3637       sub(Rscratch, SP, Rscratch);
  3638       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3639       andcc  (Rscratch, 0xfffff003, Rscratch);
  3640       if (counters != NULL) {
  3641         // Accounting needs the Rscratch register
  3642         st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3643         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3644         br     (Assembler::always, false, Assembler::pt, done) ;
  3645         delayed()->nop() ;
  3646       } else {
  3647         br     (Assembler::always, false, Assembler::pt, done) ;
  3648         delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3651       bind   (IsInflated) ;
  3652       if (EmitSync & 64) {
  3653          // If m->owner != null goto IsLocked
  3654          // Test-and-CAS vs CAS
  3655          // Pessimistic form avoids futile (doomed) CAS attempts
  3656          // The optimistic form avoids RTS->RTO cache line upgrades.
  3657          ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3658          andcc  (Rscratch, Rscratch, G0) ;
  3659          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3660          delayed()->nop() ;
  3661          // m->owner == null : it's unlocked.
  3664       // Try to CAS m->owner from null to Self
  3665       // Invariant: if we acquire the lock then _recursions should be 0.
  3666       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3667       mov    (G2_thread, Rscratch) ;
  3668       casn   (Rmark, G0, Rscratch) ;
  3669       cmp    (Rscratch, G0) ;
  3670       // ST box->displaced_header = NonZero.
  3671       // Any non-zero value suffices:
  3672       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
  3673       st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3674       // Intentional fall-through into done
  3677    bind   (done) ;
  3680 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
  3681                                             Register Rbox, Register Rscratch,
  3682                                             bool try_bias) {
  3683    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3685    Label done ;
  3687    if (EmitSync & 4) {
  3688      cmp  (SP, G0) ;
  3689      return ;
  3692    if (EmitSync & 8) {
  3693      if (try_bias) {
  3694         biased_locking_exit(mark_addr, Rscratch, done);
  3697      // Test first if it is a fast recursive unlock
  3698      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
  3699      cmp(Rmark, G0);
  3700      brx(Assembler::equal, false, Assembler::pt, done);
  3701      delayed()->nop();
  3703      // Check if it is still a light weight lock, this is is true if we see
  3704      // the stack address of the basicLock in the markOop of the object
  3705      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3706      casx_under_lock(mark_addr.base(), Rbox, Rmark,
  3707        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3708      br (Assembler::always, false, Assembler::pt, done);
  3709      delayed()->cmp(Rbox, Rmark);
  3710      bind (done) ;
  3711      return ;
  3714    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
  3715    // is too large performance rolls abruptly off a cliff.
  3716    // This could be related to inlining policies, code cache management, or
  3717    // I$ effects.
  3718    Label LStacked ;
  3720    if (try_bias) {
  3721       // TODO: eliminate redundant LDs of obj->mark
  3722       biased_locking_exit(mark_addr, Rscratch, done);
  3725    ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
  3726    ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
  3727    andcc  (Rscratch, Rscratch, G0);
  3728    brx    (Assembler::zero, false, Assembler::pn, done);
  3729    delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
  3730    andcc  (Rmark, 2, G0) ;
  3731    brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
  3732    delayed()-> nop() ;
  3734    // It's inflated
  3735    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
  3736    // the ST of 0 into _owner which releases the lock.  This prevents loads
  3737    // and stores within the critical section from reordering (floating)
  3738    // past the store that releases the lock.  But TSO is a strong memory model
  3739    // and that particular flavor of barrier is a noop, so we can safely elide it.
  3740    // Note that we use 1-0 locking by default for the inflated case.  We
  3741    // close the resultant (and rare) race by having contented threads in
  3742    // monitorenter periodically poll _owner.
  3743    ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3744    ld_ptr (Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
  3745    xor3   (Rscratch, G2_thread, Rscratch) ;
  3746    orcc   (Rbox, Rscratch, Rbox) ;
  3747    brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3748    delayed()->
  3749    ld_ptr (Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
  3750    ld_ptr (Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
  3751    orcc   (Rbox, Rscratch, G0) ;
  3752    if (EmitSync & 65536) {
  3753       Label LSucc ;
  3754       brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
  3755       delayed()->nop() ;
  3756       br     (Assembler::always, false, Assembler::pt, done) ;
  3757       delayed()->
  3758       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3760       bind   (LSucc) ;
  3761       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3762       if (os::is_MP()) { membar (StoreLoad) ; }
  3763       ld_ptr (Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
  3764       andcc  (Rscratch, Rscratch, G0) ;
  3765       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3766       delayed()-> andcc (G0, G0, G0) ;
  3767       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3768       mov    (G2_thread, Rscratch) ;
  3769       casn   (Rmark, G0, Rscratch) ;
  3770       cmp    (Rscratch, G0) ;
  3771       // invert icc.zf and goto done
  3772       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3773       delayed() -> cmp (G0, G0) ;
  3774       br     (Assembler::always, false, Assembler::pt, done);
  3775       delayed() -> cmp (G0, 1) ;
  3776    } else {
  3777       brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3778       delayed()->nop() ;
  3779       br     (Assembler::always, false, Assembler::pt, done) ;
  3780       delayed()->
  3781       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3784    bind   (LStacked) ;
  3785    // Consider: we could replace the expensive CAS in the exit
  3786    // path with a simple ST of the displaced mark value fetched from
  3787    // the on-stack basiclock box.  That admits a race where a thread T2
  3788    // in the slow lock path -- inflating with monitor M -- could race a
  3789    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
  3790    // More precisely T1 in the stack-lock unlock path could "stomp" the
  3791    // inflated mark value M installed by T2, resulting in an orphan
  3792    // object monitor M and T2 becoming stranded.  We can remedy that situation
  3793    // by having T2 periodically poll the object's mark word using timed wait
  3794    // operations.  If T2 discovers that a stomp has occurred it vacates
  3795    // the monitor M and wakes any other threads stranded on the now-orphan M.
  3796    // In addition the monitor scavenger, which performs deflation,
  3797    // would also need to check for orpan monitors and stranded threads.
  3798    //
  3799    // Finally, inflation is also used when T2 needs to assign a hashCode
  3800    // to O and O is stack-locked by T1.  The "stomp" race could cause
  3801    // an assigned hashCode value to be lost.  We can avoid that condition
  3802    // and provide the necessary hashCode stability invariants by ensuring
  3803    // that hashCode generation is idempotent between copying GCs.
  3804    // For example we could compute the hashCode of an object O as
  3805    // O's heap address XOR some high quality RNG value that is refreshed
  3806    // at GC-time.  The monitor scavenger would install the hashCode
  3807    // found in any orphan monitors.  Again, the mechanism admits a
  3808    // lost-update "stomp" WAW race but detects and recovers as needed.
  3809    //
  3810    // A prototype implementation showed excellent results, although
  3811    // the scavenger and timeout code was rather involved.
  3813    casn   (mark_addr.base(), Rbox, Rscratch) ;
  3814    cmp    (Rbox, Rscratch);
  3815    // Intentional fall through into done ...
  3817    bind   (done) ;
  3822 void MacroAssembler::print_CPU_state() {
  3823   // %%%%% need to implement this
  3826 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3827   // %%%%% need to implement this
  3830 void MacroAssembler::push_IU_state() {
  3831   // %%%%% need to implement this
  3835 void MacroAssembler::pop_IU_state() {
  3836   // %%%%% need to implement this
  3840 void MacroAssembler::push_FPU_state() {
  3841   // %%%%% need to implement this
  3845 void MacroAssembler::pop_FPU_state() {
  3846   // %%%%% need to implement this
  3850 void MacroAssembler::push_CPU_state() {
  3851   // %%%%% need to implement this
  3855 void MacroAssembler::pop_CPU_state() {
  3856   // %%%%% need to implement this
  3861 void MacroAssembler::verify_tlab() {
  3862 #ifdef ASSERT
  3863   if (UseTLAB && VerifyOops) {
  3864     Label next, next2, ok;
  3865     Register t1 = L0;
  3866     Register t2 = L1;
  3867     Register t3 = L2;
  3869     save_frame(0);
  3870     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3871     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
  3872     or3(t1, t2, t3);
  3873     cmp(t1, t2);
  3874     br(Assembler::greaterEqual, false, Assembler::pn, next);
  3875     delayed()->nop();
  3876     stop("assert(top >= start)");
  3877     should_not_reach_here();
  3879     bind(next);
  3880     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3881     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
  3882     or3(t3, t2, t3);
  3883     cmp(t1, t2);
  3884     br(Assembler::lessEqual, false, Assembler::pn, next2);
  3885     delayed()->nop();
  3886     stop("assert(top <= end)");
  3887     should_not_reach_here();
  3889     bind(next2);
  3890     and3(t3, MinObjAlignmentInBytesMask, t3);
  3891     cmp(t3, 0);
  3892     br(Assembler::lessEqual, false, Assembler::pn, ok);
  3893     delayed()->nop();
  3894     stop("assert(aligned)");
  3895     should_not_reach_here();
  3897     bind(ok);
  3898     restore();
  3900 #endif
  3904 void MacroAssembler::eden_allocate(
  3905   Register obj,                        // result: pointer to object after successful allocation
  3906   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3907   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3908   Register t1,                         // temp register
  3909   Register t2,                         // temp register
  3910   Label&   slow_case                   // continuation point if fast allocation fails
  3911 ){
  3912   // make sure arguments make sense
  3913   assert_different_registers(obj, var_size_in_bytes, t1, t2);
  3914   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  3915   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3917   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3918     // No allocation in the shared eden.
  3919     br(Assembler::always, false, Assembler::pt, slow_case);
  3920     delayed()->nop();
  3921   } else {
  3922     // get eden boundaries
  3923     // note: we need both top & top_addr!
  3924     const Register top_addr = t1;
  3925     const Register end      = t2;
  3927     CollectedHeap* ch = Universe::heap();
  3928     set((intx)ch->top_addr(), top_addr);
  3929     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  3930     ld_ptr(top_addr, delta, end);
  3931     ld_ptr(top_addr, 0, obj);
  3933     // try to allocate
  3934     Label retry;
  3935     bind(retry);
  3936 #ifdef ASSERT
  3937     // make sure eden top is properly aligned
  3939       Label L;
  3940       btst(MinObjAlignmentInBytesMask, obj);
  3941       br(Assembler::zero, false, Assembler::pt, L);
  3942       delayed()->nop();
  3943       stop("eden top is not properly aligned");
  3944       bind(L);
  3946 #endif // ASSERT
  3947     const Register free = end;
  3948     sub(end, obj, free);                                   // compute amount of free space
  3949     if (var_size_in_bytes->is_valid()) {
  3950       // size is unknown at compile time
  3951       cmp(free, var_size_in_bytes);
  3952       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3953       delayed()->add(obj, var_size_in_bytes, end);
  3954     } else {
  3955       // size is known at compile time
  3956       cmp(free, con_size_in_bytes);
  3957       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3958       delayed()->add(obj, con_size_in_bytes, end);
  3960     // Compare obj with the value at top_addr; if still equal, swap the value of
  3961     // end with the value at top_addr. If not equal, read the value at top_addr
  3962     // into end.
  3963     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3964     // if someone beat us on the allocation, try again, otherwise continue
  3965     cmp(obj, end);
  3966     brx(Assembler::notEqual, false, Assembler::pn, retry);
  3967     delayed()->mov(end, obj);                              // nop if successfull since obj == end
  3969 #ifdef ASSERT
  3970     // make sure eden top is properly aligned
  3972       Label L;
  3973       const Register top_addr = t1;
  3975       set((intx)ch->top_addr(), top_addr);
  3976       ld_ptr(top_addr, 0, top_addr);
  3977       btst(MinObjAlignmentInBytesMask, top_addr);
  3978       br(Assembler::zero, false, Assembler::pt, L);
  3979       delayed()->nop();
  3980       stop("eden top is not properly aligned");
  3981       bind(L);
  3983 #endif // ASSERT
  3988 void MacroAssembler::tlab_allocate(
  3989   Register obj,                        // result: pointer to object after successful allocation
  3990   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3991   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3992   Register t1,                         // temp register
  3993   Label&   slow_case                   // continuation point if fast allocation fails
  3994 ){
  3995   // make sure arguments make sense
  3996   assert_different_registers(obj, var_size_in_bytes, t1);
  3997   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  3998   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  4000   const Register free  = t1;
  4002   verify_tlab();
  4004   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
  4006   // calculate amount of free space
  4007   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  4008   sub(free, obj, free);
  4010   Label done;
  4011   if (var_size_in_bytes == noreg) {
  4012     cmp(free, con_size_in_bytes);
  4013   } else {
  4014     cmp(free, var_size_in_bytes);
  4016   br(Assembler::less, false, Assembler::pn, slow_case);
  4017   // calculate the new top pointer
  4018   if (var_size_in_bytes == noreg) {
  4019     delayed()->add(obj, con_size_in_bytes, free);
  4020   } else {
  4021     delayed()->add(obj, var_size_in_bytes, free);
  4024   bind(done);
  4026 #ifdef ASSERT
  4027   // make sure new free pointer is properly aligned
  4029     Label L;
  4030     btst(MinObjAlignmentInBytesMask, free);
  4031     br(Assembler::zero, false, Assembler::pt, L);
  4032     delayed()->nop();
  4033     stop("updated TLAB free is not properly aligned");
  4034     bind(L);
  4036 #endif // ASSERT
  4038   // update the tlab top pointer
  4039   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  4040   verify_tlab();
  4044 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  4045   Register top = O0;
  4046   Register t1 = G1;
  4047   Register t2 = G3;
  4048   Register t3 = O1;
  4049   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  4050   Label do_refill, discard_tlab;
  4052   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  4053     // No allocation in the shared eden.
  4054     br(Assembler::always, false, Assembler::pt, slow_case);
  4055     delayed()->nop();
  4058   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  4059   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  4060   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
  4062   // calculate amount of free space
  4063   sub(t1, top, t1);
  4064   srl_ptr(t1, LogHeapWordSize, t1);
  4066   // Retain tlab and allocate object in shared space if
  4067   // the amount free in the tlab is too large to discard.
  4068   cmp(t1, t2);
  4069   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
  4071   // increment waste limit to prevent getting stuck on this slow path
  4072   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  4073   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  4074   if (TLABStats) {
  4075     // increment number of slow_allocations
  4076     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
  4077     add(t2, 1, t2);
  4078     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  4080   br(Assembler::always, false, Assembler::pt, try_eden);
  4081   delayed()->nop();
  4083   bind(discard_tlab);
  4084   if (TLABStats) {
  4085     // increment number of refills
  4086     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
  4087     add(t2, 1, t2);
  4088     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  4089     // accumulate wastage
  4090     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
  4091     add(t2, t1, t2);
  4092     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  4095   // if tlab is currently allocated (top or end != null) then
  4096   // fill [top, end + alignment_reserve) with array object
  4097   br_null(top, false, Assembler::pn, do_refill);
  4098   delayed()->nop();
  4100   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  4101   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  4102   // set klass to intArrayKlass
  4103   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  4104   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  4105   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  4106   st(t1, top, arrayOopDesc::length_offset_in_bytes());
  4107   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  4108   ld_ptr(t2, 0, t2);
  4109   // store klass last.  concurrent gcs assumes klass length is valid if
  4110   // klass field is not null.
  4111   store_klass(t2, top);
  4112   verify_oop(top);
  4114   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
  4115   sub(top, t1, t1); // size of tlab's allocated portion
  4116   incr_allocated_bytes(t1, t2, t3);
  4118   // refill the tlab with an eden allocation
  4119   bind(do_refill);
  4120   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  4121   sll_ptr(t1, LogHeapWordSize, t1);
  4122   // allocate new tlab, address returned in top
  4123   eden_allocate(top, t1, 0, t2, t3, slow_case);
  4125   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  4126   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  4127 #ifdef ASSERT
  4128   // check that tlab_size (t1) is still valid
  4130     Label ok;
  4131     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
  4132     sll_ptr(t2, LogHeapWordSize, t2);
  4133     cmp(t1, t2);
  4134     br(Assembler::equal, false, Assembler::pt, ok);
  4135     delayed()->nop();
  4136     stop("assert(t1 == tlab_size)");
  4137     should_not_reach_here();
  4139     bind(ok);
  4141 #endif // ASSERT
  4142   add(top, t1, top); // t1 is tlab_size
  4143   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  4144   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  4145   verify_tlab();
  4146   br(Assembler::always, false, Assembler::pt, retry);
  4147   delayed()->nop();
  4150 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
  4151                                           Register t1, Register t2) {
  4152   // Bump total bytes allocated by this thread
  4153   assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
  4154   assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
  4155   // v8 support has gone the way of the dodo
  4156   ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
  4157   add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
  4158   stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
  4161 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  4162   switch (cond) {
  4163     // Note some conditions are synonyms for others
  4164     case Assembler::never:                return Assembler::always;
  4165     case Assembler::zero:                 return Assembler::notZero;
  4166     case Assembler::lessEqual:            return Assembler::greater;
  4167     case Assembler::less:                 return Assembler::greaterEqual;
  4168     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
  4169     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
  4170     case Assembler::negative:             return Assembler::positive;
  4171     case Assembler::overflowSet:          return Assembler::overflowClear;
  4172     case Assembler::always:               return Assembler::never;
  4173     case Assembler::notZero:              return Assembler::zero;
  4174     case Assembler::greater:              return Assembler::lessEqual;
  4175     case Assembler::greaterEqual:         return Assembler::less;
  4176     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
  4177     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
  4178     case Assembler::positive:             return Assembler::negative;
  4179     case Assembler::overflowClear:        return Assembler::overflowSet;
  4182   ShouldNotReachHere(); return Assembler::overflowClear;
  4185 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
  4186                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  4187   Condition negated_cond = negate_condition(cond);
  4188   Label L;
  4189   brx(negated_cond, false, Assembler::pt, L);
  4190   delayed()->nop();
  4191   inc_counter(counter_ptr, Rtmp1, Rtmp2);
  4192   bind(L);
  4195 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
  4196   AddressLiteral addrlit(counter_addr);
  4197   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
  4198   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
  4199   ld(addr, Rtmp2);
  4200   inc(Rtmp2);
  4201   st(Rtmp2, addr);
  4204 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
  4205   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
  4208 SkipIfEqual::SkipIfEqual(
  4209     MacroAssembler* masm, Register temp, const bool* flag_addr,
  4210     Assembler::Condition condition) {
  4211   _masm = masm;
  4212   AddressLiteral flag(flag_addr);
  4213   _masm->sethi(flag, temp);
  4214   _masm->ldub(temp, flag.low10(), temp);
  4215   _masm->tst(temp);
  4216   _masm->br(condition, false, Assembler::pt, _label);
  4217   _masm->delayed()->nop();
  4220 SkipIfEqual::~SkipIfEqual() {
  4221   _masm->bind(_label);
  4225 // Writes to stack successive pages until offset reached to check for
  4226 // stack overflow + shadow pages.  This clobbers tsp and scratch.
  4227 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
  4228                                      Register Rscratch) {
  4229   // Use stack pointer in temp stack pointer
  4230   mov(SP, Rtsp);
  4232   // Bang stack for total size given plus stack shadow page size.
  4233   // Bang one page at a time because a large size can overflow yellow and
  4234   // red zones (the bang will fail but stack overflow handling can't tell that
  4235   // it was a stack overflow bang vs a regular segv).
  4236   int offset = os::vm_page_size();
  4237   Register Roffset = Rscratch;
  4239   Label loop;
  4240   bind(loop);
  4241   set((-offset)+STACK_BIAS, Rscratch);
  4242   st(G0, Rtsp, Rscratch);
  4243   set(offset, Roffset);
  4244   sub(Rsize, Roffset, Rsize);
  4245   cmp(Rsize, G0);
  4246   br(Assembler::greater, false, Assembler::pn, loop);
  4247   delayed()->sub(Rtsp, Roffset, Rtsp);
  4249   // Bang down shadow pages too.
  4250   // The -1 because we already subtracted 1 page.
  4251   for (int i = 0; i< StackShadowPages-1; i++) {
  4252     set((-i*offset)+STACK_BIAS, Rscratch);
  4253     st(G0, Rtsp, Rscratch);
  4257 ///////////////////////////////////////////////////////////////////////////////////
  4258 #ifndef SERIALGC
  4260 static uint num_stores = 0;
  4261 static uint num_null_pre_stores = 0;
  4263 static void count_null_pre_vals(void* pre_val) {
  4264   num_stores++;
  4265   if (pre_val == NULL) num_null_pre_stores++;
  4266   if ((num_stores % 1000000) == 0) {
  4267     tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
  4268                   num_stores, num_null_pre_stores,
  4269                   100.0*(float)num_null_pre_stores/(float)num_stores);
  4273 static address satb_log_enqueue_with_frame = 0;
  4274 static u_char* satb_log_enqueue_with_frame_end = 0;
  4276 static address satb_log_enqueue_frameless = 0;
  4277 static u_char* satb_log_enqueue_frameless_end = 0;
  4279 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
  4281 // The calls to this don't work.  We'd need to do a fair amount of work to
  4282 // make it work.
  4283 static void check_index(int ind) {
  4284   assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
  4285          "Invariants.");
  4288 static void generate_satb_log_enqueue(bool with_frame) {
  4289   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
  4290   CodeBuffer buf(bb);
  4291   MacroAssembler masm(&buf);
  4292   address start = masm.pc();
  4293   Register pre_val;
  4295   Label refill, restart;
  4296   if (with_frame) {
  4297     masm.save_frame(0);
  4298     pre_val = I0;  // Was O0 before the save.
  4299   } else {
  4300     pre_val = O0;
  4302   int satb_q_index_byte_offset =
  4303     in_bytes(JavaThread::satb_mark_queue_offset() +
  4304              PtrQueue::byte_offset_of_index());
  4305   int satb_q_buf_byte_offset =
  4306     in_bytes(JavaThread::satb_mark_queue_offset() +
  4307              PtrQueue::byte_offset_of_buf());
  4308   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
  4309          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
  4310          "check sizes in assembly below");
  4312   masm.bind(restart);
  4313   masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
  4315   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
  4316   // If the branch is taken, no harm in executing this in the delay slot.
  4317   masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
  4318   masm.sub(L0, oopSize, L0);
  4320   masm.st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
  4321   if (!with_frame) {
  4322     // Use return-from-leaf
  4323     masm.retl();
  4324     masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4325   } else {
  4326     // Not delayed.
  4327     masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4329   if (with_frame) {
  4330     masm.ret();
  4331     masm.delayed()->restore();
  4333   masm.bind(refill);
  4335   address handle_zero =
  4336     CAST_FROM_FN_PTR(address,
  4337                      &SATBMarkQueueSet::handle_zero_index_for_thread);
  4338   // This should be rare enough that we can afford to save all the
  4339   // scratch registers that the calling context might be using.
  4340   masm.mov(G1_scratch, L0);
  4341   masm.mov(G3_scratch, L1);
  4342   masm.mov(G4, L2);
  4343   // We need the value of O0 above (for the write into the buffer), so we
  4344   // save and restore it.
  4345   masm.mov(O0, L3);
  4346   // Since the call will overwrite O7, we save and restore that, as well.
  4347   masm.mov(O7, L4);
  4348   masm.call_VM_leaf(L5, handle_zero, G2_thread);
  4349   masm.mov(L0, G1_scratch);
  4350   masm.mov(L1, G3_scratch);
  4351   masm.mov(L2, G4);
  4352   masm.mov(L3, O0);
  4353   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4354   masm.delayed()->mov(L4, O7);
  4356   if (with_frame) {
  4357     satb_log_enqueue_with_frame = start;
  4358     satb_log_enqueue_with_frame_end = masm.pc();
  4359   } else {
  4360     satb_log_enqueue_frameless = start;
  4361     satb_log_enqueue_frameless_end = masm.pc();
  4365 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
  4366   if (with_frame) {
  4367     if (satb_log_enqueue_with_frame == 0) {
  4368       generate_satb_log_enqueue(with_frame);
  4369       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
  4370       if (G1SATBPrintStubs) {
  4371         tty->print_cr("Generated with-frame satb enqueue:");
  4372         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
  4373                              satb_log_enqueue_with_frame_end,
  4374                              tty);
  4377   } else {
  4378     if (satb_log_enqueue_frameless == 0) {
  4379       generate_satb_log_enqueue(with_frame);
  4380       assert(satb_log_enqueue_frameless != 0, "postcondition.");
  4381       if (G1SATBPrintStubs) {
  4382         tty->print_cr("Generated frameless satb enqueue:");
  4383         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
  4384                              satb_log_enqueue_frameless_end,
  4385                              tty);
  4391 void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
  4392   assert(offset == 0 || index == noreg, "choose one");
  4394   if (G1DisablePreBarrier) return;
  4395   // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
  4396   Label filtered;
  4397   // satb_log_barrier_work0(tmp, filtered);
  4398   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  4399     ld(G2,
  4400        in_bytes(JavaThread::satb_mark_queue_offset() +
  4401                 PtrQueue::byte_offset_of_active()),
  4402        tmp);
  4403   } else {
  4404     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  4405               "Assumption");
  4406     ldsb(G2,
  4407          in_bytes(JavaThread::satb_mark_queue_offset() +
  4408                   PtrQueue::byte_offset_of_active()),
  4409          tmp);
  4412   // Check on whether to annul.
  4413   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
  4414   delayed() -> nop();
  4416   // satb_log_barrier_work1(tmp, offset);
  4417   if (index == noreg) {
  4418     if (Assembler::is_simm13(offset)) {
  4419       load_heap_oop(obj, offset, tmp);
  4420     } else {
  4421       set(offset, tmp);
  4422       load_heap_oop(obj, tmp, tmp);
  4424   } else {
  4425     load_heap_oop(obj, index, tmp);
  4428   // satb_log_barrier_work2(obj, tmp, offset);
  4430   // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
  4432   const Register pre_val = tmp;
  4434   if (G1SATBBarrierPrintNullPreVals) {
  4435     save_frame(0);
  4436     mov(pre_val, O0);
  4437     // Save G-regs that target may use.
  4438     mov(G1, L1);
  4439     mov(G2, L2);
  4440     mov(G3, L3);
  4441     mov(G4, L4);
  4442     mov(G5, L5);
  4443     call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
  4444     delayed()->nop();
  4445     // Restore G-regs that target may have used.
  4446     mov(L1, G1);
  4447     mov(L2, G2);
  4448     mov(L3, G3);
  4449     mov(L4, G4);
  4450     mov(L5, G5);
  4451     restore(G0, G0, G0);
  4454   // Check on whether to annul.
  4455   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
  4456   delayed() -> nop();
  4458   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
  4459   // case, pre_val will be a scratch G-reg, but there's some cases in which
  4460   // it's an O-reg.  In the first case, do a normal call.  In the latter,
  4461   // do a save here and call the frameless version.
  4463   guarantee(pre_val->is_global() || pre_val->is_out(),
  4464             "Or we need to think harder.");
  4465   if (pre_val->is_global() && !preserve_o_regs) {
  4466     generate_satb_log_enqueue_if_necessary(true); // with frame.
  4467     call(satb_log_enqueue_with_frame);
  4468     delayed()->mov(pre_val, O0);
  4469   } else {
  4470     generate_satb_log_enqueue_if_necessary(false); // with frameless.
  4471     save_frame(0);
  4472     call(satb_log_enqueue_frameless);
  4473     delayed()->mov(pre_val->after_save(), O0);
  4474     restore();
  4477   bind(filtered);
  4480 static jint num_ct_writes = 0;
  4481 static jint num_ct_writes_filtered_in_hr = 0;
  4482 static jint num_ct_writes_filtered_null = 0;
  4483 static G1CollectedHeap* g1 = NULL;
  4485 static Thread* count_ct_writes(void* filter_val, void* new_val) {
  4486   Atomic::inc(&num_ct_writes);
  4487   if (filter_val == NULL) {
  4488     Atomic::inc(&num_ct_writes_filtered_in_hr);
  4489   } else if (new_val == NULL) {
  4490     Atomic::inc(&num_ct_writes_filtered_null);
  4491   } else {
  4492     if (g1 == NULL) {
  4493       g1 = G1CollectedHeap::heap();
  4496   if ((num_ct_writes % 1000000) == 0) {
  4497     jint num_ct_writes_filtered =
  4498       num_ct_writes_filtered_in_hr +
  4499       num_ct_writes_filtered_null;
  4501     tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
  4502                   "   (%5.2f%% intra-HR, %5.2f%% null).",
  4503                   num_ct_writes,
  4504                   100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
  4505                   100.0*(float)num_ct_writes_filtered_in_hr/
  4506                   (float)num_ct_writes,
  4507                   100.0*(float)num_ct_writes_filtered_null/
  4508                   (float)num_ct_writes);
  4510   return Thread::current();
  4513 static address dirty_card_log_enqueue = 0;
  4514 static u_char* dirty_card_log_enqueue_end = 0;
  4516 // This gets to assume that o0 contains the object address.
  4517 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
  4518   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
  4519   CodeBuffer buf(bb);
  4520   MacroAssembler masm(&buf);
  4521   address start = masm.pc();
  4523   Label not_already_dirty, restart, refill;
  4525 #ifdef _LP64
  4526   masm.srlx(O0, CardTableModRefBS::card_shift, O0);
  4527 #else
  4528   masm.srl(O0, CardTableModRefBS::card_shift, O0);
  4529 #endif
  4530   AddressLiteral addrlit(byte_map_base);
  4531   masm.set(addrlit, O1); // O1 := <card table base>
  4532   masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
  4534   masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
  4535                       O2, not_already_dirty);
  4536   // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
  4537   // case, harmless if not.
  4538   masm.delayed()->add(O0, O1, O3);
  4540   // We didn't take the branch, so we're already dirty: return.
  4541   // Use return-from-leaf
  4542   masm.retl();
  4543   masm.delayed()->nop();
  4545   // Not dirty.
  4546   masm.bind(not_already_dirty);
  4547   // First, dirty it.
  4548   masm.stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
  4549   int dirty_card_q_index_byte_offset =
  4550     in_bytes(JavaThread::dirty_card_queue_offset() +
  4551              PtrQueue::byte_offset_of_index());
  4552   int dirty_card_q_buf_byte_offset =
  4553     in_bytes(JavaThread::dirty_card_queue_offset() +
  4554              PtrQueue::byte_offset_of_buf());
  4555   masm.bind(restart);
  4556   masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
  4558   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
  4559                       L0, refill);
  4560   // If the branch is taken, no harm in executing this in the delay slot.
  4561   masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
  4562   masm.sub(L0, oopSize, L0);
  4564   masm.st_ptr(O3, L1, L0);  // [_buf + index] := I0
  4565   // Use return-from-leaf
  4566   masm.retl();
  4567   masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
  4569   masm.bind(refill);
  4570   address handle_zero =
  4571     CAST_FROM_FN_PTR(address,
  4572                      &DirtyCardQueueSet::handle_zero_index_for_thread);
  4573   // This should be rare enough that we can afford to save all the
  4574   // scratch registers that the calling context might be using.
  4575   masm.mov(G1_scratch, L3);
  4576   masm.mov(G3_scratch, L5);
  4577   // We need the value of O3 above (for the write into the buffer), so we
  4578   // save and restore it.
  4579   masm.mov(O3, L6);
  4580   // Since the call will overwrite O7, we save and restore that, as well.
  4581   masm.mov(O7, L4);
  4583   masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
  4584   masm.mov(L3, G1_scratch);
  4585   masm.mov(L5, G3_scratch);
  4586   masm.mov(L6, O3);
  4587   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4588   masm.delayed()->mov(L4, O7);
  4590   dirty_card_log_enqueue = start;
  4591   dirty_card_log_enqueue_end = masm.pc();
  4592   // XXX Should have a guarantee here about not going off the end!
  4593   // Does it already do so?  Do an experiment...
  4596 static inline void
  4597 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
  4598   if (dirty_card_log_enqueue == 0) {
  4599     generate_dirty_card_log_enqueue(byte_map_base);
  4600     assert(dirty_card_log_enqueue != 0, "postcondition.");
  4601     if (G1SATBPrintStubs) {
  4602       tty->print_cr("Generated dirty_card enqueue:");
  4603       Disassembler::decode((u_char*)dirty_card_log_enqueue,
  4604                            dirty_card_log_enqueue_end,
  4605                            tty);
  4611 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4613   Label filtered;
  4614   MacroAssembler* post_filter_masm = this;
  4616   if (new_val == G0) return;
  4617   if (G1DisablePostBarrier) return;
  4619   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
  4620   assert(bs->kind() == BarrierSet::G1SATBCT ||
  4621          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
  4622   if (G1RSBarrierRegionFilter) {
  4623     xor3(store_addr, new_val, tmp);
  4624 #ifdef _LP64
  4625     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4626 #else
  4627     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4628 #endif
  4629     if (G1PrintCTFilterStats) {
  4630       guarantee(tmp->is_global(), "Or stats won't work...");
  4631       // This is a sleazy hack: I'm temporarily hijacking G2, which I
  4632       // promise to restore.
  4633       mov(new_val, G2);
  4634       save_frame(0);
  4635       mov(tmp, O0);
  4636       mov(G2, O1);
  4637       // Save G-regs that target may use.
  4638       mov(G1, L1);
  4639       mov(G2, L2);
  4640       mov(G3, L3);
  4641       mov(G4, L4);
  4642       mov(G5, L5);
  4643       call(CAST_FROM_FN_PTR(address, &count_ct_writes));
  4644       delayed()->nop();
  4645       mov(O0, G2);
  4646       // Restore G-regs that target may have used.
  4647       mov(L1, G1);
  4648       mov(L3, G3);
  4649       mov(L4, G4);
  4650       mov(L5, G5);
  4651       restore(G0, G0, G0);
  4653     // XXX Should I predict this taken or not?  Does it mattern?
  4654     br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
  4655     delayed()->nop();
  4658   // If the "store_addr" register is an "in" or "local" register, move it to
  4659   // a scratch reg so we can pass it as an argument.
  4660   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
  4661   // Pick a scratch register different from "tmp".
  4662   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
  4663   // Make sure we use up the delay slot!
  4664   if (use_scr) {
  4665     post_filter_masm->mov(store_addr, scr);
  4666   } else {
  4667     post_filter_masm->nop();
  4669   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
  4670   save_frame(0);
  4671   call(dirty_card_log_enqueue);
  4672   if (use_scr) {
  4673     delayed()->mov(scr, O0);
  4674   } else {
  4675     delayed()->mov(store_addr->after_save(), O0);
  4677   restore();
  4679   bind(filtered);
  4683 #endif  // SERIALGC
  4684 ///////////////////////////////////////////////////////////////////////////////////
  4686 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4687   // If we're writing constant NULL, we can skip the write barrier.
  4688   if (new_val == G0) return;
  4689   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
  4690   assert(bs->kind() == BarrierSet::CardTableModRef ||
  4691          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
  4692   card_table_write(bs->byte_map_base, tmp, store_addr);
  4695 void MacroAssembler::load_klass(Register src_oop, Register klass) {
  4696   // The number of bytes in this code is used by
  4697   // MachCallDynamicJavaNode::ret_addr_offset()
  4698   // if this changes, change that.
  4699   if (UseCompressedOops) {
  4700     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4701     decode_heap_oop_not_null(klass);
  4702   } else {
  4703     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4707 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
  4708   if (UseCompressedOops) {
  4709     assert(dst_oop != klass, "not enough registers");
  4710     encode_heap_oop_not_null(klass);
  4711     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4712   } else {
  4713     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4717 void MacroAssembler::store_klass_gap(Register s, Register d) {
  4718   if (UseCompressedOops) {
  4719     assert(s != d, "not enough registers");
  4720     st(s, d, oopDesc::klass_gap_offset_in_bytes());
  4724 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
  4725   if (UseCompressedOops) {
  4726     lduw(s, d);
  4727     decode_heap_oop(d);
  4728   } else {
  4729     ld_ptr(s, d);
  4733 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
  4734    if (UseCompressedOops) {
  4735     lduw(s1, s2, d);
  4736     decode_heap_oop(d, d);
  4737   } else {
  4738     ld_ptr(s1, s2, d);
  4742 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
  4743    if (UseCompressedOops) {
  4744     lduw(s1, simm13a, d);
  4745     decode_heap_oop(d, d);
  4746   } else {
  4747     ld_ptr(s1, simm13a, d);
  4751 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
  4752   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
  4753   else                   load_heap_oop(s1, s2.as_register(), d);
  4756 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  4757   if (UseCompressedOops) {
  4758     assert(s1 != d && s2 != d, "not enough registers");
  4759     encode_heap_oop(d);
  4760     st(d, s1, s2);
  4761   } else {
  4762     st_ptr(d, s1, s2);
  4766 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  4767   if (UseCompressedOops) {
  4768     assert(s1 != d, "not enough registers");
  4769     encode_heap_oop(d);
  4770     st(d, s1, simm13a);
  4771   } else {
  4772     st_ptr(d, s1, simm13a);
  4776 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  4777   if (UseCompressedOops) {
  4778     assert(a.base() != d, "not enough registers");
  4779     encode_heap_oop(d);
  4780     st(d, a, offset);
  4781   } else {
  4782     st_ptr(d, a, offset);
  4787 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  4788   assert (UseCompressedOops, "must be compressed");
  4789   assert (Universe::heap() != NULL, "java heap should be initialized");
  4790   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4791   verify_oop(src);
  4792   if (Universe::narrow_oop_base() == NULL) {
  4793     srlx(src, LogMinObjAlignmentInBytes, dst);
  4794     return;
  4796   Label done;
  4797   if (src == dst) {
  4798     // optimize for frequent case src == dst
  4799     bpr(rc_nz, true, Assembler::pt, src, done);
  4800     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
  4801     bind(done);
  4802     srlx(src, LogMinObjAlignmentInBytes, dst);
  4803   } else {
  4804     bpr(rc_z, false, Assembler::pn, src, done);
  4805     delayed() -> mov(G0, dst);
  4806     // could be moved before branch, and annulate delay,
  4807     // but may add some unneeded work decoding null
  4808     sub(src, G6_heapbase, dst);
  4809     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4810     bind(done);
  4815 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4816   assert (UseCompressedOops, "must be compressed");
  4817   assert (Universe::heap() != NULL, "java heap should be initialized");
  4818   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4819   verify_oop(r);
  4820   if (Universe::narrow_oop_base() != NULL)
  4821     sub(r, G6_heapbase, r);
  4822   srlx(r, LogMinObjAlignmentInBytes, r);
  4825 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  4826   assert (UseCompressedOops, "must be compressed");
  4827   assert (Universe::heap() != NULL, "java heap should be initialized");
  4828   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4829   verify_oop(src);
  4830   if (Universe::narrow_oop_base() == NULL) {
  4831     srlx(src, LogMinObjAlignmentInBytes, dst);
  4832   } else {
  4833     sub(src, G6_heapbase, dst);
  4834     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4838 // Same algorithm as oops.inline.hpp decode_heap_oop.
  4839 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  4840   assert (UseCompressedOops, "must be compressed");
  4841   assert (Universe::heap() != NULL, "java heap should be initialized");
  4842   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4843   sllx(src, LogMinObjAlignmentInBytes, dst);
  4844   if (Universe::narrow_oop_base() != NULL) {
  4845     Label done;
  4846     bpr(rc_nz, true, Assembler::pt, dst, done);
  4847     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  4848     bind(done);
  4850   verify_oop(dst);
  4853 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  4854   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4855   // pd_code_size_limit.
  4856   // Also do not verify_oop as this is called by verify_oop.
  4857   assert (UseCompressedOops, "must be compressed");
  4858   assert (Universe::heap() != NULL, "java heap should be initialized");
  4859   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4860   sllx(r, LogMinObjAlignmentInBytes, r);
  4861   if (Universe::narrow_oop_base() != NULL)
  4862     add(r, G6_heapbase, r);
  4865 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  4866   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4867   // pd_code_size_limit.
  4868   // Also do not verify_oop as this is called by verify_oop.
  4869   assert (UseCompressedOops, "must be compressed");
  4870   assert (Universe::heap() != NULL, "java heap should be initialized");
  4871   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4872   sllx(src, LogMinObjAlignmentInBytes, dst);
  4873   if (Universe::narrow_oop_base() != NULL)
  4874     add(dst, G6_heapbase, dst);
  4877 void MacroAssembler::reinit_heapbase() {
  4878   if (UseCompressedOops) {
  4879     // call indirectly to solve generation ordering problem
  4880     AddressLiteral base(Universe::narrow_oop_base_addr());
  4881     load_ptr_contents(base, G6_heapbase);
  4885 // Compare char[] arrays aligned to 4 bytes.
  4886 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
  4887                                         Register limit, Register result,
  4888                                         Register chr1, Register chr2, Label& Ldone) {
  4889   Label Lvector, Lloop;
  4890   assert(chr1 == result, "should be the same");
  4892   // Note: limit contains number of bytes (2*char_elements) != 0.
  4893   andcc(limit, 0x2, chr1); // trailing character ?
  4894   br(Assembler::zero, false, Assembler::pt, Lvector);
  4895   delayed()->nop();
  4897   // compare the trailing char
  4898   sub(limit, sizeof(jchar), limit);
  4899   lduh(ary1, limit, chr1);
  4900   lduh(ary2, limit, chr2);
  4901   cmp(chr1, chr2);
  4902   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4903   delayed()->mov(G0, result);     // not equal
  4905   // only one char ?
  4906   br_on_reg_cond(rc_z, true, Assembler::pn, limit, Ldone);
  4907   delayed()->add(G0, 1, result); // zero-length arrays are equal
  4909   // word by word compare, dont't need alignment check
  4910   bind(Lvector);
  4911   // Shift ary1 and ary2 to the end of the arrays, negate limit
  4912   add(ary1, limit, ary1);
  4913   add(ary2, limit, ary2);
  4914   neg(limit, limit);
  4916   lduw(ary1, limit, chr1);
  4917   bind(Lloop);
  4918   lduw(ary2, limit, chr2);
  4919   cmp(chr1, chr2);
  4920   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4921   delayed()->mov(G0, result);     // not equal
  4922   inccc(limit, 2*sizeof(jchar));
  4923   // annul LDUW if branch is not taken to prevent access past end of array
  4924   br(Assembler::notZero, true, Assembler::pt, Lloop);
  4925   delayed()->lduw(ary1, limit, chr1); // hoisted
  4927   // Caller should set it:
  4928   // add(G0, 1, result); // equals

mercurial