src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Thu, 08 Sep 2011 16:29:41 +0200

author
brutisso
date
Thu, 08 Sep 2011 16:29:41 +0200
changeset 3120
af2ab04e0038
parent 3119
4f41766176cf
child 3175
4dfb2df418f2
permissions
-rw-r--r--

6929868: G1: introduce min / max young gen size bounds
Summary: Make G1 handle young gen size command line flags more consistently
Reviewed-by: tonyp, jwilhelm

ysr@777 1 /*
tonyp@3028 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/collectionSetChooser.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1MMUTracker.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31
ysr@777 32 // A G1CollectorPolicy makes policy decisions that determine the
ysr@777 33 // characteristics of the collector. Examples include:
ysr@777 34 // * choice of collection set.
ysr@777 35 // * when to collect.
ysr@777 36
ysr@777 37 class HeapRegion;
ysr@777 38 class CollectionSetChooser;
ysr@777 39
ysr@777 40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
ysr@777 41 // over and over again and introducing subtle problems through small typos and
ysr@777 42 // cutting and pasting mistakes. The macros below introduces a number
ysr@777 43 // sequnce into the following two classes and the methods that access it.
ysr@777 44
ysr@777 45 #define define_num_seq(name) \
ysr@777 46 private: \
ysr@777 47 NumberSeq _all_##name##_times_ms; \
ysr@777 48 public: \
ysr@777 49 void record_##name##_time_ms(double ms) { \
ysr@777 50 _all_##name##_times_ms.add(ms); \
ysr@777 51 } \
ysr@777 52 NumberSeq* get_##name##_seq() { \
ysr@777 53 return &_all_##name##_times_ms; \
ysr@777 54 }
ysr@777 55
ysr@777 56 class MainBodySummary;
ysr@777 57
apetrusenko@984 58 class PauseSummary: public CHeapObj {
ysr@777 59 define_num_seq(total)
ysr@777 60 define_num_seq(other)
ysr@777 61
ysr@777 62 public:
ysr@777 63 virtual MainBodySummary* main_body_summary() { return NULL; }
ysr@777 64 };
ysr@777 65
apetrusenko@984 66 class MainBodySummary: public CHeapObj {
ysr@777 67 define_num_seq(satb_drain) // optional
ysr@777 68 define_num_seq(parallel) // parallel only
ysr@777 69 define_num_seq(ext_root_scan)
ysr@777 70 define_num_seq(mark_stack_scan)
ysr@777 71 define_num_seq(update_rs)
ysr@777 72 define_num_seq(scan_rs)
ysr@777 73 define_num_seq(obj_copy)
ysr@777 74 define_num_seq(termination) // parallel only
ysr@777 75 define_num_seq(parallel_other) // parallel only
ysr@777 76 define_num_seq(mark_closure)
ysr@777 77 define_num_seq(clear_ct) // parallel only
ysr@777 78 };
ysr@777 79
apetrusenko@1112 80 class Summary: public PauseSummary,
apetrusenko@1112 81 public MainBodySummary {
ysr@777 82 public:
ysr@777 83 virtual MainBodySummary* main_body_summary() { return this; }
ysr@777 84 };
ysr@777 85
ysr@777 86 class G1CollectorPolicy: public CollectorPolicy {
ysr@777 87 protected:
ysr@777 88 // The number of pauses during the execution.
ysr@777 89 long _n_pauses;
ysr@777 90
ysr@777 91 // either equal to the number of parallel threads, if ParallelGCThreads
ysr@777 92 // has been set, or 1 otherwise
ysr@777 93 int _parallel_gc_threads;
ysr@777 94
ysr@777 95 enum SomePrivateConstants {
tonyp@1377 96 NumPrevPausesForHeuristics = 10
ysr@777 97 };
ysr@777 98
ysr@777 99 G1MMUTracker* _mmu_tracker;
ysr@777 100
ysr@777 101 void initialize_flags();
ysr@777 102
ysr@777 103 void initialize_all() {
ysr@777 104 initialize_flags();
ysr@777 105 initialize_size_info();
ysr@777 106 initialize_perm_generation(PermGen::MarkSweepCompact);
ysr@777 107 }
ysr@777 108
ysr@777 109 virtual size_t default_init_heap_size() {
ysr@777 110 // Pick some reasonable default.
ysr@777 111 return 8*M;
ysr@777 112 }
ysr@777 113
ysr@777 114 double _cur_collection_start_sec;
ysr@777 115 size_t _cur_collection_pause_used_at_start_bytes;
ysr@777 116 size_t _cur_collection_pause_used_regions_at_start;
ysr@777 117 size_t _prev_collection_pause_used_at_end_bytes;
ysr@777 118 double _cur_collection_par_time_ms;
ysr@777 119 double _cur_satb_drain_time_ms;
ysr@777 120 double _cur_clear_ct_time_ms;
ysr@777 121 bool _satb_drain_time_set;
ysr@777 122
johnc@1325 123 #ifndef PRODUCT
johnc@1325 124 // Card Table Count Cache stats
johnc@1325 125 double _min_clear_cc_time_ms; // min
johnc@1325 126 double _max_clear_cc_time_ms; // max
johnc@1325 127 double _cur_clear_cc_time_ms; // clearing time during current pause
johnc@1325 128 double _cum_clear_cc_time_ms; // cummulative clearing time
johnc@1325 129 jlong _num_cc_clears; // number of times the card count cache has been cleared
johnc@1325 130 #endif
johnc@1325 131
johnc@3021 132 // Statistics for recent GC pauses. See below for how indexed.
johnc@3021 133 TruncatedSeq* _recent_rs_scan_times_ms;
ysr@777 134
ysr@777 135 // These exclude marking times.
ysr@777 136 TruncatedSeq* _recent_pause_times_ms;
ysr@777 137 TruncatedSeq* _recent_gc_times_ms;
ysr@777 138
ysr@777 139 TruncatedSeq* _recent_CS_bytes_used_before;
ysr@777 140 TruncatedSeq* _recent_CS_bytes_surviving;
ysr@777 141
ysr@777 142 TruncatedSeq* _recent_rs_sizes;
ysr@777 143
ysr@777 144 TruncatedSeq* _concurrent_mark_remark_times_ms;
ysr@777 145 TruncatedSeq* _concurrent_mark_cleanup_times_ms;
ysr@777 146
apetrusenko@1112 147 Summary* _summary;
ysr@777 148
ysr@777 149 NumberSeq* _all_pause_times_ms;
ysr@777 150 NumberSeq* _all_full_gc_times_ms;
ysr@777 151 double _stop_world_start;
ysr@777 152 NumberSeq* _all_stop_world_times_ms;
ysr@777 153 NumberSeq* _all_yield_times_ms;
ysr@777 154
ysr@777 155 size_t _region_num_young;
ysr@777 156 size_t _region_num_tenured;
ysr@777 157 size_t _prev_region_num_young;
ysr@777 158 size_t _prev_region_num_tenured;
ysr@777 159
ysr@777 160 NumberSeq* _all_mod_union_times_ms;
ysr@777 161
ysr@777 162 int _aux_num;
ysr@777 163 NumberSeq* _all_aux_times_ms;
ysr@777 164 double* _cur_aux_start_times_ms;
ysr@777 165 double* _cur_aux_times_ms;
ysr@777 166 bool* _cur_aux_times_set;
ysr@777 167
tonyp@1966 168 double* _par_last_gc_worker_start_times_ms;
ysr@777 169 double* _par_last_ext_root_scan_times_ms;
ysr@777 170 double* _par_last_mark_stack_scan_times_ms;
ysr@777 171 double* _par_last_update_rs_times_ms;
ysr@777 172 double* _par_last_update_rs_processed_buffers;
ysr@777 173 double* _par_last_scan_rs_times_ms;
ysr@777 174 double* _par_last_obj_copy_times_ms;
ysr@777 175 double* _par_last_termination_times_ms;
tonyp@1966 176 double* _par_last_termination_attempts;
tonyp@1966 177 double* _par_last_gc_worker_end_times_ms;
brutisso@2712 178 double* _par_last_gc_worker_times_ms;
ysr@777 179
ysr@777 180 // indicates whether we are in full young or partially young GC mode
ysr@777 181 bool _full_young_gcs;
ysr@777 182
ysr@777 183 // if true, then it tries to dynamically adjust the length of the
ysr@777 184 // young list
ysr@777 185 bool _adaptive_young_list_length;
ysr@777 186 size_t _young_list_target_length;
ysr@777 187 size_t _young_list_fixed_length;
brutisso@3120 188 size_t _prev_eden_capacity; // used for logging
ysr@777 189
tonyp@2333 190 // The max number of regions we can extend the eden by while the GC
tonyp@2333 191 // locker is active. This should be >= _young_list_target_length;
tonyp@2333 192 size_t _young_list_max_length;
tonyp@2333 193
ysr@777 194 size_t _young_cset_length;
ysr@777 195 bool _last_young_gc_full;
ysr@777 196
ysr@777 197 unsigned _full_young_pause_num;
ysr@777 198 unsigned _partial_young_pause_num;
ysr@777 199
ysr@777 200 bool _during_marking;
ysr@777 201 bool _in_marking_window;
ysr@777 202 bool _in_marking_window_im;
ysr@777 203
ysr@777 204 SurvRateGroup* _short_lived_surv_rate_group;
ysr@777 205 SurvRateGroup* _survivor_surv_rate_group;
ysr@777 206 // add here any more surv rate groups
ysr@777 207
tonyp@1791 208 double _gc_overhead_perc;
tonyp@1791 209
tonyp@3119 210 double _reserve_factor;
tonyp@3119 211 size_t _reserve_regions;
tonyp@3119 212
ysr@777 213 bool during_marking() {
ysr@777 214 return _during_marking;
ysr@777 215 }
ysr@777 216
ysr@777 217 // <NEW PREDICTION>
ysr@777 218
ysr@777 219 private:
ysr@777 220 enum PredictionConstants {
ysr@777 221 TruncatedSeqLength = 10
ysr@777 222 };
ysr@777 223
ysr@777 224 TruncatedSeq* _alloc_rate_ms_seq;
ysr@777 225 double _prev_collection_pause_end_ms;
ysr@777 226
ysr@777 227 TruncatedSeq* _pending_card_diff_seq;
ysr@777 228 TruncatedSeq* _rs_length_diff_seq;
ysr@777 229 TruncatedSeq* _cost_per_card_ms_seq;
ysr@777 230 TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
ysr@777 231 TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
ysr@777 232 TruncatedSeq* _cost_per_entry_ms_seq;
ysr@777 233 TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
ysr@777 234 TruncatedSeq* _cost_per_byte_ms_seq;
ysr@777 235 TruncatedSeq* _constant_other_time_ms_seq;
ysr@777 236 TruncatedSeq* _young_other_cost_per_region_ms_seq;
ysr@777 237 TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
ysr@777 238
ysr@777 239 TruncatedSeq* _pending_cards_seq;
ysr@777 240 TruncatedSeq* _scanned_cards_seq;
ysr@777 241 TruncatedSeq* _rs_lengths_seq;
ysr@777 242
ysr@777 243 TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
ysr@777 244
ysr@777 245 TruncatedSeq* _young_gc_eff_seq;
ysr@777 246
ysr@777 247 TruncatedSeq* _max_conc_overhead_seq;
ysr@777 248
brutisso@3120 249 bool _using_new_ratio_calculations;
brutisso@3120 250 size_t _min_desired_young_length; // as set on the command line or default calculations
brutisso@3120 251 size_t _max_desired_young_length; // as set on the command line or default calculations
brutisso@3120 252
ysr@777 253 size_t _recorded_young_regions;
ysr@777 254 size_t _recorded_non_young_regions;
ysr@777 255 size_t _recorded_region_num;
ysr@777 256
ysr@777 257 size_t _free_regions_at_end_of_collection;
ysr@777 258
ysr@777 259 size_t _recorded_rs_lengths;
ysr@777 260 size_t _max_rs_lengths;
ysr@777 261
ysr@777 262 size_t _recorded_marked_bytes;
ysr@777 263 size_t _recorded_young_bytes;
ysr@777 264
ysr@777 265 size_t _predicted_pending_cards;
ysr@777 266 size_t _predicted_cards_scanned;
ysr@777 267 size_t _predicted_rs_lengths;
ysr@777 268 size_t _predicted_bytes_to_copy;
ysr@777 269
ysr@777 270 double _predicted_survival_ratio;
ysr@777 271 double _predicted_rs_update_time_ms;
ysr@777 272 double _predicted_rs_scan_time_ms;
ysr@777 273 double _predicted_object_copy_time_ms;
ysr@777 274 double _predicted_constant_other_time_ms;
ysr@777 275 double _predicted_young_other_time_ms;
ysr@777 276 double _predicted_non_young_other_time_ms;
ysr@777 277 double _predicted_pause_time_ms;
ysr@777 278
ysr@777 279 double _vtime_diff_ms;
ysr@777 280
ysr@777 281 double _recorded_young_free_cset_time_ms;
ysr@777 282 double _recorded_non_young_free_cset_time_ms;
ysr@777 283
ysr@777 284 double _sigma;
ysr@777 285 double _expensive_region_limit_ms;
ysr@777 286
ysr@777 287 size_t _rs_lengths_prediction;
ysr@777 288
ysr@777 289 size_t _known_garbage_bytes;
ysr@777 290 double _known_garbage_ratio;
ysr@777 291
ysr@777 292 double sigma() {
ysr@777 293 return _sigma;
ysr@777 294 }
ysr@777 295
ysr@777 296 // A function that prevents us putting too much stock in small sample
ysr@777 297 // sets. Returns a number between 2.0 and 1.0, depending on the number
ysr@777 298 // of samples. 5 or more samples yields one; fewer scales linearly from
ysr@777 299 // 2.0 at 1 sample to 1.0 at 5.
ysr@777 300 double confidence_factor(int samples) {
ysr@777 301 if (samples > 4) return 1.0;
ysr@777 302 else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
ysr@777 303 }
ysr@777 304
ysr@777 305 double get_new_neg_prediction(TruncatedSeq* seq) {
ysr@777 306 return seq->davg() - sigma() * seq->dsd();
ysr@777 307 }
ysr@777 308
ysr@777 309 #ifndef PRODUCT
ysr@777 310 bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
ysr@777 311 #endif // PRODUCT
ysr@777 312
iveresov@1546 313 void adjust_concurrent_refinement(double update_rs_time,
iveresov@1546 314 double update_rs_processed_buffers,
iveresov@1546 315 double goal_ms);
iveresov@1546 316
ysr@777 317 protected:
ysr@777 318 double _pause_time_target_ms;
ysr@777 319 double _recorded_young_cset_choice_time_ms;
ysr@777 320 double _recorded_non_young_cset_choice_time_ms;
ysr@777 321 bool _within_target;
ysr@777 322 size_t _pending_cards;
ysr@777 323 size_t _max_pending_cards;
ysr@777 324
ysr@777 325 public:
ysr@777 326
ysr@777 327 void set_region_short_lived(HeapRegion* hr) {
ysr@777 328 hr->install_surv_rate_group(_short_lived_surv_rate_group);
ysr@777 329 }
ysr@777 330
ysr@777 331 void set_region_survivors(HeapRegion* hr) {
ysr@777 332 hr->install_surv_rate_group(_survivor_surv_rate_group);
ysr@777 333 }
ysr@777 334
ysr@777 335 #ifndef PRODUCT
ysr@777 336 bool verify_young_ages();
ysr@777 337 #endif // PRODUCT
ysr@777 338
ysr@777 339 double get_new_prediction(TruncatedSeq* seq) {
ysr@777 340 return MAX2(seq->davg() + sigma() * seq->dsd(),
ysr@777 341 seq->davg() * confidence_factor(seq->num()));
ysr@777 342 }
ysr@777 343
ysr@777 344 size_t young_cset_length() {
ysr@777 345 return _young_cset_length;
ysr@777 346 }
ysr@777 347
ysr@777 348 void record_max_rs_lengths(size_t rs_lengths) {
ysr@777 349 _max_rs_lengths = rs_lengths;
ysr@777 350 }
ysr@777 351
ysr@777 352 size_t predict_pending_card_diff() {
ysr@777 353 double prediction = get_new_neg_prediction(_pending_card_diff_seq);
ysr@777 354 if (prediction < 0.00001)
ysr@777 355 return 0;
ysr@777 356 else
ysr@777 357 return (size_t) prediction;
ysr@777 358 }
ysr@777 359
ysr@777 360 size_t predict_pending_cards() {
ysr@777 361 size_t max_pending_card_num = _g1->max_pending_card_num();
ysr@777 362 size_t diff = predict_pending_card_diff();
ysr@777 363 size_t prediction;
ysr@777 364 if (diff > max_pending_card_num)
ysr@777 365 prediction = max_pending_card_num;
ysr@777 366 else
ysr@777 367 prediction = max_pending_card_num - diff;
ysr@777 368
ysr@777 369 return prediction;
ysr@777 370 }
ysr@777 371
ysr@777 372 size_t predict_rs_length_diff() {
ysr@777 373 return (size_t) get_new_prediction(_rs_length_diff_seq);
ysr@777 374 }
ysr@777 375
ysr@777 376 double predict_alloc_rate_ms() {
ysr@777 377 return get_new_prediction(_alloc_rate_ms_seq);
ysr@777 378 }
ysr@777 379
ysr@777 380 double predict_cost_per_card_ms() {
ysr@777 381 return get_new_prediction(_cost_per_card_ms_seq);
ysr@777 382 }
ysr@777 383
ysr@777 384 double predict_rs_update_time_ms(size_t pending_cards) {
ysr@777 385 return (double) pending_cards * predict_cost_per_card_ms();
ysr@777 386 }
ysr@777 387
ysr@777 388 double predict_fully_young_cards_per_entry_ratio() {
ysr@777 389 return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
ysr@777 390 }
ysr@777 391
ysr@777 392 double predict_partially_young_cards_per_entry_ratio() {
ysr@777 393 if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
ysr@777 394 return predict_fully_young_cards_per_entry_ratio();
ysr@777 395 else
ysr@777 396 return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
ysr@777 397 }
ysr@777 398
ysr@777 399 size_t predict_young_card_num(size_t rs_length) {
ysr@777 400 return (size_t) ((double) rs_length *
ysr@777 401 predict_fully_young_cards_per_entry_ratio());
ysr@777 402 }
ysr@777 403
ysr@777 404 size_t predict_non_young_card_num(size_t rs_length) {
ysr@777 405 return (size_t) ((double) rs_length *
ysr@777 406 predict_partially_young_cards_per_entry_ratio());
ysr@777 407 }
ysr@777 408
ysr@777 409 double predict_rs_scan_time_ms(size_t card_num) {
ysr@777 410 if (full_young_gcs())
ysr@777 411 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
ysr@777 412 else
ysr@777 413 return predict_partially_young_rs_scan_time_ms(card_num);
ysr@777 414 }
ysr@777 415
ysr@777 416 double predict_partially_young_rs_scan_time_ms(size_t card_num) {
ysr@777 417 if (_partially_young_cost_per_entry_ms_seq->num() < 3)
ysr@777 418 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
ysr@777 419 else
ysr@777 420 return (double) card_num *
ysr@777 421 get_new_prediction(_partially_young_cost_per_entry_ms_seq);
ysr@777 422 }
ysr@777 423
ysr@777 424 double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
ysr@777 425 if (_cost_per_byte_ms_during_cm_seq->num() < 3)
ysr@777 426 return 1.1 * (double) bytes_to_copy *
ysr@777 427 get_new_prediction(_cost_per_byte_ms_seq);
ysr@777 428 else
ysr@777 429 return (double) bytes_to_copy *
ysr@777 430 get_new_prediction(_cost_per_byte_ms_during_cm_seq);
ysr@777 431 }
ysr@777 432
ysr@777 433 double predict_object_copy_time_ms(size_t bytes_to_copy) {
ysr@777 434 if (_in_marking_window && !_in_marking_window_im)
ysr@777 435 return predict_object_copy_time_ms_during_cm(bytes_to_copy);
ysr@777 436 else
ysr@777 437 return (double) bytes_to_copy *
ysr@777 438 get_new_prediction(_cost_per_byte_ms_seq);
ysr@777 439 }
ysr@777 440
ysr@777 441 double predict_constant_other_time_ms() {
ysr@777 442 return get_new_prediction(_constant_other_time_ms_seq);
ysr@777 443 }
ysr@777 444
ysr@777 445 double predict_young_other_time_ms(size_t young_num) {
ysr@777 446 return
ysr@777 447 (double) young_num *
ysr@777 448 get_new_prediction(_young_other_cost_per_region_ms_seq);
ysr@777 449 }
ysr@777 450
ysr@777 451 double predict_non_young_other_time_ms(size_t non_young_num) {
ysr@777 452 return
ysr@777 453 (double) non_young_num *
ysr@777 454 get_new_prediction(_non_young_other_cost_per_region_ms_seq);
ysr@777 455 }
ysr@777 456
ysr@777 457 void check_if_region_is_too_expensive(double predicted_time_ms);
ysr@777 458
ysr@777 459 double predict_young_collection_elapsed_time_ms(size_t adjustment);
ysr@777 460 double predict_base_elapsed_time_ms(size_t pending_cards);
ysr@777 461 double predict_base_elapsed_time_ms(size_t pending_cards,
ysr@777 462 size_t scanned_cards);
ysr@777 463 size_t predict_bytes_to_copy(HeapRegion* hr);
ysr@777 464 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 465
ysr@777 466 void start_recording_regions();
johnc@1829 467 void record_cset_region_info(HeapRegion* hr, bool young);
johnc@1829 468 void record_non_young_cset_region(HeapRegion* hr);
johnc@1829 469
johnc@1829 470 void set_recorded_young_regions(size_t n_regions);
johnc@1829 471 void set_recorded_young_bytes(size_t bytes);
johnc@1829 472 void set_recorded_rs_lengths(size_t rs_lengths);
johnc@1829 473 void set_predicted_bytes_to_copy(size_t bytes);
johnc@1829 474
ysr@777 475 void end_recording_regions();
ysr@777 476
ysr@777 477 void record_vtime_diff_ms(double vtime_diff_ms) {
ysr@777 478 _vtime_diff_ms = vtime_diff_ms;
ysr@777 479 }
ysr@777 480
ysr@777 481 void record_young_free_cset_time_ms(double time_ms) {
ysr@777 482 _recorded_young_free_cset_time_ms = time_ms;
ysr@777 483 }
ysr@777 484
ysr@777 485 void record_non_young_free_cset_time_ms(double time_ms) {
ysr@777 486 _recorded_non_young_free_cset_time_ms = time_ms;
ysr@777 487 }
ysr@777 488
ysr@777 489 double predict_young_gc_eff() {
ysr@777 490 return get_new_neg_prediction(_young_gc_eff_seq);
ysr@777 491 }
ysr@777 492
apetrusenko@980 493 double predict_survivor_regions_evac_time();
apetrusenko@980 494
ysr@777 495 // </NEW PREDICTION>
ysr@777 496
ysr@777 497 void cset_regions_freed() {
ysr@777 498 bool propagate = _last_young_gc_full && !_in_marking_window;
ysr@777 499 _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 500 _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 501 // also call it on any more surv rate groups
ysr@777 502 }
ysr@777 503
ysr@777 504 void set_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 505 _known_garbage_bytes = known_garbage_bytes;
ysr@777 506 size_t heap_bytes = _g1->capacity();
ysr@777 507 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 508 }
ysr@777 509
ysr@777 510 void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 511 guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
ysr@777 512
ysr@777 513 _known_garbage_bytes -= known_garbage_bytes;
ysr@777 514 size_t heap_bytes = _g1->capacity();
ysr@777 515 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 516 }
ysr@777 517
ysr@777 518 G1MMUTracker* mmu_tracker() {
ysr@777 519 return _mmu_tracker;
ysr@777 520 }
ysr@777 521
tonyp@2011 522 double max_pause_time_ms() {
tonyp@2011 523 return _mmu_tracker->max_gc_time() * 1000.0;
tonyp@2011 524 }
tonyp@2011 525
ysr@777 526 double predict_remark_time_ms() {
ysr@777 527 return get_new_prediction(_concurrent_mark_remark_times_ms);
ysr@777 528 }
ysr@777 529
ysr@777 530 double predict_cleanup_time_ms() {
ysr@777 531 return get_new_prediction(_concurrent_mark_cleanup_times_ms);
ysr@777 532 }
ysr@777 533
ysr@777 534 // Returns an estimate of the survival rate of the region at yg-age
ysr@777 535 // "yg_age".
apetrusenko@980 536 double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
apetrusenko@980 537 TruncatedSeq* seq = surv_rate_group->get_seq(age);
ysr@777 538 if (seq->num() == 0)
ysr@777 539 gclog_or_tty->print("BARF! age is %d", age);
ysr@777 540 guarantee( seq->num() > 0, "invariant" );
ysr@777 541 double pred = get_new_prediction(seq);
ysr@777 542 if (pred > 1.0)
ysr@777 543 pred = 1.0;
ysr@777 544 return pred;
ysr@777 545 }
ysr@777 546
apetrusenko@980 547 double predict_yg_surv_rate(int age) {
apetrusenko@980 548 return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
apetrusenko@980 549 }
apetrusenko@980 550
ysr@777 551 double accum_yg_surv_rate_pred(int age) {
ysr@777 552 return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
ysr@777 553 }
ysr@777 554
ysr@777 555 protected:
tonyp@1966 556 void print_stats(int level, const char* str, double value);
tonyp@1966 557 void print_stats(int level, const char* str, int value);
tonyp@1966 558
brutisso@2712 559 void print_par_stats(int level, const char* str, double* data);
brutisso@2712 560 void print_par_sizes(int level, const char* str, double* data);
ysr@777 561
ysr@777 562 void check_other_times(int level,
ysr@777 563 NumberSeq* other_times_ms,
ysr@777 564 NumberSeq* calc_other_times_ms) const;
ysr@777 565
ysr@777 566 void print_summary (PauseSummary* stats) const;
ysr@777 567
ysr@777 568 void print_summary (int level, const char* str, NumberSeq* seq) const;
ysr@777 569 void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
ysr@777 570
ysr@777 571 double avg_value (double* data);
ysr@777 572 double max_value (double* data);
ysr@777 573 double sum_of_values (double* data);
ysr@777 574 double max_sum (double* data1, double* data2);
ysr@777 575
ysr@777 576 int _last_satb_drain_processed_buffers;
ysr@777 577 int _last_update_rs_processed_buffers;
ysr@777 578 double _last_pause_time_ms;
ysr@777 579
ysr@777 580 size_t _bytes_in_collection_set_before_gc;
tonyp@3028 581 size_t _bytes_copied_during_gc;
tonyp@3028 582
ysr@777 583 // Used to count used bytes in CS.
ysr@777 584 friend class CountCSClosure;
ysr@777 585
ysr@777 586 // Statistics kept per GC stoppage, pause or full.
ysr@777 587 TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
ysr@777 588
ysr@777 589 // We track markings.
ysr@777 590 int _num_markings;
ysr@777 591 double _mark_thread_startup_sec; // Time at startup of marking thread
ysr@777 592
ysr@777 593 // Add a new GC of the given duration and end time to the record.
ysr@777 594 void update_recent_gc_times(double end_time_sec, double elapsed_ms);
ysr@777 595
ysr@777 596 // The head of the list (via "next_in_collection_set()") representing the
johnc@1829 597 // current collection set. Set from the incrementally built collection
johnc@1829 598 // set at the start of the pause.
ysr@777 599 HeapRegion* _collection_set;
johnc@1829 600
johnc@1829 601 // The number of regions in the collection set. Set from the incrementally
johnc@1829 602 // built collection set at the start of an evacuation pause.
ysr@777 603 size_t _collection_set_size;
johnc@1829 604
johnc@1829 605 // The number of bytes in the collection set before the pause. Set from
johnc@1829 606 // the incrementally built collection set at the start of an evacuation
johnc@1829 607 // pause.
ysr@777 608 size_t _collection_set_bytes_used_before;
ysr@777 609
johnc@1829 610 // The associated information that is maintained while the incremental
johnc@1829 611 // collection set is being built with young regions. Used to populate
johnc@1829 612 // the recorded info for the evacuation pause.
johnc@1829 613
johnc@1829 614 enum CSetBuildType {
johnc@1829 615 Active, // We are actively building the collection set
johnc@1829 616 Inactive // We are not actively building the collection set
johnc@1829 617 };
johnc@1829 618
johnc@1829 619 CSetBuildType _inc_cset_build_state;
johnc@1829 620
johnc@1829 621 // The head of the incrementally built collection set.
johnc@1829 622 HeapRegion* _inc_cset_head;
johnc@1829 623
johnc@1829 624 // The tail of the incrementally built collection set.
johnc@1829 625 HeapRegion* _inc_cset_tail;
johnc@1829 626
johnc@1829 627 // The number of regions in the incrementally built collection set.
johnc@1829 628 // Used to set _collection_set_size at the start of an evacuation
johnc@1829 629 // pause.
johnc@1829 630 size_t _inc_cset_size;
johnc@1829 631
johnc@1829 632 // Used as the index in the surving young words structure
johnc@1829 633 // which tracks the amount of space, for each young region,
johnc@1829 634 // that survives the pause.
johnc@1829 635 size_t _inc_cset_young_index;
johnc@1829 636
johnc@1829 637 // The number of bytes in the incrementally built collection set.
johnc@1829 638 // Used to set _collection_set_bytes_used_before at the start of
johnc@1829 639 // an evacuation pause.
johnc@1829 640 size_t _inc_cset_bytes_used_before;
johnc@1829 641
johnc@1829 642 // Used to record the highest end of heap region in collection set
johnc@1829 643 HeapWord* _inc_cset_max_finger;
johnc@1829 644
johnc@1829 645 // The number of recorded used bytes in the young regions
johnc@1829 646 // of the collection set. This is the sum of the used() bytes
johnc@1829 647 // of retired young regions in the collection set.
johnc@1829 648 size_t _inc_cset_recorded_young_bytes;
johnc@1829 649
johnc@1829 650 // The RSet lengths recorded for regions in the collection set
johnc@1829 651 // (updated by the periodic sampling of the regions in the
johnc@1829 652 // young list/collection set).
johnc@1829 653 size_t _inc_cset_recorded_rs_lengths;
johnc@1829 654
johnc@1829 655 // The predicted elapsed time it will take to collect the regions
johnc@1829 656 // in the collection set (updated by the periodic sampling of the
johnc@1829 657 // regions in the young list/collection set).
johnc@1829 658 double _inc_cset_predicted_elapsed_time_ms;
johnc@1829 659
johnc@1829 660 // The predicted bytes to copy for the regions in the collection
johnc@1829 661 // set (updated by the periodic sampling of the regions in the
johnc@1829 662 // young list/collection set).
johnc@1829 663 size_t _inc_cset_predicted_bytes_to_copy;
johnc@1829 664
ysr@777 665 // Info about marking.
ysr@777 666 int _n_marks; // Sticky at 2, so we know when we've done at least 2.
ysr@777 667
ysr@777 668 // The number of collection pauses at the end of the last mark.
ysr@777 669 size_t _n_pauses_at_mark_end;
ysr@777 670
ysr@777 671 // Stash a pointer to the g1 heap.
ysr@777 672 G1CollectedHeap* _g1;
ysr@777 673
ysr@777 674 // The average time in ms per collection pause, averaged over recent pauses.
ysr@777 675 double recent_avg_time_for_pauses_ms();
ysr@777 676
johnc@3021 677 // The average time in ms for RS scanning, per pause, averaged
johnc@3021 678 // over recent pauses. (Note the RS scanning time for a pause
johnc@3021 679 // is itself an average of the RS scanning time for each worker
johnc@3021 680 // thread.)
johnc@3021 681 double recent_avg_time_for_rs_scan_ms();
ysr@777 682
ysr@777 683 // The number of "recent" GCs recorded in the number sequences
ysr@777 684 int number_of_recent_gcs();
ysr@777 685
ysr@777 686 // The average survival ratio, computed by the total number of bytes
ysr@777 687 // suriviving / total number of bytes before collection over the last
ysr@777 688 // several recent pauses.
ysr@777 689 double recent_avg_survival_fraction();
ysr@777 690 // The survival fraction of the most recent pause; if there have been no
ysr@777 691 // pauses, returns 1.0.
ysr@777 692 double last_survival_fraction();
ysr@777 693
ysr@777 694 // Returns a "conservative" estimate of the recent survival rate, i.e.,
ysr@777 695 // one that may be higher than "recent_avg_survival_fraction".
ysr@777 696 // This is conservative in several ways:
ysr@777 697 // If there have been few pauses, it will assume a potential high
ysr@777 698 // variance, and err on the side of caution.
ysr@777 699 // It puts a lower bound (currently 0.1) on the value it will return.
ysr@777 700 // To try to detect phase changes, if the most recent pause ("latest") has a
ysr@777 701 // higher-than average ("avg") survival rate, it returns that rate.
ysr@777 702 // "work" version is a utility function; young is restricted to young regions.
ysr@777 703 double conservative_avg_survival_fraction_work(double avg,
ysr@777 704 double latest);
ysr@777 705
ysr@777 706 // The arguments are the two sequences that keep track of the number of bytes
ysr@777 707 // surviving and the total number of bytes before collection, resp.,
ysr@777 708 // over the last evereal recent pauses
ysr@777 709 // Returns the survival rate for the category in the most recent pause.
ysr@777 710 // If there have been no pauses, returns 1.0.
ysr@777 711 double last_survival_fraction_work(TruncatedSeq* surviving,
ysr@777 712 TruncatedSeq* before);
ysr@777 713
ysr@777 714 // The arguments are the two sequences that keep track of the number of bytes
ysr@777 715 // surviving and the total number of bytes before collection, resp.,
ysr@777 716 // over the last several recent pauses
ysr@777 717 // Returns the average survival ration over the last several recent pauses
ysr@777 718 // If there have been no pauses, return 1.0
ysr@777 719 double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
ysr@777 720 TruncatedSeq* before);
ysr@777 721
ysr@777 722 double conservative_avg_survival_fraction() {
ysr@777 723 double avg = recent_avg_survival_fraction();
ysr@777 724 double latest = last_survival_fraction();
ysr@777 725 return conservative_avg_survival_fraction_work(avg, latest);
ysr@777 726 }
ysr@777 727
ysr@777 728 // The ratio of gc time to elapsed time, computed over recent pauses.
ysr@777 729 double _recent_avg_pause_time_ratio;
ysr@777 730
ysr@777 731 double recent_avg_pause_time_ratio() {
ysr@777 732 return _recent_avg_pause_time_ratio;
ysr@777 733 }
ysr@777 734
ysr@777 735 // Number of pauses between concurrent marking.
ysr@777 736 size_t _pauses_btwn_concurrent_mark;
ysr@777 737
ysr@777 738 size_t _n_marks_since_last_pause;
ysr@777 739
tonyp@1794 740 // At the end of a pause we check the heap occupancy and we decide
tonyp@1794 741 // whether we will start a marking cycle during the next pause. If
tonyp@1794 742 // we decide that we want to do that, we will set this parameter to
tonyp@1794 743 // true. So, this parameter will stay true between the end of a
tonyp@1794 744 // pause and the beginning of a subsequent pause (not necessarily
tonyp@1794 745 // the next one, see the comments on the next field) when we decide
tonyp@1794 746 // that we will indeed start a marking cycle and do the initial-mark
tonyp@1794 747 // work.
tonyp@1794 748 volatile bool _initiate_conc_mark_if_possible;
ysr@777 749
tonyp@1794 750 // If initiate_conc_mark_if_possible() is set at the beginning of a
tonyp@1794 751 // pause, it is a suggestion that the pause should start a marking
tonyp@1794 752 // cycle by doing the initial-mark work. However, it is possible
tonyp@1794 753 // that the concurrent marking thread is still finishing up the
tonyp@1794 754 // previous marking cycle (e.g., clearing the next marking
tonyp@1794 755 // bitmap). If that is the case we cannot start a new cycle and
tonyp@1794 756 // we'll have to wait for the concurrent marking thread to finish
tonyp@1794 757 // what it is doing. In this case we will postpone the marking cycle
tonyp@1794 758 // initiation decision for the next pause. When we eventually decide
tonyp@1794 759 // to start a cycle, we will set _during_initial_mark_pause which
tonyp@1794 760 // will stay true until the end of the initial-mark pause and it's
tonyp@1794 761 // the condition that indicates that a pause is doing the
tonyp@1794 762 // initial-mark work.
tonyp@1794 763 volatile bool _during_initial_mark_pause;
tonyp@1794 764
ysr@777 765 bool _should_revert_to_full_young_gcs;
ysr@777 766 bool _last_full_young_gc;
ysr@777 767
ysr@777 768 // This set of variables tracks the collector efficiency, in order to
ysr@777 769 // determine whether we should initiate a new marking.
ysr@777 770 double _cur_mark_stop_world_time_ms;
ysr@777 771 double _mark_remark_start_sec;
ysr@777 772 double _mark_cleanup_start_sec;
ysr@777 773 double _mark_closure_time_ms;
ysr@777 774
tonyp@3119 775 // Update the young list target length either by setting it to the
tonyp@3119 776 // desired fixed value or by calculating it using G1's pause
tonyp@3119 777 // prediction model. If no rs_lengths parameter is passed, predict
tonyp@3119 778 // the RS lengths using the prediction model, otherwise use the
tonyp@3119 779 // given rs_lengths as the prediction.
tonyp@3119 780 void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
tonyp@3119 781
tonyp@3119 782 // Calculate and return the minimum desired young list target
tonyp@3119 783 // length. This is the minimum desired young list length according
tonyp@3119 784 // to the user's inputs.
tonyp@3119 785 size_t calculate_young_list_desired_min_length(size_t base_min_length);
tonyp@3119 786
tonyp@3119 787 // Calculate and return the maximum desired young list target
tonyp@3119 788 // length. This is the maximum desired young list length according
tonyp@3119 789 // to the user's inputs.
tonyp@3119 790 size_t calculate_young_list_desired_max_length();
tonyp@3119 791
tonyp@3119 792 // Calculate and return the maximum young list target length that
tonyp@3119 793 // can fit into the pause time goal. The parameters are: rs_lengths
tonyp@3119 794 // represent the prediction of how large the young RSet lengths will
tonyp@3119 795 // be, base_min_length is the alreay existing number of regions in
tonyp@3119 796 // the young list, min_length and max_length are the desired min and
tonyp@3119 797 // max young list length according to the user's inputs.
tonyp@3119 798 size_t calculate_young_list_target_length(size_t rs_lengths,
tonyp@3119 799 size_t base_min_length,
tonyp@3119 800 size_t desired_min_length,
tonyp@3119 801 size_t desired_max_length);
tonyp@3119 802
tonyp@3119 803 // Check whether a given young length (young_length) fits into the
tonyp@3119 804 // given target pause time and whether the prediction for the amount
tonyp@3119 805 // of objects to be copied for the given length will fit into the
tonyp@3119 806 // given free space (expressed by base_free_regions). It is used by
tonyp@3119 807 // calculate_young_list_target_length().
tonyp@3119 808 bool predict_will_fit(size_t young_length, double base_time_ms,
tonyp@3119 809 size_t base_free_regions, double target_pause_time_ms);
ysr@777 810
ysr@777 811 public:
ysr@777 812
ysr@777 813 G1CollectorPolicy();
ysr@777 814
ysr@777 815 virtual G1CollectorPolicy* as_g1_policy() { return this; }
ysr@777 816
ysr@777 817 virtual CollectorPolicy::Name kind() {
ysr@777 818 return CollectorPolicy::G1CollectorPolicyKind;
ysr@777 819 }
ysr@777 820
tonyp@3119 821 // Check the current value of the young list RSet lengths and
tonyp@3119 822 // compare it against the last prediction. If the current value is
tonyp@3119 823 // higher, recalculate the young list target length prediction.
tonyp@3119 824 void revise_young_list_target_length_if_necessary();
ysr@777 825
ysr@777 826 size_t bytes_in_collection_set() {
ysr@777 827 return _bytes_in_collection_set_before_gc;
ysr@777 828 }
ysr@777 829
ysr@777 830 unsigned calc_gc_alloc_time_stamp() {
ysr@777 831 return _all_pause_times_ms->num() + 1;
ysr@777 832 }
ysr@777 833
brutisso@3120 834 // This should be called after the heap is resized.
brutisso@3120 835 void record_new_heap_size(size_t new_number_of_regions);
tonyp@3119 836
ysr@777 837 protected:
ysr@777 838
ysr@777 839 // Count the number of bytes used in the CS.
ysr@777 840 void count_CS_bytes_used();
ysr@777 841
ysr@777 842 // Together these do the base cleanup-recording work. Subclasses might
ysr@777 843 // want to put something between them.
ysr@777 844 void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
ysr@777 845 size_t max_live_bytes);
ysr@777 846 void record_concurrent_mark_cleanup_end_work2();
ysr@777 847
brutisso@3120 848 void update_young_list_size_using_newratio(size_t number_of_heap_regions);
brutisso@3120 849
ysr@777 850 public:
ysr@777 851
ysr@777 852 virtual void init();
ysr@777 853
apetrusenko@980 854 // Create jstat counters for the policy.
apetrusenko@980 855 virtual void initialize_gc_policy_counters();
apetrusenko@980 856
ysr@777 857 virtual HeapWord* mem_allocate_work(size_t size,
ysr@777 858 bool is_tlab,
ysr@777 859 bool* gc_overhead_limit_was_exceeded);
ysr@777 860
ysr@777 861 // This method controls how a collector handles one or more
ysr@777 862 // of its generations being fully allocated.
ysr@777 863 virtual HeapWord* satisfy_failed_allocation(size_t size,
ysr@777 864 bool is_tlab);
ysr@777 865
ysr@777 866 BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
ysr@777 867
ysr@777 868 GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; }
ysr@777 869
ysr@777 870 // The number of collection pauses so far.
ysr@777 871 long n_pauses() const { return _n_pauses; }
ysr@777 872
ysr@777 873 // Update the heuristic info to record a collection pause of the given
ysr@777 874 // start time, where the given number of bytes were used at the start.
ysr@777 875 // This may involve changing the desired size of a collection set.
ysr@777 876
ysr@777 877 virtual void record_stop_world_start();
ysr@777 878
ysr@777 879 virtual void record_collection_pause_start(double start_time_sec,
ysr@777 880 size_t start_used);
ysr@777 881
ysr@777 882 // Must currently be called while the world is stopped.
brutisso@3065 883 void record_concurrent_mark_init_end(double
ysr@777 884 mark_init_elapsed_time_ms);
ysr@777 885
ysr@777 886 void record_mark_closure_time(double mark_closure_time_ms);
ysr@777 887
ysr@777 888 virtual void record_concurrent_mark_remark_start();
ysr@777 889 virtual void record_concurrent_mark_remark_end();
ysr@777 890
ysr@777 891 virtual void record_concurrent_mark_cleanup_start();
ysr@777 892 virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
ysr@777 893 size_t max_live_bytes);
ysr@777 894 virtual void record_concurrent_mark_cleanup_completed();
ysr@777 895
ysr@777 896 virtual void record_concurrent_pause();
ysr@777 897 virtual void record_concurrent_pause_end();
ysr@777 898
tonyp@2062 899 virtual void record_collection_pause_end();
tonyp@2961 900 void print_heap_transition();
ysr@777 901
ysr@777 902 // Record the fact that a full collection occurred.
ysr@777 903 virtual void record_full_collection_start();
ysr@777 904 virtual void record_full_collection_end();
ysr@777 905
tonyp@1966 906 void record_gc_worker_start_time(int worker_i, double ms) {
tonyp@1966 907 _par_last_gc_worker_start_times_ms[worker_i] = ms;
tonyp@1966 908 }
tonyp@1966 909
ysr@777 910 void record_ext_root_scan_time(int worker_i, double ms) {
ysr@777 911 _par_last_ext_root_scan_times_ms[worker_i] = ms;
ysr@777 912 }
ysr@777 913
ysr@777 914 void record_mark_stack_scan_time(int worker_i, double ms) {
ysr@777 915 _par_last_mark_stack_scan_times_ms[worker_i] = ms;
ysr@777 916 }
ysr@777 917
ysr@777 918 void record_satb_drain_time(double ms) {
ysr@777 919 _cur_satb_drain_time_ms = ms;
ysr@777 920 _satb_drain_time_set = true;
ysr@777 921 }
ysr@777 922
ysr@777 923 void record_satb_drain_processed_buffers (int processed_buffers) {
ysr@777 924 _last_satb_drain_processed_buffers = processed_buffers;
ysr@777 925 }
ysr@777 926
ysr@777 927 void record_mod_union_time(double ms) {
ysr@777 928 _all_mod_union_times_ms->add(ms);
ysr@777 929 }
ysr@777 930
ysr@777 931 void record_update_rs_time(int thread, double ms) {
ysr@777 932 _par_last_update_rs_times_ms[thread] = ms;
ysr@777 933 }
ysr@777 934
ysr@777 935 void record_update_rs_processed_buffers (int thread,
ysr@777 936 double processed_buffers) {
ysr@777 937 _par_last_update_rs_processed_buffers[thread] = processed_buffers;
ysr@777 938 }
ysr@777 939
ysr@777 940 void record_scan_rs_time(int thread, double ms) {
ysr@777 941 _par_last_scan_rs_times_ms[thread] = ms;
ysr@777 942 }
ysr@777 943
ysr@777 944 void reset_obj_copy_time(int thread) {
ysr@777 945 _par_last_obj_copy_times_ms[thread] = 0.0;
ysr@777 946 }
ysr@777 947
ysr@777 948 void reset_obj_copy_time() {
ysr@777 949 reset_obj_copy_time(0);
ysr@777 950 }
ysr@777 951
ysr@777 952 void record_obj_copy_time(int thread, double ms) {
ysr@777 953 _par_last_obj_copy_times_ms[thread] += ms;
ysr@777 954 }
ysr@777 955
tonyp@1966 956 void record_termination(int thread, double ms, size_t attempts) {
tonyp@1966 957 _par_last_termination_times_ms[thread] = ms;
tonyp@1966 958 _par_last_termination_attempts[thread] = (double) attempts;
ysr@777 959 }
ysr@777 960
tonyp@1966 961 void record_gc_worker_end_time(int worker_i, double ms) {
tonyp@1966 962 _par_last_gc_worker_end_times_ms[worker_i] = ms;
ysr@777 963 }
ysr@777 964
tonyp@1030 965 void record_pause_time_ms(double ms) {
ysr@777 966 _last_pause_time_ms = ms;
ysr@777 967 }
ysr@777 968
ysr@777 969 void record_clear_ct_time(double ms) {
ysr@777 970 _cur_clear_ct_time_ms = ms;
ysr@777 971 }
ysr@777 972
ysr@777 973 void record_par_time(double ms) {
ysr@777 974 _cur_collection_par_time_ms = ms;
ysr@777 975 }
ysr@777 976
ysr@777 977 void record_aux_start_time(int i) {
ysr@777 978 guarantee(i < _aux_num, "should be within range");
ysr@777 979 _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
ysr@777 980 }
ysr@777 981
ysr@777 982 void record_aux_end_time(int i) {
ysr@777 983 guarantee(i < _aux_num, "should be within range");
ysr@777 984 double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
ysr@777 985 _cur_aux_times_set[i] = true;
ysr@777 986 _cur_aux_times_ms[i] += ms;
ysr@777 987 }
ysr@777 988
johnc@1325 989 #ifndef PRODUCT
johnc@1325 990 void record_cc_clear_time(double ms) {
johnc@1325 991 if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
johnc@1325 992 _min_clear_cc_time_ms = ms;
johnc@1325 993 if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
johnc@1325 994 _max_clear_cc_time_ms = ms;
johnc@1325 995 _cur_clear_cc_time_ms = ms;
johnc@1325 996 _cum_clear_cc_time_ms += ms;
johnc@1325 997 _num_cc_clears++;
johnc@1325 998 }
johnc@1325 999 #endif
johnc@1325 1000
tonyp@3028 1001 // Record how much space we copied during a GC. This is typically
tonyp@3028 1002 // called when a GC alloc region is being retired.
tonyp@3028 1003 void record_bytes_copied_during_gc(size_t bytes) {
tonyp@3028 1004 _bytes_copied_during_gc += bytes;
tonyp@3028 1005 }
tonyp@3028 1006
tonyp@3028 1007 // The amount of space we copied during a GC.
tonyp@3028 1008 size_t bytes_copied_during_gc() {
tonyp@3028 1009 return _bytes_copied_during_gc;
tonyp@3028 1010 }
ysr@777 1011
ysr@777 1012 // Choose a new collection set. Marks the chosen regions as being
ysr@777 1013 // "in_collection_set", and links them together. The head and number of
ysr@777 1014 // the collection set are available via access methods.
tonyp@2062 1015 virtual void choose_collection_set(double target_pause_time_ms) = 0;
ysr@777 1016
ysr@777 1017 // The head of the list (via "next_in_collection_set()") representing the
ysr@777 1018 // current collection set.
ysr@777 1019 HeapRegion* collection_set() { return _collection_set; }
ysr@777 1020
johnc@1829 1021 void clear_collection_set() { _collection_set = NULL; }
johnc@1829 1022
ysr@777 1023 // The number of elements in the current collection set.
ysr@777 1024 size_t collection_set_size() { return _collection_set_size; }
ysr@777 1025
ysr@777 1026 // Add "hr" to the CS.
ysr@777 1027 void add_to_collection_set(HeapRegion* hr);
ysr@777 1028
johnc@1829 1029 // Incremental CSet Support
johnc@1829 1030
johnc@1829 1031 // The head of the incrementally built collection set.
johnc@1829 1032 HeapRegion* inc_cset_head() { return _inc_cset_head; }
johnc@1829 1033
johnc@1829 1034 // The tail of the incrementally built collection set.
johnc@1829 1035 HeapRegion* inc_set_tail() { return _inc_cset_tail; }
johnc@1829 1036
johnc@1829 1037 // The number of elements in the incrementally built collection set.
johnc@1829 1038 size_t inc_cset_size() { return _inc_cset_size; }
johnc@1829 1039
johnc@1829 1040 // Initialize incremental collection set info.
johnc@1829 1041 void start_incremental_cset_building();
johnc@1829 1042
johnc@1829 1043 void clear_incremental_cset() {
johnc@1829 1044 _inc_cset_head = NULL;
johnc@1829 1045 _inc_cset_tail = NULL;
johnc@1829 1046 }
johnc@1829 1047
johnc@1829 1048 // Stop adding regions to the incremental collection set
johnc@1829 1049 void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
johnc@1829 1050
johnc@1829 1051 // Add/remove information about hr to the aggregated information
johnc@1829 1052 // for the incrementally built collection set.
johnc@1829 1053 void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
johnc@1829 1054 void remove_from_incremental_cset_info(HeapRegion* hr);
johnc@1829 1055
johnc@1829 1056 // Update information about hr in the aggregated information for
johnc@1829 1057 // the incrementally built collection set.
johnc@1829 1058 void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
johnc@1829 1059
johnc@1829 1060 private:
johnc@1829 1061 // Update the incremental cset information when adding a region
johnc@1829 1062 // (should not be called directly).
johnc@1829 1063 void add_region_to_incremental_cset_common(HeapRegion* hr);
johnc@1829 1064
johnc@1829 1065 public:
johnc@1829 1066 // Add hr to the LHS of the incremental collection set.
johnc@1829 1067 void add_region_to_incremental_cset_lhs(HeapRegion* hr);
johnc@1829 1068
johnc@1829 1069 // Add hr to the RHS of the incremental collection set.
johnc@1829 1070 void add_region_to_incremental_cset_rhs(HeapRegion* hr);
johnc@1829 1071
johnc@1829 1072 #ifndef PRODUCT
johnc@1829 1073 void print_collection_set(HeapRegion* list_head, outputStream* st);
johnc@1829 1074 #endif // !PRODUCT
johnc@1829 1075
tonyp@1794 1076 bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
tonyp@1794 1077 void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
tonyp@1794 1078 void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
tonyp@1794 1079
tonyp@1794 1080 bool during_initial_mark_pause() { return _during_initial_mark_pause; }
tonyp@1794 1081 void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
tonyp@1794 1082 void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
tonyp@1794 1083
tonyp@2011 1084 // This sets the initiate_conc_mark_if_possible() flag to start a
tonyp@2011 1085 // new cycle, as long as we are not already in one. It's best if it
tonyp@2011 1086 // is called during a safepoint when the test whether a cycle is in
tonyp@2011 1087 // progress or not is stable.
tonyp@3114 1088 bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
tonyp@2011 1089
tonyp@1794 1090 // This is called at the very beginning of an evacuation pause (it
tonyp@1794 1091 // has to be the first thing that the pause does). If
tonyp@1794 1092 // initiate_conc_mark_if_possible() is true, and the concurrent
tonyp@1794 1093 // marking thread has completed its work during the previous cycle,
tonyp@1794 1094 // it will set during_initial_mark_pause() to so that the pause does
tonyp@1794 1095 // the initial-mark work and start a marking cycle.
tonyp@1794 1096 void decide_on_conc_mark_initiation();
ysr@777 1097
ysr@777 1098 // If an expansion would be appropriate, because recent GC overhead had
ysr@777 1099 // exceeded the desired limit, return an amount to expand by.
ysr@777 1100 virtual size_t expansion_amount();
ysr@777 1101
ysr@777 1102 // note start of mark thread
ysr@777 1103 void note_start_of_mark_thread();
ysr@777 1104
ysr@777 1105 // The marked bytes of the "r" has changed; reclassify it's desirability
ysr@777 1106 // for marking. Also asserts that "r" is eligible for a CS.
ysr@777 1107 virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
ysr@777 1108
ysr@777 1109 #ifndef PRODUCT
ysr@777 1110 // Check any appropriate marked bytes info, asserting false if
ysr@777 1111 // something's wrong, else returning "true".
ysr@777 1112 virtual bool assertMarkedBytesDataOK() = 0;
ysr@777 1113 #endif
ysr@777 1114
ysr@777 1115 // Print tracing information.
ysr@777 1116 void print_tracing_info() const;
ysr@777 1117
ysr@777 1118 // Print stats on young survival ratio
ysr@777 1119 void print_yg_surv_rate_info() const;
ysr@777 1120
apetrusenko@980 1121 void finished_recalculating_age_indexes(bool is_survivors) {
apetrusenko@980 1122 if (is_survivors) {
apetrusenko@980 1123 _survivor_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1124 } else {
apetrusenko@980 1125 _short_lived_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1126 }
ysr@777 1127 // do that for any other surv rate groups
ysr@777 1128 }
ysr@777 1129
tonyp@2315 1130 bool is_young_list_full() {
tonyp@2315 1131 size_t young_list_length = _g1->young_list()->length();
tonyp@2333 1132 size_t young_list_target_length = _young_list_target_length;
tonyp@2333 1133 return young_list_length >= young_list_target_length;
tonyp@2333 1134 }
tonyp@2333 1135
tonyp@2333 1136 bool can_expand_young_list() {
tonyp@2333 1137 size_t young_list_length = _g1->young_list()->length();
tonyp@2333 1138 size_t young_list_max_length = _young_list_max_length;
tonyp@2333 1139 return young_list_length < young_list_max_length;
tonyp@2333 1140 }
tonyp@2315 1141
tonyp@2315 1142 void update_region_num(bool young);
ysr@777 1143
ysr@777 1144 bool full_young_gcs() {
ysr@777 1145 return _full_young_gcs;
ysr@777 1146 }
ysr@777 1147 void set_full_young_gcs(bool full_young_gcs) {
ysr@777 1148 _full_young_gcs = full_young_gcs;
ysr@777 1149 }
ysr@777 1150
ysr@777 1151 bool adaptive_young_list_length() {
ysr@777 1152 return _adaptive_young_list_length;
ysr@777 1153 }
ysr@777 1154 void set_adaptive_young_list_length(bool adaptive_young_list_length) {
ysr@777 1155 _adaptive_young_list_length = adaptive_young_list_length;
ysr@777 1156 }
ysr@777 1157
ysr@777 1158 inline double get_gc_eff_factor() {
ysr@777 1159 double ratio = _known_garbage_ratio;
ysr@777 1160
ysr@777 1161 double square = ratio * ratio;
ysr@777 1162 // square = square * square;
ysr@777 1163 double ret = square * 9.0 + 1.0;
ysr@777 1164 #if 0
ysr@777 1165 gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
ysr@777 1166 #endif // 0
ysr@777 1167 guarantee(0.0 <= ret && ret < 10.0, "invariant!");
ysr@777 1168 return ret;
ysr@777 1169 }
ysr@777 1170
ysr@777 1171 //
ysr@777 1172 // Survivor regions policy.
ysr@777 1173 //
ysr@777 1174 protected:
ysr@777 1175
ysr@777 1176 // Current tenuring threshold, set to 0 if the collector reaches the
ysr@777 1177 // maximum amount of suvivors regions.
ysr@777 1178 int _tenuring_threshold;
ysr@777 1179
apetrusenko@980 1180 // The limit on the number of regions allocated for survivors.
apetrusenko@980 1181 size_t _max_survivor_regions;
apetrusenko@980 1182
tonyp@2961 1183 // For reporting purposes.
tonyp@2961 1184 size_t _eden_bytes_before_gc;
tonyp@2961 1185 size_t _survivor_bytes_before_gc;
tonyp@2961 1186 size_t _capacity_before_gc;
tonyp@2961 1187
apetrusenko@980 1188 // The amount of survor regions after a collection.
apetrusenko@980 1189 size_t _recorded_survivor_regions;
apetrusenko@980 1190 // List of survivor regions.
apetrusenko@980 1191 HeapRegion* _recorded_survivor_head;
apetrusenko@980 1192 HeapRegion* _recorded_survivor_tail;
apetrusenko@980 1193
apetrusenko@980 1194 ageTable _survivors_age_table;
apetrusenko@980 1195
ysr@777 1196 public:
ysr@777 1197
ysr@777 1198 inline GCAllocPurpose
ysr@777 1199 evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
ysr@777 1200 if (age < _tenuring_threshold && src_region->is_young()) {
ysr@777 1201 return GCAllocForSurvived;
ysr@777 1202 } else {
ysr@777 1203 return GCAllocForTenured;
ysr@777 1204 }
ysr@777 1205 }
ysr@777 1206
ysr@777 1207 inline bool track_object_age(GCAllocPurpose purpose) {
ysr@777 1208 return purpose == GCAllocForSurvived;
ysr@777 1209 }
ysr@777 1210
apetrusenko@980 1211 static const size_t REGIONS_UNLIMITED = ~(size_t)0;
apetrusenko@980 1212
apetrusenko@980 1213 size_t max_regions(int purpose);
ysr@777 1214
ysr@777 1215 // The limit on regions for a particular purpose is reached.
ysr@777 1216 void note_alloc_region_limit_reached(int purpose) {
ysr@777 1217 if (purpose == GCAllocForSurvived) {
ysr@777 1218 _tenuring_threshold = 0;
ysr@777 1219 }
ysr@777 1220 }
ysr@777 1221
ysr@777 1222 void note_start_adding_survivor_regions() {
ysr@777 1223 _survivor_surv_rate_group->start_adding_regions();
ysr@777 1224 }
ysr@777 1225
ysr@777 1226 void note_stop_adding_survivor_regions() {
ysr@777 1227 _survivor_surv_rate_group->stop_adding_regions();
ysr@777 1228 }
apetrusenko@980 1229
apetrusenko@980 1230 void record_survivor_regions(size_t regions,
apetrusenko@980 1231 HeapRegion* head,
apetrusenko@980 1232 HeapRegion* tail) {
apetrusenko@980 1233 _recorded_survivor_regions = regions;
apetrusenko@980 1234 _recorded_survivor_head = head;
apetrusenko@980 1235 _recorded_survivor_tail = tail;
apetrusenko@980 1236 }
apetrusenko@980 1237
tonyp@1273 1238 size_t recorded_survivor_regions() {
tonyp@1273 1239 return _recorded_survivor_regions;
tonyp@1273 1240 }
tonyp@1273 1241
apetrusenko@980 1242 void record_thread_age_table(ageTable* age_table)
apetrusenko@980 1243 {
apetrusenko@980 1244 _survivors_age_table.merge_par(age_table);
apetrusenko@980 1245 }
apetrusenko@980 1246
tonyp@3119 1247 void update_max_gc_locker_expansion();
tonyp@2333 1248
apetrusenko@980 1249 // Calculates survivor space parameters.
tonyp@3119 1250 void update_survivors_policy();
apetrusenko@980 1251
ysr@777 1252 };
ysr@777 1253
ysr@777 1254 // This encapsulates a particular strategy for a g1 Collector.
ysr@777 1255 //
ysr@777 1256 // Start a concurrent mark when our heap size is n bytes
ysr@777 1257 // greater then our heap size was at the last concurrent
ysr@777 1258 // mark. Where n is a function of the CMSTriggerRatio
ysr@777 1259 // and the MinHeapFreeRatio.
ysr@777 1260 //
ysr@777 1261 // Start a g1 collection pause when we have allocated the
ysr@777 1262 // average number of bytes currently being freed in
ysr@777 1263 // a collection, but only if it is at least one region
ysr@777 1264 // full
ysr@777 1265 //
ysr@777 1266 // Resize Heap based on desired
ysr@777 1267 // allocation space, where desired allocation space is
ysr@777 1268 // a function of survival rate and desired future to size.
ysr@777 1269 //
ysr@777 1270 // Choose collection set by first picking all older regions
ysr@777 1271 // which have a survival rate which beats our projected young
ysr@777 1272 // survival rate. Then fill out the number of needed regions
ysr@777 1273 // with young regions.
ysr@777 1274
ysr@777 1275 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
ysr@777 1276 CollectionSetChooser* _collectionSetChooser;
ysr@777 1277
tonyp@2062 1278 virtual void choose_collection_set(double target_pause_time_ms);
ysr@777 1279 virtual void record_collection_pause_start(double start_time_sec,
ysr@777 1280 size_t start_used);
ysr@777 1281 virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
ysr@777 1282 size_t max_live_bytes);
ysr@777 1283 virtual void record_full_collection_end();
ysr@777 1284
ysr@777 1285 public:
ysr@777 1286 G1CollectorPolicy_BestRegionsFirst() {
ysr@777 1287 _collectionSetChooser = new CollectionSetChooser();
ysr@777 1288 }
tonyp@2062 1289 void record_collection_pause_end();
ysr@777 1290 // This is not needed any more, after the CSet choosing code was
ysr@777 1291 // changed to use the pause prediction work. But let's leave the
ysr@777 1292 // hook in just in case.
ysr@777 1293 void note_change_in_marked_bytes(HeapRegion* r) { }
ysr@777 1294 #ifndef PRODUCT
ysr@777 1295 bool assertMarkedBytesDataOK();
ysr@777 1296 #endif
ysr@777 1297 };
ysr@777 1298
ysr@777 1299 // This should move to some place more general...
ysr@777 1300
ysr@777 1301 // If we have "n" measurements, and we've kept track of their "sum" and the
ysr@777 1302 // "sum_of_squares" of the measurements, this returns the variance of the
ysr@777 1303 // sequence.
ysr@777 1304 inline double variance(int n, double sum_of_squares, double sum) {
ysr@777 1305 double n_d = (double)n;
ysr@777 1306 double avg = sum/n_d;
ysr@777 1307 return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
ysr@777 1308 }
ysr@777 1309
stefank@2314 1310 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial