src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Tue, 18 Mar 2014 19:07:22 +0100

author
pliden
date
Tue, 18 Mar 2014 19:07:22 +0100
changeset 6413
595c0f60d50d
parent 6376
cfd4aac53239
child 6876
710a3c8b516e
child 7195
c02ec279b062
permissions
-rw-r--r--

8029075: String deduplication in G1
Summary: Implementation of JEP 192, http://openjdk.java.net/jeps/192
Reviewed-by: brutisso, tschatzl, coleenp

ysr@777 1 /*
johnc@4929 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/collectionSetChooser.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1MMUTracker.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31
ysr@777 32 // A G1CollectorPolicy makes policy decisions that determine the
ysr@777 33 // characteristics of the collector. Examples include:
ysr@777 34 // * choice of collection set.
ysr@777 35 // * when to collect.
ysr@777 36
ysr@777 37 class HeapRegion;
ysr@777 38 class CollectionSetChooser;
brutisso@3923 39 class G1GCPhaseTimes;
ysr@777 40
brutisso@3812 41 // TraceGen0Time collects data on _both_ young and mixed evacuation pauses
brutisso@3812 42 // (the latter may contain non-young regions - i.e. regions that are
brutisso@3812 43 // technically in Gen1) while TraceGen1Time collects data about full GCs.
zgu@3900 44 class TraceGen0TimeData : public CHeapObj<mtGC> {
brutisso@3812 45 private:
brutisso@3812 46 unsigned _young_pause_num;
brutisso@3812 47 unsigned _mixed_pause_num;
ysr@777 48
brutisso@3812 49 NumberSeq _all_stop_world_times_ms;
brutisso@3812 50 NumberSeq _all_yield_times_ms;
ysr@777 51
brutisso@3812 52 NumberSeq _total;
brutisso@3812 53 NumberSeq _other;
brutisso@3812 54 NumberSeq _root_region_scan_wait;
brutisso@3812 55 NumberSeq _parallel;
brutisso@3812 56 NumberSeq _ext_root_scan;
brutisso@3812 57 NumberSeq _satb_filtering;
brutisso@3812 58 NumberSeq _update_rs;
brutisso@3812 59 NumberSeq _scan_rs;
brutisso@3812 60 NumberSeq _obj_copy;
brutisso@3812 61 NumberSeq _termination;
brutisso@3812 62 NumberSeq _parallel_other;
brutisso@3812 63 NumberSeq _clear_ct;
ysr@777 64
brutisso@3923 65 void print_summary(const char* str, const NumberSeq* seq) const;
brutisso@3923 66 void print_summary_sd(const char* str, const NumberSeq* seq) const;
ysr@777 67
ysr@777 68 public:
brutisso@3812 69 TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
brutisso@3812 70 void record_start_collection(double time_to_stop_the_world_ms);
brutisso@3812 71 void record_yield_time(double yield_time_ms);
brutisso@3923 72 void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
brutisso@3812 73 void increment_young_collection_count();
brutisso@3812 74 void increment_mixed_collection_count();
brutisso@3812 75 void print() const;
ysr@777 76 };
ysr@777 77
zgu@3900 78 class TraceGen1TimeData : public CHeapObj<mtGC> {
brutisso@3812 79 private:
brutisso@3812 80 NumberSeq _all_full_gc_times;
ysr@777 81
brutisso@3812 82 public:
brutisso@3812 83 void record_full_collection(double full_gc_time_ms);
brutisso@3812 84 void print() const;
ysr@777 85 };
ysr@777 86
brutisso@3358 87 // There are three command line options related to the young gen size:
brutisso@3358 88 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
brutisso@3358 89 // just a short form for NewSize==MaxNewSize). G1 will use its internal
brutisso@3358 90 // heuristics to calculate the actual young gen size, so these options
brutisso@3358 91 // basically only limit the range within which G1 can pick a young gen
brutisso@3358 92 // size. Also, these are general options taking byte sizes. G1 will
brutisso@3358 93 // internally work with a number of regions instead. So, some rounding
brutisso@3358 94 // will occur.
brutisso@3358 95 //
brutisso@3358 96 // If nothing related to the the young gen size is set on the command
johnc@4385 97 // line we should allow the young gen to be between G1NewSizePercent
johnc@4385 98 // and G1MaxNewSizePercent of the heap size. This means that every time
johnc@4385 99 // the heap size changes, the limits for the young gen size will be
johnc@4385 100 // recalculated.
brutisso@3358 101 //
brutisso@3358 102 // If only -XX:NewSize is set we should use the specified value as the
johnc@4385 103 // minimum size for young gen. Still using G1MaxNewSizePercent of the
johnc@4385 104 // heap as maximum.
brutisso@3358 105 //
brutisso@3358 106 // If only -XX:MaxNewSize is set we should use the specified value as the
johnc@4385 107 // maximum size for young gen. Still using G1NewSizePercent of the heap
johnc@4385 108 // as minimum.
brutisso@3358 109 //
brutisso@3358 110 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
brutisso@3358 111 // No updates when the heap size changes. There is a special case when
brutisso@3358 112 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
brutisso@3358 113 // different heuristic for calculating the collection set when we do mixed
brutisso@3358 114 // collection.
brutisso@3358 115 //
brutisso@3358 116 // If only -XX:NewRatio is set we should use the specified ratio of the heap
brutisso@3358 117 // as both min and max. This will be interpreted as "fixed" just like the
brutisso@3358 118 // NewSize==MaxNewSize case above. But we will update the min and max
brutisso@3358 119 // everytime the heap size changes.
brutisso@3358 120 //
brutisso@3358 121 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
brutisso@3358 122 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
zgu@3900 123 class G1YoungGenSizer : public CHeapObj<mtGC> {
brutisso@3358 124 private:
brutisso@3358 125 enum SizerKind {
brutisso@3358 126 SizerDefaults,
brutisso@3358 127 SizerNewSizeOnly,
brutisso@3358 128 SizerMaxNewSizeOnly,
brutisso@3358 129 SizerMaxAndNewSize,
brutisso@3358 130 SizerNewRatio
brutisso@3358 131 };
brutisso@3358 132 SizerKind _sizer_kind;
tonyp@3713 133 uint _min_desired_young_length;
tonyp@3713 134 uint _max_desired_young_length;
brutisso@3358 135 bool _adaptive_size;
tonyp@3713 136 uint calculate_default_min_length(uint new_number_of_heap_regions);
tonyp@3713 137 uint calculate_default_max_length(uint new_number_of_heap_regions);
brutisso@3358 138
jwilhelm@6085 139 // Update the given values for minimum and maximum young gen length in regions
jwilhelm@6085 140 // given the number of heap regions depending on the kind of sizing algorithm.
jwilhelm@6085 141 void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
jwilhelm@6085 142
brutisso@3358 143 public:
brutisso@3358 144 G1YoungGenSizer();
jwilhelm@6085 145 // Calculate the maximum length of the young gen given the number of regions
jwilhelm@6085 146 // depending on the sizing algorithm.
jwilhelm@6085 147 uint max_young_length(uint number_of_heap_regions);
jwilhelm@6085 148
tonyp@3713 149 void heap_size_changed(uint new_number_of_heap_regions);
tonyp@3713 150 uint min_desired_young_length() {
brutisso@3358 151 return _min_desired_young_length;
brutisso@3358 152 }
tonyp@3713 153 uint max_desired_young_length() {
brutisso@3358 154 return _max_desired_young_length;
brutisso@3358 155 }
brutisso@3358 156 bool adaptive_young_list_length() {
brutisso@3358 157 return _adaptive_size;
brutisso@3358 158 }
brutisso@3358 159 };
brutisso@3358 160
ysr@777 161 class G1CollectorPolicy: public CollectorPolicy {
tonyp@3209 162 private:
ysr@777 163 // either equal to the number of parallel threads, if ParallelGCThreads
ysr@777 164 // has been set, or 1 otherwise
ysr@777 165 int _parallel_gc_threads;
ysr@777 166
jmasa@3294 167 // The number of GC threads currently active.
jmasa@3294 168 uintx _no_of_gc_threads;
jmasa@3294 169
ysr@777 170 enum SomePrivateConstants {
tonyp@1377 171 NumPrevPausesForHeuristics = 10
ysr@777 172 };
ysr@777 173
ysr@777 174 G1MMUTracker* _mmu_tracker;
ysr@777 175
jwilhelm@6085 176 void initialize_alignments();
ysr@777 177 void initialize_flags();
ysr@777 178
tonyp@3209 179 CollectionSetChooser* _collectionSetChooser;
ysr@777 180
brutisso@3923 181 double _full_collection_start_sec;
tonyp@3713 182 uint _cur_collection_pause_used_regions_at_start;
johnc@1325 183
ysr@777 184 // These exclude marking times.
ysr@777 185 TruncatedSeq* _recent_gc_times_ms;
ysr@777 186
ysr@777 187 TruncatedSeq* _concurrent_mark_remark_times_ms;
ysr@777 188 TruncatedSeq* _concurrent_mark_cleanup_times_ms;
ysr@777 189
brutisso@3812 190 TraceGen0TimeData _trace_gen0_time_data;
brutisso@3812 191 TraceGen1TimeData _trace_gen1_time_data;
ysr@777 192
ysr@777 193 double _stop_world_start;
ysr@777 194
tonyp@3337 195 // indicates whether we are in young or mixed GC mode
tonyp@3337 196 bool _gcs_are_young;
ysr@777 197
tonyp@3713 198 uint _young_list_target_length;
tonyp@3713 199 uint _young_list_fixed_length;
ysr@777 200
tonyp@2333 201 // The max number of regions we can extend the eden by while the GC
tonyp@2333 202 // locker is active. This should be >= _young_list_target_length;
tonyp@3713 203 uint _young_list_max_length;
tonyp@2333 204
tonyp@3337 205 bool _last_gc_was_young;
ysr@777 206
ysr@777 207 bool _during_marking;
ysr@777 208 bool _in_marking_window;
ysr@777 209 bool _in_marking_window_im;
ysr@777 210
ysr@777 211 SurvRateGroup* _short_lived_surv_rate_group;
ysr@777 212 SurvRateGroup* _survivor_surv_rate_group;
ysr@777 213 // add here any more surv rate groups
ysr@777 214
tonyp@1791 215 double _gc_overhead_perc;
tonyp@1791 216
tonyp@3119 217 double _reserve_factor;
tonyp@3713 218 uint _reserve_regions;
tonyp@3119 219
ysr@777 220 bool during_marking() {
ysr@777 221 return _during_marking;
ysr@777 222 }
ysr@777 223
ysr@777 224 enum PredictionConstants {
ysr@777 225 TruncatedSeqLength = 10
ysr@777 226 };
ysr@777 227
ysr@777 228 TruncatedSeq* _alloc_rate_ms_seq;
ysr@777 229 double _prev_collection_pause_end_ms;
ysr@777 230
ysr@777 231 TruncatedSeq* _rs_length_diff_seq;
ysr@777 232 TruncatedSeq* _cost_per_card_ms_seq;
tonyp@3337 233 TruncatedSeq* _young_cards_per_entry_ratio_seq;
tonyp@3337 234 TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
ysr@777 235 TruncatedSeq* _cost_per_entry_ms_seq;
tonyp@3337 236 TruncatedSeq* _mixed_cost_per_entry_ms_seq;
ysr@777 237 TruncatedSeq* _cost_per_byte_ms_seq;
ysr@777 238 TruncatedSeq* _constant_other_time_ms_seq;
ysr@777 239 TruncatedSeq* _young_other_cost_per_region_ms_seq;
ysr@777 240 TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
ysr@777 241
ysr@777 242 TruncatedSeq* _pending_cards_seq;
ysr@777 243 TruncatedSeq* _rs_lengths_seq;
ysr@777 244
ysr@777 245 TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
ysr@777 246
brutisso@3358 247 G1YoungGenSizer* _young_gen_sizer;
brutisso@3120 248
tonyp@3713 249 uint _eden_cset_region_length;
tonyp@3713 250 uint _survivor_cset_region_length;
tonyp@3713 251 uint _old_cset_region_length;
tonyp@3289 252
tonyp@3713 253 void init_cset_region_lengths(uint eden_cset_region_length,
tonyp@3713 254 uint survivor_cset_region_length);
tonyp@3289 255
tonyp@3713 256 uint eden_cset_region_length() { return _eden_cset_region_length; }
tonyp@3713 257 uint survivor_cset_region_length() { return _survivor_cset_region_length; }
tonyp@3713 258 uint old_cset_region_length() { return _old_cset_region_length; }
ysr@777 259
tonyp@3713 260 uint _free_regions_at_end_of_collection;
ysr@777 261
ysr@777 262 size_t _recorded_rs_lengths;
ysr@777 263 size_t _max_rs_lengths;
ysr@777 264 double _sigma;
ysr@777 265
ysr@777 266 size_t _rs_lengths_prediction;
ysr@777 267
tonyp@3539 268 double sigma() { return _sigma; }
ysr@777 269
ysr@777 270 // A function that prevents us putting too much stock in small sample
ysr@777 271 // sets. Returns a number between 2.0 and 1.0, depending on the number
ysr@777 272 // of samples. 5 or more samples yields one; fewer scales linearly from
ysr@777 273 // 2.0 at 1 sample to 1.0 at 5.
ysr@777 274 double confidence_factor(int samples) {
ysr@777 275 if (samples > 4) return 1.0;
ysr@777 276 else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
ysr@777 277 }
ysr@777 278
ysr@777 279 double get_new_neg_prediction(TruncatedSeq* seq) {
ysr@777 280 return seq->davg() - sigma() * seq->dsd();
ysr@777 281 }
ysr@777 282
ysr@777 283 #ifndef PRODUCT
ysr@777 284 bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
ysr@777 285 #endif // PRODUCT
ysr@777 286
iveresov@1546 287 void adjust_concurrent_refinement(double update_rs_time,
iveresov@1546 288 double update_rs_processed_buffers,
iveresov@1546 289 double goal_ms);
iveresov@1546 290
jmasa@3294 291 uintx no_of_gc_threads() { return _no_of_gc_threads; }
jmasa@3294 292 void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
jmasa@3294 293
ysr@777 294 double _pause_time_target_ms;
brutisso@3923 295
ysr@777 296 size_t _pending_cards;
ysr@777 297
ysr@777 298 public:
jmasa@3294 299 // Accessors
ysr@777 300
tonyp@3289 301 void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
tonyp@3289 302 hr->set_young();
ysr@777 303 hr->install_surv_rate_group(_short_lived_surv_rate_group);
tonyp@3289 304 hr->set_young_index_in_cset(young_index_in_cset);
ysr@777 305 }
ysr@777 306
tonyp@3289 307 void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
tonyp@3289 308 assert(hr->is_young() && hr->is_survivor(), "pre-condition");
ysr@777 309 hr->install_surv_rate_group(_survivor_surv_rate_group);
tonyp@3289 310 hr->set_young_index_in_cset(young_index_in_cset);
ysr@777 311 }
ysr@777 312
ysr@777 313 #ifndef PRODUCT
ysr@777 314 bool verify_young_ages();
ysr@777 315 #endif // PRODUCT
ysr@777 316
ysr@777 317 double get_new_prediction(TruncatedSeq* seq) {
ysr@777 318 return MAX2(seq->davg() + sigma() * seq->dsd(),
ysr@777 319 seq->davg() * confidence_factor(seq->num()));
ysr@777 320 }
ysr@777 321
ysr@777 322 void record_max_rs_lengths(size_t rs_lengths) {
ysr@777 323 _max_rs_lengths = rs_lengths;
ysr@777 324 }
ysr@777 325
ysr@777 326 size_t predict_rs_length_diff() {
ysr@777 327 return (size_t) get_new_prediction(_rs_length_diff_seq);
ysr@777 328 }
ysr@777 329
ysr@777 330 double predict_alloc_rate_ms() {
ysr@777 331 return get_new_prediction(_alloc_rate_ms_seq);
ysr@777 332 }
ysr@777 333
ysr@777 334 double predict_cost_per_card_ms() {
ysr@777 335 return get_new_prediction(_cost_per_card_ms_seq);
ysr@777 336 }
ysr@777 337
ysr@777 338 double predict_rs_update_time_ms(size_t pending_cards) {
ysr@777 339 return (double) pending_cards * predict_cost_per_card_ms();
ysr@777 340 }
ysr@777 341
tonyp@3337 342 double predict_young_cards_per_entry_ratio() {
tonyp@3337 343 return get_new_prediction(_young_cards_per_entry_ratio_seq);
ysr@777 344 }
ysr@777 345
tonyp@3337 346 double predict_mixed_cards_per_entry_ratio() {
tonyp@3337 347 if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
tonyp@3337 348 return predict_young_cards_per_entry_ratio();
tonyp@3337 349 } else {
tonyp@3337 350 return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
tonyp@3337 351 }
ysr@777 352 }
ysr@777 353
ysr@777 354 size_t predict_young_card_num(size_t rs_length) {
ysr@777 355 return (size_t) ((double) rs_length *
tonyp@3337 356 predict_young_cards_per_entry_ratio());
ysr@777 357 }
ysr@777 358
ysr@777 359 size_t predict_non_young_card_num(size_t rs_length) {
ysr@777 360 return (size_t) ((double) rs_length *
tonyp@3337 361 predict_mixed_cards_per_entry_ratio());
ysr@777 362 }
ysr@777 363
ysr@777 364 double predict_rs_scan_time_ms(size_t card_num) {
tonyp@3337 365 if (gcs_are_young()) {
ysr@777 366 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
tonyp@3337 367 } else {
tonyp@3337 368 return predict_mixed_rs_scan_time_ms(card_num);
tonyp@3337 369 }
ysr@777 370 }
ysr@777 371
tonyp@3337 372 double predict_mixed_rs_scan_time_ms(size_t card_num) {
tonyp@3337 373 if (_mixed_cost_per_entry_ms_seq->num() < 3) {
ysr@777 374 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
tonyp@3337 375 } else {
tonyp@3337 376 return (double) (card_num *
tonyp@3337 377 get_new_prediction(_mixed_cost_per_entry_ms_seq));
tonyp@3337 378 }
ysr@777 379 }
ysr@777 380
ysr@777 381 double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
tonyp@3337 382 if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
tonyp@3337 383 return (1.1 * (double) bytes_to_copy) *
tonyp@3337 384 get_new_prediction(_cost_per_byte_ms_seq);
tonyp@3337 385 } else {
ysr@777 386 return (double) bytes_to_copy *
tonyp@3337 387 get_new_prediction(_cost_per_byte_ms_during_cm_seq);
tonyp@3337 388 }
ysr@777 389 }
ysr@777 390
ysr@777 391 double predict_object_copy_time_ms(size_t bytes_to_copy) {
tonyp@3337 392 if (_in_marking_window && !_in_marking_window_im) {
ysr@777 393 return predict_object_copy_time_ms_during_cm(bytes_to_copy);
tonyp@3337 394 } else {
ysr@777 395 return (double) bytes_to_copy *
tonyp@3337 396 get_new_prediction(_cost_per_byte_ms_seq);
tonyp@3337 397 }
ysr@777 398 }
ysr@777 399
ysr@777 400 double predict_constant_other_time_ms() {
ysr@777 401 return get_new_prediction(_constant_other_time_ms_seq);
ysr@777 402 }
ysr@777 403
ysr@777 404 double predict_young_other_time_ms(size_t young_num) {
tonyp@3337 405 return (double) young_num *
tonyp@3337 406 get_new_prediction(_young_other_cost_per_region_ms_seq);
ysr@777 407 }
ysr@777 408
ysr@777 409 double predict_non_young_other_time_ms(size_t non_young_num) {
tonyp@3337 410 return (double) non_young_num *
tonyp@3337 411 get_new_prediction(_non_young_other_cost_per_region_ms_seq);
ysr@777 412 }
ysr@777 413
ysr@777 414 double predict_base_elapsed_time_ms(size_t pending_cards);
ysr@777 415 double predict_base_elapsed_time_ms(size_t pending_cards,
ysr@777 416 size_t scanned_cards);
ysr@777 417 size_t predict_bytes_to_copy(HeapRegion* hr);
johnc@3998 418 double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
ysr@777 419
tonyp@3289 420 void set_recorded_rs_lengths(size_t rs_lengths);
johnc@1829 421
tonyp@3713 422 uint cset_region_length() { return young_cset_region_length() +
tonyp@3713 423 old_cset_region_length(); }
tonyp@3713 424 uint young_cset_region_length() { return eden_cset_region_length() +
tonyp@3713 425 survivor_cset_region_length(); }
ysr@777 426
apetrusenko@980 427 double predict_survivor_regions_evac_time();
apetrusenko@980 428
ysr@777 429 void cset_regions_freed() {
tonyp@3337 430 bool propagate = _last_gc_was_young && !_in_marking_window;
ysr@777 431 _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 432 _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 433 // also call it on any more surv rate groups
ysr@777 434 }
ysr@777 435
ysr@777 436 G1MMUTracker* mmu_tracker() {
ysr@777 437 return _mmu_tracker;
ysr@777 438 }
ysr@777 439
tonyp@2011 440 double max_pause_time_ms() {
tonyp@2011 441 return _mmu_tracker->max_gc_time() * 1000.0;
tonyp@2011 442 }
tonyp@2011 443
ysr@777 444 double predict_remark_time_ms() {
ysr@777 445 return get_new_prediction(_concurrent_mark_remark_times_ms);
ysr@777 446 }
ysr@777 447
ysr@777 448 double predict_cleanup_time_ms() {
ysr@777 449 return get_new_prediction(_concurrent_mark_cleanup_times_ms);
ysr@777 450 }
ysr@777 451
ysr@777 452 // Returns an estimate of the survival rate of the region at yg-age
ysr@777 453 // "yg_age".
apetrusenko@980 454 double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
apetrusenko@980 455 TruncatedSeq* seq = surv_rate_group->get_seq(age);
ysr@777 456 if (seq->num() == 0)
ysr@777 457 gclog_or_tty->print("BARF! age is %d", age);
ysr@777 458 guarantee( seq->num() > 0, "invariant" );
ysr@777 459 double pred = get_new_prediction(seq);
ysr@777 460 if (pred > 1.0)
ysr@777 461 pred = 1.0;
ysr@777 462 return pred;
ysr@777 463 }
ysr@777 464
apetrusenko@980 465 double predict_yg_surv_rate(int age) {
apetrusenko@980 466 return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
apetrusenko@980 467 }
apetrusenko@980 468
ysr@777 469 double accum_yg_surv_rate_pred(int age) {
ysr@777 470 return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
ysr@777 471 }
ysr@777 472
tonyp@3209 473 private:
ysr@777 474 // Statistics kept per GC stoppage, pause or full.
ysr@777 475 TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
ysr@777 476
ysr@777 477 // Add a new GC of the given duration and end time to the record.
ysr@777 478 void update_recent_gc_times(double end_time_sec, double elapsed_ms);
ysr@777 479
ysr@777 480 // The head of the list (via "next_in_collection_set()") representing the
johnc@1829 481 // current collection set. Set from the incrementally built collection
johnc@1829 482 // set at the start of the pause.
ysr@777 483 HeapRegion* _collection_set;
johnc@1829 484
johnc@1829 485 // The number of bytes in the collection set before the pause. Set from
johnc@1829 486 // the incrementally built collection set at the start of an evacuation
johnc@3998 487 // pause, and incremented in finalize_cset() when adding old regions
johnc@3998 488 // (if any) to the collection set.
ysr@777 489 size_t _collection_set_bytes_used_before;
ysr@777 490
johnc@3998 491 // The number of bytes copied during the GC.
johnc@3998 492 size_t _bytes_copied_during_gc;
johnc@3998 493
johnc@1829 494 // The associated information that is maintained while the incremental
johnc@1829 495 // collection set is being built with young regions. Used to populate
johnc@1829 496 // the recorded info for the evacuation pause.
johnc@1829 497
johnc@1829 498 enum CSetBuildType {
johnc@1829 499 Active, // We are actively building the collection set
johnc@1829 500 Inactive // We are not actively building the collection set
johnc@1829 501 };
johnc@1829 502
johnc@1829 503 CSetBuildType _inc_cset_build_state;
johnc@1829 504
johnc@1829 505 // The head of the incrementally built collection set.
johnc@1829 506 HeapRegion* _inc_cset_head;
johnc@1829 507
johnc@1829 508 // The tail of the incrementally built collection set.
johnc@1829 509 HeapRegion* _inc_cset_tail;
johnc@1829 510
johnc@1829 511 // The number of bytes in the incrementally built collection set.
johnc@1829 512 // Used to set _collection_set_bytes_used_before at the start of
johnc@1829 513 // an evacuation pause.
johnc@1829 514 size_t _inc_cset_bytes_used_before;
johnc@1829 515
johnc@1829 516 // Used to record the highest end of heap region in collection set
johnc@1829 517 HeapWord* _inc_cset_max_finger;
johnc@1829 518
tonyp@3356 519 // The RSet lengths recorded for regions in the CSet. It is updated
tonyp@3356 520 // by the thread that adds a new region to the CSet. We assume that
tonyp@3356 521 // only one thread can be allocating a new CSet region (currently,
tonyp@3356 522 // it does so after taking the Heap_lock) hence no need to
tonyp@3356 523 // synchronize updates to this field.
johnc@1829 524 size_t _inc_cset_recorded_rs_lengths;
johnc@1829 525
tonyp@3356 526 // A concurrent refinement thread periodcially samples the young
tonyp@3356 527 // region RSets and needs to update _inc_cset_recorded_rs_lengths as
tonyp@3356 528 // the RSets grow. Instead of having to syncronize updates to that
tonyp@3356 529 // field we accumulate them in this field and add it to
tonyp@3356 530 // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
tonyp@3356 531 ssize_t _inc_cset_recorded_rs_lengths_diffs;
tonyp@3356 532
tonyp@3356 533 // The predicted elapsed time it will take to collect the regions in
tonyp@3356 534 // the CSet. This is updated by the thread that adds a new region to
tonyp@3356 535 // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
tonyp@3356 536 // MT-safety assumptions.
johnc@1829 537 double _inc_cset_predicted_elapsed_time_ms;
johnc@1829 538
tonyp@3356 539 // See the comment for _inc_cset_recorded_rs_lengths_diffs.
tonyp@3356 540 double _inc_cset_predicted_elapsed_time_ms_diffs;
tonyp@3356 541
ysr@777 542 // Stash a pointer to the g1 heap.
ysr@777 543 G1CollectedHeap* _g1;
ysr@777 544
brutisso@3923 545 G1GCPhaseTimes* _phase_times;
brutisso@3923 546
ysr@777 547 // The ratio of gc time to elapsed time, computed over recent pauses.
ysr@777 548 double _recent_avg_pause_time_ratio;
ysr@777 549
ysr@777 550 double recent_avg_pause_time_ratio() {
ysr@777 551 return _recent_avg_pause_time_ratio;
ysr@777 552 }
ysr@777 553
tonyp@1794 554 // At the end of a pause we check the heap occupancy and we decide
tonyp@1794 555 // whether we will start a marking cycle during the next pause. If
tonyp@1794 556 // we decide that we want to do that, we will set this parameter to
tonyp@1794 557 // true. So, this parameter will stay true between the end of a
tonyp@1794 558 // pause and the beginning of a subsequent pause (not necessarily
tonyp@1794 559 // the next one, see the comments on the next field) when we decide
tonyp@1794 560 // that we will indeed start a marking cycle and do the initial-mark
tonyp@1794 561 // work.
tonyp@1794 562 volatile bool _initiate_conc_mark_if_possible;
ysr@777 563
tonyp@1794 564 // If initiate_conc_mark_if_possible() is set at the beginning of a
tonyp@1794 565 // pause, it is a suggestion that the pause should start a marking
tonyp@1794 566 // cycle by doing the initial-mark work. However, it is possible
tonyp@1794 567 // that the concurrent marking thread is still finishing up the
tonyp@1794 568 // previous marking cycle (e.g., clearing the next marking
tonyp@1794 569 // bitmap). If that is the case we cannot start a new cycle and
tonyp@1794 570 // we'll have to wait for the concurrent marking thread to finish
tonyp@1794 571 // what it is doing. In this case we will postpone the marking cycle
tonyp@1794 572 // initiation decision for the next pause. When we eventually decide
tonyp@1794 573 // to start a cycle, we will set _during_initial_mark_pause which
tonyp@1794 574 // will stay true until the end of the initial-mark pause and it's
tonyp@1794 575 // the condition that indicates that a pause is doing the
tonyp@1794 576 // initial-mark work.
tonyp@1794 577 volatile bool _during_initial_mark_pause;
tonyp@1794 578
tonyp@3337 579 bool _last_young_gc;
ysr@777 580
ysr@777 581 // This set of variables tracks the collector efficiency, in order to
ysr@777 582 // determine whether we should initiate a new marking.
ysr@777 583 double _cur_mark_stop_world_time_ms;
ysr@777 584 double _mark_remark_start_sec;
ysr@777 585 double _mark_cleanup_start_sec;
ysr@777 586
tonyp@3119 587 // Update the young list target length either by setting it to the
tonyp@3119 588 // desired fixed value or by calculating it using G1's pause
tonyp@3119 589 // prediction model. If no rs_lengths parameter is passed, predict
tonyp@3119 590 // the RS lengths using the prediction model, otherwise use the
tonyp@3119 591 // given rs_lengths as the prediction.
tonyp@3119 592 void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
tonyp@3119 593
tonyp@3119 594 // Calculate and return the minimum desired young list target
tonyp@3119 595 // length. This is the minimum desired young list length according
tonyp@3119 596 // to the user's inputs.
tonyp@3713 597 uint calculate_young_list_desired_min_length(uint base_min_length);
tonyp@3119 598
tonyp@3119 599 // Calculate and return the maximum desired young list target
tonyp@3119 600 // length. This is the maximum desired young list length according
tonyp@3119 601 // to the user's inputs.
tonyp@3713 602 uint calculate_young_list_desired_max_length();
tonyp@3119 603
tonyp@3119 604 // Calculate and return the maximum young list target length that
tonyp@3119 605 // can fit into the pause time goal. The parameters are: rs_lengths
tonyp@3119 606 // represent the prediction of how large the young RSet lengths will
tonyp@3119 607 // be, base_min_length is the alreay existing number of regions in
tonyp@3119 608 // the young list, min_length and max_length are the desired min and
tonyp@3119 609 // max young list length according to the user's inputs.
tonyp@3713 610 uint calculate_young_list_target_length(size_t rs_lengths,
tonyp@3713 611 uint base_min_length,
tonyp@3713 612 uint desired_min_length,
tonyp@3713 613 uint desired_max_length);
tonyp@3119 614
tonyp@3119 615 // Check whether a given young length (young_length) fits into the
tonyp@3119 616 // given target pause time and whether the prediction for the amount
tonyp@3119 617 // of objects to be copied for the given length will fit into the
tonyp@3119 618 // given free space (expressed by base_free_regions). It is used by
tonyp@3119 619 // calculate_young_list_target_length().
tonyp@3713 620 bool predict_will_fit(uint young_length, double base_time_ms,
tonyp@3713 621 uint base_free_regions, double target_pause_time_ms);
ysr@777 622
johnc@4681 623 // Calculate the minimum number of old regions we'll add to the CSet
johnc@4681 624 // during a mixed GC.
johnc@4681 625 uint calc_min_old_cset_length();
johnc@4681 626
johnc@4681 627 // Calculate the maximum number of old regions we'll add to the CSet
johnc@4681 628 // during a mixed GC.
johnc@4681 629 uint calc_max_old_cset_length();
johnc@4681 630
johnc@4681 631 // Returns the given amount of uncollected reclaimable space
johnc@4681 632 // as a percentage of the current heap capacity.
johnc@4681 633 double reclaimable_bytes_perc(size_t reclaimable_bytes);
johnc@4681 634
ysr@777 635 public:
ysr@777 636
ysr@777 637 G1CollectorPolicy();
ysr@777 638
ysr@777 639 virtual G1CollectorPolicy* as_g1_policy() { return this; }
ysr@777 640
ysr@777 641 virtual CollectorPolicy::Name kind() {
ysr@777 642 return CollectorPolicy::G1CollectorPolicyKind;
ysr@777 643 }
ysr@777 644
brutisso@3923 645 G1GCPhaseTimes* phase_times() const { return _phase_times; }
brutisso@3923 646
tonyp@3119 647 // Check the current value of the young list RSet lengths and
tonyp@3119 648 // compare it against the last prediction. If the current value is
tonyp@3119 649 // higher, recalculate the young list target length prediction.
tonyp@3119 650 void revise_young_list_target_length_if_necessary();
ysr@777 651
brutisso@3120 652 // This should be called after the heap is resized.
tonyp@3713 653 void record_new_heap_size(uint new_number_of_regions);
tonyp@3119 654
tonyp@3209 655 void init();
ysr@777 656
apetrusenko@980 657 // Create jstat counters for the policy.
apetrusenko@980 658 virtual void initialize_gc_policy_counters();
apetrusenko@980 659
ysr@777 660 virtual HeapWord* mem_allocate_work(size_t size,
ysr@777 661 bool is_tlab,
ysr@777 662 bool* gc_overhead_limit_was_exceeded);
ysr@777 663
ysr@777 664 // This method controls how a collector handles one or more
ysr@777 665 // of its generations being fully allocated.
ysr@777 666 virtual HeapWord* satisfy_failed_allocation(size_t size,
ysr@777 667 bool is_tlab);
ysr@777 668
ysr@777 669 BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
ysr@777 670
brutisso@3461 671 bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
brutisso@3456 672
johnc@4929 673 // Record the start and end of an evacuation pause.
johnc@4929 674 void record_collection_pause_start(double start_time_sec);
sla@5237 675 void record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info);
ysr@777 676
johnc@4929 677 // Record the start and end of a full collection.
johnc@4929 678 void record_full_collection_start();
johnc@4929 679 void record_full_collection_end();
ysr@777 680
ysr@777 681 // Must currently be called while the world is stopped.
johnc@4929 682 void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
ysr@777 683
johnc@4929 684 // Record start and end of remark.
tonyp@3209 685 void record_concurrent_mark_remark_start();
tonyp@3209 686 void record_concurrent_mark_remark_end();
ysr@777 687
johnc@4929 688 // Record start, end, and completion of cleanup.
tonyp@3209 689 void record_concurrent_mark_cleanup_start();
jmasa@3294 690 void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
tonyp@3209 691 void record_concurrent_mark_cleanup_completed();
ysr@777 692
johnc@4929 693 // Records the information about the heap size for reporting in
johnc@4929 694 // print_detailed_heap_transition
johnc@5123 695 void record_heap_size_info_at_start(bool full);
ysr@777 696
johnc@4929 697 // Print heap sizing transition (with less and more detail).
tonyp@2961 698 void print_heap_transition();
johnc@5123 699 void print_detailed_heap_transition(bool full = false);
ysr@777 700
johnc@4929 701 void record_stop_world_start();
johnc@4929 702 void record_concurrent_pause();
ysr@777 703
tonyp@3028 704 // Record how much space we copied during a GC. This is typically
tonyp@3028 705 // called when a GC alloc region is being retired.
tonyp@3028 706 void record_bytes_copied_during_gc(size_t bytes) {
tonyp@3028 707 _bytes_copied_during_gc += bytes;
tonyp@3028 708 }
tonyp@3028 709
tonyp@3028 710 // The amount of space we copied during a GC.
tonyp@3028 711 size_t bytes_copied_during_gc() {
tonyp@3028 712 return _bytes_copied_during_gc;
tonyp@3028 713 }
ysr@777 714
brutisso@3675 715 // Determine whether there are candidate regions so that the
brutisso@3675 716 // next GC should be mixed. The two action strings are used
brutisso@3675 717 // in the ergo output when the method returns true or false.
tonyp@3539 718 bool next_gc_should_be_mixed(const char* true_action_str,
tonyp@3539 719 const char* false_action_str);
tonyp@3539 720
ysr@777 721 // Choose a new collection set. Marks the chosen regions as being
ysr@777 722 // "in_collection_set", and links them together. The head and number of
ysr@777 723 // the collection set are available via access methods.
sla@5237 724 void finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info);
ysr@777 725
ysr@777 726 // The head of the list (via "next_in_collection_set()") representing the
ysr@777 727 // current collection set.
ysr@777 728 HeapRegion* collection_set() { return _collection_set; }
ysr@777 729
johnc@1829 730 void clear_collection_set() { _collection_set = NULL; }
johnc@1829 731
tonyp@3289 732 // Add old region "hr" to the CSet.
tonyp@3289 733 void add_old_region_to_cset(HeapRegion* hr);
ysr@777 734
johnc@1829 735 // Incremental CSet Support
johnc@1829 736
johnc@1829 737 // The head of the incrementally built collection set.
johnc@1829 738 HeapRegion* inc_cset_head() { return _inc_cset_head; }
johnc@1829 739
johnc@1829 740 // The tail of the incrementally built collection set.
johnc@1829 741 HeapRegion* inc_set_tail() { return _inc_cset_tail; }
johnc@1829 742
johnc@1829 743 // Initialize incremental collection set info.
johnc@1829 744 void start_incremental_cset_building();
johnc@1829 745
tonyp@3356 746 // Perform any final calculations on the incremental CSet fields
tonyp@3356 747 // before we can use them.
tonyp@3356 748 void finalize_incremental_cset_building();
tonyp@3356 749
johnc@1829 750 void clear_incremental_cset() {
johnc@1829 751 _inc_cset_head = NULL;
johnc@1829 752 _inc_cset_tail = NULL;
johnc@1829 753 }
johnc@1829 754
johnc@1829 755 // Stop adding regions to the incremental collection set
johnc@1829 756 void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
johnc@1829 757
tonyp@3356 758 // Add information about hr to the aggregated information for the
tonyp@3356 759 // incrementally built collection set.
johnc@1829 760 void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
johnc@1829 761
johnc@1829 762 // Update information about hr in the aggregated information for
johnc@1829 763 // the incrementally built collection set.
johnc@1829 764 void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
johnc@1829 765
johnc@1829 766 private:
johnc@1829 767 // Update the incremental cset information when adding a region
johnc@1829 768 // (should not be called directly).
johnc@1829 769 void add_region_to_incremental_cset_common(HeapRegion* hr);
johnc@1829 770
johnc@1829 771 public:
johnc@1829 772 // Add hr to the LHS of the incremental collection set.
johnc@1829 773 void add_region_to_incremental_cset_lhs(HeapRegion* hr);
johnc@1829 774
johnc@1829 775 // Add hr to the RHS of the incremental collection set.
johnc@1829 776 void add_region_to_incremental_cset_rhs(HeapRegion* hr);
johnc@1829 777
johnc@1829 778 #ifndef PRODUCT
johnc@1829 779 void print_collection_set(HeapRegion* list_head, outputStream* st);
johnc@1829 780 #endif // !PRODUCT
johnc@1829 781
tonyp@1794 782 bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
tonyp@1794 783 void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
tonyp@1794 784 void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
tonyp@1794 785
tonyp@1794 786 bool during_initial_mark_pause() { return _during_initial_mark_pause; }
tonyp@1794 787 void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
tonyp@1794 788 void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
tonyp@1794 789
tonyp@2011 790 // This sets the initiate_conc_mark_if_possible() flag to start a
tonyp@2011 791 // new cycle, as long as we are not already in one. It's best if it
tonyp@2011 792 // is called during a safepoint when the test whether a cycle is in
tonyp@2011 793 // progress or not is stable.
tonyp@3114 794 bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
tonyp@2011 795
tonyp@1794 796 // This is called at the very beginning of an evacuation pause (it
tonyp@1794 797 // has to be the first thing that the pause does). If
tonyp@1794 798 // initiate_conc_mark_if_possible() is true, and the concurrent
tonyp@1794 799 // marking thread has completed its work during the previous cycle,
tonyp@1794 800 // it will set during_initial_mark_pause() to so that the pause does
tonyp@1794 801 // the initial-mark work and start a marking cycle.
tonyp@1794 802 void decide_on_conc_mark_initiation();
ysr@777 803
ysr@777 804 // If an expansion would be appropriate, because recent GC overhead had
ysr@777 805 // exceeded the desired limit, return an amount to expand by.
tonyp@3209 806 size_t expansion_amount();
ysr@777 807
ysr@777 808 // Print tracing information.
ysr@777 809 void print_tracing_info() const;
ysr@777 810
ysr@777 811 // Print stats on young survival ratio
ysr@777 812 void print_yg_surv_rate_info() const;
ysr@777 813
apetrusenko@980 814 void finished_recalculating_age_indexes(bool is_survivors) {
apetrusenko@980 815 if (is_survivors) {
apetrusenko@980 816 _survivor_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 817 } else {
apetrusenko@980 818 _short_lived_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 819 }
ysr@777 820 // do that for any other surv rate groups
ysr@777 821 }
ysr@777 822
brutisso@6376 823 size_t young_list_target_length() const { return _young_list_target_length; }
brutisso@6376 824
tonyp@2315 825 bool is_young_list_full() {
tonyp@3713 826 uint young_list_length = _g1->young_list()->length();
tonyp@3713 827 uint young_list_target_length = _young_list_target_length;
tonyp@2333 828 return young_list_length >= young_list_target_length;
tonyp@2333 829 }
tonyp@2333 830
tonyp@2333 831 bool can_expand_young_list() {
tonyp@3713 832 uint young_list_length = _g1->young_list()->length();
tonyp@3713 833 uint young_list_max_length = _young_list_max_length;
tonyp@2333 834 return young_list_length < young_list_max_length;
tonyp@2333 835 }
tonyp@2315 836
tonyp@3713 837 uint young_list_max_length() {
tonyp@3176 838 return _young_list_max_length;
tonyp@3176 839 }
tonyp@3176 840
tonyp@3337 841 bool gcs_are_young() {
tonyp@3337 842 return _gcs_are_young;
ysr@777 843 }
tonyp@3337 844 void set_gcs_are_young(bool gcs_are_young) {
tonyp@3337 845 _gcs_are_young = gcs_are_young;
ysr@777 846 }
ysr@777 847
ysr@777 848 bool adaptive_young_list_length() {
brutisso@3358 849 return _young_gen_sizer->adaptive_young_list_length();
ysr@777 850 }
ysr@777 851
tonyp@3209 852 private:
ysr@777 853 //
ysr@777 854 // Survivor regions policy.
ysr@777 855 //
ysr@777 856
ysr@777 857 // Current tenuring threshold, set to 0 if the collector reaches the
jwilhelm@4129 858 // maximum amount of survivors regions.
jwilhelm@4129 859 uint _tenuring_threshold;
ysr@777 860
apetrusenko@980 861 // The limit on the number of regions allocated for survivors.
tonyp@3713 862 uint _max_survivor_regions;
apetrusenko@980 863
tonyp@2961 864 // For reporting purposes.
johnc@5123 865 // The value of _heap_bytes_before_gc is also used to calculate
johnc@5123 866 // the cost of copying.
johnc@5123 867
johnc@5123 868 size_t _eden_used_bytes_before_gc; // Eden occupancy before GC
johnc@5123 869 size_t _survivor_used_bytes_before_gc; // Survivor occupancy before GC
johnc@5123 870 size_t _heap_used_bytes_before_gc; // Heap occupancy before GC
johnc@5123 871 size_t _metaspace_used_bytes_before_gc; // Metaspace occupancy before GC
johnc@5123 872
johnc@5123 873 size_t _eden_capacity_bytes_before_gc; // Eden capacity before GC
johnc@5123 874 size_t _heap_capacity_bytes_before_gc; // Heap capacity before GC
tonyp@2961 875
jwilhelm@4129 876 // The amount of survivor regions after a collection.
tonyp@3713 877 uint _recorded_survivor_regions;
apetrusenko@980 878 // List of survivor regions.
apetrusenko@980 879 HeapRegion* _recorded_survivor_head;
apetrusenko@980 880 HeapRegion* _recorded_survivor_tail;
apetrusenko@980 881
apetrusenko@980 882 ageTable _survivors_age_table;
apetrusenko@980 883
ysr@777 884 public:
sla@5237 885 uint tenuring_threshold() const { return _tenuring_threshold; }
ysr@777 886
ysr@777 887 inline GCAllocPurpose
jwilhelm@4129 888 evacuation_destination(HeapRegion* src_region, uint age, size_t word_sz) {
ysr@777 889 if (age < _tenuring_threshold && src_region->is_young()) {
ysr@777 890 return GCAllocForSurvived;
ysr@777 891 } else {
ysr@777 892 return GCAllocForTenured;
ysr@777 893 }
ysr@777 894 }
ysr@777 895
ysr@777 896 inline bool track_object_age(GCAllocPurpose purpose) {
ysr@777 897 return purpose == GCAllocForSurvived;
ysr@777 898 }
ysr@777 899
tonyp@3713 900 static const uint REGIONS_UNLIMITED = (uint) -1;
apetrusenko@980 901
tonyp@3713 902 uint max_regions(int purpose);
ysr@777 903
ysr@777 904 // The limit on regions for a particular purpose is reached.
ysr@777 905 void note_alloc_region_limit_reached(int purpose) {
ysr@777 906 if (purpose == GCAllocForSurvived) {
ysr@777 907 _tenuring_threshold = 0;
ysr@777 908 }
ysr@777 909 }
ysr@777 910
ysr@777 911 void note_start_adding_survivor_regions() {
ysr@777 912 _survivor_surv_rate_group->start_adding_regions();
ysr@777 913 }
ysr@777 914
ysr@777 915 void note_stop_adding_survivor_regions() {
ysr@777 916 _survivor_surv_rate_group->stop_adding_regions();
ysr@777 917 }
apetrusenko@980 918
tonyp@3713 919 void record_survivor_regions(uint regions,
apetrusenko@980 920 HeapRegion* head,
apetrusenko@980 921 HeapRegion* tail) {
apetrusenko@980 922 _recorded_survivor_regions = regions;
apetrusenko@980 923 _recorded_survivor_head = head;
apetrusenko@980 924 _recorded_survivor_tail = tail;
apetrusenko@980 925 }
apetrusenko@980 926
tonyp@3713 927 uint recorded_survivor_regions() {
tonyp@1273 928 return _recorded_survivor_regions;
tonyp@1273 929 }
tonyp@1273 930
tonyp@3713 931 void record_thread_age_table(ageTable* age_table) {
apetrusenko@980 932 _survivors_age_table.merge_par(age_table);
apetrusenko@980 933 }
apetrusenko@980 934
tonyp@3119 935 void update_max_gc_locker_expansion();
tonyp@2333 936
apetrusenko@980 937 // Calculates survivor space parameters.
tonyp@3119 938 void update_survivors_policy();
apetrusenko@980 939
jwilhelm@6085 940 virtual void post_heap_initialize();
ysr@777 941 };
ysr@777 942
ysr@777 943 // This should move to some place more general...
ysr@777 944
ysr@777 945 // If we have "n" measurements, and we've kept track of their "sum" and the
ysr@777 946 // "sum_of_squares" of the measurements, this returns the variance of the
ysr@777 947 // sequence.
ysr@777 948 inline double variance(int n, double sum_of_squares, double sum) {
ysr@777 949 double n_d = (double)n;
ysr@777 950 double avg = sum/n_d;
ysr@777 951 return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
ysr@777 952 }
ysr@777 953
stefank@2314 954 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial