src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Wed, 18 Apr 2012 07:21:15 -0400

author
tonyp
date
Wed, 18 Apr 2012 07:21:15 -0400
changeset 3713
720b6a76dd9d
parent 3691
2a0172480595
child 3714
f7a8920427a6
permissions
-rw-r--r--

7157073: G1: type change size_t -> uint for region counts / indexes
Summary: Change the type of fields / variables / etc. that represent region counts and indeces from size_t to uint.
Reviewed-by: iveresov, brutisso, jmasa, jwilhelm

ysr@777 1 /*
tonyp@3416 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/collectionSetChooser.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1MMUTracker.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31
ysr@777 32 // A G1CollectorPolicy makes policy decisions that determine the
ysr@777 33 // characteristics of the collector. Examples include:
ysr@777 34 // * choice of collection set.
ysr@777 35 // * when to collect.
ysr@777 36
ysr@777 37 class HeapRegion;
ysr@777 38 class CollectionSetChooser;
ysr@777 39
ysr@777 40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
ysr@777 41 // over and over again and introducing subtle problems through small typos and
ysr@777 42 // cutting and pasting mistakes. The macros below introduces a number
ysr@777 43 // sequnce into the following two classes and the methods that access it.
ysr@777 44
ysr@777 45 #define define_num_seq(name) \
ysr@777 46 private: \
ysr@777 47 NumberSeq _all_##name##_times_ms; \
ysr@777 48 public: \
ysr@777 49 void record_##name##_time_ms(double ms) { \
ysr@777 50 _all_##name##_times_ms.add(ms); \
ysr@777 51 } \
ysr@777 52 NumberSeq* get_##name##_seq() { \
ysr@777 53 return &_all_##name##_times_ms; \
ysr@777 54 }
ysr@777 55
ysr@777 56 class MainBodySummary;
ysr@777 57
apetrusenko@984 58 class PauseSummary: public CHeapObj {
ysr@777 59 define_num_seq(total)
ysr@777 60 define_num_seq(other)
ysr@777 61
ysr@777 62 public:
ysr@777 63 virtual MainBodySummary* main_body_summary() { return NULL; }
ysr@777 64 };
ysr@777 65
apetrusenko@984 66 class MainBodySummary: public CHeapObj {
tonyp@3464 67 define_num_seq(root_region_scan_wait)
ysr@777 68 define_num_seq(parallel) // parallel only
ysr@777 69 define_num_seq(ext_root_scan)
tonyp@3416 70 define_num_seq(satb_filtering)
ysr@777 71 define_num_seq(update_rs)
ysr@777 72 define_num_seq(scan_rs)
ysr@777 73 define_num_seq(obj_copy)
ysr@777 74 define_num_seq(termination) // parallel only
ysr@777 75 define_num_seq(parallel_other) // parallel only
johnc@3219 76 define_num_seq(clear_ct)
ysr@777 77 };
ysr@777 78
apetrusenko@1112 79 class Summary: public PauseSummary,
apetrusenko@1112 80 public MainBodySummary {
ysr@777 81 public:
ysr@777 82 virtual MainBodySummary* main_body_summary() { return this; }
ysr@777 83 };
ysr@777 84
brutisso@3358 85 // There are three command line options related to the young gen size:
brutisso@3358 86 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
brutisso@3358 87 // just a short form for NewSize==MaxNewSize). G1 will use its internal
brutisso@3358 88 // heuristics to calculate the actual young gen size, so these options
brutisso@3358 89 // basically only limit the range within which G1 can pick a young gen
brutisso@3358 90 // size. Also, these are general options taking byte sizes. G1 will
brutisso@3358 91 // internally work with a number of regions instead. So, some rounding
brutisso@3358 92 // will occur.
brutisso@3358 93 //
brutisso@3358 94 // If nothing related to the the young gen size is set on the command
brutisso@3358 95 // line we should allow the young gen to be between
brutisso@3358 96 // G1DefaultMinNewGenPercent and G1DefaultMaxNewGenPercent of the
brutisso@3358 97 // heap size. This means that every time the heap size changes the
brutisso@3358 98 // limits for the young gen size will be updated.
brutisso@3358 99 //
brutisso@3358 100 // If only -XX:NewSize is set we should use the specified value as the
brutisso@3358 101 // minimum size for young gen. Still using G1DefaultMaxNewGenPercent
brutisso@3358 102 // of the heap as maximum.
brutisso@3358 103 //
brutisso@3358 104 // If only -XX:MaxNewSize is set we should use the specified value as the
brutisso@3358 105 // maximum size for young gen. Still using G1DefaultMinNewGenPercent
brutisso@3358 106 // of the heap as minimum.
brutisso@3358 107 //
brutisso@3358 108 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
brutisso@3358 109 // No updates when the heap size changes. There is a special case when
brutisso@3358 110 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
brutisso@3358 111 // different heuristic for calculating the collection set when we do mixed
brutisso@3358 112 // collection.
brutisso@3358 113 //
brutisso@3358 114 // If only -XX:NewRatio is set we should use the specified ratio of the heap
brutisso@3358 115 // as both min and max. This will be interpreted as "fixed" just like the
brutisso@3358 116 // NewSize==MaxNewSize case above. But we will update the min and max
brutisso@3358 117 // everytime the heap size changes.
brutisso@3358 118 //
brutisso@3358 119 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
brutisso@3358 120 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
brutisso@3358 121 class G1YoungGenSizer : public CHeapObj {
brutisso@3358 122 private:
brutisso@3358 123 enum SizerKind {
brutisso@3358 124 SizerDefaults,
brutisso@3358 125 SizerNewSizeOnly,
brutisso@3358 126 SizerMaxNewSizeOnly,
brutisso@3358 127 SizerMaxAndNewSize,
brutisso@3358 128 SizerNewRatio
brutisso@3358 129 };
brutisso@3358 130 SizerKind _sizer_kind;
tonyp@3713 131 uint _min_desired_young_length;
tonyp@3713 132 uint _max_desired_young_length;
brutisso@3358 133 bool _adaptive_size;
tonyp@3713 134 uint calculate_default_min_length(uint new_number_of_heap_regions);
tonyp@3713 135 uint calculate_default_max_length(uint new_number_of_heap_regions);
brutisso@3358 136
brutisso@3358 137 public:
brutisso@3358 138 G1YoungGenSizer();
tonyp@3713 139 void heap_size_changed(uint new_number_of_heap_regions);
tonyp@3713 140 uint min_desired_young_length() {
brutisso@3358 141 return _min_desired_young_length;
brutisso@3358 142 }
tonyp@3713 143 uint max_desired_young_length() {
brutisso@3358 144 return _max_desired_young_length;
brutisso@3358 145 }
brutisso@3358 146 bool adaptive_young_list_length() {
brutisso@3358 147 return _adaptive_size;
brutisso@3358 148 }
brutisso@3358 149 };
brutisso@3358 150
ysr@777 151 class G1CollectorPolicy: public CollectorPolicy {
tonyp@3209 152 private:
ysr@777 153 // either equal to the number of parallel threads, if ParallelGCThreads
ysr@777 154 // has been set, or 1 otherwise
ysr@777 155 int _parallel_gc_threads;
ysr@777 156
jmasa@3294 157 // The number of GC threads currently active.
jmasa@3294 158 uintx _no_of_gc_threads;
jmasa@3294 159
ysr@777 160 enum SomePrivateConstants {
tonyp@1377 161 NumPrevPausesForHeuristics = 10
ysr@777 162 };
ysr@777 163
ysr@777 164 G1MMUTracker* _mmu_tracker;
ysr@777 165
ysr@777 166 void initialize_flags();
ysr@777 167
ysr@777 168 void initialize_all() {
ysr@777 169 initialize_flags();
ysr@777 170 initialize_size_info();
ysr@777 171 initialize_perm_generation(PermGen::MarkSweepCompact);
ysr@777 172 }
ysr@777 173
tonyp@3209 174 CollectionSetChooser* _collectionSetChooser;
ysr@777 175
ysr@777 176 double _cur_collection_start_sec;
ysr@777 177 size_t _cur_collection_pause_used_at_start_bytes;
tonyp@3713 178 uint _cur_collection_pause_used_regions_at_start;
ysr@777 179 double _cur_collection_par_time_ms;
johnc@3689 180
johnc@3689 181 double _cur_collection_code_root_fixup_time_ms;
johnc@3689 182
ysr@777 183 double _cur_clear_ct_time_ms;
johnc@3175 184 double _cur_ref_proc_time_ms;
johnc@3175 185 double _cur_ref_enq_time_ms;
ysr@777 186
johnc@1325 187 #ifndef PRODUCT
johnc@1325 188 // Card Table Count Cache stats
johnc@1325 189 double _min_clear_cc_time_ms; // min
johnc@1325 190 double _max_clear_cc_time_ms; // max
johnc@1325 191 double _cur_clear_cc_time_ms; // clearing time during current pause
johnc@1325 192 double _cum_clear_cc_time_ms; // cummulative clearing time
johnc@1325 193 jlong _num_cc_clears; // number of times the card count cache has been cleared
johnc@1325 194 #endif
johnc@1325 195
ysr@777 196 // These exclude marking times.
ysr@777 197 TruncatedSeq* _recent_gc_times_ms;
ysr@777 198
ysr@777 199 TruncatedSeq* _concurrent_mark_remark_times_ms;
ysr@777 200 TruncatedSeq* _concurrent_mark_cleanup_times_ms;
ysr@777 201
apetrusenko@1112 202 Summary* _summary;
ysr@777 203
ysr@777 204 NumberSeq* _all_pause_times_ms;
ysr@777 205 NumberSeq* _all_full_gc_times_ms;
ysr@777 206 double _stop_world_start;
ysr@777 207 NumberSeq* _all_stop_world_times_ms;
ysr@777 208 NumberSeq* _all_yield_times_ms;
ysr@777 209
ysr@777 210 int _aux_num;
ysr@777 211 NumberSeq* _all_aux_times_ms;
ysr@777 212 double* _cur_aux_start_times_ms;
ysr@777 213 double* _cur_aux_times_ms;
ysr@777 214 bool* _cur_aux_times_set;
ysr@777 215
tonyp@1966 216 double* _par_last_gc_worker_start_times_ms;
ysr@777 217 double* _par_last_ext_root_scan_times_ms;
tonyp@3416 218 double* _par_last_satb_filtering_times_ms;
ysr@777 219 double* _par_last_update_rs_times_ms;
ysr@777 220 double* _par_last_update_rs_processed_buffers;
ysr@777 221 double* _par_last_scan_rs_times_ms;
ysr@777 222 double* _par_last_obj_copy_times_ms;
ysr@777 223 double* _par_last_termination_times_ms;
tonyp@1966 224 double* _par_last_termination_attempts;
tonyp@1966 225 double* _par_last_gc_worker_end_times_ms;
brutisso@2712 226 double* _par_last_gc_worker_times_ms;
ysr@777 227
johnc@3219 228 // Each workers 'other' time i.e. the elapsed time of the parallel
johnc@3689 229 // code executed by a worker minus the sum of the individual sub-phase
johnc@3689 230 // times for that worker thread.
johnc@3219 231 double* _par_last_gc_worker_other_times_ms;
johnc@3219 232
tonyp@3337 233 // indicates whether we are in young or mixed GC mode
tonyp@3337 234 bool _gcs_are_young;
ysr@777 235
tonyp@3713 236 uint _young_list_target_length;
tonyp@3713 237 uint _young_list_fixed_length;
brutisso@3120 238 size_t _prev_eden_capacity; // used for logging
ysr@777 239
tonyp@2333 240 // The max number of regions we can extend the eden by while the GC
tonyp@2333 241 // locker is active. This should be >= _young_list_target_length;
tonyp@3713 242 uint _young_list_max_length;
tonyp@2333 243
tonyp@3337 244 bool _last_gc_was_young;
ysr@777 245
tonyp@3337 246 unsigned _young_pause_num;
tonyp@3337 247 unsigned _mixed_pause_num;
ysr@777 248
ysr@777 249 bool _during_marking;
ysr@777 250 bool _in_marking_window;
ysr@777 251 bool _in_marking_window_im;
ysr@777 252
ysr@777 253 SurvRateGroup* _short_lived_surv_rate_group;
ysr@777 254 SurvRateGroup* _survivor_surv_rate_group;
ysr@777 255 // add here any more surv rate groups
ysr@777 256
tonyp@1791 257 double _gc_overhead_perc;
tonyp@1791 258
tonyp@3119 259 double _reserve_factor;
tonyp@3713 260 uint _reserve_regions;
tonyp@3119 261
ysr@777 262 bool during_marking() {
ysr@777 263 return _during_marking;
ysr@777 264 }
ysr@777 265
ysr@777 266 private:
ysr@777 267 enum PredictionConstants {
ysr@777 268 TruncatedSeqLength = 10
ysr@777 269 };
ysr@777 270
ysr@777 271 TruncatedSeq* _alloc_rate_ms_seq;
ysr@777 272 double _prev_collection_pause_end_ms;
ysr@777 273
ysr@777 274 TruncatedSeq* _pending_card_diff_seq;
ysr@777 275 TruncatedSeq* _rs_length_diff_seq;
ysr@777 276 TruncatedSeq* _cost_per_card_ms_seq;
tonyp@3337 277 TruncatedSeq* _young_cards_per_entry_ratio_seq;
tonyp@3337 278 TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
ysr@777 279 TruncatedSeq* _cost_per_entry_ms_seq;
tonyp@3337 280 TruncatedSeq* _mixed_cost_per_entry_ms_seq;
ysr@777 281 TruncatedSeq* _cost_per_byte_ms_seq;
ysr@777 282 TruncatedSeq* _constant_other_time_ms_seq;
ysr@777 283 TruncatedSeq* _young_other_cost_per_region_ms_seq;
ysr@777 284 TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
ysr@777 285
ysr@777 286 TruncatedSeq* _pending_cards_seq;
ysr@777 287 TruncatedSeq* _rs_lengths_seq;
ysr@777 288
ysr@777 289 TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
ysr@777 290
ysr@777 291 TruncatedSeq* _young_gc_eff_seq;
ysr@777 292
brutisso@3358 293 G1YoungGenSizer* _young_gen_sizer;
brutisso@3120 294
tonyp@3713 295 uint _eden_cset_region_length;
tonyp@3713 296 uint _survivor_cset_region_length;
tonyp@3713 297 uint _old_cset_region_length;
tonyp@3289 298
tonyp@3713 299 void init_cset_region_lengths(uint eden_cset_region_length,
tonyp@3713 300 uint survivor_cset_region_length);
tonyp@3289 301
tonyp@3713 302 uint eden_cset_region_length() { return _eden_cset_region_length; }
tonyp@3713 303 uint survivor_cset_region_length() { return _survivor_cset_region_length; }
tonyp@3713 304 uint old_cset_region_length() { return _old_cset_region_length; }
ysr@777 305
tonyp@3713 306 uint _free_regions_at_end_of_collection;
ysr@777 307
ysr@777 308 size_t _recorded_rs_lengths;
ysr@777 309 size_t _max_rs_lengths;
ysr@777 310
ysr@777 311 double _recorded_young_free_cset_time_ms;
ysr@777 312 double _recorded_non_young_free_cset_time_ms;
ysr@777 313
ysr@777 314 double _sigma;
ysr@777 315
ysr@777 316 size_t _rs_lengths_prediction;
ysr@777 317
ysr@777 318 size_t _known_garbage_bytes;
ysr@777 319 double _known_garbage_ratio;
ysr@777 320
tonyp@3539 321 double sigma() { return _sigma; }
ysr@777 322
ysr@777 323 // A function that prevents us putting too much stock in small sample
ysr@777 324 // sets. Returns a number between 2.0 and 1.0, depending on the number
ysr@777 325 // of samples. 5 or more samples yields one; fewer scales linearly from
ysr@777 326 // 2.0 at 1 sample to 1.0 at 5.
ysr@777 327 double confidence_factor(int samples) {
ysr@777 328 if (samples > 4) return 1.0;
ysr@777 329 else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
ysr@777 330 }
ysr@777 331
ysr@777 332 double get_new_neg_prediction(TruncatedSeq* seq) {
ysr@777 333 return seq->davg() - sigma() * seq->dsd();
ysr@777 334 }
ysr@777 335
ysr@777 336 #ifndef PRODUCT
ysr@777 337 bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
ysr@777 338 #endif // PRODUCT
ysr@777 339
iveresov@1546 340 void adjust_concurrent_refinement(double update_rs_time,
iveresov@1546 341 double update_rs_processed_buffers,
iveresov@1546 342 double goal_ms);
iveresov@1546 343
jmasa@3294 344 uintx no_of_gc_threads() { return _no_of_gc_threads; }
jmasa@3294 345 void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
jmasa@3294 346
ysr@777 347 double _pause_time_target_ms;
ysr@777 348 double _recorded_young_cset_choice_time_ms;
ysr@777 349 double _recorded_non_young_cset_choice_time_ms;
ysr@777 350 size_t _pending_cards;
ysr@777 351 size_t _max_pending_cards;
ysr@777 352
ysr@777 353 public:
jmasa@3294 354 // Accessors
ysr@777 355
tonyp@3289 356 void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
tonyp@3289 357 hr->set_young();
ysr@777 358 hr->install_surv_rate_group(_short_lived_surv_rate_group);
tonyp@3289 359 hr->set_young_index_in_cset(young_index_in_cset);
ysr@777 360 }
ysr@777 361
tonyp@3289 362 void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
tonyp@3289 363 assert(hr->is_young() && hr->is_survivor(), "pre-condition");
ysr@777 364 hr->install_surv_rate_group(_survivor_surv_rate_group);
tonyp@3289 365 hr->set_young_index_in_cset(young_index_in_cset);
ysr@777 366 }
ysr@777 367
ysr@777 368 #ifndef PRODUCT
ysr@777 369 bool verify_young_ages();
ysr@777 370 #endif // PRODUCT
ysr@777 371
ysr@777 372 double get_new_prediction(TruncatedSeq* seq) {
ysr@777 373 return MAX2(seq->davg() + sigma() * seq->dsd(),
ysr@777 374 seq->davg() * confidence_factor(seq->num()));
ysr@777 375 }
ysr@777 376
ysr@777 377 void record_max_rs_lengths(size_t rs_lengths) {
ysr@777 378 _max_rs_lengths = rs_lengths;
ysr@777 379 }
ysr@777 380
ysr@777 381 size_t predict_pending_card_diff() {
ysr@777 382 double prediction = get_new_neg_prediction(_pending_card_diff_seq);
tonyp@3337 383 if (prediction < 0.00001) {
ysr@777 384 return 0;
tonyp@3337 385 } else {
ysr@777 386 return (size_t) prediction;
tonyp@3337 387 }
ysr@777 388 }
ysr@777 389
ysr@777 390 size_t predict_pending_cards() {
ysr@777 391 size_t max_pending_card_num = _g1->max_pending_card_num();
ysr@777 392 size_t diff = predict_pending_card_diff();
ysr@777 393 size_t prediction;
tonyp@3337 394 if (diff > max_pending_card_num) {
ysr@777 395 prediction = max_pending_card_num;
tonyp@3337 396 } else {
ysr@777 397 prediction = max_pending_card_num - diff;
tonyp@3337 398 }
ysr@777 399
ysr@777 400 return prediction;
ysr@777 401 }
ysr@777 402
ysr@777 403 size_t predict_rs_length_diff() {
ysr@777 404 return (size_t) get_new_prediction(_rs_length_diff_seq);
ysr@777 405 }
ysr@777 406
ysr@777 407 double predict_alloc_rate_ms() {
ysr@777 408 return get_new_prediction(_alloc_rate_ms_seq);
ysr@777 409 }
ysr@777 410
ysr@777 411 double predict_cost_per_card_ms() {
ysr@777 412 return get_new_prediction(_cost_per_card_ms_seq);
ysr@777 413 }
ysr@777 414
ysr@777 415 double predict_rs_update_time_ms(size_t pending_cards) {
ysr@777 416 return (double) pending_cards * predict_cost_per_card_ms();
ysr@777 417 }
ysr@777 418
tonyp@3337 419 double predict_young_cards_per_entry_ratio() {
tonyp@3337 420 return get_new_prediction(_young_cards_per_entry_ratio_seq);
ysr@777 421 }
ysr@777 422
tonyp@3337 423 double predict_mixed_cards_per_entry_ratio() {
tonyp@3337 424 if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
tonyp@3337 425 return predict_young_cards_per_entry_ratio();
tonyp@3337 426 } else {
tonyp@3337 427 return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
tonyp@3337 428 }
ysr@777 429 }
ysr@777 430
ysr@777 431 size_t predict_young_card_num(size_t rs_length) {
ysr@777 432 return (size_t) ((double) rs_length *
tonyp@3337 433 predict_young_cards_per_entry_ratio());
ysr@777 434 }
ysr@777 435
ysr@777 436 size_t predict_non_young_card_num(size_t rs_length) {
ysr@777 437 return (size_t) ((double) rs_length *
tonyp@3337 438 predict_mixed_cards_per_entry_ratio());
ysr@777 439 }
ysr@777 440
ysr@777 441 double predict_rs_scan_time_ms(size_t card_num) {
tonyp@3337 442 if (gcs_are_young()) {
ysr@777 443 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
tonyp@3337 444 } else {
tonyp@3337 445 return predict_mixed_rs_scan_time_ms(card_num);
tonyp@3337 446 }
ysr@777 447 }
ysr@777 448
tonyp@3337 449 double predict_mixed_rs_scan_time_ms(size_t card_num) {
tonyp@3337 450 if (_mixed_cost_per_entry_ms_seq->num() < 3) {
ysr@777 451 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
tonyp@3337 452 } else {
tonyp@3337 453 return (double) (card_num *
tonyp@3337 454 get_new_prediction(_mixed_cost_per_entry_ms_seq));
tonyp@3337 455 }
ysr@777 456 }
ysr@777 457
ysr@777 458 double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
tonyp@3337 459 if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
tonyp@3337 460 return (1.1 * (double) bytes_to_copy) *
tonyp@3337 461 get_new_prediction(_cost_per_byte_ms_seq);
tonyp@3337 462 } else {
ysr@777 463 return (double) bytes_to_copy *
tonyp@3337 464 get_new_prediction(_cost_per_byte_ms_during_cm_seq);
tonyp@3337 465 }
ysr@777 466 }
ysr@777 467
ysr@777 468 double predict_object_copy_time_ms(size_t bytes_to_copy) {
tonyp@3337 469 if (_in_marking_window && !_in_marking_window_im) {
ysr@777 470 return predict_object_copy_time_ms_during_cm(bytes_to_copy);
tonyp@3337 471 } else {
ysr@777 472 return (double) bytes_to_copy *
tonyp@3337 473 get_new_prediction(_cost_per_byte_ms_seq);
tonyp@3337 474 }
ysr@777 475 }
ysr@777 476
ysr@777 477 double predict_constant_other_time_ms() {
ysr@777 478 return get_new_prediction(_constant_other_time_ms_seq);
ysr@777 479 }
ysr@777 480
ysr@777 481 double predict_young_other_time_ms(size_t young_num) {
tonyp@3337 482 return (double) young_num *
tonyp@3337 483 get_new_prediction(_young_other_cost_per_region_ms_seq);
ysr@777 484 }
ysr@777 485
ysr@777 486 double predict_non_young_other_time_ms(size_t non_young_num) {
tonyp@3337 487 return (double) non_young_num *
tonyp@3337 488 get_new_prediction(_non_young_other_cost_per_region_ms_seq);
ysr@777 489 }
ysr@777 490
ysr@777 491 double predict_base_elapsed_time_ms(size_t pending_cards);
ysr@777 492 double predict_base_elapsed_time_ms(size_t pending_cards,
ysr@777 493 size_t scanned_cards);
ysr@777 494 size_t predict_bytes_to_copy(HeapRegion* hr);
ysr@777 495 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 496
tonyp@3289 497 void set_recorded_rs_lengths(size_t rs_lengths);
johnc@1829 498
tonyp@3713 499 uint cset_region_length() { return young_cset_region_length() +
tonyp@3713 500 old_cset_region_length(); }
tonyp@3713 501 uint young_cset_region_length() { return eden_cset_region_length() +
tonyp@3713 502 survivor_cset_region_length(); }
ysr@777 503
ysr@777 504 void record_young_free_cset_time_ms(double time_ms) {
ysr@777 505 _recorded_young_free_cset_time_ms = time_ms;
ysr@777 506 }
ysr@777 507
ysr@777 508 void record_non_young_free_cset_time_ms(double time_ms) {
ysr@777 509 _recorded_non_young_free_cset_time_ms = time_ms;
ysr@777 510 }
ysr@777 511
ysr@777 512 double predict_young_gc_eff() {
ysr@777 513 return get_new_neg_prediction(_young_gc_eff_seq);
ysr@777 514 }
ysr@777 515
apetrusenko@980 516 double predict_survivor_regions_evac_time();
apetrusenko@980 517
ysr@777 518 void cset_regions_freed() {
tonyp@3337 519 bool propagate = _last_gc_was_young && !_in_marking_window;
ysr@777 520 _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 521 _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 522 // also call it on any more surv rate groups
ysr@777 523 }
ysr@777 524
ysr@777 525 void set_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 526 _known_garbage_bytes = known_garbage_bytes;
ysr@777 527 size_t heap_bytes = _g1->capacity();
ysr@777 528 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 529 }
ysr@777 530
ysr@777 531 void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 532 guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
ysr@777 533
ysr@777 534 _known_garbage_bytes -= known_garbage_bytes;
ysr@777 535 size_t heap_bytes = _g1->capacity();
ysr@777 536 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 537 }
ysr@777 538
ysr@777 539 G1MMUTracker* mmu_tracker() {
ysr@777 540 return _mmu_tracker;
ysr@777 541 }
ysr@777 542
tonyp@2011 543 double max_pause_time_ms() {
tonyp@2011 544 return _mmu_tracker->max_gc_time() * 1000.0;
tonyp@2011 545 }
tonyp@2011 546
ysr@777 547 double predict_remark_time_ms() {
ysr@777 548 return get_new_prediction(_concurrent_mark_remark_times_ms);
ysr@777 549 }
ysr@777 550
ysr@777 551 double predict_cleanup_time_ms() {
ysr@777 552 return get_new_prediction(_concurrent_mark_cleanup_times_ms);
ysr@777 553 }
ysr@777 554
ysr@777 555 // Returns an estimate of the survival rate of the region at yg-age
ysr@777 556 // "yg_age".
apetrusenko@980 557 double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
apetrusenko@980 558 TruncatedSeq* seq = surv_rate_group->get_seq(age);
ysr@777 559 if (seq->num() == 0)
ysr@777 560 gclog_or_tty->print("BARF! age is %d", age);
ysr@777 561 guarantee( seq->num() > 0, "invariant" );
ysr@777 562 double pred = get_new_prediction(seq);
ysr@777 563 if (pred > 1.0)
ysr@777 564 pred = 1.0;
ysr@777 565 return pred;
ysr@777 566 }
ysr@777 567
apetrusenko@980 568 double predict_yg_surv_rate(int age) {
apetrusenko@980 569 return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
apetrusenko@980 570 }
apetrusenko@980 571
ysr@777 572 double accum_yg_surv_rate_pred(int age) {
ysr@777 573 return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
ysr@777 574 }
ysr@777 575
tonyp@3209 576 private:
tonyp@1966 577 void print_stats(int level, const char* str, double value);
tonyp@1966 578 void print_stats(int level, const char* str, int value);
tonyp@1966 579
brutisso@2712 580 void print_par_stats(int level, const char* str, double* data);
brutisso@2712 581 void print_par_sizes(int level, const char* str, double* data);
ysr@777 582
ysr@777 583 void check_other_times(int level,
ysr@777 584 NumberSeq* other_times_ms,
ysr@777 585 NumberSeq* calc_other_times_ms) const;
ysr@777 586
ysr@777 587 void print_summary (PauseSummary* stats) const;
ysr@777 588
ysr@777 589 void print_summary (int level, const char* str, NumberSeq* seq) const;
ysr@777 590 void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
ysr@777 591
ysr@777 592 double avg_value (double* data);
ysr@777 593 double max_value (double* data);
ysr@777 594 double sum_of_values (double* data);
ysr@777 595 double max_sum (double* data1, double* data2);
ysr@777 596
ysr@777 597 double _last_pause_time_ms;
ysr@777 598
ysr@777 599 size_t _bytes_in_collection_set_before_gc;
tonyp@3028 600 size_t _bytes_copied_during_gc;
tonyp@3028 601
ysr@777 602 // Used to count used bytes in CS.
ysr@777 603 friend class CountCSClosure;
ysr@777 604
ysr@777 605 // Statistics kept per GC stoppage, pause or full.
ysr@777 606 TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
ysr@777 607
ysr@777 608 // Add a new GC of the given duration and end time to the record.
ysr@777 609 void update_recent_gc_times(double end_time_sec, double elapsed_ms);
ysr@777 610
ysr@777 611 // The head of the list (via "next_in_collection_set()") representing the
johnc@1829 612 // current collection set. Set from the incrementally built collection
johnc@1829 613 // set at the start of the pause.
ysr@777 614 HeapRegion* _collection_set;
johnc@1829 615
johnc@1829 616 // The number of bytes in the collection set before the pause. Set from
johnc@1829 617 // the incrementally built collection set at the start of an evacuation
johnc@1829 618 // pause.
ysr@777 619 size_t _collection_set_bytes_used_before;
ysr@777 620
johnc@1829 621 // The associated information that is maintained while the incremental
johnc@1829 622 // collection set is being built with young regions. Used to populate
johnc@1829 623 // the recorded info for the evacuation pause.
johnc@1829 624
johnc@1829 625 enum CSetBuildType {
johnc@1829 626 Active, // We are actively building the collection set
johnc@1829 627 Inactive // We are not actively building the collection set
johnc@1829 628 };
johnc@1829 629
johnc@1829 630 CSetBuildType _inc_cset_build_state;
johnc@1829 631
johnc@1829 632 // The head of the incrementally built collection set.
johnc@1829 633 HeapRegion* _inc_cset_head;
johnc@1829 634
johnc@1829 635 // The tail of the incrementally built collection set.
johnc@1829 636 HeapRegion* _inc_cset_tail;
johnc@1829 637
johnc@1829 638 // The number of bytes in the incrementally built collection set.
johnc@1829 639 // Used to set _collection_set_bytes_used_before at the start of
johnc@1829 640 // an evacuation pause.
johnc@1829 641 size_t _inc_cset_bytes_used_before;
johnc@1829 642
johnc@1829 643 // Used to record the highest end of heap region in collection set
johnc@1829 644 HeapWord* _inc_cset_max_finger;
johnc@1829 645
tonyp@3356 646 // The RSet lengths recorded for regions in the CSet. It is updated
tonyp@3356 647 // by the thread that adds a new region to the CSet. We assume that
tonyp@3356 648 // only one thread can be allocating a new CSet region (currently,
tonyp@3356 649 // it does so after taking the Heap_lock) hence no need to
tonyp@3356 650 // synchronize updates to this field.
johnc@1829 651 size_t _inc_cset_recorded_rs_lengths;
johnc@1829 652
tonyp@3356 653 // A concurrent refinement thread periodcially samples the young
tonyp@3356 654 // region RSets and needs to update _inc_cset_recorded_rs_lengths as
tonyp@3356 655 // the RSets grow. Instead of having to syncronize updates to that
tonyp@3356 656 // field we accumulate them in this field and add it to
tonyp@3356 657 // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
tonyp@3356 658 ssize_t _inc_cset_recorded_rs_lengths_diffs;
tonyp@3356 659
tonyp@3356 660 // The predicted elapsed time it will take to collect the regions in
tonyp@3356 661 // the CSet. This is updated by the thread that adds a new region to
tonyp@3356 662 // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
tonyp@3356 663 // MT-safety assumptions.
johnc@1829 664 double _inc_cset_predicted_elapsed_time_ms;
johnc@1829 665
tonyp@3356 666 // See the comment for _inc_cset_recorded_rs_lengths_diffs.
tonyp@3356 667 double _inc_cset_predicted_elapsed_time_ms_diffs;
tonyp@3356 668
ysr@777 669 // Stash a pointer to the g1 heap.
ysr@777 670 G1CollectedHeap* _g1;
ysr@777 671
ysr@777 672 // The ratio of gc time to elapsed time, computed over recent pauses.
ysr@777 673 double _recent_avg_pause_time_ratio;
ysr@777 674
ysr@777 675 double recent_avg_pause_time_ratio() {
ysr@777 676 return _recent_avg_pause_time_ratio;
ysr@777 677 }
ysr@777 678
tonyp@1794 679 // At the end of a pause we check the heap occupancy and we decide
tonyp@1794 680 // whether we will start a marking cycle during the next pause. If
tonyp@1794 681 // we decide that we want to do that, we will set this parameter to
tonyp@1794 682 // true. So, this parameter will stay true between the end of a
tonyp@1794 683 // pause and the beginning of a subsequent pause (not necessarily
tonyp@1794 684 // the next one, see the comments on the next field) when we decide
tonyp@1794 685 // that we will indeed start a marking cycle and do the initial-mark
tonyp@1794 686 // work.
tonyp@1794 687 volatile bool _initiate_conc_mark_if_possible;
ysr@777 688
tonyp@1794 689 // If initiate_conc_mark_if_possible() is set at the beginning of a
tonyp@1794 690 // pause, it is a suggestion that the pause should start a marking
tonyp@1794 691 // cycle by doing the initial-mark work. However, it is possible
tonyp@1794 692 // that the concurrent marking thread is still finishing up the
tonyp@1794 693 // previous marking cycle (e.g., clearing the next marking
tonyp@1794 694 // bitmap). If that is the case we cannot start a new cycle and
tonyp@1794 695 // we'll have to wait for the concurrent marking thread to finish
tonyp@1794 696 // what it is doing. In this case we will postpone the marking cycle
tonyp@1794 697 // initiation decision for the next pause. When we eventually decide
tonyp@1794 698 // to start a cycle, we will set _during_initial_mark_pause which
tonyp@1794 699 // will stay true until the end of the initial-mark pause and it's
tonyp@1794 700 // the condition that indicates that a pause is doing the
tonyp@1794 701 // initial-mark work.
tonyp@1794 702 volatile bool _during_initial_mark_pause;
tonyp@1794 703
tonyp@3337 704 bool _last_young_gc;
ysr@777 705
ysr@777 706 // This set of variables tracks the collector efficiency, in order to
ysr@777 707 // determine whether we should initiate a new marking.
ysr@777 708 double _cur_mark_stop_world_time_ms;
ysr@777 709 double _mark_remark_start_sec;
ysr@777 710 double _mark_cleanup_start_sec;
tonyp@3464 711 double _root_region_scan_wait_time_ms;
ysr@777 712
tonyp@3119 713 // Update the young list target length either by setting it to the
tonyp@3119 714 // desired fixed value or by calculating it using G1's pause
tonyp@3119 715 // prediction model. If no rs_lengths parameter is passed, predict
tonyp@3119 716 // the RS lengths using the prediction model, otherwise use the
tonyp@3119 717 // given rs_lengths as the prediction.
tonyp@3119 718 void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
tonyp@3119 719
tonyp@3119 720 // Calculate and return the minimum desired young list target
tonyp@3119 721 // length. This is the minimum desired young list length according
tonyp@3119 722 // to the user's inputs.
tonyp@3713 723 uint calculate_young_list_desired_min_length(uint base_min_length);
tonyp@3119 724
tonyp@3119 725 // Calculate and return the maximum desired young list target
tonyp@3119 726 // length. This is the maximum desired young list length according
tonyp@3119 727 // to the user's inputs.
tonyp@3713 728 uint calculate_young_list_desired_max_length();
tonyp@3119 729
tonyp@3119 730 // Calculate and return the maximum young list target length that
tonyp@3119 731 // can fit into the pause time goal. The parameters are: rs_lengths
tonyp@3119 732 // represent the prediction of how large the young RSet lengths will
tonyp@3119 733 // be, base_min_length is the alreay existing number of regions in
tonyp@3119 734 // the young list, min_length and max_length are the desired min and
tonyp@3119 735 // max young list length according to the user's inputs.
tonyp@3713 736 uint calculate_young_list_target_length(size_t rs_lengths,
tonyp@3713 737 uint base_min_length,
tonyp@3713 738 uint desired_min_length,
tonyp@3713 739 uint desired_max_length);
tonyp@3119 740
tonyp@3119 741 // Check whether a given young length (young_length) fits into the
tonyp@3119 742 // given target pause time and whether the prediction for the amount
tonyp@3119 743 // of objects to be copied for the given length will fit into the
tonyp@3119 744 // given free space (expressed by base_free_regions). It is used by
tonyp@3119 745 // calculate_young_list_target_length().
tonyp@3713 746 bool predict_will_fit(uint young_length, double base_time_ms,
tonyp@3713 747 uint base_free_regions, double target_pause_time_ms);
ysr@777 748
tonyp@3209 749 // Count the number of bytes used in the CS.
tonyp@3209 750 void count_CS_bytes_used();
tonyp@3209 751
ysr@777 752 public:
ysr@777 753
ysr@777 754 G1CollectorPolicy();
ysr@777 755
ysr@777 756 virtual G1CollectorPolicy* as_g1_policy() { return this; }
ysr@777 757
ysr@777 758 virtual CollectorPolicy::Name kind() {
ysr@777 759 return CollectorPolicy::G1CollectorPolicyKind;
ysr@777 760 }
ysr@777 761
tonyp@3119 762 // Check the current value of the young list RSet lengths and
tonyp@3119 763 // compare it against the last prediction. If the current value is
tonyp@3119 764 // higher, recalculate the young list target length prediction.
tonyp@3119 765 void revise_young_list_target_length_if_necessary();
ysr@777 766
ysr@777 767 size_t bytes_in_collection_set() {
ysr@777 768 return _bytes_in_collection_set_before_gc;
ysr@777 769 }
ysr@777 770
ysr@777 771 unsigned calc_gc_alloc_time_stamp() {
ysr@777 772 return _all_pause_times_ms->num() + 1;
ysr@777 773 }
ysr@777 774
brutisso@3120 775 // This should be called after the heap is resized.
tonyp@3713 776 void record_new_heap_size(uint new_number_of_regions);
tonyp@3119 777
tonyp@3209 778 void init();
ysr@777 779
apetrusenko@980 780 // Create jstat counters for the policy.
apetrusenko@980 781 virtual void initialize_gc_policy_counters();
apetrusenko@980 782
ysr@777 783 virtual HeapWord* mem_allocate_work(size_t size,
ysr@777 784 bool is_tlab,
ysr@777 785 bool* gc_overhead_limit_was_exceeded);
ysr@777 786
ysr@777 787 // This method controls how a collector handles one or more
ysr@777 788 // of its generations being fully allocated.
ysr@777 789 virtual HeapWord* satisfy_failed_allocation(size_t size,
ysr@777 790 bool is_tlab);
ysr@777 791
ysr@777 792 BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
ysr@777 793
ysr@777 794 GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; }
ysr@777 795
brutisso@3461 796 bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
brutisso@3456 797
ysr@777 798 // Update the heuristic info to record a collection pause of the given
ysr@777 799 // start time, where the given number of bytes were used at the start.
ysr@777 800 // This may involve changing the desired size of a collection set.
ysr@777 801
tonyp@3209 802 void record_stop_world_start();
ysr@777 803
tonyp@3209 804 void record_collection_pause_start(double start_time_sec, size_t start_used);
ysr@777 805
ysr@777 806 // Must currently be called while the world is stopped.
brutisso@3065 807 void record_concurrent_mark_init_end(double
ysr@777 808 mark_init_elapsed_time_ms);
ysr@777 809
tonyp@3464 810 void record_root_region_scan_wait_time(double time_ms) {
tonyp@3464 811 _root_region_scan_wait_time_ms = time_ms;
tonyp@3464 812 }
tonyp@3464 813
tonyp@3209 814 void record_concurrent_mark_remark_start();
tonyp@3209 815 void record_concurrent_mark_remark_end();
ysr@777 816
tonyp@3209 817 void record_concurrent_mark_cleanup_start();
jmasa@3294 818 void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
tonyp@3209 819 void record_concurrent_mark_cleanup_completed();
ysr@777 820
tonyp@3209 821 void record_concurrent_pause();
tonyp@3209 822 void record_concurrent_pause_end();
ysr@777 823
jmasa@3294 824 void record_collection_pause_end(int no_of_gc_threads);
tonyp@2961 825 void print_heap_transition();
ysr@777 826
ysr@777 827 // Record the fact that a full collection occurred.
tonyp@3209 828 void record_full_collection_start();
tonyp@3209 829 void record_full_collection_end();
ysr@777 830
tonyp@1966 831 void record_gc_worker_start_time(int worker_i, double ms) {
tonyp@1966 832 _par_last_gc_worker_start_times_ms[worker_i] = ms;
tonyp@1966 833 }
tonyp@1966 834
ysr@777 835 void record_ext_root_scan_time(int worker_i, double ms) {
ysr@777 836 _par_last_ext_root_scan_times_ms[worker_i] = ms;
ysr@777 837 }
ysr@777 838
tonyp@3416 839 void record_satb_filtering_time(int worker_i, double ms) {
tonyp@3416 840 _par_last_satb_filtering_times_ms[worker_i] = ms;
ysr@777 841 }
ysr@777 842
ysr@777 843 void record_update_rs_time(int thread, double ms) {
ysr@777 844 _par_last_update_rs_times_ms[thread] = ms;
ysr@777 845 }
ysr@777 846
ysr@777 847 void record_update_rs_processed_buffers (int thread,
ysr@777 848 double processed_buffers) {
ysr@777 849 _par_last_update_rs_processed_buffers[thread] = processed_buffers;
ysr@777 850 }
ysr@777 851
ysr@777 852 void record_scan_rs_time(int thread, double ms) {
ysr@777 853 _par_last_scan_rs_times_ms[thread] = ms;
ysr@777 854 }
ysr@777 855
ysr@777 856 void reset_obj_copy_time(int thread) {
ysr@777 857 _par_last_obj_copy_times_ms[thread] = 0.0;
ysr@777 858 }
ysr@777 859
ysr@777 860 void reset_obj_copy_time() {
ysr@777 861 reset_obj_copy_time(0);
ysr@777 862 }
ysr@777 863
ysr@777 864 void record_obj_copy_time(int thread, double ms) {
ysr@777 865 _par_last_obj_copy_times_ms[thread] += ms;
ysr@777 866 }
ysr@777 867
tonyp@1966 868 void record_termination(int thread, double ms, size_t attempts) {
tonyp@1966 869 _par_last_termination_times_ms[thread] = ms;
tonyp@1966 870 _par_last_termination_attempts[thread] = (double) attempts;
ysr@777 871 }
ysr@777 872
tonyp@1966 873 void record_gc_worker_end_time(int worker_i, double ms) {
tonyp@1966 874 _par_last_gc_worker_end_times_ms[worker_i] = ms;
ysr@777 875 }
ysr@777 876
tonyp@1030 877 void record_pause_time_ms(double ms) {
ysr@777 878 _last_pause_time_ms = ms;
ysr@777 879 }
ysr@777 880
ysr@777 881 void record_clear_ct_time(double ms) {
ysr@777 882 _cur_clear_ct_time_ms = ms;
ysr@777 883 }
ysr@777 884
ysr@777 885 void record_par_time(double ms) {
ysr@777 886 _cur_collection_par_time_ms = ms;
ysr@777 887 }
ysr@777 888
johnc@3689 889 void record_code_root_fixup_time(double ms) {
johnc@3689 890 _cur_collection_code_root_fixup_time_ms = ms;
johnc@3689 891 }
johnc@3689 892
ysr@777 893 void record_aux_start_time(int i) {
ysr@777 894 guarantee(i < _aux_num, "should be within range");
ysr@777 895 _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
ysr@777 896 }
ysr@777 897
ysr@777 898 void record_aux_end_time(int i) {
ysr@777 899 guarantee(i < _aux_num, "should be within range");
ysr@777 900 double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
ysr@777 901 _cur_aux_times_set[i] = true;
ysr@777 902 _cur_aux_times_ms[i] += ms;
ysr@777 903 }
ysr@777 904
johnc@3175 905 void record_ref_proc_time(double ms) {
johnc@3175 906 _cur_ref_proc_time_ms = ms;
johnc@3175 907 }
johnc@3175 908
johnc@3175 909 void record_ref_enq_time(double ms) {
johnc@3175 910 _cur_ref_enq_time_ms = ms;
johnc@3175 911 }
johnc@3175 912
johnc@1325 913 #ifndef PRODUCT
johnc@1325 914 void record_cc_clear_time(double ms) {
johnc@1325 915 if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
johnc@1325 916 _min_clear_cc_time_ms = ms;
johnc@1325 917 if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
johnc@1325 918 _max_clear_cc_time_ms = ms;
johnc@1325 919 _cur_clear_cc_time_ms = ms;
johnc@1325 920 _cum_clear_cc_time_ms += ms;
johnc@1325 921 _num_cc_clears++;
johnc@1325 922 }
johnc@1325 923 #endif
johnc@1325 924
tonyp@3028 925 // Record how much space we copied during a GC. This is typically
tonyp@3028 926 // called when a GC alloc region is being retired.
tonyp@3028 927 void record_bytes_copied_during_gc(size_t bytes) {
tonyp@3028 928 _bytes_copied_during_gc += bytes;
tonyp@3028 929 }
tonyp@3028 930
tonyp@3028 931 // The amount of space we copied during a GC.
tonyp@3028 932 size_t bytes_copied_during_gc() {
tonyp@3028 933 return _bytes_copied_during_gc;
tonyp@3028 934 }
ysr@777 935
brutisso@3675 936 // Determine whether there are candidate regions so that the
brutisso@3675 937 // next GC should be mixed. The two action strings are used
brutisso@3675 938 // in the ergo output when the method returns true or false.
tonyp@3539 939 bool next_gc_should_be_mixed(const char* true_action_str,
tonyp@3539 940 const char* false_action_str);
tonyp@3539 941
ysr@777 942 // Choose a new collection set. Marks the chosen regions as being
ysr@777 943 // "in_collection_set", and links them together. The head and number of
ysr@777 944 // the collection set are available via access methods.
tonyp@3539 945 void finalize_cset(double target_pause_time_ms);
ysr@777 946
ysr@777 947 // The head of the list (via "next_in_collection_set()") representing the
ysr@777 948 // current collection set.
ysr@777 949 HeapRegion* collection_set() { return _collection_set; }
ysr@777 950
johnc@1829 951 void clear_collection_set() { _collection_set = NULL; }
johnc@1829 952
tonyp@3289 953 // Add old region "hr" to the CSet.
tonyp@3289 954 void add_old_region_to_cset(HeapRegion* hr);
ysr@777 955
johnc@1829 956 // Incremental CSet Support
johnc@1829 957
johnc@1829 958 // The head of the incrementally built collection set.
johnc@1829 959 HeapRegion* inc_cset_head() { return _inc_cset_head; }
johnc@1829 960
johnc@1829 961 // The tail of the incrementally built collection set.
johnc@1829 962 HeapRegion* inc_set_tail() { return _inc_cset_tail; }
johnc@1829 963
johnc@1829 964 // Initialize incremental collection set info.
johnc@1829 965 void start_incremental_cset_building();
johnc@1829 966
tonyp@3356 967 // Perform any final calculations on the incremental CSet fields
tonyp@3356 968 // before we can use them.
tonyp@3356 969 void finalize_incremental_cset_building();
tonyp@3356 970
johnc@1829 971 void clear_incremental_cset() {
johnc@1829 972 _inc_cset_head = NULL;
johnc@1829 973 _inc_cset_tail = NULL;
johnc@1829 974 }
johnc@1829 975
johnc@1829 976 // Stop adding regions to the incremental collection set
johnc@1829 977 void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
johnc@1829 978
tonyp@3356 979 // Add information about hr to the aggregated information for the
tonyp@3356 980 // incrementally built collection set.
johnc@1829 981 void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
johnc@1829 982
johnc@1829 983 // Update information about hr in the aggregated information for
johnc@1829 984 // the incrementally built collection set.
johnc@1829 985 void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
johnc@1829 986
johnc@1829 987 private:
johnc@1829 988 // Update the incremental cset information when adding a region
johnc@1829 989 // (should not be called directly).
johnc@1829 990 void add_region_to_incremental_cset_common(HeapRegion* hr);
johnc@1829 991
johnc@1829 992 public:
johnc@1829 993 // Add hr to the LHS of the incremental collection set.
johnc@1829 994 void add_region_to_incremental_cset_lhs(HeapRegion* hr);
johnc@1829 995
johnc@1829 996 // Add hr to the RHS of the incremental collection set.
johnc@1829 997 void add_region_to_incremental_cset_rhs(HeapRegion* hr);
johnc@1829 998
johnc@1829 999 #ifndef PRODUCT
johnc@1829 1000 void print_collection_set(HeapRegion* list_head, outputStream* st);
johnc@1829 1001 #endif // !PRODUCT
johnc@1829 1002
tonyp@1794 1003 bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
tonyp@1794 1004 void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
tonyp@1794 1005 void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
tonyp@1794 1006
tonyp@1794 1007 bool during_initial_mark_pause() { return _during_initial_mark_pause; }
tonyp@1794 1008 void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
tonyp@1794 1009 void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
tonyp@1794 1010
tonyp@2011 1011 // This sets the initiate_conc_mark_if_possible() flag to start a
tonyp@2011 1012 // new cycle, as long as we are not already in one. It's best if it
tonyp@2011 1013 // is called during a safepoint when the test whether a cycle is in
tonyp@2011 1014 // progress or not is stable.
tonyp@3114 1015 bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
tonyp@2011 1016
tonyp@1794 1017 // This is called at the very beginning of an evacuation pause (it
tonyp@1794 1018 // has to be the first thing that the pause does). If
tonyp@1794 1019 // initiate_conc_mark_if_possible() is true, and the concurrent
tonyp@1794 1020 // marking thread has completed its work during the previous cycle,
tonyp@1794 1021 // it will set during_initial_mark_pause() to so that the pause does
tonyp@1794 1022 // the initial-mark work and start a marking cycle.
tonyp@1794 1023 void decide_on_conc_mark_initiation();
ysr@777 1024
ysr@777 1025 // If an expansion would be appropriate, because recent GC overhead had
ysr@777 1026 // exceeded the desired limit, return an amount to expand by.
tonyp@3209 1027 size_t expansion_amount();
ysr@777 1028
ysr@777 1029 #ifndef PRODUCT
ysr@777 1030 // Check any appropriate marked bytes info, asserting false if
ysr@777 1031 // something's wrong, else returning "true".
tonyp@3209 1032 bool assertMarkedBytesDataOK();
ysr@777 1033 #endif
ysr@777 1034
ysr@777 1035 // Print tracing information.
ysr@777 1036 void print_tracing_info() const;
ysr@777 1037
ysr@777 1038 // Print stats on young survival ratio
ysr@777 1039 void print_yg_surv_rate_info() const;
ysr@777 1040
apetrusenko@980 1041 void finished_recalculating_age_indexes(bool is_survivors) {
apetrusenko@980 1042 if (is_survivors) {
apetrusenko@980 1043 _survivor_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1044 } else {
apetrusenko@980 1045 _short_lived_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1046 }
ysr@777 1047 // do that for any other surv rate groups
ysr@777 1048 }
ysr@777 1049
tonyp@2315 1050 bool is_young_list_full() {
tonyp@3713 1051 uint young_list_length = _g1->young_list()->length();
tonyp@3713 1052 uint young_list_target_length = _young_list_target_length;
tonyp@2333 1053 return young_list_length >= young_list_target_length;
tonyp@2333 1054 }
tonyp@2333 1055
tonyp@2333 1056 bool can_expand_young_list() {
tonyp@3713 1057 uint young_list_length = _g1->young_list()->length();
tonyp@3713 1058 uint young_list_max_length = _young_list_max_length;
tonyp@2333 1059 return young_list_length < young_list_max_length;
tonyp@2333 1060 }
tonyp@2315 1061
tonyp@3713 1062 uint young_list_max_length() {
tonyp@3176 1063 return _young_list_max_length;
tonyp@3176 1064 }
tonyp@3176 1065
tonyp@3337 1066 bool gcs_are_young() {
tonyp@3337 1067 return _gcs_are_young;
ysr@777 1068 }
tonyp@3337 1069 void set_gcs_are_young(bool gcs_are_young) {
tonyp@3337 1070 _gcs_are_young = gcs_are_young;
ysr@777 1071 }
ysr@777 1072
ysr@777 1073 bool adaptive_young_list_length() {
brutisso@3358 1074 return _young_gen_sizer->adaptive_young_list_length();
ysr@777 1075 }
ysr@777 1076
ysr@777 1077 inline double get_gc_eff_factor() {
ysr@777 1078 double ratio = _known_garbage_ratio;
ysr@777 1079
ysr@777 1080 double square = ratio * ratio;
ysr@777 1081 // square = square * square;
ysr@777 1082 double ret = square * 9.0 + 1.0;
ysr@777 1083 #if 0
ysr@777 1084 gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
ysr@777 1085 #endif // 0
ysr@777 1086 guarantee(0.0 <= ret && ret < 10.0, "invariant!");
ysr@777 1087 return ret;
ysr@777 1088 }
ysr@777 1089
tonyp@3209 1090 private:
ysr@777 1091 //
ysr@777 1092 // Survivor regions policy.
ysr@777 1093 //
ysr@777 1094
ysr@777 1095 // Current tenuring threshold, set to 0 if the collector reaches the
ysr@777 1096 // maximum amount of suvivors regions.
ysr@777 1097 int _tenuring_threshold;
ysr@777 1098
apetrusenko@980 1099 // The limit on the number of regions allocated for survivors.
tonyp@3713 1100 uint _max_survivor_regions;
apetrusenko@980 1101
tonyp@2961 1102 // For reporting purposes.
tonyp@2961 1103 size_t _eden_bytes_before_gc;
tonyp@2961 1104 size_t _survivor_bytes_before_gc;
tonyp@2961 1105 size_t _capacity_before_gc;
tonyp@2961 1106
apetrusenko@980 1107 // The amount of survor regions after a collection.
tonyp@3713 1108 uint _recorded_survivor_regions;
apetrusenko@980 1109 // List of survivor regions.
apetrusenko@980 1110 HeapRegion* _recorded_survivor_head;
apetrusenko@980 1111 HeapRegion* _recorded_survivor_tail;
apetrusenko@980 1112
apetrusenko@980 1113 ageTable _survivors_age_table;
apetrusenko@980 1114
ysr@777 1115 public:
ysr@777 1116
ysr@777 1117 inline GCAllocPurpose
ysr@777 1118 evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
ysr@777 1119 if (age < _tenuring_threshold && src_region->is_young()) {
ysr@777 1120 return GCAllocForSurvived;
ysr@777 1121 } else {
ysr@777 1122 return GCAllocForTenured;
ysr@777 1123 }
ysr@777 1124 }
ysr@777 1125
ysr@777 1126 inline bool track_object_age(GCAllocPurpose purpose) {
ysr@777 1127 return purpose == GCAllocForSurvived;
ysr@777 1128 }
ysr@777 1129
tonyp@3713 1130 static const uint REGIONS_UNLIMITED = (uint) -1;
apetrusenko@980 1131
tonyp@3713 1132 uint max_regions(int purpose);
ysr@777 1133
ysr@777 1134 // The limit on regions for a particular purpose is reached.
ysr@777 1135 void note_alloc_region_limit_reached(int purpose) {
ysr@777 1136 if (purpose == GCAllocForSurvived) {
ysr@777 1137 _tenuring_threshold = 0;
ysr@777 1138 }
ysr@777 1139 }
ysr@777 1140
ysr@777 1141 void note_start_adding_survivor_regions() {
ysr@777 1142 _survivor_surv_rate_group->start_adding_regions();
ysr@777 1143 }
ysr@777 1144
ysr@777 1145 void note_stop_adding_survivor_regions() {
ysr@777 1146 _survivor_surv_rate_group->stop_adding_regions();
ysr@777 1147 }
apetrusenko@980 1148
tonyp@3713 1149 void record_survivor_regions(uint regions,
apetrusenko@980 1150 HeapRegion* head,
apetrusenko@980 1151 HeapRegion* tail) {
apetrusenko@980 1152 _recorded_survivor_regions = regions;
apetrusenko@980 1153 _recorded_survivor_head = head;
apetrusenko@980 1154 _recorded_survivor_tail = tail;
apetrusenko@980 1155 }
apetrusenko@980 1156
tonyp@3713 1157 uint recorded_survivor_regions() {
tonyp@1273 1158 return _recorded_survivor_regions;
tonyp@1273 1159 }
tonyp@1273 1160
tonyp@3713 1161 void record_thread_age_table(ageTable* age_table) {
apetrusenko@980 1162 _survivors_age_table.merge_par(age_table);
apetrusenko@980 1163 }
apetrusenko@980 1164
tonyp@3119 1165 void update_max_gc_locker_expansion();
tonyp@2333 1166
apetrusenko@980 1167 // Calculates survivor space parameters.
tonyp@3119 1168 void update_survivors_policy();
apetrusenko@980 1169
ysr@777 1170 };
ysr@777 1171
ysr@777 1172 // This should move to some place more general...
ysr@777 1173
ysr@777 1174 // If we have "n" measurements, and we've kept track of their "sum" and the
ysr@777 1175 // "sum_of_squares" of the measurements, this returns the variance of the
ysr@777 1176 // sequence.
ysr@777 1177 inline double variance(int n, double sum_of_squares, double sum) {
ysr@777 1178 double n_d = (double)n;
ysr@777 1179 double avg = sum/n_d;
ysr@777 1180 return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
ysr@777 1181 }
ysr@777 1182
stefank@2314 1183 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial