src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Tue, 07 Dec 2010 16:47:42 -0500

author
tonyp
date
Tue, 07 Dec 2010 16:47:42 -0500
changeset 2333
016a3628c885
parent 2315
631f79e71e90
child 2712
5c0b591e1074
permissions
-rw-r--r--

6994056: G1: when GC locker is active, extend the Eden instead of allocating into the old gen
Summary: Allow the eden to the expanded up to a point when the GC locker is active.
Reviewed-by: jwilhelm, johnc, ysr, jcoomes

ysr@777 1 /*
trims@1907 2 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/collectionSetChooser.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1MMUTracker.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31
ysr@777 32 // A G1CollectorPolicy makes policy decisions that determine the
ysr@777 33 // characteristics of the collector. Examples include:
ysr@777 34 // * choice of collection set.
ysr@777 35 // * when to collect.
ysr@777 36
ysr@777 37 class HeapRegion;
ysr@777 38 class CollectionSetChooser;
ysr@777 39
ysr@777 40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
ysr@777 41 // over and over again and introducing subtle problems through small typos and
ysr@777 42 // cutting and pasting mistakes. The macros below introduces a number
ysr@777 43 // sequnce into the following two classes and the methods that access it.
ysr@777 44
ysr@777 45 #define define_num_seq(name) \
ysr@777 46 private: \
ysr@777 47 NumberSeq _all_##name##_times_ms; \
ysr@777 48 public: \
ysr@777 49 void record_##name##_time_ms(double ms) { \
ysr@777 50 _all_##name##_times_ms.add(ms); \
ysr@777 51 } \
ysr@777 52 NumberSeq* get_##name##_seq() { \
ysr@777 53 return &_all_##name##_times_ms; \
ysr@777 54 }
ysr@777 55
ysr@777 56 class MainBodySummary;
ysr@777 57
apetrusenko@984 58 class PauseSummary: public CHeapObj {
ysr@777 59 define_num_seq(total)
ysr@777 60 define_num_seq(other)
ysr@777 61
ysr@777 62 public:
ysr@777 63 virtual MainBodySummary* main_body_summary() { return NULL; }
ysr@777 64 };
ysr@777 65
apetrusenko@984 66 class MainBodySummary: public CHeapObj {
ysr@777 67 define_num_seq(satb_drain) // optional
ysr@777 68 define_num_seq(parallel) // parallel only
ysr@777 69 define_num_seq(ext_root_scan)
ysr@777 70 define_num_seq(mark_stack_scan)
ysr@777 71 define_num_seq(update_rs)
ysr@777 72 define_num_seq(scan_rs)
ysr@777 73 define_num_seq(obj_copy)
ysr@777 74 define_num_seq(termination) // parallel only
ysr@777 75 define_num_seq(parallel_other) // parallel only
ysr@777 76 define_num_seq(mark_closure)
ysr@777 77 define_num_seq(clear_ct) // parallel only
ysr@777 78 };
ysr@777 79
apetrusenko@1112 80 class Summary: public PauseSummary,
apetrusenko@1112 81 public MainBodySummary {
ysr@777 82 public:
ysr@777 83 virtual MainBodySummary* main_body_summary() { return this; }
ysr@777 84 };
ysr@777 85
ysr@777 86 class G1CollectorPolicy: public CollectorPolicy {
ysr@777 87 protected:
ysr@777 88 // The number of pauses during the execution.
ysr@777 89 long _n_pauses;
ysr@777 90
ysr@777 91 // either equal to the number of parallel threads, if ParallelGCThreads
ysr@777 92 // has been set, or 1 otherwise
ysr@777 93 int _parallel_gc_threads;
ysr@777 94
ysr@777 95 enum SomePrivateConstants {
tonyp@1377 96 NumPrevPausesForHeuristics = 10
ysr@777 97 };
ysr@777 98
ysr@777 99 G1MMUTracker* _mmu_tracker;
ysr@777 100
ysr@777 101 void initialize_flags();
ysr@777 102
ysr@777 103 void initialize_all() {
ysr@777 104 initialize_flags();
ysr@777 105 initialize_size_info();
ysr@777 106 initialize_perm_generation(PermGen::MarkSweepCompact);
ysr@777 107 }
ysr@777 108
ysr@777 109 virtual size_t default_init_heap_size() {
ysr@777 110 // Pick some reasonable default.
ysr@777 111 return 8*M;
ysr@777 112 }
ysr@777 113
ysr@777 114 double _cur_collection_start_sec;
ysr@777 115 size_t _cur_collection_pause_used_at_start_bytes;
ysr@777 116 size_t _cur_collection_pause_used_regions_at_start;
ysr@777 117 size_t _prev_collection_pause_used_at_end_bytes;
ysr@777 118 double _cur_collection_par_time_ms;
ysr@777 119 double _cur_satb_drain_time_ms;
ysr@777 120 double _cur_clear_ct_time_ms;
ysr@777 121 bool _satb_drain_time_set;
ysr@777 122
johnc@1325 123 #ifndef PRODUCT
johnc@1325 124 // Card Table Count Cache stats
johnc@1325 125 double _min_clear_cc_time_ms; // min
johnc@1325 126 double _max_clear_cc_time_ms; // max
johnc@1325 127 double _cur_clear_cc_time_ms; // clearing time during current pause
johnc@1325 128 double _cum_clear_cc_time_ms; // cummulative clearing time
johnc@1325 129 jlong _num_cc_clears; // number of times the card count cache has been cleared
johnc@1325 130 #endif
johnc@1325 131
ysr@777 132 double _cur_CH_strong_roots_end_sec;
ysr@777 133 double _cur_CH_strong_roots_dur_ms;
ysr@777 134 double _cur_G1_strong_roots_end_sec;
ysr@777 135 double _cur_G1_strong_roots_dur_ms;
ysr@777 136
ysr@777 137 // Statistics for recent GC pauses. See below for how indexed.
ysr@777 138 TruncatedSeq* _recent_CH_strong_roots_times_ms;
ysr@777 139 TruncatedSeq* _recent_G1_strong_roots_times_ms;
ysr@777 140 TruncatedSeq* _recent_evac_times_ms;
ysr@777 141 // These exclude marking times.
ysr@777 142 TruncatedSeq* _recent_pause_times_ms;
ysr@777 143 TruncatedSeq* _recent_gc_times_ms;
ysr@777 144
ysr@777 145 TruncatedSeq* _recent_CS_bytes_used_before;
ysr@777 146 TruncatedSeq* _recent_CS_bytes_surviving;
ysr@777 147
ysr@777 148 TruncatedSeq* _recent_rs_sizes;
ysr@777 149
ysr@777 150 TruncatedSeq* _concurrent_mark_init_times_ms;
ysr@777 151 TruncatedSeq* _concurrent_mark_remark_times_ms;
ysr@777 152 TruncatedSeq* _concurrent_mark_cleanup_times_ms;
ysr@777 153
apetrusenko@1112 154 Summary* _summary;
ysr@777 155
ysr@777 156 NumberSeq* _all_pause_times_ms;
ysr@777 157 NumberSeq* _all_full_gc_times_ms;
ysr@777 158 double _stop_world_start;
ysr@777 159 NumberSeq* _all_stop_world_times_ms;
ysr@777 160 NumberSeq* _all_yield_times_ms;
ysr@777 161
ysr@777 162 size_t _region_num_young;
ysr@777 163 size_t _region_num_tenured;
ysr@777 164 size_t _prev_region_num_young;
ysr@777 165 size_t _prev_region_num_tenured;
ysr@777 166
ysr@777 167 NumberSeq* _all_mod_union_times_ms;
ysr@777 168
ysr@777 169 int _aux_num;
ysr@777 170 NumberSeq* _all_aux_times_ms;
ysr@777 171 double* _cur_aux_start_times_ms;
ysr@777 172 double* _cur_aux_times_ms;
ysr@777 173 bool* _cur_aux_times_set;
ysr@777 174
tonyp@1966 175 double* _par_last_gc_worker_start_times_ms;
ysr@777 176 double* _par_last_ext_root_scan_times_ms;
ysr@777 177 double* _par_last_mark_stack_scan_times_ms;
ysr@777 178 double* _par_last_update_rs_times_ms;
ysr@777 179 double* _par_last_update_rs_processed_buffers;
ysr@777 180 double* _par_last_scan_rs_times_ms;
ysr@777 181 double* _par_last_obj_copy_times_ms;
ysr@777 182 double* _par_last_termination_times_ms;
tonyp@1966 183 double* _par_last_termination_attempts;
tonyp@1966 184 double* _par_last_gc_worker_end_times_ms;
ysr@777 185
ysr@777 186 // indicates that we are in young GC mode
ysr@777 187 bool _in_young_gc_mode;
ysr@777 188
ysr@777 189 // indicates whether we are in full young or partially young GC mode
ysr@777 190 bool _full_young_gcs;
ysr@777 191
ysr@777 192 // if true, then it tries to dynamically adjust the length of the
ysr@777 193 // young list
ysr@777 194 bool _adaptive_young_list_length;
ysr@777 195 size_t _young_list_min_length;
ysr@777 196 size_t _young_list_target_length;
ysr@777 197 size_t _young_list_fixed_length;
ysr@777 198
tonyp@2333 199 // The max number of regions we can extend the eden by while the GC
tonyp@2333 200 // locker is active. This should be >= _young_list_target_length;
tonyp@2333 201 size_t _young_list_max_length;
tonyp@2333 202
ysr@777 203 size_t _young_cset_length;
ysr@777 204 bool _last_young_gc_full;
ysr@777 205
ysr@777 206 unsigned _full_young_pause_num;
ysr@777 207 unsigned _partial_young_pause_num;
ysr@777 208
ysr@777 209 bool _during_marking;
ysr@777 210 bool _in_marking_window;
ysr@777 211 bool _in_marking_window_im;
ysr@777 212
ysr@777 213 SurvRateGroup* _short_lived_surv_rate_group;
ysr@777 214 SurvRateGroup* _survivor_surv_rate_group;
ysr@777 215 // add here any more surv rate groups
ysr@777 216
tonyp@1791 217 double _gc_overhead_perc;
tonyp@1791 218
ysr@777 219 bool during_marking() {
ysr@777 220 return _during_marking;
ysr@777 221 }
ysr@777 222
ysr@777 223 // <NEW PREDICTION>
ysr@777 224
ysr@777 225 private:
ysr@777 226 enum PredictionConstants {
ysr@777 227 TruncatedSeqLength = 10
ysr@777 228 };
ysr@777 229
ysr@777 230 TruncatedSeq* _alloc_rate_ms_seq;
ysr@777 231 double _prev_collection_pause_end_ms;
ysr@777 232
ysr@777 233 TruncatedSeq* _pending_card_diff_seq;
ysr@777 234 TruncatedSeq* _rs_length_diff_seq;
ysr@777 235 TruncatedSeq* _cost_per_card_ms_seq;
ysr@777 236 TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
ysr@777 237 TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
ysr@777 238 TruncatedSeq* _cost_per_entry_ms_seq;
ysr@777 239 TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
ysr@777 240 TruncatedSeq* _cost_per_byte_ms_seq;
ysr@777 241 TruncatedSeq* _constant_other_time_ms_seq;
ysr@777 242 TruncatedSeq* _young_other_cost_per_region_ms_seq;
ysr@777 243 TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
ysr@777 244
ysr@777 245 TruncatedSeq* _pending_cards_seq;
ysr@777 246 TruncatedSeq* _scanned_cards_seq;
ysr@777 247 TruncatedSeq* _rs_lengths_seq;
ysr@777 248
ysr@777 249 TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
ysr@777 250
ysr@777 251 TruncatedSeq* _young_gc_eff_seq;
ysr@777 252
ysr@777 253 TruncatedSeq* _max_conc_overhead_seq;
ysr@777 254
ysr@777 255 size_t _recorded_young_regions;
ysr@777 256 size_t _recorded_non_young_regions;
ysr@777 257 size_t _recorded_region_num;
ysr@777 258
ysr@777 259 size_t _free_regions_at_end_of_collection;
ysr@777 260
ysr@777 261 size_t _recorded_rs_lengths;
ysr@777 262 size_t _max_rs_lengths;
ysr@777 263
ysr@777 264 size_t _recorded_marked_bytes;
ysr@777 265 size_t _recorded_young_bytes;
ysr@777 266
ysr@777 267 size_t _predicted_pending_cards;
ysr@777 268 size_t _predicted_cards_scanned;
ysr@777 269 size_t _predicted_rs_lengths;
ysr@777 270 size_t _predicted_bytes_to_copy;
ysr@777 271
ysr@777 272 double _predicted_survival_ratio;
ysr@777 273 double _predicted_rs_update_time_ms;
ysr@777 274 double _predicted_rs_scan_time_ms;
ysr@777 275 double _predicted_object_copy_time_ms;
ysr@777 276 double _predicted_constant_other_time_ms;
ysr@777 277 double _predicted_young_other_time_ms;
ysr@777 278 double _predicted_non_young_other_time_ms;
ysr@777 279 double _predicted_pause_time_ms;
ysr@777 280
ysr@777 281 double _vtime_diff_ms;
ysr@777 282
ysr@777 283 double _recorded_young_free_cset_time_ms;
ysr@777 284 double _recorded_non_young_free_cset_time_ms;
ysr@777 285
ysr@777 286 double _sigma;
ysr@777 287 double _expensive_region_limit_ms;
ysr@777 288
ysr@777 289 size_t _rs_lengths_prediction;
ysr@777 290
ysr@777 291 size_t _known_garbage_bytes;
ysr@777 292 double _known_garbage_ratio;
ysr@777 293
ysr@777 294 double sigma() {
ysr@777 295 return _sigma;
ysr@777 296 }
ysr@777 297
ysr@777 298 // A function that prevents us putting too much stock in small sample
ysr@777 299 // sets. Returns a number between 2.0 and 1.0, depending on the number
ysr@777 300 // of samples. 5 or more samples yields one; fewer scales linearly from
ysr@777 301 // 2.0 at 1 sample to 1.0 at 5.
ysr@777 302 double confidence_factor(int samples) {
ysr@777 303 if (samples > 4) return 1.0;
ysr@777 304 else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
ysr@777 305 }
ysr@777 306
ysr@777 307 double get_new_neg_prediction(TruncatedSeq* seq) {
ysr@777 308 return seq->davg() - sigma() * seq->dsd();
ysr@777 309 }
ysr@777 310
ysr@777 311 #ifndef PRODUCT
ysr@777 312 bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
ysr@777 313 #endif // PRODUCT
ysr@777 314
iveresov@1546 315 void adjust_concurrent_refinement(double update_rs_time,
iveresov@1546 316 double update_rs_processed_buffers,
iveresov@1546 317 double goal_ms);
iveresov@1546 318
ysr@777 319 protected:
ysr@777 320 double _pause_time_target_ms;
ysr@777 321 double _recorded_young_cset_choice_time_ms;
ysr@777 322 double _recorded_non_young_cset_choice_time_ms;
ysr@777 323 bool _within_target;
ysr@777 324 size_t _pending_cards;
ysr@777 325 size_t _max_pending_cards;
ysr@777 326
ysr@777 327 public:
ysr@777 328
ysr@777 329 void set_region_short_lived(HeapRegion* hr) {
ysr@777 330 hr->install_surv_rate_group(_short_lived_surv_rate_group);
ysr@777 331 }
ysr@777 332
ysr@777 333 void set_region_survivors(HeapRegion* hr) {
ysr@777 334 hr->install_surv_rate_group(_survivor_surv_rate_group);
ysr@777 335 }
ysr@777 336
ysr@777 337 #ifndef PRODUCT
ysr@777 338 bool verify_young_ages();
ysr@777 339 #endif // PRODUCT
ysr@777 340
ysr@777 341 double get_new_prediction(TruncatedSeq* seq) {
ysr@777 342 return MAX2(seq->davg() + sigma() * seq->dsd(),
ysr@777 343 seq->davg() * confidence_factor(seq->num()));
ysr@777 344 }
ysr@777 345
ysr@777 346 size_t young_cset_length() {
ysr@777 347 return _young_cset_length;
ysr@777 348 }
ysr@777 349
ysr@777 350 void record_max_rs_lengths(size_t rs_lengths) {
ysr@777 351 _max_rs_lengths = rs_lengths;
ysr@777 352 }
ysr@777 353
ysr@777 354 size_t predict_pending_card_diff() {
ysr@777 355 double prediction = get_new_neg_prediction(_pending_card_diff_seq);
ysr@777 356 if (prediction < 0.00001)
ysr@777 357 return 0;
ysr@777 358 else
ysr@777 359 return (size_t) prediction;
ysr@777 360 }
ysr@777 361
ysr@777 362 size_t predict_pending_cards() {
ysr@777 363 size_t max_pending_card_num = _g1->max_pending_card_num();
ysr@777 364 size_t diff = predict_pending_card_diff();
ysr@777 365 size_t prediction;
ysr@777 366 if (diff > max_pending_card_num)
ysr@777 367 prediction = max_pending_card_num;
ysr@777 368 else
ysr@777 369 prediction = max_pending_card_num - diff;
ysr@777 370
ysr@777 371 return prediction;
ysr@777 372 }
ysr@777 373
ysr@777 374 size_t predict_rs_length_diff() {
ysr@777 375 return (size_t) get_new_prediction(_rs_length_diff_seq);
ysr@777 376 }
ysr@777 377
ysr@777 378 double predict_alloc_rate_ms() {
ysr@777 379 return get_new_prediction(_alloc_rate_ms_seq);
ysr@777 380 }
ysr@777 381
ysr@777 382 double predict_cost_per_card_ms() {
ysr@777 383 return get_new_prediction(_cost_per_card_ms_seq);
ysr@777 384 }
ysr@777 385
ysr@777 386 double predict_rs_update_time_ms(size_t pending_cards) {
ysr@777 387 return (double) pending_cards * predict_cost_per_card_ms();
ysr@777 388 }
ysr@777 389
ysr@777 390 double predict_fully_young_cards_per_entry_ratio() {
ysr@777 391 return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
ysr@777 392 }
ysr@777 393
ysr@777 394 double predict_partially_young_cards_per_entry_ratio() {
ysr@777 395 if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
ysr@777 396 return predict_fully_young_cards_per_entry_ratio();
ysr@777 397 else
ysr@777 398 return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
ysr@777 399 }
ysr@777 400
ysr@777 401 size_t predict_young_card_num(size_t rs_length) {
ysr@777 402 return (size_t) ((double) rs_length *
ysr@777 403 predict_fully_young_cards_per_entry_ratio());
ysr@777 404 }
ysr@777 405
ysr@777 406 size_t predict_non_young_card_num(size_t rs_length) {
ysr@777 407 return (size_t) ((double) rs_length *
ysr@777 408 predict_partially_young_cards_per_entry_ratio());
ysr@777 409 }
ysr@777 410
ysr@777 411 double predict_rs_scan_time_ms(size_t card_num) {
ysr@777 412 if (full_young_gcs())
ysr@777 413 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
ysr@777 414 else
ysr@777 415 return predict_partially_young_rs_scan_time_ms(card_num);
ysr@777 416 }
ysr@777 417
ysr@777 418 double predict_partially_young_rs_scan_time_ms(size_t card_num) {
ysr@777 419 if (_partially_young_cost_per_entry_ms_seq->num() < 3)
ysr@777 420 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
ysr@777 421 else
ysr@777 422 return (double) card_num *
ysr@777 423 get_new_prediction(_partially_young_cost_per_entry_ms_seq);
ysr@777 424 }
ysr@777 425
ysr@777 426 double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
ysr@777 427 if (_cost_per_byte_ms_during_cm_seq->num() < 3)
ysr@777 428 return 1.1 * (double) bytes_to_copy *
ysr@777 429 get_new_prediction(_cost_per_byte_ms_seq);
ysr@777 430 else
ysr@777 431 return (double) bytes_to_copy *
ysr@777 432 get_new_prediction(_cost_per_byte_ms_during_cm_seq);
ysr@777 433 }
ysr@777 434
ysr@777 435 double predict_object_copy_time_ms(size_t bytes_to_copy) {
ysr@777 436 if (_in_marking_window && !_in_marking_window_im)
ysr@777 437 return predict_object_copy_time_ms_during_cm(bytes_to_copy);
ysr@777 438 else
ysr@777 439 return (double) bytes_to_copy *
ysr@777 440 get_new_prediction(_cost_per_byte_ms_seq);
ysr@777 441 }
ysr@777 442
ysr@777 443 double predict_constant_other_time_ms() {
ysr@777 444 return get_new_prediction(_constant_other_time_ms_seq);
ysr@777 445 }
ysr@777 446
ysr@777 447 double predict_young_other_time_ms(size_t young_num) {
ysr@777 448 return
ysr@777 449 (double) young_num *
ysr@777 450 get_new_prediction(_young_other_cost_per_region_ms_seq);
ysr@777 451 }
ysr@777 452
ysr@777 453 double predict_non_young_other_time_ms(size_t non_young_num) {
ysr@777 454 return
ysr@777 455 (double) non_young_num *
ysr@777 456 get_new_prediction(_non_young_other_cost_per_region_ms_seq);
ysr@777 457 }
ysr@777 458
ysr@777 459 void check_if_region_is_too_expensive(double predicted_time_ms);
ysr@777 460
ysr@777 461 double predict_young_collection_elapsed_time_ms(size_t adjustment);
ysr@777 462 double predict_base_elapsed_time_ms(size_t pending_cards);
ysr@777 463 double predict_base_elapsed_time_ms(size_t pending_cards,
ysr@777 464 size_t scanned_cards);
ysr@777 465 size_t predict_bytes_to_copy(HeapRegion* hr);
ysr@777 466 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 467
johnc@1829 468 // for use by: calculate_young_list_target_length(rs_length)
johnc@1829 469 bool predict_will_fit(size_t young_region_num,
johnc@1829 470 double base_time_ms,
johnc@1829 471 size_t init_free_regions,
johnc@1829 472 double target_pause_time_ms);
ysr@777 473
ysr@777 474 void start_recording_regions();
johnc@1829 475 void record_cset_region_info(HeapRegion* hr, bool young);
johnc@1829 476 void record_non_young_cset_region(HeapRegion* hr);
johnc@1829 477
johnc@1829 478 void set_recorded_young_regions(size_t n_regions);
johnc@1829 479 void set_recorded_young_bytes(size_t bytes);
johnc@1829 480 void set_recorded_rs_lengths(size_t rs_lengths);
johnc@1829 481 void set_predicted_bytes_to_copy(size_t bytes);
johnc@1829 482
ysr@777 483 void end_recording_regions();
ysr@777 484
ysr@777 485 void record_vtime_diff_ms(double vtime_diff_ms) {
ysr@777 486 _vtime_diff_ms = vtime_diff_ms;
ysr@777 487 }
ysr@777 488
ysr@777 489 void record_young_free_cset_time_ms(double time_ms) {
ysr@777 490 _recorded_young_free_cset_time_ms = time_ms;
ysr@777 491 }
ysr@777 492
ysr@777 493 void record_non_young_free_cset_time_ms(double time_ms) {
ysr@777 494 _recorded_non_young_free_cset_time_ms = time_ms;
ysr@777 495 }
ysr@777 496
ysr@777 497 double predict_young_gc_eff() {
ysr@777 498 return get_new_neg_prediction(_young_gc_eff_seq);
ysr@777 499 }
ysr@777 500
apetrusenko@980 501 double predict_survivor_regions_evac_time();
apetrusenko@980 502
ysr@777 503 // </NEW PREDICTION>
ysr@777 504
ysr@777 505 public:
ysr@777 506 void cset_regions_freed() {
ysr@777 507 bool propagate = _last_young_gc_full && !_in_marking_window;
ysr@777 508 _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 509 _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 510 // also call it on any more surv rate groups
ysr@777 511 }
ysr@777 512
ysr@777 513 void set_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 514 _known_garbage_bytes = known_garbage_bytes;
ysr@777 515 size_t heap_bytes = _g1->capacity();
ysr@777 516 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 517 }
ysr@777 518
ysr@777 519 void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 520 guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
ysr@777 521
ysr@777 522 _known_garbage_bytes -= known_garbage_bytes;
ysr@777 523 size_t heap_bytes = _g1->capacity();
ysr@777 524 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 525 }
ysr@777 526
ysr@777 527 G1MMUTracker* mmu_tracker() {
ysr@777 528 return _mmu_tracker;
ysr@777 529 }
ysr@777 530
tonyp@2011 531 double max_pause_time_ms() {
tonyp@2011 532 return _mmu_tracker->max_gc_time() * 1000.0;
tonyp@2011 533 }
tonyp@2011 534
ysr@777 535 double predict_init_time_ms() {
ysr@777 536 return get_new_prediction(_concurrent_mark_init_times_ms);
ysr@777 537 }
ysr@777 538
ysr@777 539 double predict_remark_time_ms() {
ysr@777 540 return get_new_prediction(_concurrent_mark_remark_times_ms);
ysr@777 541 }
ysr@777 542
ysr@777 543 double predict_cleanup_time_ms() {
ysr@777 544 return get_new_prediction(_concurrent_mark_cleanup_times_ms);
ysr@777 545 }
ysr@777 546
ysr@777 547 // Returns an estimate of the survival rate of the region at yg-age
ysr@777 548 // "yg_age".
apetrusenko@980 549 double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
apetrusenko@980 550 TruncatedSeq* seq = surv_rate_group->get_seq(age);
ysr@777 551 if (seq->num() == 0)
ysr@777 552 gclog_or_tty->print("BARF! age is %d", age);
ysr@777 553 guarantee( seq->num() > 0, "invariant" );
ysr@777 554 double pred = get_new_prediction(seq);
ysr@777 555 if (pred > 1.0)
ysr@777 556 pred = 1.0;
ysr@777 557 return pred;
ysr@777 558 }
ysr@777 559
apetrusenko@980 560 double predict_yg_surv_rate(int age) {
apetrusenko@980 561 return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
apetrusenko@980 562 }
apetrusenko@980 563
ysr@777 564 double accum_yg_surv_rate_pred(int age) {
ysr@777 565 return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
ysr@777 566 }
ysr@777 567
ysr@777 568 protected:
tonyp@1966 569 void print_stats(int level, const char* str, double value);
tonyp@1966 570 void print_stats(int level, const char* str, int value);
tonyp@1966 571
tonyp@1966 572 void print_par_stats(int level, const char* str, double* data) {
ysr@777 573 print_par_stats(level, str, data, true);
ysr@777 574 }
tonyp@1966 575 void print_par_stats(int level, const char* str, double* data, bool summary);
tonyp@1966 576 void print_par_sizes(int level, const char* str, double* data, bool summary);
ysr@777 577
ysr@777 578 void check_other_times(int level,
ysr@777 579 NumberSeq* other_times_ms,
ysr@777 580 NumberSeq* calc_other_times_ms) const;
ysr@777 581
ysr@777 582 void print_summary (PauseSummary* stats) const;
ysr@777 583
ysr@777 584 void print_summary (int level, const char* str, NumberSeq* seq) const;
ysr@777 585 void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
ysr@777 586
ysr@777 587 double avg_value (double* data);
ysr@777 588 double max_value (double* data);
ysr@777 589 double sum_of_values (double* data);
ysr@777 590 double max_sum (double* data1, double* data2);
ysr@777 591
ysr@777 592 int _last_satb_drain_processed_buffers;
ysr@777 593 int _last_update_rs_processed_buffers;
ysr@777 594 double _last_pause_time_ms;
ysr@777 595
ysr@777 596 size_t _bytes_in_to_space_before_gc;
ysr@777 597 size_t _bytes_in_to_space_after_gc;
ysr@777 598 size_t bytes_in_to_space_during_gc() {
ysr@777 599 return
ysr@777 600 _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
ysr@777 601 }
ysr@777 602 size_t _bytes_in_collection_set_before_gc;
ysr@777 603 // Used to count used bytes in CS.
ysr@777 604 friend class CountCSClosure;
ysr@777 605
ysr@777 606 // Statistics kept per GC stoppage, pause or full.
ysr@777 607 TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
ysr@777 608
ysr@777 609 // We track markings.
ysr@777 610 int _num_markings;
ysr@777 611 double _mark_thread_startup_sec; // Time at startup of marking thread
ysr@777 612
ysr@777 613 // Add a new GC of the given duration and end time to the record.
ysr@777 614 void update_recent_gc_times(double end_time_sec, double elapsed_ms);
ysr@777 615
ysr@777 616 // The head of the list (via "next_in_collection_set()") representing the
johnc@1829 617 // current collection set. Set from the incrementally built collection
johnc@1829 618 // set at the start of the pause.
ysr@777 619 HeapRegion* _collection_set;
johnc@1829 620
johnc@1829 621 // The number of regions in the collection set. Set from the incrementally
johnc@1829 622 // built collection set at the start of an evacuation pause.
ysr@777 623 size_t _collection_set_size;
johnc@1829 624
johnc@1829 625 // The number of bytes in the collection set before the pause. Set from
johnc@1829 626 // the incrementally built collection set at the start of an evacuation
johnc@1829 627 // pause.
ysr@777 628 size_t _collection_set_bytes_used_before;
ysr@777 629
johnc@1829 630 // The associated information that is maintained while the incremental
johnc@1829 631 // collection set is being built with young regions. Used to populate
johnc@1829 632 // the recorded info for the evacuation pause.
johnc@1829 633
johnc@1829 634 enum CSetBuildType {
johnc@1829 635 Active, // We are actively building the collection set
johnc@1829 636 Inactive // We are not actively building the collection set
johnc@1829 637 };
johnc@1829 638
johnc@1829 639 CSetBuildType _inc_cset_build_state;
johnc@1829 640
johnc@1829 641 // The head of the incrementally built collection set.
johnc@1829 642 HeapRegion* _inc_cset_head;
johnc@1829 643
johnc@1829 644 // The tail of the incrementally built collection set.
johnc@1829 645 HeapRegion* _inc_cset_tail;
johnc@1829 646
johnc@1829 647 // The number of regions in the incrementally built collection set.
johnc@1829 648 // Used to set _collection_set_size at the start of an evacuation
johnc@1829 649 // pause.
johnc@1829 650 size_t _inc_cset_size;
johnc@1829 651
johnc@1829 652 // Used as the index in the surving young words structure
johnc@1829 653 // which tracks the amount of space, for each young region,
johnc@1829 654 // that survives the pause.
johnc@1829 655 size_t _inc_cset_young_index;
johnc@1829 656
johnc@1829 657 // The number of bytes in the incrementally built collection set.
johnc@1829 658 // Used to set _collection_set_bytes_used_before at the start of
johnc@1829 659 // an evacuation pause.
johnc@1829 660 size_t _inc_cset_bytes_used_before;
johnc@1829 661
johnc@1829 662 // Used to record the highest end of heap region in collection set
johnc@1829 663 HeapWord* _inc_cset_max_finger;
johnc@1829 664
johnc@1829 665 // The number of recorded used bytes in the young regions
johnc@1829 666 // of the collection set. This is the sum of the used() bytes
johnc@1829 667 // of retired young regions in the collection set.
johnc@1829 668 size_t _inc_cset_recorded_young_bytes;
johnc@1829 669
johnc@1829 670 // The RSet lengths recorded for regions in the collection set
johnc@1829 671 // (updated by the periodic sampling of the regions in the
johnc@1829 672 // young list/collection set).
johnc@1829 673 size_t _inc_cset_recorded_rs_lengths;
johnc@1829 674
johnc@1829 675 // The predicted elapsed time it will take to collect the regions
johnc@1829 676 // in the collection set (updated by the periodic sampling of the
johnc@1829 677 // regions in the young list/collection set).
johnc@1829 678 double _inc_cset_predicted_elapsed_time_ms;
johnc@1829 679
johnc@1829 680 // The predicted bytes to copy for the regions in the collection
johnc@1829 681 // set (updated by the periodic sampling of the regions in the
johnc@1829 682 // young list/collection set).
johnc@1829 683 size_t _inc_cset_predicted_bytes_to_copy;
johnc@1829 684
ysr@777 685 // Info about marking.
ysr@777 686 int _n_marks; // Sticky at 2, so we know when we've done at least 2.
ysr@777 687
ysr@777 688 // The number of collection pauses at the end of the last mark.
ysr@777 689 size_t _n_pauses_at_mark_end;
ysr@777 690
ysr@777 691 // Stash a pointer to the g1 heap.
ysr@777 692 G1CollectedHeap* _g1;
ysr@777 693
ysr@777 694 // The average time in ms per collection pause, averaged over recent pauses.
ysr@777 695 double recent_avg_time_for_pauses_ms();
ysr@777 696
ysr@777 697 // The average time in ms for processing CollectedHeap strong roots, per
ysr@777 698 // collection pause, averaged over recent pauses.
ysr@777 699 double recent_avg_time_for_CH_strong_ms();
ysr@777 700
ysr@777 701 // The average time in ms for processing the G1 remembered set, per
ysr@777 702 // pause, averaged over recent pauses.
ysr@777 703 double recent_avg_time_for_G1_strong_ms();
ysr@777 704
ysr@777 705 // The average time in ms for "evacuating followers", per pause, averaged
ysr@777 706 // over recent pauses.
ysr@777 707 double recent_avg_time_for_evac_ms();
ysr@777 708
ysr@777 709 // The number of "recent" GCs recorded in the number sequences
ysr@777 710 int number_of_recent_gcs();
ysr@777 711
ysr@777 712 // The average survival ratio, computed by the total number of bytes
ysr@777 713 // suriviving / total number of bytes before collection over the last
ysr@777 714 // several recent pauses.
ysr@777 715 double recent_avg_survival_fraction();
ysr@777 716 // The survival fraction of the most recent pause; if there have been no
ysr@777 717 // pauses, returns 1.0.
ysr@777 718 double last_survival_fraction();
ysr@777 719
ysr@777 720 // Returns a "conservative" estimate of the recent survival rate, i.e.,
ysr@777 721 // one that may be higher than "recent_avg_survival_fraction".
ysr@777 722 // This is conservative in several ways:
ysr@777 723 // If there have been few pauses, it will assume a potential high
ysr@777 724 // variance, and err on the side of caution.
ysr@777 725 // It puts a lower bound (currently 0.1) on the value it will return.
ysr@777 726 // To try to detect phase changes, if the most recent pause ("latest") has a
ysr@777 727 // higher-than average ("avg") survival rate, it returns that rate.
ysr@777 728 // "work" version is a utility function; young is restricted to young regions.
ysr@777 729 double conservative_avg_survival_fraction_work(double avg,
ysr@777 730 double latest);
ysr@777 731
ysr@777 732 // The arguments are the two sequences that keep track of the number of bytes
ysr@777 733 // surviving and the total number of bytes before collection, resp.,
ysr@777 734 // over the last evereal recent pauses
ysr@777 735 // Returns the survival rate for the category in the most recent pause.
ysr@777 736 // If there have been no pauses, returns 1.0.
ysr@777 737 double last_survival_fraction_work(TruncatedSeq* surviving,
ysr@777 738 TruncatedSeq* before);
ysr@777 739
ysr@777 740 // The arguments are the two sequences that keep track of the number of bytes
ysr@777 741 // surviving and the total number of bytes before collection, resp.,
ysr@777 742 // over the last several recent pauses
ysr@777 743 // Returns the average survival ration over the last several recent pauses
ysr@777 744 // If there have been no pauses, return 1.0
ysr@777 745 double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
ysr@777 746 TruncatedSeq* before);
ysr@777 747
ysr@777 748 double conservative_avg_survival_fraction() {
ysr@777 749 double avg = recent_avg_survival_fraction();
ysr@777 750 double latest = last_survival_fraction();
ysr@777 751 return conservative_avg_survival_fraction_work(avg, latest);
ysr@777 752 }
ysr@777 753
ysr@777 754 // The ratio of gc time to elapsed time, computed over recent pauses.
ysr@777 755 double _recent_avg_pause_time_ratio;
ysr@777 756
ysr@777 757 double recent_avg_pause_time_ratio() {
ysr@777 758 return _recent_avg_pause_time_ratio;
ysr@777 759 }
ysr@777 760
ysr@777 761 // Number of pauses between concurrent marking.
ysr@777 762 size_t _pauses_btwn_concurrent_mark;
ysr@777 763
ysr@777 764 size_t _n_marks_since_last_pause;
ysr@777 765
tonyp@1794 766 // At the end of a pause we check the heap occupancy and we decide
tonyp@1794 767 // whether we will start a marking cycle during the next pause. If
tonyp@1794 768 // we decide that we want to do that, we will set this parameter to
tonyp@1794 769 // true. So, this parameter will stay true between the end of a
tonyp@1794 770 // pause and the beginning of a subsequent pause (not necessarily
tonyp@1794 771 // the next one, see the comments on the next field) when we decide
tonyp@1794 772 // that we will indeed start a marking cycle and do the initial-mark
tonyp@1794 773 // work.
tonyp@1794 774 volatile bool _initiate_conc_mark_if_possible;
ysr@777 775
tonyp@1794 776 // If initiate_conc_mark_if_possible() is set at the beginning of a
tonyp@1794 777 // pause, it is a suggestion that the pause should start a marking
tonyp@1794 778 // cycle by doing the initial-mark work. However, it is possible
tonyp@1794 779 // that the concurrent marking thread is still finishing up the
tonyp@1794 780 // previous marking cycle (e.g., clearing the next marking
tonyp@1794 781 // bitmap). If that is the case we cannot start a new cycle and
tonyp@1794 782 // we'll have to wait for the concurrent marking thread to finish
tonyp@1794 783 // what it is doing. In this case we will postpone the marking cycle
tonyp@1794 784 // initiation decision for the next pause. When we eventually decide
tonyp@1794 785 // to start a cycle, we will set _during_initial_mark_pause which
tonyp@1794 786 // will stay true until the end of the initial-mark pause and it's
tonyp@1794 787 // the condition that indicates that a pause is doing the
tonyp@1794 788 // initial-mark work.
tonyp@1794 789 volatile bool _during_initial_mark_pause;
tonyp@1794 790
ysr@777 791 bool _should_revert_to_full_young_gcs;
ysr@777 792 bool _last_full_young_gc;
ysr@777 793
ysr@777 794 // This set of variables tracks the collector efficiency, in order to
ysr@777 795 // determine whether we should initiate a new marking.
ysr@777 796 double _cur_mark_stop_world_time_ms;
ysr@777 797 double _mark_init_start_sec;
ysr@777 798 double _mark_remark_start_sec;
ysr@777 799 double _mark_cleanup_start_sec;
ysr@777 800 double _mark_closure_time_ms;
ysr@777 801
ysr@777 802 void calculate_young_list_min_length();
johnc@1829 803 void calculate_young_list_target_length();
johnc@1829 804 void calculate_young_list_target_length(size_t rs_lengths);
ysr@777 805
ysr@777 806 public:
ysr@777 807
ysr@777 808 G1CollectorPolicy();
ysr@777 809
ysr@777 810 virtual G1CollectorPolicy* as_g1_policy() { return this; }
ysr@777 811
ysr@777 812 virtual CollectorPolicy::Name kind() {
ysr@777 813 return CollectorPolicy::G1CollectorPolicyKind;
ysr@777 814 }
ysr@777 815
ysr@777 816 void check_prediction_validity();
ysr@777 817
ysr@777 818 size_t bytes_in_collection_set() {
ysr@777 819 return _bytes_in_collection_set_before_gc;
ysr@777 820 }
ysr@777 821
ysr@777 822 size_t bytes_in_to_space() {
ysr@777 823 return bytes_in_to_space_during_gc();
ysr@777 824 }
ysr@777 825
ysr@777 826 unsigned calc_gc_alloc_time_stamp() {
ysr@777 827 return _all_pause_times_ms->num() + 1;
ysr@777 828 }
ysr@777 829
ysr@777 830 protected:
ysr@777 831
ysr@777 832 // Count the number of bytes used in the CS.
ysr@777 833 void count_CS_bytes_used();
ysr@777 834
ysr@777 835 // Together these do the base cleanup-recording work. Subclasses might
ysr@777 836 // want to put something between them.
ysr@777 837 void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
ysr@777 838 size_t max_live_bytes);
ysr@777 839 void record_concurrent_mark_cleanup_end_work2();
ysr@777 840
ysr@777 841 public:
ysr@777 842
ysr@777 843 virtual void init();
ysr@777 844
apetrusenko@980 845 // Create jstat counters for the policy.
apetrusenko@980 846 virtual void initialize_gc_policy_counters();
apetrusenko@980 847
ysr@777 848 virtual HeapWord* mem_allocate_work(size_t size,
ysr@777 849 bool is_tlab,
ysr@777 850 bool* gc_overhead_limit_was_exceeded);
ysr@777 851
ysr@777 852 // This method controls how a collector handles one or more
ysr@777 853 // of its generations being fully allocated.
ysr@777 854 virtual HeapWord* satisfy_failed_allocation(size_t size,
ysr@777 855 bool is_tlab);
ysr@777 856
ysr@777 857 BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
ysr@777 858
ysr@777 859 GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; }
ysr@777 860
ysr@777 861 // The number of collection pauses so far.
ysr@777 862 long n_pauses() const { return _n_pauses; }
ysr@777 863
ysr@777 864 // Update the heuristic info to record a collection pause of the given
ysr@777 865 // start time, where the given number of bytes were used at the start.
ysr@777 866 // This may involve changing the desired size of a collection set.
ysr@777 867
ysr@777 868 virtual void record_stop_world_start();
ysr@777 869
ysr@777 870 virtual void record_collection_pause_start(double start_time_sec,
ysr@777 871 size_t start_used);
ysr@777 872
ysr@777 873 // Must currently be called while the world is stopped.
ysr@777 874 virtual void record_concurrent_mark_init_start();
ysr@777 875 virtual void record_concurrent_mark_init_end();
ysr@777 876 void record_concurrent_mark_init_end_pre(double
ysr@777 877 mark_init_elapsed_time_ms);
ysr@777 878
ysr@777 879 void record_mark_closure_time(double mark_closure_time_ms);
ysr@777 880
ysr@777 881 virtual void record_concurrent_mark_remark_start();
ysr@777 882 virtual void record_concurrent_mark_remark_end();
ysr@777 883
ysr@777 884 virtual void record_concurrent_mark_cleanup_start();
ysr@777 885 virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
ysr@777 886 size_t max_live_bytes);
ysr@777 887 virtual void record_concurrent_mark_cleanup_completed();
ysr@777 888
ysr@777 889 virtual void record_concurrent_pause();
ysr@777 890 virtual void record_concurrent_pause_end();
ysr@777 891
ysr@777 892 virtual void record_collection_pause_end_CH_strong_roots();
ysr@777 893 virtual void record_collection_pause_end_G1_strong_roots();
ysr@777 894
tonyp@2062 895 virtual void record_collection_pause_end();
ysr@777 896
ysr@777 897 // Record the fact that a full collection occurred.
ysr@777 898 virtual void record_full_collection_start();
ysr@777 899 virtual void record_full_collection_end();
ysr@777 900
tonyp@1966 901 void record_gc_worker_start_time(int worker_i, double ms) {
tonyp@1966 902 _par_last_gc_worker_start_times_ms[worker_i] = ms;
tonyp@1966 903 }
tonyp@1966 904
ysr@777 905 void record_ext_root_scan_time(int worker_i, double ms) {
ysr@777 906 _par_last_ext_root_scan_times_ms[worker_i] = ms;
ysr@777 907 }
ysr@777 908
ysr@777 909 void record_mark_stack_scan_time(int worker_i, double ms) {
ysr@777 910 _par_last_mark_stack_scan_times_ms[worker_i] = ms;
ysr@777 911 }
ysr@777 912
ysr@777 913 void record_satb_drain_time(double ms) {
ysr@777 914 _cur_satb_drain_time_ms = ms;
ysr@777 915 _satb_drain_time_set = true;
ysr@777 916 }
ysr@777 917
ysr@777 918 void record_satb_drain_processed_buffers (int processed_buffers) {
ysr@777 919 _last_satb_drain_processed_buffers = processed_buffers;
ysr@777 920 }
ysr@777 921
ysr@777 922 void record_mod_union_time(double ms) {
ysr@777 923 _all_mod_union_times_ms->add(ms);
ysr@777 924 }
ysr@777 925
ysr@777 926 void record_update_rs_time(int thread, double ms) {
ysr@777 927 _par_last_update_rs_times_ms[thread] = ms;
ysr@777 928 }
ysr@777 929
ysr@777 930 void record_update_rs_processed_buffers (int thread,
ysr@777 931 double processed_buffers) {
ysr@777 932 _par_last_update_rs_processed_buffers[thread] = processed_buffers;
ysr@777 933 }
ysr@777 934
ysr@777 935 void record_scan_rs_time(int thread, double ms) {
ysr@777 936 _par_last_scan_rs_times_ms[thread] = ms;
ysr@777 937 }
ysr@777 938
ysr@777 939 void reset_obj_copy_time(int thread) {
ysr@777 940 _par_last_obj_copy_times_ms[thread] = 0.0;
ysr@777 941 }
ysr@777 942
ysr@777 943 void reset_obj_copy_time() {
ysr@777 944 reset_obj_copy_time(0);
ysr@777 945 }
ysr@777 946
ysr@777 947 void record_obj_copy_time(int thread, double ms) {
ysr@777 948 _par_last_obj_copy_times_ms[thread] += ms;
ysr@777 949 }
ysr@777 950
tonyp@1966 951 void record_termination(int thread, double ms, size_t attempts) {
tonyp@1966 952 _par_last_termination_times_ms[thread] = ms;
tonyp@1966 953 _par_last_termination_attempts[thread] = (double) attempts;
ysr@777 954 }
ysr@777 955
tonyp@1966 956 void record_gc_worker_end_time(int worker_i, double ms) {
tonyp@1966 957 _par_last_gc_worker_end_times_ms[worker_i] = ms;
ysr@777 958 }
ysr@777 959
tonyp@1030 960 void record_pause_time_ms(double ms) {
ysr@777 961 _last_pause_time_ms = ms;
ysr@777 962 }
ysr@777 963
ysr@777 964 void record_clear_ct_time(double ms) {
ysr@777 965 _cur_clear_ct_time_ms = ms;
ysr@777 966 }
ysr@777 967
ysr@777 968 void record_par_time(double ms) {
ysr@777 969 _cur_collection_par_time_ms = ms;
ysr@777 970 }
ysr@777 971
ysr@777 972 void record_aux_start_time(int i) {
ysr@777 973 guarantee(i < _aux_num, "should be within range");
ysr@777 974 _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
ysr@777 975 }
ysr@777 976
ysr@777 977 void record_aux_end_time(int i) {
ysr@777 978 guarantee(i < _aux_num, "should be within range");
ysr@777 979 double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
ysr@777 980 _cur_aux_times_set[i] = true;
ysr@777 981 _cur_aux_times_ms[i] += ms;
ysr@777 982 }
ysr@777 983
johnc@1325 984 #ifndef PRODUCT
johnc@1325 985 void record_cc_clear_time(double ms) {
johnc@1325 986 if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
johnc@1325 987 _min_clear_cc_time_ms = ms;
johnc@1325 988 if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
johnc@1325 989 _max_clear_cc_time_ms = ms;
johnc@1325 990 _cur_clear_cc_time_ms = ms;
johnc@1325 991 _cum_clear_cc_time_ms += ms;
johnc@1325 992 _num_cc_clears++;
johnc@1325 993 }
johnc@1325 994 #endif
johnc@1325 995
ysr@777 996 // Record the fact that "bytes" bytes allocated in a region.
ysr@777 997 void record_before_bytes(size_t bytes);
ysr@777 998 void record_after_bytes(size_t bytes);
ysr@777 999
ysr@777 1000 // Choose a new collection set. Marks the chosen regions as being
ysr@777 1001 // "in_collection_set", and links them together. The head and number of
ysr@777 1002 // the collection set are available via access methods.
tonyp@2062 1003 virtual void choose_collection_set(double target_pause_time_ms) = 0;
ysr@777 1004
ysr@777 1005 // The head of the list (via "next_in_collection_set()") representing the
ysr@777 1006 // current collection set.
ysr@777 1007 HeapRegion* collection_set() { return _collection_set; }
ysr@777 1008
johnc@1829 1009 void clear_collection_set() { _collection_set = NULL; }
johnc@1829 1010
ysr@777 1011 // The number of elements in the current collection set.
ysr@777 1012 size_t collection_set_size() { return _collection_set_size; }
ysr@777 1013
ysr@777 1014 // Add "hr" to the CS.
ysr@777 1015 void add_to_collection_set(HeapRegion* hr);
ysr@777 1016
johnc@1829 1017 // Incremental CSet Support
johnc@1829 1018
johnc@1829 1019 // The head of the incrementally built collection set.
johnc@1829 1020 HeapRegion* inc_cset_head() { return _inc_cset_head; }
johnc@1829 1021
johnc@1829 1022 // The tail of the incrementally built collection set.
johnc@1829 1023 HeapRegion* inc_set_tail() { return _inc_cset_tail; }
johnc@1829 1024
johnc@1829 1025 // The number of elements in the incrementally built collection set.
johnc@1829 1026 size_t inc_cset_size() { return _inc_cset_size; }
johnc@1829 1027
johnc@1829 1028 // Initialize incremental collection set info.
johnc@1829 1029 void start_incremental_cset_building();
johnc@1829 1030
johnc@1829 1031 void clear_incremental_cset() {
johnc@1829 1032 _inc_cset_head = NULL;
johnc@1829 1033 _inc_cset_tail = NULL;
johnc@1829 1034 }
johnc@1829 1035
johnc@1829 1036 // Stop adding regions to the incremental collection set
johnc@1829 1037 void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
johnc@1829 1038
johnc@1829 1039 // Add/remove information about hr to the aggregated information
johnc@1829 1040 // for the incrementally built collection set.
johnc@1829 1041 void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
johnc@1829 1042 void remove_from_incremental_cset_info(HeapRegion* hr);
johnc@1829 1043
johnc@1829 1044 // Update information about hr in the aggregated information for
johnc@1829 1045 // the incrementally built collection set.
johnc@1829 1046 void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
johnc@1829 1047
johnc@1829 1048 private:
johnc@1829 1049 // Update the incremental cset information when adding a region
johnc@1829 1050 // (should not be called directly).
johnc@1829 1051 void add_region_to_incremental_cset_common(HeapRegion* hr);
johnc@1829 1052
johnc@1829 1053 public:
johnc@1829 1054 // Add hr to the LHS of the incremental collection set.
johnc@1829 1055 void add_region_to_incremental_cset_lhs(HeapRegion* hr);
johnc@1829 1056
johnc@1829 1057 // Add hr to the RHS of the incremental collection set.
johnc@1829 1058 void add_region_to_incremental_cset_rhs(HeapRegion* hr);
johnc@1829 1059
johnc@1829 1060 #ifndef PRODUCT
johnc@1829 1061 void print_collection_set(HeapRegion* list_head, outputStream* st);
johnc@1829 1062 #endif // !PRODUCT
johnc@1829 1063
tonyp@1794 1064 bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
tonyp@1794 1065 void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
tonyp@1794 1066 void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
tonyp@1794 1067
tonyp@1794 1068 bool during_initial_mark_pause() { return _during_initial_mark_pause; }
tonyp@1794 1069 void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
tonyp@1794 1070 void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
tonyp@1794 1071
tonyp@2011 1072 // This sets the initiate_conc_mark_if_possible() flag to start a
tonyp@2011 1073 // new cycle, as long as we are not already in one. It's best if it
tonyp@2011 1074 // is called during a safepoint when the test whether a cycle is in
tonyp@2011 1075 // progress or not is stable.
tonyp@2011 1076 bool force_initial_mark_if_outside_cycle();
tonyp@2011 1077
tonyp@1794 1078 // This is called at the very beginning of an evacuation pause (it
tonyp@1794 1079 // has to be the first thing that the pause does). If
tonyp@1794 1080 // initiate_conc_mark_if_possible() is true, and the concurrent
tonyp@1794 1081 // marking thread has completed its work during the previous cycle,
tonyp@1794 1082 // it will set during_initial_mark_pause() to so that the pause does
tonyp@1794 1083 // the initial-mark work and start a marking cycle.
tonyp@1794 1084 void decide_on_conc_mark_initiation();
ysr@777 1085
ysr@777 1086 // If an expansion would be appropriate, because recent GC overhead had
ysr@777 1087 // exceeded the desired limit, return an amount to expand by.
ysr@777 1088 virtual size_t expansion_amount();
ysr@777 1089
ysr@777 1090 // note start of mark thread
ysr@777 1091 void note_start_of_mark_thread();
ysr@777 1092
ysr@777 1093 // The marked bytes of the "r" has changed; reclassify it's desirability
ysr@777 1094 // for marking. Also asserts that "r" is eligible for a CS.
ysr@777 1095 virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
ysr@777 1096
ysr@777 1097 #ifndef PRODUCT
ysr@777 1098 // Check any appropriate marked bytes info, asserting false if
ysr@777 1099 // something's wrong, else returning "true".
ysr@777 1100 virtual bool assertMarkedBytesDataOK() = 0;
ysr@777 1101 #endif
ysr@777 1102
ysr@777 1103 // Print tracing information.
ysr@777 1104 void print_tracing_info() const;
ysr@777 1105
ysr@777 1106 // Print stats on young survival ratio
ysr@777 1107 void print_yg_surv_rate_info() const;
ysr@777 1108
apetrusenko@980 1109 void finished_recalculating_age_indexes(bool is_survivors) {
apetrusenko@980 1110 if (is_survivors) {
apetrusenko@980 1111 _survivor_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1112 } else {
apetrusenko@980 1113 _short_lived_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1114 }
ysr@777 1115 // do that for any other surv rate groups
ysr@777 1116 }
ysr@777 1117
tonyp@2315 1118 bool is_young_list_full() {
tonyp@2315 1119 size_t young_list_length = _g1->young_list()->length();
tonyp@2333 1120 size_t young_list_target_length = _young_list_target_length;
tonyp@2333 1121 if (G1FixedEdenSize) {
tonyp@2333 1122 young_list_target_length -= _max_survivor_regions;
tonyp@2333 1123 }
tonyp@2333 1124 return young_list_length >= young_list_target_length;
tonyp@2333 1125 }
tonyp@2333 1126
tonyp@2333 1127 bool can_expand_young_list() {
tonyp@2333 1128 size_t young_list_length = _g1->young_list()->length();
tonyp@2333 1129 size_t young_list_max_length = _young_list_max_length;
tonyp@2315 1130 if (G1FixedEdenSize) {
tonyp@2315 1131 young_list_max_length -= _max_survivor_regions;
tonyp@2315 1132 }
tonyp@2333 1133 return young_list_length < young_list_max_length;
tonyp@2333 1134 }
tonyp@2315 1135
tonyp@2315 1136 void update_region_num(bool young);
ysr@777 1137
ysr@777 1138 bool in_young_gc_mode() {
ysr@777 1139 return _in_young_gc_mode;
ysr@777 1140 }
ysr@777 1141 void set_in_young_gc_mode(bool in_young_gc_mode) {
ysr@777 1142 _in_young_gc_mode = in_young_gc_mode;
ysr@777 1143 }
ysr@777 1144
ysr@777 1145 bool full_young_gcs() {
ysr@777 1146 return _full_young_gcs;
ysr@777 1147 }
ysr@777 1148 void set_full_young_gcs(bool full_young_gcs) {
ysr@777 1149 _full_young_gcs = full_young_gcs;
ysr@777 1150 }
ysr@777 1151
ysr@777 1152 bool adaptive_young_list_length() {
ysr@777 1153 return _adaptive_young_list_length;
ysr@777 1154 }
ysr@777 1155 void set_adaptive_young_list_length(bool adaptive_young_list_length) {
ysr@777 1156 _adaptive_young_list_length = adaptive_young_list_length;
ysr@777 1157 }
ysr@777 1158
ysr@777 1159 inline double get_gc_eff_factor() {
ysr@777 1160 double ratio = _known_garbage_ratio;
ysr@777 1161
ysr@777 1162 double square = ratio * ratio;
ysr@777 1163 // square = square * square;
ysr@777 1164 double ret = square * 9.0 + 1.0;
ysr@777 1165 #if 0
ysr@777 1166 gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
ysr@777 1167 #endif // 0
ysr@777 1168 guarantee(0.0 <= ret && ret < 10.0, "invariant!");
ysr@777 1169 return ret;
ysr@777 1170 }
ysr@777 1171
ysr@777 1172 //
ysr@777 1173 // Survivor regions policy.
ysr@777 1174 //
ysr@777 1175 protected:
ysr@777 1176
ysr@777 1177 // Current tenuring threshold, set to 0 if the collector reaches the
ysr@777 1178 // maximum amount of suvivors regions.
ysr@777 1179 int _tenuring_threshold;
ysr@777 1180
apetrusenko@980 1181 // The limit on the number of regions allocated for survivors.
apetrusenko@980 1182 size_t _max_survivor_regions;
apetrusenko@980 1183
apetrusenko@980 1184 // The amount of survor regions after a collection.
apetrusenko@980 1185 size_t _recorded_survivor_regions;
apetrusenko@980 1186 // List of survivor regions.
apetrusenko@980 1187 HeapRegion* _recorded_survivor_head;
apetrusenko@980 1188 HeapRegion* _recorded_survivor_tail;
apetrusenko@980 1189
apetrusenko@980 1190 ageTable _survivors_age_table;
apetrusenko@980 1191
ysr@777 1192 public:
ysr@777 1193
ysr@777 1194 inline GCAllocPurpose
ysr@777 1195 evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
ysr@777 1196 if (age < _tenuring_threshold && src_region->is_young()) {
ysr@777 1197 return GCAllocForSurvived;
ysr@777 1198 } else {
ysr@777 1199 return GCAllocForTenured;
ysr@777 1200 }
ysr@777 1201 }
ysr@777 1202
ysr@777 1203 inline bool track_object_age(GCAllocPurpose purpose) {
ysr@777 1204 return purpose == GCAllocForSurvived;
ysr@777 1205 }
ysr@777 1206
ysr@777 1207 inline GCAllocPurpose alternative_purpose(int purpose) {
ysr@777 1208 return GCAllocForTenured;
ysr@777 1209 }
ysr@777 1210
apetrusenko@980 1211 static const size_t REGIONS_UNLIMITED = ~(size_t)0;
apetrusenko@980 1212
apetrusenko@980 1213 size_t max_regions(int purpose);
ysr@777 1214
ysr@777 1215 // The limit on regions for a particular purpose is reached.
ysr@777 1216 void note_alloc_region_limit_reached(int purpose) {
ysr@777 1217 if (purpose == GCAllocForSurvived) {
ysr@777 1218 _tenuring_threshold = 0;
ysr@777 1219 }
ysr@777 1220 }
ysr@777 1221
ysr@777 1222 void note_start_adding_survivor_regions() {
ysr@777 1223 _survivor_surv_rate_group->start_adding_regions();
ysr@777 1224 }
ysr@777 1225
ysr@777 1226 void note_stop_adding_survivor_regions() {
ysr@777 1227 _survivor_surv_rate_group->stop_adding_regions();
ysr@777 1228 }
apetrusenko@980 1229
apetrusenko@980 1230 void record_survivor_regions(size_t regions,
apetrusenko@980 1231 HeapRegion* head,
apetrusenko@980 1232 HeapRegion* tail) {
apetrusenko@980 1233 _recorded_survivor_regions = regions;
apetrusenko@980 1234 _recorded_survivor_head = head;
apetrusenko@980 1235 _recorded_survivor_tail = tail;
apetrusenko@980 1236 }
apetrusenko@980 1237
tonyp@1273 1238 size_t recorded_survivor_regions() {
tonyp@1273 1239 return _recorded_survivor_regions;
tonyp@1273 1240 }
tonyp@1273 1241
apetrusenko@980 1242 void record_thread_age_table(ageTable* age_table)
apetrusenko@980 1243 {
apetrusenko@980 1244 _survivors_age_table.merge_par(age_table);
apetrusenko@980 1245 }
apetrusenko@980 1246
tonyp@2333 1247 void calculate_max_gc_locker_expansion();
tonyp@2333 1248
apetrusenko@980 1249 // Calculates survivor space parameters.
apetrusenko@980 1250 void calculate_survivors_policy();
apetrusenko@980 1251
ysr@777 1252 };
ysr@777 1253
ysr@777 1254 // This encapsulates a particular strategy for a g1 Collector.
ysr@777 1255 //
ysr@777 1256 // Start a concurrent mark when our heap size is n bytes
ysr@777 1257 // greater then our heap size was at the last concurrent
ysr@777 1258 // mark. Where n is a function of the CMSTriggerRatio
ysr@777 1259 // and the MinHeapFreeRatio.
ysr@777 1260 //
ysr@777 1261 // Start a g1 collection pause when we have allocated the
ysr@777 1262 // average number of bytes currently being freed in
ysr@777 1263 // a collection, but only if it is at least one region
ysr@777 1264 // full
ysr@777 1265 //
ysr@777 1266 // Resize Heap based on desired
ysr@777 1267 // allocation space, where desired allocation space is
ysr@777 1268 // a function of survival rate and desired future to size.
ysr@777 1269 //
ysr@777 1270 // Choose collection set by first picking all older regions
ysr@777 1271 // which have a survival rate which beats our projected young
ysr@777 1272 // survival rate. Then fill out the number of needed regions
ysr@777 1273 // with young regions.
ysr@777 1274
ysr@777 1275 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
ysr@777 1276 CollectionSetChooser* _collectionSetChooser;
ysr@777 1277 // If the estimated is less then desirable, resize if possible.
ysr@777 1278 void expand_if_possible(size_t numRegions);
ysr@777 1279
tonyp@2062 1280 virtual void choose_collection_set(double target_pause_time_ms);
ysr@777 1281 virtual void record_collection_pause_start(double start_time_sec,
ysr@777 1282 size_t start_used);
ysr@777 1283 virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
ysr@777 1284 size_t max_live_bytes);
ysr@777 1285 virtual void record_full_collection_end();
ysr@777 1286
ysr@777 1287 public:
ysr@777 1288 G1CollectorPolicy_BestRegionsFirst() {
ysr@777 1289 _collectionSetChooser = new CollectionSetChooser();
ysr@777 1290 }
tonyp@2062 1291 void record_collection_pause_end();
ysr@777 1292 // This is not needed any more, after the CSet choosing code was
ysr@777 1293 // changed to use the pause prediction work. But let's leave the
ysr@777 1294 // hook in just in case.
ysr@777 1295 void note_change_in_marked_bytes(HeapRegion* r) { }
ysr@777 1296 #ifndef PRODUCT
ysr@777 1297 bool assertMarkedBytesDataOK();
ysr@777 1298 #endif
ysr@777 1299 };
ysr@777 1300
ysr@777 1301 // This should move to some place more general...
ysr@777 1302
ysr@777 1303 // If we have "n" measurements, and we've kept track of their "sum" and the
ysr@777 1304 // "sum_of_squares" of the measurements, this returns the variance of the
ysr@777 1305 // sequence.
ysr@777 1306 inline double variance(int n, double sum_of_squares, double sum) {
ysr@777 1307 double n_d = (double)n;
ysr@777 1308 double avg = sum/n_d;
ysr@777 1309 return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
ysr@777 1310 }
ysr@777 1311
ysr@777 1312 // Local Variables: ***
ysr@777 1313 // c-indentation-style: gnu ***
ysr@777 1314 // End: ***
stefank@2314 1315
stefank@2314 1316 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial