src/share/vm/gc_implementation/g1/concurrentMark.hpp

Sun, 21 Apr 2013 20:41:04 -0700

author
dcubed
date
Sun, 21 Apr 2013 20:41:04 -0700
changeset 4967
5a9fa2ba85f0
parent 4904
7b835924c31c
child 5122
05a17f270c7e
permissions
-rw-r--r--

8012907: anti-delta fix for 8010992
Summary: anti-delta fix for 8010992 until 8012902 can be fixed
Reviewed-by: acorn, minqi, rdurbin

ysr@777 1 /*
johnc@4386 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 27
tonyp@2472 28 #include "gc_implementation/g1/heapRegionSets.hpp"
stefank@2314 29 #include "utilities/taskqueue.hpp"
stefank@2314 30
ysr@777 31 class G1CollectedHeap;
ysr@777 32 class CMTask;
zgu@3900 33 typedef GenericTaskQueue<oop, mtGC> CMTaskQueue;
zgu@3900 34 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
ysr@777 35
johnc@2379 36 // Closure used by CM during concurrent reference discovery
johnc@2379 37 // and reference processing (during remarking) to determine
johnc@2379 38 // if a particular object is alive. It is primarily used
johnc@2379 39 // to determine if referents of discovered reference objects
johnc@2379 40 // are alive. An instance is also embedded into the
johnc@2379 41 // reference processor as the _is_alive_non_header field
johnc@2379 42 class G1CMIsAliveClosure: public BoolObjectClosure {
johnc@2379 43 G1CollectedHeap* _g1;
johnc@2379 44 public:
tonyp@3691 45 G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
johnc@2379 46
johnc@2379 47 void do_object(oop obj) {
johnc@2379 48 ShouldNotCallThis();
johnc@2379 49 }
johnc@2379 50 bool do_object_b(oop obj);
johnc@2379 51 };
johnc@2379 52
ysr@777 53 // A generic CM bit map. This is essentially a wrapper around the BitMap
ysr@777 54 // class, with one bit per (1<<_shifter) HeapWords.
ysr@777 55
apetrusenko@984 56 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
ysr@777 57 protected:
ysr@777 58 HeapWord* _bmStartWord; // base address of range covered by map
ysr@777 59 size_t _bmWordSize; // map size (in #HeapWords covered)
ysr@777 60 const int _shifter; // map to char or bit
ysr@777 61 VirtualSpace _virtual_space; // underlying the bit map
ysr@777 62 BitMap _bm; // the bit map itself
ysr@777 63
ysr@777 64 public:
ysr@777 65 // constructor
johnc@4333 66 CMBitMapRO(int shifter);
ysr@777 67
ysr@777 68 enum { do_yield = true };
ysr@777 69
ysr@777 70 // inquiries
ysr@777 71 HeapWord* startWord() const { return _bmStartWord; }
ysr@777 72 size_t sizeInWords() const { return _bmWordSize; }
ysr@777 73 // the following is one past the last word in space
ysr@777 74 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
ysr@777 75
ysr@777 76 // read marks
ysr@777 77
ysr@777 78 bool isMarked(HeapWord* addr) const {
ysr@777 79 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 80 "outside underlying space?");
ysr@777 81 return _bm.at(heapWordToOffset(addr));
ysr@777 82 }
ysr@777 83
ysr@777 84 // iteration
johnc@3454 85 inline bool iterate(BitMapClosure* cl, MemRegion mr);
johnc@3454 86 inline bool iterate(BitMapClosure* cl);
ysr@777 87
ysr@777 88 // Return the address corresponding to the next marked bit at or after
ysr@777 89 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 90 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 91 HeapWord* getNextMarkedWordAddress(HeapWord* addr,
ysr@777 92 HeapWord* limit = NULL) const;
ysr@777 93 // Return the address corresponding to the next unmarked bit at or after
ysr@777 94 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 95 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 96 HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
ysr@777 97 HeapWord* limit = NULL) const;
ysr@777 98
ysr@777 99 // conversion utilities
ysr@777 100 HeapWord* offsetToHeapWord(size_t offset) const {
ysr@777 101 return _bmStartWord + (offset << _shifter);
ysr@777 102 }
ysr@777 103 size_t heapWordToOffset(HeapWord* addr) const {
ysr@777 104 return pointer_delta(addr, _bmStartWord) >> _shifter;
ysr@777 105 }
ysr@777 106 int heapWordDiffToOffsetDiff(size_t diff) const;
tamao@4733 107
tamao@4733 108 // The argument addr should be the start address of a valid object
tamao@4733 109 HeapWord* nextObject(HeapWord* addr) {
tamao@4733 110 oop obj = (oop) addr;
tamao@4733 111 HeapWord* res = addr + obj->size();
tamao@4733 112 assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
tamao@4733 113 return res;
ysr@777 114 }
ysr@777 115
stefank@4904 116 void print_on_error(outputStream* st, const char* prefix) const;
stefank@4904 117
ysr@777 118 // debugging
ysr@777 119 NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
ysr@777 120 };
ysr@777 121
ysr@777 122 class CMBitMap : public CMBitMapRO {
ysr@777 123
ysr@777 124 public:
ysr@777 125 // constructor
johnc@4333 126 CMBitMap(int shifter) :
johnc@4333 127 CMBitMapRO(shifter) {}
johnc@4333 128
johnc@4333 129 // Allocates the back store for the marking bitmap
johnc@4333 130 bool allocate(ReservedSpace heap_rs);
ysr@777 131
ysr@777 132 // write marks
ysr@777 133 void mark(HeapWord* addr) {
ysr@777 134 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 135 "outside underlying space?");
tonyp@2968 136 _bm.set_bit(heapWordToOffset(addr));
ysr@777 137 }
ysr@777 138 void clear(HeapWord* addr) {
ysr@777 139 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 140 "outside underlying space?");
tonyp@2968 141 _bm.clear_bit(heapWordToOffset(addr));
ysr@777 142 }
ysr@777 143 bool parMark(HeapWord* addr) {
ysr@777 144 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 145 "outside underlying space?");
tonyp@2968 146 return _bm.par_set_bit(heapWordToOffset(addr));
ysr@777 147 }
ysr@777 148 bool parClear(HeapWord* addr) {
ysr@777 149 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 150 "outside underlying space?");
tonyp@2968 151 return _bm.par_clear_bit(heapWordToOffset(addr));
ysr@777 152 }
ysr@777 153 void markRange(MemRegion mr);
ysr@777 154 void clearAll();
ysr@777 155 void clearRange(MemRegion mr);
ysr@777 156
ysr@777 157 // Starting at the bit corresponding to "addr" (inclusive), find the next
ysr@777 158 // "1" bit, if any. This bit starts some run of consecutive "1"'s; find
ysr@777 159 // the end of this run (stopping at "end_addr"). Return the MemRegion
ysr@777 160 // covering from the start of the region corresponding to the first bit
ysr@777 161 // of the run to the end of the region corresponding to the last bit of
ysr@777 162 // the run. If there is no "1" bit at or after "addr", return an empty
ysr@777 163 // MemRegion.
ysr@777 164 MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
ysr@777 165 };
ysr@777 166
johnc@4333 167 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
apetrusenko@984 168 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
johnc@4333 169 VirtualSpace _virtual_space; // Underlying backing store for actual stack
ysr@777 170 ConcurrentMark* _cm;
johnc@4787 171 oop* _base; // bottom of stack
johnc@4333 172 jint _index; // one more than last occupied index
johnc@4333 173 jint _capacity; // max #elements
johnc@4333 174 jint _saved_index; // value of _index saved at start of GC
johnc@4333 175 NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run
ysr@777 176
johnc@4333 177 bool _overflow;
johnc@4333 178 bool _should_expand;
ysr@777 179 DEBUG_ONLY(bool _drain_in_progress;)
ysr@777 180 DEBUG_ONLY(bool _drain_in_progress_yields;)
ysr@777 181
ysr@777 182 public:
ysr@777 183 CMMarkStack(ConcurrentMark* cm);
ysr@777 184 ~CMMarkStack();
ysr@777 185
johnc@4333 186 #ifndef PRODUCT
johnc@4333 187 jint max_depth() const {
johnc@4333 188 return _max_depth;
johnc@4333 189 }
johnc@4333 190 #endif
johnc@4333 191
johnc@4333 192 bool allocate(size_t capacity);
ysr@777 193
ysr@777 194 oop pop() {
ysr@777 195 if (!isEmpty()) {
ysr@777 196 return _base[--_index] ;
ysr@777 197 }
ysr@777 198 return NULL;
ysr@777 199 }
ysr@777 200
ysr@777 201 // If overflow happens, don't do the push, and record the overflow.
ysr@777 202 // *Requires* that "ptr" is already marked.
ysr@777 203 void push(oop ptr) {
ysr@777 204 if (isFull()) {
ysr@777 205 // Record overflow.
ysr@777 206 _overflow = true;
ysr@777 207 return;
ysr@777 208 } else {
ysr@777 209 _base[_index++] = ptr;
ysr@777 210 NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
ysr@777 211 }
ysr@777 212 }
ysr@777 213 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 214 // "par_push" operations, not with "pop" or "drain". We would need
ysr@777 215 // parallel versions of them if such concurrency was desired.
ysr@777 216 void par_push(oop ptr);
ysr@777 217
ysr@777 218 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 219 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 220 // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
ysr@777 221 void par_adjoin_arr(oop* ptr_arr, int n);
ysr@777 222
ysr@777 223 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 224 // Locking impl: concurrency is allowed only with
ysr@777 225 // "par_push_arr" and/or "par_pop_arr" operations, which use the same
ysr@777 226 // locking strategy.
ysr@777 227 void par_push_arr(oop* ptr_arr, int n);
ysr@777 228
ysr@777 229 // If returns false, the array was empty. Otherwise, removes up to "max"
ysr@777 230 // elements from the stack, and transfers them to "ptr_arr" in an
ysr@777 231 // unspecified order. The actual number transferred is given in "n" ("n
ysr@777 232 // == 0" is deliberately redundant with the return value.) Locking impl:
ysr@777 233 // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
ysr@777 234 // operations, which use the same locking strategy.
ysr@777 235 bool par_pop_arr(oop* ptr_arr, int max, int* n);
ysr@777 236
ysr@777 237 // Drain the mark stack, applying the given closure to all fields of
ysr@777 238 // objects on the stack. (That is, continue until the stack is empty,
ysr@777 239 // even if closure applications add entries to the stack.) The "bm"
ysr@777 240 // argument, if non-null, may be used to verify that only marked objects
ysr@777 241 // are on the mark stack. If "yield_after" is "true", then the
ysr@777 242 // concurrent marker performing the drain offers to yield after
ysr@777 243 // processing each object. If a yield occurs, stops the drain operation
ysr@777 244 // and returns false. Otherwise, returns true.
ysr@777 245 template<class OopClosureClass>
ysr@777 246 bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
ysr@777 247
ysr@777 248 bool isEmpty() { return _index == 0; }
ysr@777 249 bool isFull() { return _index == _capacity; }
johnc@4333 250 int maxElems() { return _capacity; }
ysr@777 251
ysr@777 252 bool overflow() { return _overflow; }
ysr@777 253 void clear_overflow() { _overflow = false; }
ysr@777 254
johnc@4333 255 bool should_expand() const { return _should_expand; }
johnc@4333 256 void set_should_expand();
johnc@4333 257
johnc@4333 258 // Expand the stack, typically in response to an overflow condition
johnc@4333 259 void expand();
johnc@4333 260
ysr@777 261 int size() { return _index; }
ysr@777 262
ysr@777 263 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 264
tonyp@3416 265 // Record the current index.
tonyp@3416 266 void note_start_of_gc();
tonyp@3416 267
tonyp@3416 268 // Make sure that we have not added any entries to the stack during GC.
tonyp@3416 269 void note_end_of_gc();
tonyp@3416 270
ysr@777 271 // iterate over the oops in the mark stack, up to the bound recorded via
ysr@777 272 // the call above.
ysr@777 273 void oops_do(OopClosure* f);
ysr@777 274 };
ysr@777 275
tonyp@2848 276 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
tonyp@2848 277 private:
tonyp@2848 278 #ifndef PRODUCT
tonyp@2848 279 uintx _num_remaining;
tonyp@2848 280 bool _force;
tonyp@2848 281 #endif // !defined(PRODUCT)
tonyp@2848 282
tonyp@2848 283 public:
tonyp@2848 284 void init() PRODUCT_RETURN;
tonyp@2848 285 void update() PRODUCT_RETURN;
tonyp@2848 286 bool should_force() PRODUCT_RETURN_( return false; );
tonyp@2848 287 };
tonyp@2848 288
ysr@777 289 // this will enable a variety of different statistics per GC task
ysr@777 290 #define _MARKING_STATS_ 0
ysr@777 291 // this will enable the higher verbose levels
ysr@777 292 #define _MARKING_VERBOSE_ 0
ysr@777 293
ysr@777 294 #if _MARKING_STATS_
ysr@777 295 #define statsOnly(statement) \
ysr@777 296 do { \
ysr@777 297 statement ; \
ysr@777 298 } while (0)
ysr@777 299 #else // _MARKING_STATS_
ysr@777 300 #define statsOnly(statement) \
ysr@777 301 do { \
ysr@777 302 } while (0)
ysr@777 303 #endif // _MARKING_STATS_
ysr@777 304
ysr@777 305 typedef enum {
ysr@777 306 no_verbose = 0, // verbose turned off
ysr@777 307 stats_verbose, // only prints stats at the end of marking
ysr@777 308 low_verbose, // low verbose, mostly per region and per major event
ysr@777 309 medium_verbose, // a bit more detailed than low
ysr@777 310 high_verbose // per object verbose
ysr@777 311 } CMVerboseLevel;
ysr@777 312
tonyp@3464 313 class YoungList;
tonyp@3464 314
tonyp@3464 315 // Root Regions are regions that are not empty at the beginning of a
tonyp@3464 316 // marking cycle and which we might collect during an evacuation pause
tonyp@3464 317 // while the cycle is active. Given that, during evacuation pauses, we
tonyp@3464 318 // do not copy objects that are explicitly marked, what we have to do
tonyp@3464 319 // for the root regions is to scan them and mark all objects reachable
tonyp@3464 320 // from them. According to the SATB assumptions, we only need to visit
tonyp@3464 321 // each object once during marking. So, as long as we finish this scan
tonyp@3464 322 // before the next evacuation pause, we can copy the objects from the
tonyp@3464 323 // root regions without having to mark them or do anything else to them.
tonyp@3464 324 //
tonyp@3464 325 // Currently, we only support root region scanning once (at the start
tonyp@3464 326 // of the marking cycle) and the root regions are all the survivor
tonyp@3464 327 // regions populated during the initial-mark pause.
tonyp@3464 328 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
tonyp@3464 329 private:
tonyp@3464 330 YoungList* _young_list;
tonyp@3464 331 ConcurrentMark* _cm;
tonyp@3464 332
tonyp@3464 333 volatile bool _scan_in_progress;
tonyp@3464 334 volatile bool _should_abort;
tonyp@3464 335 HeapRegion* volatile _next_survivor;
tonyp@3464 336
tonyp@3464 337 public:
tonyp@3464 338 CMRootRegions();
tonyp@3464 339 // We actually do most of the initialization in this method.
tonyp@3464 340 void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
tonyp@3464 341
tonyp@3464 342 // Reset the claiming / scanning of the root regions.
tonyp@3464 343 void prepare_for_scan();
tonyp@3464 344
tonyp@3464 345 // Forces get_next() to return NULL so that the iteration aborts early.
tonyp@3464 346 void abort() { _should_abort = true; }
tonyp@3464 347
tonyp@3464 348 // Return true if the CM thread are actively scanning root regions,
tonyp@3464 349 // false otherwise.
tonyp@3464 350 bool scan_in_progress() { return _scan_in_progress; }
tonyp@3464 351
tonyp@3464 352 // Claim the next root region to scan atomically, or return NULL if
tonyp@3464 353 // all have been claimed.
tonyp@3464 354 HeapRegion* claim_next();
tonyp@3464 355
tonyp@3464 356 // Flag that we're done with root region scanning and notify anyone
tonyp@3464 357 // who's waiting on it. If aborted is false, assume that all regions
tonyp@3464 358 // have been claimed.
tonyp@3464 359 void scan_finished();
tonyp@3464 360
tonyp@3464 361 // If CM threads are still scanning root regions, wait until they
tonyp@3464 362 // are done. Return true if we had to wait, false otherwise.
tonyp@3464 363 bool wait_until_scan_finished();
tonyp@3464 364 };
ysr@777 365
ysr@777 366 class ConcurrentMarkThread;
ysr@777 367
zgu@3900 368 class ConcurrentMark: public CHeapObj<mtGC> {
johnc@4333 369 friend class CMMarkStack;
ysr@777 370 friend class ConcurrentMarkThread;
ysr@777 371 friend class CMTask;
ysr@777 372 friend class CMBitMapClosure;
ysr@777 373 friend class CMGlobalObjectClosure;
ysr@777 374 friend class CMRemarkTask;
ysr@777 375 friend class CMConcurrentMarkingTask;
ysr@777 376 friend class G1ParNoteEndTask;
ysr@777 377 friend class CalcLiveObjectsClosure;
johnc@3175 378 friend class G1CMRefProcTaskProxy;
johnc@3175 379 friend class G1CMRefProcTaskExecutor;
johnc@4555 380 friend class G1CMKeepAliveAndDrainClosure;
johnc@4555 381 friend class G1CMDrainMarkingStackClosure;
ysr@777 382
ysr@777 383 protected:
ysr@777 384 ConcurrentMarkThread* _cmThread; // the thread doing the work
ysr@777 385 G1CollectedHeap* _g1h; // the heap.
jmasa@3357 386 uint _parallel_marking_threads; // the number of marking
jmasa@3294 387 // threads we're use
jmasa@3357 388 uint _max_parallel_marking_threads; // max number of marking
jmasa@3294 389 // threads we'll ever use
ysr@777 390 double _sleep_factor; // how much we have to sleep, with
ysr@777 391 // respect to the work we just did, to
ysr@777 392 // meet the marking overhead goal
ysr@777 393 double _marking_task_overhead; // marking target overhead for
ysr@777 394 // a single task
ysr@777 395
ysr@777 396 // same as the two above, but for the cleanup task
ysr@777 397 double _cleanup_sleep_factor;
ysr@777 398 double _cleanup_task_overhead;
ysr@777 399
tonyp@2472 400 FreeRegionList _cleanup_list;
ysr@777 401
brutisso@3455 402 // Concurrent marking support structures
ysr@777 403 CMBitMap _markBitMap1;
ysr@777 404 CMBitMap _markBitMap2;
ysr@777 405 CMBitMapRO* _prevMarkBitMap; // completed mark bitmap
ysr@777 406 CMBitMap* _nextMarkBitMap; // under-construction mark bitmap
ysr@777 407
ysr@777 408 BitMap _region_bm;
ysr@777 409 BitMap _card_bm;
ysr@777 410
ysr@777 411 // Heap bounds
ysr@777 412 HeapWord* _heap_start;
ysr@777 413 HeapWord* _heap_end;
ysr@777 414
tonyp@3464 415 // Root region tracking and claiming.
tonyp@3464 416 CMRootRegions _root_regions;
tonyp@3464 417
ysr@777 418 // For gray objects
ysr@777 419 CMMarkStack _markStack; // Grey objects behind global finger.
ysr@777 420 HeapWord* volatile _finger; // the global finger, region aligned,
ysr@777 421 // always points to the end of the
ysr@777 422 // last claimed region
ysr@777 423
ysr@777 424 // marking tasks
johnc@4173 425 uint _max_worker_id;// maximum worker id
jmasa@3357 426 uint _active_tasks; // task num currently active
johnc@4173 427 CMTask** _tasks; // task queue array (max_worker_id len)
ysr@777 428 CMTaskQueueSet* _task_queues; // task queue set
ysr@777 429 ParallelTaskTerminator _terminator; // for termination
ysr@777 430
ysr@777 431 // Two sync barriers that are used to synchronise tasks when an
ysr@777 432 // overflow occurs. The algorithm is the following. All tasks enter
ysr@777 433 // the first one to ensure that they have all stopped manipulating
ysr@777 434 // the global data structures. After they exit it, they re-initialise
ysr@777 435 // their data structures and task 0 re-initialises the global data
ysr@777 436 // structures. Then, they enter the second sync barrier. This
ysr@777 437 // ensure, that no task starts doing work before all data
ysr@777 438 // structures (local and global) have been re-initialised. When they
ysr@777 439 // exit it, they are free to start working again.
ysr@777 440 WorkGangBarrierSync _first_overflow_barrier_sync;
ysr@777 441 WorkGangBarrierSync _second_overflow_barrier_sync;
ysr@777 442
ysr@777 443 // this is set by any task, when an overflow on the global data
ysr@777 444 // structures is detected.
ysr@777 445 volatile bool _has_overflown;
ysr@777 446 // true: marking is concurrent, false: we're in remark
ysr@777 447 volatile bool _concurrent;
ysr@777 448 // set at the end of a Full GC so that marking aborts
ysr@777 449 volatile bool _has_aborted;
johnc@2190 450
ysr@777 451 // used when remark aborts due to an overflow to indicate that
ysr@777 452 // another concurrent marking phase should start
ysr@777 453 volatile bool _restart_for_overflow;
ysr@777 454
ysr@777 455 // This is true from the very start of concurrent marking until the
ysr@777 456 // point when all the tasks complete their work. It is really used
ysr@777 457 // to determine the points between the end of concurrent marking and
ysr@777 458 // time of remark.
ysr@777 459 volatile bool _concurrent_marking_in_progress;
ysr@777 460
ysr@777 461 // verbose level
ysr@777 462 CMVerboseLevel _verbose_level;
ysr@777 463
ysr@777 464 // All of these times are in ms.
ysr@777 465 NumberSeq _init_times;
ysr@777 466 NumberSeq _remark_times;
ysr@777 467 NumberSeq _remark_mark_times;
ysr@777 468 NumberSeq _remark_weak_ref_times;
ysr@777 469 NumberSeq _cleanup_times;
ysr@777 470 double _total_counting_time;
ysr@777 471 double _total_rs_scrub_time;
ysr@777 472
ysr@777 473 double* _accum_task_vtime; // accumulated task vtime
ysr@777 474
jmasa@3294 475 FlexibleWorkGang* _parallel_workers;
ysr@777 476
tonyp@2848 477 ForceOverflowSettings _force_overflow_conc;
tonyp@2848 478 ForceOverflowSettings _force_overflow_stw;
tonyp@2848 479
ysr@777 480 void weakRefsWork(bool clear_all_soft_refs);
ysr@777 481
ysr@777 482 void swapMarkBitMaps();
ysr@777 483
ysr@777 484 // It resets the global marking data structures, as well as the
ysr@777 485 // task local ones; should be called during initial mark.
ysr@777 486 void reset();
johnc@4386 487
johnc@4386 488 // Resets all the marking data structures. Called when we have to restart
johnc@4386 489 // marking or when marking completes (via set_non_marking_state below).
johnc@4386 490 void reset_marking_state(bool clear_overflow = true);
johnc@4386 491
johnc@4386 492 // We do this after we're done with marking so that the marking data
johnc@4386 493 // structures are initialised to a sensible and predictable state.
johnc@4386 494 void set_non_marking_state();
ysr@777 495
johnc@4788 496 // Called to indicate how many threads are currently active.
johnc@4788 497 void set_concurrency(uint active_tasks);
johnc@4788 498
ysr@777 499 // It should be called to indicate which phase we're in (concurrent
ysr@777 500 // mark or remark) and how many threads are currently active.
johnc@4788 501 void set_concurrency_and_phase(uint active_tasks, bool concurrent);
ysr@777 502
ysr@777 503 // prints all gathered CM-related statistics
ysr@777 504 void print_stats();
ysr@777 505
tonyp@2472 506 bool cleanup_list_is_empty() {
tonyp@2472 507 return _cleanup_list.is_empty();
tonyp@2472 508 }
tonyp@2472 509
ysr@777 510 // accessor methods
johnc@4549 511 uint parallel_marking_threads() const { return _parallel_marking_threads; }
johnc@4549 512 uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
johnc@4549 513 double sleep_factor() { return _sleep_factor; }
johnc@4549 514 double marking_task_overhead() { return _marking_task_overhead;}
johnc@4549 515 double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
johnc@4549 516 double cleanup_task_overhead() { return _cleanup_task_overhead;}
ysr@777 517
johnc@4549 518 bool use_parallel_marking_threads() const {
johnc@4549 519 assert(parallel_marking_threads() <=
johnc@4549 520 max_parallel_marking_threads(), "sanity");
johnc@4549 521 assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
johnc@4549 522 parallel_marking_threads() > 0,
johnc@4549 523 "parallel workers not set up correctly");
johnc@4549 524 return _parallel_workers != NULL;
johnc@4549 525 }
johnc@4549 526
johnc@4549 527 HeapWord* finger() { return _finger; }
johnc@4549 528 bool concurrent() { return _concurrent; }
johnc@4549 529 uint active_tasks() { return _active_tasks; }
johnc@4549 530 ParallelTaskTerminator* terminator() { return &_terminator; }
ysr@777 531
ysr@777 532 // It claims the next available region to be scanned by a marking
johnc@4173 533 // task/thread. It might return NULL if the next region is empty or
johnc@4173 534 // we have run out of regions. In the latter case, out_of_regions()
ysr@777 535 // determines whether we've really run out of regions or the task
johnc@4173 536 // should call claim_region() again. This might seem a bit
ysr@777 537 // awkward. Originally, the code was written so that claim_region()
ysr@777 538 // either successfully returned with a non-empty region or there
ysr@777 539 // were no more regions to be claimed. The problem with this was
ysr@777 540 // that, in certain circumstances, it iterated over large chunks of
ysr@777 541 // the heap finding only empty regions and, while it was working, it
ysr@777 542 // was preventing the calling task to call its regular clock
ysr@777 543 // method. So, this way, each task will spend very little time in
ysr@777 544 // claim_region() and is allowed to call the regular clock method
ysr@777 545 // frequently.
johnc@4173 546 HeapRegion* claim_region(uint worker_id);
ysr@777 547
ysr@777 548 // It determines whether we've run out of regions to scan.
ysr@777 549 bool out_of_regions() { return _finger == _heap_end; }
ysr@777 550
ysr@777 551 // Returns the task with the given id
ysr@777 552 CMTask* task(int id) {
tonyp@1458 553 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 554 "task id not within active bounds");
ysr@777 555 return _tasks[id];
ysr@777 556 }
ysr@777 557
ysr@777 558 // Returns the task queue with the given id
ysr@777 559 CMTaskQueue* task_queue(int id) {
tonyp@1458 560 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 561 "task queue id not within active bounds");
ysr@777 562 return (CMTaskQueue*) _task_queues->queue(id);
ysr@777 563 }
ysr@777 564
ysr@777 565 // Returns the task queue set
ysr@777 566 CMTaskQueueSet* task_queues() { return _task_queues; }
ysr@777 567
ysr@777 568 // Access / manipulation of the overflow flag which is set to
tonyp@3691 569 // indicate that the global stack has overflown
ysr@777 570 bool has_overflown() { return _has_overflown; }
ysr@777 571 void set_has_overflown() { _has_overflown = true; }
ysr@777 572 void clear_has_overflown() { _has_overflown = false; }
tonyp@3464 573 bool restart_for_overflow() { return _restart_for_overflow; }
ysr@777 574
ysr@777 575 bool has_aborted() { return _has_aborted; }
ysr@777 576
ysr@777 577 // Methods to enter the two overflow sync barriers
johnc@4173 578 void enter_first_sync_barrier(uint worker_id);
johnc@4173 579 void enter_second_sync_barrier(uint worker_id);
ysr@777 580
tonyp@2848 581 ForceOverflowSettings* force_overflow_conc() {
tonyp@2848 582 return &_force_overflow_conc;
tonyp@2848 583 }
tonyp@2848 584
tonyp@2848 585 ForceOverflowSettings* force_overflow_stw() {
tonyp@2848 586 return &_force_overflow_stw;
tonyp@2848 587 }
tonyp@2848 588
tonyp@2848 589 ForceOverflowSettings* force_overflow() {
tonyp@2848 590 if (concurrent()) {
tonyp@2848 591 return force_overflow_conc();
tonyp@2848 592 } else {
tonyp@2848 593 return force_overflow_stw();
tonyp@2848 594 }
tonyp@2848 595 }
tonyp@2848 596
johnc@3463 597 // Live Data Counting data structures...
johnc@3463 598 // These data structures are initialized at the start of
johnc@3463 599 // marking. They are written to while marking is active.
johnc@3463 600 // They are aggregated during remark; the aggregated values
johnc@3463 601 // are then used to populate the _region_bm, _card_bm, and
johnc@3463 602 // the total live bytes, which are then subsequently updated
johnc@3463 603 // during cleanup.
johnc@3463 604
johnc@3463 605 // An array of bitmaps (one bit map per task). Each bitmap
johnc@3463 606 // is used to record the cards spanned by the live objects
johnc@3463 607 // marked by that task/worker.
johnc@3463 608 BitMap* _count_card_bitmaps;
johnc@3463 609
johnc@3463 610 // Used to record the number of marked live bytes
johnc@3463 611 // (for each region, by worker thread).
johnc@3463 612 size_t** _count_marked_bytes;
johnc@3463 613
johnc@3463 614 // Card index of the bottom of the G1 heap. Used for biasing indices into
johnc@3463 615 // the card bitmaps.
johnc@3463 616 intptr_t _heap_bottom_card_num;
johnc@3463 617
johnc@4333 618 // Set to true when initialization is complete
johnc@4333 619 bool _completed_initialization;
johnc@4333 620
ysr@777 621 public:
ysr@777 622 // Manipulation of the global mark stack.
ysr@777 623 // Notice that the first mark_stack_push is CAS-based, whereas the
ysr@777 624 // two below are Mutex-based. This is OK since the first one is only
ysr@777 625 // called during evacuation pauses and doesn't compete with the
ysr@777 626 // other two (which are called by the marking tasks during
ysr@777 627 // concurrent marking or remark).
ysr@777 628 bool mark_stack_push(oop p) {
ysr@777 629 _markStack.par_push(p);
ysr@777 630 if (_markStack.overflow()) {
ysr@777 631 set_has_overflown();
ysr@777 632 return false;
ysr@777 633 }
ysr@777 634 return true;
ysr@777 635 }
ysr@777 636 bool mark_stack_push(oop* arr, int n) {
ysr@777 637 _markStack.par_push_arr(arr, n);
ysr@777 638 if (_markStack.overflow()) {
ysr@777 639 set_has_overflown();
ysr@777 640 return false;
ysr@777 641 }
ysr@777 642 return true;
ysr@777 643 }
ysr@777 644 void mark_stack_pop(oop* arr, int max, int* n) {
ysr@777 645 _markStack.par_pop_arr(arr, max, n);
ysr@777 646 }
tonyp@2973 647 size_t mark_stack_size() { return _markStack.size(); }
ysr@777 648 size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
tonyp@2973 649 bool mark_stack_overflow() { return _markStack.overflow(); }
tonyp@2973 650 bool mark_stack_empty() { return _markStack.isEmpty(); }
ysr@777 651
tonyp@3464 652 CMRootRegions* root_regions() { return &_root_regions; }
tonyp@3464 653
ysr@777 654 bool concurrent_marking_in_progress() {
ysr@777 655 return _concurrent_marking_in_progress;
ysr@777 656 }
ysr@777 657 void set_concurrent_marking_in_progress() {
ysr@777 658 _concurrent_marking_in_progress = true;
ysr@777 659 }
ysr@777 660 void clear_concurrent_marking_in_progress() {
ysr@777 661 _concurrent_marking_in_progress = false;
ysr@777 662 }
ysr@777 663
ysr@777 664 void update_accum_task_vtime(int i, double vtime) {
ysr@777 665 _accum_task_vtime[i] += vtime;
ysr@777 666 }
ysr@777 667
ysr@777 668 double all_task_accum_vtime() {
ysr@777 669 double ret = 0.0;
johnc@4173 670 for (uint i = 0; i < _max_worker_id; ++i)
ysr@777 671 ret += _accum_task_vtime[i];
ysr@777 672 return ret;
ysr@777 673 }
ysr@777 674
ysr@777 675 // Attempts to steal an object from the task queues of other tasks
johnc@4173 676 bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
johnc@4173 677 return _task_queues->steal(worker_id, hash_seed, obj);
ysr@777 678 }
ysr@777 679
johnc@4333 680 ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs);
ysr@777 681 ~ConcurrentMark();
johnc@3463 682
ysr@777 683 ConcurrentMarkThread* cmThread() { return _cmThread; }
ysr@777 684
ysr@777 685 CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
ysr@777 686 CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
ysr@777 687
jmasa@3294 688 // Returns the number of GC threads to be used in a concurrent
jmasa@3294 689 // phase based on the number of GC threads being used in a STW
jmasa@3294 690 // phase.
jmasa@3357 691 uint scale_parallel_threads(uint n_par_threads);
jmasa@3294 692
jmasa@3294 693 // Calculates the number of GC threads to be used in a concurrent phase.
jmasa@3357 694 uint calc_parallel_marking_threads();
jmasa@3294 695
ysr@777 696 // The following three are interaction between CM and
ysr@777 697 // G1CollectedHeap
ysr@777 698
ysr@777 699 // This notifies CM that a root during initial-mark needs to be
tonyp@3464 700 // grayed. It is MT-safe. word_size is the size of the object in
tonyp@3464 701 // words. It is passed explicitly as sometimes we cannot calculate
tonyp@3464 702 // it from the given object because it might be in an inconsistent
tonyp@3464 703 // state (e.g., in to-space and being copied). So the caller is
tonyp@3464 704 // responsible for dealing with this issue (e.g., get the size from
tonyp@3464 705 // the from-space image when the to-space image might be
tonyp@3464 706 // inconsistent) and always passing the size. hr is the region that
tonyp@3464 707 // contains the object and it's passed optionally from callers who
tonyp@3464 708 // might already have it (no point in recalculating it).
tonyp@3464 709 inline void grayRoot(oop obj, size_t word_size,
tonyp@3464 710 uint worker_id, HeapRegion* hr = NULL);
tonyp@3416 711
tonyp@1823 712 // It iterates over the heap and for each object it comes across it
tonyp@1823 713 // will dump the contents of its reference fields, as well as
tonyp@1823 714 // liveness information for the object and its referents. The dump
tonyp@1823 715 // will be written to a file with the following name:
johnc@2969 716 // G1PrintReachableBaseFile + "." + str.
johnc@2969 717 // vo decides whether the prev (vo == UsePrevMarking), the next
johnc@2969 718 // (vo == UseNextMarking) marking information, or the mark word
johnc@2969 719 // (vo == UseMarkWord) will be used to determine the liveness of
johnc@2969 720 // each object / referent.
johnc@2969 721 // If all is true, all objects in the heap will be dumped, otherwise
johnc@2969 722 // only the live ones. In the dump the following symbols / breviations
johnc@2969 723 // are used:
tonyp@1823 724 // M : an explicitly live object (its bitmap bit is set)
tonyp@1823 725 // > : an implicitly live object (over tams)
tonyp@1823 726 // O : an object outside the G1 heap (typically: in the perm gen)
tonyp@1823 727 // NOT : a reference field whose referent is not live
tonyp@1823 728 // AND MARKED : indicates that an object is both explicitly and
tonyp@1823 729 // implicitly live (it should be one or the other, not both)
tonyp@1823 730 void print_reachable(const char* str,
johnc@2969 731 VerifyOption vo, bool all) PRODUCT_RETURN;
ysr@777 732
ysr@777 733 // Clear the next marking bitmap (will be called concurrently).
ysr@777 734 void clearNextBitmap();
ysr@777 735
ysr@777 736 // These two do the work that needs to be done before and after the
ysr@777 737 // initial root checkpoint. Since this checkpoint can be done at two
ysr@777 738 // different points (i.e. an explicit pause or piggy-backed on a
ysr@777 739 // young collection), then it's nice to be able to easily share the
ysr@777 740 // pre/post code. It might be the case that we can put everything in
ysr@777 741 // the post method. TP
ysr@777 742 void checkpointRootsInitialPre();
ysr@777 743 void checkpointRootsInitialPost();
ysr@777 744
tonyp@3464 745 // Scan all the root regions and mark everything reachable from
tonyp@3464 746 // them.
tonyp@3464 747 void scanRootRegions();
tonyp@3464 748
tonyp@3464 749 // Scan a single root region and mark everything reachable from it.
tonyp@3464 750 void scanRootRegion(HeapRegion* hr, uint worker_id);
tonyp@3464 751
ysr@777 752 // Do concurrent phase of marking, to a tentative transitive closure.
ysr@777 753 void markFromRoots();
ysr@777 754
ysr@777 755 void checkpointRootsFinal(bool clear_all_soft_refs);
ysr@777 756 void checkpointRootsFinalWork();
ysr@777 757 void cleanup();
ysr@777 758 void completeCleanup();
ysr@777 759
ysr@777 760 // Mark in the previous bitmap. NB: this is usually read-only, so use
ysr@777 761 // this carefully!
tonyp@3416 762 inline void markPrev(oop p);
johnc@3463 763
tonyp@3416 764 // Clears marks for all objects in the given range, for the prev,
tonyp@3416 765 // next, or both bitmaps. NB: the previous bitmap is usually
tonyp@3416 766 // read-only, so use this carefully!
tonyp@3416 767 void clearRangePrevBitmap(MemRegion mr);
tonyp@3416 768 void clearRangeNextBitmap(MemRegion mr);
tonyp@3416 769 void clearRangeBothBitmaps(MemRegion mr);
ysr@777 770
tonyp@3416 771 // Notify data structures that a GC has started.
tonyp@3416 772 void note_start_of_gc() {
tonyp@3416 773 _markStack.note_start_of_gc();
ysr@777 774 }
tonyp@3416 775
tonyp@3416 776 // Notify data structures that a GC is finished.
tonyp@3416 777 void note_end_of_gc() {
tonyp@3416 778 _markStack.note_end_of_gc();
tonyp@3416 779 }
tonyp@3416 780
tonyp@3416 781 // Verify that there are no CSet oops on the stacks (taskqueues /
tonyp@3416 782 // global mark stack), enqueued SATB buffers, per-thread SATB
tonyp@3416 783 // buffers, and fingers (global / per-task). The boolean parameters
tonyp@3416 784 // decide which of the above data structures to verify. If marking
tonyp@3416 785 // is not in progress, it's a no-op.
tonyp@3416 786 void verify_no_cset_oops(bool verify_stacks,
tonyp@3416 787 bool verify_enqueued_buffers,
tonyp@3416 788 bool verify_thread_buffers,
tonyp@3416 789 bool verify_fingers) PRODUCT_RETURN;
tonyp@3416 790
ysr@777 791 // It is called at the end of an evacuation pause during marking so
ysr@777 792 // that CM is notified of where the new end of the heap is. It
ysr@777 793 // doesn't do anything if concurrent_marking_in_progress() is false,
ysr@777 794 // unless the force parameter is true.
ysr@777 795 void update_g1_committed(bool force = false);
ysr@777 796
ysr@777 797 bool isMarked(oop p) const {
ysr@777 798 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 799 HeapWord* addr = (HeapWord*)p;
ysr@777 800 assert(addr >= _nextMarkBitMap->startWord() ||
ysr@777 801 addr < _nextMarkBitMap->endWord(), "in a region");
ysr@777 802
ysr@777 803 return _nextMarkBitMap->isMarked(addr);
ysr@777 804 }
ysr@777 805
ysr@777 806 inline bool not_yet_marked(oop p) const;
ysr@777 807
ysr@777 808 // XXX Debug code
ysr@777 809 bool containing_card_is_marked(void* p);
ysr@777 810 bool containing_cards_are_marked(void* start, void* last);
ysr@777 811
ysr@777 812 bool isPrevMarked(oop p) const {
ysr@777 813 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 814 HeapWord* addr = (HeapWord*)p;
ysr@777 815 assert(addr >= _prevMarkBitMap->startWord() ||
ysr@777 816 addr < _prevMarkBitMap->endWord(), "in a region");
ysr@777 817
ysr@777 818 return _prevMarkBitMap->isMarked(addr);
ysr@777 819 }
ysr@777 820
jmasa@3357 821 inline bool do_yield_check(uint worker_i = 0);
ysr@777 822 inline bool should_yield();
ysr@777 823
ysr@777 824 // Called to abort the marking cycle after a Full GC takes palce.
ysr@777 825 void abort();
ysr@777 826
ysr@777 827 // This prints the global/local fingers. It is used for debugging.
ysr@777 828 NOT_PRODUCT(void print_finger();)
ysr@777 829
ysr@777 830 void print_summary_info();
ysr@777 831
tonyp@1454 832 void print_worker_threads_on(outputStream* st) const;
tonyp@1454 833
stefank@4904 834 void print_on_error(outputStream* st) const;
stefank@4904 835
ysr@777 836 // The following indicate whether a given verbose level has been
ysr@777 837 // set. Notice that anything above stats is conditional to
ysr@777 838 // _MARKING_VERBOSE_ having been set to 1
tonyp@2973 839 bool verbose_stats() {
tonyp@2973 840 return _verbose_level >= stats_verbose;
tonyp@2973 841 }
tonyp@2973 842 bool verbose_low() {
tonyp@2973 843 return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
tonyp@2973 844 }
tonyp@2973 845 bool verbose_medium() {
tonyp@2973 846 return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
tonyp@2973 847 }
tonyp@2973 848 bool verbose_high() {
tonyp@2973 849 return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
tonyp@2973 850 }
johnc@3463 851
johnc@4123 852 // Liveness counting
johnc@4123 853
johnc@4123 854 // Utility routine to set an exclusive range of cards on the given
johnc@4123 855 // card liveness bitmap
johnc@4123 856 inline void set_card_bitmap_range(BitMap* card_bm,
johnc@4123 857 BitMap::idx_t start_idx,
johnc@4123 858 BitMap::idx_t end_idx,
johnc@4123 859 bool is_par);
johnc@3463 860
johnc@3463 861 // Returns the card number of the bottom of the G1 heap.
johnc@3463 862 // Used in biasing indices into accounting card bitmaps.
johnc@3463 863 intptr_t heap_bottom_card_num() const {
johnc@3463 864 return _heap_bottom_card_num;
johnc@3463 865 }
johnc@3463 866
johnc@3463 867 // Returns the card bitmap for a given task or worker id.
johnc@3463 868 BitMap* count_card_bitmap_for(uint worker_id) {
johnc@4173 869 assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
johnc@3463 870 assert(_count_card_bitmaps != NULL, "uninitialized");
johnc@3463 871 BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
johnc@3463 872 assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
johnc@3463 873 return task_card_bm;
johnc@3463 874 }
johnc@3463 875
johnc@3463 876 // Returns the array containing the marked bytes for each region,
johnc@3463 877 // for the given worker or task id.
johnc@3463 878 size_t* count_marked_bytes_array_for(uint worker_id) {
johnc@4173 879 assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
johnc@3463 880 assert(_count_marked_bytes != NULL, "uninitialized");
johnc@3463 881 size_t* marked_bytes_array = _count_marked_bytes[worker_id];
johnc@3463 882 assert(marked_bytes_array != NULL, "uninitialized");
johnc@3463 883 return marked_bytes_array;
johnc@3463 884 }
johnc@3463 885
johnc@3463 886 // Returns the index in the liveness accounting card table bitmap
johnc@3463 887 // for the given address
johnc@3463 888 inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
johnc@3463 889
johnc@3463 890 // Counts the size of the given memory region in the the given
johnc@3463 891 // marked_bytes array slot for the given HeapRegion.
johnc@3463 892 // Sets the bits in the given card bitmap that are associated with the
johnc@3463 893 // cards that are spanned by the memory region.
johnc@3463 894 inline void count_region(MemRegion mr, HeapRegion* hr,
johnc@3463 895 size_t* marked_bytes_array,
johnc@3463 896 BitMap* task_card_bm);
johnc@3463 897
johnc@3463 898 // Counts the given memory region in the task/worker counting
johnc@3463 899 // data structures for the given worker id.
tonyp@3464 900 inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
tonyp@3464 901
tonyp@3464 902 // Counts the given memory region in the task/worker counting
tonyp@3464 903 // data structures for the given worker id.
johnc@3463 904 inline void count_region(MemRegion mr, uint worker_id);
johnc@3463 905
johnc@3463 906 // Counts the given object in the given task/worker counting
johnc@3463 907 // data structures.
johnc@3463 908 inline void count_object(oop obj, HeapRegion* hr,
johnc@3463 909 size_t* marked_bytes_array,
johnc@3463 910 BitMap* task_card_bm);
johnc@3463 911
johnc@3463 912 // Counts the given object in the task/worker counting data
johnc@3463 913 // structures for the given worker id.
johnc@3463 914 inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
johnc@3463 915
johnc@3463 916 // Attempts to mark the given object and, if successful, counts
johnc@3463 917 // the object in the given task/worker counting structures.
johnc@3463 918 inline bool par_mark_and_count(oop obj, HeapRegion* hr,
johnc@3463 919 size_t* marked_bytes_array,
johnc@3463 920 BitMap* task_card_bm);
johnc@3463 921
johnc@3463 922 // Attempts to mark the given object and, if successful, counts
johnc@3463 923 // the object in the task/worker counting structures for the
johnc@3463 924 // given worker id.
tonyp@3464 925 inline bool par_mark_and_count(oop obj, size_t word_size,
tonyp@3464 926 HeapRegion* hr, uint worker_id);
tonyp@3464 927
tonyp@3464 928 // Attempts to mark the given object and, if successful, counts
tonyp@3464 929 // the object in the task/worker counting structures for the
tonyp@3464 930 // given worker id.
johnc@3463 931 inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
johnc@3463 932
johnc@3463 933 // Similar to the above routine but we don't know the heap region that
johnc@3463 934 // contains the object to be marked/counted, which this routine looks up.
johnc@3463 935 inline bool par_mark_and_count(oop obj, uint worker_id);
johnc@3463 936
johnc@3463 937 // Similar to the above routine but there are times when we cannot
johnc@3463 938 // safely calculate the size of obj due to races and we, therefore,
johnc@3463 939 // pass the size in as a parameter. It is the caller's reponsibility
johnc@3463 940 // to ensure that the size passed in for obj is valid.
johnc@3463 941 inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
johnc@3463 942
johnc@3463 943 // Unconditionally mark the given object, and unconditinally count
johnc@3463 944 // the object in the counting structures for worker id 0.
johnc@3463 945 // Should *not* be called from parallel code.
johnc@3463 946 inline bool mark_and_count(oop obj, HeapRegion* hr);
johnc@3463 947
johnc@3463 948 // Similar to the above routine but we don't know the heap region that
johnc@3463 949 // contains the object to be marked/counted, which this routine looks up.
johnc@3463 950 // Should *not* be called from parallel code.
johnc@3463 951 inline bool mark_and_count(oop obj);
johnc@3463 952
johnc@4333 953 // Returns true if initialization was successfully completed.
johnc@4333 954 bool completed_initialization() const {
johnc@4333 955 return _completed_initialization;
johnc@4333 956 }
johnc@4333 957
johnc@3463 958 protected:
johnc@3463 959 // Clear all the per-task bitmaps and arrays used to store the
johnc@3463 960 // counting data.
johnc@3463 961 void clear_all_count_data();
johnc@3463 962
johnc@3463 963 // Aggregates the counting data for each worker/task
johnc@3463 964 // that was constructed while marking. Also sets
johnc@3463 965 // the amount of marked bytes for each region and
johnc@3463 966 // the top at concurrent mark count.
johnc@3463 967 void aggregate_count_data();
johnc@3463 968
johnc@3463 969 // Verification routine
johnc@3463 970 void verify_count_data();
ysr@777 971 };
ysr@777 972
ysr@777 973 // A class representing a marking task.
ysr@777 974 class CMTask : public TerminatorTerminator {
ysr@777 975 private:
ysr@777 976 enum PrivateConstants {
ysr@777 977 // the regular clock call is called once the scanned words reaches
ysr@777 978 // this limit
ysr@777 979 words_scanned_period = 12*1024,
ysr@777 980 // the regular clock call is called once the number of visited
ysr@777 981 // references reaches this limit
ysr@777 982 refs_reached_period = 384,
ysr@777 983 // initial value for the hash seed, used in the work stealing code
ysr@777 984 init_hash_seed = 17,
ysr@777 985 // how many entries will be transferred between global stack and
ysr@777 986 // local queues
ysr@777 987 global_stack_transfer_size = 16
ysr@777 988 };
ysr@777 989
johnc@4173 990 uint _worker_id;
ysr@777 991 G1CollectedHeap* _g1h;
ysr@777 992 ConcurrentMark* _cm;
ysr@777 993 CMBitMap* _nextMarkBitMap;
ysr@777 994 // the task queue of this task
ysr@777 995 CMTaskQueue* _task_queue;
ysr@1280 996 private:
ysr@777 997 // the task queue set---needed for stealing
ysr@777 998 CMTaskQueueSet* _task_queues;
ysr@777 999 // indicates whether the task has been claimed---this is only for
ysr@777 1000 // debugging purposes
ysr@777 1001 bool _claimed;
ysr@777 1002
ysr@777 1003 // number of calls to this task
ysr@777 1004 int _calls;
ysr@777 1005
ysr@777 1006 // when the virtual timer reaches this time, the marking step should
ysr@777 1007 // exit
ysr@777 1008 double _time_target_ms;
ysr@777 1009 // the start time of the current marking step
ysr@777 1010 double _start_time_ms;
ysr@777 1011
ysr@777 1012 // the oop closure used for iterations over oops
tonyp@2968 1013 G1CMOopClosure* _cm_oop_closure;
ysr@777 1014
ysr@777 1015 // the region this task is scanning, NULL if we're not scanning any
ysr@777 1016 HeapRegion* _curr_region;
ysr@777 1017 // the local finger of this task, NULL if we're not scanning a region
ysr@777 1018 HeapWord* _finger;
ysr@777 1019 // limit of the region this task is scanning, NULL if we're not scanning one
ysr@777 1020 HeapWord* _region_limit;
ysr@777 1021
ysr@777 1022 // the number of words this task has scanned
ysr@777 1023 size_t _words_scanned;
ysr@777 1024 // When _words_scanned reaches this limit, the regular clock is
ysr@777 1025 // called. Notice that this might be decreased under certain
ysr@777 1026 // circumstances (i.e. when we believe that we did an expensive
ysr@777 1027 // operation).
ysr@777 1028 size_t _words_scanned_limit;
ysr@777 1029 // the initial value of _words_scanned_limit (i.e. what it was
ysr@777 1030 // before it was decreased).
ysr@777 1031 size_t _real_words_scanned_limit;
ysr@777 1032
ysr@777 1033 // the number of references this task has visited
ysr@777 1034 size_t _refs_reached;
ysr@777 1035 // When _refs_reached reaches this limit, the regular clock is
ysr@777 1036 // called. Notice this this might be decreased under certain
ysr@777 1037 // circumstances (i.e. when we believe that we did an expensive
ysr@777 1038 // operation).
ysr@777 1039 size_t _refs_reached_limit;
ysr@777 1040 // the initial value of _refs_reached_limit (i.e. what it was before
ysr@777 1041 // it was decreased).
ysr@777 1042 size_t _real_refs_reached_limit;
ysr@777 1043
ysr@777 1044 // used by the work stealing stuff
ysr@777 1045 int _hash_seed;
ysr@777 1046 // if this is true, then the task has aborted for some reason
ysr@777 1047 bool _has_aborted;
ysr@777 1048 // set when the task aborts because it has met its time quota
johnc@2494 1049 bool _has_timed_out;
ysr@777 1050 // true when we're draining SATB buffers; this avoids the task
ysr@777 1051 // aborting due to SATB buffers being available (as we're already
ysr@777 1052 // dealing with them)
ysr@777 1053 bool _draining_satb_buffers;
ysr@777 1054
ysr@777 1055 // number sequence of past step times
ysr@777 1056 NumberSeq _step_times_ms;
ysr@777 1057 // elapsed time of this task
ysr@777 1058 double _elapsed_time_ms;
ysr@777 1059 // termination time of this task
ysr@777 1060 double _termination_time_ms;
ysr@777 1061 // when this task got into the termination protocol
ysr@777 1062 double _termination_start_time_ms;
ysr@777 1063
ysr@777 1064 // true when the task is during a concurrent phase, false when it is
ysr@777 1065 // in the remark phase (so, in the latter case, we do not have to
ysr@777 1066 // check all the things that we have to check during the concurrent
ysr@777 1067 // phase, i.e. SATB buffer availability...)
ysr@777 1068 bool _concurrent;
ysr@777 1069
ysr@777 1070 TruncatedSeq _marking_step_diffs_ms;
ysr@777 1071
johnc@3463 1072 // Counting data structures. Embedding the task's marked_bytes_array
johnc@3463 1073 // and card bitmap into the actual task saves having to go through
johnc@3463 1074 // the ConcurrentMark object.
johnc@3463 1075 size_t* _marked_bytes_array;
johnc@3463 1076 BitMap* _card_bm;
johnc@3463 1077
ysr@777 1078 // LOTS of statistics related with this task
ysr@777 1079 #if _MARKING_STATS_
ysr@777 1080 NumberSeq _all_clock_intervals_ms;
ysr@777 1081 double _interval_start_time_ms;
ysr@777 1082
ysr@777 1083 int _aborted;
ysr@777 1084 int _aborted_overflow;
ysr@777 1085 int _aborted_cm_aborted;
ysr@777 1086 int _aborted_yield;
ysr@777 1087 int _aborted_timed_out;
ysr@777 1088 int _aborted_satb;
ysr@777 1089 int _aborted_termination;
ysr@777 1090
ysr@777 1091 int _steal_attempts;
ysr@777 1092 int _steals;
ysr@777 1093
ysr@777 1094 int _clock_due_to_marking;
ysr@777 1095 int _clock_due_to_scanning;
ysr@777 1096
ysr@777 1097 int _local_pushes;
ysr@777 1098 int _local_pops;
ysr@777 1099 int _local_max_size;
ysr@777 1100 int _objs_scanned;
ysr@777 1101
ysr@777 1102 int _global_pushes;
ysr@777 1103 int _global_pops;
ysr@777 1104 int _global_max_size;
ysr@777 1105
ysr@777 1106 int _global_transfers_to;
ysr@777 1107 int _global_transfers_from;
ysr@777 1108
ysr@777 1109 int _regions_claimed;
ysr@777 1110 int _objs_found_on_bitmap;
ysr@777 1111
ysr@777 1112 int _satb_buffers_processed;
ysr@777 1113 #endif // _MARKING_STATS_
ysr@777 1114
ysr@777 1115 // it updates the local fields after this task has claimed
ysr@777 1116 // a new region to scan
ysr@777 1117 void setup_for_region(HeapRegion* hr);
ysr@777 1118 // it brings up-to-date the limit of the region
ysr@777 1119 void update_region_limit();
ysr@777 1120
ysr@777 1121 // called when either the words scanned or the refs visited limit
ysr@777 1122 // has been reached
ysr@777 1123 void reached_limit();
ysr@777 1124 // recalculates the words scanned and refs visited limits
ysr@777 1125 void recalculate_limits();
ysr@777 1126 // decreases the words scanned and refs visited limits when we reach
ysr@777 1127 // an expensive operation
ysr@777 1128 void decrease_limits();
ysr@777 1129 // it checks whether the words scanned or refs visited reached their
ysr@777 1130 // respective limit and calls reached_limit() if they have
ysr@777 1131 void check_limits() {
ysr@777 1132 if (_words_scanned >= _words_scanned_limit ||
tonyp@2973 1133 _refs_reached >= _refs_reached_limit) {
ysr@777 1134 reached_limit();
tonyp@2973 1135 }
ysr@777 1136 }
ysr@777 1137 // this is supposed to be called regularly during a marking step as
ysr@777 1138 // it checks a bunch of conditions that might cause the marking step
ysr@777 1139 // to abort
ysr@777 1140 void regular_clock_call();
ysr@777 1141 bool concurrent() { return _concurrent; }
ysr@777 1142
ysr@777 1143 public:
ysr@777 1144 // It resets the task; it should be called right at the beginning of
ysr@777 1145 // a marking phase.
ysr@777 1146 void reset(CMBitMap* _nextMarkBitMap);
ysr@777 1147 // it clears all the fields that correspond to a claimed region.
ysr@777 1148 void clear_region_fields();
ysr@777 1149
ysr@777 1150 void set_concurrent(bool concurrent) { _concurrent = concurrent; }
ysr@777 1151
ysr@777 1152 // The main method of this class which performs a marking step
ysr@777 1153 // trying not to exceed the given duration. However, it might exit
ysr@777 1154 // prematurely, according to some conditions (i.e. SATB buffers are
ysr@777 1155 // available for processing).
johnc@4787 1156 void do_marking_step(double target_ms,
johnc@4787 1157 bool do_termination,
johnc@4787 1158 bool is_serial);
ysr@777 1159
ysr@777 1160 // These two calls start and stop the timer
ysr@777 1161 void record_start_time() {
ysr@777 1162 _elapsed_time_ms = os::elapsedTime() * 1000.0;
ysr@777 1163 }
ysr@777 1164 void record_end_time() {
ysr@777 1165 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
ysr@777 1166 }
ysr@777 1167
johnc@4173 1168 // returns the worker ID associated with this task.
johnc@4173 1169 uint worker_id() { return _worker_id; }
ysr@777 1170
ysr@777 1171 // From TerminatorTerminator. It determines whether this task should
ysr@777 1172 // exit the termination protocol after it's entered it.
ysr@777 1173 virtual bool should_exit_termination();
ysr@777 1174
johnc@2910 1175 // Resets the local region fields after a task has finished scanning a
johnc@2910 1176 // region; or when they have become stale as a result of the region
johnc@2910 1177 // being evacuated.
johnc@2910 1178 void giveup_current_region();
johnc@2910 1179
ysr@777 1180 HeapWord* finger() { return _finger; }
ysr@777 1181
ysr@777 1182 bool has_aborted() { return _has_aborted; }
ysr@777 1183 void set_has_aborted() { _has_aborted = true; }
ysr@777 1184 void clear_has_aborted() { _has_aborted = false; }
johnc@2494 1185 bool has_timed_out() { return _has_timed_out; }
johnc@2494 1186 bool claimed() { return _claimed; }
ysr@777 1187
tonyp@2968 1188 void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
ysr@777 1189
ysr@777 1190 // It grays the object by marking it and, if necessary, pushing it
ysr@777 1191 // on the local queue
tonyp@2968 1192 inline void deal_with_reference(oop obj);
ysr@777 1193
ysr@777 1194 // It scans an object and visits its children.
tonyp@2968 1195 void scan_object(oop obj);
ysr@777 1196
ysr@777 1197 // It pushes an object on the local queue.
tonyp@2968 1198 inline void push(oop obj);
ysr@777 1199
ysr@777 1200 // These two move entries to/from the global stack.
ysr@777 1201 void move_entries_to_global_stack();
ysr@777 1202 void get_entries_from_global_stack();
ysr@777 1203
ysr@777 1204 // It pops and scans objects from the local queue. If partially is
ysr@777 1205 // true, then it stops when the queue size is of a given limit. If
ysr@777 1206 // partially is false, then it stops when the queue is empty.
ysr@777 1207 void drain_local_queue(bool partially);
ysr@777 1208 // It moves entries from the global stack to the local queue and
ysr@777 1209 // drains the local queue. If partially is true, then it stops when
ysr@777 1210 // both the global stack and the local queue reach a given size. If
ysr@777 1211 // partially if false, it tries to empty them totally.
ysr@777 1212 void drain_global_stack(bool partially);
ysr@777 1213 // It keeps picking SATB buffers and processing them until no SATB
ysr@777 1214 // buffers are available.
ysr@777 1215 void drain_satb_buffers();
tonyp@3416 1216
ysr@777 1217 // moves the local finger to a new location
ysr@777 1218 inline void move_finger_to(HeapWord* new_finger) {
tonyp@1458 1219 assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
ysr@777 1220 _finger = new_finger;
ysr@777 1221 }
ysr@777 1222
johnc@4173 1223 CMTask(uint worker_id, ConcurrentMark *cm,
johnc@3463 1224 size_t* marked_bytes, BitMap* card_bm,
ysr@777 1225 CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
ysr@777 1226
ysr@777 1227 // it prints statistics associated with this task
ysr@777 1228 void print_stats();
ysr@777 1229
ysr@777 1230 #if _MARKING_STATS_
ysr@777 1231 void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
ysr@777 1232 #endif // _MARKING_STATS_
ysr@777 1233 };
stefank@2314 1234
tonyp@2717 1235 // Class that's used to to print out per-region liveness
tonyp@2717 1236 // information. It's currently used at the end of marking and also
tonyp@2717 1237 // after we sort the old regions at the end of the cleanup operation.
tonyp@2717 1238 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
tonyp@2717 1239 private:
tonyp@2717 1240 outputStream* _out;
tonyp@2717 1241
tonyp@2717 1242 // Accumulators for these values.
tonyp@2717 1243 size_t _total_used_bytes;
tonyp@2717 1244 size_t _total_capacity_bytes;
tonyp@2717 1245 size_t _total_prev_live_bytes;
tonyp@2717 1246 size_t _total_next_live_bytes;
tonyp@2717 1247
tonyp@2717 1248 // These are set up when we come across a "stars humongous" region
tonyp@2717 1249 // (as this is where most of this information is stored, not in the
tonyp@2717 1250 // subsequent "continues humongous" regions). After that, for every
tonyp@2717 1251 // region in a given humongous region series we deduce the right
tonyp@2717 1252 // values for it by simply subtracting the appropriate amount from
tonyp@2717 1253 // these fields. All these values should reach 0 after we've visited
tonyp@2717 1254 // the last region in the series.
tonyp@2717 1255 size_t _hum_used_bytes;
tonyp@2717 1256 size_t _hum_capacity_bytes;
tonyp@2717 1257 size_t _hum_prev_live_bytes;
tonyp@2717 1258 size_t _hum_next_live_bytes;
tonyp@2717 1259
tonyp@2717 1260 static double perc(size_t val, size_t total) {
tonyp@2717 1261 if (total == 0) {
tonyp@2717 1262 return 0.0;
tonyp@2717 1263 } else {
tonyp@2717 1264 return 100.0 * ((double) val / (double) total);
tonyp@2717 1265 }
tonyp@2717 1266 }
tonyp@2717 1267
tonyp@2717 1268 static double bytes_to_mb(size_t val) {
tonyp@2717 1269 return (double) val / (double) M;
tonyp@2717 1270 }
tonyp@2717 1271
tonyp@2717 1272 // See the .cpp file.
tonyp@2717 1273 size_t get_hum_bytes(size_t* hum_bytes);
tonyp@2717 1274 void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
tonyp@2717 1275 size_t* prev_live_bytes, size_t* next_live_bytes);
tonyp@2717 1276
tonyp@2717 1277 public:
tonyp@2717 1278 // The header and footer are printed in the constructor and
tonyp@2717 1279 // destructor respectively.
tonyp@2717 1280 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
tonyp@2717 1281 virtual bool doHeapRegion(HeapRegion* r);
tonyp@2717 1282 ~G1PrintRegionLivenessInfoClosure();
tonyp@2717 1283 };
tonyp@2717 1284
stefank@2314 1285 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial