src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Thu, 14 Apr 2011 13:45:41 -0700

author
johnc
date
Thu, 14 Apr 2011 13:45:41 -0700
changeset 2787
5d046bf49ce7
parent 2728
13bc79b5c9c8
child 2761
15c9a0e16269
permissions
-rw-r--r--

Merge

duke@435 1 /*
iveresov@2432 2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@2697 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "c1/c1_Compilation.hpp"
stefank@2314 28 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 29 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 30 #include "c1/c1_Runtime1.hpp"
stefank@2314 31 #include "c1/c1_ValueStack.hpp"
stefank@2314 32 #include "ci/ciArrayKlass.hpp"
stefank@2314 33 #include "ci/ciInstance.hpp"
stefank@2314 34 #include "gc_interface/collectedHeap.hpp"
stefank@2314 35 #include "memory/barrierSet.hpp"
stefank@2314 36 #include "memory/cardTableModRefBS.hpp"
stefank@2314 37 #include "nativeInst_x86.hpp"
stefank@2314 38 #include "oops/objArrayKlass.hpp"
stefank@2314 39 #include "runtime/sharedRuntime.hpp"
duke@435 40
duke@435 41
duke@435 42 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 43 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 44 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 45
duke@435 46 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 47 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 48 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 49 // of 128-bits operands for SSE instructions.
duke@435 50 jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
duke@435 51 // Store the value to a 128-bits operand.
duke@435 52 operand[0] = lo;
duke@435 53 operand[1] = hi;
duke@435 54 return operand;
duke@435 55 }
duke@435 56
duke@435 57 // Buffer for 128-bits masks used by SSE instructions.
duke@435 58 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 59
duke@435 60 // Static initialization during VM startup.
duke@435 61 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 62 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 63 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 64 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 65
duke@435 66
duke@435 67
duke@435 68 NEEDS_CLEANUP // remove this definitions ?
duke@435 69 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 70 const Register SYNC_header = rax; // synchronization header
duke@435 71 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 72
duke@435 73 #define __ _masm->
duke@435 74
duke@435 75
duke@435 76 static void select_different_registers(Register preserve,
duke@435 77 Register extra,
duke@435 78 Register &tmp1,
duke@435 79 Register &tmp2) {
duke@435 80 if (tmp1 == preserve) {
duke@435 81 assert_different_registers(tmp1, tmp2, extra);
duke@435 82 tmp1 = extra;
duke@435 83 } else if (tmp2 == preserve) {
duke@435 84 assert_different_registers(tmp1, tmp2, extra);
duke@435 85 tmp2 = extra;
duke@435 86 }
duke@435 87 assert_different_registers(preserve, tmp1, tmp2);
duke@435 88 }
duke@435 89
duke@435 90
duke@435 91
duke@435 92 static void select_different_registers(Register preserve,
duke@435 93 Register extra,
duke@435 94 Register &tmp1,
duke@435 95 Register &tmp2,
duke@435 96 Register &tmp3) {
duke@435 97 if (tmp1 == preserve) {
duke@435 98 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 99 tmp1 = extra;
duke@435 100 } else if (tmp2 == preserve) {
duke@435 101 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 102 tmp2 = extra;
duke@435 103 } else if (tmp3 == preserve) {
duke@435 104 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 105 tmp3 = extra;
duke@435 106 }
duke@435 107 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 108 }
duke@435 109
duke@435 110
duke@435 111
duke@435 112 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 113 if (opr->is_constant()) {
duke@435 114 LIR_Const* constant = opr->as_constant_ptr();
duke@435 115 switch (constant->type()) {
duke@435 116 case T_INT: {
duke@435 117 return true;
duke@435 118 }
duke@435 119
duke@435 120 default:
duke@435 121 return false;
duke@435 122 }
duke@435 123 }
duke@435 124 return false;
duke@435 125 }
duke@435 126
duke@435 127
duke@435 128 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 129 return FrameMap::receiver_opr;
duke@435 130 }
duke@435 131
duke@435 132 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 133 return receiverOpr();
duke@435 134 }
duke@435 135
duke@435 136 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 137 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 138 }
duke@435 139
duke@435 140 //--------------fpu register translations-----------------------
duke@435 141
duke@435 142
duke@435 143 address LIR_Assembler::float_constant(float f) {
duke@435 144 address const_addr = __ float_constant(f);
duke@435 145 if (const_addr == NULL) {
duke@435 146 bailout("const section overflow");
duke@435 147 return __ code()->consts()->start();
duke@435 148 } else {
duke@435 149 return const_addr;
duke@435 150 }
duke@435 151 }
duke@435 152
duke@435 153
duke@435 154 address LIR_Assembler::double_constant(double d) {
duke@435 155 address const_addr = __ double_constant(d);
duke@435 156 if (const_addr == NULL) {
duke@435 157 bailout("const section overflow");
duke@435 158 return __ code()->consts()->start();
duke@435 159 } else {
duke@435 160 return const_addr;
duke@435 161 }
duke@435 162 }
duke@435 163
duke@435 164
duke@435 165 void LIR_Assembler::set_24bit_FPU() {
duke@435 166 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 167 }
duke@435 168
duke@435 169 void LIR_Assembler::reset_FPU() {
duke@435 170 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 171 }
duke@435 172
duke@435 173 void LIR_Assembler::fpop() {
duke@435 174 __ fpop();
duke@435 175 }
duke@435 176
duke@435 177 void LIR_Assembler::fxch(int i) {
duke@435 178 __ fxch(i);
duke@435 179 }
duke@435 180
duke@435 181 void LIR_Assembler::fld(int i) {
duke@435 182 __ fld_s(i);
duke@435 183 }
duke@435 184
duke@435 185 void LIR_Assembler::ffree(int i) {
duke@435 186 __ ffree(i);
duke@435 187 }
duke@435 188
duke@435 189 void LIR_Assembler::breakpoint() {
duke@435 190 __ int3();
duke@435 191 }
duke@435 192
duke@435 193 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 194 if (opr->is_single_cpu()) {
duke@435 195 __ push_reg(opr->as_register());
duke@435 196 } else if (opr->is_double_cpu()) {
never@739 197 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 198 __ push_reg(opr->as_register_lo());
duke@435 199 } else if (opr->is_stack()) {
duke@435 200 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 201 } else if (opr->is_constant()) {
duke@435 202 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 203 if (const_opr->type() == T_OBJECT) {
duke@435 204 __ push_oop(const_opr->as_jobject());
duke@435 205 } else if (const_opr->type() == T_INT) {
duke@435 206 __ push_jint(const_opr->as_jint());
duke@435 207 } else {
duke@435 208 ShouldNotReachHere();
duke@435 209 }
duke@435 210
duke@435 211 } else {
duke@435 212 ShouldNotReachHere();
duke@435 213 }
duke@435 214 }
duke@435 215
duke@435 216 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 217 if (opr->is_single_cpu()) {
never@739 218 __ pop_reg(opr->as_register());
duke@435 219 } else {
duke@435 220 ShouldNotReachHere();
duke@435 221 }
duke@435 222 }
duke@435 223
never@739 224 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 225 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 226 }
never@739 227
duke@435 228 //-------------------------------------------
never@739 229
duke@435 230 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 231 return as_Address(addr, rscratch1);
never@739 232 }
never@739 233
never@739 234 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 235 if (addr->base()->is_illegal()) {
duke@435 236 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 237 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 238 if (! __ reachable(laddr)) {
never@739 239 __ movptr(tmp, laddr.addr());
never@739 240 Address res(tmp, 0);
never@739 241 return res;
never@739 242 } else {
never@739 243 return __ as_Address(laddr);
never@739 244 }
duke@435 245 }
duke@435 246
never@739 247 Register base = addr->base()->as_pointer_register();
duke@435 248
duke@435 249 if (addr->index()->is_illegal()) {
duke@435 250 return Address( base, addr->disp());
never@739 251 } else if (addr->index()->is_cpu_register()) {
never@739 252 Register index = addr->index()->as_pointer_register();
duke@435 253 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 254 } else if (addr->index()->is_constant()) {
never@739 255 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 256 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 257
duke@435 258 return Address(base, addr_offset);
duke@435 259 } else {
duke@435 260 Unimplemented();
duke@435 261 return Address();
duke@435 262 }
duke@435 263 }
duke@435 264
duke@435 265
duke@435 266 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 267 Address base = as_Address(addr);
duke@435 268 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 269 }
duke@435 270
duke@435 271
duke@435 272 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 273 return as_Address(addr);
duke@435 274 }
duke@435 275
duke@435 276
duke@435 277 void LIR_Assembler::osr_entry() {
duke@435 278 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 279 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 280 ValueStack* entry_state = osr_entry->state();
duke@435 281 int number_of_locks = entry_state->locks_size();
duke@435 282
duke@435 283 // we jump here if osr happens with the interpreter
duke@435 284 // state set up to continue at the beginning of the
duke@435 285 // loop that triggered osr - in particular, we have
duke@435 286 // the following registers setup:
duke@435 287 //
duke@435 288 // rcx: osr buffer
duke@435 289 //
duke@435 290
duke@435 291 // build frame
duke@435 292 ciMethod* m = compilation()->method();
duke@435 293 __ build_frame(initial_frame_size_in_bytes());
duke@435 294
duke@435 295 // OSR buffer is
duke@435 296 //
duke@435 297 // locals[nlocals-1..0]
duke@435 298 // monitors[0..number_of_locks]
duke@435 299 //
duke@435 300 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 301 // so first slot in the local array is the last local from the interpreter
duke@435 302 // and last slot is local[0] (receiver) from the interpreter
duke@435 303 //
duke@435 304 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 305 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 306 // in the interpreter frame (the method lock if a sync method)
duke@435 307
duke@435 308 // Initialize monitors in the compiled activation.
duke@435 309 // rcx: pointer to osr buffer
duke@435 310 //
duke@435 311 // All other registers are dead at this point and the locals will be
duke@435 312 // copied into place by code emitted in the IR.
duke@435 313
never@739 314 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 315 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 316 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 317 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 318 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 319 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 320 // the oop.
duke@435 321 for (int i = 0; i < number_of_locks; i++) {
roland@1495 322 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 323 #ifdef ASSERT
duke@435 324 // verify the interpreter's monitor has a non-null object
duke@435 325 {
duke@435 326 Label L;
roland@1495 327 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 328 __ jcc(Assembler::notZero, L);
duke@435 329 __ stop("locked object is NULL");
duke@435 330 __ bind(L);
duke@435 331 }
duke@435 332 #endif
roland@1495 333 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 334 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 335 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 336 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 337 }
duke@435 338 }
duke@435 339 }
duke@435 340
duke@435 341
duke@435 342 // inline cache check; done before the frame is built.
duke@435 343 int LIR_Assembler::check_icache() {
duke@435 344 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 345 Register ic_klass = IC_Klass;
never@739 346 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
iveresov@2344 347 const bool do_post_padding = VerifyOops || UseCompressedOops;
iveresov@2344 348 if (!do_post_padding) {
duke@435 349 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 350 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 351 __ nop();
duke@435 352 }
duke@435 353 }
duke@435 354 int offset = __ offset();
duke@435 355 __ inline_cache_check(receiver, IC_Klass);
iveresov@2344 356 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
iveresov@2344 357 if (do_post_padding) {
duke@435 358 // force alignment after the cache check.
duke@435 359 // It's been verified to be aligned if !VerifyOops
duke@435 360 __ align(CodeEntryAlignment);
duke@435 361 }
duke@435 362 return offset;
duke@435 363 }
duke@435 364
duke@435 365
duke@435 366 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 367 jobject o = NULL;
duke@435 368 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
duke@435 369 __ movoop(reg, o);
duke@435 370 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 371 }
duke@435 372
duke@435 373
duke@435 374 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
duke@435 375 if (exception->is_valid()) {
duke@435 376 // preserve exception
duke@435 377 // note: the monitor_exit runtime call is a leaf routine
duke@435 378 // and cannot block => no GC can happen
duke@435 379 // The slow case (MonitorAccessStub) uses the first two stack slots
duke@435 380 // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
never@739 381 __ movptr (Address(rsp, 2*wordSize), exception);
duke@435 382 }
duke@435 383
duke@435 384 Register obj_reg = obj_opr->as_register();
duke@435 385 Register lock_reg = lock_opr->as_register();
duke@435 386
duke@435 387 // setup registers (lock_reg must be rax, for lock_object)
duke@435 388 assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
duke@435 389 Register hdr = lock_reg;
duke@435 390 assert(new_hdr == SYNC_header, "wrong register");
duke@435 391 lock_reg = new_hdr;
duke@435 392 // compute pointer to BasicLock
duke@435 393 Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
never@739 394 __ lea(lock_reg, lock_addr);
duke@435 395 // unlock object
duke@435 396 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
duke@435 397 // _slow_case_stubs->append(slow_case);
duke@435 398 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 399 _slow_case_stubs->append(slow_case);
duke@435 400 if (UseFastLocking) {
duke@435 401 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 402 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 403 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 404 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 405 } else {
duke@435 406 // always do slow unlocking
duke@435 407 // note: the slow unlocking code could be inlined here, however if we use
duke@435 408 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 409 // simpler and requires less duplicated code - additionally, the
duke@435 410 // slow unlocking code is the same in either case which simplifies
duke@435 411 // debugging
duke@435 412 __ jmp(*slow_case->entry());
duke@435 413 }
duke@435 414 // done
duke@435 415 __ bind(*slow_case->continuation());
duke@435 416
duke@435 417 if (exception->is_valid()) {
duke@435 418 // restore exception
never@739 419 __ movptr (exception, Address(rsp, 2 * wordSize));
duke@435 420 }
duke@435 421 }
duke@435 422
duke@435 423 // This specifies the rsp decrement needed to build the frame
duke@435 424 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 425 // if rounding, must let FrameMap know!
never@739 426
never@739 427 // The frame_map records size in slots (32bit word)
never@739 428
never@739 429 // subtract two words to account for return address and link
never@739 430 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 431 }
duke@435 432
duke@435 433
twisti@1639 434 int LIR_Assembler::emit_exception_handler() {
duke@435 435 // if the last instruction is a call (typically to do a throw which
duke@435 436 // is coming at the end after block reordering) the return address
duke@435 437 // must still point into the code area in order to avoid assertion
duke@435 438 // failures when searching for the corresponding bci => add a nop
duke@435 439 // (was bug 5/14/1999 - gri)
duke@435 440 __ nop();
duke@435 441
duke@435 442 // generate code for exception handler
duke@435 443 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 444 if (handler_base == NULL) {
duke@435 445 // not enough space left for the handler
duke@435 446 bailout("exception handler overflow");
twisti@1639 447 return -1;
duke@435 448 }
twisti@1639 449
duke@435 450 int offset = code_offset();
duke@435 451
twisti@1730 452 // the exception oop and pc are in rax, and rdx
duke@435 453 // no other registers need to be preserved, so invalidate them
twisti@1730 454 __ invalidate_registers(false, true, true, false, true, true);
duke@435 455
duke@435 456 // check that there is really an exception
duke@435 457 __ verify_not_null_oop(rax);
duke@435 458
twisti@1730 459 // search an exception handler (rax: exception oop, rdx: throwing pc)
twisti@2603 460 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
twisti@2603 461 __ should_not_reach_here();
duke@435 462 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 463 __ end_a_stub();
twisti@1639 464
twisti@1639 465 return offset;
duke@435 466 }
duke@435 467
twisti@1639 468
never@1813 469 // Emit the code to remove the frame from the stack in the exception
never@1813 470 // unwind path.
never@1813 471 int LIR_Assembler::emit_unwind_handler() {
never@1813 472 #ifndef PRODUCT
never@1813 473 if (CommentedAssembly) {
never@1813 474 _masm->block_comment("Unwind handler");
never@1813 475 }
never@1813 476 #endif
never@1813 477
never@1813 478 int offset = code_offset();
never@1813 479
never@1813 480 // Fetch the exception from TLS and clear out exception related thread state
never@1813 481 __ get_thread(rsi);
never@1813 482 __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
never@1813 483 __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
never@1813 484 __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@1813 485
never@1813 486 __ bind(_unwind_handler_entry);
never@1813 487 __ verify_not_null_oop(rax);
never@1813 488 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 489 __ mov(rsi, rax); // Preserve the exception
never@1813 490 }
never@1813 491
never@1813 492 // Preform needed unlocking
never@1813 493 MonitorExitStub* stub = NULL;
never@1813 494 if (method()->is_synchronized()) {
never@1813 495 monitor_address(0, FrameMap::rax_opr);
never@1813 496 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
never@1813 497 __ unlock_object(rdi, rbx, rax, *stub->entry());
never@1813 498 __ bind(*stub->continuation());
never@1813 499 }
never@1813 500
never@1813 501 if (compilation()->env()->dtrace_method_probes()) {
never@2185 502 __ get_thread(rax);
never@2185 503 __ movptr(Address(rsp, 0), rax);
never@2185 504 __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
never@1813 505 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
never@1813 506 }
never@1813 507
never@1813 508 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 509 __ mov(rax, rsi); // Restore the exception
never@1813 510 }
never@1813 511
never@1813 512 // remove the activation and dispatch to the unwind handler
never@1813 513 __ remove_frame(initial_frame_size_in_bytes());
never@1813 514 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
never@1813 515
never@1813 516 // Emit the slow path assembly
never@1813 517 if (stub != NULL) {
never@1813 518 stub->emit_code(this);
never@1813 519 }
never@1813 520
never@1813 521 return offset;
never@1813 522 }
never@1813 523
never@1813 524
twisti@1639 525 int LIR_Assembler::emit_deopt_handler() {
duke@435 526 // if the last instruction is a call (typically to do a throw which
duke@435 527 // is coming at the end after block reordering) the return address
duke@435 528 // must still point into the code area in order to avoid assertion
duke@435 529 // failures when searching for the corresponding bci => add a nop
duke@435 530 // (was bug 5/14/1999 - gri)
duke@435 531 __ nop();
duke@435 532
duke@435 533 // generate code for exception handler
duke@435 534 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 535 if (handler_base == NULL) {
duke@435 536 // not enough space left for the handler
duke@435 537 bailout("deopt handler overflow");
twisti@1639 538 return -1;
duke@435 539 }
twisti@1639 540
duke@435 541 int offset = code_offset();
duke@435 542 InternalAddress here(__ pc());
twisti@1730 543
duke@435 544 __ pushptr(here.addr());
duke@435 545 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
twisti@1730 546
duke@435 547 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 548 __ end_a_stub();
duke@435 549
twisti@1639 550 return offset;
duke@435 551 }
duke@435 552
duke@435 553
duke@435 554 // This is the fast version of java.lang.String.compare; it has not
duke@435 555 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 556 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 557 __ movptr (rbx, rcx); // receiver is in rcx
never@739 558 __ movptr (rax, arg1->as_register());
duke@435 559
duke@435 560 // Get addresses of first characters from both Strings
iveresov@2344 561 __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
iveresov@2344 562 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
iveresov@2344 563 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 564
duke@435 565
duke@435 566 // rbx, may be NULL
duke@435 567 add_debug_info_for_null_check_here(info);
iveresov@2344 568 __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
iveresov@2344 569 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
iveresov@2344 570 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 571
duke@435 572 // compute minimum length (in rax) and difference of lengths (on top of stack)
twisti@2697 573 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
twisti@2697 574 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
twisti@2697 575 __ mov (rcx, rbx);
twisti@2697 576 __ subptr(rbx, rax); // subtract lengths
twisti@2697 577 __ push (rbx); // result
twisti@2697 578 __ cmov (Assembler::lessEqual, rax, rcx);
twisti@2697 579
duke@435 580 // is minimum length 0?
duke@435 581 Label noLoop, haveResult;
never@739 582 __ testptr (rax, rax);
duke@435 583 __ jcc (Assembler::zero, noLoop);
duke@435 584
duke@435 585 // compare first characters
jrose@1057 586 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 587 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 588 __ subl(rcx, rbx);
duke@435 589 __ jcc(Assembler::notZero, haveResult);
duke@435 590 // starting loop
duke@435 591 __ decrement(rax); // we already tested index: skip one
duke@435 592 __ jcc(Assembler::zero, noLoop);
duke@435 593
duke@435 594 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 595 // negate the index
duke@435 596
never@739 597 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 598 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 599 __ negptr(rax);
duke@435 600
duke@435 601 // compare the strings in a loop
duke@435 602
duke@435 603 Label loop;
duke@435 604 __ align(wordSize);
duke@435 605 __ bind(loop);
jrose@1057 606 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 607 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 608 __ subl(rcx, rbx);
duke@435 609 __ jcc(Assembler::notZero, haveResult);
duke@435 610 __ increment(rax);
duke@435 611 __ jcc(Assembler::notZero, loop);
duke@435 612
duke@435 613 // strings are equal up to min length
duke@435 614
duke@435 615 __ bind(noLoop);
never@739 616 __ pop(rax);
duke@435 617 return_op(LIR_OprFact::illegalOpr);
duke@435 618
duke@435 619 __ bind(haveResult);
duke@435 620 // leave instruction is going to discard the TOS value
never@739 621 __ mov (rax, rcx); // result of call is in rax,
duke@435 622 }
duke@435 623
duke@435 624
duke@435 625 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 626 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 627 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 628 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 629 }
duke@435 630
duke@435 631 // Pop the stack before the safepoint code
twisti@1730 632 __ remove_frame(initial_frame_size_in_bytes());
duke@435 633
duke@435 634 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 635
duke@435 636 // Note: we do not need to round double result; float result has the right precision
duke@435 637 // the poll sets the condition code, but no data registers
duke@435 638 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 639 relocInfo::poll_return_type);
never@739 640
iveresov@2686 641 if (Assembler::is_polling_page_far()) {
iveresov@2686 642 __ lea(rscratch1, polling_page);
iveresov@2686 643 __ relocate(relocInfo::poll_return_type);
iveresov@2686 644 __ testl(rax, Address(rscratch1, 0));
iveresov@2686 645 } else {
iveresov@2686 646 __ testl(rax, polling_page);
iveresov@2686 647 }
duke@435 648 __ ret(0);
duke@435 649 }
duke@435 650
duke@435 651
duke@435 652 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 653 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 654 relocInfo::poll_type);
iveresov@2686 655 guarantee(info != NULL, "Shouldn't be NULL");
iveresov@2686 656 int offset = __ offset();
iveresov@2686 657 if (Assembler::is_polling_page_far()) {
iveresov@2686 658 __ lea(rscratch1, polling_page);
iveresov@2686 659 offset = __ offset();
duke@435 660 add_debug_info_for_branch(info);
iveresov@2686 661 __ testl(rax, Address(rscratch1, 0));
duke@435 662 } else {
iveresov@2686 663 add_debug_info_for_branch(info);
iveresov@2686 664 __ testl(rax, polling_page);
duke@435 665 }
duke@435 666 return offset;
duke@435 667 }
duke@435 668
duke@435 669
duke@435 670 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 671 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 672 }
duke@435 673
duke@435 674 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 675 __ xchgptr(a, b);
duke@435 676 }
duke@435 677
duke@435 678
duke@435 679 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 680 assert(src->is_constant(), "should not call otherwise");
duke@435 681 assert(dest->is_register(), "should not call otherwise");
duke@435 682 LIR_Const* c = src->as_constant_ptr();
duke@435 683
duke@435 684 switch (c->type()) {
iveresov@2344 685 case T_INT: {
iveresov@2344 686 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 687 __ movl(dest->as_register(), c->as_jint());
iveresov@2344 688 break;
iveresov@2344 689 }
iveresov@2344 690
roland@1732 691 case T_ADDRESS: {
duke@435 692 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 693 __ movptr(dest->as_register(), c->as_jint());
duke@435 694 break;
duke@435 695 }
duke@435 696
duke@435 697 case T_LONG: {
duke@435 698 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 699 #ifdef _LP64
never@739 700 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 701 #else
never@739 702 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 703 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 704 #endif // _LP64
duke@435 705 break;
duke@435 706 }
duke@435 707
duke@435 708 case T_OBJECT: {
duke@435 709 if (patch_code != lir_patch_none) {
duke@435 710 jobject2reg_with_patching(dest->as_register(), info);
duke@435 711 } else {
duke@435 712 __ movoop(dest->as_register(), c->as_jobject());
duke@435 713 }
duke@435 714 break;
duke@435 715 }
duke@435 716
duke@435 717 case T_FLOAT: {
duke@435 718 if (dest->is_single_xmm()) {
duke@435 719 if (c->is_zero_float()) {
duke@435 720 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 721 } else {
duke@435 722 __ movflt(dest->as_xmm_float_reg(),
duke@435 723 InternalAddress(float_constant(c->as_jfloat())));
duke@435 724 }
duke@435 725 } else {
duke@435 726 assert(dest->is_single_fpu(), "must be");
duke@435 727 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 728 if (c->is_zero_float()) {
duke@435 729 __ fldz();
duke@435 730 } else if (c->is_one_float()) {
duke@435 731 __ fld1();
duke@435 732 } else {
duke@435 733 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 734 }
duke@435 735 }
duke@435 736 break;
duke@435 737 }
duke@435 738
duke@435 739 case T_DOUBLE: {
duke@435 740 if (dest->is_double_xmm()) {
duke@435 741 if (c->is_zero_double()) {
duke@435 742 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 743 } else {
duke@435 744 __ movdbl(dest->as_xmm_double_reg(),
duke@435 745 InternalAddress(double_constant(c->as_jdouble())));
duke@435 746 }
duke@435 747 } else {
duke@435 748 assert(dest->is_double_fpu(), "must be");
duke@435 749 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 750 if (c->is_zero_double()) {
duke@435 751 __ fldz();
duke@435 752 } else if (c->is_one_double()) {
duke@435 753 __ fld1();
duke@435 754 } else {
duke@435 755 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 756 }
duke@435 757 }
duke@435 758 break;
duke@435 759 }
duke@435 760
duke@435 761 default:
duke@435 762 ShouldNotReachHere();
duke@435 763 }
duke@435 764 }
duke@435 765
duke@435 766 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 767 assert(src->is_constant(), "should not call otherwise");
duke@435 768 assert(dest->is_stack(), "should not call otherwise");
duke@435 769 LIR_Const* c = src->as_constant_ptr();
duke@435 770
duke@435 771 switch (c->type()) {
duke@435 772 case T_INT: // fall through
duke@435 773 case T_FLOAT:
iveresov@2344 774 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
iveresov@2344 775 break;
iveresov@2344 776
roland@1732 777 case T_ADDRESS:
iveresov@2344 778 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 779 break;
duke@435 780
duke@435 781 case T_OBJECT:
duke@435 782 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 783 break;
duke@435 784
duke@435 785 case T_LONG: // fall through
duke@435 786 case T_DOUBLE:
never@739 787 #ifdef _LP64
never@739 788 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 789 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 790 #else
never@739 791 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 792 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 793 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 794 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 795 #endif // _LP64
duke@435 796 break;
duke@435 797
duke@435 798 default:
duke@435 799 ShouldNotReachHere();
duke@435 800 }
duke@435 801 }
duke@435 802
iveresov@2344 803 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 804 assert(src->is_constant(), "should not call otherwise");
duke@435 805 assert(dest->is_address(), "should not call otherwise");
duke@435 806 LIR_Const* c = src->as_constant_ptr();
duke@435 807 LIR_Address* addr = dest->as_address_ptr();
duke@435 808
never@739 809 int null_check_here = code_offset();
duke@435 810 switch (type) {
duke@435 811 case T_INT: // fall through
duke@435 812 case T_FLOAT:
iveresov@2344 813 __ movl(as_Address(addr), c->as_jint_bits());
iveresov@2344 814 break;
iveresov@2344 815
roland@1732 816 case T_ADDRESS:
iveresov@2344 817 __ movptr(as_Address(addr), c->as_jint_bits());
duke@435 818 break;
duke@435 819
duke@435 820 case T_OBJECT: // fall through
duke@435 821 case T_ARRAY:
duke@435 822 if (c->as_jobject() == NULL) {
iveresov@2344 823 if (UseCompressedOops && !wide) {
iveresov@2344 824 __ movl(as_Address(addr), (int32_t)NULL_WORD);
iveresov@2344 825 } else {
iveresov@2344 826 __ movptr(as_Address(addr), NULL_WORD);
iveresov@2344 827 }
duke@435 828 } else {
never@739 829 if (is_literal_address(addr)) {
never@739 830 ShouldNotReachHere();
never@739 831 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 832 } else {
roland@1495 833 #ifdef _LP64
roland@1495 834 __ movoop(rscratch1, c->as_jobject());
iveresov@2344 835 if (UseCompressedOops && !wide) {
iveresov@2344 836 __ encode_heap_oop(rscratch1);
iveresov@2344 837 null_check_here = code_offset();
iveresov@2344 838 __ movl(as_Address_lo(addr), rscratch1);
iveresov@2344 839 } else {
iveresov@2344 840 null_check_here = code_offset();
iveresov@2344 841 __ movptr(as_Address_lo(addr), rscratch1);
iveresov@2344 842 }
roland@1495 843 #else
never@739 844 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 845 #endif
never@739 846 }
duke@435 847 }
duke@435 848 break;
duke@435 849
duke@435 850 case T_LONG: // fall through
duke@435 851 case T_DOUBLE:
never@739 852 #ifdef _LP64
never@739 853 if (is_literal_address(addr)) {
never@739 854 ShouldNotReachHere();
never@739 855 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 856 } else {
never@739 857 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 858 null_check_here = code_offset();
never@739 859 __ movptr(as_Address_lo(addr), r10);
never@739 860 }
never@739 861 #else
never@739 862 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 863 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 864 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 865 #endif // _LP64
duke@435 866 break;
duke@435 867
duke@435 868 case T_BOOLEAN: // fall through
duke@435 869 case T_BYTE:
duke@435 870 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 871 break;
duke@435 872
duke@435 873 case T_CHAR: // fall through
duke@435 874 case T_SHORT:
duke@435 875 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 876 break;
duke@435 877
duke@435 878 default:
duke@435 879 ShouldNotReachHere();
duke@435 880 };
never@739 881
never@739 882 if (info != NULL) {
never@739 883 add_debug_info_for_null_check(null_check_here, info);
never@739 884 }
duke@435 885 }
duke@435 886
duke@435 887
duke@435 888 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 889 assert(src->is_register(), "should not call otherwise");
duke@435 890 assert(dest->is_register(), "should not call otherwise");
duke@435 891
duke@435 892 // move between cpu-registers
duke@435 893 if (dest->is_single_cpu()) {
never@739 894 #ifdef _LP64
never@739 895 if (src->type() == T_LONG) {
never@739 896 // Can do LONG -> OBJECT
never@739 897 move_regs(src->as_register_lo(), dest->as_register());
never@739 898 return;
never@739 899 }
never@739 900 #endif
duke@435 901 assert(src->is_single_cpu(), "must match");
duke@435 902 if (src->type() == T_OBJECT) {
duke@435 903 __ verify_oop(src->as_register());
duke@435 904 }
duke@435 905 move_regs(src->as_register(), dest->as_register());
duke@435 906
duke@435 907 } else if (dest->is_double_cpu()) {
never@739 908 #ifdef _LP64
never@739 909 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 910 // Surprising to me but we can see move of a long to t_object
never@739 911 __ verify_oop(src->as_register());
never@739 912 move_regs(src->as_register(), dest->as_register_lo());
never@739 913 return;
never@739 914 }
never@739 915 #endif
duke@435 916 assert(src->is_double_cpu(), "must match");
duke@435 917 Register f_lo = src->as_register_lo();
duke@435 918 Register f_hi = src->as_register_hi();
duke@435 919 Register t_lo = dest->as_register_lo();
duke@435 920 Register t_hi = dest->as_register_hi();
never@739 921 #ifdef _LP64
never@739 922 assert(f_hi == f_lo, "must be same");
never@739 923 assert(t_hi == t_lo, "must be same");
never@739 924 move_regs(f_lo, t_lo);
never@739 925 #else
duke@435 926 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 927
never@739 928
duke@435 929 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 930 swap_reg(f_lo, f_hi);
duke@435 931 } else if (f_hi == t_lo) {
duke@435 932 assert(f_lo != t_hi, "overwriting register");
duke@435 933 move_regs(f_hi, t_hi);
duke@435 934 move_regs(f_lo, t_lo);
duke@435 935 } else {
duke@435 936 assert(f_hi != t_lo, "overwriting register");
duke@435 937 move_regs(f_lo, t_lo);
duke@435 938 move_regs(f_hi, t_hi);
duke@435 939 }
never@739 940 #endif // LP64
duke@435 941
duke@435 942 // special moves from fpu-register to xmm-register
duke@435 943 // necessary for method results
duke@435 944 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 945 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 946 __ fld_s(Address(rsp, 0));
duke@435 947 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 948 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 949 __ fld_d(Address(rsp, 0));
duke@435 950 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 951 __ fstp_s(Address(rsp, 0));
duke@435 952 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 953 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 954 __ fstp_d(Address(rsp, 0));
duke@435 955 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 956
duke@435 957 // move between xmm-registers
duke@435 958 } else if (dest->is_single_xmm()) {
duke@435 959 assert(src->is_single_xmm(), "must match");
duke@435 960 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 961 } else if (dest->is_double_xmm()) {
duke@435 962 assert(src->is_double_xmm(), "must match");
duke@435 963 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 964
duke@435 965 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 966 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 967 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 968 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 969 } else {
duke@435 970 ShouldNotReachHere();
duke@435 971 }
duke@435 972 }
duke@435 973
duke@435 974 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 975 assert(src->is_register(), "should not call otherwise");
duke@435 976 assert(dest->is_stack(), "should not call otherwise");
duke@435 977
duke@435 978 if (src->is_single_cpu()) {
duke@435 979 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 980 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 981 __ verify_oop(src->as_register());
never@739 982 __ movptr (dst, src->as_register());
never@739 983 } else {
never@739 984 __ movl (dst, src->as_register());
duke@435 985 }
duke@435 986
duke@435 987 } else if (src->is_double_cpu()) {
duke@435 988 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 989 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 990 __ movptr (dstLO, src->as_register_lo());
never@739 991 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 992
duke@435 993 } else if (src->is_single_xmm()) {
duke@435 994 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 995 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 996
duke@435 997 } else if (src->is_double_xmm()) {
duke@435 998 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 999 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 1000
duke@435 1001 } else if (src->is_single_fpu()) {
duke@435 1002 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1003 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1004 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 1005 else __ fst_s (dst_addr);
duke@435 1006
duke@435 1007 } else if (src->is_double_fpu()) {
duke@435 1008 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1009 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1010 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 1011 else __ fst_d (dst_addr);
duke@435 1012
duke@435 1013 } else {
duke@435 1014 ShouldNotReachHere();
duke@435 1015 }
duke@435 1016 }
duke@435 1017
duke@435 1018
iveresov@2344 1019 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
duke@435 1020 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 1021 PatchingStub* patch = NULL;
iveresov@2344 1022 Register compressed_src = rscratch1;
duke@435 1023
duke@435 1024 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1025 __ verify_oop(src->as_register());
iveresov@2344 1026 #ifdef _LP64
iveresov@2344 1027 if (UseCompressedOops && !wide) {
iveresov@2344 1028 __ movptr(compressed_src, src->as_register());
iveresov@2344 1029 __ encode_heap_oop(compressed_src);
iveresov@2344 1030 }
iveresov@2344 1031 #endif
duke@435 1032 }
iveresov@2344 1033
duke@435 1034 if (patch_code != lir_patch_none) {
duke@435 1035 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1036 Address toa = as_Address(to_addr);
never@739 1037 assert(toa.disp() != 0, "must have");
duke@435 1038 }
iveresov@2344 1039
iveresov@2344 1040 int null_check_here = code_offset();
duke@435 1041 switch (type) {
duke@435 1042 case T_FLOAT: {
duke@435 1043 if (src->is_single_xmm()) {
duke@435 1044 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 1045 } else {
duke@435 1046 assert(src->is_single_fpu(), "must be");
duke@435 1047 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1048 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 1049 else __ fst_s (as_Address(to_addr));
duke@435 1050 }
duke@435 1051 break;
duke@435 1052 }
duke@435 1053
duke@435 1054 case T_DOUBLE: {
duke@435 1055 if (src->is_double_xmm()) {
duke@435 1056 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 1057 } else {
duke@435 1058 assert(src->is_double_fpu(), "must be");
duke@435 1059 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1060 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 1061 else __ fst_d (as_Address(to_addr));
duke@435 1062 }
duke@435 1063 break;
duke@435 1064 }
duke@435 1065
duke@435 1066 case T_ARRAY: // fall through
duke@435 1067 case T_OBJECT: // fall through
iveresov@2344 1068 if (UseCompressedOops && !wide) {
iveresov@2344 1069 __ movl(as_Address(to_addr), compressed_src);
iveresov@2344 1070 } else {
iveresov@2344 1071 __ movptr(as_Address(to_addr), src->as_register());
iveresov@2344 1072 }
iveresov@2344 1073 break;
iveresov@2344 1074 case T_ADDRESS:
never@739 1075 __ movptr(as_Address(to_addr), src->as_register());
never@739 1076 break;
duke@435 1077 case T_INT:
duke@435 1078 __ movl(as_Address(to_addr), src->as_register());
duke@435 1079 break;
duke@435 1080
duke@435 1081 case T_LONG: {
duke@435 1082 Register from_lo = src->as_register_lo();
duke@435 1083 Register from_hi = src->as_register_hi();
never@739 1084 #ifdef _LP64
never@739 1085 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1086 #else
duke@435 1087 Register base = to_addr->base()->as_register();
duke@435 1088 Register index = noreg;
duke@435 1089 if (to_addr->index()->is_register()) {
duke@435 1090 index = to_addr->index()->as_register();
duke@435 1091 }
duke@435 1092 if (base == from_lo || index == from_lo) {
duke@435 1093 assert(base != from_hi, "can't be");
duke@435 1094 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1095 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1096 if (patch != NULL) {
duke@435 1097 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1098 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1099 patch_code = lir_patch_low;
duke@435 1100 }
duke@435 1101 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1102 } else {
duke@435 1103 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1104 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1105 if (patch != NULL) {
duke@435 1106 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1107 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1108 patch_code = lir_patch_high;
duke@435 1109 }
duke@435 1110 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1111 }
never@739 1112 #endif // _LP64
duke@435 1113 break;
duke@435 1114 }
duke@435 1115
duke@435 1116 case T_BYTE: // fall through
duke@435 1117 case T_BOOLEAN: {
duke@435 1118 Register src_reg = src->as_register();
duke@435 1119 Address dst_addr = as_Address(to_addr);
duke@435 1120 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1121 __ movb(dst_addr, src_reg);
duke@435 1122 break;
duke@435 1123 }
duke@435 1124
duke@435 1125 case T_CHAR: // fall through
duke@435 1126 case T_SHORT:
duke@435 1127 __ movw(as_Address(to_addr), src->as_register());
duke@435 1128 break;
duke@435 1129
duke@435 1130 default:
duke@435 1131 ShouldNotReachHere();
duke@435 1132 }
iveresov@2344 1133 if (info != NULL) {
iveresov@2344 1134 add_debug_info_for_null_check(null_check_here, info);
iveresov@2344 1135 }
duke@435 1136
duke@435 1137 if (patch_code != lir_patch_none) {
duke@435 1138 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1139 }
duke@435 1140 }
duke@435 1141
duke@435 1142
duke@435 1143 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1144 assert(src->is_stack(), "should not call otherwise");
duke@435 1145 assert(dest->is_register(), "should not call otherwise");
duke@435 1146
duke@435 1147 if (dest->is_single_cpu()) {
duke@435 1148 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1149 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1150 __ verify_oop(dest->as_register());
never@739 1151 } else {
never@739 1152 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1153 }
duke@435 1154
duke@435 1155 } else if (dest->is_double_cpu()) {
duke@435 1156 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1157 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1158 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1159 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1160
duke@435 1161 } else if (dest->is_single_xmm()) {
duke@435 1162 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1163 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1164
duke@435 1165 } else if (dest->is_double_xmm()) {
duke@435 1166 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1167 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1168
duke@435 1169 } else if (dest->is_single_fpu()) {
duke@435 1170 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1171 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1172 __ fld_s(src_addr);
duke@435 1173
duke@435 1174 } else if (dest->is_double_fpu()) {
duke@435 1175 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1176 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1177 __ fld_d(src_addr);
duke@435 1178
duke@435 1179 } else {
duke@435 1180 ShouldNotReachHere();
duke@435 1181 }
duke@435 1182 }
duke@435 1183
duke@435 1184
duke@435 1185 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1186 if (src->is_single_stack()) {
never@739 1187 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1188 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1189 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1190 } else {
roland@1495 1191 #ifndef _LP64
never@739 1192 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1193 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1194 #else
roland@1495 1195 //no pushl on 64bits
roland@1495 1196 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1197 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1198 #endif
never@739 1199 }
duke@435 1200
duke@435 1201 } else if (src->is_double_stack()) {
never@739 1202 #ifdef _LP64
never@739 1203 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1204 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1205 #else
duke@435 1206 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1207 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1208 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1209 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1210 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1211 #endif // _LP64
duke@435 1212
duke@435 1213 } else {
duke@435 1214 ShouldNotReachHere();
duke@435 1215 }
duke@435 1216 }
duke@435 1217
duke@435 1218
iveresov@2344 1219 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
duke@435 1220 assert(src->is_address(), "should not call otherwise");
duke@435 1221 assert(dest->is_register(), "should not call otherwise");
duke@435 1222
duke@435 1223 LIR_Address* addr = src->as_address_ptr();
duke@435 1224 Address from_addr = as_Address(addr);
duke@435 1225
duke@435 1226 switch (type) {
duke@435 1227 case T_BOOLEAN: // fall through
duke@435 1228 case T_BYTE: // fall through
duke@435 1229 case T_CHAR: // fall through
duke@435 1230 case T_SHORT:
duke@435 1231 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1232 // on pre P6 processors we may get partial register stalls
duke@435 1233 // so blow away the value of to_rinfo before loading a
duke@435 1234 // partial word into it. Do it here so that it precedes
duke@435 1235 // the potential patch point below.
never@739 1236 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1237 }
duke@435 1238 break;
duke@435 1239 }
duke@435 1240
duke@435 1241 PatchingStub* patch = NULL;
duke@435 1242 if (patch_code != lir_patch_none) {
duke@435 1243 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1244 assert(from_addr.disp() != 0, "must have");
duke@435 1245 }
duke@435 1246 if (info != NULL) {
duke@435 1247 add_debug_info_for_null_check_here(info);
duke@435 1248 }
duke@435 1249
duke@435 1250 switch (type) {
duke@435 1251 case T_FLOAT: {
duke@435 1252 if (dest->is_single_xmm()) {
duke@435 1253 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1254 } else {
duke@435 1255 assert(dest->is_single_fpu(), "must be");
duke@435 1256 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1257 __ fld_s(from_addr);
duke@435 1258 }
duke@435 1259 break;
duke@435 1260 }
duke@435 1261
duke@435 1262 case T_DOUBLE: {
duke@435 1263 if (dest->is_double_xmm()) {
duke@435 1264 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1265 } else {
duke@435 1266 assert(dest->is_double_fpu(), "must be");
duke@435 1267 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1268 __ fld_d(from_addr);
duke@435 1269 }
duke@435 1270 break;
duke@435 1271 }
duke@435 1272
duke@435 1273 case T_OBJECT: // fall through
duke@435 1274 case T_ARRAY: // fall through
iveresov@2344 1275 if (UseCompressedOops && !wide) {
iveresov@2344 1276 __ movl(dest->as_register(), from_addr);
iveresov@2344 1277 } else {
iveresov@2344 1278 __ movptr(dest->as_register(), from_addr);
iveresov@2344 1279 }
iveresov@2344 1280 break;
iveresov@2344 1281
iveresov@2344 1282 case T_ADDRESS:
never@739 1283 __ movptr(dest->as_register(), from_addr);
never@739 1284 break;
duke@435 1285 case T_INT:
iveresov@1833 1286 __ movl(dest->as_register(), from_addr);
duke@435 1287 break;
duke@435 1288
duke@435 1289 case T_LONG: {
duke@435 1290 Register to_lo = dest->as_register_lo();
duke@435 1291 Register to_hi = dest->as_register_hi();
never@739 1292 #ifdef _LP64
never@739 1293 __ movptr(to_lo, as_Address_lo(addr));
never@739 1294 #else
duke@435 1295 Register base = addr->base()->as_register();
duke@435 1296 Register index = noreg;
duke@435 1297 if (addr->index()->is_register()) {
duke@435 1298 index = addr->index()->as_register();
duke@435 1299 }
duke@435 1300 if ((base == to_lo && index == to_hi) ||
duke@435 1301 (base == to_hi && index == to_lo)) {
duke@435 1302 // addresses with 2 registers are only formed as a result of
duke@435 1303 // array access so this code will never have to deal with
duke@435 1304 // patches or null checks.
duke@435 1305 assert(info == NULL && patch == NULL, "must be");
never@739 1306 __ lea(to_hi, as_Address(addr));
duke@435 1307 __ movl(to_lo, Address(to_hi, 0));
duke@435 1308 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1309 } else if (base == to_lo || index == to_lo) {
duke@435 1310 assert(base != to_hi, "can't be");
duke@435 1311 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1312 __ movl(to_hi, as_Address_hi(addr));
duke@435 1313 if (patch != NULL) {
duke@435 1314 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1315 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1316 patch_code = lir_patch_low;
duke@435 1317 }
duke@435 1318 __ movl(to_lo, as_Address_lo(addr));
duke@435 1319 } else {
duke@435 1320 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1321 __ movl(to_lo, as_Address_lo(addr));
duke@435 1322 if (patch != NULL) {
duke@435 1323 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1324 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1325 patch_code = lir_patch_high;
duke@435 1326 }
duke@435 1327 __ movl(to_hi, as_Address_hi(addr));
duke@435 1328 }
never@739 1329 #endif // _LP64
duke@435 1330 break;
duke@435 1331 }
duke@435 1332
duke@435 1333 case T_BOOLEAN: // fall through
duke@435 1334 case T_BYTE: {
duke@435 1335 Register dest_reg = dest->as_register();
duke@435 1336 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1337 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1338 __ movsbl(dest_reg, from_addr);
duke@435 1339 } else {
duke@435 1340 __ movb(dest_reg, from_addr);
duke@435 1341 __ shll(dest_reg, 24);
duke@435 1342 __ sarl(dest_reg, 24);
duke@435 1343 }
duke@435 1344 break;
duke@435 1345 }
duke@435 1346
duke@435 1347 case T_CHAR: {
duke@435 1348 Register dest_reg = dest->as_register();
duke@435 1349 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1350 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1351 __ movzwl(dest_reg, from_addr);
duke@435 1352 } else {
duke@435 1353 __ movw(dest_reg, from_addr);
duke@435 1354 }
duke@435 1355 break;
duke@435 1356 }
duke@435 1357
duke@435 1358 case T_SHORT: {
duke@435 1359 Register dest_reg = dest->as_register();
duke@435 1360 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1361 __ movswl(dest_reg, from_addr);
duke@435 1362 } else {
duke@435 1363 __ movw(dest_reg, from_addr);
duke@435 1364 __ shll(dest_reg, 16);
duke@435 1365 __ sarl(dest_reg, 16);
duke@435 1366 }
duke@435 1367 break;
duke@435 1368 }
duke@435 1369
duke@435 1370 default:
duke@435 1371 ShouldNotReachHere();
duke@435 1372 }
duke@435 1373
duke@435 1374 if (patch != NULL) {
duke@435 1375 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1376 }
duke@435 1377
duke@435 1378 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1379 #ifdef _LP64
iveresov@2344 1380 if (UseCompressedOops && !wide) {
iveresov@2344 1381 __ decode_heap_oop(dest->as_register());
iveresov@2344 1382 }
iveresov@2344 1383 #endif
duke@435 1384 __ verify_oop(dest->as_register());
duke@435 1385 }
duke@435 1386 }
duke@435 1387
duke@435 1388
duke@435 1389 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1390 LIR_Address* addr = src->as_address_ptr();
duke@435 1391 Address from_addr = as_Address(addr);
duke@435 1392
duke@435 1393 if (VM_Version::supports_sse()) {
duke@435 1394 switch (ReadPrefetchInstr) {
duke@435 1395 case 0:
duke@435 1396 __ prefetchnta(from_addr); break;
duke@435 1397 case 1:
duke@435 1398 __ prefetcht0(from_addr); break;
duke@435 1399 case 2:
duke@435 1400 __ prefetcht2(from_addr); break;
duke@435 1401 default:
duke@435 1402 ShouldNotReachHere(); break;
duke@435 1403 }
duke@435 1404 } else if (VM_Version::supports_3dnow()) {
duke@435 1405 __ prefetchr(from_addr);
duke@435 1406 }
duke@435 1407 }
duke@435 1408
duke@435 1409
duke@435 1410 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1411 LIR_Address* addr = src->as_address_ptr();
duke@435 1412 Address from_addr = as_Address(addr);
duke@435 1413
duke@435 1414 if (VM_Version::supports_sse()) {
duke@435 1415 switch (AllocatePrefetchInstr) {
duke@435 1416 case 0:
duke@435 1417 __ prefetchnta(from_addr); break;
duke@435 1418 case 1:
duke@435 1419 __ prefetcht0(from_addr); break;
duke@435 1420 case 2:
duke@435 1421 __ prefetcht2(from_addr); break;
duke@435 1422 case 3:
duke@435 1423 __ prefetchw(from_addr); break;
duke@435 1424 default:
duke@435 1425 ShouldNotReachHere(); break;
duke@435 1426 }
duke@435 1427 } else if (VM_Version::supports_3dnow()) {
duke@435 1428 __ prefetchw(from_addr);
duke@435 1429 }
duke@435 1430 }
duke@435 1431
duke@435 1432
duke@435 1433 NEEDS_CLEANUP; // This could be static?
duke@435 1434 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1435 int elem_size = type2aelembytes(type);
duke@435 1436 switch (elem_size) {
duke@435 1437 case 1: return Address::times_1;
duke@435 1438 case 2: return Address::times_2;
duke@435 1439 case 4: return Address::times_4;
duke@435 1440 case 8: return Address::times_8;
duke@435 1441 }
duke@435 1442 ShouldNotReachHere();
duke@435 1443 return Address::no_scale;
duke@435 1444 }
duke@435 1445
duke@435 1446
duke@435 1447 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1448 switch (op->code()) {
duke@435 1449 case lir_idiv:
duke@435 1450 case lir_irem:
duke@435 1451 arithmetic_idiv(op->code(),
duke@435 1452 op->in_opr1(),
duke@435 1453 op->in_opr2(),
duke@435 1454 op->in_opr3(),
duke@435 1455 op->result_opr(),
duke@435 1456 op->info());
duke@435 1457 break;
duke@435 1458 default: ShouldNotReachHere(); break;
duke@435 1459 }
duke@435 1460 }
duke@435 1461
duke@435 1462 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1463 #ifdef ASSERT
duke@435 1464 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1465 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1466 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1467 #endif
duke@435 1468
duke@435 1469 if (op->cond() == lir_cond_always) {
duke@435 1470 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1471 __ jmp (*(op->label()));
duke@435 1472 } else {
duke@435 1473 Assembler::Condition acond = Assembler::zero;
duke@435 1474 if (op->code() == lir_cond_float_branch) {
duke@435 1475 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1476 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1477 switch(op->cond()) {
duke@435 1478 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1479 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1480 case lir_cond_less: acond = Assembler::below; break;
duke@435 1481 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1482 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1483 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1484 default: ShouldNotReachHere();
duke@435 1485 }
duke@435 1486 } else {
duke@435 1487 switch (op->cond()) {
duke@435 1488 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1489 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1490 case lir_cond_less: acond = Assembler::less; break;
duke@435 1491 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1492 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1493 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1494 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1495 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1496 default: ShouldNotReachHere();
duke@435 1497 }
duke@435 1498 }
duke@435 1499 __ jcc(acond,*(op->label()));
duke@435 1500 }
duke@435 1501 }
duke@435 1502
duke@435 1503 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1504 LIR_Opr src = op->in_opr();
duke@435 1505 LIR_Opr dest = op->result_opr();
duke@435 1506
duke@435 1507 switch (op->bytecode()) {
duke@435 1508 case Bytecodes::_i2l:
never@739 1509 #ifdef _LP64
never@739 1510 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1511 #else
duke@435 1512 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1513 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1514 __ sarl(dest->as_register_hi(), 31);
never@739 1515 #endif // LP64
duke@435 1516 break;
duke@435 1517
duke@435 1518 case Bytecodes::_l2i:
duke@435 1519 move_regs(src->as_register_lo(), dest->as_register());
duke@435 1520 break;
duke@435 1521
duke@435 1522 case Bytecodes::_i2b:
duke@435 1523 move_regs(src->as_register(), dest->as_register());
duke@435 1524 __ sign_extend_byte(dest->as_register());
duke@435 1525 break;
duke@435 1526
duke@435 1527 case Bytecodes::_i2c:
duke@435 1528 move_regs(src->as_register(), dest->as_register());
duke@435 1529 __ andl(dest->as_register(), 0xFFFF);
duke@435 1530 break;
duke@435 1531
duke@435 1532 case Bytecodes::_i2s:
duke@435 1533 move_regs(src->as_register(), dest->as_register());
duke@435 1534 __ sign_extend_short(dest->as_register());
duke@435 1535 break;
duke@435 1536
duke@435 1537
duke@435 1538 case Bytecodes::_f2d:
duke@435 1539 case Bytecodes::_d2f:
duke@435 1540 if (dest->is_single_xmm()) {
duke@435 1541 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1542 } else if (dest->is_double_xmm()) {
duke@435 1543 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1544 } else {
duke@435 1545 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1546 // do nothing (float result is rounded later through spilling)
duke@435 1547 }
duke@435 1548 break;
duke@435 1549
duke@435 1550 case Bytecodes::_i2f:
duke@435 1551 case Bytecodes::_i2d:
duke@435 1552 if (dest->is_single_xmm()) {
never@739 1553 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1554 } else if (dest->is_double_xmm()) {
never@739 1555 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1556 } else {
duke@435 1557 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1558 __ movl(Address(rsp, 0), src->as_register());
duke@435 1559 __ fild_s(Address(rsp, 0));
duke@435 1560 }
duke@435 1561 break;
duke@435 1562
duke@435 1563 case Bytecodes::_f2i:
duke@435 1564 case Bytecodes::_d2i:
duke@435 1565 if (src->is_single_xmm()) {
never@739 1566 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1567 } else if (src->is_double_xmm()) {
never@739 1568 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1569 } else {
duke@435 1570 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1571 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1572 __ fist_s(Address(rsp, 0));
duke@435 1573 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1574 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1575 }
duke@435 1576
duke@435 1577 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1578 assert(op->stub() != NULL, "stub required");
duke@435 1579 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1580 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1581 __ bind(*op->stub()->continuation());
duke@435 1582 break;
duke@435 1583
duke@435 1584 case Bytecodes::_l2f:
duke@435 1585 case Bytecodes::_l2d:
duke@435 1586 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1587 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1588
never@739 1589 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1590 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1591 __ fild_d(Address(rsp, 0));
duke@435 1592 // float result is rounded later through spilling
duke@435 1593 break;
duke@435 1594
duke@435 1595 case Bytecodes::_f2l:
duke@435 1596 case Bytecodes::_d2l:
duke@435 1597 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1598 assert(src->fpu() == 0, "input must be on TOS");
never@739 1599 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1600
duke@435 1601 // instruction sequence too long to inline it here
duke@435 1602 {
duke@435 1603 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1604 }
duke@435 1605 break;
duke@435 1606
duke@435 1607 default: ShouldNotReachHere();
duke@435 1608 }
duke@435 1609 }
duke@435 1610
duke@435 1611 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1612 if (op->init_check()) {
duke@435 1613 __ cmpl(Address(op->klass()->as_register(),
duke@435 1614 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
duke@435 1615 instanceKlass::fully_initialized);
duke@435 1616 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1617 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1618 }
duke@435 1619 __ allocate_object(op->obj()->as_register(),
duke@435 1620 op->tmp1()->as_register(),
duke@435 1621 op->tmp2()->as_register(),
duke@435 1622 op->header_size(),
duke@435 1623 op->object_size(),
duke@435 1624 op->klass()->as_register(),
duke@435 1625 *op->stub()->entry());
duke@435 1626 __ bind(*op->stub()->continuation());
duke@435 1627 }
duke@435 1628
duke@435 1629 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
iveresov@2432 1630 Register len = op->len()->as_register();
iveresov@2432 1631 LP64_ONLY( __ movslq(len, len); )
iveresov@2432 1632
duke@435 1633 if (UseSlowPath ||
duke@435 1634 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1635 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1636 __ jmp(*op->stub()->entry());
duke@435 1637 } else {
duke@435 1638 Register tmp1 = op->tmp1()->as_register();
duke@435 1639 Register tmp2 = op->tmp2()->as_register();
duke@435 1640 Register tmp3 = op->tmp3()->as_register();
duke@435 1641 if (len == tmp1) {
duke@435 1642 tmp1 = tmp3;
duke@435 1643 } else if (len == tmp2) {
duke@435 1644 tmp2 = tmp3;
duke@435 1645 } else if (len == tmp3) {
duke@435 1646 // everything is ok
duke@435 1647 } else {
never@739 1648 __ mov(tmp3, len);
duke@435 1649 }
duke@435 1650 __ allocate_array(op->obj()->as_register(),
duke@435 1651 len,
duke@435 1652 tmp1,
duke@435 1653 tmp2,
duke@435 1654 arrayOopDesc::header_size(op->type()),
duke@435 1655 array_element_size(op->type()),
duke@435 1656 op->klass()->as_register(),
duke@435 1657 *op->stub()->entry());
duke@435 1658 }
duke@435 1659 __ bind(*op->stub()->continuation());
duke@435 1660 }
duke@435 1661
iveresov@2138 1662 void LIR_Assembler::type_profile_helper(Register mdo,
iveresov@2138 1663 ciMethodData *md, ciProfileData *data,
iveresov@2138 1664 Register recv, Label* update_done) {
iveresov@2163 1665 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1666 Label next_test;
iveresov@2138 1667 // See if the receiver is receiver[n].
iveresov@2138 1668 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
iveresov@2138 1669 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1670 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
iveresov@2138 1671 __ addptr(data_addr, DataLayout::counter_increment);
iveresov@2146 1672 __ jmp(*update_done);
iveresov@2138 1673 __ bind(next_test);
iveresov@2138 1674 }
iveresov@2138 1675
iveresov@2138 1676 // Didn't find receiver; find next empty slot and fill it in
iveresov@2163 1677 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1678 Label next_test;
iveresov@2138 1679 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
iveresov@2138 1680 __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
iveresov@2138 1681 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1682 __ movptr(recv_addr, recv);
iveresov@2138 1683 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
iveresov@2146 1684 __ jmp(*update_done);
iveresov@2138 1685 __ bind(next_test);
iveresov@2138 1686 }
iveresov@2138 1687 }
iveresov@2138 1688
iveresov@2146 1689 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 1690 // we always need a stub for the failure case.
iveresov@2138 1691 CodeStub* stub = op->stub();
iveresov@2138 1692 Register obj = op->object()->as_register();
iveresov@2138 1693 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 1694 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 1695 Register dst = op->result_opr()->as_register();
iveresov@2138 1696 ciKlass* k = op->klass();
iveresov@2138 1697 Register Rtmp1 = noreg;
iveresov@2138 1698
iveresov@2138 1699 // check if it needs to be profiled
iveresov@2138 1700 ciMethodData* md;
iveresov@2138 1701 ciProfileData* data;
iveresov@2138 1702
iveresov@2138 1703 if (op->should_profile()) {
iveresov@2138 1704 ciMethod* method = op->profiled_method();
iveresov@2138 1705 assert(method != NULL, "Should have method");
iveresov@2138 1706 int bci = op->profiled_bci();
iveresov@2349 1707 md = method->method_data_or_null();
iveresov@2349 1708 assert(md != NULL, "Sanity");
iveresov@2138 1709 data = md->bci_to_data(bci);
iveresov@2146 1710 assert(data != NULL, "need data for type check");
iveresov@2146 1711 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2138 1712 }
iveresov@2146 1713 Label profile_cast_success, profile_cast_failure;
iveresov@2146 1714 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2146 1715 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2138 1716
iveresov@2138 1717 if (obj == k_RInfo) {
iveresov@2138 1718 k_RInfo = dst;
iveresov@2138 1719 } else if (obj == klass_RInfo) {
iveresov@2138 1720 klass_RInfo = dst;
iveresov@2138 1721 }
iveresov@2344 1722 if (k->is_loaded() && !UseCompressedOops) {
iveresov@2138 1723 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
iveresov@2138 1724 } else {
iveresov@2138 1725 Rtmp1 = op->tmp3()->as_register();
iveresov@2138 1726 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
iveresov@2138 1727 }
iveresov@2138 1728
iveresov@2138 1729 assert_different_registers(obj, k_RInfo, klass_RInfo);
iveresov@2138 1730 if (!k->is_loaded()) {
iveresov@2138 1731 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 1732 } else {
iveresov@2138 1733 #ifdef _LP64
iveresov@2138 1734 __ movoop(k_RInfo, k->constant_encoding());
iveresov@2138 1735 #endif // _LP64
iveresov@2138 1736 }
iveresov@2138 1737 assert(obj != k_RInfo, "must be different");
iveresov@2138 1738
iveresov@2138 1739 __ cmpptr(obj, (int32_t)NULL_WORD);
iveresov@2138 1740 if (op->should_profile()) {
iveresov@2146 1741 Label not_null;
iveresov@2146 1742 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1743 // Object is null; update MDO and exit
iveresov@2138 1744 Register mdo = klass_RInfo;
iveresov@2138 1745 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1746 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2138 1747 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2138 1748 __ orl(data_addr, header_bits);
iveresov@2146 1749 __ jmp(*obj_is_null);
iveresov@2146 1750 __ bind(not_null);
iveresov@2138 1751 } else {
iveresov@2146 1752 __ jcc(Assembler::equal, *obj_is_null);
iveresov@2138 1753 }
iveresov@2138 1754 __ verify_oop(obj);
iveresov@2138 1755
iveresov@2138 1756 if (op->fast_check()) {
iveresov@2146 1757 // get object class
iveresov@2138 1758 // not a safepoint as obj null check happens earlier
iveresov@2138 1759 #ifdef _LP64
iveresov@2344 1760 if (UseCompressedOops) {
iveresov@2344 1761 __ load_klass(Rtmp1, obj);
iveresov@2344 1762 __ cmpptr(k_RInfo, Rtmp1);
iveresov@2138 1763 } else {
iveresov@2138 1764 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1765 }
iveresov@2344 1766 #else
iveresov@2344 1767 if (k->is_loaded()) {
iveresov@2344 1768 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
iveresov@2344 1769 } else {
iveresov@2344 1770 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2344 1771 }
iveresov@2344 1772 #endif
iveresov@2138 1773 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1774 // successful cast, fall through to profile or jump
iveresov@2138 1775 } else {
iveresov@2138 1776 // get object class
iveresov@2138 1777 // not a safepoint as obj null check happens earlier
iveresov@2344 1778 __ load_klass(klass_RInfo, obj);
iveresov@2138 1779 if (k->is_loaded()) {
iveresov@2138 1780 // See if we get an immediate positive hit
iveresov@2138 1781 #ifdef _LP64
iveresov@2138 1782 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
iveresov@2138 1783 #else
iveresov@2138 1784 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
iveresov@2138 1785 #endif // _LP64
iveresov@2138 1786 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
iveresov@2138 1787 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1788 // successful cast, fall through to profile or jump
iveresov@2138 1789 } else {
iveresov@2138 1790 // See if we get an immediate positive hit
iveresov@2146 1791 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1792 // check for self
iveresov@2138 1793 #ifdef _LP64
iveresov@2138 1794 __ cmpptr(klass_RInfo, k_RInfo);
iveresov@2138 1795 #else
iveresov@2138 1796 __ cmpoop(klass_RInfo, k->constant_encoding());
iveresov@2138 1797 #endif // _LP64
iveresov@2146 1798 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1799
iveresov@2138 1800 __ push(klass_RInfo);
iveresov@2138 1801 #ifdef _LP64
iveresov@2138 1802 __ push(k_RInfo);
iveresov@2138 1803 #else
iveresov@2138 1804 __ pushoop(k->constant_encoding());
iveresov@2138 1805 #endif // _LP64
iveresov@2138 1806 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1807 __ pop(klass_RInfo);
iveresov@2138 1808 __ pop(klass_RInfo);
iveresov@2138 1809 // result is a boolean
iveresov@2138 1810 __ cmpl(klass_RInfo, 0);
iveresov@2138 1811 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1812 // successful cast, fall through to profile or jump
iveresov@2138 1813 }
iveresov@2138 1814 } else {
iveresov@2138 1815 // perform the fast part of the checking logic
iveresov@2146 1816 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
iveresov@2138 1817 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 1818 __ push(klass_RInfo);
iveresov@2138 1819 __ push(k_RInfo);
iveresov@2138 1820 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1821 __ pop(klass_RInfo);
iveresov@2138 1822 __ pop(k_RInfo);
iveresov@2138 1823 // result is a boolean
iveresov@2138 1824 __ cmpl(k_RInfo, 0);
iveresov@2138 1825 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1826 // successful cast, fall through to profile or jump
iveresov@2138 1827 }
iveresov@2138 1828 }
iveresov@2138 1829 if (op->should_profile()) {
iveresov@2138 1830 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1831 __ bind(profile_cast_success);
iveresov@2138 1832 __ movoop(mdo, md->constant_encoding());
iveresov@2344 1833 __ load_klass(recv, obj);
iveresov@2138 1834 Label update_done;
iveresov@2146 1835 type_profile_helper(mdo, md, data, recv, success);
iveresov@2146 1836 __ jmp(*success);
iveresov@2138 1837
iveresov@2138 1838 __ bind(profile_cast_failure);
iveresov@2138 1839 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1840 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2138 1841 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1842 __ jmp(*failure);
iveresov@2138 1843 }
iveresov@2146 1844 __ jmp(*success);
iveresov@2138 1845 }
duke@435 1846
iveresov@2146 1847
duke@435 1848 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1849 LIR_Code code = op->code();
duke@435 1850 if (code == lir_store_check) {
duke@435 1851 Register value = op->object()->as_register();
duke@435 1852 Register array = op->array()->as_register();
duke@435 1853 Register k_RInfo = op->tmp1()->as_register();
duke@435 1854 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1855 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1856
duke@435 1857 CodeStub* stub = op->stub();
iveresov@2146 1858
iveresov@2146 1859 // check if it needs to be profiled
iveresov@2146 1860 ciMethodData* md;
iveresov@2146 1861 ciProfileData* data;
iveresov@2146 1862
iveresov@2146 1863 if (op->should_profile()) {
iveresov@2146 1864 ciMethod* method = op->profiled_method();
iveresov@2146 1865 assert(method != NULL, "Should have method");
iveresov@2146 1866 int bci = op->profiled_bci();
iveresov@2349 1867 md = method->method_data_or_null();
iveresov@2349 1868 assert(md != NULL, "Sanity");
iveresov@2146 1869 data = md->bci_to_data(bci);
iveresov@2146 1870 assert(data != NULL, "need data for type check");
iveresov@2146 1871 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 1872 }
iveresov@2146 1873 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 1874 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 1875 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 1876
never@739 1877 __ cmpptr(value, (int32_t)NULL_WORD);
iveresov@2146 1878 if (op->should_profile()) {
iveresov@2146 1879 Label not_null;
iveresov@2146 1880 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1881 // Object is null; update MDO and exit
iveresov@2146 1882 Register mdo = klass_RInfo;
iveresov@2146 1883 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1884 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2146 1885 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2146 1886 __ orl(data_addr, header_bits);
iveresov@2146 1887 __ jmp(done);
iveresov@2146 1888 __ bind(not_null);
iveresov@2146 1889 } else {
iveresov@2146 1890 __ jcc(Assembler::equal, done);
iveresov@2146 1891 }
iveresov@2146 1892
duke@435 1893 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 1894 __ load_klass(k_RInfo, array);
iveresov@2344 1895 __ load_klass(klass_RInfo, value);
iveresov@2344 1896
iveresov@2344 1897 // get instance klass (it's already uncompressed)
never@739 1898 __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
jrose@1079 1899 // perform the fast part of the checking logic
iveresov@2146 1900 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
jrose@1079 1901 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1902 __ push(klass_RInfo);
never@739 1903 __ push(k_RInfo);
duke@435 1904 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1905 __ pop(klass_RInfo);
never@739 1906 __ pop(k_RInfo);
never@739 1907 // result is a boolean
duke@435 1908 __ cmpl(k_RInfo, 0);
iveresov@2146 1909 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1910 // fall through to the success case
iveresov@2146 1911
iveresov@2146 1912 if (op->should_profile()) {
iveresov@2146 1913 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1914 __ bind(profile_cast_success);
iveresov@2146 1915 __ movoop(mdo, md->constant_encoding());
iveresov@2344 1916 __ load_klass(recv, value);
iveresov@2146 1917 Label update_done;
iveresov@2146 1918 type_profile_helper(mdo, md, data, recv, &done);
iveresov@2146 1919 __ jmpb(done);
iveresov@2146 1920
iveresov@2146 1921 __ bind(profile_cast_failure);
iveresov@2146 1922 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1923 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2146 1924 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1925 __ jmp(*stub->entry());
iveresov@2146 1926 }
iveresov@2146 1927
duke@435 1928 __ bind(done);
iveresov@2146 1929 } else
iveresov@2146 1930 if (code == lir_checkcast) {
iveresov@2146 1931 Register obj = op->object()->as_register();
iveresov@2146 1932 Register dst = op->result_opr()->as_register();
iveresov@2146 1933 Label success;
iveresov@2146 1934 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 1935 __ bind(success);
iveresov@2146 1936 if (dst != obj) {
iveresov@2146 1937 __ mov(dst, obj);
iveresov@2146 1938 }
iveresov@2146 1939 } else
iveresov@2146 1940 if (code == lir_instanceof) {
iveresov@2146 1941 Register obj = op->object()->as_register();
iveresov@2146 1942 Register dst = op->result_opr()->as_register();
iveresov@2146 1943 Label success, failure, done;
iveresov@2146 1944 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 1945 __ bind(failure);
iveresov@2146 1946 __ xorptr(dst, dst);
iveresov@2146 1947 __ jmpb(done);
iveresov@2146 1948 __ bind(success);
iveresov@2146 1949 __ movptr(dst, 1);
iveresov@2146 1950 __ bind(done);
duke@435 1951 } else {
iveresov@2146 1952 ShouldNotReachHere();
duke@435 1953 }
duke@435 1954
duke@435 1955 }
duke@435 1956
duke@435 1957
duke@435 1958 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1959 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1960 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1961 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1962 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1963 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1964 Register addr = op->addr()->as_register();
duke@435 1965 if (os::is_MP()) {
duke@435 1966 __ lock();
duke@435 1967 }
never@739 1968 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1969
never@739 1970 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1971 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1972 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1973 Register newval = op->new_value()->as_register();
duke@435 1974 Register cmpval = op->cmp_value()->as_register();
duke@435 1975 assert(cmpval == rax, "wrong register");
duke@435 1976 assert(newval != NULL, "new val must be register");
duke@435 1977 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1978 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1979 assert(newval != addr, "new value and addr must be in different registers");
iveresov@2344 1980
never@739 1981 if ( op->code() == lir_cas_obj) {
iveresov@2344 1982 #ifdef _LP64
iveresov@2344 1983 if (UseCompressedOops) {
iveresov@2344 1984 __ encode_heap_oop(cmpval);
iveresov@2355 1985 __ mov(rscratch1, newval);
iveresov@2355 1986 __ encode_heap_oop(rscratch1);
iveresov@2344 1987 if (os::is_MP()) {
iveresov@2344 1988 __ lock();
iveresov@2344 1989 }
iveresov@2355 1990 // cmpval (rax) is implicitly used by this instruction
iveresov@2355 1991 __ cmpxchgl(rscratch1, Address(addr, 0));
iveresov@2344 1992 } else
iveresov@2344 1993 #endif
iveresov@2344 1994 {
iveresov@2344 1995 if (os::is_MP()) {
iveresov@2344 1996 __ lock();
iveresov@2344 1997 }
iveresov@2344 1998 __ cmpxchgptr(newval, Address(addr, 0));
iveresov@2344 1999 }
iveresov@2344 2000 } else {
iveresov@2344 2001 assert(op->code() == lir_cas_int, "lir_cas_int expected");
iveresov@2344 2002 if (os::is_MP()) {
iveresov@2344 2003 __ lock();
iveresov@2344 2004 }
never@739 2005 __ cmpxchgl(newval, Address(addr, 0));
never@739 2006 }
never@739 2007 #ifdef _LP64
never@739 2008 } else if (op->code() == lir_cas_long) {
never@739 2009 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 2010 Register newval = op->new_value()->as_register_lo();
never@739 2011 Register cmpval = op->cmp_value()->as_register_lo();
never@739 2012 assert(cmpval == rax, "wrong register");
never@739 2013 assert(newval != NULL, "new val must be register");
never@739 2014 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 2015 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 2016 assert(newval != addr, "new value and addr must be in different registers");
never@739 2017 if (os::is_MP()) {
never@739 2018 __ lock();
never@739 2019 }
never@739 2020 __ cmpxchgq(newval, Address(addr, 0));
never@739 2021 #endif // _LP64
duke@435 2022 } else {
duke@435 2023 Unimplemented();
duke@435 2024 }
duke@435 2025 }
duke@435 2026
iveresov@2412 2027 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 2028 Assembler::Condition acond, ncond;
duke@435 2029 switch (condition) {
duke@435 2030 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 2031 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 2032 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 2033 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 2034 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 2035 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 2036 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 2037 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 2038 default: ShouldNotReachHere();
duke@435 2039 }
duke@435 2040
duke@435 2041 if (opr1->is_cpu_register()) {
duke@435 2042 reg2reg(opr1, result);
duke@435 2043 } else if (opr1->is_stack()) {
duke@435 2044 stack2reg(opr1, result, result->type());
duke@435 2045 } else if (opr1->is_constant()) {
duke@435 2046 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 2047 } else {
duke@435 2048 ShouldNotReachHere();
duke@435 2049 }
duke@435 2050
duke@435 2051 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 2052 // optimized version that does not require a branch
duke@435 2053 if (opr2->is_single_cpu()) {
duke@435 2054 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 2055 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 2056 } else if (opr2->is_double_cpu()) {
duke@435 2057 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 2058 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 2059 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 2060 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 2061 } else if (opr2->is_single_stack()) {
duke@435 2062 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2063 } else if (opr2->is_double_stack()) {
never@739 2064 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 2065 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 2066 } else {
duke@435 2067 ShouldNotReachHere();
duke@435 2068 }
duke@435 2069
duke@435 2070 } else {
duke@435 2071 Label skip;
duke@435 2072 __ jcc (acond, skip);
duke@435 2073 if (opr2->is_cpu_register()) {
duke@435 2074 reg2reg(opr2, result);
duke@435 2075 } else if (opr2->is_stack()) {
duke@435 2076 stack2reg(opr2, result, result->type());
duke@435 2077 } else if (opr2->is_constant()) {
duke@435 2078 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 2079 } else {
duke@435 2080 ShouldNotReachHere();
duke@435 2081 }
duke@435 2082 __ bind(skip);
duke@435 2083 }
duke@435 2084 }
duke@435 2085
duke@435 2086
duke@435 2087 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 2088 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 2089
duke@435 2090 if (left->is_single_cpu()) {
duke@435 2091 assert(left == dest, "left and dest must be equal");
duke@435 2092 Register lreg = left->as_register();
duke@435 2093
duke@435 2094 if (right->is_single_cpu()) {
duke@435 2095 // cpu register - cpu register
duke@435 2096 Register rreg = right->as_register();
duke@435 2097 switch (code) {
duke@435 2098 case lir_add: __ addl (lreg, rreg); break;
duke@435 2099 case lir_sub: __ subl (lreg, rreg); break;
duke@435 2100 case lir_mul: __ imull(lreg, rreg); break;
duke@435 2101 default: ShouldNotReachHere();
duke@435 2102 }
duke@435 2103
duke@435 2104 } else if (right->is_stack()) {
duke@435 2105 // cpu register - stack
duke@435 2106 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2107 switch (code) {
duke@435 2108 case lir_add: __ addl(lreg, raddr); break;
duke@435 2109 case lir_sub: __ subl(lreg, raddr); break;
duke@435 2110 default: ShouldNotReachHere();
duke@435 2111 }
duke@435 2112
duke@435 2113 } else if (right->is_constant()) {
duke@435 2114 // cpu register - constant
duke@435 2115 jint c = right->as_constant_ptr()->as_jint();
duke@435 2116 switch (code) {
duke@435 2117 case lir_add: {
iveresov@2145 2118 __ incrementl(lreg, c);
duke@435 2119 break;
duke@435 2120 }
duke@435 2121 case lir_sub: {
iveresov@2145 2122 __ decrementl(lreg, c);
duke@435 2123 break;
duke@435 2124 }
duke@435 2125 default: ShouldNotReachHere();
duke@435 2126 }
duke@435 2127
duke@435 2128 } else {
duke@435 2129 ShouldNotReachHere();
duke@435 2130 }
duke@435 2131
duke@435 2132 } else if (left->is_double_cpu()) {
duke@435 2133 assert(left == dest, "left and dest must be equal");
duke@435 2134 Register lreg_lo = left->as_register_lo();
duke@435 2135 Register lreg_hi = left->as_register_hi();
duke@435 2136
duke@435 2137 if (right->is_double_cpu()) {
duke@435 2138 // cpu register - cpu register
duke@435 2139 Register rreg_lo = right->as_register_lo();
duke@435 2140 Register rreg_hi = right->as_register_hi();
never@739 2141 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2142 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2143 switch (code) {
duke@435 2144 case lir_add:
never@739 2145 __ addptr(lreg_lo, rreg_lo);
never@739 2146 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2147 break;
duke@435 2148 case lir_sub:
never@739 2149 __ subptr(lreg_lo, rreg_lo);
never@739 2150 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2151 break;
duke@435 2152 case lir_mul:
never@739 2153 #ifdef _LP64
never@739 2154 __ imulq(lreg_lo, rreg_lo);
never@739 2155 #else
duke@435 2156 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2157 __ imull(lreg_hi, rreg_lo);
duke@435 2158 __ imull(rreg_hi, lreg_lo);
duke@435 2159 __ addl (rreg_hi, lreg_hi);
duke@435 2160 __ mull (rreg_lo);
duke@435 2161 __ addl (lreg_hi, rreg_hi);
never@739 2162 #endif // _LP64
duke@435 2163 break;
duke@435 2164 default:
duke@435 2165 ShouldNotReachHere();
duke@435 2166 }
duke@435 2167
duke@435 2168 } else if (right->is_constant()) {
duke@435 2169 // cpu register - constant
never@739 2170 #ifdef _LP64
never@739 2171 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2172 __ movptr(r10, (intptr_t) c);
never@739 2173 switch (code) {
never@739 2174 case lir_add:
never@739 2175 __ addptr(lreg_lo, r10);
never@739 2176 break;
never@739 2177 case lir_sub:
never@739 2178 __ subptr(lreg_lo, r10);
never@739 2179 break;
never@739 2180 default:
never@739 2181 ShouldNotReachHere();
never@739 2182 }
never@739 2183 #else
duke@435 2184 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2185 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2186 switch (code) {
duke@435 2187 case lir_add:
never@739 2188 __ addptr(lreg_lo, c_lo);
duke@435 2189 __ adcl(lreg_hi, c_hi);
duke@435 2190 break;
duke@435 2191 case lir_sub:
never@739 2192 __ subptr(lreg_lo, c_lo);
duke@435 2193 __ sbbl(lreg_hi, c_hi);
duke@435 2194 break;
duke@435 2195 default:
duke@435 2196 ShouldNotReachHere();
duke@435 2197 }
never@739 2198 #endif // _LP64
duke@435 2199
duke@435 2200 } else {
duke@435 2201 ShouldNotReachHere();
duke@435 2202 }
duke@435 2203
duke@435 2204 } else if (left->is_single_xmm()) {
duke@435 2205 assert(left == dest, "left and dest must be equal");
duke@435 2206 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2207
duke@435 2208 if (right->is_single_xmm()) {
duke@435 2209 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2210 switch (code) {
duke@435 2211 case lir_add: __ addss(lreg, rreg); break;
duke@435 2212 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2213 case lir_mul_strictfp: // fall through
duke@435 2214 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2215 case lir_div_strictfp: // fall through
duke@435 2216 case lir_div: __ divss(lreg, rreg); break;
duke@435 2217 default: ShouldNotReachHere();
duke@435 2218 }
duke@435 2219 } else {
duke@435 2220 Address raddr;
duke@435 2221 if (right->is_single_stack()) {
duke@435 2222 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2223 } else if (right->is_constant()) {
duke@435 2224 // hack for now
duke@435 2225 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2226 } else {
duke@435 2227 ShouldNotReachHere();
duke@435 2228 }
duke@435 2229 switch (code) {
duke@435 2230 case lir_add: __ addss(lreg, raddr); break;
duke@435 2231 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2232 case lir_mul_strictfp: // fall through
duke@435 2233 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2234 case lir_div_strictfp: // fall through
duke@435 2235 case lir_div: __ divss(lreg, raddr); break;
duke@435 2236 default: ShouldNotReachHere();
duke@435 2237 }
duke@435 2238 }
duke@435 2239
duke@435 2240 } else if (left->is_double_xmm()) {
duke@435 2241 assert(left == dest, "left and dest must be equal");
duke@435 2242
duke@435 2243 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2244 if (right->is_double_xmm()) {
duke@435 2245 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2246 switch (code) {
duke@435 2247 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2248 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2249 case lir_mul_strictfp: // fall through
duke@435 2250 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2251 case lir_div_strictfp: // fall through
duke@435 2252 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2253 default: ShouldNotReachHere();
duke@435 2254 }
duke@435 2255 } else {
duke@435 2256 Address raddr;
duke@435 2257 if (right->is_double_stack()) {
duke@435 2258 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2259 } else if (right->is_constant()) {
duke@435 2260 // hack for now
duke@435 2261 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2262 } else {
duke@435 2263 ShouldNotReachHere();
duke@435 2264 }
duke@435 2265 switch (code) {
duke@435 2266 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2267 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2268 case lir_mul_strictfp: // fall through
duke@435 2269 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2270 case lir_div_strictfp: // fall through
duke@435 2271 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2272 default: ShouldNotReachHere();
duke@435 2273 }
duke@435 2274 }
duke@435 2275
duke@435 2276 } else if (left->is_single_fpu()) {
duke@435 2277 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2278
duke@435 2279 if (right->is_single_fpu()) {
duke@435 2280 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2281
duke@435 2282 } else {
duke@435 2283 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2284 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2285
duke@435 2286 Address raddr;
duke@435 2287 if (right->is_single_stack()) {
duke@435 2288 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2289 } else if (right->is_constant()) {
duke@435 2290 address const_addr = float_constant(right->as_jfloat());
duke@435 2291 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2292 // hack for now
duke@435 2293 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2294 } else {
duke@435 2295 ShouldNotReachHere();
duke@435 2296 }
duke@435 2297
duke@435 2298 switch (code) {
duke@435 2299 case lir_add: __ fadd_s(raddr); break;
duke@435 2300 case lir_sub: __ fsub_s(raddr); break;
duke@435 2301 case lir_mul_strictfp: // fall through
duke@435 2302 case lir_mul: __ fmul_s(raddr); break;
duke@435 2303 case lir_div_strictfp: // fall through
duke@435 2304 case lir_div: __ fdiv_s(raddr); break;
duke@435 2305 default: ShouldNotReachHere();
duke@435 2306 }
duke@435 2307 }
duke@435 2308
duke@435 2309 } else if (left->is_double_fpu()) {
duke@435 2310 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2311
duke@435 2312 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2313 // Double values require special handling for strictfp mul/div on x86
duke@435 2314 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2315 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2316 }
duke@435 2317
duke@435 2318 if (right->is_double_fpu()) {
duke@435 2319 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2320
duke@435 2321 } else {
duke@435 2322 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2323 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2324
duke@435 2325 Address raddr;
duke@435 2326 if (right->is_double_stack()) {
duke@435 2327 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2328 } else if (right->is_constant()) {
duke@435 2329 // hack for now
duke@435 2330 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2331 } else {
duke@435 2332 ShouldNotReachHere();
duke@435 2333 }
duke@435 2334
duke@435 2335 switch (code) {
duke@435 2336 case lir_add: __ fadd_d(raddr); break;
duke@435 2337 case lir_sub: __ fsub_d(raddr); break;
duke@435 2338 case lir_mul_strictfp: // fall through
duke@435 2339 case lir_mul: __ fmul_d(raddr); break;
duke@435 2340 case lir_div_strictfp: // fall through
duke@435 2341 case lir_div: __ fdiv_d(raddr); break;
duke@435 2342 default: ShouldNotReachHere();
duke@435 2343 }
duke@435 2344 }
duke@435 2345
duke@435 2346 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2347 // Double values require special handling for strictfp mul/div on x86
duke@435 2348 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2349 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2350 }
duke@435 2351
duke@435 2352 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2353 assert(left == dest, "left and dest must be equal");
duke@435 2354
duke@435 2355 Address laddr;
duke@435 2356 if (left->is_single_stack()) {
duke@435 2357 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2358 } else if (left->is_address()) {
duke@435 2359 laddr = as_Address(left->as_address_ptr());
duke@435 2360 } else {
duke@435 2361 ShouldNotReachHere();
duke@435 2362 }
duke@435 2363
duke@435 2364 if (right->is_single_cpu()) {
duke@435 2365 Register rreg = right->as_register();
duke@435 2366 switch (code) {
duke@435 2367 case lir_add: __ addl(laddr, rreg); break;
duke@435 2368 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2369 default: ShouldNotReachHere();
duke@435 2370 }
duke@435 2371 } else if (right->is_constant()) {
duke@435 2372 jint c = right->as_constant_ptr()->as_jint();
duke@435 2373 switch (code) {
duke@435 2374 case lir_add: {
never@739 2375 __ incrementl(laddr, c);
duke@435 2376 break;
duke@435 2377 }
duke@435 2378 case lir_sub: {
never@739 2379 __ decrementl(laddr, c);
duke@435 2380 break;
duke@435 2381 }
duke@435 2382 default: ShouldNotReachHere();
duke@435 2383 }
duke@435 2384 } else {
duke@435 2385 ShouldNotReachHere();
duke@435 2386 }
duke@435 2387
duke@435 2388 } else {
duke@435 2389 ShouldNotReachHere();
duke@435 2390 }
duke@435 2391 }
duke@435 2392
duke@435 2393 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2394 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2395 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2396 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2397
duke@435 2398 bool left_is_tos = (left_index == 0);
duke@435 2399 bool dest_is_tos = (dest_index == 0);
duke@435 2400 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2401
duke@435 2402 switch (code) {
duke@435 2403 case lir_add:
duke@435 2404 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2405 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2406 else __ fadda(non_tos_index);
duke@435 2407 break;
duke@435 2408
duke@435 2409 case lir_sub:
duke@435 2410 if (left_is_tos) {
duke@435 2411 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2412 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2413 else __ fsubra(non_tos_index);
duke@435 2414 } else {
duke@435 2415 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2416 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2417 else __ fsuba (non_tos_index);
duke@435 2418 }
duke@435 2419 break;
duke@435 2420
duke@435 2421 case lir_mul_strictfp: // fall through
duke@435 2422 case lir_mul:
duke@435 2423 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2424 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2425 else __ fmula(non_tos_index);
duke@435 2426 break;
duke@435 2427
duke@435 2428 case lir_div_strictfp: // fall through
duke@435 2429 case lir_div:
duke@435 2430 if (left_is_tos) {
duke@435 2431 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2432 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2433 else __ fdivra(non_tos_index);
duke@435 2434 } else {
duke@435 2435 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2436 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2437 else __ fdiva (non_tos_index);
duke@435 2438 }
duke@435 2439 break;
duke@435 2440
duke@435 2441 case lir_rem:
duke@435 2442 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2443 __ fremr(noreg);
duke@435 2444 break;
duke@435 2445
duke@435 2446 default:
duke@435 2447 ShouldNotReachHere();
duke@435 2448 }
duke@435 2449 }
duke@435 2450
duke@435 2451
duke@435 2452 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2453 if (value->is_double_xmm()) {
duke@435 2454 switch(code) {
duke@435 2455 case lir_abs :
duke@435 2456 {
duke@435 2457 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2458 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2459 }
duke@435 2460 __ andpd(dest->as_xmm_double_reg(),
duke@435 2461 ExternalAddress((address)double_signmask_pool));
duke@435 2462 }
duke@435 2463 break;
duke@435 2464
duke@435 2465 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2466 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2467 default : ShouldNotReachHere();
duke@435 2468 }
duke@435 2469
duke@435 2470 } else if (value->is_double_fpu()) {
duke@435 2471 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2472 switch(code) {
duke@435 2473 case lir_log : __ flog() ; break;
duke@435 2474 case lir_log10 : __ flog10() ; break;
duke@435 2475 case lir_abs : __ fabs() ; break;
duke@435 2476 case lir_sqrt : __ fsqrt(); break;
duke@435 2477 case lir_sin :
duke@435 2478 // Should consider not saving rbx, if not necessary
duke@435 2479 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2480 break;
duke@435 2481 case lir_cos :
duke@435 2482 // Should consider not saving rbx, if not necessary
duke@435 2483 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2484 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2485 break;
duke@435 2486 case lir_tan :
duke@435 2487 // Should consider not saving rbx, if not necessary
duke@435 2488 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2489 break;
duke@435 2490 default : ShouldNotReachHere();
duke@435 2491 }
duke@435 2492 } else {
duke@435 2493 Unimplemented();
duke@435 2494 }
duke@435 2495 }
duke@435 2496
duke@435 2497 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2498 // assert(left->destroys_register(), "check");
duke@435 2499 if (left->is_single_cpu()) {
duke@435 2500 Register reg = left->as_register();
duke@435 2501 if (right->is_constant()) {
duke@435 2502 int val = right->as_constant_ptr()->as_jint();
duke@435 2503 switch (code) {
duke@435 2504 case lir_logic_and: __ andl (reg, val); break;
duke@435 2505 case lir_logic_or: __ orl (reg, val); break;
duke@435 2506 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2507 default: ShouldNotReachHere();
duke@435 2508 }
duke@435 2509 } else if (right->is_stack()) {
duke@435 2510 // added support for stack operands
duke@435 2511 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2512 switch (code) {
duke@435 2513 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2514 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2515 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2516 default: ShouldNotReachHere();
duke@435 2517 }
duke@435 2518 } else {
duke@435 2519 Register rright = right->as_register();
duke@435 2520 switch (code) {
never@739 2521 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2522 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2523 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2524 default: ShouldNotReachHere();
duke@435 2525 }
duke@435 2526 }
duke@435 2527 move_regs(reg, dst->as_register());
duke@435 2528 } else {
duke@435 2529 Register l_lo = left->as_register_lo();
duke@435 2530 Register l_hi = left->as_register_hi();
duke@435 2531 if (right->is_constant()) {
never@739 2532 #ifdef _LP64
never@739 2533 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2534 switch (code) {
never@739 2535 case lir_logic_and:
never@739 2536 __ andq(l_lo, rscratch1);
never@739 2537 break;
never@739 2538 case lir_logic_or:
never@739 2539 __ orq(l_lo, rscratch1);
never@739 2540 break;
never@739 2541 case lir_logic_xor:
never@739 2542 __ xorq(l_lo, rscratch1);
never@739 2543 break;
never@739 2544 default: ShouldNotReachHere();
never@739 2545 }
never@739 2546 #else
duke@435 2547 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2548 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2549 switch (code) {
duke@435 2550 case lir_logic_and:
duke@435 2551 __ andl(l_lo, r_lo);
duke@435 2552 __ andl(l_hi, r_hi);
duke@435 2553 break;
duke@435 2554 case lir_logic_or:
duke@435 2555 __ orl(l_lo, r_lo);
duke@435 2556 __ orl(l_hi, r_hi);
duke@435 2557 break;
duke@435 2558 case lir_logic_xor:
duke@435 2559 __ xorl(l_lo, r_lo);
duke@435 2560 __ xorl(l_hi, r_hi);
duke@435 2561 break;
duke@435 2562 default: ShouldNotReachHere();
duke@435 2563 }
never@739 2564 #endif // _LP64
duke@435 2565 } else {
iveresov@1927 2566 #ifdef _LP64
iveresov@1927 2567 Register r_lo;
iveresov@1927 2568 if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
iveresov@1927 2569 r_lo = right->as_register();
iveresov@1927 2570 } else {
iveresov@1927 2571 r_lo = right->as_register_lo();
iveresov@1927 2572 }
iveresov@1927 2573 #else
duke@435 2574 Register r_lo = right->as_register_lo();
duke@435 2575 Register r_hi = right->as_register_hi();
duke@435 2576 assert(l_lo != r_hi, "overwriting registers");
iveresov@1927 2577 #endif
duke@435 2578 switch (code) {
duke@435 2579 case lir_logic_and:
never@739 2580 __ andptr(l_lo, r_lo);
never@739 2581 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2582 break;
duke@435 2583 case lir_logic_or:
never@739 2584 __ orptr(l_lo, r_lo);
never@739 2585 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2586 break;
duke@435 2587 case lir_logic_xor:
never@739 2588 __ xorptr(l_lo, r_lo);
never@739 2589 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2590 break;
duke@435 2591 default: ShouldNotReachHere();
duke@435 2592 }
duke@435 2593 }
duke@435 2594
duke@435 2595 Register dst_lo = dst->as_register_lo();
duke@435 2596 Register dst_hi = dst->as_register_hi();
duke@435 2597
never@739 2598 #ifdef _LP64
never@739 2599 move_regs(l_lo, dst_lo);
never@739 2600 #else
duke@435 2601 if (dst_lo == l_hi) {
duke@435 2602 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2603 move_regs(l_hi, dst_hi);
duke@435 2604 move_regs(l_lo, dst_lo);
duke@435 2605 } else {
duke@435 2606 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2607 move_regs(l_lo, dst_lo);
duke@435 2608 move_regs(l_hi, dst_hi);
duke@435 2609 }
never@739 2610 #endif // _LP64
duke@435 2611 }
duke@435 2612 }
duke@435 2613
duke@435 2614
duke@435 2615 // we assume that rax, and rdx can be overwritten
duke@435 2616 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2617
duke@435 2618 assert(left->is_single_cpu(), "left must be register");
duke@435 2619 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2620 assert(result->is_single_cpu(), "result must be register");
duke@435 2621
duke@435 2622 // assert(left->destroys_register(), "check");
duke@435 2623 // assert(right->destroys_register(), "check");
duke@435 2624
duke@435 2625 Register lreg = left->as_register();
duke@435 2626 Register dreg = result->as_register();
duke@435 2627
duke@435 2628 if (right->is_constant()) {
duke@435 2629 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2630 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2631 if (code == lir_idiv) {
duke@435 2632 assert(lreg == rax, "must be rax,");
duke@435 2633 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2634 __ cdql(); // sign extend into rdx:rax
duke@435 2635 if (divisor == 2) {
duke@435 2636 __ subl(lreg, rdx);
duke@435 2637 } else {
duke@435 2638 __ andl(rdx, divisor - 1);
duke@435 2639 __ addl(lreg, rdx);
duke@435 2640 }
duke@435 2641 __ sarl(lreg, log2_intptr(divisor));
duke@435 2642 move_regs(lreg, dreg);
duke@435 2643 } else if (code == lir_irem) {
duke@435 2644 Label done;
never@739 2645 __ mov(dreg, lreg);
duke@435 2646 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2647 __ jcc(Assembler::positive, done);
duke@435 2648 __ decrement(dreg);
duke@435 2649 __ orl(dreg, ~(divisor - 1));
duke@435 2650 __ increment(dreg);
duke@435 2651 __ bind(done);
duke@435 2652 } else {
duke@435 2653 ShouldNotReachHere();
duke@435 2654 }
duke@435 2655 } else {
duke@435 2656 Register rreg = right->as_register();
duke@435 2657 assert(lreg == rax, "left register must be rax,");
duke@435 2658 assert(rreg != rdx, "right register must not be rdx");
duke@435 2659 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2660
duke@435 2661 move_regs(lreg, rax);
duke@435 2662
duke@435 2663 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2664 add_debug_info_for_div0(idivl_offset, info);
duke@435 2665 if (code == lir_irem) {
duke@435 2666 move_regs(rdx, dreg); // result is in rdx
duke@435 2667 } else {
duke@435 2668 move_regs(rax, dreg);
duke@435 2669 }
duke@435 2670 }
duke@435 2671 }
duke@435 2672
duke@435 2673
duke@435 2674 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2675 if (opr1->is_single_cpu()) {
duke@435 2676 Register reg1 = opr1->as_register();
duke@435 2677 if (opr2->is_single_cpu()) {
duke@435 2678 // cpu register - cpu register
never@739 2679 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2680 __ cmpptr(reg1, opr2->as_register());
never@739 2681 } else {
never@739 2682 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2683 __ cmpl(reg1, opr2->as_register());
never@739 2684 }
duke@435 2685 } else if (opr2->is_stack()) {
duke@435 2686 // cpu register - stack
never@739 2687 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2688 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2689 } else {
never@739 2690 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2691 }
duke@435 2692 } else if (opr2->is_constant()) {
duke@435 2693 // cpu register - constant
duke@435 2694 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2695 if (c->type() == T_INT) {
duke@435 2696 __ cmpl(reg1, c->as_jint());
never@739 2697 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2698 // In 64bit oops are single register
duke@435 2699 jobject o = c->as_jobject();
duke@435 2700 if (o == NULL) {
never@739 2701 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2702 } else {
never@739 2703 #ifdef _LP64
never@739 2704 __ movoop(rscratch1, o);
never@739 2705 __ cmpptr(reg1, rscratch1);
never@739 2706 #else
duke@435 2707 __ cmpoop(reg1, c->as_jobject());
never@739 2708 #endif // _LP64
duke@435 2709 }
duke@435 2710 } else {
duke@435 2711 ShouldNotReachHere();
duke@435 2712 }
duke@435 2713 // cpu register - address
duke@435 2714 } else if (opr2->is_address()) {
duke@435 2715 if (op->info() != NULL) {
duke@435 2716 add_debug_info_for_null_check_here(op->info());
duke@435 2717 }
duke@435 2718 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2719 } else {
duke@435 2720 ShouldNotReachHere();
duke@435 2721 }
duke@435 2722
duke@435 2723 } else if(opr1->is_double_cpu()) {
duke@435 2724 Register xlo = opr1->as_register_lo();
duke@435 2725 Register xhi = opr1->as_register_hi();
duke@435 2726 if (opr2->is_double_cpu()) {
never@739 2727 #ifdef _LP64
never@739 2728 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2729 #else
duke@435 2730 // cpu register - cpu register
duke@435 2731 Register ylo = opr2->as_register_lo();
duke@435 2732 Register yhi = opr2->as_register_hi();
duke@435 2733 __ subl(xlo, ylo);
duke@435 2734 __ sbbl(xhi, yhi);
duke@435 2735 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2736 __ orl(xhi, xlo);
duke@435 2737 }
never@739 2738 #endif // _LP64
duke@435 2739 } else if (opr2->is_constant()) {
duke@435 2740 // cpu register - constant 0
duke@435 2741 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2742 #ifdef _LP64
never@739 2743 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2744 #else
duke@435 2745 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2746 __ orl(xhi, xlo);
never@739 2747 #endif // _LP64
duke@435 2748 } else {
duke@435 2749 ShouldNotReachHere();
duke@435 2750 }
duke@435 2751
duke@435 2752 } else if (opr1->is_single_xmm()) {
duke@435 2753 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2754 if (opr2->is_single_xmm()) {
duke@435 2755 // xmm register - xmm register
duke@435 2756 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2757 } else if (opr2->is_stack()) {
duke@435 2758 // xmm register - stack
duke@435 2759 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2760 } else if (opr2->is_constant()) {
duke@435 2761 // xmm register - constant
duke@435 2762 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2763 } else if (opr2->is_address()) {
duke@435 2764 // xmm register - address
duke@435 2765 if (op->info() != NULL) {
duke@435 2766 add_debug_info_for_null_check_here(op->info());
duke@435 2767 }
duke@435 2768 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2769 } else {
duke@435 2770 ShouldNotReachHere();
duke@435 2771 }
duke@435 2772
duke@435 2773 } else if (opr1->is_double_xmm()) {
duke@435 2774 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2775 if (opr2->is_double_xmm()) {
duke@435 2776 // xmm register - xmm register
duke@435 2777 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2778 } else if (opr2->is_stack()) {
duke@435 2779 // xmm register - stack
duke@435 2780 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2781 } else if (opr2->is_constant()) {
duke@435 2782 // xmm register - constant
duke@435 2783 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2784 } else if (opr2->is_address()) {
duke@435 2785 // xmm register - address
duke@435 2786 if (op->info() != NULL) {
duke@435 2787 add_debug_info_for_null_check_here(op->info());
duke@435 2788 }
duke@435 2789 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2790 } else {
duke@435 2791 ShouldNotReachHere();
duke@435 2792 }
duke@435 2793
duke@435 2794 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2795 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2796 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2797 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2798
duke@435 2799 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2800 LIR_Const* c = opr2->as_constant_ptr();
never@739 2801 #ifdef _LP64
never@739 2802 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2803 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2804 __ movoop(rscratch1, c->as_jobject());
never@739 2805 }
never@739 2806 #endif // LP64
duke@435 2807 if (op->info() != NULL) {
duke@435 2808 add_debug_info_for_null_check_here(op->info());
duke@435 2809 }
duke@435 2810 // special case: address - constant
duke@435 2811 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2812 if (c->type() == T_INT) {
duke@435 2813 __ cmpl(as_Address(addr), c->as_jint());
never@739 2814 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2815 #ifdef _LP64
never@739 2816 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2817 // better strategy by giving noreg as the temp for as_Address
never@739 2818 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2819 #else
duke@435 2820 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2821 #endif // _LP64
duke@435 2822 } else {
duke@435 2823 ShouldNotReachHere();
duke@435 2824 }
duke@435 2825
duke@435 2826 } else {
duke@435 2827 ShouldNotReachHere();
duke@435 2828 }
duke@435 2829 }
duke@435 2830
duke@435 2831 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2832 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2833 if (left->is_single_xmm()) {
duke@435 2834 assert(right->is_single_xmm(), "must match");
duke@435 2835 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2836 } else if (left->is_double_xmm()) {
duke@435 2837 assert(right->is_double_xmm(), "must match");
duke@435 2838 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2839
duke@435 2840 } else {
duke@435 2841 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2842 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2843
duke@435 2844 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2845 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2846 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2847 }
duke@435 2848 } else {
duke@435 2849 assert(code == lir_cmp_l2i, "check");
never@739 2850 #ifdef _LP64
iveresov@1804 2851 Label done;
iveresov@1804 2852 Register dest = dst->as_register();
iveresov@1804 2853 __ cmpptr(left->as_register_lo(), right->as_register_lo());
iveresov@1804 2854 __ movl(dest, -1);
iveresov@1804 2855 __ jccb(Assembler::less, done);
iveresov@1804 2856 __ set_byte_if_not_zero(dest);
iveresov@1804 2857 __ movzbl(dest, dest);
iveresov@1804 2858 __ bind(done);
never@739 2859 #else
duke@435 2860 __ lcmp2int(left->as_register_hi(),
duke@435 2861 left->as_register_lo(),
duke@435 2862 right->as_register_hi(),
duke@435 2863 right->as_register_lo());
duke@435 2864 move_regs(left->as_register_hi(), dst->as_register());
never@739 2865 #endif // _LP64
duke@435 2866 }
duke@435 2867 }
duke@435 2868
duke@435 2869
duke@435 2870 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2871 if (os::is_MP()) {
duke@435 2872 // make sure that the displacement word of the call ends up word aligned
duke@435 2873 int offset = __ offset();
duke@435 2874 switch (code) {
duke@435 2875 case lir_static_call:
duke@435 2876 case lir_optvirtual_call:
twisti@1730 2877 case lir_dynamic_call:
duke@435 2878 offset += NativeCall::displacement_offset;
duke@435 2879 break;
duke@435 2880 case lir_icvirtual_call:
duke@435 2881 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2882 break;
duke@435 2883 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2884 default: ShouldNotReachHere();
duke@435 2885 }
duke@435 2886 while (offset++ % BytesPerWord != 0) {
duke@435 2887 __ nop();
duke@435 2888 }
duke@435 2889 }
duke@435 2890 }
duke@435 2891
duke@435 2892
twisti@1730 2893 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
duke@435 2894 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2895 "must be aligned");
twisti@1730 2896 __ call(AddressLiteral(op->addr(), rtype));
twisti@1919 2897 add_call_info(code_offset(), op->info());
duke@435 2898 }
duke@435 2899
duke@435 2900
twisti@1730 2901 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 2902 RelocationHolder rh = virtual_call_Relocation::spec(pc());
duke@435 2903 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
duke@435 2904 assert(!os::is_MP() ||
duke@435 2905 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2906 "must be aligned");
twisti@1730 2907 __ call(AddressLiteral(op->addr(), rh));
twisti@1919 2908 add_call_info(code_offset(), op->info());
duke@435 2909 }
duke@435 2910
duke@435 2911
duke@435 2912 /* Currently, vtable-dispatch is only enabled for sparc platforms */
twisti@1730 2913 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
duke@435 2914 ShouldNotReachHere();
duke@435 2915 }
duke@435 2916
twisti@1730 2917
duke@435 2918 void LIR_Assembler::emit_static_call_stub() {
duke@435 2919 address call_pc = __ pc();
duke@435 2920 address stub = __ start_a_stub(call_stub_size);
duke@435 2921 if (stub == NULL) {
duke@435 2922 bailout("static call stub overflow");
duke@435 2923 return;
duke@435 2924 }
duke@435 2925
duke@435 2926 int start = __ offset();
duke@435 2927 if (os::is_MP()) {
duke@435 2928 // make sure that the displacement word of the call ends up word aligned
duke@435 2929 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2930 while (offset++ % BytesPerWord != 0) {
duke@435 2931 __ nop();
duke@435 2932 }
duke@435 2933 }
duke@435 2934 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 2935 __ movoop(rbx, (jobject)NULL);
duke@435 2936 // must be set to -1 at code generation time
duke@435 2937 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2938 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2939 __ jump(RuntimeAddress(__ pc()));
duke@435 2940
jcoomes@1844 2941 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 2942 __ end_a_stub();
duke@435 2943 }
duke@435 2944
duke@435 2945
never@1813 2946 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2947 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2948 assert(exceptionPC->as_register() == rdx, "must match");
duke@435 2949
duke@435 2950 // exception object is not added to oop map by LinearScan
duke@435 2951 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2952 info->add_register_oop(exceptionOop);
duke@435 2953 Runtime1::StubID unwind_id;
duke@435 2954
never@1813 2955 // get current pc information
never@1813 2956 // pc is only needed if the method has an exception handler, the unwind code does not need it.
never@1813 2957 int pc_for_athrow_offset = __ offset();
never@1813 2958 InternalAddress pc_for_athrow(__ pc());
never@1813 2959 __ lea(exceptionPC->as_register(), pc_for_athrow);
never@1813 2960 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2961
never@1813 2962 __ verify_not_null_oop(rax);
never@1813 2963 // search an exception handler (rax: exception oop, rdx: throwing pc)
never@1813 2964 if (compilation()->has_fpu_code()) {
never@1813 2965 unwind_id = Runtime1::handle_exception_id;
duke@435 2966 } else {
never@1813 2967 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2968 }
never@1813 2969 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2970
duke@435 2971 // enough room for two byte trap
duke@435 2972 __ nop();
duke@435 2973 }
duke@435 2974
duke@435 2975
never@1813 2976 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2977 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2978
never@1813 2979 __ jmp(_unwind_handler_entry);
never@1813 2980 }
never@1813 2981
never@1813 2982
duke@435 2983 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2984
duke@435 2985 // optimized version for linear scan:
duke@435 2986 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2987 // * left and dest must be equal
duke@435 2988 // * tmp must be unused
duke@435 2989 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 2990 assert(left == dest, "left and dest must be equal");
duke@435 2991 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 2992
duke@435 2993 if (left->is_single_cpu()) {
duke@435 2994 Register value = left->as_register();
duke@435 2995 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 2996
duke@435 2997 switch (code) {
duke@435 2998 case lir_shl: __ shll(value); break;
duke@435 2999 case lir_shr: __ sarl(value); break;
duke@435 3000 case lir_ushr: __ shrl(value); break;
duke@435 3001 default: ShouldNotReachHere();
duke@435 3002 }
duke@435 3003 } else if (left->is_double_cpu()) {
duke@435 3004 Register lo = left->as_register_lo();
duke@435 3005 Register hi = left->as_register_hi();
duke@435 3006 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 3007 #ifdef _LP64
never@739 3008 switch (code) {
never@739 3009 case lir_shl: __ shlptr(lo); break;
never@739 3010 case lir_shr: __ sarptr(lo); break;
never@739 3011 case lir_ushr: __ shrptr(lo); break;
never@739 3012 default: ShouldNotReachHere();
never@739 3013 }
never@739 3014 #else
duke@435 3015
duke@435 3016 switch (code) {
duke@435 3017 case lir_shl: __ lshl(hi, lo); break;
duke@435 3018 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 3019 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 3020 default: ShouldNotReachHere();
duke@435 3021 }
never@739 3022 #endif // LP64
duke@435 3023 } else {
duke@435 3024 ShouldNotReachHere();
duke@435 3025 }
duke@435 3026 }
duke@435 3027
duke@435 3028
duke@435 3029 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 3030 if (dest->is_single_cpu()) {
duke@435 3031 // first move left into dest so that left is not destroyed by the shift
duke@435 3032 Register value = dest->as_register();
duke@435 3033 count = count & 0x1F; // Java spec
duke@435 3034
duke@435 3035 move_regs(left->as_register(), value);
duke@435 3036 switch (code) {
duke@435 3037 case lir_shl: __ shll(value, count); break;
duke@435 3038 case lir_shr: __ sarl(value, count); break;
duke@435 3039 case lir_ushr: __ shrl(value, count); break;
duke@435 3040 default: ShouldNotReachHere();
duke@435 3041 }
duke@435 3042 } else if (dest->is_double_cpu()) {
never@739 3043 #ifndef _LP64
duke@435 3044 Unimplemented();
never@739 3045 #else
never@739 3046 // first move left into dest so that left is not destroyed by the shift
never@739 3047 Register value = dest->as_register_lo();
never@739 3048 count = count & 0x1F; // Java spec
never@739 3049
never@739 3050 move_regs(left->as_register_lo(), value);
never@739 3051 switch (code) {
never@739 3052 case lir_shl: __ shlptr(value, count); break;
never@739 3053 case lir_shr: __ sarptr(value, count); break;
never@739 3054 case lir_ushr: __ shrptr(value, count); break;
never@739 3055 default: ShouldNotReachHere();
never@739 3056 }
never@739 3057 #endif // _LP64
duke@435 3058 } else {
duke@435 3059 ShouldNotReachHere();
duke@435 3060 }
duke@435 3061 }
duke@435 3062
duke@435 3063
duke@435 3064 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 3065 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3066 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3067 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3068 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 3069 }
duke@435 3070
duke@435 3071
duke@435 3072 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 3073 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3074 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3075 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3076 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 3077 }
duke@435 3078
duke@435 3079
duke@435 3080 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 3081 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3082 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3083 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 3084 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 3085 }
duke@435 3086
duke@435 3087
duke@435 3088 // This code replaces a call to arraycopy; no exception may
duke@435 3089 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 3090 // activation frame; we could save some checks if this would not be the case
duke@435 3091 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 3092 ciArrayKlass* default_type = op->expected_type();
duke@435 3093 Register src = op->src()->as_register();
duke@435 3094 Register dst = op->dst()->as_register();
duke@435 3095 Register src_pos = op->src_pos()->as_register();
duke@435 3096 Register dst_pos = op->dst_pos()->as_register();
duke@435 3097 Register length = op->length()->as_register();
duke@435 3098 Register tmp = op->tmp()->as_register();
duke@435 3099
duke@435 3100 CodeStub* stub = op->stub();
duke@435 3101 int flags = op->flags();
duke@435 3102 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 3103 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 3104
roland@2728 3105 // if we don't know anything, just go through the generic arraycopy
duke@435 3106 if (default_type == NULL) {
duke@435 3107 Label done;
duke@435 3108 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 3109 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 3110 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 3111 // For the moment until C1 gets the new register allocator I just force all the
duke@435 3112 // args to the right place (except the register args) and then on the back side
duke@435 3113 // reload the register args properly if we go slow path. Yuck
duke@435 3114
duke@435 3115 // These are proper for the calling convention
duke@435 3116
duke@435 3117 store_parameter(length, 2);
duke@435 3118 store_parameter(dst_pos, 1);
duke@435 3119 store_parameter(dst, 0);
duke@435 3120
duke@435 3121 // these are just temporary placements until we need to reload
duke@435 3122 store_parameter(src_pos, 3);
duke@435 3123 store_parameter(src, 4);
never@739 3124 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 3125
roland@2728 3126 address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
roland@2728 3127
roland@2728 3128 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 3129
duke@435 3130 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 3131 #ifdef _LP64
never@739 3132 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3133 // convention
never@739 3134 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3135 __ mov(c_rarg0, j_rarg0);
never@739 3136 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3137 __ mov(c_rarg1, j_rarg1);
never@739 3138 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3139 __ mov(c_rarg2, j_rarg2);
never@739 3140 assert_different_registers(c_rarg3, j_rarg4);
never@739 3141 __ mov(c_rarg3, j_rarg3);
never@739 3142 #ifdef _WIN64
never@739 3143 // Allocate abi space for args but be sure to keep stack aligned
never@739 3144 __ subptr(rsp, 6*wordSize);
never@739 3145 store_parameter(j_rarg4, 4);
roland@2728 3146 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3147 __ call(RuntimeAddress(C_entry));
roland@2728 3148 } else {
roland@2728 3149 #ifndef PRODUCT
roland@2728 3150 if (PrintC1Statistics) {
roland@2728 3151 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3152 }
roland@2728 3153 #endif
roland@2728 3154 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3155 }
never@739 3156 __ addptr(rsp, 6*wordSize);
never@739 3157 #else
never@739 3158 __ mov(c_rarg4, j_rarg4);
roland@2728 3159 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3160 __ call(RuntimeAddress(C_entry));
roland@2728 3161 } else {
roland@2728 3162 #ifndef PRODUCT
roland@2728 3163 if (PrintC1Statistics) {
roland@2728 3164 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3165 }
roland@2728 3166 #endif
roland@2728 3167 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3168 }
never@739 3169 #endif // _WIN64
never@739 3170 #else
never@739 3171 __ push(length);
never@739 3172 __ push(dst_pos);
never@739 3173 __ push(dst);
never@739 3174 __ push(src_pos);
never@739 3175 __ push(src);
roland@2728 3176
roland@2728 3177 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3178 __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
roland@2728 3179 } else {
roland@2728 3180 #ifndef PRODUCT
roland@2728 3181 if (PrintC1Statistics) {
roland@2728 3182 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3183 }
roland@2728 3184 #endif
roland@2728 3185 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
roland@2728 3186 }
duke@435 3187
never@739 3188 #endif // _LP64
never@739 3189
duke@435 3190 __ cmpl(rax, 0);
duke@435 3191 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3192
roland@2728 3193 if (copyfunc_addr != NULL) {
roland@2728 3194 __ mov(tmp, rax);
roland@2728 3195 __ xorl(tmp, -1);
roland@2728 3196 }
roland@2728 3197
duke@435 3198 // Reload values from the stack so they are where the stub
duke@435 3199 // expects them.
never@739 3200 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3201 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3202 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3203 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3204 __ movptr (src, Address(rsp, 4*BytesPerWord));
roland@2728 3205
roland@2728 3206 if (copyfunc_addr != NULL) {
roland@2728 3207 __ subl(length, tmp);
roland@2728 3208 __ addl(src_pos, tmp);
roland@2728 3209 __ addl(dst_pos, tmp);
roland@2728 3210 }
duke@435 3211 __ jmp(*stub->entry());
duke@435 3212
duke@435 3213 __ bind(*stub->continuation());
duke@435 3214 return;
duke@435 3215 }
duke@435 3216
duke@435 3217 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3218
kvn@464 3219 int elem_size = type2aelembytes(basic_type);
duke@435 3220 int shift_amount;
duke@435 3221 Address::ScaleFactor scale;
duke@435 3222
duke@435 3223 switch (elem_size) {
duke@435 3224 case 1 :
duke@435 3225 shift_amount = 0;
duke@435 3226 scale = Address::times_1;
duke@435 3227 break;
duke@435 3228 case 2 :
duke@435 3229 shift_amount = 1;
duke@435 3230 scale = Address::times_2;
duke@435 3231 break;
duke@435 3232 case 4 :
duke@435 3233 shift_amount = 2;
duke@435 3234 scale = Address::times_4;
duke@435 3235 break;
duke@435 3236 case 8 :
duke@435 3237 shift_amount = 3;
duke@435 3238 scale = Address::times_8;
duke@435 3239 break;
duke@435 3240 default:
duke@435 3241 ShouldNotReachHere();
duke@435 3242 }
duke@435 3243
duke@435 3244 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3245 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3246 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3247 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3248
never@739 3249 // length and pos's are all sign extended at this point on 64bit
never@739 3250
duke@435 3251 // test for NULL
duke@435 3252 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3253 __ testptr(src, src);
duke@435 3254 __ jcc(Assembler::zero, *stub->entry());
duke@435 3255 }
duke@435 3256 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3257 __ testptr(dst, dst);
duke@435 3258 __ jcc(Assembler::zero, *stub->entry());
duke@435 3259 }
duke@435 3260
duke@435 3261 // check if negative
duke@435 3262 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3263 __ testl(src_pos, src_pos);
duke@435 3264 __ jcc(Assembler::less, *stub->entry());
duke@435 3265 }
duke@435 3266 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3267 __ testl(dst_pos, dst_pos);
duke@435 3268 __ jcc(Assembler::less, *stub->entry());
duke@435 3269 }
duke@435 3270
duke@435 3271 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3272 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3273 __ cmpl(tmp, src_length_addr);
duke@435 3274 __ jcc(Assembler::above, *stub->entry());
duke@435 3275 }
duke@435 3276 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3277 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3278 __ cmpl(tmp, dst_length_addr);
duke@435 3279 __ jcc(Assembler::above, *stub->entry());
duke@435 3280 }
duke@435 3281
roland@2728 3282 if (flags & LIR_OpArrayCopy::length_positive_check) {
roland@2728 3283 __ testl(length, length);
roland@2728 3284 __ jcc(Assembler::less, *stub->entry());
roland@2728 3285 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3286 }
roland@2728 3287
roland@2728 3288 #ifdef _LP64
roland@2728 3289 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
roland@2728 3290 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
roland@2728 3291 #endif
roland@2728 3292
duke@435 3293 if (flags & LIR_OpArrayCopy::type_check) {
roland@2728 3294 // We don't know the array types are compatible
roland@2728 3295 if (basic_type != T_OBJECT) {
roland@2728 3296 // Simple test for basic type arrays
roland@2728 3297 if (UseCompressedOops) {
roland@2728 3298 __ movl(tmp, src_klass_addr);
roland@2728 3299 __ cmpl(tmp, dst_klass_addr);
roland@2728 3300 } else {
roland@2728 3301 __ movptr(tmp, src_klass_addr);
roland@2728 3302 __ cmpptr(tmp, dst_klass_addr);
roland@2728 3303 }
roland@2728 3304 __ jcc(Assembler::notEqual, *stub->entry());
iveresov@2344 3305 } else {
roland@2728 3306 // For object arrays, if src is a sub class of dst then we can
roland@2728 3307 // safely do the copy.
roland@2728 3308 Label cont, slow;
roland@2728 3309
roland@2728 3310 __ push(src);
roland@2728 3311 __ push(dst);
roland@2728 3312
roland@2728 3313 __ load_klass(src, src);
roland@2728 3314 __ load_klass(dst, dst);
roland@2728 3315
roland@2728 3316 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
roland@2728 3317
roland@2728 3318 __ push(src);
roland@2728 3319 __ push(dst);
roland@2728 3320 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
roland@2728 3321 __ pop(dst);
roland@2728 3322 __ pop(src);
roland@2728 3323
roland@2728 3324 __ cmpl(src, 0);
roland@2728 3325 __ jcc(Assembler::notEqual, cont);
roland@2728 3326
roland@2728 3327 __ bind(slow);
roland@2728 3328 __ pop(dst);
roland@2728 3329 __ pop(src);
roland@2728 3330
roland@2728 3331 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
roland@2728 3332 if (copyfunc_addr != NULL) { // use stub if available
roland@2728 3333 // src is not a sub class of dst so we have to do a
roland@2728 3334 // per-element check.
roland@2728 3335
roland@2728 3336 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
roland@2728 3337 if ((flags & mask) != mask) {
roland@2728 3338 // Check that at least both of them object arrays.
roland@2728 3339 assert(flags & mask, "one of the two should be known to be an object array");
roland@2728 3340
roland@2728 3341 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
roland@2728 3342 __ load_klass(tmp, src);
roland@2728 3343 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
roland@2728 3344 __ load_klass(tmp, dst);
roland@2728 3345 }
roland@2728 3346 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
roland@2728 3347 Klass::layout_helper_offset_in_bytes();
roland@2728 3348 Address klass_lh_addr(tmp, lh_offset);
roland@2728 3349 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
roland@2728 3350 __ cmpl(klass_lh_addr, objArray_lh);
roland@2728 3351 __ jcc(Assembler::notEqual, *stub->entry());
roland@2728 3352 }
roland@2728 3353
roland@2728 3354 #ifndef _LP64
roland@2728 3355 // save caller save registers
roland@2728 3356 store_parameter(rax, 2);
roland@2728 3357 store_parameter(rcx, 1);
roland@2728 3358 store_parameter(rdx, 0);
roland@2728 3359
roland@2728 3360 __ movptr(tmp, dst_klass_addr);
roland@2728 3361 __ movptr(tmp, Address(tmp, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
roland@2728 3362 __ push(tmp);
roland@2728 3363 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc)));
roland@2728 3364 __ push(tmp);
roland@2728 3365 __ push(length);
roland@2728 3366 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3367 __ push(tmp);
roland@2728 3368 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3369 __ push(tmp);
roland@2728 3370
roland@2728 3371 __ call_VM_leaf(copyfunc_addr, 5);
roland@2728 3372 #else
roland@2728 3373 __ movl2ptr(length, length); //higher 32bits must be null
roland@2728 3374
roland@2728 3375 // save caller save registers: copy them to callee save registers
roland@2728 3376 __ mov(rbx, rdx);
roland@2728 3377 __ mov(r13, r8);
roland@2728 3378 __ mov(r14, r9);
roland@2728 3379 #ifndef _WIN64
roland@2728 3380 store_parameter(rsi, 1);
roland@2728 3381 store_parameter(rcx, 0);
roland@2728 3382 // on WIN64 other incoming parameters are in rdi and rsi saved
roland@2728 3383 // across the call
roland@2728 3384 #endif
roland@2728 3385
roland@2728 3386 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3387 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@2728 3388 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3389 assert_different_registers(c_rarg1, dst, length);
roland@2728 3390
roland@2728 3391 __ mov(c_rarg2, length);
roland@2728 3392 assert_different_registers(c_rarg2, dst);
roland@2728 3393
roland@2728 3394 #ifdef _WIN64
roland@2728 3395 // Allocate abi space for args but be sure to keep stack aligned
roland@2728 3396 __ subptr(rsp, 6*wordSize);
roland@2728 3397 __ load_klass(c_rarg3, dst);
roland@2728 3398 __ movptr(c_rarg3, Address(c_rarg3, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
roland@2728 3399 store_parameter(c_rarg3, 4);
roland@2728 3400 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc)));
roland@2728 3401 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3402 __ addptr(rsp, 6*wordSize);
roland@2728 3403 #else
roland@2728 3404 __ load_klass(c_rarg4, dst);
roland@2728 3405 __ movptr(c_rarg4, Address(c_rarg4, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
roland@2728 3406 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc)));
roland@2728 3407 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3408 #endif
roland@2728 3409
roland@2728 3410 #endif
roland@2728 3411
roland@2728 3412 #ifndef PRODUCT
roland@2728 3413 if (PrintC1Statistics) {
roland@2728 3414 Label failed;
roland@2728 3415 __ testl(rax, rax);
roland@2728 3416 __ jcc(Assembler::notZero, failed);
roland@2728 3417 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
roland@2728 3418 __ bind(failed);
roland@2728 3419 }
roland@2728 3420 #endif
roland@2728 3421
roland@2728 3422 __ testl(rax, rax);
roland@2728 3423 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3424
roland@2728 3425 #ifndef PRODUCT
roland@2728 3426 if (PrintC1Statistics) {
roland@2728 3427 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
roland@2728 3428 }
roland@2728 3429 #endif
roland@2728 3430
roland@2728 3431 __ mov(tmp, rax);
roland@2728 3432
roland@2728 3433 __ xorl(tmp, -1);
roland@2728 3434
roland@2728 3435 #ifndef _LP64
roland@2728 3436 // restore caller save registers
roland@2728 3437 assert_different_registers(tmp, rdx, rcx, rax); // result of stub will be lost
roland@2728 3438 __ movptr(rdx, Address(rsp, 0*BytesPerWord));
roland@2728 3439 __ movptr(rcx, Address(rsp, 1*BytesPerWord));
roland@2728 3440 __ movptr(rax, Address(rsp, 2*BytesPerWord));
roland@2728 3441 #else
roland@2728 3442 // restore caller save registers
roland@2728 3443 __ mov(rdx, rbx);
roland@2728 3444 __ mov(r8, r13);
roland@2728 3445 __ mov(r9, r14);
roland@2728 3446 #ifndef _WIN64
roland@2728 3447 assert_different_registers(tmp, rdx, r8, r9, rcx, rsi); // result of stub will be lost
roland@2728 3448 __ movptr(rcx, Address(rsp, 0*BytesPerWord));
roland@2728 3449 __ movptr(rsi, Address(rsp, 1*BytesPerWord));
roland@2728 3450 #else
roland@2728 3451 assert_different_registers(tmp, rdx, r8, r9); // result of stub will be lost
roland@2728 3452 #endif
roland@2728 3453 #endif
roland@2728 3454
roland@2728 3455 __ subl(length, tmp);
roland@2728 3456 __ addl(src_pos, tmp);
roland@2728 3457 __ addl(dst_pos, tmp);
roland@2728 3458 }
roland@2728 3459
roland@2728 3460 __ jmp(*stub->entry());
roland@2728 3461
roland@2728 3462 __ bind(cont);
roland@2728 3463 __ pop(dst);
roland@2728 3464 __ pop(src);
iveresov@2344 3465 }
duke@435 3466 }
duke@435 3467
duke@435 3468 #ifdef ASSERT
duke@435 3469 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3470 // Sanity check the known type with the incoming class. For the
duke@435 3471 // primitive case the types must match exactly with src.klass and
duke@435 3472 // dst.klass each exactly matching the default type. For the
duke@435 3473 // object array case, if no type check is needed then either the
duke@435 3474 // dst type is exactly the expected type and the src type is a
duke@435 3475 // subtype which we can't check or src is the same array as dst
duke@435 3476 // but not necessarily exactly of type default_type.
duke@435 3477 Label known_ok, halt;
jrose@1424 3478 __ movoop(tmp, default_type->constant_encoding());
iveresov@2344 3479 #ifdef _LP64
iveresov@2344 3480 if (UseCompressedOops) {
iveresov@2344 3481 __ encode_heap_oop(tmp);
iveresov@2344 3482 }
iveresov@2344 3483 #endif
iveresov@2344 3484
duke@435 3485 if (basic_type != T_OBJECT) {
iveresov@2344 3486
iveresov@2344 3487 if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3488 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3489 __ jcc(Assembler::notEqual, halt);
iveresov@2344 3490 if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
iveresov@2344 3491 else __ cmpptr(tmp, src_klass_addr);
duke@435 3492 __ jcc(Assembler::equal, known_ok);
duke@435 3493 } else {
iveresov@2344 3494 if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3495 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3496 __ jcc(Assembler::equal, known_ok);
never@739 3497 __ cmpptr(src, dst);
duke@435 3498 __ jcc(Assembler::equal, known_ok);
duke@435 3499 }
duke@435 3500 __ bind(halt);
duke@435 3501 __ stop("incorrect type information in arraycopy");
duke@435 3502 __ bind(known_ok);
duke@435 3503 }
duke@435 3504 #endif
duke@435 3505
roland@2728 3506 #ifndef PRODUCT
roland@2728 3507 if (PrintC1Statistics) {
roland@2728 3508 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
never@739 3509 }
roland@2728 3510 #endif
never@739 3511
never@739 3512 #ifdef _LP64
never@739 3513 assert_different_registers(c_rarg0, dst, dst_pos, length);
never@739 3514 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3515 assert_different_registers(c_rarg1, length);
never@739 3516 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3517 __ mov(c_rarg2, length);
never@739 3518
never@739 3519 #else
never@739 3520 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3521 store_parameter(tmp, 0);
never@739 3522 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3523 store_parameter(tmp, 1);
duke@435 3524 store_parameter(length, 2);
never@739 3525 #endif // _LP64
roland@2728 3526
roland@2728 3527 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
roland@2728 3528 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
roland@2728 3529 const char *name;
roland@2728 3530 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
roland@2728 3531 __ call_VM_leaf(entry, 0);
duke@435 3532
duke@435 3533 __ bind(*stub->continuation());
duke@435 3534 }
duke@435 3535
duke@435 3536
duke@435 3537 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3538 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3539 Register hdr = op->hdr_opr()->as_register();
duke@435 3540 Register lock = op->lock_opr()->as_register();
duke@435 3541 if (!UseFastLocking) {
duke@435 3542 __ jmp(*op->stub()->entry());
duke@435 3543 } else if (op->code() == lir_lock) {
duke@435 3544 Register scratch = noreg;
duke@435 3545 if (UseBiasedLocking) {
duke@435 3546 scratch = op->scratch_opr()->as_register();
duke@435 3547 }
duke@435 3548 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3549 // add debug info for NullPointerException only if one is possible
duke@435 3550 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3551 if (op->info() != NULL) {
duke@435 3552 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3553 }
duke@435 3554 // done
duke@435 3555 } else if (op->code() == lir_unlock) {
duke@435 3556 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3557 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3558 } else {
duke@435 3559 Unimplemented();
duke@435 3560 }
duke@435 3561 __ bind(*op->stub()->continuation());
duke@435 3562 }
duke@435 3563
duke@435 3564
duke@435 3565 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3566 ciMethod* method = op->profiled_method();
duke@435 3567 int bci = op->profiled_bci();
duke@435 3568
duke@435 3569 // Update counter for all call types
iveresov@2349 3570 ciMethodData* md = method->method_data_or_null();
iveresov@2349 3571 assert(md != NULL, "Sanity");
duke@435 3572 ciProfileData* data = md->bci_to_data(bci);
duke@435 3573 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3574 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3575 Register mdo = op->mdo()->as_register();
jrose@1424 3576 __ movoop(mdo, md->constant_encoding());
duke@435 3577 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3578 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 3579 // Perform additional virtual call profiling for invokevirtual and
duke@435 3580 // invokeinterface bytecodes
duke@435 3581 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
iveresov@2138 3582 C1ProfileVirtualCalls) {
duke@435 3583 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3584 Register recv = op->recv()->as_register();
duke@435 3585 assert_different_registers(mdo, recv);
duke@435 3586 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3587 ciKlass* known_klass = op->known_holder();
iveresov@2138 3588 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3589 // We know the type that will be seen at this call site; we can
duke@435 3590 // statically update the methodDataOop rather than needing to do
duke@435 3591 // dynamic tests on the receiver type
duke@435 3592
duke@435 3593 // NOTE: we should probably put a lock around this search to
duke@435 3594 // avoid collisions by concurrent compilations
duke@435 3595 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3596 uint i;
duke@435 3597 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3598 ciKlass* receiver = vc_data->receiver(i);
duke@435 3599 if (known_klass->equals(receiver)) {
duke@435 3600 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3601 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3602 return;
duke@435 3603 }
duke@435 3604 }
duke@435 3605
duke@435 3606 // Receiver type not found in profile data; select an empty slot
duke@435 3607
duke@435 3608 // Note that this is less efficient than it should be because it
duke@435 3609 // always does a write to the receiver part of the
duke@435 3610 // VirtualCallData rather than just the first time
duke@435 3611 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3612 ciKlass* receiver = vc_data->receiver(i);
duke@435 3613 if (receiver == NULL) {
duke@435 3614 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
jrose@1424 3615 __ movoop(recv_addr, known_klass->constant_encoding());
duke@435 3616 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3617 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3618 return;
duke@435 3619 }
duke@435 3620 }
duke@435 3621 } else {
iveresov@2344 3622 __ load_klass(recv, recv);
duke@435 3623 Label update_done;
iveresov@2138 3624 type_profile_helper(mdo, md, data, recv, &update_done);
kvn@1641 3625 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3626 // Increment total counter to indicate polymorphic case.
iveresov@2138 3627 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3628
duke@435 3629 __ bind(update_done);
duke@435 3630 }
kvn@1641 3631 } else {
kvn@1641 3632 // Static call
iveresov@2138 3633 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3634 }
duke@435 3635 }
duke@435 3636
duke@435 3637 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3638 Unimplemented();
duke@435 3639 }
duke@435 3640
duke@435 3641
duke@435 3642 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3643 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3644 }
duke@435 3645
duke@435 3646
duke@435 3647 void LIR_Assembler::align_backward_branch_target() {
duke@435 3648 __ align(BytesPerWord);
duke@435 3649 }
duke@435 3650
duke@435 3651
duke@435 3652 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3653 if (left->is_single_cpu()) {
duke@435 3654 __ negl(left->as_register());
duke@435 3655 move_regs(left->as_register(), dest->as_register());
duke@435 3656
duke@435 3657 } else if (left->is_double_cpu()) {
duke@435 3658 Register lo = left->as_register_lo();
never@739 3659 #ifdef _LP64
never@739 3660 Register dst = dest->as_register_lo();
never@739 3661 __ movptr(dst, lo);
never@739 3662 __ negptr(dst);
never@739 3663 #else
duke@435 3664 Register hi = left->as_register_hi();
duke@435 3665 __ lneg(hi, lo);
duke@435 3666 if (dest->as_register_lo() == hi) {
duke@435 3667 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3668 move_regs(hi, dest->as_register_hi());
duke@435 3669 move_regs(lo, dest->as_register_lo());
duke@435 3670 } else {
duke@435 3671 move_regs(lo, dest->as_register_lo());
duke@435 3672 move_regs(hi, dest->as_register_hi());
duke@435 3673 }
never@739 3674 #endif // _LP64
duke@435 3675
duke@435 3676 } else if (dest->is_single_xmm()) {
duke@435 3677 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3678 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3679 }
duke@435 3680 __ xorps(dest->as_xmm_float_reg(),
duke@435 3681 ExternalAddress((address)float_signflip_pool));
duke@435 3682
duke@435 3683 } else if (dest->is_double_xmm()) {
duke@435 3684 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3685 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3686 }
duke@435 3687 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3688 ExternalAddress((address)double_signflip_pool));
duke@435 3689
duke@435 3690 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3691 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3692 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3693 __ fchs();
duke@435 3694
duke@435 3695 } else {
duke@435 3696 ShouldNotReachHere();
duke@435 3697 }
duke@435 3698 }
duke@435 3699
duke@435 3700
duke@435 3701 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3702 assert(addr->is_address() && dest->is_register(), "check");
never@739 3703 Register reg;
never@739 3704 reg = dest->as_pointer_register();
never@739 3705 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3706 }
duke@435 3707
duke@435 3708
duke@435 3709
duke@435 3710 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3711 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3712 __ call(RuntimeAddress(dest));
duke@435 3713 if (info != NULL) {
duke@435 3714 add_call_info_here(info);
duke@435 3715 }
duke@435 3716 }
duke@435 3717
duke@435 3718
duke@435 3719 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3720 assert(type == T_LONG, "only for volatile long fields");
duke@435 3721
duke@435 3722 if (info != NULL) {
duke@435 3723 add_debug_info_for_null_check_here(info);
duke@435 3724 }
duke@435 3725
duke@435 3726 if (src->is_double_xmm()) {
duke@435 3727 if (dest->is_double_cpu()) {
never@739 3728 #ifdef _LP64
never@739 3729 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3730 #else
never@739 3731 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3732 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3733 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3734 #endif // _LP64
duke@435 3735 } else if (dest->is_double_stack()) {
duke@435 3736 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3737 } else if (dest->is_address()) {
duke@435 3738 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3739 } else {
duke@435 3740 ShouldNotReachHere();
duke@435 3741 }
duke@435 3742
duke@435 3743 } else if (dest->is_double_xmm()) {
duke@435 3744 if (src->is_double_stack()) {
duke@435 3745 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3746 } else if (src->is_address()) {
duke@435 3747 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3748 } else {
duke@435 3749 ShouldNotReachHere();
duke@435 3750 }
duke@435 3751
duke@435 3752 } else if (src->is_double_fpu()) {
duke@435 3753 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3754 if (dest->is_double_stack()) {
duke@435 3755 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3756 } else if (dest->is_address()) {
duke@435 3757 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3758 } else {
duke@435 3759 ShouldNotReachHere();
duke@435 3760 }
duke@435 3761
duke@435 3762 } else if (dest->is_double_fpu()) {
duke@435 3763 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3764 if (src->is_double_stack()) {
duke@435 3765 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3766 } else if (src->is_address()) {
duke@435 3767 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3768 } else {
duke@435 3769 ShouldNotReachHere();
duke@435 3770 }
duke@435 3771 } else {
duke@435 3772 ShouldNotReachHere();
duke@435 3773 }
duke@435 3774 }
duke@435 3775
duke@435 3776
duke@435 3777 void LIR_Assembler::membar() {
never@739 3778 // QQQ sparc TSO uses this,
never@739 3779 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3780 }
duke@435 3781
duke@435 3782 void LIR_Assembler::membar_acquire() {
duke@435 3783 // No x86 machines currently require load fences
duke@435 3784 // __ load_fence();
duke@435 3785 }
duke@435 3786
duke@435 3787 void LIR_Assembler::membar_release() {
duke@435 3788 // No x86 machines currently require store fences
duke@435 3789 // __ store_fence();
duke@435 3790 }
duke@435 3791
duke@435 3792 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3793 assert(result_reg->is_register(), "check");
never@739 3794 #ifdef _LP64
never@739 3795 // __ get_thread(result_reg->as_register_lo());
never@739 3796 __ mov(result_reg->as_register(), r15_thread);
never@739 3797 #else
duke@435 3798 __ get_thread(result_reg->as_register());
never@739 3799 #endif // _LP64
duke@435 3800 }
duke@435 3801
duke@435 3802
duke@435 3803 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3804 // do nothing for now
duke@435 3805 }
duke@435 3806
duke@435 3807
duke@435 3808 #undef __

mercurial