src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Tue, 25 Sep 2012 07:05:55 -0700

author
jmasa
date
Tue, 25 Sep 2012 07:05:55 -0700
changeset 4097
5baec2e69518
parent 4037
da91efe96a93
child 4129
22b8d3d181d9
permissions
-rw-r--r--

7200615: NPG: optimized VM build is broken
Reviewed-by: kvn

ysr@777 1 /*
tonyp@3416 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/collectionSetChooser.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1MMUTracker.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31
ysr@777 32 // A G1CollectorPolicy makes policy decisions that determine the
ysr@777 33 // characteristics of the collector. Examples include:
ysr@777 34 // * choice of collection set.
ysr@777 35 // * when to collect.
ysr@777 36
ysr@777 37 class HeapRegion;
ysr@777 38 class CollectionSetChooser;
brutisso@3923 39 class G1GCPhaseTimes;
ysr@777 40
brutisso@3812 41 // TraceGen0Time collects data on _both_ young and mixed evacuation pauses
brutisso@3812 42 // (the latter may contain non-young regions - i.e. regions that are
brutisso@3812 43 // technically in Gen1) while TraceGen1Time collects data about full GCs.
zgu@3900 44 class TraceGen0TimeData : public CHeapObj<mtGC> {
brutisso@3812 45 private:
brutisso@3812 46 unsigned _young_pause_num;
brutisso@3812 47 unsigned _mixed_pause_num;
ysr@777 48
brutisso@3812 49 NumberSeq _all_stop_world_times_ms;
brutisso@3812 50 NumberSeq _all_yield_times_ms;
ysr@777 51
brutisso@3812 52 NumberSeq _total;
brutisso@3812 53 NumberSeq _other;
brutisso@3812 54 NumberSeq _root_region_scan_wait;
brutisso@3812 55 NumberSeq _parallel;
brutisso@3812 56 NumberSeq _ext_root_scan;
brutisso@3812 57 NumberSeq _satb_filtering;
brutisso@3812 58 NumberSeq _update_rs;
brutisso@3812 59 NumberSeq _scan_rs;
brutisso@3812 60 NumberSeq _obj_copy;
brutisso@3812 61 NumberSeq _termination;
brutisso@3812 62 NumberSeq _parallel_other;
brutisso@3812 63 NumberSeq _clear_ct;
ysr@777 64
brutisso@3923 65 void print_summary(const char* str, const NumberSeq* seq) const;
brutisso@3923 66 void print_summary_sd(const char* str, const NumberSeq* seq) const;
ysr@777 67
ysr@777 68 public:
brutisso@3812 69 TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
brutisso@3812 70 void record_start_collection(double time_to_stop_the_world_ms);
brutisso@3812 71 void record_yield_time(double yield_time_ms);
brutisso@3923 72 void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
brutisso@3812 73 void increment_young_collection_count();
brutisso@3812 74 void increment_mixed_collection_count();
brutisso@3812 75 void print() const;
ysr@777 76 };
ysr@777 77
zgu@3900 78 class TraceGen1TimeData : public CHeapObj<mtGC> {
brutisso@3812 79 private:
brutisso@3812 80 NumberSeq _all_full_gc_times;
ysr@777 81
brutisso@3812 82 public:
brutisso@3812 83 void record_full_collection(double full_gc_time_ms);
brutisso@3812 84 void print() const;
ysr@777 85 };
ysr@777 86
brutisso@3358 87 // There are three command line options related to the young gen size:
brutisso@3358 88 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
brutisso@3358 89 // just a short form for NewSize==MaxNewSize). G1 will use its internal
brutisso@3358 90 // heuristics to calculate the actual young gen size, so these options
brutisso@3358 91 // basically only limit the range within which G1 can pick a young gen
brutisso@3358 92 // size. Also, these are general options taking byte sizes. G1 will
brutisso@3358 93 // internally work with a number of regions instead. So, some rounding
brutisso@3358 94 // will occur.
brutisso@3358 95 //
brutisso@3358 96 // If nothing related to the the young gen size is set on the command
brutisso@3358 97 // line we should allow the young gen to be between
brutisso@3358 98 // G1DefaultMinNewGenPercent and G1DefaultMaxNewGenPercent of the
brutisso@3358 99 // heap size. This means that every time the heap size changes the
brutisso@3358 100 // limits for the young gen size will be updated.
brutisso@3358 101 //
brutisso@3358 102 // If only -XX:NewSize is set we should use the specified value as the
brutisso@3358 103 // minimum size for young gen. Still using G1DefaultMaxNewGenPercent
brutisso@3358 104 // of the heap as maximum.
brutisso@3358 105 //
brutisso@3358 106 // If only -XX:MaxNewSize is set we should use the specified value as the
brutisso@3358 107 // maximum size for young gen. Still using G1DefaultMinNewGenPercent
brutisso@3358 108 // of the heap as minimum.
brutisso@3358 109 //
brutisso@3358 110 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
brutisso@3358 111 // No updates when the heap size changes. There is a special case when
brutisso@3358 112 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
brutisso@3358 113 // different heuristic for calculating the collection set when we do mixed
brutisso@3358 114 // collection.
brutisso@3358 115 //
brutisso@3358 116 // If only -XX:NewRatio is set we should use the specified ratio of the heap
brutisso@3358 117 // as both min and max. This will be interpreted as "fixed" just like the
brutisso@3358 118 // NewSize==MaxNewSize case above. But we will update the min and max
brutisso@3358 119 // everytime the heap size changes.
brutisso@3358 120 //
brutisso@3358 121 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
brutisso@3358 122 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
zgu@3900 123 class G1YoungGenSizer : public CHeapObj<mtGC> {
brutisso@3358 124 private:
brutisso@3358 125 enum SizerKind {
brutisso@3358 126 SizerDefaults,
brutisso@3358 127 SizerNewSizeOnly,
brutisso@3358 128 SizerMaxNewSizeOnly,
brutisso@3358 129 SizerMaxAndNewSize,
brutisso@3358 130 SizerNewRatio
brutisso@3358 131 };
brutisso@3358 132 SizerKind _sizer_kind;
tonyp@3713 133 uint _min_desired_young_length;
tonyp@3713 134 uint _max_desired_young_length;
brutisso@3358 135 bool _adaptive_size;
tonyp@3713 136 uint calculate_default_min_length(uint new_number_of_heap_regions);
tonyp@3713 137 uint calculate_default_max_length(uint new_number_of_heap_regions);
brutisso@3358 138
brutisso@3358 139 public:
brutisso@3358 140 G1YoungGenSizer();
tonyp@3713 141 void heap_size_changed(uint new_number_of_heap_regions);
tonyp@3713 142 uint min_desired_young_length() {
brutisso@3358 143 return _min_desired_young_length;
brutisso@3358 144 }
tonyp@3713 145 uint max_desired_young_length() {
brutisso@3358 146 return _max_desired_young_length;
brutisso@3358 147 }
brutisso@3358 148 bool adaptive_young_list_length() {
brutisso@3358 149 return _adaptive_size;
brutisso@3358 150 }
brutisso@3358 151 };
brutisso@3358 152
ysr@777 153 class G1CollectorPolicy: public CollectorPolicy {
tonyp@3209 154 private:
ysr@777 155 // either equal to the number of parallel threads, if ParallelGCThreads
ysr@777 156 // has been set, or 1 otherwise
ysr@777 157 int _parallel_gc_threads;
ysr@777 158
jmasa@3294 159 // The number of GC threads currently active.
jmasa@3294 160 uintx _no_of_gc_threads;
jmasa@3294 161
ysr@777 162 enum SomePrivateConstants {
tonyp@1377 163 NumPrevPausesForHeuristics = 10
ysr@777 164 };
ysr@777 165
ysr@777 166 G1MMUTracker* _mmu_tracker;
ysr@777 167
ysr@777 168 void initialize_flags();
ysr@777 169
ysr@777 170 void initialize_all() {
ysr@777 171 initialize_flags();
ysr@777 172 initialize_size_info();
ysr@777 173 }
ysr@777 174
tonyp@3209 175 CollectionSetChooser* _collectionSetChooser;
ysr@777 176
brutisso@3923 177 double _full_collection_start_sec;
ysr@777 178 size_t _cur_collection_pause_used_at_start_bytes;
tonyp@3713 179 uint _cur_collection_pause_used_regions_at_start;
johnc@1325 180
ysr@777 181 // These exclude marking times.
ysr@777 182 TruncatedSeq* _recent_gc_times_ms;
ysr@777 183
ysr@777 184 TruncatedSeq* _concurrent_mark_remark_times_ms;
ysr@777 185 TruncatedSeq* _concurrent_mark_cleanup_times_ms;
ysr@777 186
brutisso@3812 187 TraceGen0TimeData _trace_gen0_time_data;
brutisso@3812 188 TraceGen1TimeData _trace_gen1_time_data;
ysr@777 189
ysr@777 190 double _stop_world_start;
ysr@777 191
tonyp@3337 192 // indicates whether we are in young or mixed GC mode
tonyp@3337 193 bool _gcs_are_young;
ysr@777 194
tonyp@3713 195 uint _young_list_target_length;
tonyp@3713 196 uint _young_list_fixed_length;
brutisso@3120 197 size_t _prev_eden_capacity; // used for logging
ysr@777 198
tonyp@2333 199 // The max number of regions we can extend the eden by while the GC
tonyp@2333 200 // locker is active. This should be >= _young_list_target_length;
tonyp@3713 201 uint _young_list_max_length;
tonyp@2333 202
tonyp@3337 203 bool _last_gc_was_young;
ysr@777 204
ysr@777 205 bool _during_marking;
ysr@777 206 bool _in_marking_window;
ysr@777 207 bool _in_marking_window_im;
ysr@777 208
ysr@777 209 SurvRateGroup* _short_lived_surv_rate_group;
ysr@777 210 SurvRateGroup* _survivor_surv_rate_group;
ysr@777 211 // add here any more surv rate groups
ysr@777 212
tonyp@1791 213 double _gc_overhead_perc;
tonyp@1791 214
tonyp@3119 215 double _reserve_factor;
tonyp@3713 216 uint _reserve_regions;
tonyp@3119 217
ysr@777 218 bool during_marking() {
ysr@777 219 return _during_marking;
ysr@777 220 }
ysr@777 221
ysr@777 222 private:
ysr@777 223 enum PredictionConstants {
ysr@777 224 TruncatedSeqLength = 10
ysr@777 225 };
ysr@777 226
ysr@777 227 TruncatedSeq* _alloc_rate_ms_seq;
ysr@777 228 double _prev_collection_pause_end_ms;
ysr@777 229
ysr@777 230 TruncatedSeq* _rs_length_diff_seq;
ysr@777 231 TruncatedSeq* _cost_per_card_ms_seq;
tonyp@3337 232 TruncatedSeq* _young_cards_per_entry_ratio_seq;
tonyp@3337 233 TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
ysr@777 234 TruncatedSeq* _cost_per_entry_ms_seq;
tonyp@3337 235 TruncatedSeq* _mixed_cost_per_entry_ms_seq;
ysr@777 236 TruncatedSeq* _cost_per_byte_ms_seq;
ysr@777 237 TruncatedSeq* _constant_other_time_ms_seq;
ysr@777 238 TruncatedSeq* _young_other_cost_per_region_ms_seq;
ysr@777 239 TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
ysr@777 240
ysr@777 241 TruncatedSeq* _pending_cards_seq;
ysr@777 242 TruncatedSeq* _rs_lengths_seq;
ysr@777 243
ysr@777 244 TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
ysr@777 245
brutisso@3358 246 G1YoungGenSizer* _young_gen_sizer;
brutisso@3120 247
tonyp@3713 248 uint _eden_cset_region_length;
tonyp@3713 249 uint _survivor_cset_region_length;
tonyp@3713 250 uint _old_cset_region_length;
tonyp@3289 251
tonyp@3713 252 void init_cset_region_lengths(uint eden_cset_region_length,
tonyp@3713 253 uint survivor_cset_region_length);
tonyp@3289 254
tonyp@3713 255 uint eden_cset_region_length() { return _eden_cset_region_length; }
tonyp@3713 256 uint survivor_cset_region_length() { return _survivor_cset_region_length; }
tonyp@3713 257 uint old_cset_region_length() { return _old_cset_region_length; }
ysr@777 258
tonyp@3713 259 uint _free_regions_at_end_of_collection;
ysr@777 260
ysr@777 261 size_t _recorded_rs_lengths;
ysr@777 262 size_t _max_rs_lengths;
ysr@777 263 double _sigma;
ysr@777 264
ysr@777 265 size_t _rs_lengths_prediction;
ysr@777 266
tonyp@3539 267 double sigma() { return _sigma; }
ysr@777 268
ysr@777 269 // A function that prevents us putting too much stock in small sample
ysr@777 270 // sets. Returns a number between 2.0 and 1.0, depending on the number
ysr@777 271 // of samples. 5 or more samples yields one; fewer scales linearly from
ysr@777 272 // 2.0 at 1 sample to 1.0 at 5.
ysr@777 273 double confidence_factor(int samples) {
ysr@777 274 if (samples > 4) return 1.0;
ysr@777 275 else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
ysr@777 276 }
ysr@777 277
ysr@777 278 double get_new_neg_prediction(TruncatedSeq* seq) {
ysr@777 279 return seq->davg() - sigma() * seq->dsd();
ysr@777 280 }
ysr@777 281
ysr@777 282 #ifndef PRODUCT
ysr@777 283 bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
ysr@777 284 #endif // PRODUCT
ysr@777 285
iveresov@1546 286 void adjust_concurrent_refinement(double update_rs_time,
iveresov@1546 287 double update_rs_processed_buffers,
iveresov@1546 288 double goal_ms);
iveresov@1546 289
jmasa@3294 290 uintx no_of_gc_threads() { return _no_of_gc_threads; }
jmasa@3294 291 void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
jmasa@3294 292
ysr@777 293 double _pause_time_target_ms;
brutisso@3923 294
ysr@777 295 size_t _pending_cards;
ysr@777 296
ysr@777 297 public:
jmasa@3294 298 // Accessors
ysr@777 299
tonyp@3289 300 void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
tonyp@3289 301 hr->set_young();
ysr@777 302 hr->install_surv_rate_group(_short_lived_surv_rate_group);
tonyp@3289 303 hr->set_young_index_in_cset(young_index_in_cset);
ysr@777 304 }
ysr@777 305
tonyp@3289 306 void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
tonyp@3289 307 assert(hr->is_young() && hr->is_survivor(), "pre-condition");
ysr@777 308 hr->install_surv_rate_group(_survivor_surv_rate_group);
tonyp@3289 309 hr->set_young_index_in_cset(young_index_in_cset);
ysr@777 310 }
ysr@777 311
ysr@777 312 #ifndef PRODUCT
ysr@777 313 bool verify_young_ages();
ysr@777 314 #endif // PRODUCT
ysr@777 315
ysr@777 316 double get_new_prediction(TruncatedSeq* seq) {
ysr@777 317 return MAX2(seq->davg() + sigma() * seq->dsd(),
ysr@777 318 seq->davg() * confidence_factor(seq->num()));
ysr@777 319 }
ysr@777 320
ysr@777 321 void record_max_rs_lengths(size_t rs_lengths) {
ysr@777 322 _max_rs_lengths = rs_lengths;
ysr@777 323 }
ysr@777 324
ysr@777 325 size_t predict_rs_length_diff() {
ysr@777 326 return (size_t) get_new_prediction(_rs_length_diff_seq);
ysr@777 327 }
ysr@777 328
ysr@777 329 double predict_alloc_rate_ms() {
ysr@777 330 return get_new_prediction(_alloc_rate_ms_seq);
ysr@777 331 }
ysr@777 332
ysr@777 333 double predict_cost_per_card_ms() {
ysr@777 334 return get_new_prediction(_cost_per_card_ms_seq);
ysr@777 335 }
ysr@777 336
ysr@777 337 double predict_rs_update_time_ms(size_t pending_cards) {
ysr@777 338 return (double) pending_cards * predict_cost_per_card_ms();
ysr@777 339 }
ysr@777 340
tonyp@3337 341 double predict_young_cards_per_entry_ratio() {
tonyp@3337 342 return get_new_prediction(_young_cards_per_entry_ratio_seq);
ysr@777 343 }
ysr@777 344
tonyp@3337 345 double predict_mixed_cards_per_entry_ratio() {
tonyp@3337 346 if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
tonyp@3337 347 return predict_young_cards_per_entry_ratio();
tonyp@3337 348 } else {
tonyp@3337 349 return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
tonyp@3337 350 }
ysr@777 351 }
ysr@777 352
ysr@777 353 size_t predict_young_card_num(size_t rs_length) {
ysr@777 354 return (size_t) ((double) rs_length *
tonyp@3337 355 predict_young_cards_per_entry_ratio());
ysr@777 356 }
ysr@777 357
ysr@777 358 size_t predict_non_young_card_num(size_t rs_length) {
ysr@777 359 return (size_t) ((double) rs_length *
tonyp@3337 360 predict_mixed_cards_per_entry_ratio());
ysr@777 361 }
ysr@777 362
ysr@777 363 double predict_rs_scan_time_ms(size_t card_num) {
tonyp@3337 364 if (gcs_are_young()) {
ysr@777 365 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
tonyp@3337 366 } else {
tonyp@3337 367 return predict_mixed_rs_scan_time_ms(card_num);
tonyp@3337 368 }
ysr@777 369 }
ysr@777 370
tonyp@3337 371 double predict_mixed_rs_scan_time_ms(size_t card_num) {
tonyp@3337 372 if (_mixed_cost_per_entry_ms_seq->num() < 3) {
ysr@777 373 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
tonyp@3337 374 } else {
tonyp@3337 375 return (double) (card_num *
tonyp@3337 376 get_new_prediction(_mixed_cost_per_entry_ms_seq));
tonyp@3337 377 }
ysr@777 378 }
ysr@777 379
ysr@777 380 double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
tonyp@3337 381 if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
tonyp@3337 382 return (1.1 * (double) bytes_to_copy) *
tonyp@3337 383 get_new_prediction(_cost_per_byte_ms_seq);
tonyp@3337 384 } else {
ysr@777 385 return (double) bytes_to_copy *
tonyp@3337 386 get_new_prediction(_cost_per_byte_ms_during_cm_seq);
tonyp@3337 387 }
ysr@777 388 }
ysr@777 389
ysr@777 390 double predict_object_copy_time_ms(size_t bytes_to_copy) {
tonyp@3337 391 if (_in_marking_window && !_in_marking_window_im) {
ysr@777 392 return predict_object_copy_time_ms_during_cm(bytes_to_copy);
tonyp@3337 393 } else {
ysr@777 394 return (double) bytes_to_copy *
tonyp@3337 395 get_new_prediction(_cost_per_byte_ms_seq);
tonyp@3337 396 }
ysr@777 397 }
ysr@777 398
ysr@777 399 double predict_constant_other_time_ms() {
ysr@777 400 return get_new_prediction(_constant_other_time_ms_seq);
ysr@777 401 }
ysr@777 402
ysr@777 403 double predict_young_other_time_ms(size_t young_num) {
tonyp@3337 404 return (double) young_num *
tonyp@3337 405 get_new_prediction(_young_other_cost_per_region_ms_seq);
ysr@777 406 }
ysr@777 407
ysr@777 408 double predict_non_young_other_time_ms(size_t non_young_num) {
tonyp@3337 409 return (double) non_young_num *
tonyp@3337 410 get_new_prediction(_non_young_other_cost_per_region_ms_seq);
ysr@777 411 }
ysr@777 412
ysr@777 413 double predict_base_elapsed_time_ms(size_t pending_cards);
ysr@777 414 double predict_base_elapsed_time_ms(size_t pending_cards,
ysr@777 415 size_t scanned_cards);
ysr@777 416 size_t predict_bytes_to_copy(HeapRegion* hr);
johnc@3998 417 double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
ysr@777 418
tonyp@3289 419 void set_recorded_rs_lengths(size_t rs_lengths);
johnc@1829 420
tonyp@3713 421 uint cset_region_length() { return young_cset_region_length() +
tonyp@3713 422 old_cset_region_length(); }
tonyp@3713 423 uint young_cset_region_length() { return eden_cset_region_length() +
tonyp@3713 424 survivor_cset_region_length(); }
ysr@777 425
apetrusenko@980 426 double predict_survivor_regions_evac_time();
apetrusenko@980 427
ysr@777 428 void cset_regions_freed() {
tonyp@3337 429 bool propagate = _last_gc_was_young && !_in_marking_window;
ysr@777 430 _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 431 _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 432 // also call it on any more surv rate groups
ysr@777 433 }
ysr@777 434
ysr@777 435 G1MMUTracker* mmu_tracker() {
ysr@777 436 return _mmu_tracker;
ysr@777 437 }
ysr@777 438
tonyp@2011 439 double max_pause_time_ms() {
tonyp@2011 440 return _mmu_tracker->max_gc_time() * 1000.0;
tonyp@2011 441 }
tonyp@2011 442
ysr@777 443 double predict_remark_time_ms() {
ysr@777 444 return get_new_prediction(_concurrent_mark_remark_times_ms);
ysr@777 445 }
ysr@777 446
ysr@777 447 double predict_cleanup_time_ms() {
ysr@777 448 return get_new_prediction(_concurrent_mark_cleanup_times_ms);
ysr@777 449 }
ysr@777 450
ysr@777 451 // Returns an estimate of the survival rate of the region at yg-age
ysr@777 452 // "yg_age".
apetrusenko@980 453 double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
apetrusenko@980 454 TruncatedSeq* seq = surv_rate_group->get_seq(age);
ysr@777 455 if (seq->num() == 0)
ysr@777 456 gclog_or_tty->print("BARF! age is %d", age);
ysr@777 457 guarantee( seq->num() > 0, "invariant" );
ysr@777 458 double pred = get_new_prediction(seq);
ysr@777 459 if (pred > 1.0)
ysr@777 460 pred = 1.0;
ysr@777 461 return pred;
ysr@777 462 }
ysr@777 463
apetrusenko@980 464 double predict_yg_surv_rate(int age) {
apetrusenko@980 465 return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
apetrusenko@980 466 }
apetrusenko@980 467
ysr@777 468 double accum_yg_surv_rate_pred(int age) {
ysr@777 469 return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
ysr@777 470 }
ysr@777 471
tonyp@3209 472 private:
ysr@777 473 // Statistics kept per GC stoppage, pause or full.
ysr@777 474 TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
ysr@777 475
ysr@777 476 // Add a new GC of the given duration and end time to the record.
ysr@777 477 void update_recent_gc_times(double end_time_sec, double elapsed_ms);
ysr@777 478
ysr@777 479 // The head of the list (via "next_in_collection_set()") representing the
johnc@1829 480 // current collection set. Set from the incrementally built collection
johnc@1829 481 // set at the start of the pause.
ysr@777 482 HeapRegion* _collection_set;
johnc@1829 483
johnc@1829 484 // The number of bytes in the collection set before the pause. Set from
johnc@1829 485 // the incrementally built collection set at the start of an evacuation
johnc@3998 486 // pause, and incremented in finalize_cset() when adding old regions
johnc@3998 487 // (if any) to the collection set.
ysr@777 488 size_t _collection_set_bytes_used_before;
ysr@777 489
johnc@3998 490 // The number of bytes copied during the GC.
johnc@3998 491 size_t _bytes_copied_during_gc;
johnc@3998 492
johnc@1829 493 // The associated information that is maintained while the incremental
johnc@1829 494 // collection set is being built with young regions. Used to populate
johnc@1829 495 // the recorded info for the evacuation pause.
johnc@1829 496
johnc@1829 497 enum CSetBuildType {
johnc@1829 498 Active, // We are actively building the collection set
johnc@1829 499 Inactive // We are not actively building the collection set
johnc@1829 500 };
johnc@1829 501
johnc@1829 502 CSetBuildType _inc_cset_build_state;
johnc@1829 503
johnc@1829 504 // The head of the incrementally built collection set.
johnc@1829 505 HeapRegion* _inc_cset_head;
johnc@1829 506
johnc@1829 507 // The tail of the incrementally built collection set.
johnc@1829 508 HeapRegion* _inc_cset_tail;
johnc@1829 509
johnc@1829 510 // The number of bytes in the incrementally built collection set.
johnc@1829 511 // Used to set _collection_set_bytes_used_before at the start of
johnc@1829 512 // an evacuation pause.
johnc@1829 513 size_t _inc_cset_bytes_used_before;
johnc@1829 514
johnc@1829 515 // Used to record the highest end of heap region in collection set
johnc@1829 516 HeapWord* _inc_cset_max_finger;
johnc@1829 517
tonyp@3356 518 // The RSet lengths recorded for regions in the CSet. It is updated
tonyp@3356 519 // by the thread that adds a new region to the CSet. We assume that
tonyp@3356 520 // only one thread can be allocating a new CSet region (currently,
tonyp@3356 521 // it does so after taking the Heap_lock) hence no need to
tonyp@3356 522 // synchronize updates to this field.
johnc@1829 523 size_t _inc_cset_recorded_rs_lengths;
johnc@1829 524
tonyp@3356 525 // A concurrent refinement thread periodcially samples the young
tonyp@3356 526 // region RSets and needs to update _inc_cset_recorded_rs_lengths as
tonyp@3356 527 // the RSets grow. Instead of having to syncronize updates to that
tonyp@3356 528 // field we accumulate them in this field and add it to
tonyp@3356 529 // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
tonyp@3356 530 ssize_t _inc_cset_recorded_rs_lengths_diffs;
tonyp@3356 531
tonyp@3356 532 // The predicted elapsed time it will take to collect the regions in
tonyp@3356 533 // the CSet. This is updated by the thread that adds a new region to
tonyp@3356 534 // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
tonyp@3356 535 // MT-safety assumptions.
johnc@1829 536 double _inc_cset_predicted_elapsed_time_ms;
johnc@1829 537
tonyp@3356 538 // See the comment for _inc_cset_recorded_rs_lengths_diffs.
tonyp@3356 539 double _inc_cset_predicted_elapsed_time_ms_diffs;
tonyp@3356 540
ysr@777 541 // Stash a pointer to the g1 heap.
ysr@777 542 G1CollectedHeap* _g1;
ysr@777 543
brutisso@3923 544 G1GCPhaseTimes* _phase_times;
brutisso@3923 545
ysr@777 546 // The ratio of gc time to elapsed time, computed over recent pauses.
ysr@777 547 double _recent_avg_pause_time_ratio;
ysr@777 548
ysr@777 549 double recent_avg_pause_time_ratio() {
ysr@777 550 return _recent_avg_pause_time_ratio;
ysr@777 551 }
ysr@777 552
tonyp@1794 553 // At the end of a pause we check the heap occupancy and we decide
tonyp@1794 554 // whether we will start a marking cycle during the next pause. If
tonyp@1794 555 // we decide that we want to do that, we will set this parameter to
tonyp@1794 556 // true. So, this parameter will stay true between the end of a
tonyp@1794 557 // pause and the beginning of a subsequent pause (not necessarily
tonyp@1794 558 // the next one, see the comments on the next field) when we decide
tonyp@1794 559 // that we will indeed start a marking cycle and do the initial-mark
tonyp@1794 560 // work.
tonyp@1794 561 volatile bool _initiate_conc_mark_if_possible;
ysr@777 562
tonyp@1794 563 // If initiate_conc_mark_if_possible() is set at the beginning of a
tonyp@1794 564 // pause, it is a suggestion that the pause should start a marking
tonyp@1794 565 // cycle by doing the initial-mark work. However, it is possible
tonyp@1794 566 // that the concurrent marking thread is still finishing up the
tonyp@1794 567 // previous marking cycle (e.g., clearing the next marking
tonyp@1794 568 // bitmap). If that is the case we cannot start a new cycle and
tonyp@1794 569 // we'll have to wait for the concurrent marking thread to finish
tonyp@1794 570 // what it is doing. In this case we will postpone the marking cycle
tonyp@1794 571 // initiation decision for the next pause. When we eventually decide
tonyp@1794 572 // to start a cycle, we will set _during_initial_mark_pause which
tonyp@1794 573 // will stay true until the end of the initial-mark pause and it's
tonyp@1794 574 // the condition that indicates that a pause is doing the
tonyp@1794 575 // initial-mark work.
tonyp@1794 576 volatile bool _during_initial_mark_pause;
tonyp@1794 577
tonyp@3337 578 bool _last_young_gc;
ysr@777 579
ysr@777 580 // This set of variables tracks the collector efficiency, in order to
ysr@777 581 // determine whether we should initiate a new marking.
ysr@777 582 double _cur_mark_stop_world_time_ms;
ysr@777 583 double _mark_remark_start_sec;
ysr@777 584 double _mark_cleanup_start_sec;
ysr@777 585
tonyp@3119 586 // Update the young list target length either by setting it to the
tonyp@3119 587 // desired fixed value or by calculating it using G1's pause
tonyp@3119 588 // prediction model. If no rs_lengths parameter is passed, predict
tonyp@3119 589 // the RS lengths using the prediction model, otherwise use the
tonyp@3119 590 // given rs_lengths as the prediction.
tonyp@3119 591 void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
tonyp@3119 592
tonyp@3119 593 // Calculate and return the minimum desired young list target
tonyp@3119 594 // length. This is the minimum desired young list length according
tonyp@3119 595 // to the user's inputs.
tonyp@3713 596 uint calculate_young_list_desired_min_length(uint base_min_length);
tonyp@3119 597
tonyp@3119 598 // Calculate and return the maximum desired young list target
tonyp@3119 599 // length. This is the maximum desired young list length according
tonyp@3119 600 // to the user's inputs.
tonyp@3713 601 uint calculate_young_list_desired_max_length();
tonyp@3119 602
tonyp@3119 603 // Calculate and return the maximum young list target length that
tonyp@3119 604 // can fit into the pause time goal. The parameters are: rs_lengths
tonyp@3119 605 // represent the prediction of how large the young RSet lengths will
tonyp@3119 606 // be, base_min_length is the alreay existing number of regions in
tonyp@3119 607 // the young list, min_length and max_length are the desired min and
tonyp@3119 608 // max young list length according to the user's inputs.
tonyp@3713 609 uint calculate_young_list_target_length(size_t rs_lengths,
tonyp@3713 610 uint base_min_length,
tonyp@3713 611 uint desired_min_length,
tonyp@3713 612 uint desired_max_length);
tonyp@3119 613
tonyp@3119 614 // Check whether a given young length (young_length) fits into the
tonyp@3119 615 // given target pause time and whether the prediction for the amount
tonyp@3119 616 // of objects to be copied for the given length will fit into the
tonyp@3119 617 // given free space (expressed by base_free_regions). It is used by
tonyp@3119 618 // calculate_young_list_target_length().
tonyp@3713 619 bool predict_will_fit(uint young_length, double base_time_ms,
tonyp@3713 620 uint base_free_regions, double target_pause_time_ms);
ysr@777 621
ysr@777 622 public:
ysr@777 623
ysr@777 624 G1CollectorPolicy();
ysr@777 625
ysr@777 626 virtual G1CollectorPolicy* as_g1_policy() { return this; }
ysr@777 627
ysr@777 628 virtual CollectorPolicy::Name kind() {
ysr@777 629 return CollectorPolicy::G1CollectorPolicyKind;
ysr@777 630 }
ysr@777 631
brutisso@3923 632 G1GCPhaseTimes* phase_times() const { return _phase_times; }
brutisso@3923 633
tonyp@3119 634 // Check the current value of the young list RSet lengths and
tonyp@3119 635 // compare it against the last prediction. If the current value is
tonyp@3119 636 // higher, recalculate the young list target length prediction.
tonyp@3119 637 void revise_young_list_target_length_if_necessary();
ysr@777 638
brutisso@3120 639 // This should be called after the heap is resized.
tonyp@3713 640 void record_new_heap_size(uint new_number_of_regions);
tonyp@3119 641
tonyp@3209 642 void init();
ysr@777 643
apetrusenko@980 644 // Create jstat counters for the policy.
apetrusenko@980 645 virtual void initialize_gc_policy_counters();
apetrusenko@980 646
ysr@777 647 virtual HeapWord* mem_allocate_work(size_t size,
ysr@777 648 bool is_tlab,
ysr@777 649 bool* gc_overhead_limit_was_exceeded);
ysr@777 650
ysr@777 651 // This method controls how a collector handles one or more
ysr@777 652 // of its generations being fully allocated.
ysr@777 653 virtual HeapWord* satisfy_failed_allocation(size_t size,
ysr@777 654 bool is_tlab);
ysr@777 655
ysr@777 656 BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
ysr@777 657
ysr@777 658 GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; }
ysr@777 659
brutisso@3461 660 bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
brutisso@3456 661
ysr@777 662 // Update the heuristic info to record a collection pause of the given
ysr@777 663 // start time, where the given number of bytes were used at the start.
ysr@777 664 // This may involve changing the desired size of a collection set.
ysr@777 665
tonyp@3209 666 void record_stop_world_start();
ysr@777 667
tonyp@3209 668 void record_collection_pause_start(double start_time_sec, size_t start_used);
ysr@777 669
ysr@777 670 // Must currently be called while the world is stopped.
brutisso@3065 671 void record_concurrent_mark_init_end(double
ysr@777 672 mark_init_elapsed_time_ms);
ysr@777 673
tonyp@3209 674 void record_concurrent_mark_remark_start();
tonyp@3209 675 void record_concurrent_mark_remark_end();
ysr@777 676
tonyp@3209 677 void record_concurrent_mark_cleanup_start();
jmasa@3294 678 void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
tonyp@3209 679 void record_concurrent_mark_cleanup_completed();
ysr@777 680
tonyp@3209 681 void record_concurrent_pause();
ysr@777 682
brutisso@3923 683 void record_collection_pause_end(double pause_time);
tonyp@2961 684 void print_heap_transition();
brutisso@4015 685 void print_detailed_heap_transition();
ysr@777 686
ysr@777 687 // Record the fact that a full collection occurred.
tonyp@3209 688 void record_full_collection_start();
tonyp@3209 689 void record_full_collection_end();
ysr@777 690
tonyp@3028 691 // Record how much space we copied during a GC. This is typically
tonyp@3028 692 // called when a GC alloc region is being retired.
tonyp@3028 693 void record_bytes_copied_during_gc(size_t bytes) {
tonyp@3028 694 _bytes_copied_during_gc += bytes;
tonyp@3028 695 }
tonyp@3028 696
tonyp@3028 697 // The amount of space we copied during a GC.
tonyp@3028 698 size_t bytes_copied_during_gc() {
tonyp@3028 699 return _bytes_copied_during_gc;
tonyp@3028 700 }
ysr@777 701
brutisso@3675 702 // Determine whether there are candidate regions so that the
brutisso@3675 703 // next GC should be mixed. The two action strings are used
brutisso@3675 704 // in the ergo output when the method returns true or false.
tonyp@3539 705 bool next_gc_should_be_mixed(const char* true_action_str,
tonyp@3539 706 const char* false_action_str);
tonyp@3539 707
ysr@777 708 // Choose a new collection set. Marks the chosen regions as being
ysr@777 709 // "in_collection_set", and links them together. The head and number of
ysr@777 710 // the collection set are available via access methods.
tonyp@3539 711 void finalize_cset(double target_pause_time_ms);
ysr@777 712
ysr@777 713 // The head of the list (via "next_in_collection_set()") representing the
ysr@777 714 // current collection set.
ysr@777 715 HeapRegion* collection_set() { return _collection_set; }
ysr@777 716
johnc@1829 717 void clear_collection_set() { _collection_set = NULL; }
johnc@1829 718
tonyp@3289 719 // Add old region "hr" to the CSet.
tonyp@3289 720 void add_old_region_to_cset(HeapRegion* hr);
ysr@777 721
johnc@1829 722 // Incremental CSet Support
johnc@1829 723
johnc@1829 724 // The head of the incrementally built collection set.
johnc@1829 725 HeapRegion* inc_cset_head() { return _inc_cset_head; }
johnc@1829 726
johnc@1829 727 // The tail of the incrementally built collection set.
johnc@1829 728 HeapRegion* inc_set_tail() { return _inc_cset_tail; }
johnc@1829 729
johnc@1829 730 // Initialize incremental collection set info.
johnc@1829 731 void start_incremental_cset_building();
johnc@1829 732
tonyp@3356 733 // Perform any final calculations on the incremental CSet fields
tonyp@3356 734 // before we can use them.
tonyp@3356 735 void finalize_incremental_cset_building();
tonyp@3356 736
johnc@1829 737 void clear_incremental_cset() {
johnc@1829 738 _inc_cset_head = NULL;
johnc@1829 739 _inc_cset_tail = NULL;
johnc@1829 740 }
johnc@1829 741
johnc@1829 742 // Stop adding regions to the incremental collection set
johnc@1829 743 void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
johnc@1829 744
tonyp@3356 745 // Add information about hr to the aggregated information for the
tonyp@3356 746 // incrementally built collection set.
johnc@1829 747 void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
johnc@1829 748
johnc@1829 749 // Update information about hr in the aggregated information for
johnc@1829 750 // the incrementally built collection set.
johnc@1829 751 void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
johnc@1829 752
johnc@1829 753 private:
johnc@1829 754 // Update the incremental cset information when adding a region
johnc@1829 755 // (should not be called directly).
johnc@1829 756 void add_region_to_incremental_cset_common(HeapRegion* hr);
johnc@1829 757
johnc@1829 758 public:
johnc@1829 759 // Add hr to the LHS of the incremental collection set.
johnc@1829 760 void add_region_to_incremental_cset_lhs(HeapRegion* hr);
johnc@1829 761
johnc@1829 762 // Add hr to the RHS of the incremental collection set.
johnc@1829 763 void add_region_to_incremental_cset_rhs(HeapRegion* hr);
johnc@1829 764
johnc@1829 765 #ifndef PRODUCT
johnc@1829 766 void print_collection_set(HeapRegion* list_head, outputStream* st);
johnc@1829 767 #endif // !PRODUCT
johnc@1829 768
tonyp@1794 769 bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
tonyp@1794 770 void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
tonyp@1794 771 void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
tonyp@1794 772
tonyp@1794 773 bool during_initial_mark_pause() { return _during_initial_mark_pause; }
tonyp@1794 774 void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
tonyp@1794 775 void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
tonyp@1794 776
tonyp@2011 777 // This sets the initiate_conc_mark_if_possible() flag to start a
tonyp@2011 778 // new cycle, as long as we are not already in one. It's best if it
tonyp@2011 779 // is called during a safepoint when the test whether a cycle is in
tonyp@2011 780 // progress or not is stable.
tonyp@3114 781 bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
tonyp@2011 782
tonyp@1794 783 // This is called at the very beginning of an evacuation pause (it
tonyp@1794 784 // has to be the first thing that the pause does). If
tonyp@1794 785 // initiate_conc_mark_if_possible() is true, and the concurrent
tonyp@1794 786 // marking thread has completed its work during the previous cycle,
tonyp@1794 787 // it will set during_initial_mark_pause() to so that the pause does
tonyp@1794 788 // the initial-mark work and start a marking cycle.
tonyp@1794 789 void decide_on_conc_mark_initiation();
ysr@777 790
ysr@777 791 // If an expansion would be appropriate, because recent GC overhead had
ysr@777 792 // exceeded the desired limit, return an amount to expand by.
tonyp@3209 793 size_t expansion_amount();
ysr@777 794
ysr@777 795 // Print tracing information.
ysr@777 796 void print_tracing_info() const;
ysr@777 797
ysr@777 798 // Print stats on young survival ratio
ysr@777 799 void print_yg_surv_rate_info() const;
ysr@777 800
apetrusenko@980 801 void finished_recalculating_age_indexes(bool is_survivors) {
apetrusenko@980 802 if (is_survivors) {
apetrusenko@980 803 _survivor_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 804 } else {
apetrusenko@980 805 _short_lived_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 806 }
ysr@777 807 // do that for any other surv rate groups
ysr@777 808 }
ysr@777 809
tonyp@2315 810 bool is_young_list_full() {
tonyp@3713 811 uint young_list_length = _g1->young_list()->length();
tonyp@3713 812 uint young_list_target_length = _young_list_target_length;
tonyp@2333 813 return young_list_length >= young_list_target_length;
tonyp@2333 814 }
tonyp@2333 815
tonyp@2333 816 bool can_expand_young_list() {
tonyp@3713 817 uint young_list_length = _g1->young_list()->length();
tonyp@3713 818 uint young_list_max_length = _young_list_max_length;
tonyp@2333 819 return young_list_length < young_list_max_length;
tonyp@2333 820 }
tonyp@2315 821
tonyp@3713 822 uint young_list_max_length() {
tonyp@3176 823 return _young_list_max_length;
tonyp@3176 824 }
tonyp@3176 825
tonyp@3337 826 bool gcs_are_young() {
tonyp@3337 827 return _gcs_are_young;
ysr@777 828 }
tonyp@3337 829 void set_gcs_are_young(bool gcs_are_young) {
tonyp@3337 830 _gcs_are_young = gcs_are_young;
ysr@777 831 }
ysr@777 832
ysr@777 833 bool adaptive_young_list_length() {
brutisso@3358 834 return _young_gen_sizer->adaptive_young_list_length();
ysr@777 835 }
ysr@777 836
tonyp@3209 837 private:
ysr@777 838 //
ysr@777 839 // Survivor regions policy.
ysr@777 840 //
ysr@777 841
ysr@777 842 // Current tenuring threshold, set to 0 if the collector reaches the
ysr@777 843 // maximum amount of suvivors regions.
ysr@777 844 int _tenuring_threshold;
ysr@777 845
apetrusenko@980 846 // The limit on the number of regions allocated for survivors.
tonyp@3713 847 uint _max_survivor_regions;
apetrusenko@980 848
tonyp@2961 849 // For reporting purposes.
tonyp@2961 850 size_t _eden_bytes_before_gc;
tonyp@2961 851 size_t _survivor_bytes_before_gc;
tonyp@2961 852 size_t _capacity_before_gc;
tonyp@2961 853
apetrusenko@980 854 // The amount of survor regions after a collection.
tonyp@3713 855 uint _recorded_survivor_regions;
apetrusenko@980 856 // List of survivor regions.
apetrusenko@980 857 HeapRegion* _recorded_survivor_head;
apetrusenko@980 858 HeapRegion* _recorded_survivor_tail;
apetrusenko@980 859
apetrusenko@980 860 ageTable _survivors_age_table;
apetrusenko@980 861
ysr@777 862 public:
ysr@777 863
ysr@777 864 inline GCAllocPurpose
ysr@777 865 evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
ysr@777 866 if (age < _tenuring_threshold && src_region->is_young()) {
ysr@777 867 return GCAllocForSurvived;
ysr@777 868 } else {
ysr@777 869 return GCAllocForTenured;
ysr@777 870 }
ysr@777 871 }
ysr@777 872
ysr@777 873 inline bool track_object_age(GCAllocPurpose purpose) {
ysr@777 874 return purpose == GCAllocForSurvived;
ysr@777 875 }
ysr@777 876
tonyp@3713 877 static const uint REGIONS_UNLIMITED = (uint) -1;
apetrusenko@980 878
tonyp@3713 879 uint max_regions(int purpose);
ysr@777 880
ysr@777 881 // The limit on regions for a particular purpose is reached.
ysr@777 882 void note_alloc_region_limit_reached(int purpose) {
ysr@777 883 if (purpose == GCAllocForSurvived) {
ysr@777 884 _tenuring_threshold = 0;
ysr@777 885 }
ysr@777 886 }
ysr@777 887
ysr@777 888 void note_start_adding_survivor_regions() {
ysr@777 889 _survivor_surv_rate_group->start_adding_regions();
ysr@777 890 }
ysr@777 891
ysr@777 892 void note_stop_adding_survivor_regions() {
ysr@777 893 _survivor_surv_rate_group->stop_adding_regions();
ysr@777 894 }
apetrusenko@980 895
tonyp@3713 896 void record_survivor_regions(uint regions,
apetrusenko@980 897 HeapRegion* head,
apetrusenko@980 898 HeapRegion* tail) {
apetrusenko@980 899 _recorded_survivor_regions = regions;
apetrusenko@980 900 _recorded_survivor_head = head;
apetrusenko@980 901 _recorded_survivor_tail = tail;
apetrusenko@980 902 }
apetrusenko@980 903
tonyp@3713 904 uint recorded_survivor_regions() {
tonyp@1273 905 return _recorded_survivor_regions;
tonyp@1273 906 }
tonyp@1273 907
tonyp@3713 908 void record_thread_age_table(ageTable* age_table) {
apetrusenko@980 909 _survivors_age_table.merge_par(age_table);
apetrusenko@980 910 }
apetrusenko@980 911
tonyp@3119 912 void update_max_gc_locker_expansion();
tonyp@2333 913
apetrusenko@980 914 // Calculates survivor space parameters.
tonyp@3119 915 void update_survivors_policy();
apetrusenko@980 916
ysr@777 917 };
ysr@777 918
ysr@777 919 // This should move to some place more general...
ysr@777 920
ysr@777 921 // If we have "n" measurements, and we've kept track of their "sum" and the
ysr@777 922 // "sum_of_squares" of the measurements, this returns the variance of the
ysr@777 923 // sequence.
ysr@777 924 inline double variance(int n, double sum_of_squares, double sum) {
ysr@777 925 double n_d = (double)n;
ysr@777 926 double avg = sum/n_d;
ysr@777 927 return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
ysr@777 928 }
ysr@777 929
stefank@2314 930 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial