src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Tue, 27 Mar 2012 10:29:59 +0200

author
brutisso
date
Tue, 27 Mar 2012 10:29:59 +0200
changeset 3675
9a9bb0010c91
parent 3539
a9647476d1a4
child 3689
500023bd0818
permissions
-rw-r--r--

7156764: Remove unused size parameter from some CollectedHeap methods
Summary: Some minor cleanups
Reviewed-by: tonyp, jwilhelm

ysr@777 1 /*
tonyp@3416 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/collectionSetChooser.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1MMUTracker.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31
ysr@777 32 // A G1CollectorPolicy makes policy decisions that determine the
ysr@777 33 // characteristics of the collector. Examples include:
ysr@777 34 // * choice of collection set.
ysr@777 35 // * when to collect.
ysr@777 36
ysr@777 37 class HeapRegion;
ysr@777 38 class CollectionSetChooser;
ysr@777 39
ysr@777 40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
ysr@777 41 // over and over again and introducing subtle problems through small typos and
ysr@777 42 // cutting and pasting mistakes. The macros below introduces a number
ysr@777 43 // sequnce into the following two classes and the methods that access it.
ysr@777 44
ysr@777 45 #define define_num_seq(name) \
ysr@777 46 private: \
ysr@777 47 NumberSeq _all_##name##_times_ms; \
ysr@777 48 public: \
ysr@777 49 void record_##name##_time_ms(double ms) { \
ysr@777 50 _all_##name##_times_ms.add(ms); \
ysr@777 51 } \
ysr@777 52 NumberSeq* get_##name##_seq() { \
ysr@777 53 return &_all_##name##_times_ms; \
ysr@777 54 }
ysr@777 55
ysr@777 56 class MainBodySummary;
ysr@777 57
apetrusenko@984 58 class PauseSummary: public CHeapObj {
ysr@777 59 define_num_seq(total)
ysr@777 60 define_num_seq(other)
ysr@777 61
ysr@777 62 public:
ysr@777 63 virtual MainBodySummary* main_body_summary() { return NULL; }
ysr@777 64 };
ysr@777 65
apetrusenko@984 66 class MainBodySummary: public CHeapObj {
ysr@777 67 define_num_seq(satb_drain) // optional
tonyp@3464 68 define_num_seq(root_region_scan_wait)
ysr@777 69 define_num_seq(parallel) // parallel only
ysr@777 70 define_num_seq(ext_root_scan)
tonyp@3416 71 define_num_seq(satb_filtering)
ysr@777 72 define_num_seq(update_rs)
ysr@777 73 define_num_seq(scan_rs)
ysr@777 74 define_num_seq(obj_copy)
ysr@777 75 define_num_seq(termination) // parallel only
ysr@777 76 define_num_seq(parallel_other) // parallel only
ysr@777 77 define_num_seq(mark_closure)
johnc@3219 78 define_num_seq(clear_ct)
ysr@777 79 };
ysr@777 80
apetrusenko@1112 81 class Summary: public PauseSummary,
apetrusenko@1112 82 public MainBodySummary {
ysr@777 83 public:
ysr@777 84 virtual MainBodySummary* main_body_summary() { return this; }
ysr@777 85 };
ysr@777 86
brutisso@3358 87 // There are three command line options related to the young gen size:
brutisso@3358 88 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
brutisso@3358 89 // just a short form for NewSize==MaxNewSize). G1 will use its internal
brutisso@3358 90 // heuristics to calculate the actual young gen size, so these options
brutisso@3358 91 // basically only limit the range within which G1 can pick a young gen
brutisso@3358 92 // size. Also, these are general options taking byte sizes. G1 will
brutisso@3358 93 // internally work with a number of regions instead. So, some rounding
brutisso@3358 94 // will occur.
brutisso@3358 95 //
brutisso@3358 96 // If nothing related to the the young gen size is set on the command
brutisso@3358 97 // line we should allow the young gen to be between
brutisso@3358 98 // G1DefaultMinNewGenPercent and G1DefaultMaxNewGenPercent of the
brutisso@3358 99 // heap size. This means that every time the heap size changes the
brutisso@3358 100 // limits for the young gen size will be updated.
brutisso@3358 101 //
brutisso@3358 102 // If only -XX:NewSize is set we should use the specified value as the
brutisso@3358 103 // minimum size for young gen. Still using G1DefaultMaxNewGenPercent
brutisso@3358 104 // of the heap as maximum.
brutisso@3358 105 //
brutisso@3358 106 // If only -XX:MaxNewSize is set we should use the specified value as the
brutisso@3358 107 // maximum size for young gen. Still using G1DefaultMinNewGenPercent
brutisso@3358 108 // of the heap as minimum.
brutisso@3358 109 //
brutisso@3358 110 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
brutisso@3358 111 // No updates when the heap size changes. There is a special case when
brutisso@3358 112 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
brutisso@3358 113 // different heuristic for calculating the collection set when we do mixed
brutisso@3358 114 // collection.
brutisso@3358 115 //
brutisso@3358 116 // If only -XX:NewRatio is set we should use the specified ratio of the heap
brutisso@3358 117 // as both min and max. This will be interpreted as "fixed" just like the
brutisso@3358 118 // NewSize==MaxNewSize case above. But we will update the min and max
brutisso@3358 119 // everytime the heap size changes.
brutisso@3358 120 //
brutisso@3358 121 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
brutisso@3358 122 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
brutisso@3358 123 class G1YoungGenSizer : public CHeapObj {
brutisso@3358 124 private:
brutisso@3358 125 enum SizerKind {
brutisso@3358 126 SizerDefaults,
brutisso@3358 127 SizerNewSizeOnly,
brutisso@3358 128 SizerMaxNewSizeOnly,
brutisso@3358 129 SizerMaxAndNewSize,
brutisso@3358 130 SizerNewRatio
brutisso@3358 131 };
brutisso@3358 132 SizerKind _sizer_kind;
brutisso@3358 133 size_t _min_desired_young_length;
brutisso@3358 134 size_t _max_desired_young_length;
brutisso@3358 135 bool _adaptive_size;
brutisso@3358 136 size_t calculate_default_min_length(size_t new_number_of_heap_regions);
brutisso@3358 137 size_t calculate_default_max_length(size_t new_number_of_heap_regions);
brutisso@3358 138
brutisso@3358 139 public:
brutisso@3358 140 G1YoungGenSizer();
brutisso@3358 141 void heap_size_changed(size_t new_number_of_heap_regions);
brutisso@3358 142 size_t min_desired_young_length() {
brutisso@3358 143 return _min_desired_young_length;
brutisso@3358 144 }
brutisso@3358 145 size_t max_desired_young_length() {
brutisso@3358 146 return _max_desired_young_length;
brutisso@3358 147 }
brutisso@3358 148 bool adaptive_young_list_length() {
brutisso@3358 149 return _adaptive_size;
brutisso@3358 150 }
brutisso@3358 151 };
brutisso@3358 152
ysr@777 153 class G1CollectorPolicy: public CollectorPolicy {
tonyp@3209 154 private:
ysr@777 155 // either equal to the number of parallel threads, if ParallelGCThreads
ysr@777 156 // has been set, or 1 otherwise
ysr@777 157 int _parallel_gc_threads;
ysr@777 158
jmasa@3294 159 // The number of GC threads currently active.
jmasa@3294 160 uintx _no_of_gc_threads;
jmasa@3294 161
ysr@777 162 enum SomePrivateConstants {
tonyp@1377 163 NumPrevPausesForHeuristics = 10
ysr@777 164 };
ysr@777 165
ysr@777 166 G1MMUTracker* _mmu_tracker;
ysr@777 167
ysr@777 168 void initialize_flags();
ysr@777 169
ysr@777 170 void initialize_all() {
ysr@777 171 initialize_flags();
ysr@777 172 initialize_size_info();
ysr@777 173 initialize_perm_generation(PermGen::MarkSweepCompact);
ysr@777 174 }
ysr@777 175
tonyp@3209 176 CollectionSetChooser* _collectionSetChooser;
ysr@777 177
ysr@777 178 double _cur_collection_start_sec;
ysr@777 179 size_t _cur_collection_pause_used_at_start_bytes;
ysr@777 180 size_t _cur_collection_pause_used_regions_at_start;
ysr@777 181 double _cur_collection_par_time_ms;
ysr@777 182 double _cur_satb_drain_time_ms;
ysr@777 183 double _cur_clear_ct_time_ms;
johnc@3175 184 double _cur_ref_proc_time_ms;
johnc@3175 185 double _cur_ref_enq_time_ms;
ysr@777 186
johnc@1325 187 #ifndef PRODUCT
johnc@1325 188 // Card Table Count Cache stats
johnc@1325 189 double _min_clear_cc_time_ms; // min
johnc@1325 190 double _max_clear_cc_time_ms; // max
johnc@1325 191 double _cur_clear_cc_time_ms; // clearing time during current pause
johnc@1325 192 double _cum_clear_cc_time_ms; // cummulative clearing time
johnc@1325 193 jlong _num_cc_clears; // number of times the card count cache has been cleared
johnc@1325 194 #endif
johnc@1325 195
ysr@777 196 // These exclude marking times.
ysr@777 197 TruncatedSeq* _recent_gc_times_ms;
ysr@777 198
ysr@777 199 TruncatedSeq* _concurrent_mark_remark_times_ms;
ysr@777 200 TruncatedSeq* _concurrent_mark_cleanup_times_ms;
ysr@777 201
apetrusenko@1112 202 Summary* _summary;
ysr@777 203
ysr@777 204 NumberSeq* _all_pause_times_ms;
ysr@777 205 NumberSeq* _all_full_gc_times_ms;
ysr@777 206 double _stop_world_start;
ysr@777 207 NumberSeq* _all_stop_world_times_ms;
ysr@777 208 NumberSeq* _all_yield_times_ms;
ysr@777 209
ysr@777 210 int _aux_num;
ysr@777 211 NumberSeq* _all_aux_times_ms;
ysr@777 212 double* _cur_aux_start_times_ms;
ysr@777 213 double* _cur_aux_times_ms;
ysr@777 214 bool* _cur_aux_times_set;
ysr@777 215
tonyp@1966 216 double* _par_last_gc_worker_start_times_ms;
ysr@777 217 double* _par_last_ext_root_scan_times_ms;
tonyp@3416 218 double* _par_last_satb_filtering_times_ms;
ysr@777 219 double* _par_last_update_rs_times_ms;
ysr@777 220 double* _par_last_update_rs_processed_buffers;
ysr@777 221 double* _par_last_scan_rs_times_ms;
ysr@777 222 double* _par_last_obj_copy_times_ms;
ysr@777 223 double* _par_last_termination_times_ms;
tonyp@1966 224 double* _par_last_termination_attempts;
tonyp@1966 225 double* _par_last_gc_worker_end_times_ms;
brutisso@2712 226 double* _par_last_gc_worker_times_ms;
ysr@777 227
johnc@3219 228 // Each workers 'other' time i.e. the elapsed time of the parallel
johnc@3219 229 // phase of the pause minus the sum of the individual sub-phase
johnc@3219 230 // times for a given worker thread.
johnc@3219 231 double* _par_last_gc_worker_other_times_ms;
johnc@3219 232
tonyp@3337 233 // indicates whether we are in young or mixed GC mode
tonyp@3337 234 bool _gcs_are_young;
ysr@777 235
ysr@777 236 size_t _young_list_target_length;
ysr@777 237 size_t _young_list_fixed_length;
brutisso@3120 238 size_t _prev_eden_capacity; // used for logging
ysr@777 239
tonyp@2333 240 // The max number of regions we can extend the eden by while the GC
tonyp@2333 241 // locker is active. This should be >= _young_list_target_length;
tonyp@2333 242 size_t _young_list_max_length;
tonyp@2333 243
tonyp@3337 244 bool _last_gc_was_young;
ysr@777 245
tonyp@3337 246 unsigned _young_pause_num;
tonyp@3337 247 unsigned _mixed_pause_num;
ysr@777 248
ysr@777 249 bool _during_marking;
ysr@777 250 bool _in_marking_window;
ysr@777 251 bool _in_marking_window_im;
ysr@777 252
ysr@777 253 SurvRateGroup* _short_lived_surv_rate_group;
ysr@777 254 SurvRateGroup* _survivor_surv_rate_group;
ysr@777 255 // add here any more surv rate groups
ysr@777 256
tonyp@1791 257 double _gc_overhead_perc;
tonyp@1791 258
tonyp@3119 259 double _reserve_factor;
tonyp@3119 260 size_t _reserve_regions;
tonyp@3119 261
ysr@777 262 bool during_marking() {
ysr@777 263 return _during_marking;
ysr@777 264 }
ysr@777 265
ysr@777 266 private:
ysr@777 267 enum PredictionConstants {
ysr@777 268 TruncatedSeqLength = 10
ysr@777 269 };
ysr@777 270
ysr@777 271 TruncatedSeq* _alloc_rate_ms_seq;
ysr@777 272 double _prev_collection_pause_end_ms;
ysr@777 273
ysr@777 274 TruncatedSeq* _pending_card_diff_seq;
ysr@777 275 TruncatedSeq* _rs_length_diff_seq;
ysr@777 276 TruncatedSeq* _cost_per_card_ms_seq;
tonyp@3337 277 TruncatedSeq* _young_cards_per_entry_ratio_seq;
tonyp@3337 278 TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
ysr@777 279 TruncatedSeq* _cost_per_entry_ms_seq;
tonyp@3337 280 TruncatedSeq* _mixed_cost_per_entry_ms_seq;
ysr@777 281 TruncatedSeq* _cost_per_byte_ms_seq;
ysr@777 282 TruncatedSeq* _constant_other_time_ms_seq;
ysr@777 283 TruncatedSeq* _young_other_cost_per_region_ms_seq;
ysr@777 284 TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
ysr@777 285
ysr@777 286 TruncatedSeq* _pending_cards_seq;
ysr@777 287 TruncatedSeq* _rs_lengths_seq;
ysr@777 288
ysr@777 289 TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
ysr@777 290
ysr@777 291 TruncatedSeq* _young_gc_eff_seq;
ysr@777 292
brutisso@3358 293 G1YoungGenSizer* _young_gen_sizer;
brutisso@3120 294
tonyp@3289 295 size_t _eden_cset_region_length;
tonyp@3289 296 size_t _survivor_cset_region_length;
tonyp@3289 297 size_t _old_cset_region_length;
tonyp@3289 298
tonyp@3289 299 void init_cset_region_lengths(size_t eden_cset_region_length,
tonyp@3289 300 size_t survivor_cset_region_length);
tonyp@3289 301
tonyp@3289 302 size_t eden_cset_region_length() { return _eden_cset_region_length; }
tonyp@3289 303 size_t survivor_cset_region_length() { return _survivor_cset_region_length; }
tonyp@3289 304 size_t old_cset_region_length() { return _old_cset_region_length; }
ysr@777 305
ysr@777 306 size_t _free_regions_at_end_of_collection;
ysr@777 307
ysr@777 308 size_t _recorded_rs_lengths;
ysr@777 309 size_t _max_rs_lengths;
ysr@777 310
ysr@777 311 double _recorded_young_free_cset_time_ms;
ysr@777 312 double _recorded_non_young_free_cset_time_ms;
ysr@777 313
ysr@777 314 double _sigma;
ysr@777 315
ysr@777 316 size_t _rs_lengths_prediction;
ysr@777 317
ysr@777 318 size_t _known_garbage_bytes;
ysr@777 319 double _known_garbage_ratio;
ysr@777 320
tonyp@3539 321 double sigma() { return _sigma; }
ysr@777 322
ysr@777 323 // A function that prevents us putting too much stock in small sample
ysr@777 324 // sets. Returns a number between 2.0 and 1.0, depending on the number
ysr@777 325 // of samples. 5 or more samples yields one; fewer scales linearly from
ysr@777 326 // 2.0 at 1 sample to 1.0 at 5.
ysr@777 327 double confidence_factor(int samples) {
ysr@777 328 if (samples > 4) return 1.0;
ysr@777 329 else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
ysr@777 330 }
ysr@777 331
ysr@777 332 double get_new_neg_prediction(TruncatedSeq* seq) {
ysr@777 333 return seq->davg() - sigma() * seq->dsd();
ysr@777 334 }
ysr@777 335
ysr@777 336 #ifndef PRODUCT
ysr@777 337 bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
ysr@777 338 #endif // PRODUCT
ysr@777 339
iveresov@1546 340 void adjust_concurrent_refinement(double update_rs_time,
iveresov@1546 341 double update_rs_processed_buffers,
iveresov@1546 342 double goal_ms);
iveresov@1546 343
jmasa@3294 344 uintx no_of_gc_threads() { return _no_of_gc_threads; }
jmasa@3294 345 void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
jmasa@3294 346
ysr@777 347 double _pause_time_target_ms;
ysr@777 348 double _recorded_young_cset_choice_time_ms;
ysr@777 349 double _recorded_non_young_cset_choice_time_ms;
ysr@777 350 size_t _pending_cards;
ysr@777 351 size_t _max_pending_cards;
ysr@777 352
ysr@777 353 public:
jmasa@3294 354 // Accessors
ysr@777 355
tonyp@3289 356 void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
tonyp@3289 357 hr->set_young();
ysr@777 358 hr->install_surv_rate_group(_short_lived_surv_rate_group);
tonyp@3289 359 hr->set_young_index_in_cset(young_index_in_cset);
ysr@777 360 }
ysr@777 361
tonyp@3289 362 void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
tonyp@3289 363 assert(hr->is_young() && hr->is_survivor(), "pre-condition");
ysr@777 364 hr->install_surv_rate_group(_survivor_surv_rate_group);
tonyp@3289 365 hr->set_young_index_in_cset(young_index_in_cset);
ysr@777 366 }
ysr@777 367
ysr@777 368 #ifndef PRODUCT
ysr@777 369 bool verify_young_ages();
ysr@777 370 #endif // PRODUCT
ysr@777 371
ysr@777 372 double get_new_prediction(TruncatedSeq* seq) {
ysr@777 373 return MAX2(seq->davg() + sigma() * seq->dsd(),
ysr@777 374 seq->davg() * confidence_factor(seq->num()));
ysr@777 375 }
ysr@777 376
ysr@777 377 void record_max_rs_lengths(size_t rs_lengths) {
ysr@777 378 _max_rs_lengths = rs_lengths;
ysr@777 379 }
ysr@777 380
ysr@777 381 size_t predict_pending_card_diff() {
ysr@777 382 double prediction = get_new_neg_prediction(_pending_card_diff_seq);
tonyp@3337 383 if (prediction < 0.00001) {
ysr@777 384 return 0;
tonyp@3337 385 } else {
ysr@777 386 return (size_t) prediction;
tonyp@3337 387 }
ysr@777 388 }
ysr@777 389
ysr@777 390 size_t predict_pending_cards() {
ysr@777 391 size_t max_pending_card_num = _g1->max_pending_card_num();
ysr@777 392 size_t diff = predict_pending_card_diff();
ysr@777 393 size_t prediction;
tonyp@3337 394 if (diff > max_pending_card_num) {
ysr@777 395 prediction = max_pending_card_num;
tonyp@3337 396 } else {
ysr@777 397 prediction = max_pending_card_num - diff;
tonyp@3337 398 }
ysr@777 399
ysr@777 400 return prediction;
ysr@777 401 }
ysr@777 402
ysr@777 403 size_t predict_rs_length_diff() {
ysr@777 404 return (size_t) get_new_prediction(_rs_length_diff_seq);
ysr@777 405 }
ysr@777 406
ysr@777 407 double predict_alloc_rate_ms() {
ysr@777 408 return get_new_prediction(_alloc_rate_ms_seq);
ysr@777 409 }
ysr@777 410
ysr@777 411 double predict_cost_per_card_ms() {
ysr@777 412 return get_new_prediction(_cost_per_card_ms_seq);
ysr@777 413 }
ysr@777 414
ysr@777 415 double predict_rs_update_time_ms(size_t pending_cards) {
ysr@777 416 return (double) pending_cards * predict_cost_per_card_ms();
ysr@777 417 }
ysr@777 418
tonyp@3337 419 double predict_young_cards_per_entry_ratio() {
tonyp@3337 420 return get_new_prediction(_young_cards_per_entry_ratio_seq);
ysr@777 421 }
ysr@777 422
tonyp@3337 423 double predict_mixed_cards_per_entry_ratio() {
tonyp@3337 424 if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
tonyp@3337 425 return predict_young_cards_per_entry_ratio();
tonyp@3337 426 } else {
tonyp@3337 427 return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
tonyp@3337 428 }
ysr@777 429 }
ysr@777 430
ysr@777 431 size_t predict_young_card_num(size_t rs_length) {
ysr@777 432 return (size_t) ((double) rs_length *
tonyp@3337 433 predict_young_cards_per_entry_ratio());
ysr@777 434 }
ysr@777 435
ysr@777 436 size_t predict_non_young_card_num(size_t rs_length) {
ysr@777 437 return (size_t) ((double) rs_length *
tonyp@3337 438 predict_mixed_cards_per_entry_ratio());
ysr@777 439 }
ysr@777 440
ysr@777 441 double predict_rs_scan_time_ms(size_t card_num) {
tonyp@3337 442 if (gcs_are_young()) {
ysr@777 443 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
tonyp@3337 444 } else {
tonyp@3337 445 return predict_mixed_rs_scan_time_ms(card_num);
tonyp@3337 446 }
ysr@777 447 }
ysr@777 448
tonyp@3337 449 double predict_mixed_rs_scan_time_ms(size_t card_num) {
tonyp@3337 450 if (_mixed_cost_per_entry_ms_seq->num() < 3) {
ysr@777 451 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
tonyp@3337 452 } else {
tonyp@3337 453 return (double) (card_num *
tonyp@3337 454 get_new_prediction(_mixed_cost_per_entry_ms_seq));
tonyp@3337 455 }
ysr@777 456 }
ysr@777 457
ysr@777 458 double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
tonyp@3337 459 if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
tonyp@3337 460 return (1.1 * (double) bytes_to_copy) *
tonyp@3337 461 get_new_prediction(_cost_per_byte_ms_seq);
tonyp@3337 462 } else {
ysr@777 463 return (double) bytes_to_copy *
tonyp@3337 464 get_new_prediction(_cost_per_byte_ms_during_cm_seq);
tonyp@3337 465 }
ysr@777 466 }
ysr@777 467
ysr@777 468 double predict_object_copy_time_ms(size_t bytes_to_copy) {
tonyp@3337 469 if (_in_marking_window && !_in_marking_window_im) {
ysr@777 470 return predict_object_copy_time_ms_during_cm(bytes_to_copy);
tonyp@3337 471 } else {
ysr@777 472 return (double) bytes_to_copy *
tonyp@3337 473 get_new_prediction(_cost_per_byte_ms_seq);
tonyp@3337 474 }
ysr@777 475 }
ysr@777 476
ysr@777 477 double predict_constant_other_time_ms() {
ysr@777 478 return get_new_prediction(_constant_other_time_ms_seq);
ysr@777 479 }
ysr@777 480
ysr@777 481 double predict_young_other_time_ms(size_t young_num) {
tonyp@3337 482 return (double) young_num *
tonyp@3337 483 get_new_prediction(_young_other_cost_per_region_ms_seq);
ysr@777 484 }
ysr@777 485
ysr@777 486 double predict_non_young_other_time_ms(size_t non_young_num) {
tonyp@3337 487 return (double) non_young_num *
tonyp@3337 488 get_new_prediction(_non_young_other_cost_per_region_ms_seq);
ysr@777 489 }
ysr@777 490
ysr@777 491 double predict_young_collection_elapsed_time_ms(size_t adjustment);
ysr@777 492 double predict_base_elapsed_time_ms(size_t pending_cards);
ysr@777 493 double predict_base_elapsed_time_ms(size_t pending_cards,
ysr@777 494 size_t scanned_cards);
ysr@777 495 size_t predict_bytes_to_copy(HeapRegion* hr);
ysr@777 496 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 497
tonyp@3289 498 void set_recorded_rs_lengths(size_t rs_lengths);
johnc@1829 499
tonyp@3289 500 size_t cset_region_length() { return young_cset_region_length() +
tonyp@3289 501 old_cset_region_length(); }
tonyp@3289 502 size_t young_cset_region_length() { return eden_cset_region_length() +
tonyp@3289 503 survivor_cset_region_length(); }
ysr@777 504
ysr@777 505 void record_young_free_cset_time_ms(double time_ms) {
ysr@777 506 _recorded_young_free_cset_time_ms = time_ms;
ysr@777 507 }
ysr@777 508
ysr@777 509 void record_non_young_free_cset_time_ms(double time_ms) {
ysr@777 510 _recorded_non_young_free_cset_time_ms = time_ms;
ysr@777 511 }
ysr@777 512
ysr@777 513 double predict_young_gc_eff() {
ysr@777 514 return get_new_neg_prediction(_young_gc_eff_seq);
ysr@777 515 }
ysr@777 516
apetrusenko@980 517 double predict_survivor_regions_evac_time();
apetrusenko@980 518
ysr@777 519 void cset_regions_freed() {
tonyp@3337 520 bool propagate = _last_gc_was_young && !_in_marking_window;
ysr@777 521 _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 522 _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 523 // also call it on any more surv rate groups
ysr@777 524 }
ysr@777 525
ysr@777 526 void set_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 527 _known_garbage_bytes = known_garbage_bytes;
ysr@777 528 size_t heap_bytes = _g1->capacity();
ysr@777 529 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 530 }
ysr@777 531
ysr@777 532 void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 533 guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
ysr@777 534
ysr@777 535 _known_garbage_bytes -= known_garbage_bytes;
ysr@777 536 size_t heap_bytes = _g1->capacity();
ysr@777 537 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 538 }
ysr@777 539
ysr@777 540 G1MMUTracker* mmu_tracker() {
ysr@777 541 return _mmu_tracker;
ysr@777 542 }
ysr@777 543
tonyp@2011 544 double max_pause_time_ms() {
tonyp@2011 545 return _mmu_tracker->max_gc_time() * 1000.0;
tonyp@2011 546 }
tonyp@2011 547
ysr@777 548 double predict_remark_time_ms() {
ysr@777 549 return get_new_prediction(_concurrent_mark_remark_times_ms);
ysr@777 550 }
ysr@777 551
ysr@777 552 double predict_cleanup_time_ms() {
ysr@777 553 return get_new_prediction(_concurrent_mark_cleanup_times_ms);
ysr@777 554 }
ysr@777 555
ysr@777 556 // Returns an estimate of the survival rate of the region at yg-age
ysr@777 557 // "yg_age".
apetrusenko@980 558 double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
apetrusenko@980 559 TruncatedSeq* seq = surv_rate_group->get_seq(age);
ysr@777 560 if (seq->num() == 0)
ysr@777 561 gclog_or_tty->print("BARF! age is %d", age);
ysr@777 562 guarantee( seq->num() > 0, "invariant" );
ysr@777 563 double pred = get_new_prediction(seq);
ysr@777 564 if (pred > 1.0)
ysr@777 565 pred = 1.0;
ysr@777 566 return pred;
ysr@777 567 }
ysr@777 568
apetrusenko@980 569 double predict_yg_surv_rate(int age) {
apetrusenko@980 570 return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
apetrusenko@980 571 }
apetrusenko@980 572
ysr@777 573 double accum_yg_surv_rate_pred(int age) {
ysr@777 574 return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
ysr@777 575 }
ysr@777 576
tonyp@3209 577 private:
tonyp@1966 578 void print_stats(int level, const char* str, double value);
tonyp@1966 579 void print_stats(int level, const char* str, int value);
tonyp@1966 580
brutisso@2712 581 void print_par_stats(int level, const char* str, double* data);
brutisso@2712 582 void print_par_sizes(int level, const char* str, double* data);
ysr@777 583
ysr@777 584 void check_other_times(int level,
ysr@777 585 NumberSeq* other_times_ms,
ysr@777 586 NumberSeq* calc_other_times_ms) const;
ysr@777 587
ysr@777 588 void print_summary (PauseSummary* stats) const;
ysr@777 589
ysr@777 590 void print_summary (int level, const char* str, NumberSeq* seq) const;
ysr@777 591 void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
ysr@777 592
ysr@777 593 double avg_value (double* data);
ysr@777 594 double max_value (double* data);
ysr@777 595 double sum_of_values (double* data);
ysr@777 596 double max_sum (double* data1, double* data2);
ysr@777 597
ysr@777 598 double _last_pause_time_ms;
ysr@777 599
ysr@777 600 size_t _bytes_in_collection_set_before_gc;
tonyp@3028 601 size_t _bytes_copied_during_gc;
tonyp@3028 602
ysr@777 603 // Used to count used bytes in CS.
ysr@777 604 friend class CountCSClosure;
ysr@777 605
ysr@777 606 // Statistics kept per GC stoppage, pause or full.
ysr@777 607 TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
ysr@777 608
ysr@777 609 // Add a new GC of the given duration and end time to the record.
ysr@777 610 void update_recent_gc_times(double end_time_sec, double elapsed_ms);
ysr@777 611
ysr@777 612 // The head of the list (via "next_in_collection_set()") representing the
johnc@1829 613 // current collection set. Set from the incrementally built collection
johnc@1829 614 // set at the start of the pause.
ysr@777 615 HeapRegion* _collection_set;
johnc@1829 616
johnc@1829 617 // The number of bytes in the collection set before the pause. Set from
johnc@1829 618 // the incrementally built collection set at the start of an evacuation
johnc@1829 619 // pause.
ysr@777 620 size_t _collection_set_bytes_used_before;
ysr@777 621
johnc@1829 622 // The associated information that is maintained while the incremental
johnc@1829 623 // collection set is being built with young regions. Used to populate
johnc@1829 624 // the recorded info for the evacuation pause.
johnc@1829 625
johnc@1829 626 enum CSetBuildType {
johnc@1829 627 Active, // We are actively building the collection set
johnc@1829 628 Inactive // We are not actively building the collection set
johnc@1829 629 };
johnc@1829 630
johnc@1829 631 CSetBuildType _inc_cset_build_state;
johnc@1829 632
johnc@1829 633 // The head of the incrementally built collection set.
johnc@1829 634 HeapRegion* _inc_cset_head;
johnc@1829 635
johnc@1829 636 // The tail of the incrementally built collection set.
johnc@1829 637 HeapRegion* _inc_cset_tail;
johnc@1829 638
johnc@1829 639 // The number of bytes in the incrementally built collection set.
johnc@1829 640 // Used to set _collection_set_bytes_used_before at the start of
johnc@1829 641 // an evacuation pause.
johnc@1829 642 size_t _inc_cset_bytes_used_before;
johnc@1829 643
johnc@1829 644 // Used to record the highest end of heap region in collection set
johnc@1829 645 HeapWord* _inc_cset_max_finger;
johnc@1829 646
tonyp@3356 647 // The RSet lengths recorded for regions in the CSet. It is updated
tonyp@3356 648 // by the thread that adds a new region to the CSet. We assume that
tonyp@3356 649 // only one thread can be allocating a new CSet region (currently,
tonyp@3356 650 // it does so after taking the Heap_lock) hence no need to
tonyp@3356 651 // synchronize updates to this field.
johnc@1829 652 size_t _inc_cset_recorded_rs_lengths;
johnc@1829 653
tonyp@3356 654 // A concurrent refinement thread periodcially samples the young
tonyp@3356 655 // region RSets and needs to update _inc_cset_recorded_rs_lengths as
tonyp@3356 656 // the RSets grow. Instead of having to syncronize updates to that
tonyp@3356 657 // field we accumulate them in this field and add it to
tonyp@3356 658 // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
tonyp@3356 659 ssize_t _inc_cset_recorded_rs_lengths_diffs;
tonyp@3356 660
tonyp@3356 661 // The predicted elapsed time it will take to collect the regions in
tonyp@3356 662 // the CSet. This is updated by the thread that adds a new region to
tonyp@3356 663 // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
tonyp@3356 664 // MT-safety assumptions.
johnc@1829 665 double _inc_cset_predicted_elapsed_time_ms;
johnc@1829 666
tonyp@3356 667 // See the comment for _inc_cset_recorded_rs_lengths_diffs.
tonyp@3356 668 double _inc_cset_predicted_elapsed_time_ms_diffs;
tonyp@3356 669
ysr@777 670 // Stash a pointer to the g1 heap.
ysr@777 671 G1CollectedHeap* _g1;
ysr@777 672
ysr@777 673 // The ratio of gc time to elapsed time, computed over recent pauses.
ysr@777 674 double _recent_avg_pause_time_ratio;
ysr@777 675
ysr@777 676 double recent_avg_pause_time_ratio() {
ysr@777 677 return _recent_avg_pause_time_ratio;
ysr@777 678 }
ysr@777 679
tonyp@1794 680 // At the end of a pause we check the heap occupancy and we decide
tonyp@1794 681 // whether we will start a marking cycle during the next pause. If
tonyp@1794 682 // we decide that we want to do that, we will set this parameter to
tonyp@1794 683 // true. So, this parameter will stay true between the end of a
tonyp@1794 684 // pause and the beginning of a subsequent pause (not necessarily
tonyp@1794 685 // the next one, see the comments on the next field) when we decide
tonyp@1794 686 // that we will indeed start a marking cycle and do the initial-mark
tonyp@1794 687 // work.
tonyp@1794 688 volatile bool _initiate_conc_mark_if_possible;
ysr@777 689
tonyp@1794 690 // If initiate_conc_mark_if_possible() is set at the beginning of a
tonyp@1794 691 // pause, it is a suggestion that the pause should start a marking
tonyp@1794 692 // cycle by doing the initial-mark work. However, it is possible
tonyp@1794 693 // that the concurrent marking thread is still finishing up the
tonyp@1794 694 // previous marking cycle (e.g., clearing the next marking
tonyp@1794 695 // bitmap). If that is the case we cannot start a new cycle and
tonyp@1794 696 // we'll have to wait for the concurrent marking thread to finish
tonyp@1794 697 // what it is doing. In this case we will postpone the marking cycle
tonyp@1794 698 // initiation decision for the next pause. When we eventually decide
tonyp@1794 699 // to start a cycle, we will set _during_initial_mark_pause which
tonyp@1794 700 // will stay true until the end of the initial-mark pause and it's
tonyp@1794 701 // the condition that indicates that a pause is doing the
tonyp@1794 702 // initial-mark work.
tonyp@1794 703 volatile bool _during_initial_mark_pause;
tonyp@1794 704
tonyp@3337 705 bool _last_young_gc;
ysr@777 706
ysr@777 707 // This set of variables tracks the collector efficiency, in order to
ysr@777 708 // determine whether we should initiate a new marking.
ysr@777 709 double _cur_mark_stop_world_time_ms;
ysr@777 710 double _mark_remark_start_sec;
ysr@777 711 double _mark_cleanup_start_sec;
ysr@777 712 double _mark_closure_time_ms;
tonyp@3464 713 double _root_region_scan_wait_time_ms;
ysr@777 714
tonyp@3119 715 // Update the young list target length either by setting it to the
tonyp@3119 716 // desired fixed value or by calculating it using G1's pause
tonyp@3119 717 // prediction model. If no rs_lengths parameter is passed, predict
tonyp@3119 718 // the RS lengths using the prediction model, otherwise use the
tonyp@3119 719 // given rs_lengths as the prediction.
tonyp@3119 720 void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
tonyp@3119 721
tonyp@3119 722 // Calculate and return the minimum desired young list target
tonyp@3119 723 // length. This is the minimum desired young list length according
tonyp@3119 724 // to the user's inputs.
tonyp@3119 725 size_t calculate_young_list_desired_min_length(size_t base_min_length);
tonyp@3119 726
tonyp@3119 727 // Calculate and return the maximum desired young list target
tonyp@3119 728 // length. This is the maximum desired young list length according
tonyp@3119 729 // to the user's inputs.
tonyp@3119 730 size_t calculate_young_list_desired_max_length();
tonyp@3119 731
tonyp@3119 732 // Calculate and return the maximum young list target length that
tonyp@3119 733 // can fit into the pause time goal. The parameters are: rs_lengths
tonyp@3119 734 // represent the prediction of how large the young RSet lengths will
tonyp@3119 735 // be, base_min_length is the alreay existing number of regions in
tonyp@3119 736 // the young list, min_length and max_length are the desired min and
tonyp@3119 737 // max young list length according to the user's inputs.
tonyp@3119 738 size_t calculate_young_list_target_length(size_t rs_lengths,
tonyp@3119 739 size_t base_min_length,
tonyp@3119 740 size_t desired_min_length,
tonyp@3119 741 size_t desired_max_length);
tonyp@3119 742
tonyp@3119 743 // Check whether a given young length (young_length) fits into the
tonyp@3119 744 // given target pause time and whether the prediction for the amount
tonyp@3119 745 // of objects to be copied for the given length will fit into the
tonyp@3119 746 // given free space (expressed by base_free_regions). It is used by
tonyp@3119 747 // calculate_young_list_target_length().
tonyp@3119 748 bool predict_will_fit(size_t young_length, double base_time_ms,
tonyp@3119 749 size_t base_free_regions, double target_pause_time_ms);
ysr@777 750
tonyp@3209 751 // Count the number of bytes used in the CS.
tonyp@3209 752 void count_CS_bytes_used();
tonyp@3209 753
ysr@777 754 public:
ysr@777 755
ysr@777 756 G1CollectorPolicy();
ysr@777 757
ysr@777 758 virtual G1CollectorPolicy* as_g1_policy() { return this; }
ysr@777 759
ysr@777 760 virtual CollectorPolicy::Name kind() {
ysr@777 761 return CollectorPolicy::G1CollectorPolicyKind;
ysr@777 762 }
ysr@777 763
tonyp@3119 764 // Check the current value of the young list RSet lengths and
tonyp@3119 765 // compare it against the last prediction. If the current value is
tonyp@3119 766 // higher, recalculate the young list target length prediction.
tonyp@3119 767 void revise_young_list_target_length_if_necessary();
ysr@777 768
ysr@777 769 size_t bytes_in_collection_set() {
ysr@777 770 return _bytes_in_collection_set_before_gc;
ysr@777 771 }
ysr@777 772
ysr@777 773 unsigned calc_gc_alloc_time_stamp() {
ysr@777 774 return _all_pause_times_ms->num() + 1;
ysr@777 775 }
ysr@777 776
brutisso@3120 777 // This should be called after the heap is resized.
brutisso@3120 778 void record_new_heap_size(size_t new_number_of_regions);
tonyp@3119 779
tonyp@3209 780 void init();
ysr@777 781
apetrusenko@980 782 // Create jstat counters for the policy.
apetrusenko@980 783 virtual void initialize_gc_policy_counters();
apetrusenko@980 784
ysr@777 785 virtual HeapWord* mem_allocate_work(size_t size,
ysr@777 786 bool is_tlab,
ysr@777 787 bool* gc_overhead_limit_was_exceeded);
ysr@777 788
ysr@777 789 // This method controls how a collector handles one or more
ysr@777 790 // of its generations being fully allocated.
ysr@777 791 virtual HeapWord* satisfy_failed_allocation(size_t size,
ysr@777 792 bool is_tlab);
ysr@777 793
ysr@777 794 BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
ysr@777 795
ysr@777 796 GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; }
ysr@777 797
brutisso@3461 798 bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
brutisso@3456 799
ysr@777 800 // Update the heuristic info to record a collection pause of the given
ysr@777 801 // start time, where the given number of bytes were used at the start.
ysr@777 802 // This may involve changing the desired size of a collection set.
ysr@777 803
tonyp@3209 804 void record_stop_world_start();
ysr@777 805
tonyp@3209 806 void record_collection_pause_start(double start_time_sec, size_t start_used);
ysr@777 807
ysr@777 808 // Must currently be called while the world is stopped.
brutisso@3065 809 void record_concurrent_mark_init_end(double
ysr@777 810 mark_init_elapsed_time_ms);
ysr@777 811
johnc@3296 812 void record_mark_closure_time(double mark_closure_time_ms) {
johnc@3296 813 _mark_closure_time_ms = mark_closure_time_ms;
johnc@3296 814 }
ysr@777 815
tonyp@3464 816 void record_root_region_scan_wait_time(double time_ms) {
tonyp@3464 817 _root_region_scan_wait_time_ms = time_ms;
tonyp@3464 818 }
tonyp@3464 819
tonyp@3209 820 void record_concurrent_mark_remark_start();
tonyp@3209 821 void record_concurrent_mark_remark_end();
ysr@777 822
tonyp@3209 823 void record_concurrent_mark_cleanup_start();
jmasa@3294 824 void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
tonyp@3209 825 void record_concurrent_mark_cleanup_completed();
ysr@777 826
tonyp@3209 827 void record_concurrent_pause();
tonyp@3209 828 void record_concurrent_pause_end();
ysr@777 829
jmasa@3294 830 void record_collection_pause_end(int no_of_gc_threads);
tonyp@2961 831 void print_heap_transition();
ysr@777 832
ysr@777 833 // Record the fact that a full collection occurred.
tonyp@3209 834 void record_full_collection_start();
tonyp@3209 835 void record_full_collection_end();
ysr@777 836
tonyp@1966 837 void record_gc_worker_start_time(int worker_i, double ms) {
tonyp@1966 838 _par_last_gc_worker_start_times_ms[worker_i] = ms;
tonyp@1966 839 }
tonyp@1966 840
ysr@777 841 void record_ext_root_scan_time(int worker_i, double ms) {
ysr@777 842 _par_last_ext_root_scan_times_ms[worker_i] = ms;
ysr@777 843 }
ysr@777 844
tonyp@3416 845 void record_satb_filtering_time(int worker_i, double ms) {
tonyp@3416 846 _par_last_satb_filtering_times_ms[worker_i] = ms;
ysr@777 847 }
ysr@777 848
ysr@777 849 void record_satb_drain_time(double ms) {
johnc@3219 850 assert(_g1->mark_in_progress(), "shouldn't be here otherwise");
ysr@777 851 _cur_satb_drain_time_ms = ms;
ysr@777 852 }
ysr@777 853
ysr@777 854 void record_update_rs_time(int thread, double ms) {
ysr@777 855 _par_last_update_rs_times_ms[thread] = ms;
ysr@777 856 }
ysr@777 857
ysr@777 858 void record_update_rs_processed_buffers (int thread,
ysr@777 859 double processed_buffers) {
ysr@777 860 _par_last_update_rs_processed_buffers[thread] = processed_buffers;
ysr@777 861 }
ysr@777 862
ysr@777 863 void record_scan_rs_time(int thread, double ms) {
ysr@777 864 _par_last_scan_rs_times_ms[thread] = ms;
ysr@777 865 }
ysr@777 866
ysr@777 867 void reset_obj_copy_time(int thread) {
ysr@777 868 _par_last_obj_copy_times_ms[thread] = 0.0;
ysr@777 869 }
ysr@777 870
ysr@777 871 void reset_obj_copy_time() {
ysr@777 872 reset_obj_copy_time(0);
ysr@777 873 }
ysr@777 874
ysr@777 875 void record_obj_copy_time(int thread, double ms) {
ysr@777 876 _par_last_obj_copy_times_ms[thread] += ms;
ysr@777 877 }
ysr@777 878
tonyp@1966 879 void record_termination(int thread, double ms, size_t attempts) {
tonyp@1966 880 _par_last_termination_times_ms[thread] = ms;
tonyp@1966 881 _par_last_termination_attempts[thread] = (double) attempts;
ysr@777 882 }
ysr@777 883
tonyp@1966 884 void record_gc_worker_end_time(int worker_i, double ms) {
tonyp@1966 885 _par_last_gc_worker_end_times_ms[worker_i] = ms;
ysr@777 886 }
ysr@777 887
tonyp@1030 888 void record_pause_time_ms(double ms) {
ysr@777 889 _last_pause_time_ms = ms;
ysr@777 890 }
ysr@777 891
ysr@777 892 void record_clear_ct_time(double ms) {
ysr@777 893 _cur_clear_ct_time_ms = ms;
ysr@777 894 }
ysr@777 895
ysr@777 896 void record_par_time(double ms) {
ysr@777 897 _cur_collection_par_time_ms = ms;
ysr@777 898 }
ysr@777 899
ysr@777 900 void record_aux_start_time(int i) {
ysr@777 901 guarantee(i < _aux_num, "should be within range");
ysr@777 902 _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
ysr@777 903 }
ysr@777 904
ysr@777 905 void record_aux_end_time(int i) {
ysr@777 906 guarantee(i < _aux_num, "should be within range");
ysr@777 907 double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
ysr@777 908 _cur_aux_times_set[i] = true;
ysr@777 909 _cur_aux_times_ms[i] += ms;
ysr@777 910 }
ysr@777 911
johnc@3175 912 void record_ref_proc_time(double ms) {
johnc@3175 913 _cur_ref_proc_time_ms = ms;
johnc@3175 914 }
johnc@3175 915
johnc@3175 916 void record_ref_enq_time(double ms) {
johnc@3175 917 _cur_ref_enq_time_ms = ms;
johnc@3175 918 }
johnc@3175 919
johnc@1325 920 #ifndef PRODUCT
johnc@1325 921 void record_cc_clear_time(double ms) {
johnc@1325 922 if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
johnc@1325 923 _min_clear_cc_time_ms = ms;
johnc@1325 924 if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
johnc@1325 925 _max_clear_cc_time_ms = ms;
johnc@1325 926 _cur_clear_cc_time_ms = ms;
johnc@1325 927 _cum_clear_cc_time_ms += ms;
johnc@1325 928 _num_cc_clears++;
johnc@1325 929 }
johnc@1325 930 #endif
johnc@1325 931
tonyp@3028 932 // Record how much space we copied during a GC. This is typically
tonyp@3028 933 // called when a GC alloc region is being retired.
tonyp@3028 934 void record_bytes_copied_during_gc(size_t bytes) {
tonyp@3028 935 _bytes_copied_during_gc += bytes;
tonyp@3028 936 }
tonyp@3028 937
tonyp@3028 938 // The amount of space we copied during a GC.
tonyp@3028 939 size_t bytes_copied_during_gc() {
tonyp@3028 940 return _bytes_copied_during_gc;
tonyp@3028 941 }
ysr@777 942
brutisso@3675 943 // Determine whether there are candidate regions so that the
brutisso@3675 944 // next GC should be mixed. The two action strings are used
brutisso@3675 945 // in the ergo output when the method returns true or false.
tonyp@3539 946 bool next_gc_should_be_mixed(const char* true_action_str,
tonyp@3539 947 const char* false_action_str);
tonyp@3539 948
ysr@777 949 // Choose a new collection set. Marks the chosen regions as being
ysr@777 950 // "in_collection_set", and links them together. The head and number of
ysr@777 951 // the collection set are available via access methods.
tonyp@3539 952 void finalize_cset(double target_pause_time_ms);
ysr@777 953
ysr@777 954 // The head of the list (via "next_in_collection_set()") representing the
ysr@777 955 // current collection set.
ysr@777 956 HeapRegion* collection_set() { return _collection_set; }
ysr@777 957
johnc@1829 958 void clear_collection_set() { _collection_set = NULL; }
johnc@1829 959
tonyp@3289 960 // Add old region "hr" to the CSet.
tonyp@3289 961 void add_old_region_to_cset(HeapRegion* hr);
ysr@777 962
johnc@1829 963 // Incremental CSet Support
johnc@1829 964
johnc@1829 965 // The head of the incrementally built collection set.
johnc@1829 966 HeapRegion* inc_cset_head() { return _inc_cset_head; }
johnc@1829 967
johnc@1829 968 // The tail of the incrementally built collection set.
johnc@1829 969 HeapRegion* inc_set_tail() { return _inc_cset_tail; }
johnc@1829 970
johnc@1829 971 // Initialize incremental collection set info.
johnc@1829 972 void start_incremental_cset_building();
johnc@1829 973
tonyp@3356 974 // Perform any final calculations on the incremental CSet fields
tonyp@3356 975 // before we can use them.
tonyp@3356 976 void finalize_incremental_cset_building();
tonyp@3356 977
johnc@1829 978 void clear_incremental_cset() {
johnc@1829 979 _inc_cset_head = NULL;
johnc@1829 980 _inc_cset_tail = NULL;
johnc@1829 981 }
johnc@1829 982
johnc@1829 983 // Stop adding regions to the incremental collection set
johnc@1829 984 void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
johnc@1829 985
tonyp@3356 986 // Add information about hr to the aggregated information for the
tonyp@3356 987 // incrementally built collection set.
johnc@1829 988 void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
johnc@1829 989
johnc@1829 990 // Update information about hr in the aggregated information for
johnc@1829 991 // the incrementally built collection set.
johnc@1829 992 void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
johnc@1829 993
johnc@1829 994 private:
johnc@1829 995 // Update the incremental cset information when adding a region
johnc@1829 996 // (should not be called directly).
johnc@1829 997 void add_region_to_incremental_cset_common(HeapRegion* hr);
johnc@1829 998
johnc@1829 999 public:
johnc@1829 1000 // Add hr to the LHS of the incremental collection set.
johnc@1829 1001 void add_region_to_incremental_cset_lhs(HeapRegion* hr);
johnc@1829 1002
johnc@1829 1003 // Add hr to the RHS of the incremental collection set.
johnc@1829 1004 void add_region_to_incremental_cset_rhs(HeapRegion* hr);
johnc@1829 1005
johnc@1829 1006 #ifndef PRODUCT
johnc@1829 1007 void print_collection_set(HeapRegion* list_head, outputStream* st);
johnc@1829 1008 #endif // !PRODUCT
johnc@1829 1009
tonyp@1794 1010 bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
tonyp@1794 1011 void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
tonyp@1794 1012 void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
tonyp@1794 1013
tonyp@1794 1014 bool during_initial_mark_pause() { return _during_initial_mark_pause; }
tonyp@1794 1015 void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
tonyp@1794 1016 void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
tonyp@1794 1017
tonyp@2011 1018 // This sets the initiate_conc_mark_if_possible() flag to start a
tonyp@2011 1019 // new cycle, as long as we are not already in one. It's best if it
tonyp@2011 1020 // is called during a safepoint when the test whether a cycle is in
tonyp@2011 1021 // progress or not is stable.
tonyp@3114 1022 bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
tonyp@2011 1023
tonyp@1794 1024 // This is called at the very beginning of an evacuation pause (it
tonyp@1794 1025 // has to be the first thing that the pause does). If
tonyp@1794 1026 // initiate_conc_mark_if_possible() is true, and the concurrent
tonyp@1794 1027 // marking thread has completed its work during the previous cycle,
tonyp@1794 1028 // it will set during_initial_mark_pause() to so that the pause does
tonyp@1794 1029 // the initial-mark work and start a marking cycle.
tonyp@1794 1030 void decide_on_conc_mark_initiation();
ysr@777 1031
ysr@777 1032 // If an expansion would be appropriate, because recent GC overhead had
ysr@777 1033 // exceeded the desired limit, return an amount to expand by.
tonyp@3209 1034 size_t expansion_amount();
ysr@777 1035
ysr@777 1036 #ifndef PRODUCT
ysr@777 1037 // Check any appropriate marked bytes info, asserting false if
ysr@777 1038 // something's wrong, else returning "true".
tonyp@3209 1039 bool assertMarkedBytesDataOK();
ysr@777 1040 #endif
ysr@777 1041
ysr@777 1042 // Print tracing information.
ysr@777 1043 void print_tracing_info() const;
ysr@777 1044
ysr@777 1045 // Print stats on young survival ratio
ysr@777 1046 void print_yg_surv_rate_info() const;
ysr@777 1047
apetrusenko@980 1048 void finished_recalculating_age_indexes(bool is_survivors) {
apetrusenko@980 1049 if (is_survivors) {
apetrusenko@980 1050 _survivor_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1051 } else {
apetrusenko@980 1052 _short_lived_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1053 }
ysr@777 1054 // do that for any other surv rate groups
ysr@777 1055 }
ysr@777 1056
tonyp@2315 1057 bool is_young_list_full() {
tonyp@2315 1058 size_t young_list_length = _g1->young_list()->length();
tonyp@2333 1059 size_t young_list_target_length = _young_list_target_length;
tonyp@2333 1060 return young_list_length >= young_list_target_length;
tonyp@2333 1061 }
tonyp@2333 1062
tonyp@2333 1063 bool can_expand_young_list() {
tonyp@2333 1064 size_t young_list_length = _g1->young_list()->length();
tonyp@2333 1065 size_t young_list_max_length = _young_list_max_length;
tonyp@2333 1066 return young_list_length < young_list_max_length;
tonyp@2333 1067 }
tonyp@2315 1068
tonyp@3176 1069 size_t young_list_max_length() {
tonyp@3176 1070 return _young_list_max_length;
tonyp@3176 1071 }
tonyp@3176 1072
tonyp@3337 1073 bool gcs_are_young() {
tonyp@3337 1074 return _gcs_are_young;
ysr@777 1075 }
tonyp@3337 1076 void set_gcs_are_young(bool gcs_are_young) {
tonyp@3337 1077 _gcs_are_young = gcs_are_young;
ysr@777 1078 }
ysr@777 1079
ysr@777 1080 bool adaptive_young_list_length() {
brutisso@3358 1081 return _young_gen_sizer->adaptive_young_list_length();
ysr@777 1082 }
ysr@777 1083
ysr@777 1084 inline double get_gc_eff_factor() {
ysr@777 1085 double ratio = _known_garbage_ratio;
ysr@777 1086
ysr@777 1087 double square = ratio * ratio;
ysr@777 1088 // square = square * square;
ysr@777 1089 double ret = square * 9.0 + 1.0;
ysr@777 1090 #if 0
ysr@777 1091 gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
ysr@777 1092 #endif // 0
ysr@777 1093 guarantee(0.0 <= ret && ret < 10.0, "invariant!");
ysr@777 1094 return ret;
ysr@777 1095 }
ysr@777 1096
tonyp@3209 1097 private:
ysr@777 1098 //
ysr@777 1099 // Survivor regions policy.
ysr@777 1100 //
ysr@777 1101
ysr@777 1102 // Current tenuring threshold, set to 0 if the collector reaches the
ysr@777 1103 // maximum amount of suvivors regions.
ysr@777 1104 int _tenuring_threshold;
ysr@777 1105
apetrusenko@980 1106 // The limit on the number of regions allocated for survivors.
apetrusenko@980 1107 size_t _max_survivor_regions;
apetrusenko@980 1108
tonyp@2961 1109 // For reporting purposes.
tonyp@2961 1110 size_t _eden_bytes_before_gc;
tonyp@2961 1111 size_t _survivor_bytes_before_gc;
tonyp@2961 1112 size_t _capacity_before_gc;
tonyp@2961 1113
apetrusenko@980 1114 // The amount of survor regions after a collection.
apetrusenko@980 1115 size_t _recorded_survivor_regions;
apetrusenko@980 1116 // List of survivor regions.
apetrusenko@980 1117 HeapRegion* _recorded_survivor_head;
apetrusenko@980 1118 HeapRegion* _recorded_survivor_tail;
apetrusenko@980 1119
apetrusenko@980 1120 ageTable _survivors_age_table;
apetrusenko@980 1121
ysr@777 1122 public:
ysr@777 1123
ysr@777 1124 inline GCAllocPurpose
ysr@777 1125 evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
ysr@777 1126 if (age < _tenuring_threshold && src_region->is_young()) {
ysr@777 1127 return GCAllocForSurvived;
ysr@777 1128 } else {
ysr@777 1129 return GCAllocForTenured;
ysr@777 1130 }
ysr@777 1131 }
ysr@777 1132
ysr@777 1133 inline bool track_object_age(GCAllocPurpose purpose) {
ysr@777 1134 return purpose == GCAllocForSurvived;
ysr@777 1135 }
ysr@777 1136
apetrusenko@980 1137 static const size_t REGIONS_UNLIMITED = ~(size_t)0;
apetrusenko@980 1138
apetrusenko@980 1139 size_t max_regions(int purpose);
ysr@777 1140
ysr@777 1141 // The limit on regions for a particular purpose is reached.
ysr@777 1142 void note_alloc_region_limit_reached(int purpose) {
ysr@777 1143 if (purpose == GCAllocForSurvived) {
ysr@777 1144 _tenuring_threshold = 0;
ysr@777 1145 }
ysr@777 1146 }
ysr@777 1147
ysr@777 1148 void note_start_adding_survivor_regions() {
ysr@777 1149 _survivor_surv_rate_group->start_adding_regions();
ysr@777 1150 }
ysr@777 1151
ysr@777 1152 void note_stop_adding_survivor_regions() {
ysr@777 1153 _survivor_surv_rate_group->stop_adding_regions();
ysr@777 1154 }
apetrusenko@980 1155
apetrusenko@980 1156 void record_survivor_regions(size_t regions,
apetrusenko@980 1157 HeapRegion* head,
apetrusenko@980 1158 HeapRegion* tail) {
apetrusenko@980 1159 _recorded_survivor_regions = regions;
apetrusenko@980 1160 _recorded_survivor_head = head;
apetrusenko@980 1161 _recorded_survivor_tail = tail;
apetrusenko@980 1162 }
apetrusenko@980 1163
tonyp@1273 1164 size_t recorded_survivor_regions() {
tonyp@1273 1165 return _recorded_survivor_regions;
tonyp@1273 1166 }
tonyp@1273 1167
apetrusenko@980 1168 void record_thread_age_table(ageTable* age_table)
apetrusenko@980 1169 {
apetrusenko@980 1170 _survivors_age_table.merge_par(age_table);
apetrusenko@980 1171 }
apetrusenko@980 1172
tonyp@3119 1173 void update_max_gc_locker_expansion();
tonyp@2333 1174
apetrusenko@980 1175 // Calculates survivor space parameters.
tonyp@3119 1176 void update_survivors_policy();
apetrusenko@980 1177
ysr@777 1178 };
ysr@777 1179
ysr@777 1180 // This should move to some place more general...
ysr@777 1181
ysr@777 1182 // If we have "n" measurements, and we've kept track of their "sum" and the
ysr@777 1183 // "sum_of_squares" of the measurements, this returns the variance of the
ysr@777 1184 // sequence.
ysr@777 1185 inline double variance(int n, double sum_of_squares, double sum) {
ysr@777 1186 double n_d = (double)n;
ysr@777 1187 double avg = sum/n_d;
ysr@777 1188 return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
ysr@777 1189 }
ysr@777 1190
stefank@2314 1191 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial