src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Fri, 23 Sep 2011 16:07:49 -0400

author
tonyp
date
Fri, 23 Sep 2011 16:07:49 -0400
changeset 3176
8229bd737950
parent 3175
4dfb2df418f2
child 3209
074f0252cc13
permissions
-rw-r--r--

7075646: G1: fix inconsistencies in the monitoring data
Summary: Fixed a few inconsistencies in the monitoring data, in particular when reported from jstat.
Reviewed-by: jmasa, brutisso, johnc

ysr@777 1 /*
tonyp@3028 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/collectionSetChooser.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1MMUTracker.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31
ysr@777 32 // A G1CollectorPolicy makes policy decisions that determine the
ysr@777 33 // characteristics of the collector. Examples include:
ysr@777 34 // * choice of collection set.
ysr@777 35 // * when to collect.
ysr@777 36
ysr@777 37 class HeapRegion;
ysr@777 38 class CollectionSetChooser;
ysr@777 39
ysr@777 40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
ysr@777 41 // over and over again and introducing subtle problems through small typos and
ysr@777 42 // cutting and pasting mistakes. The macros below introduces a number
ysr@777 43 // sequnce into the following two classes and the methods that access it.
ysr@777 44
ysr@777 45 #define define_num_seq(name) \
ysr@777 46 private: \
ysr@777 47 NumberSeq _all_##name##_times_ms; \
ysr@777 48 public: \
ysr@777 49 void record_##name##_time_ms(double ms) { \
ysr@777 50 _all_##name##_times_ms.add(ms); \
ysr@777 51 } \
ysr@777 52 NumberSeq* get_##name##_seq() { \
ysr@777 53 return &_all_##name##_times_ms; \
ysr@777 54 }
ysr@777 55
ysr@777 56 class MainBodySummary;
ysr@777 57
apetrusenko@984 58 class PauseSummary: public CHeapObj {
ysr@777 59 define_num_seq(total)
ysr@777 60 define_num_seq(other)
ysr@777 61
ysr@777 62 public:
ysr@777 63 virtual MainBodySummary* main_body_summary() { return NULL; }
ysr@777 64 };
ysr@777 65
apetrusenko@984 66 class MainBodySummary: public CHeapObj {
ysr@777 67 define_num_seq(satb_drain) // optional
ysr@777 68 define_num_seq(parallel) // parallel only
ysr@777 69 define_num_seq(ext_root_scan)
ysr@777 70 define_num_seq(mark_stack_scan)
ysr@777 71 define_num_seq(update_rs)
ysr@777 72 define_num_seq(scan_rs)
ysr@777 73 define_num_seq(obj_copy)
ysr@777 74 define_num_seq(termination) // parallel only
ysr@777 75 define_num_seq(parallel_other) // parallel only
ysr@777 76 define_num_seq(mark_closure)
ysr@777 77 define_num_seq(clear_ct) // parallel only
ysr@777 78 };
ysr@777 79
apetrusenko@1112 80 class Summary: public PauseSummary,
apetrusenko@1112 81 public MainBodySummary {
ysr@777 82 public:
ysr@777 83 virtual MainBodySummary* main_body_summary() { return this; }
ysr@777 84 };
ysr@777 85
ysr@777 86 class G1CollectorPolicy: public CollectorPolicy {
ysr@777 87 protected:
ysr@777 88 // The number of pauses during the execution.
ysr@777 89 long _n_pauses;
ysr@777 90
ysr@777 91 // either equal to the number of parallel threads, if ParallelGCThreads
ysr@777 92 // has been set, or 1 otherwise
ysr@777 93 int _parallel_gc_threads;
ysr@777 94
ysr@777 95 enum SomePrivateConstants {
tonyp@1377 96 NumPrevPausesForHeuristics = 10
ysr@777 97 };
ysr@777 98
ysr@777 99 G1MMUTracker* _mmu_tracker;
ysr@777 100
ysr@777 101 void initialize_flags();
ysr@777 102
ysr@777 103 void initialize_all() {
ysr@777 104 initialize_flags();
ysr@777 105 initialize_size_info();
ysr@777 106 initialize_perm_generation(PermGen::MarkSweepCompact);
ysr@777 107 }
ysr@777 108
ysr@777 109 virtual size_t default_init_heap_size() {
ysr@777 110 // Pick some reasonable default.
ysr@777 111 return 8*M;
ysr@777 112 }
ysr@777 113
ysr@777 114 double _cur_collection_start_sec;
ysr@777 115 size_t _cur_collection_pause_used_at_start_bytes;
ysr@777 116 size_t _cur_collection_pause_used_regions_at_start;
ysr@777 117 size_t _prev_collection_pause_used_at_end_bytes;
ysr@777 118 double _cur_collection_par_time_ms;
ysr@777 119 double _cur_satb_drain_time_ms;
ysr@777 120 double _cur_clear_ct_time_ms;
ysr@777 121 bool _satb_drain_time_set;
johnc@3175 122 double _cur_ref_proc_time_ms;
johnc@3175 123 double _cur_ref_enq_time_ms;
ysr@777 124
johnc@1325 125 #ifndef PRODUCT
johnc@1325 126 // Card Table Count Cache stats
johnc@1325 127 double _min_clear_cc_time_ms; // min
johnc@1325 128 double _max_clear_cc_time_ms; // max
johnc@1325 129 double _cur_clear_cc_time_ms; // clearing time during current pause
johnc@1325 130 double _cum_clear_cc_time_ms; // cummulative clearing time
johnc@1325 131 jlong _num_cc_clears; // number of times the card count cache has been cleared
johnc@1325 132 #endif
johnc@1325 133
johnc@3021 134 // Statistics for recent GC pauses. See below for how indexed.
johnc@3021 135 TruncatedSeq* _recent_rs_scan_times_ms;
ysr@777 136
ysr@777 137 // These exclude marking times.
ysr@777 138 TruncatedSeq* _recent_pause_times_ms;
ysr@777 139 TruncatedSeq* _recent_gc_times_ms;
ysr@777 140
ysr@777 141 TruncatedSeq* _recent_CS_bytes_used_before;
ysr@777 142 TruncatedSeq* _recent_CS_bytes_surviving;
ysr@777 143
ysr@777 144 TruncatedSeq* _recent_rs_sizes;
ysr@777 145
ysr@777 146 TruncatedSeq* _concurrent_mark_remark_times_ms;
ysr@777 147 TruncatedSeq* _concurrent_mark_cleanup_times_ms;
ysr@777 148
apetrusenko@1112 149 Summary* _summary;
ysr@777 150
ysr@777 151 NumberSeq* _all_pause_times_ms;
ysr@777 152 NumberSeq* _all_full_gc_times_ms;
ysr@777 153 double _stop_world_start;
ysr@777 154 NumberSeq* _all_stop_world_times_ms;
ysr@777 155 NumberSeq* _all_yield_times_ms;
ysr@777 156
ysr@777 157 size_t _region_num_young;
ysr@777 158 size_t _region_num_tenured;
ysr@777 159 size_t _prev_region_num_young;
ysr@777 160 size_t _prev_region_num_tenured;
ysr@777 161
ysr@777 162 NumberSeq* _all_mod_union_times_ms;
ysr@777 163
ysr@777 164 int _aux_num;
ysr@777 165 NumberSeq* _all_aux_times_ms;
ysr@777 166 double* _cur_aux_start_times_ms;
ysr@777 167 double* _cur_aux_times_ms;
ysr@777 168 bool* _cur_aux_times_set;
ysr@777 169
tonyp@1966 170 double* _par_last_gc_worker_start_times_ms;
ysr@777 171 double* _par_last_ext_root_scan_times_ms;
ysr@777 172 double* _par_last_mark_stack_scan_times_ms;
ysr@777 173 double* _par_last_update_rs_times_ms;
ysr@777 174 double* _par_last_update_rs_processed_buffers;
ysr@777 175 double* _par_last_scan_rs_times_ms;
ysr@777 176 double* _par_last_obj_copy_times_ms;
ysr@777 177 double* _par_last_termination_times_ms;
tonyp@1966 178 double* _par_last_termination_attempts;
tonyp@1966 179 double* _par_last_gc_worker_end_times_ms;
brutisso@2712 180 double* _par_last_gc_worker_times_ms;
ysr@777 181
ysr@777 182 // indicates whether we are in full young or partially young GC mode
ysr@777 183 bool _full_young_gcs;
ysr@777 184
ysr@777 185 // if true, then it tries to dynamically adjust the length of the
ysr@777 186 // young list
ysr@777 187 bool _adaptive_young_list_length;
ysr@777 188 size_t _young_list_target_length;
ysr@777 189 size_t _young_list_fixed_length;
brutisso@3120 190 size_t _prev_eden_capacity; // used for logging
ysr@777 191
tonyp@2333 192 // The max number of regions we can extend the eden by while the GC
tonyp@2333 193 // locker is active. This should be >= _young_list_target_length;
tonyp@2333 194 size_t _young_list_max_length;
tonyp@2333 195
ysr@777 196 size_t _young_cset_length;
ysr@777 197 bool _last_young_gc_full;
ysr@777 198
ysr@777 199 unsigned _full_young_pause_num;
ysr@777 200 unsigned _partial_young_pause_num;
ysr@777 201
ysr@777 202 bool _during_marking;
ysr@777 203 bool _in_marking_window;
ysr@777 204 bool _in_marking_window_im;
ysr@777 205
ysr@777 206 SurvRateGroup* _short_lived_surv_rate_group;
ysr@777 207 SurvRateGroup* _survivor_surv_rate_group;
ysr@777 208 // add here any more surv rate groups
ysr@777 209
tonyp@1791 210 double _gc_overhead_perc;
tonyp@1791 211
tonyp@3119 212 double _reserve_factor;
tonyp@3119 213 size_t _reserve_regions;
tonyp@3119 214
ysr@777 215 bool during_marking() {
ysr@777 216 return _during_marking;
ysr@777 217 }
ysr@777 218
ysr@777 219 // <NEW PREDICTION>
ysr@777 220
ysr@777 221 private:
ysr@777 222 enum PredictionConstants {
ysr@777 223 TruncatedSeqLength = 10
ysr@777 224 };
ysr@777 225
ysr@777 226 TruncatedSeq* _alloc_rate_ms_seq;
ysr@777 227 double _prev_collection_pause_end_ms;
ysr@777 228
ysr@777 229 TruncatedSeq* _pending_card_diff_seq;
ysr@777 230 TruncatedSeq* _rs_length_diff_seq;
ysr@777 231 TruncatedSeq* _cost_per_card_ms_seq;
ysr@777 232 TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
ysr@777 233 TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
ysr@777 234 TruncatedSeq* _cost_per_entry_ms_seq;
ysr@777 235 TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
ysr@777 236 TruncatedSeq* _cost_per_byte_ms_seq;
ysr@777 237 TruncatedSeq* _constant_other_time_ms_seq;
ysr@777 238 TruncatedSeq* _young_other_cost_per_region_ms_seq;
ysr@777 239 TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
ysr@777 240
ysr@777 241 TruncatedSeq* _pending_cards_seq;
ysr@777 242 TruncatedSeq* _scanned_cards_seq;
ysr@777 243 TruncatedSeq* _rs_lengths_seq;
ysr@777 244
ysr@777 245 TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
ysr@777 246
ysr@777 247 TruncatedSeq* _young_gc_eff_seq;
ysr@777 248
ysr@777 249 TruncatedSeq* _max_conc_overhead_seq;
ysr@777 250
brutisso@3120 251 bool _using_new_ratio_calculations;
brutisso@3120 252 size_t _min_desired_young_length; // as set on the command line or default calculations
brutisso@3120 253 size_t _max_desired_young_length; // as set on the command line or default calculations
brutisso@3120 254
ysr@777 255 size_t _recorded_young_regions;
ysr@777 256 size_t _recorded_non_young_regions;
ysr@777 257 size_t _recorded_region_num;
ysr@777 258
ysr@777 259 size_t _free_regions_at_end_of_collection;
ysr@777 260
ysr@777 261 size_t _recorded_rs_lengths;
ysr@777 262 size_t _max_rs_lengths;
ysr@777 263
ysr@777 264 size_t _recorded_marked_bytes;
ysr@777 265 size_t _recorded_young_bytes;
ysr@777 266
ysr@777 267 size_t _predicted_pending_cards;
ysr@777 268 size_t _predicted_cards_scanned;
ysr@777 269 size_t _predicted_rs_lengths;
ysr@777 270 size_t _predicted_bytes_to_copy;
ysr@777 271
ysr@777 272 double _predicted_survival_ratio;
ysr@777 273 double _predicted_rs_update_time_ms;
ysr@777 274 double _predicted_rs_scan_time_ms;
ysr@777 275 double _predicted_object_copy_time_ms;
ysr@777 276 double _predicted_constant_other_time_ms;
ysr@777 277 double _predicted_young_other_time_ms;
ysr@777 278 double _predicted_non_young_other_time_ms;
ysr@777 279 double _predicted_pause_time_ms;
ysr@777 280
ysr@777 281 double _vtime_diff_ms;
ysr@777 282
ysr@777 283 double _recorded_young_free_cset_time_ms;
ysr@777 284 double _recorded_non_young_free_cset_time_ms;
ysr@777 285
ysr@777 286 double _sigma;
ysr@777 287 double _expensive_region_limit_ms;
ysr@777 288
ysr@777 289 size_t _rs_lengths_prediction;
ysr@777 290
ysr@777 291 size_t _known_garbage_bytes;
ysr@777 292 double _known_garbage_ratio;
ysr@777 293
ysr@777 294 double sigma() {
ysr@777 295 return _sigma;
ysr@777 296 }
ysr@777 297
ysr@777 298 // A function that prevents us putting too much stock in small sample
ysr@777 299 // sets. Returns a number between 2.0 and 1.0, depending on the number
ysr@777 300 // of samples. 5 or more samples yields one; fewer scales linearly from
ysr@777 301 // 2.0 at 1 sample to 1.0 at 5.
ysr@777 302 double confidence_factor(int samples) {
ysr@777 303 if (samples > 4) return 1.0;
ysr@777 304 else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
ysr@777 305 }
ysr@777 306
ysr@777 307 double get_new_neg_prediction(TruncatedSeq* seq) {
ysr@777 308 return seq->davg() - sigma() * seq->dsd();
ysr@777 309 }
ysr@777 310
ysr@777 311 #ifndef PRODUCT
ysr@777 312 bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
ysr@777 313 #endif // PRODUCT
ysr@777 314
iveresov@1546 315 void adjust_concurrent_refinement(double update_rs_time,
iveresov@1546 316 double update_rs_processed_buffers,
iveresov@1546 317 double goal_ms);
iveresov@1546 318
ysr@777 319 protected:
ysr@777 320 double _pause_time_target_ms;
ysr@777 321 double _recorded_young_cset_choice_time_ms;
ysr@777 322 double _recorded_non_young_cset_choice_time_ms;
ysr@777 323 bool _within_target;
ysr@777 324 size_t _pending_cards;
ysr@777 325 size_t _max_pending_cards;
ysr@777 326
ysr@777 327 public:
ysr@777 328
ysr@777 329 void set_region_short_lived(HeapRegion* hr) {
ysr@777 330 hr->install_surv_rate_group(_short_lived_surv_rate_group);
ysr@777 331 }
ysr@777 332
ysr@777 333 void set_region_survivors(HeapRegion* hr) {
ysr@777 334 hr->install_surv_rate_group(_survivor_surv_rate_group);
ysr@777 335 }
ysr@777 336
ysr@777 337 #ifndef PRODUCT
ysr@777 338 bool verify_young_ages();
ysr@777 339 #endif // PRODUCT
ysr@777 340
ysr@777 341 double get_new_prediction(TruncatedSeq* seq) {
ysr@777 342 return MAX2(seq->davg() + sigma() * seq->dsd(),
ysr@777 343 seq->davg() * confidence_factor(seq->num()));
ysr@777 344 }
ysr@777 345
ysr@777 346 size_t young_cset_length() {
ysr@777 347 return _young_cset_length;
ysr@777 348 }
ysr@777 349
ysr@777 350 void record_max_rs_lengths(size_t rs_lengths) {
ysr@777 351 _max_rs_lengths = rs_lengths;
ysr@777 352 }
ysr@777 353
ysr@777 354 size_t predict_pending_card_diff() {
ysr@777 355 double prediction = get_new_neg_prediction(_pending_card_diff_seq);
ysr@777 356 if (prediction < 0.00001)
ysr@777 357 return 0;
ysr@777 358 else
ysr@777 359 return (size_t) prediction;
ysr@777 360 }
ysr@777 361
ysr@777 362 size_t predict_pending_cards() {
ysr@777 363 size_t max_pending_card_num = _g1->max_pending_card_num();
ysr@777 364 size_t diff = predict_pending_card_diff();
ysr@777 365 size_t prediction;
ysr@777 366 if (diff > max_pending_card_num)
ysr@777 367 prediction = max_pending_card_num;
ysr@777 368 else
ysr@777 369 prediction = max_pending_card_num - diff;
ysr@777 370
ysr@777 371 return prediction;
ysr@777 372 }
ysr@777 373
ysr@777 374 size_t predict_rs_length_diff() {
ysr@777 375 return (size_t) get_new_prediction(_rs_length_diff_seq);
ysr@777 376 }
ysr@777 377
ysr@777 378 double predict_alloc_rate_ms() {
ysr@777 379 return get_new_prediction(_alloc_rate_ms_seq);
ysr@777 380 }
ysr@777 381
ysr@777 382 double predict_cost_per_card_ms() {
ysr@777 383 return get_new_prediction(_cost_per_card_ms_seq);
ysr@777 384 }
ysr@777 385
ysr@777 386 double predict_rs_update_time_ms(size_t pending_cards) {
ysr@777 387 return (double) pending_cards * predict_cost_per_card_ms();
ysr@777 388 }
ysr@777 389
ysr@777 390 double predict_fully_young_cards_per_entry_ratio() {
ysr@777 391 return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
ysr@777 392 }
ysr@777 393
ysr@777 394 double predict_partially_young_cards_per_entry_ratio() {
ysr@777 395 if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
ysr@777 396 return predict_fully_young_cards_per_entry_ratio();
ysr@777 397 else
ysr@777 398 return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
ysr@777 399 }
ysr@777 400
ysr@777 401 size_t predict_young_card_num(size_t rs_length) {
ysr@777 402 return (size_t) ((double) rs_length *
ysr@777 403 predict_fully_young_cards_per_entry_ratio());
ysr@777 404 }
ysr@777 405
ysr@777 406 size_t predict_non_young_card_num(size_t rs_length) {
ysr@777 407 return (size_t) ((double) rs_length *
ysr@777 408 predict_partially_young_cards_per_entry_ratio());
ysr@777 409 }
ysr@777 410
ysr@777 411 double predict_rs_scan_time_ms(size_t card_num) {
ysr@777 412 if (full_young_gcs())
ysr@777 413 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
ysr@777 414 else
ysr@777 415 return predict_partially_young_rs_scan_time_ms(card_num);
ysr@777 416 }
ysr@777 417
ysr@777 418 double predict_partially_young_rs_scan_time_ms(size_t card_num) {
ysr@777 419 if (_partially_young_cost_per_entry_ms_seq->num() < 3)
ysr@777 420 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
ysr@777 421 else
ysr@777 422 return (double) card_num *
ysr@777 423 get_new_prediction(_partially_young_cost_per_entry_ms_seq);
ysr@777 424 }
ysr@777 425
ysr@777 426 double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
ysr@777 427 if (_cost_per_byte_ms_during_cm_seq->num() < 3)
ysr@777 428 return 1.1 * (double) bytes_to_copy *
ysr@777 429 get_new_prediction(_cost_per_byte_ms_seq);
ysr@777 430 else
ysr@777 431 return (double) bytes_to_copy *
ysr@777 432 get_new_prediction(_cost_per_byte_ms_during_cm_seq);
ysr@777 433 }
ysr@777 434
ysr@777 435 double predict_object_copy_time_ms(size_t bytes_to_copy) {
ysr@777 436 if (_in_marking_window && !_in_marking_window_im)
ysr@777 437 return predict_object_copy_time_ms_during_cm(bytes_to_copy);
ysr@777 438 else
ysr@777 439 return (double) bytes_to_copy *
ysr@777 440 get_new_prediction(_cost_per_byte_ms_seq);
ysr@777 441 }
ysr@777 442
ysr@777 443 double predict_constant_other_time_ms() {
ysr@777 444 return get_new_prediction(_constant_other_time_ms_seq);
ysr@777 445 }
ysr@777 446
ysr@777 447 double predict_young_other_time_ms(size_t young_num) {
ysr@777 448 return
ysr@777 449 (double) young_num *
ysr@777 450 get_new_prediction(_young_other_cost_per_region_ms_seq);
ysr@777 451 }
ysr@777 452
ysr@777 453 double predict_non_young_other_time_ms(size_t non_young_num) {
ysr@777 454 return
ysr@777 455 (double) non_young_num *
ysr@777 456 get_new_prediction(_non_young_other_cost_per_region_ms_seq);
ysr@777 457 }
ysr@777 458
ysr@777 459 void check_if_region_is_too_expensive(double predicted_time_ms);
ysr@777 460
ysr@777 461 double predict_young_collection_elapsed_time_ms(size_t adjustment);
ysr@777 462 double predict_base_elapsed_time_ms(size_t pending_cards);
ysr@777 463 double predict_base_elapsed_time_ms(size_t pending_cards,
ysr@777 464 size_t scanned_cards);
ysr@777 465 size_t predict_bytes_to_copy(HeapRegion* hr);
ysr@777 466 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 467
ysr@777 468 void start_recording_regions();
johnc@1829 469 void record_cset_region_info(HeapRegion* hr, bool young);
johnc@1829 470 void record_non_young_cset_region(HeapRegion* hr);
johnc@1829 471
johnc@1829 472 void set_recorded_young_regions(size_t n_regions);
johnc@1829 473 void set_recorded_young_bytes(size_t bytes);
johnc@1829 474 void set_recorded_rs_lengths(size_t rs_lengths);
johnc@1829 475 void set_predicted_bytes_to_copy(size_t bytes);
johnc@1829 476
ysr@777 477 void end_recording_regions();
ysr@777 478
ysr@777 479 void record_vtime_diff_ms(double vtime_diff_ms) {
ysr@777 480 _vtime_diff_ms = vtime_diff_ms;
ysr@777 481 }
ysr@777 482
ysr@777 483 void record_young_free_cset_time_ms(double time_ms) {
ysr@777 484 _recorded_young_free_cset_time_ms = time_ms;
ysr@777 485 }
ysr@777 486
ysr@777 487 void record_non_young_free_cset_time_ms(double time_ms) {
ysr@777 488 _recorded_non_young_free_cset_time_ms = time_ms;
ysr@777 489 }
ysr@777 490
ysr@777 491 double predict_young_gc_eff() {
ysr@777 492 return get_new_neg_prediction(_young_gc_eff_seq);
ysr@777 493 }
ysr@777 494
apetrusenko@980 495 double predict_survivor_regions_evac_time();
apetrusenko@980 496
ysr@777 497 // </NEW PREDICTION>
ysr@777 498
ysr@777 499 void cset_regions_freed() {
ysr@777 500 bool propagate = _last_young_gc_full && !_in_marking_window;
ysr@777 501 _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 502 _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 503 // also call it on any more surv rate groups
ysr@777 504 }
ysr@777 505
ysr@777 506 void set_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 507 _known_garbage_bytes = known_garbage_bytes;
ysr@777 508 size_t heap_bytes = _g1->capacity();
ysr@777 509 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 510 }
ysr@777 511
ysr@777 512 void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 513 guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
ysr@777 514
ysr@777 515 _known_garbage_bytes -= known_garbage_bytes;
ysr@777 516 size_t heap_bytes = _g1->capacity();
ysr@777 517 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 518 }
ysr@777 519
ysr@777 520 G1MMUTracker* mmu_tracker() {
ysr@777 521 return _mmu_tracker;
ysr@777 522 }
ysr@777 523
tonyp@2011 524 double max_pause_time_ms() {
tonyp@2011 525 return _mmu_tracker->max_gc_time() * 1000.0;
tonyp@2011 526 }
tonyp@2011 527
ysr@777 528 double predict_remark_time_ms() {
ysr@777 529 return get_new_prediction(_concurrent_mark_remark_times_ms);
ysr@777 530 }
ysr@777 531
ysr@777 532 double predict_cleanup_time_ms() {
ysr@777 533 return get_new_prediction(_concurrent_mark_cleanup_times_ms);
ysr@777 534 }
ysr@777 535
ysr@777 536 // Returns an estimate of the survival rate of the region at yg-age
ysr@777 537 // "yg_age".
apetrusenko@980 538 double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
apetrusenko@980 539 TruncatedSeq* seq = surv_rate_group->get_seq(age);
ysr@777 540 if (seq->num() == 0)
ysr@777 541 gclog_or_tty->print("BARF! age is %d", age);
ysr@777 542 guarantee( seq->num() > 0, "invariant" );
ysr@777 543 double pred = get_new_prediction(seq);
ysr@777 544 if (pred > 1.0)
ysr@777 545 pred = 1.0;
ysr@777 546 return pred;
ysr@777 547 }
ysr@777 548
apetrusenko@980 549 double predict_yg_surv_rate(int age) {
apetrusenko@980 550 return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
apetrusenko@980 551 }
apetrusenko@980 552
ysr@777 553 double accum_yg_surv_rate_pred(int age) {
ysr@777 554 return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
ysr@777 555 }
ysr@777 556
ysr@777 557 protected:
tonyp@1966 558 void print_stats(int level, const char* str, double value);
tonyp@1966 559 void print_stats(int level, const char* str, int value);
tonyp@1966 560
brutisso@2712 561 void print_par_stats(int level, const char* str, double* data);
brutisso@2712 562 void print_par_sizes(int level, const char* str, double* data);
ysr@777 563
ysr@777 564 void check_other_times(int level,
ysr@777 565 NumberSeq* other_times_ms,
ysr@777 566 NumberSeq* calc_other_times_ms) const;
ysr@777 567
ysr@777 568 void print_summary (PauseSummary* stats) const;
ysr@777 569
ysr@777 570 void print_summary (int level, const char* str, NumberSeq* seq) const;
ysr@777 571 void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
ysr@777 572
ysr@777 573 double avg_value (double* data);
ysr@777 574 double max_value (double* data);
ysr@777 575 double sum_of_values (double* data);
ysr@777 576 double max_sum (double* data1, double* data2);
ysr@777 577
ysr@777 578 int _last_satb_drain_processed_buffers;
ysr@777 579 int _last_update_rs_processed_buffers;
ysr@777 580 double _last_pause_time_ms;
ysr@777 581
ysr@777 582 size_t _bytes_in_collection_set_before_gc;
tonyp@3028 583 size_t _bytes_copied_during_gc;
tonyp@3028 584
ysr@777 585 // Used to count used bytes in CS.
ysr@777 586 friend class CountCSClosure;
ysr@777 587
ysr@777 588 // Statistics kept per GC stoppage, pause or full.
ysr@777 589 TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
ysr@777 590
ysr@777 591 // We track markings.
ysr@777 592 int _num_markings;
ysr@777 593 double _mark_thread_startup_sec; // Time at startup of marking thread
ysr@777 594
ysr@777 595 // Add a new GC of the given duration and end time to the record.
ysr@777 596 void update_recent_gc_times(double end_time_sec, double elapsed_ms);
ysr@777 597
ysr@777 598 // The head of the list (via "next_in_collection_set()") representing the
johnc@1829 599 // current collection set. Set from the incrementally built collection
johnc@1829 600 // set at the start of the pause.
ysr@777 601 HeapRegion* _collection_set;
johnc@1829 602
johnc@1829 603 // The number of regions in the collection set. Set from the incrementally
johnc@1829 604 // built collection set at the start of an evacuation pause.
ysr@777 605 size_t _collection_set_size;
johnc@1829 606
johnc@1829 607 // The number of bytes in the collection set before the pause. Set from
johnc@1829 608 // the incrementally built collection set at the start of an evacuation
johnc@1829 609 // pause.
ysr@777 610 size_t _collection_set_bytes_used_before;
ysr@777 611
johnc@1829 612 // The associated information that is maintained while the incremental
johnc@1829 613 // collection set is being built with young regions. Used to populate
johnc@1829 614 // the recorded info for the evacuation pause.
johnc@1829 615
johnc@1829 616 enum CSetBuildType {
johnc@1829 617 Active, // We are actively building the collection set
johnc@1829 618 Inactive // We are not actively building the collection set
johnc@1829 619 };
johnc@1829 620
johnc@1829 621 CSetBuildType _inc_cset_build_state;
johnc@1829 622
johnc@1829 623 // The head of the incrementally built collection set.
johnc@1829 624 HeapRegion* _inc_cset_head;
johnc@1829 625
johnc@1829 626 // The tail of the incrementally built collection set.
johnc@1829 627 HeapRegion* _inc_cset_tail;
johnc@1829 628
johnc@1829 629 // The number of regions in the incrementally built collection set.
johnc@1829 630 // Used to set _collection_set_size at the start of an evacuation
johnc@1829 631 // pause.
johnc@1829 632 size_t _inc_cset_size;
johnc@1829 633
johnc@1829 634 // Used as the index in the surving young words structure
johnc@1829 635 // which tracks the amount of space, for each young region,
johnc@1829 636 // that survives the pause.
johnc@1829 637 size_t _inc_cset_young_index;
johnc@1829 638
johnc@1829 639 // The number of bytes in the incrementally built collection set.
johnc@1829 640 // Used to set _collection_set_bytes_used_before at the start of
johnc@1829 641 // an evacuation pause.
johnc@1829 642 size_t _inc_cset_bytes_used_before;
johnc@1829 643
johnc@1829 644 // Used to record the highest end of heap region in collection set
johnc@1829 645 HeapWord* _inc_cset_max_finger;
johnc@1829 646
johnc@1829 647 // The number of recorded used bytes in the young regions
johnc@1829 648 // of the collection set. This is the sum of the used() bytes
johnc@1829 649 // of retired young regions in the collection set.
johnc@1829 650 size_t _inc_cset_recorded_young_bytes;
johnc@1829 651
johnc@1829 652 // The RSet lengths recorded for regions in the collection set
johnc@1829 653 // (updated by the periodic sampling of the regions in the
johnc@1829 654 // young list/collection set).
johnc@1829 655 size_t _inc_cset_recorded_rs_lengths;
johnc@1829 656
johnc@1829 657 // The predicted elapsed time it will take to collect the regions
johnc@1829 658 // in the collection set (updated by the periodic sampling of the
johnc@1829 659 // regions in the young list/collection set).
johnc@1829 660 double _inc_cset_predicted_elapsed_time_ms;
johnc@1829 661
johnc@1829 662 // The predicted bytes to copy for the regions in the collection
johnc@1829 663 // set (updated by the periodic sampling of the regions in the
johnc@1829 664 // young list/collection set).
johnc@1829 665 size_t _inc_cset_predicted_bytes_to_copy;
johnc@1829 666
ysr@777 667 // Info about marking.
ysr@777 668 int _n_marks; // Sticky at 2, so we know when we've done at least 2.
ysr@777 669
ysr@777 670 // The number of collection pauses at the end of the last mark.
ysr@777 671 size_t _n_pauses_at_mark_end;
ysr@777 672
ysr@777 673 // Stash a pointer to the g1 heap.
ysr@777 674 G1CollectedHeap* _g1;
ysr@777 675
ysr@777 676 // The average time in ms per collection pause, averaged over recent pauses.
ysr@777 677 double recent_avg_time_for_pauses_ms();
ysr@777 678
johnc@3021 679 // The average time in ms for RS scanning, per pause, averaged
johnc@3021 680 // over recent pauses. (Note the RS scanning time for a pause
johnc@3021 681 // is itself an average of the RS scanning time for each worker
johnc@3021 682 // thread.)
johnc@3021 683 double recent_avg_time_for_rs_scan_ms();
ysr@777 684
ysr@777 685 // The number of "recent" GCs recorded in the number sequences
ysr@777 686 int number_of_recent_gcs();
ysr@777 687
ysr@777 688 // The average survival ratio, computed by the total number of bytes
ysr@777 689 // suriviving / total number of bytes before collection over the last
ysr@777 690 // several recent pauses.
ysr@777 691 double recent_avg_survival_fraction();
ysr@777 692 // The survival fraction of the most recent pause; if there have been no
ysr@777 693 // pauses, returns 1.0.
ysr@777 694 double last_survival_fraction();
ysr@777 695
ysr@777 696 // Returns a "conservative" estimate of the recent survival rate, i.e.,
ysr@777 697 // one that may be higher than "recent_avg_survival_fraction".
ysr@777 698 // This is conservative in several ways:
ysr@777 699 // If there have been few pauses, it will assume a potential high
ysr@777 700 // variance, and err on the side of caution.
ysr@777 701 // It puts a lower bound (currently 0.1) on the value it will return.
ysr@777 702 // To try to detect phase changes, if the most recent pause ("latest") has a
ysr@777 703 // higher-than average ("avg") survival rate, it returns that rate.
ysr@777 704 // "work" version is a utility function; young is restricted to young regions.
ysr@777 705 double conservative_avg_survival_fraction_work(double avg,
ysr@777 706 double latest);
ysr@777 707
ysr@777 708 // The arguments are the two sequences that keep track of the number of bytes
ysr@777 709 // surviving and the total number of bytes before collection, resp.,
ysr@777 710 // over the last evereal recent pauses
ysr@777 711 // Returns the survival rate for the category in the most recent pause.
ysr@777 712 // If there have been no pauses, returns 1.0.
ysr@777 713 double last_survival_fraction_work(TruncatedSeq* surviving,
ysr@777 714 TruncatedSeq* before);
ysr@777 715
ysr@777 716 // The arguments are the two sequences that keep track of the number of bytes
ysr@777 717 // surviving and the total number of bytes before collection, resp.,
ysr@777 718 // over the last several recent pauses
ysr@777 719 // Returns the average survival ration over the last several recent pauses
ysr@777 720 // If there have been no pauses, return 1.0
ysr@777 721 double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
ysr@777 722 TruncatedSeq* before);
ysr@777 723
ysr@777 724 double conservative_avg_survival_fraction() {
ysr@777 725 double avg = recent_avg_survival_fraction();
ysr@777 726 double latest = last_survival_fraction();
ysr@777 727 return conservative_avg_survival_fraction_work(avg, latest);
ysr@777 728 }
ysr@777 729
ysr@777 730 // The ratio of gc time to elapsed time, computed over recent pauses.
ysr@777 731 double _recent_avg_pause_time_ratio;
ysr@777 732
ysr@777 733 double recent_avg_pause_time_ratio() {
ysr@777 734 return _recent_avg_pause_time_ratio;
ysr@777 735 }
ysr@777 736
ysr@777 737 // Number of pauses between concurrent marking.
ysr@777 738 size_t _pauses_btwn_concurrent_mark;
ysr@777 739
ysr@777 740 size_t _n_marks_since_last_pause;
ysr@777 741
tonyp@1794 742 // At the end of a pause we check the heap occupancy and we decide
tonyp@1794 743 // whether we will start a marking cycle during the next pause. If
tonyp@1794 744 // we decide that we want to do that, we will set this parameter to
tonyp@1794 745 // true. So, this parameter will stay true between the end of a
tonyp@1794 746 // pause and the beginning of a subsequent pause (not necessarily
tonyp@1794 747 // the next one, see the comments on the next field) when we decide
tonyp@1794 748 // that we will indeed start a marking cycle and do the initial-mark
tonyp@1794 749 // work.
tonyp@1794 750 volatile bool _initiate_conc_mark_if_possible;
ysr@777 751
tonyp@1794 752 // If initiate_conc_mark_if_possible() is set at the beginning of a
tonyp@1794 753 // pause, it is a suggestion that the pause should start a marking
tonyp@1794 754 // cycle by doing the initial-mark work. However, it is possible
tonyp@1794 755 // that the concurrent marking thread is still finishing up the
tonyp@1794 756 // previous marking cycle (e.g., clearing the next marking
tonyp@1794 757 // bitmap). If that is the case we cannot start a new cycle and
tonyp@1794 758 // we'll have to wait for the concurrent marking thread to finish
tonyp@1794 759 // what it is doing. In this case we will postpone the marking cycle
tonyp@1794 760 // initiation decision for the next pause. When we eventually decide
tonyp@1794 761 // to start a cycle, we will set _during_initial_mark_pause which
tonyp@1794 762 // will stay true until the end of the initial-mark pause and it's
tonyp@1794 763 // the condition that indicates that a pause is doing the
tonyp@1794 764 // initial-mark work.
tonyp@1794 765 volatile bool _during_initial_mark_pause;
tonyp@1794 766
ysr@777 767 bool _should_revert_to_full_young_gcs;
ysr@777 768 bool _last_full_young_gc;
ysr@777 769
ysr@777 770 // This set of variables tracks the collector efficiency, in order to
ysr@777 771 // determine whether we should initiate a new marking.
ysr@777 772 double _cur_mark_stop_world_time_ms;
ysr@777 773 double _mark_remark_start_sec;
ysr@777 774 double _mark_cleanup_start_sec;
ysr@777 775 double _mark_closure_time_ms;
ysr@777 776
tonyp@3119 777 // Update the young list target length either by setting it to the
tonyp@3119 778 // desired fixed value or by calculating it using G1's pause
tonyp@3119 779 // prediction model. If no rs_lengths parameter is passed, predict
tonyp@3119 780 // the RS lengths using the prediction model, otherwise use the
tonyp@3119 781 // given rs_lengths as the prediction.
tonyp@3119 782 void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
tonyp@3119 783
tonyp@3119 784 // Calculate and return the minimum desired young list target
tonyp@3119 785 // length. This is the minimum desired young list length according
tonyp@3119 786 // to the user's inputs.
tonyp@3119 787 size_t calculate_young_list_desired_min_length(size_t base_min_length);
tonyp@3119 788
tonyp@3119 789 // Calculate and return the maximum desired young list target
tonyp@3119 790 // length. This is the maximum desired young list length according
tonyp@3119 791 // to the user's inputs.
tonyp@3119 792 size_t calculate_young_list_desired_max_length();
tonyp@3119 793
tonyp@3119 794 // Calculate and return the maximum young list target length that
tonyp@3119 795 // can fit into the pause time goal. The parameters are: rs_lengths
tonyp@3119 796 // represent the prediction of how large the young RSet lengths will
tonyp@3119 797 // be, base_min_length is the alreay existing number of regions in
tonyp@3119 798 // the young list, min_length and max_length are the desired min and
tonyp@3119 799 // max young list length according to the user's inputs.
tonyp@3119 800 size_t calculate_young_list_target_length(size_t rs_lengths,
tonyp@3119 801 size_t base_min_length,
tonyp@3119 802 size_t desired_min_length,
tonyp@3119 803 size_t desired_max_length);
tonyp@3119 804
tonyp@3119 805 // Check whether a given young length (young_length) fits into the
tonyp@3119 806 // given target pause time and whether the prediction for the amount
tonyp@3119 807 // of objects to be copied for the given length will fit into the
tonyp@3119 808 // given free space (expressed by base_free_regions). It is used by
tonyp@3119 809 // calculate_young_list_target_length().
tonyp@3119 810 bool predict_will_fit(size_t young_length, double base_time_ms,
tonyp@3119 811 size_t base_free_regions, double target_pause_time_ms);
ysr@777 812
ysr@777 813 public:
ysr@777 814
ysr@777 815 G1CollectorPolicy();
ysr@777 816
ysr@777 817 virtual G1CollectorPolicy* as_g1_policy() { return this; }
ysr@777 818
ysr@777 819 virtual CollectorPolicy::Name kind() {
ysr@777 820 return CollectorPolicy::G1CollectorPolicyKind;
ysr@777 821 }
ysr@777 822
tonyp@3119 823 // Check the current value of the young list RSet lengths and
tonyp@3119 824 // compare it against the last prediction. If the current value is
tonyp@3119 825 // higher, recalculate the young list target length prediction.
tonyp@3119 826 void revise_young_list_target_length_if_necessary();
ysr@777 827
ysr@777 828 size_t bytes_in_collection_set() {
ysr@777 829 return _bytes_in_collection_set_before_gc;
ysr@777 830 }
ysr@777 831
ysr@777 832 unsigned calc_gc_alloc_time_stamp() {
ysr@777 833 return _all_pause_times_ms->num() + 1;
ysr@777 834 }
ysr@777 835
brutisso@3120 836 // This should be called after the heap is resized.
brutisso@3120 837 void record_new_heap_size(size_t new_number_of_regions);
tonyp@3119 838
ysr@777 839 protected:
ysr@777 840
ysr@777 841 // Count the number of bytes used in the CS.
ysr@777 842 void count_CS_bytes_used();
ysr@777 843
ysr@777 844 // Together these do the base cleanup-recording work. Subclasses might
ysr@777 845 // want to put something between them.
ysr@777 846 void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
ysr@777 847 size_t max_live_bytes);
ysr@777 848 void record_concurrent_mark_cleanup_end_work2();
ysr@777 849
brutisso@3120 850 void update_young_list_size_using_newratio(size_t number_of_heap_regions);
brutisso@3120 851
ysr@777 852 public:
ysr@777 853
ysr@777 854 virtual void init();
ysr@777 855
apetrusenko@980 856 // Create jstat counters for the policy.
apetrusenko@980 857 virtual void initialize_gc_policy_counters();
apetrusenko@980 858
ysr@777 859 virtual HeapWord* mem_allocate_work(size_t size,
ysr@777 860 bool is_tlab,
ysr@777 861 bool* gc_overhead_limit_was_exceeded);
ysr@777 862
ysr@777 863 // This method controls how a collector handles one or more
ysr@777 864 // of its generations being fully allocated.
ysr@777 865 virtual HeapWord* satisfy_failed_allocation(size_t size,
ysr@777 866 bool is_tlab);
ysr@777 867
ysr@777 868 BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
ysr@777 869
ysr@777 870 GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; }
ysr@777 871
ysr@777 872 // The number of collection pauses so far.
ysr@777 873 long n_pauses() const { return _n_pauses; }
ysr@777 874
ysr@777 875 // Update the heuristic info to record a collection pause of the given
ysr@777 876 // start time, where the given number of bytes were used at the start.
ysr@777 877 // This may involve changing the desired size of a collection set.
ysr@777 878
ysr@777 879 virtual void record_stop_world_start();
ysr@777 880
ysr@777 881 virtual void record_collection_pause_start(double start_time_sec,
ysr@777 882 size_t start_used);
ysr@777 883
ysr@777 884 // Must currently be called while the world is stopped.
brutisso@3065 885 void record_concurrent_mark_init_end(double
ysr@777 886 mark_init_elapsed_time_ms);
ysr@777 887
ysr@777 888 void record_mark_closure_time(double mark_closure_time_ms);
ysr@777 889
ysr@777 890 virtual void record_concurrent_mark_remark_start();
ysr@777 891 virtual void record_concurrent_mark_remark_end();
ysr@777 892
ysr@777 893 virtual void record_concurrent_mark_cleanup_start();
ysr@777 894 virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
ysr@777 895 size_t max_live_bytes);
ysr@777 896 virtual void record_concurrent_mark_cleanup_completed();
ysr@777 897
ysr@777 898 virtual void record_concurrent_pause();
ysr@777 899 virtual void record_concurrent_pause_end();
ysr@777 900
tonyp@2062 901 virtual void record_collection_pause_end();
tonyp@2961 902 void print_heap_transition();
ysr@777 903
ysr@777 904 // Record the fact that a full collection occurred.
ysr@777 905 virtual void record_full_collection_start();
ysr@777 906 virtual void record_full_collection_end();
ysr@777 907
tonyp@1966 908 void record_gc_worker_start_time(int worker_i, double ms) {
tonyp@1966 909 _par_last_gc_worker_start_times_ms[worker_i] = ms;
tonyp@1966 910 }
tonyp@1966 911
ysr@777 912 void record_ext_root_scan_time(int worker_i, double ms) {
ysr@777 913 _par_last_ext_root_scan_times_ms[worker_i] = ms;
ysr@777 914 }
ysr@777 915
ysr@777 916 void record_mark_stack_scan_time(int worker_i, double ms) {
ysr@777 917 _par_last_mark_stack_scan_times_ms[worker_i] = ms;
ysr@777 918 }
ysr@777 919
ysr@777 920 void record_satb_drain_time(double ms) {
ysr@777 921 _cur_satb_drain_time_ms = ms;
ysr@777 922 _satb_drain_time_set = true;
ysr@777 923 }
ysr@777 924
ysr@777 925 void record_satb_drain_processed_buffers (int processed_buffers) {
ysr@777 926 _last_satb_drain_processed_buffers = processed_buffers;
ysr@777 927 }
ysr@777 928
ysr@777 929 void record_mod_union_time(double ms) {
ysr@777 930 _all_mod_union_times_ms->add(ms);
ysr@777 931 }
ysr@777 932
ysr@777 933 void record_update_rs_time(int thread, double ms) {
ysr@777 934 _par_last_update_rs_times_ms[thread] = ms;
ysr@777 935 }
ysr@777 936
ysr@777 937 void record_update_rs_processed_buffers (int thread,
ysr@777 938 double processed_buffers) {
ysr@777 939 _par_last_update_rs_processed_buffers[thread] = processed_buffers;
ysr@777 940 }
ysr@777 941
ysr@777 942 void record_scan_rs_time(int thread, double ms) {
ysr@777 943 _par_last_scan_rs_times_ms[thread] = ms;
ysr@777 944 }
ysr@777 945
ysr@777 946 void reset_obj_copy_time(int thread) {
ysr@777 947 _par_last_obj_copy_times_ms[thread] = 0.0;
ysr@777 948 }
ysr@777 949
ysr@777 950 void reset_obj_copy_time() {
ysr@777 951 reset_obj_copy_time(0);
ysr@777 952 }
ysr@777 953
ysr@777 954 void record_obj_copy_time(int thread, double ms) {
ysr@777 955 _par_last_obj_copy_times_ms[thread] += ms;
ysr@777 956 }
ysr@777 957
tonyp@1966 958 void record_termination(int thread, double ms, size_t attempts) {
tonyp@1966 959 _par_last_termination_times_ms[thread] = ms;
tonyp@1966 960 _par_last_termination_attempts[thread] = (double) attempts;
ysr@777 961 }
ysr@777 962
tonyp@1966 963 void record_gc_worker_end_time(int worker_i, double ms) {
tonyp@1966 964 _par_last_gc_worker_end_times_ms[worker_i] = ms;
ysr@777 965 }
ysr@777 966
tonyp@1030 967 void record_pause_time_ms(double ms) {
ysr@777 968 _last_pause_time_ms = ms;
ysr@777 969 }
ysr@777 970
ysr@777 971 void record_clear_ct_time(double ms) {
ysr@777 972 _cur_clear_ct_time_ms = ms;
ysr@777 973 }
ysr@777 974
ysr@777 975 void record_par_time(double ms) {
ysr@777 976 _cur_collection_par_time_ms = ms;
ysr@777 977 }
ysr@777 978
ysr@777 979 void record_aux_start_time(int i) {
ysr@777 980 guarantee(i < _aux_num, "should be within range");
ysr@777 981 _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
ysr@777 982 }
ysr@777 983
ysr@777 984 void record_aux_end_time(int i) {
ysr@777 985 guarantee(i < _aux_num, "should be within range");
ysr@777 986 double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
ysr@777 987 _cur_aux_times_set[i] = true;
ysr@777 988 _cur_aux_times_ms[i] += ms;
ysr@777 989 }
ysr@777 990
johnc@3175 991 void record_ref_proc_time(double ms) {
johnc@3175 992 _cur_ref_proc_time_ms = ms;
johnc@3175 993 }
johnc@3175 994
johnc@3175 995 void record_ref_enq_time(double ms) {
johnc@3175 996 _cur_ref_enq_time_ms = ms;
johnc@3175 997 }
johnc@3175 998
johnc@1325 999 #ifndef PRODUCT
johnc@1325 1000 void record_cc_clear_time(double ms) {
johnc@1325 1001 if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
johnc@1325 1002 _min_clear_cc_time_ms = ms;
johnc@1325 1003 if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
johnc@1325 1004 _max_clear_cc_time_ms = ms;
johnc@1325 1005 _cur_clear_cc_time_ms = ms;
johnc@1325 1006 _cum_clear_cc_time_ms += ms;
johnc@1325 1007 _num_cc_clears++;
johnc@1325 1008 }
johnc@1325 1009 #endif
johnc@1325 1010
tonyp@3028 1011 // Record how much space we copied during a GC. This is typically
tonyp@3028 1012 // called when a GC alloc region is being retired.
tonyp@3028 1013 void record_bytes_copied_during_gc(size_t bytes) {
tonyp@3028 1014 _bytes_copied_during_gc += bytes;
tonyp@3028 1015 }
tonyp@3028 1016
tonyp@3028 1017 // The amount of space we copied during a GC.
tonyp@3028 1018 size_t bytes_copied_during_gc() {
tonyp@3028 1019 return _bytes_copied_during_gc;
tonyp@3028 1020 }
ysr@777 1021
ysr@777 1022 // Choose a new collection set. Marks the chosen regions as being
ysr@777 1023 // "in_collection_set", and links them together. The head and number of
ysr@777 1024 // the collection set are available via access methods.
tonyp@2062 1025 virtual void choose_collection_set(double target_pause_time_ms) = 0;
ysr@777 1026
ysr@777 1027 // The head of the list (via "next_in_collection_set()") representing the
ysr@777 1028 // current collection set.
ysr@777 1029 HeapRegion* collection_set() { return _collection_set; }
ysr@777 1030
johnc@1829 1031 void clear_collection_set() { _collection_set = NULL; }
johnc@1829 1032
ysr@777 1033 // The number of elements in the current collection set.
ysr@777 1034 size_t collection_set_size() { return _collection_set_size; }
ysr@777 1035
ysr@777 1036 // Add "hr" to the CS.
ysr@777 1037 void add_to_collection_set(HeapRegion* hr);
ysr@777 1038
johnc@1829 1039 // Incremental CSet Support
johnc@1829 1040
johnc@1829 1041 // The head of the incrementally built collection set.
johnc@1829 1042 HeapRegion* inc_cset_head() { return _inc_cset_head; }
johnc@1829 1043
johnc@1829 1044 // The tail of the incrementally built collection set.
johnc@1829 1045 HeapRegion* inc_set_tail() { return _inc_cset_tail; }
johnc@1829 1046
johnc@1829 1047 // The number of elements in the incrementally built collection set.
johnc@1829 1048 size_t inc_cset_size() { return _inc_cset_size; }
johnc@1829 1049
johnc@1829 1050 // Initialize incremental collection set info.
johnc@1829 1051 void start_incremental_cset_building();
johnc@1829 1052
johnc@1829 1053 void clear_incremental_cset() {
johnc@1829 1054 _inc_cset_head = NULL;
johnc@1829 1055 _inc_cset_tail = NULL;
johnc@1829 1056 }
johnc@1829 1057
johnc@1829 1058 // Stop adding regions to the incremental collection set
johnc@1829 1059 void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
johnc@1829 1060
johnc@1829 1061 // Add/remove information about hr to the aggregated information
johnc@1829 1062 // for the incrementally built collection set.
johnc@1829 1063 void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
johnc@1829 1064 void remove_from_incremental_cset_info(HeapRegion* hr);
johnc@1829 1065
johnc@1829 1066 // Update information about hr in the aggregated information for
johnc@1829 1067 // the incrementally built collection set.
johnc@1829 1068 void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
johnc@1829 1069
johnc@1829 1070 private:
johnc@1829 1071 // Update the incremental cset information when adding a region
johnc@1829 1072 // (should not be called directly).
johnc@1829 1073 void add_region_to_incremental_cset_common(HeapRegion* hr);
johnc@1829 1074
johnc@1829 1075 public:
johnc@1829 1076 // Add hr to the LHS of the incremental collection set.
johnc@1829 1077 void add_region_to_incremental_cset_lhs(HeapRegion* hr);
johnc@1829 1078
johnc@1829 1079 // Add hr to the RHS of the incremental collection set.
johnc@1829 1080 void add_region_to_incremental_cset_rhs(HeapRegion* hr);
johnc@1829 1081
johnc@1829 1082 #ifndef PRODUCT
johnc@1829 1083 void print_collection_set(HeapRegion* list_head, outputStream* st);
johnc@1829 1084 #endif // !PRODUCT
johnc@1829 1085
tonyp@1794 1086 bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
tonyp@1794 1087 void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
tonyp@1794 1088 void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
tonyp@1794 1089
tonyp@1794 1090 bool during_initial_mark_pause() { return _during_initial_mark_pause; }
tonyp@1794 1091 void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
tonyp@1794 1092 void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
tonyp@1794 1093
tonyp@2011 1094 // This sets the initiate_conc_mark_if_possible() flag to start a
tonyp@2011 1095 // new cycle, as long as we are not already in one. It's best if it
tonyp@2011 1096 // is called during a safepoint when the test whether a cycle is in
tonyp@2011 1097 // progress or not is stable.
tonyp@3114 1098 bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
tonyp@2011 1099
tonyp@1794 1100 // This is called at the very beginning of an evacuation pause (it
tonyp@1794 1101 // has to be the first thing that the pause does). If
tonyp@1794 1102 // initiate_conc_mark_if_possible() is true, and the concurrent
tonyp@1794 1103 // marking thread has completed its work during the previous cycle,
tonyp@1794 1104 // it will set during_initial_mark_pause() to so that the pause does
tonyp@1794 1105 // the initial-mark work and start a marking cycle.
tonyp@1794 1106 void decide_on_conc_mark_initiation();
ysr@777 1107
ysr@777 1108 // If an expansion would be appropriate, because recent GC overhead had
ysr@777 1109 // exceeded the desired limit, return an amount to expand by.
ysr@777 1110 virtual size_t expansion_amount();
ysr@777 1111
ysr@777 1112 // note start of mark thread
ysr@777 1113 void note_start_of_mark_thread();
ysr@777 1114
ysr@777 1115 // The marked bytes of the "r" has changed; reclassify it's desirability
ysr@777 1116 // for marking. Also asserts that "r" is eligible for a CS.
ysr@777 1117 virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
ysr@777 1118
ysr@777 1119 #ifndef PRODUCT
ysr@777 1120 // Check any appropriate marked bytes info, asserting false if
ysr@777 1121 // something's wrong, else returning "true".
ysr@777 1122 virtual bool assertMarkedBytesDataOK() = 0;
ysr@777 1123 #endif
ysr@777 1124
ysr@777 1125 // Print tracing information.
ysr@777 1126 void print_tracing_info() const;
ysr@777 1127
ysr@777 1128 // Print stats on young survival ratio
ysr@777 1129 void print_yg_surv_rate_info() const;
ysr@777 1130
apetrusenko@980 1131 void finished_recalculating_age_indexes(bool is_survivors) {
apetrusenko@980 1132 if (is_survivors) {
apetrusenko@980 1133 _survivor_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1134 } else {
apetrusenko@980 1135 _short_lived_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1136 }
ysr@777 1137 // do that for any other surv rate groups
ysr@777 1138 }
ysr@777 1139
tonyp@2315 1140 bool is_young_list_full() {
tonyp@2315 1141 size_t young_list_length = _g1->young_list()->length();
tonyp@2333 1142 size_t young_list_target_length = _young_list_target_length;
tonyp@2333 1143 return young_list_length >= young_list_target_length;
tonyp@2333 1144 }
tonyp@2333 1145
tonyp@2333 1146 bool can_expand_young_list() {
tonyp@2333 1147 size_t young_list_length = _g1->young_list()->length();
tonyp@2333 1148 size_t young_list_max_length = _young_list_max_length;
tonyp@2333 1149 return young_list_length < young_list_max_length;
tonyp@2333 1150 }
tonyp@2315 1151
tonyp@3176 1152 size_t young_list_max_length() {
tonyp@3176 1153 return _young_list_max_length;
tonyp@3176 1154 }
tonyp@3176 1155
tonyp@2315 1156 void update_region_num(bool young);
ysr@777 1157
ysr@777 1158 bool full_young_gcs() {
ysr@777 1159 return _full_young_gcs;
ysr@777 1160 }
ysr@777 1161 void set_full_young_gcs(bool full_young_gcs) {
ysr@777 1162 _full_young_gcs = full_young_gcs;
ysr@777 1163 }
ysr@777 1164
ysr@777 1165 bool adaptive_young_list_length() {
ysr@777 1166 return _adaptive_young_list_length;
ysr@777 1167 }
ysr@777 1168 void set_adaptive_young_list_length(bool adaptive_young_list_length) {
ysr@777 1169 _adaptive_young_list_length = adaptive_young_list_length;
ysr@777 1170 }
ysr@777 1171
ysr@777 1172 inline double get_gc_eff_factor() {
ysr@777 1173 double ratio = _known_garbage_ratio;
ysr@777 1174
ysr@777 1175 double square = ratio * ratio;
ysr@777 1176 // square = square * square;
ysr@777 1177 double ret = square * 9.0 + 1.0;
ysr@777 1178 #if 0
ysr@777 1179 gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
ysr@777 1180 #endif // 0
ysr@777 1181 guarantee(0.0 <= ret && ret < 10.0, "invariant!");
ysr@777 1182 return ret;
ysr@777 1183 }
ysr@777 1184
ysr@777 1185 //
ysr@777 1186 // Survivor regions policy.
ysr@777 1187 //
ysr@777 1188 protected:
ysr@777 1189
ysr@777 1190 // Current tenuring threshold, set to 0 if the collector reaches the
ysr@777 1191 // maximum amount of suvivors regions.
ysr@777 1192 int _tenuring_threshold;
ysr@777 1193
apetrusenko@980 1194 // The limit on the number of regions allocated for survivors.
apetrusenko@980 1195 size_t _max_survivor_regions;
apetrusenko@980 1196
tonyp@2961 1197 // For reporting purposes.
tonyp@2961 1198 size_t _eden_bytes_before_gc;
tonyp@2961 1199 size_t _survivor_bytes_before_gc;
tonyp@2961 1200 size_t _capacity_before_gc;
tonyp@2961 1201
apetrusenko@980 1202 // The amount of survor regions after a collection.
apetrusenko@980 1203 size_t _recorded_survivor_regions;
apetrusenko@980 1204 // List of survivor regions.
apetrusenko@980 1205 HeapRegion* _recorded_survivor_head;
apetrusenko@980 1206 HeapRegion* _recorded_survivor_tail;
apetrusenko@980 1207
apetrusenko@980 1208 ageTable _survivors_age_table;
apetrusenko@980 1209
ysr@777 1210 public:
ysr@777 1211
ysr@777 1212 inline GCAllocPurpose
ysr@777 1213 evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
ysr@777 1214 if (age < _tenuring_threshold && src_region->is_young()) {
ysr@777 1215 return GCAllocForSurvived;
ysr@777 1216 } else {
ysr@777 1217 return GCAllocForTenured;
ysr@777 1218 }
ysr@777 1219 }
ysr@777 1220
ysr@777 1221 inline bool track_object_age(GCAllocPurpose purpose) {
ysr@777 1222 return purpose == GCAllocForSurvived;
ysr@777 1223 }
ysr@777 1224
apetrusenko@980 1225 static const size_t REGIONS_UNLIMITED = ~(size_t)0;
apetrusenko@980 1226
apetrusenko@980 1227 size_t max_regions(int purpose);
ysr@777 1228
ysr@777 1229 // The limit on regions for a particular purpose is reached.
ysr@777 1230 void note_alloc_region_limit_reached(int purpose) {
ysr@777 1231 if (purpose == GCAllocForSurvived) {
ysr@777 1232 _tenuring_threshold = 0;
ysr@777 1233 }
ysr@777 1234 }
ysr@777 1235
ysr@777 1236 void note_start_adding_survivor_regions() {
ysr@777 1237 _survivor_surv_rate_group->start_adding_regions();
ysr@777 1238 }
ysr@777 1239
ysr@777 1240 void note_stop_adding_survivor_regions() {
ysr@777 1241 _survivor_surv_rate_group->stop_adding_regions();
ysr@777 1242 }
apetrusenko@980 1243
apetrusenko@980 1244 void record_survivor_regions(size_t regions,
apetrusenko@980 1245 HeapRegion* head,
apetrusenko@980 1246 HeapRegion* tail) {
apetrusenko@980 1247 _recorded_survivor_regions = regions;
apetrusenko@980 1248 _recorded_survivor_head = head;
apetrusenko@980 1249 _recorded_survivor_tail = tail;
apetrusenko@980 1250 }
apetrusenko@980 1251
tonyp@1273 1252 size_t recorded_survivor_regions() {
tonyp@1273 1253 return _recorded_survivor_regions;
tonyp@1273 1254 }
tonyp@1273 1255
apetrusenko@980 1256 void record_thread_age_table(ageTable* age_table)
apetrusenko@980 1257 {
apetrusenko@980 1258 _survivors_age_table.merge_par(age_table);
apetrusenko@980 1259 }
apetrusenko@980 1260
tonyp@3119 1261 void update_max_gc_locker_expansion();
tonyp@2333 1262
apetrusenko@980 1263 // Calculates survivor space parameters.
tonyp@3119 1264 void update_survivors_policy();
apetrusenko@980 1265
ysr@777 1266 };
ysr@777 1267
ysr@777 1268 // This encapsulates a particular strategy for a g1 Collector.
ysr@777 1269 //
ysr@777 1270 // Start a concurrent mark when our heap size is n bytes
ysr@777 1271 // greater then our heap size was at the last concurrent
ysr@777 1272 // mark. Where n is a function of the CMSTriggerRatio
ysr@777 1273 // and the MinHeapFreeRatio.
ysr@777 1274 //
ysr@777 1275 // Start a g1 collection pause when we have allocated the
ysr@777 1276 // average number of bytes currently being freed in
ysr@777 1277 // a collection, but only if it is at least one region
ysr@777 1278 // full
ysr@777 1279 //
ysr@777 1280 // Resize Heap based on desired
ysr@777 1281 // allocation space, where desired allocation space is
ysr@777 1282 // a function of survival rate and desired future to size.
ysr@777 1283 //
ysr@777 1284 // Choose collection set by first picking all older regions
ysr@777 1285 // which have a survival rate which beats our projected young
ysr@777 1286 // survival rate. Then fill out the number of needed regions
ysr@777 1287 // with young regions.
ysr@777 1288
ysr@777 1289 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
ysr@777 1290 CollectionSetChooser* _collectionSetChooser;
ysr@777 1291
tonyp@2062 1292 virtual void choose_collection_set(double target_pause_time_ms);
ysr@777 1293 virtual void record_collection_pause_start(double start_time_sec,
ysr@777 1294 size_t start_used);
ysr@777 1295 virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
ysr@777 1296 size_t max_live_bytes);
ysr@777 1297 virtual void record_full_collection_end();
ysr@777 1298
ysr@777 1299 public:
ysr@777 1300 G1CollectorPolicy_BestRegionsFirst() {
ysr@777 1301 _collectionSetChooser = new CollectionSetChooser();
ysr@777 1302 }
tonyp@2062 1303 void record_collection_pause_end();
ysr@777 1304 // This is not needed any more, after the CSet choosing code was
ysr@777 1305 // changed to use the pause prediction work. But let's leave the
ysr@777 1306 // hook in just in case.
ysr@777 1307 void note_change_in_marked_bytes(HeapRegion* r) { }
ysr@777 1308 #ifndef PRODUCT
ysr@777 1309 bool assertMarkedBytesDataOK();
ysr@777 1310 #endif
ysr@777 1311 };
ysr@777 1312
ysr@777 1313 // This should move to some place more general...
ysr@777 1314
ysr@777 1315 // If we have "n" measurements, and we've kept track of their "sum" and the
ysr@777 1316 // "sum_of_squares" of the measurements, this returns the variance of the
ysr@777 1317 // sequence.
ysr@777 1318 inline double variance(int n, double sum_of_squares, double sum) {
ysr@777 1319 double n_d = (double)n;
ysr@777 1320 double avg = sum/n_d;
ysr@777 1321 return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
ysr@777 1322 }
ysr@777 1323
stefank@2314 1324 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial