src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Wed, 10 Apr 2013 14:26:49 +0200

author
stefank
date
Wed, 10 Apr 2013 14:26:49 +0200
changeset 4904
7b835924c31c
parent 4853
2e093b564241
child 5011
a08c80e9e1e5
permissions
-rw-r--r--

8011872: Include Bit Map addresses in the hs_err files
Reviewed-by: brutisso, jmasa

ysr@777 1 /*
johnc@3412 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/concurrentMark.hpp"
tonyp@2715 29 #include "gc_implementation/g1/g1AllocRegion.hpp"
tonyp@2975 30 #include "gc_implementation/g1/g1HRPrinter.hpp"
stefank@2314 31 #include "gc_implementation/g1/g1RemSet.hpp"
jmasa@2821 32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
tonyp@2963 33 #include "gc_implementation/g1/heapRegionSeq.hpp"
tonyp@2472 34 #include "gc_implementation/g1/heapRegionSets.hpp"
jmasa@2821 35 #include "gc_implementation/shared/hSpaceCounters.hpp"
johnc@3982 36 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
stefank@2314 37 #include "memory/barrierSet.hpp"
stefank@2314 38 #include "memory/memRegion.hpp"
stefank@2314 39 #include "memory/sharedHeap.hpp"
brutisso@4579 40 #include "utilities/stack.hpp"
stefank@2314 41
ysr@777 42 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 43 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 44 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 45 // heap subsets that will yield large amounts of garbage.
ysr@777 46
ysr@777 47 class HeapRegion;
tonyp@2493 48 class HRRSCleanupTask;
ysr@777 49 class GenerationSpec;
ysr@777 50 class OopsInHeapRegionClosure;
coleenp@4037 51 class G1KlassScanClosure;
ysr@777 52 class G1ScanHeapEvacClosure;
ysr@777 53 class ObjectClosure;
ysr@777 54 class SpaceClosure;
ysr@777 55 class CompactibleSpaceClosure;
ysr@777 56 class Space;
ysr@777 57 class G1CollectorPolicy;
ysr@777 58 class GenRemSet;
ysr@777 59 class G1RemSet;
ysr@777 60 class HeapRegionRemSetIterator;
ysr@777 61 class ConcurrentMark;
ysr@777 62 class ConcurrentMarkThread;
ysr@777 63 class ConcurrentG1Refine;
jmasa@2821 64 class GenerationCounters;
ysr@777 65
zgu@3900 66 typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
zgu@3900 67 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
ysr@777 68
johnc@1242 69 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 70 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 71
ysr@777 72 enum GCAllocPurpose {
ysr@777 73 GCAllocForTenured,
ysr@777 74 GCAllocForSurvived,
ysr@777 75 GCAllocPurposeCount
ysr@777 76 };
ysr@777 77
zgu@3900 78 class YoungList : public CHeapObj<mtGC> {
ysr@777 79 private:
ysr@777 80 G1CollectedHeap* _g1h;
ysr@777 81
ysr@777 82 HeapRegion* _head;
ysr@777 83
johnc@1829 84 HeapRegion* _survivor_head;
johnc@1829 85 HeapRegion* _survivor_tail;
johnc@1829 86
johnc@1829 87 HeapRegion* _curr;
johnc@1829 88
tonyp@3713 89 uint _length;
tonyp@3713 90 uint _survivor_length;
ysr@777 91
ysr@777 92 size_t _last_sampled_rs_lengths;
ysr@777 93 size_t _sampled_rs_lengths;
ysr@777 94
johnc@1829 95 void empty_list(HeapRegion* list);
ysr@777 96
ysr@777 97 public:
ysr@777 98 YoungList(G1CollectedHeap* g1h);
ysr@777 99
johnc@1829 100 void push_region(HeapRegion* hr);
johnc@1829 101 void add_survivor_region(HeapRegion* hr);
johnc@1829 102
johnc@1829 103 void empty_list();
johnc@1829 104 bool is_empty() { return _length == 0; }
tonyp@3713 105 uint length() { return _length; }
tonyp@3713 106 uint survivor_length() { return _survivor_length; }
ysr@777 107
tonyp@2961 108 // Currently we do not keep track of the used byte sum for the
tonyp@2961 109 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 110 // do so. When we'll eventually replace the young list with
tonyp@2961 111 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 112 // we'll report the more accurate information then.
tonyp@2961 113 size_t eden_used_bytes() {
tonyp@2961 114 assert(length() >= survivor_length(), "invariant");
tonyp@3713 115 return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 116 }
tonyp@2961 117 size_t survivor_used_bytes() {
tonyp@3713 118 return (size_t) survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 119 }
tonyp@2961 120
ysr@777 121 void rs_length_sampling_init();
ysr@777 122 bool rs_length_sampling_more();
ysr@777 123 void rs_length_sampling_next();
ysr@777 124
ysr@777 125 void reset_sampled_info() {
ysr@777 126 _last_sampled_rs_lengths = 0;
ysr@777 127 }
ysr@777 128 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 129
ysr@777 130 // for development purposes
ysr@777 131 void reset_auxilary_lists();
johnc@1829 132 void clear() { _head = NULL; _length = 0; }
johnc@1829 133
johnc@1829 134 void clear_survivors() {
johnc@1829 135 _survivor_head = NULL;
johnc@1829 136 _survivor_tail = NULL;
johnc@1829 137 _survivor_length = 0;
johnc@1829 138 }
johnc@1829 139
ysr@777 140 HeapRegion* first_region() { return _head; }
ysr@777 141 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 142 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 143
ysr@777 144 // debugging
ysr@777 145 bool check_list_well_formed();
johnc@1829 146 bool check_list_empty(bool check_sample = true);
ysr@777 147 void print();
ysr@777 148 };
ysr@777 149
tonyp@2715 150 class MutatorAllocRegion : public G1AllocRegion {
tonyp@2715 151 protected:
tonyp@2715 152 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@2715 153 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@2715 154 public:
tonyp@2715 155 MutatorAllocRegion()
tonyp@2715 156 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
tonyp@2715 157 };
tonyp@2715 158
johnc@3175 159 // The G1 STW is alive closure.
johnc@3175 160 // An instance is embedded into the G1CH and used as the
johnc@3175 161 // (optional) _is_alive_non_header closure in the STW
johnc@3175 162 // reference processor. It is also extensively used during
johnc@3175 163 // refence processing during STW evacuation pauses.
johnc@3175 164 class G1STWIsAliveClosure: public BoolObjectClosure {
johnc@3175 165 G1CollectedHeap* _g1;
johnc@3175 166 public:
johnc@3175 167 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
johnc@3175 168 void do_object(oop p) { assert(false, "Do not call."); }
johnc@3175 169 bool do_object_b(oop p);
johnc@3175 170 };
johnc@3175 171
tonyp@3028 172 class SurvivorGCAllocRegion : public G1AllocRegion {
tonyp@3028 173 protected:
tonyp@3028 174 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 175 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 176 public:
tonyp@3028 177 SurvivorGCAllocRegion()
tonyp@3028 178 : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
tonyp@3028 179 };
tonyp@3028 180
tonyp@3028 181 class OldGCAllocRegion : public G1AllocRegion {
tonyp@3028 182 protected:
tonyp@3028 183 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 184 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 185 public:
tonyp@3028 186 OldGCAllocRegion()
tonyp@3028 187 : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
tonyp@3028 188 };
tonyp@3028 189
ysr@777 190 class RefineCardTableEntryClosure;
johnc@3175 191
ysr@777 192 class G1CollectedHeap : public SharedHeap {
ysr@777 193 friend class VM_G1CollectForAllocation;
ysr@777 194 friend class VM_G1CollectFull;
ysr@777 195 friend class VM_G1IncCollectionPause;
ysr@777 196 friend class VMStructs;
tonyp@2715 197 friend class MutatorAllocRegion;
tonyp@3028 198 friend class SurvivorGCAllocRegion;
tonyp@3028 199 friend class OldGCAllocRegion;
ysr@777 200
ysr@777 201 // Closures used in implementation.
brutisso@3690 202 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
brutisso@3690 203 friend class G1ParCopyClosure;
ysr@777 204 friend class G1IsAliveClosure;
ysr@777 205 friend class G1EvacuateFollowersClosure;
ysr@777 206 friend class G1ParScanThreadState;
ysr@777 207 friend class G1ParScanClosureSuper;
ysr@777 208 friend class G1ParEvacuateFollowersClosure;
ysr@777 209 friend class G1ParTask;
ysr@777 210 friend class G1FreeGarbageRegionClosure;
ysr@777 211 friend class RefineCardTableEntryClosure;
ysr@777 212 friend class G1PrepareCompactClosure;
ysr@777 213 friend class RegionSorter;
tonyp@2472 214 friend class RegionResetter;
ysr@777 215 friend class CountRCClosure;
ysr@777 216 friend class EvacPopObjClosure;
apetrusenko@1231 217 friend class G1ParCleanupCTTask;
ysr@777 218
ysr@777 219 // Other related classes.
ysr@777 220 friend class G1MarkSweep;
ysr@777 221
ysr@777 222 private:
ysr@777 223 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 224 static G1CollectedHeap* _g1h;
ysr@777 225
tonyp@1377 226 static size_t _humongous_object_threshold_in_words;
tonyp@1377 227
coleenp@4037 228 // Storage for the G1 heap.
ysr@777 229 VirtualSpace _g1_storage;
ysr@777 230 MemRegion _g1_reserved;
ysr@777 231
ysr@777 232 // The part of _g1_storage that is currently committed.
ysr@777 233 MemRegion _g1_committed;
ysr@777 234
tonyp@2472 235 // The master free list. It will satisfy all new region allocations.
tonyp@2472 236 MasterFreeRegionList _free_list;
tonyp@2472 237
tonyp@2472 238 // The secondary free list which contains regions that have been
tonyp@2472 239 // freed up during the cleanup process. This will be appended to the
tonyp@2472 240 // master free list when appropriate.
tonyp@2472 241 SecondaryFreeRegionList _secondary_free_list;
tonyp@2472 242
tonyp@3268 243 // It keeps track of the old regions.
tonyp@3268 244 MasterOldRegionSet _old_set;
tonyp@3268 245
tonyp@2472 246 // It keeps track of the humongous regions.
tonyp@2472 247 MasterHumongousRegionSet _humongous_set;
ysr@777 248
ysr@777 249 // The number of regions we could create by expansion.
tonyp@3713 250 uint _expansion_regions;
ysr@777 251
ysr@777 252 // The block offset table for the G1 heap.
ysr@777 253 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 254
tonyp@3268 255 // Tears down the region sets / lists so that they are empty and the
tonyp@3268 256 // regions on the heap do not belong to a region set / list. The
tonyp@3268 257 // only exception is the humongous set which we leave unaltered. If
tonyp@3268 258 // free_list_only is true, it will only tear down the master free
tonyp@3268 259 // list. It is called before a Full GC (free_list_only == false) or
tonyp@3268 260 // before heap shrinking (free_list_only == true).
tonyp@3268 261 void tear_down_region_sets(bool free_list_only);
tonyp@3268 262
tonyp@3268 263 // Rebuilds the region sets / lists so that they are repopulated to
tonyp@3268 264 // reflect the contents of the heap. The only exception is the
tonyp@3268 265 // humongous set which was not torn down in the first place. If
tonyp@3268 266 // free_list_only is true, it will only rebuild the master free
tonyp@3268 267 // list. It is called after a Full GC (free_list_only == false) or
tonyp@3268 268 // after heap shrinking (free_list_only == true).
tonyp@3268 269 void rebuild_region_sets(bool free_list_only);
ysr@777 270
ysr@777 271 // The sequence of all heap regions in the heap.
tonyp@2963 272 HeapRegionSeq _hrs;
ysr@777 273
tonyp@2715 274 // Alloc region used to satisfy mutator allocation requests.
tonyp@2715 275 MutatorAllocRegion _mutator_alloc_region;
ysr@777 276
tonyp@3028 277 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 278 // survivor objects.
tonyp@3028 279 SurvivorGCAllocRegion _survivor_gc_alloc_region;
tonyp@3028 280
johnc@3982 281 // PLAB sizing policy for survivors.
johnc@3982 282 PLABStats _survivor_plab_stats;
johnc@3982 283
tonyp@3028 284 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 285 // old objects.
tonyp@3028 286 OldGCAllocRegion _old_gc_alloc_region;
tonyp@3028 287
johnc@3982 288 // PLAB sizing policy for tenured objects.
johnc@3982 289 PLABStats _old_plab_stats;
johnc@3982 290
johnc@3982 291 PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
johnc@3982 292 PLABStats* stats = NULL;
johnc@3982 293
johnc@3982 294 switch (purpose) {
johnc@3982 295 case GCAllocForSurvived:
johnc@3982 296 stats = &_survivor_plab_stats;
johnc@3982 297 break;
johnc@3982 298 case GCAllocForTenured:
johnc@3982 299 stats = &_old_plab_stats;
johnc@3982 300 break;
johnc@3982 301 default:
johnc@3982 302 assert(false, "unrecognized GCAllocPurpose");
johnc@3982 303 }
johnc@3982 304
johnc@3982 305 return stats;
johnc@3982 306 }
johnc@3982 307
tonyp@3028 308 // The last old region we allocated to during the last GC.
tonyp@3028 309 // Typically, it is not full so we should re-use it during the next GC.
tonyp@3028 310 HeapRegion* _retained_old_gc_alloc_region;
tonyp@3028 311
tonyp@3410 312 // It specifies whether we should attempt to expand the heap after a
tonyp@3410 313 // region allocation failure. If heap expansion fails we set this to
tonyp@3410 314 // false so that we don't re-attempt the heap expansion (it's likely
tonyp@3410 315 // that subsequent expansion attempts will also fail if one fails).
tonyp@3410 316 // Currently, it is only consulted during GC and it's reset at the
tonyp@3410 317 // start of each GC.
tonyp@3410 318 bool _expand_heap_after_alloc_failure;
tonyp@3410 319
tonyp@2715 320 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 321 void init_mutator_alloc_region();
tonyp@2715 322
tonyp@2715 323 // It releases the mutator alloc region.
tonyp@2715 324 void release_mutator_alloc_region();
tonyp@2715 325
tonyp@3028 326 // It initializes the GC alloc regions at the start of a GC.
tonyp@3028 327 void init_gc_alloc_regions();
tonyp@3028 328
tonyp@3028 329 // It releases the GC alloc regions at the end of a GC.
johnc@4130 330 void release_gc_alloc_regions(uint no_of_gc_workers);
tonyp@3028 331
tonyp@3028 332 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 333 // before a Full GC.
tonyp@1071 334 void abandon_gc_alloc_regions();
ysr@777 335
jmasa@2821 336 // Helper for monitoring and management support.
jmasa@2821 337 G1MonitoringSupport* _g1mm;
jmasa@2821 338
apetrusenko@1826 339 // Determines PLAB size for a particular allocation purpose.
johnc@3982 340 size_t desired_plab_sz(GCAllocPurpose purpose);
apetrusenko@1826 341
ysr@777 342 // Outside of GC pauses, the number of bytes used in all regions other
ysr@777 343 // than the current allocation region.
ysr@777 344 size_t _summary_bytes_used;
ysr@777 345
tonyp@961 346 // This is used for a quick test on whether a reference points into
tonyp@961 347 // the collection set or not. Basically, we have an array, with one
tonyp@961 348 // byte per region, and that byte denotes whether the corresponding
tonyp@961 349 // region is in the collection set or not. The entry corresponding
tonyp@961 350 // the bottom of the heap, i.e., region 0, is pointed to by
tonyp@961 351 // _in_cset_fast_test_base. The _in_cset_fast_test field has been
tonyp@961 352 // biased so that it actually points to address 0 of the address
tonyp@961 353 // space, to make the test as fast as possible (we can simply shift
tonyp@961 354 // the address to address into it, instead of having to subtract the
tonyp@961 355 // bottom of the heap from the address before shifting it; basically
tonyp@961 356 // it works in the same way the card table works).
tonyp@961 357 bool* _in_cset_fast_test;
tonyp@961 358
tonyp@961 359 // The allocated array used for the fast test on whether a reference
tonyp@961 360 // points into the collection set or not. This field is also used to
tonyp@961 361 // free the array.
tonyp@961 362 bool* _in_cset_fast_test_base;
tonyp@961 363
tonyp@961 364 // The length of the _in_cset_fast_test_base array.
tonyp@3713 365 uint _in_cset_fast_test_length;
tonyp@961 366
iveresov@788 367 volatile unsigned _gc_time_stamp;
ysr@777 368
ysr@777 369 size_t* _surviving_young_words;
ysr@777 370
tonyp@2975 371 G1HRPrinter _hr_printer;
tonyp@2975 372
ysr@777 373 void setup_surviving_young_words();
ysr@777 374 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 375 void cleanup_surviving_young_words();
ysr@777 376
tonyp@2011 377 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 378 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 379 // explicitly started if:
tonyp@2011 380 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 381 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
brutisso@3456 382 // (c) cause == _g1_humongous_allocation
tonyp@2011 383 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 384
brutisso@3823 385 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 386 // concurrent cycles) we have started.
brutisso@3823 387 volatile unsigned int _old_marking_cycles_started;
brutisso@3823 388
brutisso@3823 389 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 390 // concurrent cycles) we have completed.
brutisso@3823 391 volatile unsigned int _old_marking_cycles_completed;
tonyp@2011 392
tonyp@2817 393 // This is a non-product method that is helpful for testing. It is
tonyp@2817 394 // called at the end of a GC and artificially expands the heap by
tonyp@2817 395 // allocating a number of dead regions. This way we can induce very
tonyp@2817 396 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 397 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 398 // this method will be found dead by the marking cycle).
tonyp@2817 399 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 400
tonyp@3957 401 // Clear RSets after a compaction. It also resets the GC time stamps.
tonyp@3957 402 void clear_rsets_post_compaction();
tonyp@3957 403
tonyp@3957 404 // If the HR printer is active, dump the state of the regions in the
tonyp@3957 405 // heap after a compaction.
tonyp@3957 406 void print_hrs_post_compaction();
tonyp@3957 407
brutisso@4015 408 double verify(bool guard, const char* msg);
brutisso@4015 409 void verify_before_gc();
brutisso@4015 410 void verify_after_gc();
brutisso@4015 411
brutisso@4063 412 void log_gc_header();
brutisso@4063 413 void log_gc_footer(double pause_time_sec);
brutisso@4063 414
tonyp@2315 415 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 416 // line number, file, etc.
tonyp@2315 417
tonyp@2643 418 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 419 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 420 (_extra_message_), \
tonyp@2472 421 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 422 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 423 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 424
tonyp@2315 425 #define assert_heap_locked() \
tonyp@2315 426 do { \
tonyp@2315 427 assert(Heap_lock->owned_by_self(), \
tonyp@2315 428 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 429 } while (0)
tonyp@2315 430
tonyp@2643 431 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 432 do { \
tonyp@2315 433 assert(Heap_lock->owned_by_self() || \
tonyp@2472 434 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 435 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 436 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 437 "should be at a safepoint")); \
tonyp@2315 438 } while (0)
tonyp@2315 439
tonyp@2315 440 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 441 do { \
tonyp@2315 442 assert(Heap_lock->owned_by_self() && \
tonyp@2315 443 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 444 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 445 "should not be at a safepoint")); \
tonyp@2315 446 } while (0)
tonyp@2315 447
tonyp@2315 448 #define assert_heap_not_locked() \
tonyp@2315 449 do { \
tonyp@2315 450 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 451 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 452 } while (0)
tonyp@2315 453
tonyp@2315 454 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 455 do { \
tonyp@2315 456 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 457 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 458 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 459 "should not be at a safepoint")); \
tonyp@2315 460 } while (0)
tonyp@2315 461
tonyp@2643 462 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 463 do { \
tonyp@2472 464 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 465 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 466 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 467 } while (0)
tonyp@2315 468
tonyp@2315 469 #define assert_not_at_safepoint() \
tonyp@2315 470 do { \
tonyp@2315 471 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 472 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 473 } while (0)
tonyp@2315 474
ysr@777 475 protected:
ysr@777 476
johnc@3021 477 // The young region list.
ysr@777 478 YoungList* _young_list;
ysr@777 479
ysr@777 480 // The current policy object for the collector.
ysr@777 481 G1CollectorPolicy* _g1_policy;
ysr@777 482
tonyp@2472 483 // This is the second level of trying to allocate a new region. If
tonyp@2715 484 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 485 // check whether there's anything available on the
tonyp@2715 486 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 487 // that list, if _free_regions_coming is set.
tonyp@2643 488 HeapRegion* new_region_try_secondary_free_list();
ysr@777 489
tonyp@2643 490 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 491 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 492 // attempt to expand the heap if necessary to satisfy the allocation
tonyp@2643 493 // request.
tonyp@2715 494 HeapRegion* new_region(size_t word_size, bool do_expand);
ysr@777 495
tonyp@2643 496 // Attempt to satisfy a humongous allocation request of the given
tonyp@2643 497 // size by finding a contiguous set of free regions of num_regions
tonyp@2643 498 // length and remove them from the master free list. Return the
tonyp@2963 499 // index of the first region or G1_NULL_HRS_INDEX if the search
tonyp@2963 500 // was unsuccessful.
tonyp@3713 501 uint humongous_obj_allocate_find_first(uint num_regions,
tonyp@3713 502 size_t word_size);
ysr@777 503
tonyp@2643 504 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 505 // and starting at index first so that they appear as a single
tonyp@2643 506 // humongous region.
tonyp@3713 507 HeapWord* humongous_obj_allocate_initialize_regions(uint first,
tonyp@3713 508 uint num_regions,
tonyp@2643 509 size_t word_size);
tonyp@2643 510
tonyp@2643 511 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 512 // NULL if unsuccessful.
tonyp@2472 513 HeapWord* humongous_obj_allocate(size_t word_size);
ysr@777 514
tonyp@2315 515 // The following two methods, allocate_new_tlab() and
tonyp@2315 516 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 517 // into the G1's allocation routines. They have the following
tonyp@2315 518 // assumptions:
tonyp@2315 519 //
tonyp@2315 520 // * They should both be called outside safepoints.
tonyp@2315 521 //
tonyp@2315 522 // * They should both be called without holding the Heap_lock.
tonyp@2315 523 //
tonyp@2315 524 // * All allocation requests for new TLABs should go to
tonyp@2315 525 // allocate_new_tlab().
tonyp@2315 526 //
tonyp@2971 527 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 528 //
tonyp@2315 529 // * If either call cannot satisfy the allocation request using the
tonyp@2315 530 // current allocating region, they will try to get a new one. If
tonyp@2315 531 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 532 // retry the allocation.
tonyp@2315 533 //
tonyp@2315 534 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 535 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 536 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 537 // schedule a Full GC.
tonyp@2315 538 //
tonyp@2315 539 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 540 // should never be called with word_size being humongous. All
tonyp@2315 541 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 542 // will satisfy them with a special path.
ysr@777 543
tonyp@2315 544 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 545
tonyp@2315 546 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 547 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 548
tonyp@2715 549 // The following three methods take a gc_count_before_ret
tonyp@2715 550 // parameter which is used to return the GC count if the method
tonyp@2715 551 // returns NULL. Given that we are required to read the GC count
tonyp@2715 552 // while holding the Heap_lock, and these paths will take the
tonyp@2715 553 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 554 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 555 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 556 // Heap_lock just to read the GC count.
tonyp@2315 557
tonyp@2715 558 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 559 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 560 // should only be used for non-humongous allocations.
tonyp@2715 561 inline HeapWord* attempt_allocation(size_t word_size,
mgerdin@4853 562 unsigned int* gc_count_before_ret,
mgerdin@4853 563 int* gclocker_retry_count_ret);
tonyp@2315 564
tonyp@2715 565 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 566 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 567 // pause. This should only be used for non-humongous allocations.
tonyp@2715 568 HeapWord* attempt_allocation_slow(size_t word_size,
mgerdin@4853 569 unsigned int* gc_count_before_ret,
mgerdin@4853 570 int* gclocker_retry_count_ret);
tonyp@2315 571
tonyp@2715 572 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 573 // potentially schedule a GC pause.
tonyp@2715 574 HeapWord* attempt_allocation_humongous(size_t word_size,
mgerdin@4853 575 unsigned int* gc_count_before_ret,
mgerdin@4853 576 int* gclocker_retry_count_ret);
tonyp@2454 577
tonyp@2715 578 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 579 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 580 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 581 // or not.
tonyp@2315 582 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
tonyp@2715 583 bool expect_null_mutator_alloc_region);
tonyp@2315 584
tonyp@2315 585 // It dirties the cards that cover the block so that so that the post
tonyp@2315 586 // write barrier never queues anything when updating objects on this
tonyp@2315 587 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 588 // belongs to a young region.
tonyp@2315 589 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 590
ysr@777 591 // Allocate blocks during garbage collection. Will ensure an
ysr@777 592 // allocation region, either by picking one or expanding the
ysr@777 593 // heap, and then allocate a block of the given size. The block
ysr@777 594 // may not be a humongous - it must fit into a single heap region.
ysr@777 595 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 596
ysr@777 597 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
ysr@777 598 HeapRegion* alloc_region,
ysr@777 599 bool par,
ysr@777 600 size_t word_size);
ysr@777 601
ysr@777 602 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 603 // that parallel threads might be attempting allocations.
ysr@777 604 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 605
tonyp@3028 606 // Allocation attempt during GC for a survivor object / PLAB.
tonyp@3028 607 inline HeapWord* survivor_attempt_allocation(size_t word_size);
apetrusenko@980 608
tonyp@3028 609 // Allocation attempt during GC for an old object / PLAB.
tonyp@3028 610 inline HeapWord* old_attempt_allocation(size_t word_size);
tonyp@2715 611
tonyp@3028 612 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 613
tonyp@3028 614 // For mutator alloc regions.
tonyp@2715 615 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 616 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 617 size_t allocated_bytes);
tonyp@2715 618
tonyp@3028 619 // For GC alloc regions.
tonyp@3713 620 HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
tonyp@3028 621 GCAllocPurpose ap);
tonyp@3028 622 void retire_gc_alloc_region(HeapRegion* alloc_region,
tonyp@3028 623 size_t allocated_bytes, GCAllocPurpose ap);
tonyp@3028 624
tonyp@2011 625 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 626 // inspection request and should collect the entire heap
tonyp@2315 627 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 628 // cleared during the GC
tonyp@2011 629 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 630 // the GC should attempt (at least) to satisfy
tonyp@2315 631 // - it returns false if it is unable to do the collection due to the
tonyp@2315 632 // GC locker being active, true otherwise
tonyp@2315 633 bool do_collection(bool explicit_gc,
tonyp@2011 634 bool clear_all_soft_refs,
ysr@777 635 size_t word_size);
ysr@777 636
ysr@777 637 // Callback from VM_G1CollectFull operation.
ysr@777 638 // Perform a full collection.
coleenp@4037 639 virtual void do_full_collection(bool clear_all_soft_refs);
ysr@777 640
ysr@777 641 // Resize the heap if necessary after a full collection. If this is
ysr@777 642 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 643 // and will be considered part of the used portion of the heap.
ysr@777 644 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 645
ysr@777 646 // Callback from VM_G1CollectForAllocation operation.
ysr@777 647 // This function does everything necessary/possible to satisfy a
ysr@777 648 // failed allocation request (including collection, expansion, etc.)
tonyp@2315 649 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
ysr@777 650
ysr@777 651 // Attempting to expand the heap sufficiently
ysr@777 652 // to support an allocation of the given "word_size". If
ysr@777 653 // successful, perform the allocation and return the address of the
ysr@777 654 // allocated block, or else "NULL".
tonyp@2315 655 HeapWord* expand_and_allocate(size_t word_size);
ysr@777 656
johnc@3175 657 // Process any reference objects discovered during
johnc@3175 658 // an incremental evacuation pause.
johnc@4130 659 void process_discovered_references(uint no_of_gc_workers);
johnc@3175 660
johnc@3175 661 // Enqueue any remaining discovered references
johnc@3175 662 // after processing.
johnc@4130 663 void enqueue_discovered_references(uint no_of_gc_workers);
johnc@3175 664
ysr@777 665 public:
jmasa@2821 666
tonyp@3176 667 G1MonitoringSupport* g1mm() {
tonyp@3176 668 assert(_g1mm != NULL, "should have been initialized");
tonyp@3176 669 return _g1mm;
tonyp@3176 670 }
jmasa@2821 671
ysr@777 672 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 673 // Returns true if the heap was expanded by the requested amount;
johnc@2504 674 // false otherwise.
ysr@777 675 // (Rounds up to a HeapRegion boundary.)
johnc@2504 676 bool expand(size_t expand_bytes);
ysr@777 677
ysr@777 678 // Do anything common to GC's.
ysr@777 679 virtual void gc_prologue(bool full);
ysr@777 680 virtual void gc_epilogue(bool full);
ysr@777 681
tonyp@961 682 // We register a region with the fast "in collection set" test. We
tonyp@961 683 // simply set to true the array slot corresponding to this region.
tonyp@961 684 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tonyp@961 685 assert(_in_cset_fast_test_base != NULL, "sanity");
tonyp@961 686 assert(r->in_collection_set(), "invariant");
tonyp@3713 687 uint index = r->hrs_index();
tonyp@2963 688 assert(index < _in_cset_fast_test_length, "invariant");
tonyp@961 689 assert(!_in_cset_fast_test_base[index], "invariant");
tonyp@961 690 _in_cset_fast_test_base[index] = true;
tonyp@961 691 }
tonyp@961 692
tonyp@961 693 // This is a fast test on whether a reference points into the
tonyp@961 694 // collection set or not. It does not assume that the reference
tonyp@961 695 // points into the heap; if it doesn't, it will return false.
tonyp@961 696 bool in_cset_fast_test(oop obj) {
tonyp@961 697 assert(_in_cset_fast_test != NULL, "sanity");
tonyp@961 698 if (_g1_committed.contains((HeapWord*) obj)) {
tonyp@961 699 // no need to subtract the bottom of the heap from obj,
tonyp@961 700 // _in_cset_fast_test is biased
tonyp@3713 701 uintx index = (uintx) obj >> HeapRegion::LogOfHRGrainBytes;
tonyp@961 702 bool ret = _in_cset_fast_test[index];
tonyp@961 703 // let's make sure the result is consistent with what the slower
tonyp@961 704 // test returns
tonyp@961 705 assert( ret || !obj_in_cs(obj), "sanity");
tonyp@961 706 assert(!ret || obj_in_cs(obj), "sanity");
tonyp@961 707 return ret;
tonyp@961 708 } else {
tonyp@961 709 return false;
tonyp@961 710 }
tonyp@961 711 }
tonyp@961 712
johnc@1829 713 void clear_cset_fast_test() {
johnc@1829 714 assert(_in_cset_fast_test_base != NULL, "sanity");
johnc@1829 715 memset(_in_cset_fast_test_base, false,
tonyp@3713 716 (size_t) _in_cset_fast_test_length * sizeof(bool));
johnc@1829 717 }
johnc@1829 718
brutisso@3823 719 // This is called at the start of either a concurrent cycle or a Full
brutisso@3823 720 // GC to update the number of old marking cycles started.
brutisso@3823 721 void increment_old_marking_cycles_started();
brutisso@3823 722
tonyp@2011 723 // This is called at the end of either a concurrent cycle or a Full
brutisso@3823 724 // GC to update the number of old marking cycles completed. Those two
tonyp@2011 725 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 726 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 727 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 728 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 729 // tighter consistency checking in the method. If concurrent is
tonyp@2372 730 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 731 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 732 // in this nesting (i.e., the concurrent cycle). Further nesting is
brutisso@3823 733 // not currently supported. The end of this call also notifies
tonyp@2372 734 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 735 // GC to happen (e.g., it called System.gc() with
tonyp@2011 736 // +ExplicitGCInvokesConcurrent).
brutisso@3823 737 void increment_old_marking_cycles_completed(bool concurrent);
tonyp@2011 738
brutisso@3823 739 unsigned int old_marking_cycles_completed() {
brutisso@3823 740 return _old_marking_cycles_completed;
tonyp@2011 741 }
tonyp@2011 742
tonyp@2975 743 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 744
ysr@777 745 protected:
ysr@777 746
ysr@777 747 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 748 // (Rounds down to a HeapRegion boundary.)
ysr@777 749 virtual void shrink(size_t expand_bytes);
ysr@777 750 void shrink_helper(size_t expand_bytes);
ysr@777 751
jcoomes@2064 752 #if TASKQUEUE_STATS
jcoomes@2064 753 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 754 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 755 void reset_taskqueue_stats();
jcoomes@2064 756 #endif // TASKQUEUE_STATS
jcoomes@2064 757
tonyp@2315 758 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 759 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 760 // return whether the VM operation was successful (it did do an
tonyp@2315 761 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 762 // locker was active). Given that we should not be holding the
tonyp@2315 763 // Heap_lock when we enter this method, we will pass the
tonyp@2315 764 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 765 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 766 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 767 // before the call, so it's easy to read gc_count_before just before.
tonyp@2315 768 HeapWord* do_collection_pause(size_t word_size,
tonyp@2315 769 unsigned int gc_count_before,
tonyp@2315 770 bool* succeeded);
ysr@777 771
ysr@777 772 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 773 // thread. It returns false if it is unable to do the collection due
tonyp@2315 774 // to the GC locker being active, true otherwise
tonyp@2315 775 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 776
ysr@777 777 // Actually do the work of evacuating the collection set.
tonyp@2315 778 void evacuate_collection_set();
ysr@777 779
ysr@777 780 // The g1 remembered set of the heap.
ysr@777 781 G1RemSet* _g1_rem_set;
ysr@777 782 // And it's mod ref barrier set, used to track updates for the above.
ysr@777 783 ModRefBarrierSet* _mr_bs;
ysr@777 784
iveresov@1051 785 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 786 // concurrently after the collection.
iveresov@1051 787 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 788
ysr@777 789 // The Heap Region Rem Set Iterator.
ysr@777 790 HeapRegionRemSetIterator** _rem_set_iterator;
ysr@777 791
ysr@777 792 // The closure used to refine a single card.
ysr@777 793 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 794
ysr@777 795 // A function to check the consistency of dirty card logs.
ysr@777 796 void check_ct_logs_at_safepoint();
ysr@777 797
johnc@2060 798 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 799 // references into the current collection set. This is used to
johnc@2060 800 // update the remembered sets of the regions in the collection
johnc@2060 801 // set in the event of an evacuation failure.
johnc@2060 802 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 803
ysr@777 804 // After a collection pause, make the regions in the CS into free
ysr@777 805 // regions.
ysr@777 806 void free_collection_set(HeapRegion* cs_head);
ysr@777 807
johnc@1829 808 // Abandon the current collection set without recording policy
johnc@1829 809 // statistics or updating free lists.
johnc@1829 810 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 811
ysr@777 812 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 813 // "scan_rs" to roots inside the heap (having done "set_region" to
coleenp@4037 814 // indicate the region in which the root resides),
coleenp@4037 815 // and does "scan_metadata" If "scan_rs" is
ysr@777 816 // NULL, then this step is skipped. The "worker_i"
ysr@777 817 // param is for use with parallel roots processing, and should be
ysr@777 818 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 819 // In the sequential case this param will be ignored.
coleenp@4037 820 void g1_process_strong_roots(bool is_scavenging,
tonyp@3537 821 ScanningOption so,
ysr@777 822 OopClosure* scan_non_heap_roots,
ysr@777 823 OopsInHeapRegionClosure* scan_rs,
coleenp@4037 824 G1KlassScanClosure* scan_klasses,
ysr@777 825 int worker_i);
ysr@777 826
ysr@777 827 // Apply "blk" to all the weak roots of the system. These include
ysr@777 828 // JNI weak roots, the code cache, system dictionary, symbol table,
ysr@777 829 // string table, and referents of reachable weak refs.
ysr@777 830 void g1_process_weak_roots(OopClosure* root_closure,
ysr@777 831 OopClosure* non_root_closure);
ysr@777 832
tonyp@2643 833 // Frees a non-humongous region by initializing its contents and
tonyp@2472 834 // adding it to the free list that's passed as a parameter (this is
tonyp@2472 835 // usually a local list which will be appended to the master free
tonyp@2472 836 // list later). The used bytes of freed regions are accumulated in
tonyp@2472 837 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2472 838 // up. The assumption is that this will be done later.
tonyp@2472 839 void free_region(HeapRegion* hr,
tonyp@2472 840 size_t* pre_used,
tonyp@2472 841 FreeRegionList* free_list,
tonyp@2472 842 bool par);
ysr@777 843
tonyp@2643 844 // Frees a humongous region by collapsing it into individual regions
tonyp@2643 845 // and calling free_region() for each of them. The freed regions
tonyp@2643 846 // will be added to the free list that's passed as a parameter (this
tonyp@2643 847 // is usually a local list which will be appended to the master free
tonyp@2643 848 // list later). The used bytes of freed regions are accumulated in
tonyp@2643 849 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2643 850 // up. The assumption is that this will be done later.
tonyp@2472 851 void free_humongous_region(HeapRegion* hr,
tonyp@2472 852 size_t* pre_used,
tonyp@2472 853 FreeRegionList* free_list,
tonyp@2472 854 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 855 bool par);
ysr@777 856
tonyp@2963 857 // Notifies all the necessary spaces that the committed space has
tonyp@2963 858 // been updated (either expanded or shrunk). It should be called
tonyp@2963 859 // after _g1_storage is updated.
tonyp@2963 860 void update_committed_space(HeapWord* old_end, HeapWord* new_end);
tonyp@2963 861
ysr@777 862 // The concurrent marker (and the thread it runs in.)
ysr@777 863 ConcurrentMark* _cm;
ysr@777 864 ConcurrentMarkThread* _cmThread;
ysr@777 865 bool _mark_in_progress;
ysr@777 866
ysr@777 867 // The concurrent refiner.
ysr@777 868 ConcurrentG1Refine* _cg1r;
ysr@777 869
ysr@777 870 // The parallel task queues
ysr@777 871 RefToScanQueueSet *_task_queues;
ysr@777 872
ysr@777 873 // True iff a evacuation has failed in the current collection.
ysr@777 874 bool _evacuation_failed;
ysr@777 875
ysr@777 876 // Set the attribute indicating whether evacuation has failed in the
ysr@777 877 // current collection.
ysr@777 878 void set_evacuation_failed(bool b) { _evacuation_failed = b; }
ysr@777 879
ysr@777 880 // Failed evacuations cause some logical from-space objects to have
ysr@777 881 // forwarding pointers to themselves. Reset them.
ysr@777 882 void remove_self_forwarding_pointers();
ysr@777 883
brutisso@4579 884 // Together, these store an object with a preserved mark, and its mark value.
brutisso@4579 885 Stack<oop, mtGC> _objs_with_preserved_marks;
brutisso@4579 886 Stack<markOop, mtGC> _preserved_marks_of_objs;
ysr@777 887
ysr@777 888 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 889 // word being overwritten with a self-forwarding-pointer.
ysr@777 890 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 891
ysr@777 892 // The stack of evac-failure objects left to be scanned.
ysr@777 893 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 894 // The closure to apply to evac-failure objects.
ysr@777 895
ysr@777 896 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 897 // Set the field above.
ysr@777 898 void
ysr@777 899 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 900 _evac_failure_closure = evac_failure_closure;
ysr@777 901 }
ysr@777 902
ysr@777 903 // Push "obj" on the scan stack.
ysr@777 904 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 905 // Process scan stack entries until the stack is empty.
ysr@777 906 void drain_evac_failure_scan_stack();
ysr@777 907 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 908 // prevent unnecessary recursion.
ysr@777 909 bool _drain_in_progress;
ysr@777 910
ysr@777 911 // Do any necessary initialization for evacuation-failure handling.
ysr@777 912 // "cl" is the closure that will be used to process evac-failure
ysr@777 913 // objects.
ysr@777 914 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 915 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 916 // structures.
ysr@777 917 void finalize_for_evac_failure();
ysr@777 918
ysr@777 919 // An attempt to evacuate "obj" has failed; take necessary steps.
tonyp@3416 920 oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
ysr@777 921 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 922
johnc@4016 923 #ifndef PRODUCT
johnc@4016 924 // Support for forcing evacuation failures. Analogous to
johnc@4016 925 // PromotionFailureALot for the other collectors.
johnc@4016 926
johnc@4016 927 // Records whether G1EvacuationFailureALot should be in effect
johnc@4016 928 // for the current GC
johnc@4016 929 bool _evacuation_failure_alot_for_current_gc;
johnc@4016 930
johnc@4016 931 // Used to record the GC number for interval checking when
johnc@4016 932 // determining whether G1EvaucationFailureALot is in effect
johnc@4016 933 // for the current GC.
johnc@4016 934 size_t _evacuation_failure_alot_gc_number;
johnc@4016 935
johnc@4016 936 // Count of the number of evacuations between failures.
johnc@4016 937 volatile size_t _evacuation_failure_alot_count;
johnc@4016 938
johnc@4016 939 // Set whether G1EvacuationFailureALot should be in effect
johnc@4016 940 // for the current GC (based upon the type of GC and which
johnc@4016 941 // command line flags are set);
johnc@4016 942 inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
johnc@4016 943 bool during_initial_mark,
johnc@4016 944 bool during_marking);
johnc@4016 945
johnc@4016 946 inline void set_evacuation_failure_alot_for_current_gc();
johnc@4016 947
johnc@4016 948 // Return true if it's time to cause an evacuation failure.
johnc@4016 949 inline bool evacuation_should_fail();
johnc@4016 950
johnc@4016 951 // Reset the G1EvacuationFailureALot counters. Should be called at
johnc@4016 952 // the end of an evacuation pause in which an evacuation failure ocurred.
johnc@4016 953 inline void reset_evacuation_should_fail();
johnc@4016 954 #endif // !PRODUCT
johnc@4016 955
johnc@3175 956 // ("Weak") Reference processing support.
johnc@3175 957 //
johnc@3175 958 // G1 has 2 instances of the referece processor class. One
johnc@3175 959 // (_ref_processor_cm) handles reference object discovery
johnc@3175 960 // and subsequent processing during concurrent marking cycles.
johnc@3175 961 //
johnc@3175 962 // The other (_ref_processor_stw) handles reference object
johnc@3175 963 // discovery and processing during full GCs and incremental
johnc@3175 964 // evacuation pauses.
johnc@3175 965 //
johnc@3175 966 // During an incremental pause, reference discovery will be
johnc@3175 967 // temporarily disabled for _ref_processor_cm and will be
johnc@3175 968 // enabled for _ref_processor_stw. At the end of the evacuation
johnc@3175 969 // pause references discovered by _ref_processor_stw will be
johnc@3175 970 // processed and discovery will be disabled. The previous
johnc@3175 971 // setting for reference object discovery for _ref_processor_cm
johnc@3175 972 // will be re-instated.
johnc@3175 973 //
johnc@3175 974 // At the start of marking:
johnc@3175 975 // * Discovery by the CM ref processor is verified to be inactive
johnc@3175 976 // and it's discovered lists are empty.
johnc@3175 977 // * Discovery by the CM ref processor is then enabled.
johnc@3175 978 //
johnc@3175 979 // At the end of marking:
johnc@3175 980 // * Any references on the CM ref processor's discovered
johnc@3175 981 // lists are processed (possibly MT).
johnc@3175 982 //
johnc@3175 983 // At the start of full GC we:
johnc@3175 984 // * Disable discovery by the CM ref processor and
johnc@3175 985 // empty CM ref processor's discovered lists
johnc@3175 986 // (without processing any entries).
johnc@3175 987 // * Verify that the STW ref processor is inactive and it's
johnc@3175 988 // discovered lists are empty.
johnc@3175 989 // * Temporarily set STW ref processor discovery as single threaded.
johnc@3175 990 // * Temporarily clear the STW ref processor's _is_alive_non_header
johnc@3175 991 // field.
johnc@3175 992 // * Finally enable discovery by the STW ref processor.
johnc@3175 993 //
johnc@3175 994 // The STW ref processor is used to record any discovered
johnc@3175 995 // references during the full GC.
johnc@3175 996 //
johnc@3175 997 // At the end of a full GC we:
johnc@3175 998 // * Enqueue any reference objects discovered by the STW ref processor
johnc@3175 999 // that have non-live referents. This has the side-effect of
johnc@3175 1000 // making the STW ref processor inactive by disabling discovery.
johnc@3175 1001 // * Verify that the CM ref processor is still inactive
johnc@3175 1002 // and no references have been placed on it's discovered
johnc@3175 1003 // lists (also checked as a precondition during initial marking).
johnc@3175 1004
johnc@3175 1005 // The (stw) reference processor...
johnc@3175 1006 ReferenceProcessor* _ref_processor_stw;
johnc@3175 1007
johnc@3175 1008 // During reference object discovery, the _is_alive_non_header
johnc@3175 1009 // closure (if non-null) is applied to the referent object to
johnc@3175 1010 // determine whether the referent is live. If so then the
johnc@3175 1011 // reference object does not need to be 'discovered' and can
johnc@3175 1012 // be treated as a regular oop. This has the benefit of reducing
johnc@3175 1013 // the number of 'discovered' reference objects that need to
johnc@3175 1014 // be processed.
johnc@3175 1015 //
johnc@3175 1016 // Instance of the is_alive closure for embedding into the
johnc@3175 1017 // STW reference processor as the _is_alive_non_header field.
johnc@3175 1018 // Supplying a value for the _is_alive_non_header field is
johnc@3175 1019 // optional but doing so prevents unnecessary additions to
johnc@3175 1020 // the discovered lists during reference discovery.
johnc@3175 1021 G1STWIsAliveClosure _is_alive_closure_stw;
johnc@3175 1022
johnc@3175 1023 // The (concurrent marking) reference processor...
johnc@3175 1024 ReferenceProcessor* _ref_processor_cm;
johnc@3175 1025
johnc@2379 1026 // Instance of the concurrent mark is_alive closure for embedding
johnc@3175 1027 // into the Concurrent Marking reference processor as the
johnc@3175 1028 // _is_alive_non_header field. Supplying a value for the
johnc@3175 1029 // _is_alive_non_header field is optional but doing so prevents
johnc@3175 1030 // unnecessary additions to the discovered lists during reference
johnc@3175 1031 // discovery.
johnc@3175 1032 G1CMIsAliveClosure _is_alive_closure_cm;
ysr@777 1033
johnc@3336 1034 // Cache used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1035 HeapRegion** _worker_cset_start_region;
johnc@3336 1036
johnc@3336 1037 // Time stamp to validate the regions recorded in the cache
johnc@3336 1038 // used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1039 // The heap region entry for a given worker is valid iff
johnc@3336 1040 // the associated time stamp value matches the current value
johnc@3336 1041 // of G1CollectedHeap::_gc_time_stamp.
johnc@3336 1042 unsigned int* _worker_cset_start_region_time_stamp;
johnc@3336 1043
ysr@777 1044 enum G1H_process_strong_roots_tasks {
tonyp@3416 1045 G1H_PS_filter_satb_buffers,
ysr@777 1046 G1H_PS_refProcessor_oops_do,
ysr@777 1047 // Leave this one last.
ysr@777 1048 G1H_PS_NumElements
ysr@777 1049 };
ysr@777 1050
ysr@777 1051 SubTasksDone* _process_strong_tasks;
ysr@777 1052
tonyp@2472 1053 volatile bool _free_regions_coming;
ysr@777 1054
ysr@777 1055 public:
jmasa@2188 1056
jmasa@2188 1057 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 1058
ysr@777 1059 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 1060
jcoomes@2064 1061 RefToScanQueue *task_queue(int i) const;
ysr@777 1062
iveresov@1051 1063 // A set of cards where updates happened during the GC
iveresov@1051 1064 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 1065
johnc@2060 1066 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 1067 // references into the current collection set. This is used to
johnc@2060 1068 // update the remembered sets of the regions in the collection
johnc@2060 1069 // set in the event of an evacuation failure.
johnc@2060 1070 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 1071 { return _into_cset_dirty_card_queue_set; }
johnc@2060 1072
ysr@777 1073 // Create a G1CollectedHeap with the specified policy.
ysr@777 1074 // Must call the initialize method afterwards.
ysr@777 1075 // May not return if something goes wrong.
ysr@777 1076 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 1077
ysr@777 1078 // Initialize the G1CollectedHeap to have the initial and
coleenp@4037 1079 // maximum sizes and remembered and barrier sets
ysr@777 1080 // specified by the policy object.
ysr@777 1081 jint initialize();
ysr@777 1082
johnc@3175 1083 // Initialize weak reference processing.
johnc@2379 1084 virtual void ref_processing_init();
ysr@777 1085
jmasa@3357 1086 void set_par_threads(uint t) {
ysr@777 1087 SharedHeap::set_par_threads(t);
jmasa@3294 1088 // Done in SharedHeap but oddly there are
jmasa@3294 1089 // two _process_strong_tasks's in a G1CollectedHeap
jmasa@3294 1090 // so do it here too.
jmasa@3294 1091 _process_strong_tasks->set_n_threads(t);
jmasa@3294 1092 }
jmasa@3294 1093
jmasa@3294 1094 // Set _n_par_threads according to a policy TBD.
jmasa@3294 1095 void set_par_threads();
jmasa@3294 1096
jmasa@3294 1097 void set_n_termination(int t) {
jmasa@2188 1098 _process_strong_tasks->set_n_threads(t);
ysr@777 1099 }
ysr@777 1100
ysr@777 1101 virtual CollectedHeap::Name kind() const {
ysr@777 1102 return CollectedHeap::G1CollectedHeap;
ysr@777 1103 }
ysr@777 1104
ysr@777 1105 // The current policy object for the collector.
ysr@777 1106 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 1107
coleenp@4037 1108 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
coleenp@4037 1109
ysr@777 1110 // Adaptive size policy. No such thing for g1.
ysr@777 1111 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 1112
ysr@777 1113 // The rem set and barrier set.
ysr@777 1114 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 1115 ModRefBarrierSet* mr_bs() const { return _mr_bs; }
ysr@777 1116
ysr@777 1117 // The rem set iterator.
ysr@777 1118 HeapRegionRemSetIterator* rem_set_iterator(int i) {
ysr@777 1119 return _rem_set_iterator[i];
ysr@777 1120 }
ysr@777 1121
ysr@777 1122 HeapRegionRemSetIterator* rem_set_iterator() {
ysr@777 1123 return _rem_set_iterator[0];
ysr@777 1124 }
ysr@777 1125
ysr@777 1126 unsigned get_gc_time_stamp() {
ysr@777 1127 return _gc_time_stamp;
ysr@777 1128 }
ysr@777 1129
ysr@777 1130 void reset_gc_time_stamp() {
ysr@777 1131 _gc_time_stamp = 0;
iveresov@788 1132 OrderAccess::fence();
johnc@3336 1133 // Clear the cached CSet starting regions and time stamps.
johnc@3336 1134 // Their validity is dependent on the GC timestamp.
johnc@3336 1135 clear_cset_start_regions();
iveresov@788 1136 }
iveresov@788 1137
tonyp@3957 1138 void check_gc_time_stamps() PRODUCT_RETURN;
tonyp@3957 1139
iveresov@788 1140 void increment_gc_time_stamp() {
iveresov@788 1141 ++_gc_time_stamp;
iveresov@788 1142 OrderAccess::fence();
ysr@777 1143 }
ysr@777 1144
tonyp@3957 1145 // Reset the given region's GC timestamp. If it's starts humongous,
tonyp@3957 1146 // also reset the GC timestamp of its corresponding
tonyp@3957 1147 // continues humongous regions too.
tonyp@3957 1148 void reset_gc_time_stamps(HeapRegion* hr);
tonyp@3957 1149
johnc@2060 1150 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 1151 DirtyCardQueue* into_cset_dcq,
johnc@2060 1152 bool concurrent, int worker_i);
ysr@777 1153
ysr@777 1154 // The shared block offset table array.
ysr@777 1155 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 1156
johnc@3175 1157 // Reference Processing accessors
johnc@3175 1158
johnc@3175 1159 // The STW reference processor....
johnc@3175 1160 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
johnc@3175 1161
johnc@3175 1162 // The Concurent Marking reference processor...
johnc@3175 1163 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
ysr@777 1164
ysr@777 1165 virtual size_t capacity() const;
ysr@777 1166 virtual size_t used() const;
tonyp@1281 1167 // This should be called when we're not holding the heap lock. The
tonyp@1281 1168 // result might be a bit inaccurate.
tonyp@1281 1169 size_t used_unlocked() const;
ysr@777 1170 size_t recalculate_used() const;
ysr@777 1171
ysr@777 1172 // These virtual functions do the actual allocation.
ysr@777 1173 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 1174 // allocation, via inlined code (by exporting the address of the top and
ysr@777 1175 // end fields defining the extent of the contiguous allocation region.)
ysr@777 1176 // But G1CollectedHeap doesn't yet support this.
ysr@777 1177
ysr@777 1178 // Return an estimate of the maximum allocation that could be performed
ysr@777 1179 // without triggering any collection or expansion activity. In a
ysr@777 1180 // generational collector, for example, this is probably the largest
ysr@777 1181 // allocation that could be supported (without expansion) in the youngest
ysr@777 1182 // generation. It is "unsafe" because no locks are taken; the result
ysr@777 1183 // should be treated as an approximation, not a guarantee, for use in
ysr@777 1184 // heuristic resizing decisions.
ysr@777 1185 virtual size_t unsafe_max_alloc();
ysr@777 1186
ysr@777 1187 virtual bool is_maximal_no_gc() const {
ysr@777 1188 return _g1_storage.uncommitted_size() == 0;
ysr@777 1189 }
ysr@777 1190
ysr@777 1191 // The total number of regions in the heap.
tonyp@3713 1192 uint n_regions() { return _hrs.length(); }
tonyp@2963 1193
tonyp@2963 1194 // The max number of regions in the heap.
tonyp@3713 1195 uint max_regions() { return _hrs.max_length(); }
ysr@777 1196
ysr@777 1197 // The number of regions that are completely free.
tonyp@3713 1198 uint free_regions() { return _free_list.length(); }
ysr@777 1199
ysr@777 1200 // The number of regions that are not completely free.
tonyp@3713 1201 uint used_regions() { return n_regions() - free_regions(); }
ysr@777 1202
ysr@777 1203 // The number of regions available for "regular" expansion.
tonyp@3713 1204 uint expansion_regions() { return _expansion_regions; }
ysr@777 1205
tonyp@2963 1206 // Factory method for HeapRegion instances. It will return NULL if
tonyp@2963 1207 // the allocation fails.
tonyp@3713 1208 HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
tonyp@2963 1209
tonyp@2849 1210 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 1211 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 1212 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 1213 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 1214
tonyp@2472 1215 // verify_region_sets() performs verification over the region
tonyp@2472 1216 // lists. It will be compiled in the product code to be used when
tonyp@2472 1217 // necessary (i.e., during heap verification).
tonyp@2472 1218 void verify_region_sets();
ysr@777 1219
tonyp@2472 1220 // verify_region_sets_optional() is planted in the code for
tonyp@2472 1221 // list verification in non-product builds (and it can be enabled in
tonyp@2472 1222 // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 1223 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1224 void verify_region_sets_optional() {
tonyp@2472 1225 verify_region_sets();
tonyp@2472 1226 }
tonyp@2472 1227 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1228 void verify_region_sets_optional() { }
tonyp@2472 1229 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 1230
tonyp@2472 1231 #ifdef ASSERT
tonyp@2643 1232 bool is_on_master_free_list(HeapRegion* hr) {
tonyp@2472 1233 return hr->containing_set() == &_free_list;
tonyp@2472 1234 }
ysr@777 1235
tonyp@2643 1236 bool is_in_humongous_set(HeapRegion* hr) {
tonyp@2472 1237 return hr->containing_set() == &_humongous_set;
tonyp@2643 1238 }
tonyp@2472 1239 #endif // ASSERT
ysr@777 1240
tonyp@2472 1241 // Wrapper for the region list operations that can be called from
tonyp@2472 1242 // methods outside this class.
ysr@777 1243
tonyp@2472 1244 void secondary_free_list_add_as_tail(FreeRegionList* list) {
tonyp@2472 1245 _secondary_free_list.add_as_tail(list);
tonyp@2472 1246 }
ysr@777 1247
tonyp@2472 1248 void append_secondary_free_list() {
tonyp@2714 1249 _free_list.add_as_head(&_secondary_free_list);
tonyp@2472 1250 }
ysr@777 1251
tonyp@2643 1252 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1253 // If the secondary free list looks empty there's no reason to
tonyp@2643 1254 // take the lock and then try to append it.
tonyp@2472 1255 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1256 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1257 append_secondary_free_list();
tonyp@2472 1258 }
tonyp@2472 1259 }
ysr@777 1260
tonyp@3268 1261 void old_set_remove(HeapRegion* hr) {
tonyp@3268 1262 _old_set.remove(hr);
tonyp@3268 1263 }
tonyp@3268 1264
brutisso@3456 1265 size_t non_young_capacity_bytes() {
brutisso@3456 1266 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
brutisso@3456 1267 }
brutisso@3456 1268
tonyp@2472 1269 void set_free_regions_coming();
tonyp@2472 1270 void reset_free_regions_coming();
tonyp@2472 1271 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1272 void wait_while_free_regions_coming();
ysr@777 1273
tonyp@3539 1274 // Determine whether the given region is one that we are using as an
tonyp@3539 1275 // old GC alloc region.
tonyp@3539 1276 bool is_old_gc_alloc_region(HeapRegion* hr) {
tonyp@3539 1277 return hr == _retained_old_gc_alloc_region;
tonyp@3539 1278 }
tonyp@3539 1279
ysr@777 1280 // Perform a collection of the heap; intended for use in implementing
ysr@777 1281 // "System.gc". This probably implies as full a collection as the
ysr@777 1282 // "CollectedHeap" supports.
ysr@777 1283 virtual void collect(GCCause::Cause cause);
ysr@777 1284
ysr@777 1285 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1286 void collect_locked(GCCause::Cause cause);
ysr@777 1287
ysr@777 1288 // True iff a evacuation has failed in the most-recent collection.
ysr@777 1289 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1290
tonyp@2472 1291 // It will free a region if it has allocated objects in it that are
tonyp@2472 1292 // all dead. It calls either free_region() or
tonyp@2472 1293 // free_humongous_region() depending on the type of the region that
tonyp@2472 1294 // is passed to it.
tonyp@2493 1295 void free_region_if_empty(HeapRegion* hr,
tonyp@2493 1296 size_t* pre_used,
tonyp@2493 1297 FreeRegionList* free_list,
tonyp@3268 1298 OldRegionSet* old_proxy_set,
tonyp@2493 1299 HumongousRegionSet* humongous_proxy_set,
tonyp@2493 1300 HRRSCleanupTask* hrrs_cleanup_task,
tonyp@2493 1301 bool par);
ysr@777 1302
tonyp@2472 1303 // It appends the free list to the master free list and updates the
tonyp@2472 1304 // master humongous list according to the contents of the proxy
tonyp@2472 1305 // list. It also adjusts the total used bytes according to pre_used
tonyp@2472 1306 // (if par is true, it will do so by taking the ParGCRareEvent_lock).
tonyp@2472 1307 void update_sets_after_freeing_regions(size_t pre_used,
tonyp@2472 1308 FreeRegionList* free_list,
tonyp@3268 1309 OldRegionSet* old_proxy_set,
tonyp@2472 1310 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 1311 bool par);
ysr@777 1312
stefank@3335 1313 // Returns "TRUE" iff "p" points into the committed areas of the heap.
ysr@777 1314 virtual bool is_in(const void* p) const;
ysr@777 1315
ysr@777 1316 // Return "TRUE" iff the given object address is within the collection
ysr@777 1317 // set.
ysr@777 1318 inline bool obj_in_cs(oop obj);
ysr@777 1319
ysr@777 1320 // Return "TRUE" iff the given object address is in the reserved
coleenp@4037 1321 // region of g1.
ysr@777 1322 bool is_in_g1_reserved(const void* p) const {
ysr@777 1323 return _g1_reserved.contains(p);
ysr@777 1324 }
ysr@777 1325
tonyp@2717 1326 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1327 // reserved for the heap
tonyp@2717 1328 MemRegion g1_reserved() {
tonyp@2717 1329 return _g1_reserved;
tonyp@2717 1330 }
tonyp@2717 1331
tonyp@2717 1332 // Returns a MemRegion that corresponds to the space that has been
ysr@777 1333 // committed in the heap
ysr@777 1334 MemRegion g1_committed() {
ysr@777 1335 return _g1_committed;
ysr@777 1336 }
ysr@777 1337
johnc@2593 1338 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1339
ysr@777 1340 // This resets the card table to all zeros. It is used after
ysr@777 1341 // a collection pause which used the card table to claim cards.
ysr@777 1342 void cleanUpCardTable();
ysr@777 1343
ysr@777 1344 // Iteration functions.
ysr@777 1345
ysr@777 1346 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1347 // "cl.do_oop" on each.
coleenp@4037 1348 virtual void oop_iterate(ExtendedOopClosure* cl);
ysr@777 1349
ysr@777 1350 // Same as above, restricted to a memory region.
coleenp@4037 1351 void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
ysr@777 1352
ysr@777 1353 // Iterate over all objects, calling "cl.do_object" on each.
coleenp@4037 1354 virtual void object_iterate(ObjectClosure* cl);
coleenp@4037 1355
coleenp@4037 1356 virtual void safe_object_iterate(ObjectClosure* cl) {
coleenp@4037 1357 object_iterate(cl);
iveresov@1113 1358 }
ysr@777 1359
ysr@777 1360 // Iterate over all objects allocated since the last collection, calling
ysr@777 1361 // "cl.do_object" on each. The heap must have been initialized properly
ysr@777 1362 // to support this function, or else this call will fail.
ysr@777 1363 virtual void object_iterate_since_last_GC(ObjectClosure* cl);
ysr@777 1364
ysr@777 1365 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1366 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1367
ysr@777 1368 // Iterate over heap regions, in address order, terminating the
ysr@777 1369 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1370 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1371
tonyp@2963 1372 // Return the region with the given index. It assumes the index is valid.
tonyp@3713 1373 HeapRegion* region_at(uint index) const { return _hrs.at(index); }
ysr@777 1374
ysr@777 1375 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1376 // of regions divided by the number of parallel threads times some
ysr@777 1377 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1378 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1379 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1380 // calls will use the same "claim_value", and that that claim value is
ysr@777 1381 // different from the claim_value of any heap region before the start of
ysr@777 1382 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1383 // attempting to claim the first region in each chunk, and, if
ysr@777 1384 // successful, applying the closure to each region in the chunk (and
ysr@777 1385 // setting the claim value of the second and subsequent regions of the
ysr@777 1386 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1387 // i.e., that a closure never attempt to abort a traversal.
ysr@777 1388 void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
jmasa@3357 1389 uint worker,
jmasa@3357 1390 uint no_of_par_workers,
ysr@777 1391 jint claim_value);
ysr@777 1392
tonyp@825 1393 // It resets all the region claim values to the default.
tonyp@825 1394 void reset_heap_region_claim_values();
tonyp@825 1395
johnc@3412 1396 // Resets the claim values of regions in the current
johnc@3412 1397 // collection set to the default.
johnc@3412 1398 void reset_cset_heap_region_claim_values();
johnc@3412 1399
tonyp@790 1400 #ifdef ASSERT
tonyp@790 1401 bool check_heap_region_claim_values(jint claim_value);
johnc@3296 1402
johnc@3296 1403 // Same as the routine above but only checks regions in the
johnc@3296 1404 // current collection set.
johnc@3296 1405 bool check_cset_heap_region_claim_values(jint claim_value);
tonyp@790 1406 #endif // ASSERT
tonyp@790 1407
johnc@3336 1408 // Clear the cached cset start regions and (more importantly)
johnc@3336 1409 // the time stamps. Called when we reset the GC time stamp.
johnc@3336 1410 void clear_cset_start_regions();
johnc@3336 1411
johnc@3336 1412 // Given the id of a worker, obtain or calculate a suitable
johnc@3336 1413 // starting region for iterating over the current collection set.
johnc@3296 1414 HeapRegion* start_cset_region_for_worker(int worker_i);
johnc@3296 1415
tonyp@3957 1416 // This is a convenience method that is used by the
tonyp@3957 1417 // HeapRegionIterator classes to calculate the starting region for
tonyp@3957 1418 // each worker so that they do not all start from the same region.
tonyp@3957 1419 HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
tonyp@3957 1420
ysr@777 1421 // Iterate over the regions (if any) in the current collection set.
ysr@777 1422 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1423
ysr@777 1424 // As above but starting from region r
ysr@777 1425 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1426
ysr@777 1427 // Returns the first (lowest address) compactible space in the heap.
ysr@777 1428 virtual CompactibleSpace* first_compactible_space();
ysr@777 1429
ysr@777 1430 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1431 // space containing a given address, or else returns NULL.
ysr@777 1432 virtual Space* space_containing(const void* addr) const;
ysr@777 1433
ysr@777 1434 // A G1CollectedHeap will contain some number of heap regions. This
ysr@777 1435 // finds the region containing a given address, or else returns NULL.
tonyp@2963 1436 template <class T>
tonyp@2963 1437 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1438
ysr@777 1439 // Like the above, but requires "addr" to be in the heap (to avoid a
ysr@777 1440 // null-check), and unlike the above, may return an continuing humongous
ysr@777 1441 // region.
tonyp@2963 1442 template <class T>
tonyp@2963 1443 inline HeapRegion* heap_region_containing_raw(const T addr) const;
ysr@777 1444
ysr@777 1445 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1446 // each address in the (reserved) heap is a member of exactly
ysr@777 1447 // one block. The defining characteristic of a block is that it is
ysr@777 1448 // possible to find its size, and thus to progress forward to the next
ysr@777 1449 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1450 // represent Java objects, or they might be free blocks in a
ysr@777 1451 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1452 // distinguishable and the size of each is determinable.
ysr@777 1453
ysr@777 1454 // Returns the address of the start of the "block" that contains the
ysr@777 1455 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1456 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1457 // non-object.
ysr@777 1458 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1459
ysr@777 1460 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1461 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1462 // of the active area of the heap.
ysr@777 1463 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1464
ysr@777 1465 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1466 // the block is an object.
ysr@777 1467 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1468
ysr@777 1469 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1470 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1471
ysr@777 1472 // Section on thread-local allocation buffers (TLABs)
ysr@777 1473 // See CollectedHeap for semantics.
ysr@777 1474
ysr@777 1475 virtual bool supports_tlab_allocation() const;
ysr@777 1476 virtual size_t tlab_capacity(Thread* thr) const;
ysr@777 1477 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
ysr@777 1478
ysr@777 1479 // Can a compiler initialize a new object without store barriers?
ysr@777 1480 // This permission only extends from the creation of a new object
ysr@1462 1481 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1482 // is granted for this heap type, the compiler promises to call
ysr@1462 1483 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1484 // a new object for which such initializing store barriers will
ysr@1462 1485 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1486 // ready to provide a compensating write barrier as necessary
ysr@1462 1487 // if that storage came out of a non-young region. The efficiency
ysr@1462 1488 // of this implementation depends crucially on being able to
ysr@1462 1489 // answer very efficiently in constant time whether a piece of
ysr@1462 1490 // storage in the heap comes from a young region or not.
ysr@1462 1491 // See ReduceInitialCardMarks.
ysr@777 1492 virtual bool can_elide_tlab_store_barriers() const {
brutisso@3184 1493 return true;
ysr@1462 1494 }
ysr@1462 1495
ysr@1601 1496 virtual bool card_mark_must_follow_store() const {
ysr@1601 1497 return true;
ysr@1601 1498 }
ysr@1601 1499
tonyp@2963 1500 bool is_in_young(const oop obj) {
ysr@1462 1501 HeapRegion* hr = heap_region_containing(obj);
ysr@1462 1502 return hr != NULL && hr->is_young();
ysr@1462 1503 }
ysr@1462 1504
jmasa@2909 1505 #ifdef ASSERT
jmasa@2909 1506 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1507 #endif
jmasa@2909 1508
jmasa@2909 1509 virtual bool is_scavengable(const void* addr);
jmasa@2909 1510
ysr@1462 1511 // We don't need barriers for initializing stores to objects
ysr@1462 1512 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1513 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1514 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1515 // information for young gen objects.
ysr@1462 1516 virtual bool can_elide_initializing_store_barrier(oop new_obj) {
ysr@1462 1517 return is_in_young(new_obj);
ysr@777 1518 }
ysr@777 1519
ysr@777 1520 // Returns "true" iff the given word_size is "very large".
ysr@777 1521 static bool isHumongous(size_t word_size) {
johnc@1748 1522 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1523 // are capped at the humongous thresold and we want to
johnc@1748 1524 // ensure that we don't try to allocate a TLAB as
johnc@1748 1525 // humongous and that we don't allocate a humongous
johnc@1748 1526 // object in a TLAB.
johnc@1748 1527 return word_size > _humongous_object_threshold_in_words;
ysr@777 1528 }
ysr@777 1529
ysr@777 1530 // Update mod union table with the set of dirty cards.
ysr@777 1531 void updateModUnion();
ysr@777 1532
ysr@777 1533 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1534 // that this is always a safe operation, since it doesn't clear any
ysr@777 1535 // bits.
ysr@777 1536 void markModUnionRange(MemRegion mr);
ysr@777 1537
ysr@777 1538 // Records the fact that a marking phase is no longer in progress.
ysr@777 1539 void set_marking_complete() {
ysr@777 1540 _mark_in_progress = false;
ysr@777 1541 }
ysr@777 1542 void set_marking_started() {
ysr@777 1543 _mark_in_progress = true;
ysr@777 1544 }
ysr@777 1545 bool mark_in_progress() {
ysr@777 1546 return _mark_in_progress;
ysr@777 1547 }
ysr@777 1548
ysr@777 1549 // Print the maximum heap capacity.
ysr@777 1550 virtual size_t max_capacity() const;
ysr@777 1551
ysr@777 1552 virtual jlong millis_since_last_gc();
ysr@777 1553
ysr@777 1554 // Perform any cleanup actions necessary before allowing a verification.
ysr@777 1555 virtual void prepare_for_verify();
ysr@777 1556
ysr@777 1557 // Perform verification.
tonyp@1246 1558
johnc@2969 1559 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 1560 // vo == UseNextMarking -> use "next" marking information
johnc@2969 1561 // vo == UseMarkWord -> use the mark word in the object header
johnc@2969 1562 //
tonyp@1246 1563 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 1564 // consistent most of the time, so most calls to this should use
johnc@2969 1565 // vo == UsePrevMarking.
johnc@2969 1566 // Currently, there is only one case where this is called with
johnc@2969 1567 // vo == UseNextMarking, which is to verify the "next" marking
johnc@2969 1568 // information at the end of remark.
johnc@2969 1569 // Currently there is only one place where this is called with
johnc@2969 1570 // vo == UseMarkWord, which is to verify the marking during a
johnc@2969 1571 // full GC.
brutisso@3711 1572 void verify(bool silent, VerifyOption vo);
tonyp@1246 1573
tonyp@1246 1574 // Override; it uses the "prev" marking information
brutisso@3711 1575 virtual void verify(bool silent);
ysr@777 1576 virtual void print_on(outputStream* st) const;
tonyp@3269 1577 virtual void print_extended_on(outputStream* st) const;
stefank@4904 1578 virtual void print_on_error(outputStream* st) const;
ysr@777 1579
ysr@777 1580 virtual void print_gc_threads_on(outputStream* st) const;
ysr@777 1581 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1582
ysr@777 1583 // Override
ysr@777 1584 void print_tracing_info() const;
ysr@777 1585
tonyp@2974 1586 // The following two methods are helpful for debugging RSet issues.
tonyp@2974 1587 void print_cset_rsets() PRODUCT_RETURN;
tonyp@2974 1588 void print_all_rsets() PRODUCT_RETURN;
tonyp@2974 1589
ysr@777 1590 // Convenience function to be used in situations where the heap type can be
ysr@777 1591 // asserted to be this type.
ysr@777 1592 static G1CollectedHeap* heap();
ysr@777 1593
ysr@777 1594 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1595 // add appropriate methods for any other surv rate groups
ysr@777 1596
johnc@1829 1597 YoungList* young_list() { return _young_list; }
ysr@777 1598
ysr@777 1599 // debugging
ysr@777 1600 bool check_young_list_well_formed() {
ysr@777 1601 return _young_list->check_list_well_formed();
ysr@777 1602 }
johnc@1829 1603
johnc@1829 1604 bool check_young_list_empty(bool check_heap,
ysr@777 1605 bool check_sample = true);
ysr@777 1606
ysr@777 1607 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1608 // many of these need to be public.
ysr@777 1609
ysr@777 1610 // The functions below are helper functions that a subclass of
ysr@777 1611 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1612 // functions.
ysr@777 1613 // This performs a concurrent marking of the live objects in a
ysr@777 1614 // bitmap off to the side.
ysr@777 1615 void doConcurrentMark();
ysr@777 1616
ysr@777 1617 bool isMarkedPrev(oop obj) const;
ysr@777 1618 bool isMarkedNext(oop obj) const;
ysr@777 1619
ysr@777 1620 // Determine if an object is dead, given the object and also
ysr@777 1621 // the region to which the object belongs. An object is dead
ysr@777 1622 // iff a) it was not allocated since the last mark and b) it
ysr@777 1623 // is not marked.
ysr@777 1624
ysr@777 1625 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1626 return
ysr@777 1627 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1628 !isMarkedPrev(obj);
ysr@777 1629 }
ysr@777 1630
ysr@777 1631 // This function returns true when an object has been
ysr@777 1632 // around since the previous marking and hasn't yet
ysr@777 1633 // been marked during this marking.
ysr@777 1634
ysr@777 1635 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1636 return
ysr@777 1637 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1638 !isMarkedNext(obj);
ysr@777 1639 }
ysr@777 1640
ysr@777 1641 // Determine if an object is dead, given only the object itself.
ysr@777 1642 // This will find the region to which the object belongs and
ysr@777 1643 // then call the region version of the same function.
ysr@777 1644
ysr@777 1645 // Added if it is NULL it isn't dead.
ysr@777 1646
johnc@2969 1647 bool is_obj_dead(const oop obj) const {
tonyp@1246 1648 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1649 if (hr == NULL) {
coleenp@4037 1650 if (obj == NULL) return false;
ysr@777 1651 else return true;
ysr@777 1652 }
ysr@777 1653 else return is_obj_dead(obj, hr);
ysr@777 1654 }
ysr@777 1655
johnc@2969 1656 bool is_obj_ill(const oop obj) const {
tonyp@1246 1657 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1658 if (hr == NULL) {
coleenp@4037 1659 if (obj == NULL) return false;
ysr@777 1660 else return true;
ysr@777 1661 }
ysr@777 1662 else return is_obj_ill(obj, hr);
ysr@777 1663 }
ysr@777 1664
tonyp@3957 1665 // The methods below are here for convenience and dispatch the
tonyp@3957 1666 // appropriate method depending on value of the given VerifyOption
tonyp@3957 1667 // parameter. The options for that parameter are:
tonyp@3957 1668 //
tonyp@3957 1669 // vo == UsePrevMarking -> use "prev" marking information,
tonyp@3957 1670 // vo == UseNextMarking -> use "next" marking information,
tonyp@3957 1671 // vo == UseMarkWord -> use mark word from object header
tonyp@3957 1672
tonyp@3957 1673 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1674 const HeapRegion* hr,
tonyp@3957 1675 const VerifyOption vo) const {
tonyp@3957 1676 switch (vo) {
tonyp@3957 1677 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
tonyp@3957 1678 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
tonyp@3957 1679 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
tonyp@3957 1680 default: ShouldNotReachHere();
tonyp@3957 1681 }
tonyp@3957 1682 return false; // keep some compilers happy
tonyp@3957 1683 }
tonyp@3957 1684
tonyp@3957 1685 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1686 const VerifyOption vo) const {
tonyp@3957 1687 switch (vo) {
tonyp@3957 1688 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
tonyp@3957 1689 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
tonyp@3957 1690 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
tonyp@3957 1691 default: ShouldNotReachHere();
tonyp@3957 1692 }
tonyp@3957 1693 return false; // keep some compilers happy
tonyp@3957 1694 }
tonyp@3957 1695
tonyp@3957 1696 bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
tonyp@3957 1697 HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
tonyp@3957 1698 bool is_marked(oop obj, VerifyOption vo);
tonyp@3957 1699 const char* top_at_mark_start_str(VerifyOption vo);
tonyp@3957 1700
ysr@777 1701 // The following is just to alert the verification code
ysr@777 1702 // that a full collection has occurred and that the
ysr@777 1703 // remembered sets are no longer up to date.
ysr@777 1704 bool _full_collection;
ysr@777 1705 void set_full_collection() { _full_collection = true;}
ysr@777 1706 void clear_full_collection() {_full_collection = false;}
ysr@777 1707 bool full_collection() {return _full_collection;}
ysr@777 1708
ysr@777 1709 ConcurrentMark* concurrent_mark() const { return _cm; }
ysr@777 1710 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
ysr@777 1711
apetrusenko@1231 1712 // The dirty cards region list is used to record a subset of regions
apetrusenko@1231 1713 // whose cards need clearing. The list if populated during the
apetrusenko@1231 1714 // remembered set scanning and drained during the card table
apetrusenko@1231 1715 // cleanup. Although the methods are reentrant, population/draining
apetrusenko@1231 1716 // phases must not overlap. For synchronization purposes the last
apetrusenko@1231 1717 // element on the list points to itself.
apetrusenko@1231 1718 HeapRegion* _dirty_cards_region_list;
apetrusenko@1231 1719 void push_dirty_cards_region(HeapRegion* hr);
apetrusenko@1231 1720 HeapRegion* pop_dirty_cards_region();
apetrusenko@1231 1721
ysr@777 1722 public:
ysr@777 1723 void stop_conc_gc_threads();
ysr@777 1724
ysr@777 1725 size_t pending_card_num();
ysr@777 1726 size_t cards_scanned();
ysr@777 1727
ysr@777 1728 protected:
ysr@777 1729 size_t _max_heap_capacity;
ysr@777 1730 };
ysr@777 1731
ysr@1280 1732 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@1280 1733 private:
ysr@1280 1734 bool _retired;
ysr@1280 1735
ysr@1280 1736 public:
johnc@3086 1737 G1ParGCAllocBuffer(size_t gclab_word_size);
ysr@1280 1738
tonyp@3416 1739 void set_buf(HeapWord* buf) {
ysr@1280 1740 ParGCAllocBuffer::set_buf(buf);
ysr@1280 1741 _retired = false;
ysr@1280 1742 }
ysr@1280 1743
tonyp@3416 1744 void retire(bool end_of_gc, bool retain) {
ysr@1280 1745 if (_retired)
ysr@1280 1746 return;
ysr@1280 1747 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@1280 1748 _retired = true;
ysr@1280 1749 }
ysr@1280 1750 };
ysr@1280 1751
ysr@1280 1752 class G1ParScanThreadState : public StackObj {
ysr@1280 1753 protected:
ysr@1280 1754 G1CollectedHeap* _g1h;
ysr@1280 1755 RefToScanQueue* _refs;
ysr@1280 1756 DirtyCardQueue _dcq;
ysr@1280 1757 CardTableModRefBS* _ct_bs;
ysr@1280 1758 G1RemSet* _g1_rem;
ysr@1280 1759
apetrusenko@1826 1760 G1ParGCAllocBuffer _surviving_alloc_buffer;
apetrusenko@1826 1761 G1ParGCAllocBuffer _tenured_alloc_buffer;
apetrusenko@1826 1762 G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
apetrusenko@1826 1763 ageTable _age_table;
ysr@1280 1764
ysr@1280 1765 size_t _alloc_buffer_waste;
ysr@1280 1766 size_t _undo_waste;
ysr@1280 1767
ysr@1280 1768 OopsInHeapRegionClosure* _evac_failure_cl;
ysr@1280 1769 G1ParScanHeapEvacClosure* _evac_cl;
ysr@1280 1770 G1ParScanPartialArrayClosure* _partial_scan_cl;
ysr@1280 1771
ysr@1280 1772 int _hash_seed;
johnc@3463 1773 uint _queue_num;
ysr@1280 1774
tonyp@1966 1775 size_t _term_attempts;
ysr@1280 1776
ysr@1280 1777 double _start;
ysr@1280 1778 double _start_strong_roots;
ysr@1280 1779 double _strong_roots_time;
ysr@1280 1780 double _start_term;
ysr@1280 1781 double _term_time;
ysr@1280 1782
ysr@1280 1783 // Map from young-age-index (0 == not young, 1 is youngest) to
ysr@1280 1784 // surviving words. base is what we get back from the malloc call
ysr@1280 1785 size_t* _surviving_young_words_base;
ysr@1280 1786 // this points into the array, as we use the first few entries for padding
ysr@1280 1787 size_t* _surviving_young_words;
ysr@1280 1788
jcoomes@2064 1789 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
ysr@1280 1790
ysr@1280 1791 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
ysr@1280 1792
ysr@1280 1793 void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
ysr@1280 1794
ysr@1280 1795 DirtyCardQueue& dirty_card_queue() { return _dcq; }
ysr@1280 1796 CardTableModRefBS* ctbs() { return _ct_bs; }
ysr@1280 1797
ysr@1280 1798 template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1799 if (!from->is_survivor()) {
ysr@1280 1800 _g1_rem->par_write_ref(from, p, tid);
ysr@1280 1801 }
ysr@1280 1802 }
ysr@1280 1803
ysr@1280 1804 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1805 // If the new value of the field points to the same region or
ysr@1280 1806 // is the to-space, we don't need to include it in the Rset updates.
ysr@1280 1807 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
ysr@1280 1808 size_t card_index = ctbs()->index_for(p);
ysr@1280 1809 // If the card hasn't been added to the buffer, do it.
ysr@1280 1810 if (ctbs()->mark_card_deferred(card_index)) {
ysr@1280 1811 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
ysr@1280 1812 }
ysr@1280 1813 }
ysr@1280 1814 }
ysr@1280 1815
ysr@1280 1816 public:
johnc@3463 1817 G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
ysr@1280 1818
ysr@1280 1819 ~G1ParScanThreadState() {
zgu@3900 1820 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
ysr@1280 1821 }
ysr@1280 1822
ysr@1280 1823 RefToScanQueue* refs() { return _refs; }
ysr@1280 1824 ageTable* age_table() { return &_age_table; }
ysr@1280 1825
ysr@1280 1826 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
apetrusenko@1826 1827 return _alloc_buffers[purpose];
ysr@1280 1828 }
ysr@1280 1829
jcoomes@2064 1830 size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
jcoomes@2064 1831 size_t undo_waste() const { return _undo_waste; }
ysr@1280 1832
jcoomes@2217 1833 #ifdef ASSERT
jcoomes@2217 1834 bool verify_ref(narrowOop* ref) const;
jcoomes@2217 1835 bool verify_ref(oop* ref) const;
jcoomes@2217 1836 bool verify_task(StarTask ref) const;
jcoomes@2217 1837 #endif // ASSERT
jcoomes@2217 1838
ysr@1280 1839 template <class T> void push_on_queue(T* ref) {
jcoomes@2217 1840 assert(verify_ref(ref), "sanity");
jcoomes@2064 1841 refs()->push(ref);
ysr@1280 1842 }
ysr@1280 1843
ysr@1280 1844 template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
ysr@1280 1845 if (G1DeferredRSUpdate) {
ysr@1280 1846 deferred_rs_update(from, p, tid);
ysr@1280 1847 } else {
ysr@1280 1848 immediate_rs_update(from, p, tid);
ysr@1280 1849 }
ysr@1280 1850 }
ysr@1280 1851
ysr@1280 1852 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1853 HeapWord* obj = NULL;
apetrusenko@1826 1854 size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
apetrusenko@1826 1855 if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
ysr@1280 1856 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
ysr@1280 1857 add_to_alloc_buffer_waste(alloc_buf->words_remaining());
johnc@4067 1858 alloc_buf->retire(false /* end_of_gc */, false /* retain */);
ysr@1280 1859
apetrusenko@1826 1860 HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
ysr@1280 1861 if (buf == NULL) return NULL; // Let caller handle allocation failure.
ysr@1280 1862 // Otherwise.
johnc@3982 1863 alloc_buf->set_word_size(gclab_word_size);
ysr@1280 1864 alloc_buf->set_buf(buf);
ysr@1280 1865
ysr@1280 1866 obj = alloc_buf->allocate(word_sz);
ysr@1280 1867 assert(obj != NULL, "buffer was definitely big enough...");
ysr@1280 1868 } else {
ysr@1280 1869 obj = _g1h->par_allocate_during_gc(purpose, word_sz);
ysr@1280 1870 }
ysr@1280 1871 return obj;
ysr@1280 1872 }
ysr@1280 1873
ysr@1280 1874 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1875 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
ysr@1280 1876 if (obj != NULL) return obj;
ysr@1280 1877 return allocate_slow(purpose, word_sz);
ysr@1280 1878 }
ysr@1280 1879
ysr@1280 1880 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
ysr@1280 1881 if (alloc_buffer(purpose)->contains(obj)) {
ysr@1280 1882 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
ysr@1280 1883 "should contain whole object");
ysr@1280 1884 alloc_buffer(purpose)->undo_allocation(obj, word_sz);
ysr@1280 1885 } else {
ysr@1280 1886 CollectedHeap::fill_with_object(obj, word_sz);
ysr@1280 1887 add_to_undo_waste(word_sz);
ysr@1280 1888 }
ysr@1280 1889 }
ysr@1280 1890
ysr@1280 1891 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
ysr@1280 1892 _evac_failure_cl = evac_failure_cl;
ysr@1280 1893 }
ysr@1280 1894 OopsInHeapRegionClosure* evac_failure_closure() {
ysr@1280 1895 return _evac_failure_cl;
ysr@1280 1896 }
ysr@1280 1897
ysr@1280 1898 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
ysr@1280 1899 _evac_cl = evac_cl;
ysr@1280 1900 }
ysr@1280 1901
ysr@1280 1902 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
ysr@1280 1903 _partial_scan_cl = partial_scan_cl;
ysr@1280 1904 }
ysr@1280 1905
ysr@1280 1906 int* hash_seed() { return &_hash_seed; }
johnc@3463 1907 uint queue_num() { return _queue_num; }
ysr@1280 1908
jcoomes@2064 1909 size_t term_attempts() const { return _term_attempts; }
tonyp@1966 1910 void note_term_attempt() { _term_attempts++; }
ysr@1280 1911
ysr@1280 1912 void start_strong_roots() {
ysr@1280 1913 _start_strong_roots = os::elapsedTime();
ysr@1280 1914 }
ysr@1280 1915 void end_strong_roots() {
ysr@1280 1916 _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
ysr@1280 1917 }
jcoomes@2064 1918 double strong_roots_time() const { return _strong_roots_time; }
ysr@1280 1919
ysr@1280 1920 void start_term_time() {
ysr@1280 1921 note_term_attempt();
ysr@1280 1922 _start_term = os::elapsedTime();
ysr@1280 1923 }
ysr@1280 1924 void end_term_time() {
ysr@1280 1925 _term_time += (os::elapsedTime() - _start_term);
ysr@1280 1926 }
jcoomes@2064 1927 double term_time() const { return _term_time; }
ysr@1280 1928
jcoomes@2064 1929 double elapsed_time() const {
ysr@1280 1930 return os::elapsedTime() - _start;
ysr@1280 1931 }
ysr@1280 1932
jcoomes@2064 1933 static void
jcoomes@2064 1934 print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 1935 void
jcoomes@2064 1936 print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
jcoomes@2064 1937
ysr@1280 1938 size_t* surviving_young_words() {
ysr@1280 1939 // We add on to hide entry 0 which accumulates surviving words for
ysr@1280 1940 // age -1 regions (i.e. non-young ones)
ysr@1280 1941 return _surviving_young_words;
ysr@1280 1942 }
ysr@1280 1943
ysr@1280 1944 void retire_alloc_buffers() {
ysr@1280 1945 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
apetrusenko@1826 1946 size_t waste = _alloc_buffers[ap]->words_remaining();
ysr@1280 1947 add_to_alloc_buffer_waste(waste);
johnc@3982 1948 _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
johnc@3982 1949 true /* end_of_gc */,
johnc@3982 1950 false /* retain */);
ysr@1280 1951 }
ysr@1280 1952 }
ysr@1280 1953
ysr@1280 1954 template <class T> void deal_with_reference(T* ref_to_scan) {
ysr@1280 1955 if (has_partial_array_mask(ref_to_scan)) {
ysr@1280 1956 _partial_scan_cl->do_oop_nv(ref_to_scan);
ysr@1280 1957 } else {
ysr@1280 1958 // Note: we can use "raw" versions of "region_containing" because
ysr@1280 1959 // "obj_to_scan" is definitely in the heap, and is not in a
ysr@1280 1960 // humongous region.
ysr@1280 1961 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
ysr@1280 1962 _evac_cl->set_region(r);
ysr@1280 1963 _evac_cl->do_oop_nv(ref_to_scan);
ysr@1280 1964 }
ysr@1280 1965 }
ysr@1280 1966
jcoomes@2217 1967 void deal_with_reference(StarTask ref) {
jcoomes@2217 1968 assert(verify_task(ref), "sanity");
jcoomes@2217 1969 if (ref.is_narrow()) {
jcoomes@2217 1970 deal_with_reference((narrowOop*)ref);
jcoomes@2217 1971 } else {
jcoomes@2217 1972 deal_with_reference((oop*)ref);
ysr@1280 1973 }
ysr@1280 1974 }
jcoomes@2217 1975
jcoomes@2217 1976 public:
jcoomes@2217 1977 void trim_queue();
ysr@1280 1978 };
stefank@2314 1979
stefank@2314 1980 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial