src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Tue, 08 Nov 2011 00:41:28 -0500

author
tonyp
date
Tue, 08 Nov 2011 00:41:28 -0500
changeset 3269
53074c2c4600
parent 3268
8aae2050e83e
child 3289
a88de71c4e3a
permissions
-rw-r--r--

7099849: G1: include heap region information in hs_err files
Reviewed-by: johnc, brutisso, poonam

ysr@777 1 /*
tonyp@2453 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/concurrentMark.hpp"
tonyp@2715 29 #include "gc_implementation/g1/g1AllocRegion.hpp"
tonyp@2975 30 #include "gc_implementation/g1/g1HRPrinter.hpp"
stefank@2314 31 #include "gc_implementation/g1/g1RemSet.hpp"
jmasa@2821 32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
tonyp@2963 33 #include "gc_implementation/g1/heapRegionSeq.hpp"
tonyp@2472 34 #include "gc_implementation/g1/heapRegionSets.hpp"
jmasa@2821 35 #include "gc_implementation/shared/hSpaceCounters.hpp"
stefank@2314 36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
stefank@2314 37 #include "memory/barrierSet.hpp"
stefank@2314 38 #include "memory/memRegion.hpp"
stefank@2314 39 #include "memory/sharedHeap.hpp"
stefank@2314 40
ysr@777 41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 42 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 43 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 44 // heap subsets that will yield large amounts of garbage.
ysr@777 45
ysr@777 46 class HeapRegion;
tonyp@2493 47 class HRRSCleanupTask;
ysr@777 48 class PermanentGenerationSpec;
ysr@777 49 class GenerationSpec;
ysr@777 50 class OopsInHeapRegionClosure;
ysr@777 51 class G1ScanHeapEvacClosure;
ysr@777 52 class ObjectClosure;
ysr@777 53 class SpaceClosure;
ysr@777 54 class CompactibleSpaceClosure;
ysr@777 55 class Space;
ysr@777 56 class G1CollectorPolicy;
ysr@777 57 class GenRemSet;
ysr@777 58 class G1RemSet;
ysr@777 59 class HeapRegionRemSetIterator;
ysr@777 60 class ConcurrentMark;
ysr@777 61 class ConcurrentMarkThread;
ysr@777 62 class ConcurrentG1Refine;
jmasa@2821 63 class GenerationCounters;
ysr@777 64
jcoomes@2064 65 typedef OverflowTaskQueue<StarTask> RefToScanQueue;
jcoomes@1746 66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
ysr@777 67
johnc@1242 68 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 69 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 70
ysr@777 71 enum GCAllocPurpose {
ysr@777 72 GCAllocForTenured,
ysr@777 73 GCAllocForSurvived,
ysr@777 74 GCAllocPurposeCount
ysr@777 75 };
ysr@777 76
ysr@777 77 class YoungList : public CHeapObj {
ysr@777 78 private:
ysr@777 79 G1CollectedHeap* _g1h;
ysr@777 80
ysr@777 81 HeapRegion* _head;
ysr@777 82
johnc@1829 83 HeapRegion* _survivor_head;
johnc@1829 84 HeapRegion* _survivor_tail;
johnc@1829 85
johnc@1829 86 HeapRegion* _curr;
johnc@1829 87
ysr@777 88 size_t _length;
johnc@1829 89 size_t _survivor_length;
ysr@777 90
ysr@777 91 size_t _last_sampled_rs_lengths;
ysr@777 92 size_t _sampled_rs_lengths;
ysr@777 93
johnc@1829 94 void empty_list(HeapRegion* list);
ysr@777 95
ysr@777 96 public:
ysr@777 97 YoungList(G1CollectedHeap* g1h);
ysr@777 98
johnc@1829 99 void push_region(HeapRegion* hr);
johnc@1829 100 void add_survivor_region(HeapRegion* hr);
johnc@1829 101
johnc@1829 102 void empty_list();
johnc@1829 103 bool is_empty() { return _length == 0; }
johnc@1829 104 size_t length() { return _length; }
johnc@1829 105 size_t survivor_length() { return _survivor_length; }
ysr@777 106
tonyp@2961 107 // Currently we do not keep track of the used byte sum for the
tonyp@2961 108 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 109 // do so. When we'll eventually replace the young list with
tonyp@2961 110 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 111 // we'll report the more accurate information then.
tonyp@2961 112 size_t eden_used_bytes() {
tonyp@2961 113 assert(length() >= survivor_length(), "invariant");
tonyp@2961 114 return (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 115 }
tonyp@2961 116 size_t survivor_used_bytes() {
tonyp@2961 117 return survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 118 }
tonyp@2961 119
ysr@777 120 void rs_length_sampling_init();
ysr@777 121 bool rs_length_sampling_more();
ysr@777 122 void rs_length_sampling_next();
ysr@777 123
ysr@777 124 void reset_sampled_info() {
ysr@777 125 _last_sampled_rs_lengths = 0;
ysr@777 126 }
ysr@777 127 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 128
ysr@777 129 // for development purposes
ysr@777 130 void reset_auxilary_lists();
johnc@1829 131 void clear() { _head = NULL; _length = 0; }
johnc@1829 132
johnc@1829 133 void clear_survivors() {
johnc@1829 134 _survivor_head = NULL;
johnc@1829 135 _survivor_tail = NULL;
johnc@1829 136 _survivor_length = 0;
johnc@1829 137 }
johnc@1829 138
ysr@777 139 HeapRegion* first_region() { return _head; }
ysr@777 140 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 141 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 142
ysr@777 143 // debugging
ysr@777 144 bool check_list_well_formed();
johnc@1829 145 bool check_list_empty(bool check_sample = true);
ysr@777 146 void print();
ysr@777 147 };
ysr@777 148
tonyp@2715 149 class MutatorAllocRegion : public G1AllocRegion {
tonyp@2715 150 protected:
tonyp@2715 151 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@2715 152 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@2715 153 public:
tonyp@2715 154 MutatorAllocRegion()
tonyp@2715 155 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
tonyp@2715 156 };
tonyp@2715 157
johnc@3175 158 // The G1 STW is alive closure.
johnc@3175 159 // An instance is embedded into the G1CH and used as the
johnc@3175 160 // (optional) _is_alive_non_header closure in the STW
johnc@3175 161 // reference processor. It is also extensively used during
johnc@3175 162 // refence processing during STW evacuation pauses.
johnc@3175 163 class G1STWIsAliveClosure: public BoolObjectClosure {
johnc@3175 164 G1CollectedHeap* _g1;
johnc@3175 165 public:
johnc@3175 166 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
johnc@3175 167 void do_object(oop p) { assert(false, "Do not call."); }
johnc@3175 168 bool do_object_b(oop p);
johnc@3175 169 };
johnc@3175 170
tonyp@3028 171 class SurvivorGCAllocRegion : public G1AllocRegion {
tonyp@3028 172 protected:
tonyp@3028 173 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 174 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 175 public:
tonyp@3028 176 SurvivorGCAllocRegion()
tonyp@3028 177 : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
tonyp@3028 178 };
tonyp@3028 179
tonyp@3028 180 class OldGCAllocRegion : public G1AllocRegion {
tonyp@3028 181 protected:
tonyp@3028 182 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 183 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 184 public:
tonyp@3028 185 OldGCAllocRegion()
tonyp@3028 186 : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
tonyp@3028 187 };
tonyp@3028 188
ysr@777 189 class RefineCardTableEntryClosure;
johnc@3175 190
ysr@777 191 class G1CollectedHeap : public SharedHeap {
ysr@777 192 friend class VM_G1CollectForAllocation;
ysr@777 193 friend class VM_GenCollectForPermanentAllocation;
ysr@777 194 friend class VM_G1CollectFull;
ysr@777 195 friend class VM_G1IncCollectionPause;
ysr@777 196 friend class VMStructs;
tonyp@2715 197 friend class MutatorAllocRegion;
tonyp@3028 198 friend class SurvivorGCAllocRegion;
tonyp@3028 199 friend class OldGCAllocRegion;
ysr@777 200
ysr@777 201 // Closures used in implementation.
ysr@777 202 friend class G1ParCopyHelper;
ysr@777 203 friend class G1IsAliveClosure;
ysr@777 204 friend class G1EvacuateFollowersClosure;
ysr@777 205 friend class G1ParScanThreadState;
ysr@777 206 friend class G1ParScanClosureSuper;
ysr@777 207 friend class G1ParEvacuateFollowersClosure;
ysr@777 208 friend class G1ParTask;
ysr@777 209 friend class G1FreeGarbageRegionClosure;
ysr@777 210 friend class RefineCardTableEntryClosure;
ysr@777 211 friend class G1PrepareCompactClosure;
ysr@777 212 friend class RegionSorter;
tonyp@2472 213 friend class RegionResetter;
ysr@777 214 friend class CountRCClosure;
ysr@777 215 friend class EvacPopObjClosure;
apetrusenko@1231 216 friend class G1ParCleanupCTTask;
ysr@777 217
ysr@777 218 // Other related classes.
ysr@777 219 friend class G1MarkSweep;
ysr@777 220
ysr@777 221 private:
ysr@777 222 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 223 static G1CollectedHeap* _g1h;
ysr@777 224
tonyp@1377 225 static size_t _humongous_object_threshold_in_words;
tonyp@1377 226
ysr@777 227 // Storage for the G1 heap (excludes the permanent generation).
ysr@777 228 VirtualSpace _g1_storage;
ysr@777 229 MemRegion _g1_reserved;
ysr@777 230
ysr@777 231 // The part of _g1_storage that is currently committed.
ysr@777 232 MemRegion _g1_committed;
ysr@777 233
tonyp@2472 234 // The master free list. It will satisfy all new region allocations.
tonyp@2472 235 MasterFreeRegionList _free_list;
tonyp@2472 236
tonyp@2472 237 // The secondary free list which contains regions that have been
tonyp@2472 238 // freed up during the cleanup process. This will be appended to the
tonyp@2472 239 // master free list when appropriate.
tonyp@2472 240 SecondaryFreeRegionList _secondary_free_list;
tonyp@2472 241
tonyp@3268 242 // It keeps track of the old regions.
tonyp@3268 243 MasterOldRegionSet _old_set;
tonyp@3268 244
tonyp@2472 245 // It keeps track of the humongous regions.
tonyp@2472 246 MasterHumongousRegionSet _humongous_set;
ysr@777 247
ysr@777 248 // The number of regions we could create by expansion.
ysr@777 249 size_t _expansion_regions;
ysr@777 250
ysr@777 251 // The block offset table for the G1 heap.
ysr@777 252 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 253
tonyp@3268 254 // Tears down the region sets / lists so that they are empty and the
tonyp@3268 255 // regions on the heap do not belong to a region set / list. The
tonyp@3268 256 // only exception is the humongous set which we leave unaltered. If
tonyp@3268 257 // free_list_only is true, it will only tear down the master free
tonyp@3268 258 // list. It is called before a Full GC (free_list_only == false) or
tonyp@3268 259 // before heap shrinking (free_list_only == true).
tonyp@3268 260 void tear_down_region_sets(bool free_list_only);
tonyp@3268 261
tonyp@3268 262 // Rebuilds the region sets / lists so that they are repopulated to
tonyp@3268 263 // reflect the contents of the heap. The only exception is the
tonyp@3268 264 // humongous set which was not torn down in the first place. If
tonyp@3268 265 // free_list_only is true, it will only rebuild the master free
tonyp@3268 266 // list. It is called after a Full GC (free_list_only == false) or
tonyp@3268 267 // after heap shrinking (free_list_only == true).
tonyp@3268 268 void rebuild_region_sets(bool free_list_only);
ysr@777 269
ysr@777 270 // The sequence of all heap regions in the heap.
tonyp@2963 271 HeapRegionSeq _hrs;
ysr@777 272
tonyp@2715 273 // Alloc region used to satisfy mutator allocation requests.
tonyp@2715 274 MutatorAllocRegion _mutator_alloc_region;
ysr@777 275
tonyp@3028 276 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 277 // survivor objects.
tonyp@3028 278 SurvivorGCAllocRegion _survivor_gc_alloc_region;
tonyp@3028 279
tonyp@3028 280 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 281 // old objects.
tonyp@3028 282 OldGCAllocRegion _old_gc_alloc_region;
tonyp@3028 283
tonyp@3028 284 // The last old region we allocated to during the last GC.
tonyp@3028 285 // Typically, it is not full so we should re-use it during the next GC.
tonyp@3028 286 HeapRegion* _retained_old_gc_alloc_region;
tonyp@3028 287
tonyp@2715 288 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 289 void init_mutator_alloc_region();
tonyp@2715 290
tonyp@2715 291 // It releases the mutator alloc region.
tonyp@2715 292 void release_mutator_alloc_region();
tonyp@2715 293
tonyp@3028 294 // It initializes the GC alloc regions at the start of a GC.
tonyp@3028 295 void init_gc_alloc_regions();
tonyp@3028 296
tonyp@3028 297 // It releases the GC alloc regions at the end of a GC.
tonyp@3028 298 void release_gc_alloc_regions();
tonyp@3028 299
tonyp@3028 300 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 301 // before a Full GC.
tonyp@1071 302 void abandon_gc_alloc_regions();
ysr@777 303
jmasa@2821 304 // Helper for monitoring and management support.
jmasa@2821 305 G1MonitoringSupport* _g1mm;
jmasa@2821 306
apetrusenko@1826 307 // Determines PLAB size for a particular allocation purpose.
apetrusenko@1826 308 static size_t desired_plab_sz(GCAllocPurpose purpose);
apetrusenko@1826 309
ysr@777 310 // Outside of GC pauses, the number of bytes used in all regions other
ysr@777 311 // than the current allocation region.
ysr@777 312 size_t _summary_bytes_used;
ysr@777 313
tonyp@961 314 // This is used for a quick test on whether a reference points into
tonyp@961 315 // the collection set or not. Basically, we have an array, with one
tonyp@961 316 // byte per region, and that byte denotes whether the corresponding
tonyp@961 317 // region is in the collection set or not. The entry corresponding
tonyp@961 318 // the bottom of the heap, i.e., region 0, is pointed to by
tonyp@961 319 // _in_cset_fast_test_base. The _in_cset_fast_test field has been
tonyp@961 320 // biased so that it actually points to address 0 of the address
tonyp@961 321 // space, to make the test as fast as possible (we can simply shift
tonyp@961 322 // the address to address into it, instead of having to subtract the
tonyp@961 323 // bottom of the heap from the address before shifting it; basically
tonyp@961 324 // it works in the same way the card table works).
tonyp@961 325 bool* _in_cset_fast_test;
tonyp@961 326
tonyp@961 327 // The allocated array used for the fast test on whether a reference
tonyp@961 328 // points into the collection set or not. This field is also used to
tonyp@961 329 // free the array.
tonyp@961 330 bool* _in_cset_fast_test_base;
tonyp@961 331
tonyp@961 332 // The length of the _in_cset_fast_test_base array.
tonyp@961 333 size_t _in_cset_fast_test_length;
tonyp@961 334
iveresov@788 335 volatile unsigned _gc_time_stamp;
ysr@777 336
ysr@777 337 size_t* _surviving_young_words;
ysr@777 338
tonyp@2975 339 G1HRPrinter _hr_printer;
tonyp@2975 340
ysr@777 341 void setup_surviving_young_words();
ysr@777 342 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 343 void cleanup_surviving_young_words();
ysr@777 344
tonyp@2011 345 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 346 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 347 // explicitly started if:
tonyp@2011 348 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 349 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
tonyp@2011 350 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 351
tonyp@2011 352 // Keeps track of how many "full collections" (i.e., Full GCs or
tonyp@2011 353 // concurrent cycles) we have completed. The number of them we have
tonyp@2011 354 // started is maintained in _total_full_collections in CollectedHeap.
tonyp@2011 355 volatile unsigned int _full_collections_completed;
tonyp@2011 356
tonyp@2817 357 // This is a non-product method that is helpful for testing. It is
tonyp@2817 358 // called at the end of a GC and artificially expands the heap by
tonyp@2817 359 // allocating a number of dead regions. This way we can induce very
tonyp@2817 360 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 361 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 362 // this method will be found dead by the marking cycle).
tonyp@2817 363 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 364
tonyp@2315 365 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 366 // line number, file, etc.
tonyp@2315 367
tonyp@2643 368 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 369 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 370 (_extra_message_), \
tonyp@2472 371 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 372 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 373 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 374
tonyp@2315 375 #define assert_heap_locked() \
tonyp@2315 376 do { \
tonyp@2315 377 assert(Heap_lock->owned_by_self(), \
tonyp@2315 378 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 379 } while (0)
tonyp@2315 380
tonyp@2643 381 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 382 do { \
tonyp@2315 383 assert(Heap_lock->owned_by_self() || \
tonyp@2472 384 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 385 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 386 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 387 "should be at a safepoint")); \
tonyp@2315 388 } while (0)
tonyp@2315 389
tonyp@2315 390 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 391 do { \
tonyp@2315 392 assert(Heap_lock->owned_by_self() && \
tonyp@2315 393 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 394 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 395 "should not be at a safepoint")); \
tonyp@2315 396 } while (0)
tonyp@2315 397
tonyp@2315 398 #define assert_heap_not_locked() \
tonyp@2315 399 do { \
tonyp@2315 400 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 401 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 402 } while (0)
tonyp@2315 403
tonyp@2315 404 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 405 do { \
tonyp@2315 406 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 407 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 408 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 409 "should not be at a safepoint")); \
tonyp@2315 410 } while (0)
tonyp@2315 411
tonyp@2643 412 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 413 do { \
tonyp@2472 414 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 415 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 416 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 417 } while (0)
tonyp@2315 418
tonyp@2315 419 #define assert_not_at_safepoint() \
tonyp@2315 420 do { \
tonyp@2315 421 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 422 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 423 } while (0)
tonyp@2315 424
ysr@777 425 protected:
ysr@777 426
johnc@3021 427 // The young region list.
ysr@777 428 YoungList* _young_list;
ysr@777 429
ysr@777 430 // The current policy object for the collector.
ysr@777 431 G1CollectorPolicy* _g1_policy;
ysr@777 432
tonyp@2472 433 // This is the second level of trying to allocate a new region. If
tonyp@2715 434 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 435 // check whether there's anything available on the
tonyp@2715 436 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 437 // that list, if _free_regions_coming is set.
tonyp@2643 438 HeapRegion* new_region_try_secondary_free_list();
ysr@777 439
tonyp@2643 440 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 441 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 442 // attempt to expand the heap if necessary to satisfy the allocation
tonyp@2643 443 // request.
tonyp@2715 444 HeapRegion* new_region(size_t word_size, bool do_expand);
ysr@777 445
tonyp@2643 446 // Attempt to satisfy a humongous allocation request of the given
tonyp@2643 447 // size by finding a contiguous set of free regions of num_regions
tonyp@2643 448 // length and remove them from the master free list. Return the
tonyp@2963 449 // index of the first region or G1_NULL_HRS_INDEX if the search
tonyp@2963 450 // was unsuccessful.
tonyp@2963 451 size_t humongous_obj_allocate_find_first(size_t num_regions,
tonyp@2963 452 size_t word_size);
ysr@777 453
tonyp@2643 454 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 455 // and starting at index first so that they appear as a single
tonyp@2643 456 // humongous region.
tonyp@2963 457 HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
tonyp@2643 458 size_t num_regions,
tonyp@2643 459 size_t word_size);
tonyp@2643 460
tonyp@2643 461 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 462 // NULL if unsuccessful.
tonyp@2472 463 HeapWord* humongous_obj_allocate(size_t word_size);
ysr@777 464
tonyp@2315 465 // The following two methods, allocate_new_tlab() and
tonyp@2315 466 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 467 // into the G1's allocation routines. They have the following
tonyp@2315 468 // assumptions:
tonyp@2315 469 //
tonyp@2315 470 // * They should both be called outside safepoints.
tonyp@2315 471 //
tonyp@2315 472 // * They should both be called without holding the Heap_lock.
tonyp@2315 473 //
tonyp@2315 474 // * All allocation requests for new TLABs should go to
tonyp@2315 475 // allocate_new_tlab().
tonyp@2315 476 //
tonyp@2971 477 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 478 //
tonyp@2315 479 // * If either call cannot satisfy the allocation request using the
tonyp@2315 480 // current allocating region, they will try to get a new one. If
tonyp@2315 481 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 482 // retry the allocation.
tonyp@2315 483 //
tonyp@2315 484 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 485 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 486 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 487 // schedule a Full GC.
tonyp@2315 488 //
tonyp@2315 489 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 490 // should never be called with word_size being humongous. All
tonyp@2315 491 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 492 // will satisfy them with a special path.
ysr@777 493
tonyp@2315 494 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 495
tonyp@2315 496 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 497 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 498
tonyp@2715 499 // The following three methods take a gc_count_before_ret
tonyp@2715 500 // parameter which is used to return the GC count if the method
tonyp@2715 501 // returns NULL. Given that we are required to read the GC count
tonyp@2715 502 // while holding the Heap_lock, and these paths will take the
tonyp@2715 503 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 504 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 505 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 506 // Heap_lock just to read the GC count.
tonyp@2315 507
tonyp@2715 508 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 509 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 510 // should only be used for non-humongous allocations.
tonyp@2715 511 inline HeapWord* attempt_allocation(size_t word_size,
tonyp@2715 512 unsigned int* gc_count_before_ret);
tonyp@2315 513
tonyp@2715 514 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 515 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 516 // pause. This should only be used for non-humongous allocations.
tonyp@2715 517 HeapWord* attempt_allocation_slow(size_t word_size,
tonyp@2715 518 unsigned int* gc_count_before_ret);
tonyp@2315 519
tonyp@2715 520 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 521 // potentially schedule a GC pause.
tonyp@2715 522 HeapWord* attempt_allocation_humongous(size_t word_size,
tonyp@2715 523 unsigned int* gc_count_before_ret);
tonyp@2454 524
tonyp@2715 525 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 526 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 527 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 528 // or not.
tonyp@2315 529 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
tonyp@2715 530 bool expect_null_mutator_alloc_region);
tonyp@2315 531
tonyp@2315 532 // It dirties the cards that cover the block so that so that the post
tonyp@2315 533 // write barrier never queues anything when updating objects on this
tonyp@2315 534 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 535 // belongs to a young region.
tonyp@2315 536 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 537
ysr@777 538 // Allocate blocks during garbage collection. Will ensure an
ysr@777 539 // allocation region, either by picking one or expanding the
ysr@777 540 // heap, and then allocate a block of the given size. The block
ysr@777 541 // may not be a humongous - it must fit into a single heap region.
ysr@777 542 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 543
ysr@777 544 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
ysr@777 545 HeapRegion* alloc_region,
ysr@777 546 bool par,
ysr@777 547 size_t word_size);
ysr@777 548
ysr@777 549 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 550 // that parallel threads might be attempting allocations.
ysr@777 551 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 552
tonyp@3028 553 // Allocation attempt during GC for a survivor object / PLAB.
tonyp@3028 554 inline HeapWord* survivor_attempt_allocation(size_t word_size);
apetrusenko@980 555
tonyp@3028 556 // Allocation attempt during GC for an old object / PLAB.
tonyp@3028 557 inline HeapWord* old_attempt_allocation(size_t word_size);
tonyp@2715 558
tonyp@3028 559 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 560
tonyp@3028 561 // For mutator alloc regions.
tonyp@2715 562 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 563 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 564 size_t allocated_bytes);
tonyp@2715 565
tonyp@3028 566 // For GC alloc regions.
tonyp@3028 567 HeapRegion* new_gc_alloc_region(size_t word_size, size_t count,
tonyp@3028 568 GCAllocPurpose ap);
tonyp@3028 569 void retire_gc_alloc_region(HeapRegion* alloc_region,
tonyp@3028 570 size_t allocated_bytes, GCAllocPurpose ap);
tonyp@3028 571
tonyp@2011 572 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 573 // inspection request and should collect the entire heap
tonyp@2315 574 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 575 // cleared during the GC
tonyp@2011 576 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 577 // the GC should attempt (at least) to satisfy
tonyp@2315 578 // - it returns false if it is unable to do the collection due to the
tonyp@2315 579 // GC locker being active, true otherwise
tonyp@2315 580 bool do_collection(bool explicit_gc,
tonyp@2011 581 bool clear_all_soft_refs,
ysr@777 582 size_t word_size);
ysr@777 583
ysr@777 584 // Callback from VM_G1CollectFull operation.
ysr@777 585 // Perform a full collection.
ysr@777 586 void do_full_collection(bool clear_all_soft_refs);
ysr@777 587
ysr@777 588 // Resize the heap if necessary after a full collection. If this is
ysr@777 589 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 590 // and will be considered part of the used portion of the heap.
ysr@777 591 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 592
ysr@777 593 // Callback from VM_G1CollectForAllocation operation.
ysr@777 594 // This function does everything necessary/possible to satisfy a
ysr@777 595 // failed allocation request (including collection, expansion, etc.)
tonyp@2315 596 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
ysr@777 597
ysr@777 598 // Attempting to expand the heap sufficiently
ysr@777 599 // to support an allocation of the given "word_size". If
ysr@777 600 // successful, perform the allocation and return the address of the
ysr@777 601 // allocated block, or else "NULL".
tonyp@2315 602 HeapWord* expand_and_allocate(size_t word_size);
ysr@777 603
johnc@3175 604 // Process any reference objects discovered during
johnc@3175 605 // an incremental evacuation pause.
johnc@3175 606 void process_discovered_references();
johnc@3175 607
johnc@3175 608 // Enqueue any remaining discovered references
johnc@3175 609 // after processing.
johnc@3175 610 void enqueue_discovered_references();
johnc@3175 611
ysr@777 612 public:
jmasa@2821 613
tonyp@3176 614 G1MonitoringSupport* g1mm() {
tonyp@3176 615 assert(_g1mm != NULL, "should have been initialized");
tonyp@3176 616 return _g1mm;
tonyp@3176 617 }
jmasa@2821 618
ysr@777 619 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 620 // Returns true if the heap was expanded by the requested amount;
johnc@2504 621 // false otherwise.
ysr@777 622 // (Rounds up to a HeapRegion boundary.)
johnc@2504 623 bool expand(size_t expand_bytes);
ysr@777 624
ysr@777 625 // Do anything common to GC's.
ysr@777 626 virtual void gc_prologue(bool full);
ysr@777 627 virtual void gc_epilogue(bool full);
ysr@777 628
tonyp@961 629 // We register a region with the fast "in collection set" test. We
tonyp@961 630 // simply set to true the array slot corresponding to this region.
tonyp@961 631 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tonyp@961 632 assert(_in_cset_fast_test_base != NULL, "sanity");
tonyp@961 633 assert(r->in_collection_set(), "invariant");
tonyp@2963 634 size_t index = r->hrs_index();
tonyp@2963 635 assert(index < _in_cset_fast_test_length, "invariant");
tonyp@961 636 assert(!_in_cset_fast_test_base[index], "invariant");
tonyp@961 637 _in_cset_fast_test_base[index] = true;
tonyp@961 638 }
tonyp@961 639
tonyp@961 640 // This is a fast test on whether a reference points into the
tonyp@961 641 // collection set or not. It does not assume that the reference
tonyp@961 642 // points into the heap; if it doesn't, it will return false.
tonyp@961 643 bool in_cset_fast_test(oop obj) {
tonyp@961 644 assert(_in_cset_fast_test != NULL, "sanity");
tonyp@961 645 if (_g1_committed.contains((HeapWord*) obj)) {
tonyp@961 646 // no need to subtract the bottom of the heap from obj,
tonyp@961 647 // _in_cset_fast_test is biased
tonyp@961 648 size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
tonyp@961 649 bool ret = _in_cset_fast_test[index];
tonyp@961 650 // let's make sure the result is consistent with what the slower
tonyp@961 651 // test returns
tonyp@961 652 assert( ret || !obj_in_cs(obj), "sanity");
tonyp@961 653 assert(!ret || obj_in_cs(obj), "sanity");
tonyp@961 654 return ret;
tonyp@961 655 } else {
tonyp@961 656 return false;
tonyp@961 657 }
tonyp@961 658 }
tonyp@961 659
johnc@1829 660 void clear_cset_fast_test() {
johnc@1829 661 assert(_in_cset_fast_test_base != NULL, "sanity");
johnc@1829 662 memset(_in_cset_fast_test_base, false,
johnc@1829 663 _in_cset_fast_test_length * sizeof(bool));
johnc@1829 664 }
johnc@1829 665
tonyp@2011 666 // This is called at the end of either a concurrent cycle or a Full
tonyp@2011 667 // GC to update the number of full collections completed. Those two
tonyp@2011 668 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 669 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 670 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 671 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 672 // tighter consistency checking in the method. If concurrent is
tonyp@2372 673 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 674 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 675 // in this nesting (i.e., the concurrent cycle). Further nesting is
tonyp@2372 676 // not currently supported. The end of the this call also notifies
tonyp@2372 677 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 678 // GC to happen (e.g., it called System.gc() with
tonyp@2011 679 // +ExplicitGCInvokesConcurrent).
tonyp@2372 680 void increment_full_collections_completed(bool concurrent);
tonyp@2011 681
tonyp@2011 682 unsigned int full_collections_completed() {
tonyp@2011 683 return _full_collections_completed;
tonyp@2011 684 }
tonyp@2011 685
tonyp@2975 686 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 687
ysr@777 688 protected:
ysr@777 689
ysr@777 690 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 691 // (Rounds down to a HeapRegion boundary.)
ysr@777 692 virtual void shrink(size_t expand_bytes);
ysr@777 693 void shrink_helper(size_t expand_bytes);
ysr@777 694
jcoomes@2064 695 #if TASKQUEUE_STATS
jcoomes@2064 696 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 697 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 698 void reset_taskqueue_stats();
jcoomes@2064 699 #endif // TASKQUEUE_STATS
jcoomes@2064 700
tonyp@2315 701 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 702 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 703 // return whether the VM operation was successful (it did do an
tonyp@2315 704 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 705 // locker was active). Given that we should not be holding the
tonyp@2315 706 // Heap_lock when we enter this method, we will pass the
tonyp@2315 707 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 708 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 709 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 710 // before the call, so it's easy to read gc_count_before just before.
tonyp@2315 711 HeapWord* do_collection_pause(size_t word_size,
tonyp@2315 712 unsigned int gc_count_before,
tonyp@2315 713 bool* succeeded);
ysr@777 714
ysr@777 715 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 716 // thread. It returns false if it is unable to do the collection due
tonyp@2315 717 // to the GC locker being active, true otherwise
tonyp@2315 718 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 719
ysr@777 720 // Actually do the work of evacuating the collection set.
tonyp@2315 721 void evacuate_collection_set();
ysr@777 722
ysr@777 723 // The g1 remembered set of the heap.
ysr@777 724 G1RemSet* _g1_rem_set;
ysr@777 725 // And it's mod ref barrier set, used to track updates for the above.
ysr@777 726 ModRefBarrierSet* _mr_bs;
ysr@777 727
iveresov@1051 728 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 729 // concurrently after the collection.
iveresov@1051 730 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 731
ysr@777 732 // The Heap Region Rem Set Iterator.
ysr@777 733 HeapRegionRemSetIterator** _rem_set_iterator;
ysr@777 734
ysr@777 735 // The closure used to refine a single card.
ysr@777 736 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 737
ysr@777 738 // A function to check the consistency of dirty card logs.
ysr@777 739 void check_ct_logs_at_safepoint();
ysr@777 740
johnc@2060 741 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 742 // references into the current collection set. This is used to
johnc@2060 743 // update the remembered sets of the regions in the collection
johnc@2060 744 // set in the event of an evacuation failure.
johnc@2060 745 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 746
ysr@777 747 // After a collection pause, make the regions in the CS into free
ysr@777 748 // regions.
ysr@777 749 void free_collection_set(HeapRegion* cs_head);
ysr@777 750
johnc@1829 751 // Abandon the current collection set without recording policy
johnc@1829 752 // statistics or updating free lists.
johnc@1829 753 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 754
ysr@777 755 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 756 // "scan_rs" to roots inside the heap (having done "set_region" to
ysr@777 757 // indicate the region in which the root resides), and does "scan_perm"
ysr@777 758 // (setting the generation to the perm generation.) If "scan_rs" is
ysr@777 759 // NULL, then this step is skipped. The "worker_i"
ysr@777 760 // param is for use with parallel roots processing, and should be
ysr@777 761 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 762 // In the sequential case this param will be ignored.
ysr@777 763 void g1_process_strong_roots(bool collecting_perm_gen,
ysr@777 764 SharedHeap::ScanningOption so,
ysr@777 765 OopClosure* scan_non_heap_roots,
ysr@777 766 OopsInHeapRegionClosure* scan_rs,
ysr@777 767 OopsInGenClosure* scan_perm,
ysr@777 768 int worker_i);
ysr@777 769
ysr@777 770 // Apply "blk" to all the weak roots of the system. These include
ysr@777 771 // JNI weak roots, the code cache, system dictionary, symbol table,
ysr@777 772 // string table, and referents of reachable weak refs.
ysr@777 773 void g1_process_weak_roots(OopClosure* root_closure,
ysr@777 774 OopClosure* non_root_closure);
ysr@777 775
tonyp@2643 776 // Frees a non-humongous region by initializing its contents and
tonyp@2472 777 // adding it to the free list that's passed as a parameter (this is
tonyp@2472 778 // usually a local list which will be appended to the master free
tonyp@2472 779 // list later). The used bytes of freed regions are accumulated in
tonyp@2472 780 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2472 781 // up. The assumption is that this will be done later.
tonyp@2472 782 void free_region(HeapRegion* hr,
tonyp@2472 783 size_t* pre_used,
tonyp@2472 784 FreeRegionList* free_list,
tonyp@2472 785 bool par);
ysr@777 786
tonyp@2643 787 // Frees a humongous region by collapsing it into individual regions
tonyp@2643 788 // and calling free_region() for each of them. The freed regions
tonyp@2643 789 // will be added to the free list that's passed as a parameter (this
tonyp@2643 790 // is usually a local list which will be appended to the master free
tonyp@2643 791 // list later). The used bytes of freed regions are accumulated in
tonyp@2643 792 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2643 793 // up. The assumption is that this will be done later.
tonyp@2472 794 void free_humongous_region(HeapRegion* hr,
tonyp@2472 795 size_t* pre_used,
tonyp@2472 796 FreeRegionList* free_list,
tonyp@2472 797 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 798 bool par);
ysr@777 799
tonyp@2963 800 // Notifies all the necessary spaces that the committed space has
tonyp@2963 801 // been updated (either expanded or shrunk). It should be called
tonyp@2963 802 // after _g1_storage is updated.
tonyp@2963 803 void update_committed_space(HeapWord* old_end, HeapWord* new_end);
tonyp@2963 804
ysr@777 805 // The concurrent marker (and the thread it runs in.)
ysr@777 806 ConcurrentMark* _cm;
ysr@777 807 ConcurrentMarkThread* _cmThread;
ysr@777 808 bool _mark_in_progress;
ysr@777 809
ysr@777 810 // The concurrent refiner.
ysr@777 811 ConcurrentG1Refine* _cg1r;
ysr@777 812
ysr@777 813 // The parallel task queues
ysr@777 814 RefToScanQueueSet *_task_queues;
ysr@777 815
ysr@777 816 // True iff a evacuation has failed in the current collection.
ysr@777 817 bool _evacuation_failed;
ysr@777 818
ysr@777 819 // Set the attribute indicating whether evacuation has failed in the
ysr@777 820 // current collection.
ysr@777 821 void set_evacuation_failed(bool b) { _evacuation_failed = b; }
ysr@777 822
ysr@777 823 // Failed evacuations cause some logical from-space objects to have
ysr@777 824 // forwarding pointers to themselves. Reset them.
ysr@777 825 void remove_self_forwarding_pointers();
ysr@777 826
ysr@777 827 // When one is non-null, so is the other. Together, they each pair is
ysr@777 828 // an object with a preserved mark, and its mark value.
ysr@777 829 GrowableArray<oop>* _objs_with_preserved_marks;
ysr@777 830 GrowableArray<markOop>* _preserved_marks_of_objs;
ysr@777 831
ysr@777 832 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 833 // word being overwritten with a self-forwarding-pointer.
ysr@777 834 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 835
ysr@777 836 // The stack of evac-failure objects left to be scanned.
ysr@777 837 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 838 // The closure to apply to evac-failure objects.
ysr@777 839
ysr@777 840 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 841 // Set the field above.
ysr@777 842 void
ysr@777 843 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 844 _evac_failure_closure = evac_failure_closure;
ysr@777 845 }
ysr@777 846
ysr@777 847 // Push "obj" on the scan stack.
ysr@777 848 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 849 // Process scan stack entries until the stack is empty.
ysr@777 850 void drain_evac_failure_scan_stack();
ysr@777 851 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 852 // prevent unnecessary recursion.
ysr@777 853 bool _drain_in_progress;
ysr@777 854
ysr@777 855 // Do any necessary initialization for evacuation-failure handling.
ysr@777 856 // "cl" is the closure that will be used to process evac-failure
ysr@777 857 // objects.
ysr@777 858 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 859 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 860 // structures.
ysr@777 861 void finalize_for_evac_failure();
ysr@777 862
ysr@777 863 // An attempt to evacuate "obj" has failed; take necessary steps.
johnc@3169 864 oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj,
johnc@3169 865 bool should_mark_root);
ysr@777 866 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 867
johnc@3175 868 // ("Weak") Reference processing support.
johnc@3175 869 //
johnc@3175 870 // G1 has 2 instances of the referece processor class. One
johnc@3175 871 // (_ref_processor_cm) handles reference object discovery
johnc@3175 872 // and subsequent processing during concurrent marking cycles.
johnc@3175 873 //
johnc@3175 874 // The other (_ref_processor_stw) handles reference object
johnc@3175 875 // discovery and processing during full GCs and incremental
johnc@3175 876 // evacuation pauses.
johnc@3175 877 //
johnc@3175 878 // During an incremental pause, reference discovery will be
johnc@3175 879 // temporarily disabled for _ref_processor_cm and will be
johnc@3175 880 // enabled for _ref_processor_stw. At the end of the evacuation
johnc@3175 881 // pause references discovered by _ref_processor_stw will be
johnc@3175 882 // processed and discovery will be disabled. The previous
johnc@3175 883 // setting for reference object discovery for _ref_processor_cm
johnc@3175 884 // will be re-instated.
johnc@3175 885 //
johnc@3175 886 // At the start of marking:
johnc@3175 887 // * Discovery by the CM ref processor is verified to be inactive
johnc@3175 888 // and it's discovered lists are empty.
johnc@3175 889 // * Discovery by the CM ref processor is then enabled.
johnc@3175 890 //
johnc@3175 891 // At the end of marking:
johnc@3175 892 // * Any references on the CM ref processor's discovered
johnc@3175 893 // lists are processed (possibly MT).
johnc@3175 894 //
johnc@3175 895 // At the start of full GC we:
johnc@3175 896 // * Disable discovery by the CM ref processor and
johnc@3175 897 // empty CM ref processor's discovered lists
johnc@3175 898 // (without processing any entries).
johnc@3175 899 // * Verify that the STW ref processor is inactive and it's
johnc@3175 900 // discovered lists are empty.
johnc@3175 901 // * Temporarily set STW ref processor discovery as single threaded.
johnc@3175 902 // * Temporarily clear the STW ref processor's _is_alive_non_header
johnc@3175 903 // field.
johnc@3175 904 // * Finally enable discovery by the STW ref processor.
johnc@3175 905 //
johnc@3175 906 // The STW ref processor is used to record any discovered
johnc@3175 907 // references during the full GC.
johnc@3175 908 //
johnc@3175 909 // At the end of a full GC we:
johnc@3175 910 // * Enqueue any reference objects discovered by the STW ref processor
johnc@3175 911 // that have non-live referents. This has the side-effect of
johnc@3175 912 // making the STW ref processor inactive by disabling discovery.
johnc@3175 913 // * Verify that the CM ref processor is still inactive
johnc@3175 914 // and no references have been placed on it's discovered
johnc@3175 915 // lists (also checked as a precondition during initial marking).
johnc@3175 916
johnc@3175 917 // The (stw) reference processor...
johnc@3175 918 ReferenceProcessor* _ref_processor_stw;
johnc@3175 919
johnc@3175 920 // During reference object discovery, the _is_alive_non_header
johnc@3175 921 // closure (if non-null) is applied to the referent object to
johnc@3175 922 // determine whether the referent is live. If so then the
johnc@3175 923 // reference object does not need to be 'discovered' and can
johnc@3175 924 // be treated as a regular oop. This has the benefit of reducing
johnc@3175 925 // the number of 'discovered' reference objects that need to
johnc@3175 926 // be processed.
johnc@3175 927 //
johnc@3175 928 // Instance of the is_alive closure for embedding into the
johnc@3175 929 // STW reference processor as the _is_alive_non_header field.
johnc@3175 930 // Supplying a value for the _is_alive_non_header field is
johnc@3175 931 // optional but doing so prevents unnecessary additions to
johnc@3175 932 // the discovered lists during reference discovery.
johnc@3175 933 G1STWIsAliveClosure _is_alive_closure_stw;
johnc@3175 934
johnc@3175 935 // The (concurrent marking) reference processor...
johnc@3175 936 ReferenceProcessor* _ref_processor_cm;
johnc@3175 937
johnc@2379 938 // Instance of the concurrent mark is_alive closure for embedding
johnc@3175 939 // into the Concurrent Marking reference processor as the
johnc@3175 940 // _is_alive_non_header field. Supplying a value for the
johnc@3175 941 // _is_alive_non_header field is optional but doing so prevents
johnc@3175 942 // unnecessary additions to the discovered lists during reference
johnc@3175 943 // discovery.
johnc@3175 944 G1CMIsAliveClosure _is_alive_closure_cm;
ysr@777 945
ysr@777 946 enum G1H_process_strong_roots_tasks {
ysr@777 947 G1H_PS_mark_stack_oops_do,
ysr@777 948 G1H_PS_refProcessor_oops_do,
ysr@777 949 // Leave this one last.
ysr@777 950 G1H_PS_NumElements
ysr@777 951 };
ysr@777 952
ysr@777 953 SubTasksDone* _process_strong_tasks;
ysr@777 954
tonyp@2472 955 volatile bool _free_regions_coming;
ysr@777 956
ysr@777 957 public:
jmasa@2188 958
jmasa@2188 959 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 960
ysr@777 961 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 962
jcoomes@2064 963 RefToScanQueue *task_queue(int i) const;
ysr@777 964
iveresov@1051 965 // A set of cards where updates happened during the GC
iveresov@1051 966 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 967
johnc@2060 968 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 969 // references into the current collection set. This is used to
johnc@2060 970 // update the remembered sets of the regions in the collection
johnc@2060 971 // set in the event of an evacuation failure.
johnc@2060 972 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 973 { return _into_cset_dirty_card_queue_set; }
johnc@2060 974
ysr@777 975 // Create a G1CollectedHeap with the specified policy.
ysr@777 976 // Must call the initialize method afterwards.
ysr@777 977 // May not return if something goes wrong.
ysr@777 978 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 979
ysr@777 980 // Initialize the G1CollectedHeap to have the initial and
ysr@777 981 // maximum sizes, permanent generation, and remembered and barrier sets
ysr@777 982 // specified by the policy object.
ysr@777 983 jint initialize();
ysr@777 984
johnc@3175 985 // Initialize weak reference processing.
johnc@2379 986 virtual void ref_processing_init();
ysr@777 987
ysr@777 988 void set_par_threads(int t) {
ysr@777 989 SharedHeap::set_par_threads(t);
jmasa@2188 990 _process_strong_tasks->set_n_threads(t);
ysr@777 991 }
ysr@777 992
ysr@777 993 virtual CollectedHeap::Name kind() const {
ysr@777 994 return CollectedHeap::G1CollectedHeap;
ysr@777 995 }
ysr@777 996
ysr@777 997 // The current policy object for the collector.
ysr@777 998 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 999
ysr@777 1000 // Adaptive size policy. No such thing for g1.
ysr@777 1001 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 1002
ysr@777 1003 // The rem set and barrier set.
ysr@777 1004 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 1005 ModRefBarrierSet* mr_bs() const { return _mr_bs; }
ysr@777 1006
ysr@777 1007 // The rem set iterator.
ysr@777 1008 HeapRegionRemSetIterator* rem_set_iterator(int i) {
ysr@777 1009 return _rem_set_iterator[i];
ysr@777 1010 }
ysr@777 1011
ysr@777 1012 HeapRegionRemSetIterator* rem_set_iterator() {
ysr@777 1013 return _rem_set_iterator[0];
ysr@777 1014 }
ysr@777 1015
ysr@777 1016 unsigned get_gc_time_stamp() {
ysr@777 1017 return _gc_time_stamp;
ysr@777 1018 }
ysr@777 1019
ysr@777 1020 void reset_gc_time_stamp() {
ysr@777 1021 _gc_time_stamp = 0;
iveresov@788 1022 OrderAccess::fence();
iveresov@788 1023 }
iveresov@788 1024
iveresov@788 1025 void increment_gc_time_stamp() {
iveresov@788 1026 ++_gc_time_stamp;
iveresov@788 1027 OrderAccess::fence();
ysr@777 1028 }
ysr@777 1029
johnc@2060 1030 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 1031 DirtyCardQueue* into_cset_dcq,
johnc@2060 1032 bool concurrent, int worker_i);
ysr@777 1033
ysr@777 1034 // The shared block offset table array.
ysr@777 1035 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 1036
johnc@3175 1037 // Reference Processing accessors
johnc@3175 1038
johnc@3175 1039 // The STW reference processor....
johnc@3175 1040 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
johnc@3175 1041
johnc@3175 1042 // The Concurent Marking reference processor...
johnc@3175 1043 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
ysr@777 1044
ysr@777 1045 virtual size_t capacity() const;
ysr@777 1046 virtual size_t used() const;
tonyp@1281 1047 // This should be called when we're not holding the heap lock. The
tonyp@1281 1048 // result might be a bit inaccurate.
tonyp@1281 1049 size_t used_unlocked() const;
ysr@777 1050 size_t recalculate_used() const;
ysr@777 1051
ysr@777 1052 // These virtual functions do the actual allocation.
ysr@777 1053 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 1054 // allocation, via inlined code (by exporting the address of the top and
ysr@777 1055 // end fields defining the extent of the contiguous allocation region.)
ysr@777 1056 // But G1CollectedHeap doesn't yet support this.
ysr@777 1057
ysr@777 1058 // Return an estimate of the maximum allocation that could be performed
ysr@777 1059 // without triggering any collection or expansion activity. In a
ysr@777 1060 // generational collector, for example, this is probably the largest
ysr@777 1061 // allocation that could be supported (without expansion) in the youngest
ysr@777 1062 // generation. It is "unsafe" because no locks are taken; the result
ysr@777 1063 // should be treated as an approximation, not a guarantee, for use in
ysr@777 1064 // heuristic resizing decisions.
ysr@777 1065 virtual size_t unsafe_max_alloc();
ysr@777 1066
ysr@777 1067 virtual bool is_maximal_no_gc() const {
ysr@777 1068 return _g1_storage.uncommitted_size() == 0;
ysr@777 1069 }
ysr@777 1070
ysr@777 1071 // The total number of regions in the heap.
tonyp@2963 1072 size_t n_regions() { return _hrs.length(); }
tonyp@2963 1073
tonyp@2963 1074 // The max number of regions in the heap.
tonyp@2963 1075 size_t max_regions() { return _hrs.max_length(); }
ysr@777 1076
ysr@777 1077 // The number of regions that are completely free.
tonyp@2963 1078 size_t free_regions() { return _free_list.length(); }
ysr@777 1079
ysr@777 1080 // The number of regions that are not completely free.
ysr@777 1081 size_t used_regions() { return n_regions() - free_regions(); }
ysr@777 1082
ysr@777 1083 // The number of regions available for "regular" expansion.
ysr@777 1084 size_t expansion_regions() { return _expansion_regions; }
ysr@777 1085
tonyp@2963 1086 // Factory method for HeapRegion instances. It will return NULL if
tonyp@2963 1087 // the allocation fails.
tonyp@2963 1088 HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
tonyp@2963 1089
tonyp@2849 1090 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 1091 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 1092 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 1093 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 1094
tonyp@2472 1095 // verify_region_sets() performs verification over the region
tonyp@2472 1096 // lists. It will be compiled in the product code to be used when
tonyp@2472 1097 // necessary (i.e., during heap verification).
tonyp@2472 1098 void verify_region_sets();
ysr@777 1099
tonyp@2472 1100 // verify_region_sets_optional() is planted in the code for
tonyp@2472 1101 // list verification in non-product builds (and it can be enabled in
tonyp@2472 1102 // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 1103 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1104 void verify_region_sets_optional() {
tonyp@2472 1105 verify_region_sets();
tonyp@2472 1106 }
tonyp@2472 1107 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1108 void verify_region_sets_optional() { }
tonyp@2472 1109 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 1110
tonyp@2472 1111 #ifdef ASSERT
tonyp@2643 1112 bool is_on_master_free_list(HeapRegion* hr) {
tonyp@2472 1113 return hr->containing_set() == &_free_list;
tonyp@2472 1114 }
ysr@777 1115
tonyp@2643 1116 bool is_in_humongous_set(HeapRegion* hr) {
tonyp@2472 1117 return hr->containing_set() == &_humongous_set;
tonyp@2643 1118 }
tonyp@2472 1119 #endif // ASSERT
ysr@777 1120
tonyp@2472 1121 // Wrapper for the region list operations that can be called from
tonyp@2472 1122 // methods outside this class.
ysr@777 1123
tonyp@2472 1124 void secondary_free_list_add_as_tail(FreeRegionList* list) {
tonyp@2472 1125 _secondary_free_list.add_as_tail(list);
tonyp@2472 1126 }
ysr@777 1127
tonyp@2472 1128 void append_secondary_free_list() {
tonyp@2714 1129 _free_list.add_as_head(&_secondary_free_list);
tonyp@2472 1130 }
ysr@777 1131
tonyp@2643 1132 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1133 // If the secondary free list looks empty there's no reason to
tonyp@2643 1134 // take the lock and then try to append it.
tonyp@2472 1135 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1136 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1137 append_secondary_free_list();
tonyp@2472 1138 }
tonyp@2472 1139 }
ysr@777 1140
tonyp@3268 1141 void old_set_remove(HeapRegion* hr) {
tonyp@3268 1142 _old_set.remove(hr);
tonyp@3268 1143 }
tonyp@3268 1144
tonyp@2472 1145 void set_free_regions_coming();
tonyp@2472 1146 void reset_free_regions_coming();
tonyp@2472 1147 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1148 void wait_while_free_regions_coming();
ysr@777 1149
ysr@777 1150 // Perform a collection of the heap; intended for use in implementing
ysr@777 1151 // "System.gc". This probably implies as full a collection as the
ysr@777 1152 // "CollectedHeap" supports.
ysr@777 1153 virtual void collect(GCCause::Cause cause);
ysr@777 1154
ysr@777 1155 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1156 void collect_locked(GCCause::Cause cause);
ysr@777 1157
ysr@777 1158 // This interface assumes that it's being called by the
ysr@777 1159 // vm thread. It collects the heap assuming that the
ysr@777 1160 // heap lock is already held and that we are executing in
ysr@777 1161 // the context of the vm thread.
ysr@777 1162 virtual void collect_as_vm_thread(GCCause::Cause cause);
ysr@777 1163
ysr@777 1164 // True iff a evacuation has failed in the most-recent collection.
ysr@777 1165 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1166
tonyp@2472 1167 // It will free a region if it has allocated objects in it that are
tonyp@2472 1168 // all dead. It calls either free_region() or
tonyp@2472 1169 // free_humongous_region() depending on the type of the region that
tonyp@2472 1170 // is passed to it.
tonyp@2493 1171 void free_region_if_empty(HeapRegion* hr,
tonyp@2493 1172 size_t* pre_used,
tonyp@2493 1173 FreeRegionList* free_list,
tonyp@3268 1174 OldRegionSet* old_proxy_set,
tonyp@2493 1175 HumongousRegionSet* humongous_proxy_set,
tonyp@2493 1176 HRRSCleanupTask* hrrs_cleanup_task,
tonyp@2493 1177 bool par);
ysr@777 1178
tonyp@2472 1179 // It appends the free list to the master free list and updates the
tonyp@2472 1180 // master humongous list according to the contents of the proxy
tonyp@2472 1181 // list. It also adjusts the total used bytes according to pre_used
tonyp@2472 1182 // (if par is true, it will do so by taking the ParGCRareEvent_lock).
tonyp@2472 1183 void update_sets_after_freeing_regions(size_t pre_used,
tonyp@2472 1184 FreeRegionList* free_list,
tonyp@3268 1185 OldRegionSet* old_proxy_set,
tonyp@2472 1186 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 1187 bool par);
ysr@777 1188
ysr@777 1189 // Returns "TRUE" iff "p" points into the allocated area of the heap.
ysr@777 1190 virtual bool is_in(const void* p) const;
ysr@777 1191
ysr@777 1192 // Return "TRUE" iff the given object address is within the collection
ysr@777 1193 // set.
ysr@777 1194 inline bool obj_in_cs(oop obj);
ysr@777 1195
ysr@777 1196 // Return "TRUE" iff the given object address is in the reserved
ysr@777 1197 // region of g1 (excluding the permanent generation).
ysr@777 1198 bool is_in_g1_reserved(const void* p) const {
ysr@777 1199 return _g1_reserved.contains(p);
ysr@777 1200 }
ysr@777 1201
tonyp@2717 1202 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1203 // reserved for the heap
tonyp@2717 1204 MemRegion g1_reserved() {
tonyp@2717 1205 return _g1_reserved;
tonyp@2717 1206 }
tonyp@2717 1207
tonyp@2717 1208 // Returns a MemRegion that corresponds to the space that has been
ysr@777 1209 // committed in the heap
ysr@777 1210 MemRegion g1_committed() {
ysr@777 1211 return _g1_committed;
ysr@777 1212 }
ysr@777 1213
johnc@2593 1214 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1215
ysr@777 1216 // This resets the card table to all zeros. It is used after
ysr@777 1217 // a collection pause which used the card table to claim cards.
ysr@777 1218 void cleanUpCardTable();
ysr@777 1219
ysr@777 1220 // Iteration functions.
ysr@777 1221
ysr@777 1222 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1223 // "cl.do_oop" on each.
iveresov@1113 1224 virtual void oop_iterate(OopClosure* cl) {
iveresov@1113 1225 oop_iterate(cl, true);
iveresov@1113 1226 }
iveresov@1113 1227 void oop_iterate(OopClosure* cl, bool do_perm);
ysr@777 1228
ysr@777 1229 // Same as above, restricted to a memory region.
iveresov@1113 1230 virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
iveresov@1113 1231 oop_iterate(mr, cl, true);
iveresov@1113 1232 }
iveresov@1113 1233 void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
ysr@777 1234
ysr@777 1235 // Iterate over all objects, calling "cl.do_object" on each.
iveresov@1113 1236 virtual void object_iterate(ObjectClosure* cl) {
iveresov@1113 1237 object_iterate(cl, true);
iveresov@1113 1238 }
iveresov@1113 1239 virtual void safe_object_iterate(ObjectClosure* cl) {
iveresov@1113 1240 object_iterate(cl, true);
iveresov@1113 1241 }
iveresov@1113 1242 void object_iterate(ObjectClosure* cl, bool do_perm);
ysr@777 1243
ysr@777 1244 // Iterate over all objects allocated since the last collection, calling
ysr@777 1245 // "cl.do_object" on each. The heap must have been initialized properly
ysr@777 1246 // to support this function, or else this call will fail.
ysr@777 1247 virtual void object_iterate_since_last_GC(ObjectClosure* cl);
ysr@777 1248
ysr@777 1249 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1250 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1251
ysr@777 1252 // Iterate over heap regions, in address order, terminating the
ysr@777 1253 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1254 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1255
ysr@777 1256 // Iterate over heap regions starting with r (or the first region if "r"
ysr@777 1257 // is NULL), in address order, terminating early if the "doHeapRegion"
ysr@777 1258 // method returns "true".
tonyp@2963 1259 void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
ysr@777 1260
tonyp@2963 1261 // Return the region with the given index. It assumes the index is valid.
tonyp@2963 1262 HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
ysr@777 1263
ysr@777 1264 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1265 // of regions divided by the number of parallel threads times some
ysr@777 1266 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1267 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1268 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1269 // calls will use the same "claim_value", and that that claim value is
ysr@777 1270 // different from the claim_value of any heap region before the start of
ysr@777 1271 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1272 // attempting to claim the first region in each chunk, and, if
ysr@777 1273 // successful, applying the closure to each region in the chunk (and
ysr@777 1274 // setting the claim value of the second and subsequent regions of the
ysr@777 1275 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1276 // i.e., that a closure never attempt to abort a traversal.
ysr@777 1277 void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
ysr@777 1278 int worker,
ysr@777 1279 jint claim_value);
ysr@777 1280
tonyp@825 1281 // It resets all the region claim values to the default.
tonyp@825 1282 void reset_heap_region_claim_values();
tonyp@825 1283
tonyp@790 1284 #ifdef ASSERT
tonyp@790 1285 bool check_heap_region_claim_values(jint claim_value);
tonyp@790 1286 #endif // ASSERT
tonyp@790 1287
ysr@777 1288 // Iterate over the regions (if any) in the current collection set.
ysr@777 1289 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1290
ysr@777 1291 // As above but starting from region r
ysr@777 1292 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1293
ysr@777 1294 // Returns the first (lowest address) compactible space in the heap.
ysr@777 1295 virtual CompactibleSpace* first_compactible_space();
ysr@777 1296
ysr@777 1297 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1298 // space containing a given address, or else returns NULL.
ysr@777 1299 virtual Space* space_containing(const void* addr) const;
ysr@777 1300
ysr@777 1301 // A G1CollectedHeap will contain some number of heap regions. This
ysr@777 1302 // finds the region containing a given address, or else returns NULL.
tonyp@2963 1303 template <class T>
tonyp@2963 1304 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1305
ysr@777 1306 // Like the above, but requires "addr" to be in the heap (to avoid a
ysr@777 1307 // null-check), and unlike the above, may return an continuing humongous
ysr@777 1308 // region.
tonyp@2963 1309 template <class T>
tonyp@2963 1310 inline HeapRegion* heap_region_containing_raw(const T addr) const;
ysr@777 1311
ysr@777 1312 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1313 // each address in the (reserved) heap is a member of exactly
ysr@777 1314 // one block. The defining characteristic of a block is that it is
ysr@777 1315 // possible to find its size, and thus to progress forward to the next
ysr@777 1316 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1317 // represent Java objects, or they might be free blocks in a
ysr@777 1318 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1319 // distinguishable and the size of each is determinable.
ysr@777 1320
ysr@777 1321 // Returns the address of the start of the "block" that contains the
ysr@777 1322 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1323 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1324 // non-object.
ysr@777 1325 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1326
ysr@777 1327 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1328 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1329 // of the active area of the heap.
ysr@777 1330 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1331
ysr@777 1332 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1333 // the block is an object.
ysr@777 1334 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1335
ysr@777 1336 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1337 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1338
ysr@777 1339 // Section on thread-local allocation buffers (TLABs)
ysr@777 1340 // See CollectedHeap for semantics.
ysr@777 1341
ysr@777 1342 virtual bool supports_tlab_allocation() const;
ysr@777 1343 virtual size_t tlab_capacity(Thread* thr) const;
ysr@777 1344 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
ysr@777 1345
ysr@777 1346 // Can a compiler initialize a new object without store barriers?
ysr@777 1347 // This permission only extends from the creation of a new object
ysr@1462 1348 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1349 // is granted for this heap type, the compiler promises to call
ysr@1462 1350 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1351 // a new object for which such initializing store barriers will
ysr@1462 1352 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1353 // ready to provide a compensating write barrier as necessary
ysr@1462 1354 // if that storage came out of a non-young region. The efficiency
ysr@1462 1355 // of this implementation depends crucially on being able to
ysr@1462 1356 // answer very efficiently in constant time whether a piece of
ysr@1462 1357 // storage in the heap comes from a young region or not.
ysr@1462 1358 // See ReduceInitialCardMarks.
ysr@777 1359 virtual bool can_elide_tlab_store_barriers() const {
brutisso@3184 1360 return true;
ysr@1462 1361 }
ysr@1462 1362
ysr@1601 1363 virtual bool card_mark_must_follow_store() const {
ysr@1601 1364 return true;
ysr@1601 1365 }
ysr@1601 1366
tonyp@2963 1367 bool is_in_young(const oop obj) {
ysr@1462 1368 HeapRegion* hr = heap_region_containing(obj);
ysr@1462 1369 return hr != NULL && hr->is_young();
ysr@1462 1370 }
ysr@1462 1371
jmasa@2909 1372 #ifdef ASSERT
jmasa@2909 1373 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1374 #endif
jmasa@2909 1375
jmasa@2909 1376 virtual bool is_scavengable(const void* addr);
jmasa@2909 1377
ysr@1462 1378 // We don't need barriers for initializing stores to objects
ysr@1462 1379 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1380 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1381 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1382 // information for young gen objects.
ysr@1462 1383 virtual bool can_elide_initializing_store_barrier(oop new_obj) {
ysr@1462 1384 return is_in_young(new_obj);
ysr@777 1385 }
ysr@777 1386
ysr@777 1387 // Can a compiler elide a store barrier when it writes
ysr@777 1388 // a permanent oop into the heap? Applies when the compiler
ysr@777 1389 // is storing x to the heap, where x->is_perm() is true.
ysr@777 1390 virtual bool can_elide_permanent_oop_store_barriers() const {
ysr@777 1391 // At least until perm gen collection is also G1-ified, at
ysr@777 1392 // which point this should return false.
ysr@777 1393 return true;
ysr@777 1394 }
ysr@777 1395
ysr@777 1396 // Returns "true" iff the given word_size is "very large".
ysr@777 1397 static bool isHumongous(size_t word_size) {
johnc@1748 1398 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1399 // are capped at the humongous thresold and we want to
johnc@1748 1400 // ensure that we don't try to allocate a TLAB as
johnc@1748 1401 // humongous and that we don't allocate a humongous
johnc@1748 1402 // object in a TLAB.
johnc@1748 1403 return word_size > _humongous_object_threshold_in_words;
ysr@777 1404 }
ysr@777 1405
ysr@777 1406 // Update mod union table with the set of dirty cards.
ysr@777 1407 void updateModUnion();
ysr@777 1408
ysr@777 1409 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1410 // that this is always a safe operation, since it doesn't clear any
ysr@777 1411 // bits.
ysr@777 1412 void markModUnionRange(MemRegion mr);
ysr@777 1413
ysr@777 1414 // Records the fact that a marking phase is no longer in progress.
ysr@777 1415 void set_marking_complete() {
ysr@777 1416 _mark_in_progress = false;
ysr@777 1417 }
ysr@777 1418 void set_marking_started() {
ysr@777 1419 _mark_in_progress = true;
ysr@777 1420 }
ysr@777 1421 bool mark_in_progress() {
ysr@777 1422 return _mark_in_progress;
ysr@777 1423 }
ysr@777 1424
ysr@777 1425 // Print the maximum heap capacity.
ysr@777 1426 virtual size_t max_capacity() const;
ysr@777 1427
ysr@777 1428 virtual jlong millis_since_last_gc();
ysr@777 1429
ysr@777 1430 // Perform any cleanup actions necessary before allowing a verification.
ysr@777 1431 virtual void prepare_for_verify();
ysr@777 1432
ysr@777 1433 // Perform verification.
tonyp@1246 1434
johnc@2969 1435 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 1436 // vo == UseNextMarking -> use "next" marking information
johnc@2969 1437 // vo == UseMarkWord -> use the mark word in the object header
johnc@2969 1438 //
tonyp@1246 1439 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 1440 // consistent most of the time, so most calls to this should use
johnc@2969 1441 // vo == UsePrevMarking.
johnc@2969 1442 // Currently, there is only one case where this is called with
johnc@2969 1443 // vo == UseNextMarking, which is to verify the "next" marking
johnc@2969 1444 // information at the end of remark.
johnc@2969 1445 // Currently there is only one place where this is called with
johnc@2969 1446 // vo == UseMarkWord, which is to verify the marking during a
johnc@2969 1447 // full GC.
johnc@2969 1448 void verify(bool allow_dirty, bool silent, VerifyOption vo);
tonyp@1246 1449
tonyp@1246 1450 // Override; it uses the "prev" marking information
ysr@777 1451 virtual void verify(bool allow_dirty, bool silent);
ysr@777 1452 virtual void print_on(outputStream* st) const;
tonyp@3269 1453 virtual void print_extended_on(outputStream* st) const;
ysr@777 1454
ysr@777 1455 virtual void print_gc_threads_on(outputStream* st) const;
ysr@777 1456 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1457
ysr@777 1458 // Override
ysr@777 1459 void print_tracing_info() const;
ysr@777 1460
tonyp@2974 1461 // The following two methods are helpful for debugging RSet issues.
tonyp@2974 1462 void print_cset_rsets() PRODUCT_RETURN;
tonyp@2974 1463 void print_all_rsets() PRODUCT_RETURN;
tonyp@2974 1464
ysr@777 1465 // Convenience function to be used in situations where the heap type can be
ysr@777 1466 // asserted to be this type.
ysr@777 1467 static G1CollectedHeap* heap();
ysr@777 1468
ysr@777 1469 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1470 // add appropriate methods for any other surv rate groups
ysr@777 1471
johnc@1829 1472 YoungList* young_list() { return _young_list; }
ysr@777 1473
ysr@777 1474 // debugging
ysr@777 1475 bool check_young_list_well_formed() {
ysr@777 1476 return _young_list->check_list_well_formed();
ysr@777 1477 }
johnc@1829 1478
johnc@1829 1479 bool check_young_list_empty(bool check_heap,
ysr@777 1480 bool check_sample = true);
ysr@777 1481
ysr@777 1482 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1483 // many of these need to be public.
ysr@777 1484
ysr@777 1485 // The functions below are helper functions that a subclass of
ysr@777 1486 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1487 // functions.
ysr@777 1488 // This performs a concurrent marking of the live objects in a
ysr@777 1489 // bitmap off to the side.
ysr@777 1490 void doConcurrentMark();
ysr@777 1491
ysr@777 1492 bool isMarkedPrev(oop obj) const;
ysr@777 1493 bool isMarkedNext(oop obj) const;
ysr@777 1494
johnc@2969 1495 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 1496 // vo == UseNextMarking -> use "next" marking information,
johnc@2969 1497 // vo == UseMarkWord -> use mark word from object header
tonyp@1246 1498 bool is_obj_dead_cond(const oop obj,
tonyp@1246 1499 const HeapRegion* hr,
johnc@2969 1500 const VerifyOption vo) const {
johnc@2969 1501
johnc@2969 1502 switch (vo) {
johnc@2969 1503 case VerifyOption_G1UsePrevMarking:
johnc@2969 1504 return is_obj_dead(obj, hr);
johnc@2969 1505 case VerifyOption_G1UseNextMarking:
johnc@2969 1506 return is_obj_ill(obj, hr);
johnc@2969 1507 default:
johnc@2969 1508 assert(vo == VerifyOption_G1UseMarkWord, "must be");
johnc@2969 1509 return !obj->is_gc_marked();
tonyp@1246 1510 }
tonyp@1246 1511 }
tonyp@1246 1512
ysr@777 1513 // Determine if an object is dead, given the object and also
ysr@777 1514 // the region to which the object belongs. An object is dead
ysr@777 1515 // iff a) it was not allocated since the last mark and b) it
ysr@777 1516 // is not marked.
ysr@777 1517
ysr@777 1518 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1519 return
ysr@777 1520 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1521 !isMarkedPrev(obj);
ysr@777 1522 }
ysr@777 1523
ysr@777 1524 // This is used when copying an object to survivor space.
ysr@777 1525 // If the object is marked live, then we mark the copy live.
ysr@777 1526 // If the object is allocated since the start of this mark
ysr@777 1527 // cycle, then we mark the copy live.
ysr@777 1528 // If the object has been around since the previous mark
ysr@777 1529 // phase, and hasn't been marked yet during this phase,
ysr@777 1530 // then we don't mark it, we just wait for the
ysr@777 1531 // current marking cycle to get to it.
ysr@777 1532
ysr@777 1533 // This function returns true when an object has been
ysr@777 1534 // around since the previous marking and hasn't yet
ysr@777 1535 // been marked during this marking.
ysr@777 1536
ysr@777 1537 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1538 return
ysr@777 1539 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1540 !isMarkedNext(obj);
ysr@777 1541 }
ysr@777 1542
ysr@777 1543 // Determine if an object is dead, given only the object itself.
ysr@777 1544 // This will find the region to which the object belongs and
ysr@777 1545 // then call the region version of the same function.
ysr@777 1546
ysr@777 1547 // Added if it is in permanent gen it isn't dead.
ysr@777 1548 // Added if it is NULL it isn't dead.
ysr@777 1549
johnc@2969 1550 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 1551 // vo == UseNextMarking -> use "next" marking information,
johnc@2969 1552 // vo == UseMarkWord -> use mark word from object header
tonyp@1246 1553 bool is_obj_dead_cond(const oop obj,
johnc@2969 1554 const VerifyOption vo) const {
johnc@2969 1555
johnc@2969 1556 switch (vo) {
johnc@2969 1557 case VerifyOption_G1UsePrevMarking:
johnc@2969 1558 return is_obj_dead(obj);
johnc@2969 1559 case VerifyOption_G1UseNextMarking:
johnc@2969 1560 return is_obj_ill(obj);
johnc@2969 1561 default:
johnc@2969 1562 assert(vo == VerifyOption_G1UseMarkWord, "must be");
johnc@2969 1563 return !obj->is_gc_marked();
tonyp@1246 1564 }
tonyp@1246 1565 }
tonyp@1246 1566
johnc@2969 1567 bool is_obj_dead(const oop obj) const {
tonyp@1246 1568 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1569 if (hr == NULL) {
ysr@777 1570 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1571 return false;
ysr@777 1572 else if (obj == NULL) return false;
ysr@777 1573 else return true;
ysr@777 1574 }
ysr@777 1575 else return is_obj_dead(obj, hr);
ysr@777 1576 }
ysr@777 1577
johnc@2969 1578 bool is_obj_ill(const oop obj) const {
tonyp@1246 1579 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1580 if (hr == NULL) {
ysr@777 1581 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1582 return false;
ysr@777 1583 else if (obj == NULL) return false;
ysr@777 1584 else return true;
ysr@777 1585 }
ysr@777 1586 else return is_obj_ill(obj, hr);
ysr@777 1587 }
ysr@777 1588
ysr@777 1589 // The following is just to alert the verification code
ysr@777 1590 // that a full collection has occurred and that the
ysr@777 1591 // remembered sets are no longer up to date.
ysr@777 1592 bool _full_collection;
ysr@777 1593 void set_full_collection() { _full_collection = true;}
ysr@777 1594 void clear_full_collection() {_full_collection = false;}
ysr@777 1595 bool full_collection() {return _full_collection;}
ysr@777 1596
ysr@777 1597 ConcurrentMark* concurrent_mark() const { return _cm; }
ysr@777 1598 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
ysr@777 1599
apetrusenko@1231 1600 // The dirty cards region list is used to record a subset of regions
apetrusenko@1231 1601 // whose cards need clearing. The list if populated during the
apetrusenko@1231 1602 // remembered set scanning and drained during the card table
apetrusenko@1231 1603 // cleanup. Although the methods are reentrant, population/draining
apetrusenko@1231 1604 // phases must not overlap. For synchronization purposes the last
apetrusenko@1231 1605 // element on the list points to itself.
apetrusenko@1231 1606 HeapRegion* _dirty_cards_region_list;
apetrusenko@1231 1607 void push_dirty_cards_region(HeapRegion* hr);
apetrusenko@1231 1608 HeapRegion* pop_dirty_cards_region();
apetrusenko@1231 1609
ysr@777 1610 public:
ysr@777 1611 void stop_conc_gc_threads();
ysr@777 1612
ysr@777 1613 // <NEW PREDICTION>
ysr@777 1614
ysr@777 1615 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 1616 void check_if_region_is_too_expensive(double predicted_time_ms);
ysr@777 1617 size_t pending_card_num();
ysr@777 1618 size_t max_pending_card_num();
ysr@777 1619 size_t cards_scanned();
ysr@777 1620
ysr@777 1621 // </NEW PREDICTION>
ysr@777 1622
ysr@777 1623 protected:
ysr@777 1624 size_t _max_heap_capacity;
ysr@777 1625 };
ysr@777 1626
ysr@1280 1627 #define use_local_bitmaps 1
ysr@1280 1628 #define verify_local_bitmaps 0
ysr@1280 1629 #define oop_buffer_length 256
ysr@1280 1630
ysr@1280 1631 #ifndef PRODUCT
ysr@1280 1632 class GCLabBitMap;
ysr@1280 1633 class GCLabBitMapClosure: public BitMapClosure {
ysr@1280 1634 private:
ysr@1280 1635 ConcurrentMark* _cm;
ysr@1280 1636 GCLabBitMap* _bitmap;
ysr@1280 1637
ysr@1280 1638 public:
ysr@1280 1639 GCLabBitMapClosure(ConcurrentMark* cm,
ysr@1280 1640 GCLabBitMap* bitmap) {
ysr@1280 1641 _cm = cm;
ysr@1280 1642 _bitmap = bitmap;
ysr@1280 1643 }
ysr@1280 1644
ysr@1280 1645 virtual bool do_bit(size_t offset);
ysr@1280 1646 };
ysr@1280 1647 #endif // !PRODUCT
ysr@1280 1648
ysr@1280 1649 class GCLabBitMap: public BitMap {
ysr@1280 1650 private:
ysr@1280 1651 ConcurrentMark* _cm;
ysr@1280 1652
ysr@1280 1653 int _shifter;
ysr@1280 1654 size_t _bitmap_word_covers_words;
ysr@1280 1655
ysr@1280 1656 // beginning of the heap
ysr@1280 1657 HeapWord* _heap_start;
ysr@1280 1658
ysr@1280 1659 // this is the actual start of the GCLab
ysr@1280 1660 HeapWord* _real_start_word;
ysr@1280 1661
ysr@1280 1662 // this is the actual end of the GCLab
ysr@1280 1663 HeapWord* _real_end_word;
ysr@1280 1664
ysr@1280 1665 // this is the first word, possibly located before the actual start
ysr@1280 1666 // of the GCLab, that corresponds to the first bit of the bitmap
ysr@1280 1667 HeapWord* _start_word;
ysr@1280 1668
ysr@1280 1669 // size of a GCLab in words
ysr@1280 1670 size_t _gclab_word_size;
ysr@1280 1671
ysr@1280 1672 static int shifter() {
ysr@1280 1673 return MinObjAlignment - 1;
ysr@1280 1674 }
ysr@1280 1675
ysr@1280 1676 // how many heap words does a single bitmap word corresponds to?
ysr@1280 1677 static size_t bitmap_word_covers_words() {
ysr@1280 1678 return BitsPerWord << shifter();
ysr@1280 1679 }
ysr@1280 1680
apetrusenko@1826 1681 size_t gclab_word_size() const {
apetrusenko@1826 1682 return _gclab_word_size;
ysr@1280 1683 }
ysr@1280 1684
apetrusenko@1826 1685 // Calculates actual GCLab size in words
apetrusenko@1826 1686 size_t gclab_real_word_size() const {
apetrusenko@1826 1687 return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
apetrusenko@1826 1688 / BitsPerWord;
apetrusenko@1826 1689 }
apetrusenko@1826 1690
apetrusenko@1826 1691 static size_t bitmap_size_in_bits(size_t gclab_word_size) {
apetrusenko@1826 1692 size_t bits_in_bitmap = gclab_word_size >> shifter();
ysr@1280 1693 // We are going to ensure that the beginning of a word in this
ysr@1280 1694 // bitmap also corresponds to the beginning of a word in the
ysr@1280 1695 // global marking bitmap. To handle the case where a GCLab
ysr@1280 1696 // starts from the middle of the bitmap, we need to add enough
ysr@1280 1697 // space (i.e. up to a bitmap word) to ensure that we have
ysr@1280 1698 // enough bits in the bitmap.
ysr@1280 1699 return bits_in_bitmap + BitsPerWord - 1;
ysr@1280 1700 }
ysr@1280 1701 public:
apetrusenko@1826 1702 GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
apetrusenko@1826 1703 : BitMap(bitmap_size_in_bits(gclab_word_size)),
ysr@1280 1704 _cm(G1CollectedHeap::heap()->concurrent_mark()),
ysr@1280 1705 _shifter(shifter()),
ysr@1280 1706 _bitmap_word_covers_words(bitmap_word_covers_words()),
ysr@1280 1707 _heap_start(heap_start),
apetrusenko@1826 1708 _gclab_word_size(gclab_word_size),
ysr@1280 1709 _real_start_word(NULL),
ysr@1280 1710 _real_end_word(NULL),
ysr@1280 1711 _start_word(NULL)
ysr@1280 1712 {
ysr@1280 1713 guarantee( size_in_words() >= bitmap_size_in_words(),
ysr@1280 1714 "just making sure");
ysr@1280 1715 }
ysr@1280 1716
ysr@1280 1717 inline unsigned heapWordToOffset(HeapWord* addr) {
ysr@1280 1718 unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
ysr@1280 1719 assert(offset < size(), "offset should be within bounds");
ysr@1280 1720 return offset;
ysr@1280 1721 }
ysr@1280 1722
ysr@1280 1723 inline HeapWord* offsetToHeapWord(size_t offset) {
ysr@1280 1724 HeapWord* addr = _start_word + (offset << _shifter);
ysr@1280 1725 assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
ysr@1280 1726 return addr;
ysr@1280 1727 }
ysr@1280 1728
ysr@1280 1729 bool fields_well_formed() {
ysr@1280 1730 bool ret1 = (_real_start_word == NULL) &&
ysr@1280 1731 (_real_end_word == NULL) &&
ysr@1280 1732 (_start_word == NULL);
ysr@1280 1733 if (ret1)
ysr@1280 1734 return true;
ysr@1280 1735
ysr@1280 1736 bool ret2 = _real_start_word >= _start_word &&
ysr@1280 1737 _start_word < _real_end_word &&
ysr@1280 1738 (_real_start_word + _gclab_word_size) == _real_end_word &&
ysr@1280 1739 (_start_word + _gclab_word_size + _bitmap_word_covers_words)
ysr@1280 1740 > _real_end_word;
ysr@1280 1741 return ret2;
ysr@1280 1742 }
ysr@1280 1743
ysr@1280 1744 inline bool mark(HeapWord* addr) {
ysr@1280 1745 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1746 assert(fields_well_formed(), "invariant");
ysr@1280 1747
ysr@1280 1748 if (addr >= _real_start_word && addr < _real_end_word) {
ysr@1280 1749 assert(!isMarked(addr), "should not have already been marked");
ysr@1280 1750
ysr@1280 1751 // first mark it on the bitmap
ysr@1280 1752 at_put(heapWordToOffset(addr), true);
ysr@1280 1753
ysr@1280 1754 return true;
ysr@1280 1755 } else {
ysr@1280 1756 return false;
ysr@1280 1757 }
ysr@1280 1758 }
ysr@1280 1759
ysr@1280 1760 inline bool isMarked(HeapWord* addr) {
ysr@1280 1761 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1762 assert(fields_well_formed(), "invariant");
ysr@1280 1763
ysr@1280 1764 return at(heapWordToOffset(addr));
ysr@1280 1765 }
ysr@1280 1766
ysr@1280 1767 void set_buffer(HeapWord* start) {
ysr@1280 1768 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1769 clear();
ysr@1280 1770
ysr@1280 1771 assert(start != NULL, "invariant");
ysr@1280 1772 _real_start_word = start;
ysr@1280 1773 _real_end_word = start + _gclab_word_size;
ysr@1280 1774
ysr@1280 1775 size_t diff =
ysr@1280 1776 pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
ysr@1280 1777 _start_word = start - diff;
ysr@1280 1778
ysr@1280 1779 assert(fields_well_formed(), "invariant");
ysr@1280 1780 }
ysr@1280 1781
ysr@1280 1782 #ifndef PRODUCT
ysr@1280 1783 void verify() {
ysr@1280 1784 // verify that the marks have been propagated
ysr@1280 1785 GCLabBitMapClosure cl(_cm, this);
ysr@1280 1786 iterate(&cl);
ysr@1280 1787 }
ysr@1280 1788 #endif // PRODUCT
ysr@1280 1789
ysr@1280 1790 void retire() {
ysr@1280 1791 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1792 assert(fields_well_formed(), "invariant");
ysr@1280 1793
ysr@1280 1794 if (_start_word != NULL) {
ysr@1280 1795 CMBitMap* mark_bitmap = _cm->nextMarkBitMap();
ysr@1280 1796
ysr@1280 1797 // this means that the bitmap was set up for the GCLab
ysr@1280 1798 assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
ysr@1280 1799
ysr@1280 1800 mark_bitmap->mostly_disjoint_range_union(this,
ysr@1280 1801 0, // always start from the start of the bitmap
ysr@1280 1802 _start_word,
apetrusenko@1826 1803 gclab_real_word_size());
ysr@1280 1804 _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
ysr@1280 1805
ysr@1280 1806 #ifndef PRODUCT
ysr@1280 1807 if (use_local_bitmaps && verify_local_bitmaps)
ysr@1280 1808 verify();
ysr@1280 1809 #endif // PRODUCT
ysr@1280 1810 } else {
ysr@1280 1811 assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
ysr@1280 1812 }
ysr@1280 1813 }
ysr@1280 1814
apetrusenko@1826 1815 size_t bitmap_size_in_words() const {
apetrusenko@1826 1816 return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
ysr@1280 1817 }
apetrusenko@1826 1818
ysr@1280 1819 };
ysr@1280 1820
ysr@1280 1821 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@1280 1822 private:
ysr@1280 1823 bool _retired;
johnc@3086 1824 bool _should_mark_objects;
ysr@1280 1825 GCLabBitMap _bitmap;
ysr@1280 1826
ysr@1280 1827 public:
johnc@3086 1828 G1ParGCAllocBuffer(size_t gclab_word_size);
ysr@1280 1829
ysr@1280 1830 inline bool mark(HeapWord* addr) {
ysr@1280 1831 guarantee(use_local_bitmaps, "invariant");
johnc@3086 1832 assert(_should_mark_objects, "invariant");
ysr@1280 1833 return _bitmap.mark(addr);
ysr@1280 1834 }
ysr@1280 1835
ysr@1280 1836 inline void set_buf(HeapWord* buf) {
johnc@3086 1837 if (use_local_bitmaps && _should_mark_objects) {
ysr@1280 1838 _bitmap.set_buffer(buf);
johnc@3086 1839 }
ysr@1280 1840 ParGCAllocBuffer::set_buf(buf);
ysr@1280 1841 _retired = false;
ysr@1280 1842 }
ysr@1280 1843
ysr@1280 1844 inline void retire(bool end_of_gc, bool retain) {
ysr@1280 1845 if (_retired)
ysr@1280 1846 return;
johnc@3086 1847 if (use_local_bitmaps && _should_mark_objects) {
ysr@1280 1848 _bitmap.retire();
ysr@1280 1849 }
ysr@1280 1850 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@1280 1851 _retired = true;
ysr@1280 1852 }
ysr@1280 1853 };
ysr@1280 1854
ysr@1280 1855 class G1ParScanThreadState : public StackObj {
ysr@1280 1856 protected:
ysr@1280 1857 G1CollectedHeap* _g1h;
ysr@1280 1858 RefToScanQueue* _refs;
ysr@1280 1859 DirtyCardQueue _dcq;
ysr@1280 1860 CardTableModRefBS* _ct_bs;
ysr@1280 1861 G1RemSet* _g1_rem;
ysr@1280 1862
apetrusenko@1826 1863 G1ParGCAllocBuffer _surviving_alloc_buffer;
apetrusenko@1826 1864 G1ParGCAllocBuffer _tenured_alloc_buffer;
apetrusenko@1826 1865 G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
apetrusenko@1826 1866 ageTable _age_table;
ysr@1280 1867
ysr@1280 1868 size_t _alloc_buffer_waste;
ysr@1280 1869 size_t _undo_waste;
ysr@1280 1870
ysr@1280 1871 OopsInHeapRegionClosure* _evac_failure_cl;
ysr@1280 1872 G1ParScanHeapEvacClosure* _evac_cl;
ysr@1280 1873 G1ParScanPartialArrayClosure* _partial_scan_cl;
ysr@1280 1874
ysr@1280 1875 int _hash_seed;
ysr@1280 1876 int _queue_num;
ysr@1280 1877
tonyp@1966 1878 size_t _term_attempts;
ysr@1280 1879
ysr@1280 1880 double _start;
ysr@1280 1881 double _start_strong_roots;
ysr@1280 1882 double _strong_roots_time;
ysr@1280 1883 double _start_term;
ysr@1280 1884 double _term_time;
ysr@1280 1885
ysr@1280 1886 // Map from young-age-index (0 == not young, 1 is youngest) to
ysr@1280 1887 // surviving words. base is what we get back from the malloc call
ysr@1280 1888 size_t* _surviving_young_words_base;
ysr@1280 1889 // this points into the array, as we use the first few entries for padding
ysr@1280 1890 size_t* _surviving_young_words;
ysr@1280 1891
jcoomes@2064 1892 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
ysr@1280 1893
ysr@1280 1894 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
ysr@1280 1895
ysr@1280 1896 void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
ysr@1280 1897
ysr@1280 1898 DirtyCardQueue& dirty_card_queue() { return _dcq; }
ysr@1280 1899 CardTableModRefBS* ctbs() { return _ct_bs; }
ysr@1280 1900
ysr@1280 1901 template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1902 if (!from->is_survivor()) {
ysr@1280 1903 _g1_rem->par_write_ref(from, p, tid);
ysr@1280 1904 }
ysr@1280 1905 }
ysr@1280 1906
ysr@1280 1907 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1908 // If the new value of the field points to the same region or
ysr@1280 1909 // is the to-space, we don't need to include it in the Rset updates.
ysr@1280 1910 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
ysr@1280 1911 size_t card_index = ctbs()->index_for(p);
ysr@1280 1912 // If the card hasn't been added to the buffer, do it.
ysr@1280 1913 if (ctbs()->mark_card_deferred(card_index)) {
ysr@1280 1914 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
ysr@1280 1915 }
ysr@1280 1916 }
ysr@1280 1917 }
ysr@1280 1918
ysr@1280 1919 public:
ysr@1280 1920 G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
ysr@1280 1921
ysr@1280 1922 ~G1ParScanThreadState() {
ysr@1280 1923 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
ysr@1280 1924 }
ysr@1280 1925
ysr@1280 1926 RefToScanQueue* refs() { return _refs; }
ysr@1280 1927 ageTable* age_table() { return &_age_table; }
ysr@1280 1928
ysr@1280 1929 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
apetrusenko@1826 1930 return _alloc_buffers[purpose];
ysr@1280 1931 }
ysr@1280 1932
jcoomes@2064 1933 size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
jcoomes@2064 1934 size_t undo_waste() const { return _undo_waste; }
ysr@1280 1935
jcoomes@2217 1936 #ifdef ASSERT
jcoomes@2217 1937 bool verify_ref(narrowOop* ref) const;
jcoomes@2217 1938 bool verify_ref(oop* ref) const;
jcoomes@2217 1939 bool verify_task(StarTask ref) const;
jcoomes@2217 1940 #endif // ASSERT
jcoomes@2217 1941
ysr@1280 1942 template <class T> void push_on_queue(T* ref) {
jcoomes@2217 1943 assert(verify_ref(ref), "sanity");
jcoomes@2064 1944 refs()->push(ref);
ysr@1280 1945 }
ysr@1280 1946
ysr@1280 1947 template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
ysr@1280 1948 if (G1DeferredRSUpdate) {
ysr@1280 1949 deferred_rs_update(from, p, tid);
ysr@1280 1950 } else {
ysr@1280 1951 immediate_rs_update(from, p, tid);
ysr@1280 1952 }
ysr@1280 1953 }
ysr@1280 1954
ysr@1280 1955 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1956
ysr@1280 1957 HeapWord* obj = NULL;
apetrusenko@1826 1958 size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
apetrusenko@1826 1959 if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
ysr@1280 1960 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
apetrusenko@1826 1961 assert(gclab_word_size == alloc_buf->word_sz(),
apetrusenko@1826 1962 "dynamic resizing is not supported");
ysr@1280 1963 add_to_alloc_buffer_waste(alloc_buf->words_remaining());
ysr@1280 1964 alloc_buf->retire(false, false);
ysr@1280 1965
apetrusenko@1826 1966 HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
ysr@1280 1967 if (buf == NULL) return NULL; // Let caller handle allocation failure.
ysr@1280 1968 // Otherwise.
ysr@1280 1969 alloc_buf->set_buf(buf);
ysr@1280 1970
ysr@1280 1971 obj = alloc_buf->allocate(word_sz);
ysr@1280 1972 assert(obj != NULL, "buffer was definitely big enough...");
ysr@1280 1973 } else {
ysr@1280 1974 obj = _g1h->par_allocate_during_gc(purpose, word_sz);
ysr@1280 1975 }
ysr@1280 1976 return obj;
ysr@1280 1977 }
ysr@1280 1978
ysr@1280 1979 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1980 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
ysr@1280 1981 if (obj != NULL) return obj;
ysr@1280 1982 return allocate_slow(purpose, word_sz);
ysr@1280 1983 }
ysr@1280 1984
ysr@1280 1985 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
ysr@1280 1986 if (alloc_buffer(purpose)->contains(obj)) {
ysr@1280 1987 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
ysr@1280 1988 "should contain whole object");
ysr@1280 1989 alloc_buffer(purpose)->undo_allocation(obj, word_sz);
ysr@1280 1990 } else {
ysr@1280 1991 CollectedHeap::fill_with_object(obj, word_sz);
ysr@1280 1992 add_to_undo_waste(word_sz);
ysr@1280 1993 }
ysr@1280 1994 }
ysr@1280 1995
ysr@1280 1996 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
ysr@1280 1997 _evac_failure_cl = evac_failure_cl;
ysr@1280 1998 }
ysr@1280 1999 OopsInHeapRegionClosure* evac_failure_closure() {
ysr@1280 2000 return _evac_failure_cl;
ysr@1280 2001 }
ysr@1280 2002
ysr@1280 2003 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
ysr@1280 2004 _evac_cl = evac_cl;
ysr@1280 2005 }
ysr@1280 2006
ysr@1280 2007 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
ysr@1280 2008 _partial_scan_cl = partial_scan_cl;
ysr@1280 2009 }
ysr@1280 2010
ysr@1280 2011 int* hash_seed() { return &_hash_seed; }
ysr@1280 2012 int queue_num() { return _queue_num; }
ysr@1280 2013
jcoomes@2064 2014 size_t term_attempts() const { return _term_attempts; }
tonyp@1966 2015 void note_term_attempt() { _term_attempts++; }
ysr@1280 2016
ysr@1280 2017 void start_strong_roots() {
ysr@1280 2018 _start_strong_roots = os::elapsedTime();
ysr@1280 2019 }
ysr@1280 2020 void end_strong_roots() {
ysr@1280 2021 _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
ysr@1280 2022 }
jcoomes@2064 2023 double strong_roots_time() const { return _strong_roots_time; }
ysr@1280 2024
ysr@1280 2025 void start_term_time() {
ysr@1280 2026 note_term_attempt();
ysr@1280 2027 _start_term = os::elapsedTime();
ysr@1280 2028 }
ysr@1280 2029 void end_term_time() {
ysr@1280 2030 _term_time += (os::elapsedTime() - _start_term);
ysr@1280 2031 }
jcoomes@2064 2032 double term_time() const { return _term_time; }
ysr@1280 2033
jcoomes@2064 2034 double elapsed_time() const {
ysr@1280 2035 return os::elapsedTime() - _start;
ysr@1280 2036 }
ysr@1280 2037
jcoomes@2064 2038 static void
jcoomes@2064 2039 print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 2040 void
jcoomes@2064 2041 print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
jcoomes@2064 2042
ysr@1280 2043 size_t* surviving_young_words() {
ysr@1280 2044 // We add on to hide entry 0 which accumulates surviving words for
ysr@1280 2045 // age -1 regions (i.e. non-young ones)
ysr@1280 2046 return _surviving_young_words;
ysr@1280 2047 }
ysr@1280 2048
ysr@1280 2049 void retire_alloc_buffers() {
ysr@1280 2050 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
apetrusenko@1826 2051 size_t waste = _alloc_buffers[ap]->words_remaining();
ysr@1280 2052 add_to_alloc_buffer_waste(waste);
apetrusenko@1826 2053 _alloc_buffers[ap]->retire(true, false);
ysr@1280 2054 }
ysr@1280 2055 }
ysr@1280 2056
ysr@1280 2057 template <class T> void deal_with_reference(T* ref_to_scan) {
ysr@1280 2058 if (has_partial_array_mask(ref_to_scan)) {
ysr@1280 2059 _partial_scan_cl->do_oop_nv(ref_to_scan);
ysr@1280 2060 } else {
ysr@1280 2061 // Note: we can use "raw" versions of "region_containing" because
ysr@1280 2062 // "obj_to_scan" is definitely in the heap, and is not in a
ysr@1280 2063 // humongous region.
ysr@1280 2064 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
ysr@1280 2065 _evac_cl->set_region(r);
ysr@1280 2066 _evac_cl->do_oop_nv(ref_to_scan);
ysr@1280 2067 }
ysr@1280 2068 }
ysr@1280 2069
jcoomes@2217 2070 void deal_with_reference(StarTask ref) {
jcoomes@2217 2071 assert(verify_task(ref), "sanity");
jcoomes@2217 2072 if (ref.is_narrow()) {
jcoomes@2217 2073 deal_with_reference((narrowOop*)ref);
jcoomes@2217 2074 } else {
jcoomes@2217 2075 deal_with_reference((oop*)ref);
ysr@1280 2076 }
ysr@1280 2077 }
jcoomes@2217 2078
jcoomes@2217 2079 public:
jcoomes@2217 2080 void trim_queue();
ysr@1280 2081 };
stefank@2314 2082
stefank@2314 2083 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial