src/share/vm/opto/matcher.cpp

Tue, 26 Nov 2013 18:38:19 -0800

author
goetz
date
Tue, 26 Nov 2013 18:38:19 -0800
changeset 6489
50fdb38839eb
parent 6485
da862781b584
child 6490
41b780b43b74
permissions
-rw-r--r--

8028515: PPPC64 (part 113.2): opto: Introduce LoadFence/StoreFence.
Summary: Use new nodes for loadFence/storeFence intrinsics in C2.
Reviewed-by: kvn, dholmes

duke@435 1 /*
drchase@5285 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/addnode.hpp"
stefank@2314 28 #include "opto/callnode.hpp"
stefank@2314 29 #include "opto/connode.hpp"
stefank@2314 30 #include "opto/idealGraphPrinter.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/memnode.hpp"
stefank@2314 33 #include "opto/opcodes.hpp"
stefank@2314 34 #include "opto/regmask.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
stefank@2314 36 #include "opto/runtime.hpp"
stefank@2314 37 #include "opto/type.hpp"
kvn@3882 38 #include "opto/vectornode.hpp"
stefank@2314 39 #include "runtime/atomic.hpp"
stefank@2314 40 #include "runtime/os.hpp"
stefank@2314 41 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 42 # include "adfiles/ad_x86_32.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 45 # include "adfiles/ad_x86_64.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 48 # include "adfiles/ad_sparc.hpp"
stefank@2314 49 #endif
stefank@2314 50 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 51 # include "adfiles/ad_zero.hpp"
stefank@2314 52 #endif
roland@2683 53 #ifdef TARGET_ARCH_MODEL_arm
roland@2683 54 # include "adfiles/ad_arm.hpp"
roland@2683 55 #endif
goetz@6441 56 #ifdef TARGET_ARCH_MODEL_ppc_32
goetz@6441 57 # include "adfiles/ad_ppc_32.hpp"
goetz@6441 58 #endif
goetz@6441 59 #ifdef TARGET_ARCH_MODEL_ppc_64
goetz@6441 60 # include "adfiles/ad_ppc_64.hpp"
jcoomes@2993 61 #endif
duke@435 62
duke@435 63 OptoReg::Name OptoReg::c_frame_pointer;
duke@435 64
duke@435 65 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
duke@435 66 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
duke@435 67 RegMask Matcher::STACK_ONLY_mask;
duke@435 68 RegMask Matcher::c_frame_ptr_mask;
duke@435 69 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
duke@435 70 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
duke@435 71
duke@435 72 //---------------------------Matcher-------------------------------------------
adlertz@5539 73 Matcher::Matcher()
adlertz@5539 74 : PhaseTransform( Phase::Ins_Select ),
duke@435 75 #ifdef ASSERT
duke@435 76 _old2new_map(C->comp_arena()),
never@657 77 _new2old_map(C->comp_arena()),
duke@435 78 #endif
kvn@603 79 _shared_nodes(C->comp_arena()),
duke@435 80 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
duke@435 81 _swallowed(swallowed),
duke@435 82 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
duke@435 83 _end_inst_chain_rule(_END_INST_CHAIN_RULE),
adlertz@5539 84 _must_clone(must_clone),
duke@435 85 _register_save_policy(register_save_policy),
duke@435 86 _c_reg_save_policy(c_reg_save_policy),
duke@435 87 _register_save_type(register_save_type),
duke@435 88 _ruleName(ruleName),
duke@435 89 _allocation_started(false),
duke@435 90 _states_arena(Chunk::medium_size),
duke@435 91 _visited(&_states_arena),
duke@435 92 _shared(&_states_arena),
duke@435 93 _dontcare(&_states_arena) {
duke@435 94 C->set_matcher(this);
duke@435 95
twisti@1572 96 idealreg2spillmask [Op_RegI] = NULL;
twisti@1572 97 idealreg2spillmask [Op_RegN] = NULL;
twisti@1572 98 idealreg2spillmask [Op_RegL] = NULL;
twisti@1572 99 idealreg2spillmask [Op_RegF] = NULL;
twisti@1572 100 idealreg2spillmask [Op_RegD] = NULL;
twisti@1572 101 idealreg2spillmask [Op_RegP] = NULL;
kvn@3882 102 idealreg2spillmask [Op_VecS] = NULL;
kvn@3882 103 idealreg2spillmask [Op_VecD] = NULL;
kvn@3882 104 idealreg2spillmask [Op_VecX] = NULL;
kvn@3882 105 idealreg2spillmask [Op_VecY] = NULL;
duke@435 106
twisti@1572 107 idealreg2debugmask [Op_RegI] = NULL;
twisti@1572 108 idealreg2debugmask [Op_RegN] = NULL;
twisti@1572 109 idealreg2debugmask [Op_RegL] = NULL;
twisti@1572 110 idealreg2debugmask [Op_RegF] = NULL;
twisti@1572 111 idealreg2debugmask [Op_RegD] = NULL;
twisti@1572 112 idealreg2debugmask [Op_RegP] = NULL;
kvn@3882 113 idealreg2debugmask [Op_VecS] = NULL;
kvn@3882 114 idealreg2debugmask [Op_VecD] = NULL;
kvn@3882 115 idealreg2debugmask [Op_VecX] = NULL;
kvn@3882 116 idealreg2debugmask [Op_VecY] = NULL;
twisti@1572 117
twisti@1572 118 idealreg2mhdebugmask[Op_RegI] = NULL;
twisti@1572 119 idealreg2mhdebugmask[Op_RegN] = NULL;
twisti@1572 120 idealreg2mhdebugmask[Op_RegL] = NULL;
twisti@1572 121 idealreg2mhdebugmask[Op_RegF] = NULL;
twisti@1572 122 idealreg2mhdebugmask[Op_RegD] = NULL;
twisti@1572 123 idealreg2mhdebugmask[Op_RegP] = NULL;
kvn@3882 124 idealreg2mhdebugmask[Op_VecS] = NULL;
kvn@3882 125 idealreg2mhdebugmask[Op_VecD] = NULL;
kvn@3882 126 idealreg2mhdebugmask[Op_VecX] = NULL;
kvn@3882 127 idealreg2mhdebugmask[Op_VecY] = NULL;
twisti@1572 128
kvn@651 129 debug_only(_mem_node = NULL;) // Ideal memory node consumed by mach node
duke@435 130 }
duke@435 131
duke@435 132 //------------------------------warp_incoming_stk_arg------------------------
duke@435 133 // This warps a VMReg into an OptoReg::Name
duke@435 134 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
duke@435 135 OptoReg::Name warped;
duke@435 136 if( reg->is_stack() ) { // Stack slot argument?
duke@435 137 warped = OptoReg::add(_old_SP, reg->reg2stack() );
duke@435 138 warped = OptoReg::add(warped, C->out_preserve_stack_slots());
duke@435 139 if( warped >= _in_arg_limit )
duke@435 140 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
kvn@3882 141 if (!RegMask::can_represent_arg(warped)) {
duke@435 142 // the compiler cannot represent this method's calling sequence
duke@435 143 C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
duke@435 144 return OptoReg::Bad;
duke@435 145 }
duke@435 146 return warped;
duke@435 147 }
duke@435 148 return OptoReg::as_OptoReg(reg);
duke@435 149 }
duke@435 150
duke@435 151 //---------------------------compute_old_SP------------------------------------
duke@435 152 OptoReg::Name Compile::compute_old_SP() {
duke@435 153 int fixed = fixed_slots();
duke@435 154 int preserve = in_preserve_stack_slots();
duke@435 155 return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
duke@435 156 }
duke@435 157
duke@435 158
duke@435 159
duke@435 160 #ifdef ASSERT
duke@435 161 void Matcher::verify_new_nodes_only(Node* xroot) {
duke@435 162 // Make sure that the new graph only references new nodes
duke@435 163 ResourceMark rm;
duke@435 164 Unique_Node_List worklist;
duke@435 165 VectorSet visited(Thread::current()->resource_area());
duke@435 166 worklist.push(xroot);
duke@435 167 while (worklist.size() > 0) {
duke@435 168 Node* n = worklist.pop();
duke@435 169 visited <<= n->_idx;
duke@435 170 assert(C->node_arena()->contains(n), "dead node");
duke@435 171 for (uint j = 0; j < n->req(); j++) {
duke@435 172 Node* in = n->in(j);
duke@435 173 if (in != NULL) {
duke@435 174 assert(C->node_arena()->contains(in), "dead node");
duke@435 175 if (!visited.test(in->_idx)) {
duke@435 176 worklist.push(in);
duke@435 177 }
duke@435 178 }
duke@435 179 }
duke@435 180 }
duke@435 181 }
duke@435 182 #endif
duke@435 183
duke@435 184
duke@435 185 //---------------------------match---------------------------------------------
duke@435 186 void Matcher::match( ) {
kvn@1258 187 if( MaxLabelRootDepth < 100 ) { // Too small?
kvn@1258 188 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
kvn@1258 189 MaxLabelRootDepth = 100;
kvn@1258 190 }
duke@435 191 // One-time initialization of some register masks.
duke@435 192 init_spill_mask( C->root()->in(1) );
duke@435 193 _return_addr_mask = return_addr();
duke@435 194 #ifdef _LP64
duke@435 195 // Pointers take 2 slots in 64-bit land
duke@435 196 _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
duke@435 197 #endif
duke@435 198
duke@435 199 // Map a Java-signature return type into return register-value
duke@435 200 // machine registers for 0, 1 and 2 returned values.
duke@435 201 const TypeTuple *range = C->tf()->range();
duke@435 202 if( range->cnt() > TypeFunc::Parms ) { // If not a void function
duke@435 203 // Get ideal-register return type
coleenp@4037 204 int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
duke@435 205 // Get machine return register
duke@435 206 uint sop = C->start()->Opcode();
duke@435 207 OptoRegPair regs = return_value(ireg, false);
duke@435 208
duke@435 209 // And mask for same
duke@435 210 _return_value_mask = RegMask(regs.first());
duke@435 211 if( OptoReg::is_valid(regs.second()) )
duke@435 212 _return_value_mask.Insert(regs.second());
duke@435 213 }
duke@435 214
duke@435 215 // ---------------
duke@435 216 // Frame Layout
duke@435 217
duke@435 218 // Need the method signature to determine the incoming argument types,
duke@435 219 // because the types determine which registers the incoming arguments are
duke@435 220 // in, and this affects the matched code.
duke@435 221 const TypeTuple *domain = C->tf()->domain();
duke@435 222 uint argcnt = domain->cnt() - TypeFunc::Parms;
duke@435 223 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 224 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 225 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
duke@435 226 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
duke@435 227 uint i;
duke@435 228 for( i = 0; i<argcnt; i++ ) {
duke@435 229 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 230 }
duke@435 231
duke@435 232 // Pass array of ideal registers and length to USER code (from the AD file)
duke@435 233 // that will convert this to an array of register numbers.
duke@435 234 const StartNode *start = C->start();
duke@435 235 start->calling_convention( sig_bt, vm_parm_regs, argcnt );
duke@435 236 #ifdef ASSERT
duke@435 237 // Sanity check users' calling convention. Real handy while trying to
duke@435 238 // get the initial port correct.
duke@435 239 { for (uint i = 0; i<argcnt; i++) {
duke@435 240 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 241 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
duke@435 242 _parm_regs[i].set_bad();
duke@435 243 continue;
duke@435 244 }
duke@435 245 VMReg parm_reg = vm_parm_regs[i].first();
duke@435 246 assert(parm_reg->is_valid(), "invalid arg?");
duke@435 247 if (parm_reg->is_reg()) {
duke@435 248 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
duke@435 249 assert(can_be_java_arg(opto_parm_reg) ||
duke@435 250 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
duke@435 251 opto_parm_reg == inline_cache_reg(),
duke@435 252 "parameters in register must be preserved by runtime stubs");
duke@435 253 }
duke@435 254 for (uint j = 0; j < i; j++) {
duke@435 255 assert(parm_reg != vm_parm_regs[j].first(),
duke@435 256 "calling conv. must produce distinct regs");
duke@435 257 }
duke@435 258 }
duke@435 259 }
duke@435 260 #endif
duke@435 261
duke@435 262 // Do some initial frame layout.
duke@435 263
duke@435 264 // Compute the old incoming SP (may be called FP) as
duke@435 265 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
duke@435 266 _old_SP = C->compute_old_SP();
duke@435 267 assert( is_even(_old_SP), "must be even" );
duke@435 268
duke@435 269 // Compute highest incoming stack argument as
duke@435 270 // _old_SP + out_preserve_stack_slots + incoming argument size.
duke@435 271 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 272 assert( is_even(_in_arg_limit), "out_preserve must be even" );
duke@435 273 for( i = 0; i < argcnt; i++ ) {
duke@435 274 // Permit args to have no register
duke@435 275 _calling_convention_mask[i].Clear();
duke@435 276 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 277 continue;
duke@435 278 }
duke@435 279 // calling_convention returns stack arguments as a count of
duke@435 280 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to
duke@435 281 // the allocators point of view, taking into account all the
duke@435 282 // preserve area, locks & pad2.
duke@435 283
duke@435 284 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
duke@435 285 if( OptoReg::is_valid(reg1))
duke@435 286 _calling_convention_mask[i].Insert(reg1);
duke@435 287
duke@435 288 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
duke@435 289 if( OptoReg::is_valid(reg2))
duke@435 290 _calling_convention_mask[i].Insert(reg2);
duke@435 291
duke@435 292 // Saved biased stack-slot register number
duke@435 293 _parm_regs[i].set_pair(reg2, reg1);
duke@435 294 }
duke@435 295
duke@435 296 // Finally, make sure the incoming arguments take up an even number of
duke@435 297 // words, in case the arguments or locals need to contain doubleword stack
duke@435 298 // slots. The rest of the system assumes that stack slot pairs (in
duke@435 299 // particular, in the spill area) which look aligned will in fact be
duke@435 300 // aligned relative to the stack pointer in the target machine. Double
duke@435 301 // stack slots will always be allocated aligned.
duke@435 302 _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
duke@435 303
duke@435 304 // Compute highest outgoing stack argument as
duke@435 305 // _new_SP + out_preserve_stack_slots + max(outgoing argument size).
duke@435 306 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 307 assert( is_even(_out_arg_limit), "out_preserve must be even" );
duke@435 308
kvn@3882 309 if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
duke@435 310 // the compiler cannot represent this method's calling sequence
duke@435 311 C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
duke@435 312 }
duke@435 313
duke@435 314 if (C->failing()) return; // bailed out on incoming arg failure
duke@435 315
duke@435 316 // ---------------
duke@435 317 // Collect roots of matcher trees. Every node for which
duke@435 318 // _shared[_idx] is cleared is guaranteed to not be shared, and thus
duke@435 319 // can be a valid interior of some tree.
duke@435 320 find_shared( C->root() );
duke@435 321 find_shared( C->top() );
duke@435 322
sla@5237 323 C->print_method(PHASE_BEFORE_MATCHING);
duke@435 324
kvn@1164 325 // Create new ideal node ConP #NULL even if it does exist in old space
kvn@1164 326 // to avoid false sharing if the corresponding mach node is not used.
kvn@1164 327 // The corresponding mach node is only used in rare cases for derived
kvn@1164 328 // pointers.
kvn@1164 329 Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
kvn@1164 330
duke@435 331 // Swap out to old-space; emptying new-space
duke@435 332 Arena *old = C->node_arena()->move_contents(C->old_arena());
duke@435 333
duke@435 334 // Save debug and profile information for nodes in old space:
duke@435 335 _old_node_note_array = C->node_note_array();
duke@435 336 if (_old_node_note_array != NULL) {
duke@435 337 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
duke@435 338 (C->comp_arena(), _old_node_note_array->length(),
duke@435 339 0, NULL));
duke@435 340 }
duke@435 341
duke@435 342 // Pre-size the new_node table to avoid the need for range checks.
duke@435 343 grow_new_node_array(C->unique());
duke@435 344
duke@435 345 // Reset node counter so MachNodes start with _idx at 0
duke@435 346 int nodes = C->unique(); // save value
duke@435 347 C->set_unique(0);
bharadwaj@4315 348 C->reset_dead_node_list();
duke@435 349
duke@435 350 // Recursively match trees from old space into new space.
duke@435 351 // Correct leaves of new-space Nodes; they point to old-space.
duke@435 352 _visited.Clear(); // Clear visit bits for xform call
duke@435 353 C->set_cached_top_node(xform( C->top(), nodes ));
duke@435 354 if (!C->failing()) {
duke@435 355 Node* xroot = xform( C->root(), 1 );
duke@435 356 if (xroot == NULL) {
duke@435 357 Matcher::soft_match_failure(); // recursive matching process failed
duke@435 358 C->record_method_not_compilable("instruction match failed");
duke@435 359 } else {
duke@435 360 // During matching shared constants were attached to C->root()
duke@435 361 // because xroot wasn't available yet, so transfer the uses to
duke@435 362 // the xroot.
duke@435 363 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
duke@435 364 Node* n = C->root()->fast_out(j);
duke@435 365 if (C->node_arena()->contains(n)) {
duke@435 366 assert(n->in(0) == C->root(), "should be control user");
duke@435 367 n->set_req(0, xroot);
duke@435 368 --j;
duke@435 369 --jmax;
duke@435 370 }
duke@435 371 }
duke@435 372
kvn@1164 373 // Generate new mach node for ConP #NULL
kvn@1164 374 assert(new_ideal_null != NULL, "sanity");
kvn@1164 375 _mach_null = match_tree(new_ideal_null);
kvn@1164 376 // Don't set control, it will confuse GCM since there are no uses.
kvn@1164 377 // The control will be set when this node is used first time
kvn@1164 378 // in find_base_for_derived().
kvn@1164 379 assert(_mach_null != NULL, "");
kvn@1164 380
duke@435 381 C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
kvn@1164 382
duke@435 383 #ifdef ASSERT
duke@435 384 verify_new_nodes_only(xroot);
duke@435 385 #endif
duke@435 386 }
duke@435 387 }
duke@435 388 if (C->top() == NULL || C->root() == NULL) {
duke@435 389 C->record_method_not_compilable("graph lost"); // %%% cannot happen?
duke@435 390 }
duke@435 391 if (C->failing()) {
duke@435 392 // delete old;
duke@435 393 old->destruct_contents();
duke@435 394 return;
duke@435 395 }
duke@435 396 assert( C->top(), "" );
duke@435 397 assert( C->root(), "" );
duke@435 398 validate_null_checks();
duke@435 399
duke@435 400 // Now smoke old-space
duke@435 401 NOT_DEBUG( old->destruct_contents() );
duke@435 402
duke@435 403 // ------------------------
duke@435 404 // Set up save-on-entry registers
duke@435 405 Fixup_Save_On_Entry( );
duke@435 406 }
duke@435 407
duke@435 408
duke@435 409 //------------------------------Fixup_Save_On_Entry----------------------------
duke@435 410 // The stated purpose of this routine is to take care of save-on-entry
duke@435 411 // registers. However, the overall goal of the Match phase is to convert into
duke@435 412 // machine-specific instructions which have RegMasks to guide allocation.
duke@435 413 // So what this procedure really does is put a valid RegMask on each input
duke@435 414 // to the machine-specific variations of all Return, TailCall and Halt
duke@435 415 // instructions. It also adds edgs to define the save-on-entry values (and of
duke@435 416 // course gives them a mask).
duke@435 417
duke@435 418 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
duke@435 419 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
duke@435 420 // Do all the pre-defined register masks
duke@435 421 rms[TypeFunc::Control ] = RegMask::Empty;
duke@435 422 rms[TypeFunc::I_O ] = RegMask::Empty;
duke@435 423 rms[TypeFunc::Memory ] = RegMask::Empty;
duke@435 424 rms[TypeFunc::ReturnAdr] = ret_adr;
duke@435 425 rms[TypeFunc::FramePtr ] = fp;
duke@435 426 return rms;
duke@435 427 }
duke@435 428
duke@435 429 //---------------------------init_first_stack_mask-----------------------------
duke@435 430 // Create the initial stack mask used by values spilling to the stack.
duke@435 431 // Disallow any debug info in outgoing argument areas by setting the
duke@435 432 // initial mask accordingly.
duke@435 433 void Matcher::init_first_stack_mask() {
duke@435 434
duke@435 435 // Allocate storage for spill masks as masks for the appropriate load type.
kvn@3882 436 RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
twisti@1572 437
twisti@1572 438 idealreg2spillmask [Op_RegN] = &rms[0];
twisti@1572 439 idealreg2spillmask [Op_RegI] = &rms[1];
twisti@1572 440 idealreg2spillmask [Op_RegL] = &rms[2];
twisti@1572 441 idealreg2spillmask [Op_RegF] = &rms[3];
twisti@1572 442 idealreg2spillmask [Op_RegD] = &rms[4];
twisti@1572 443 idealreg2spillmask [Op_RegP] = &rms[5];
twisti@1572 444
twisti@1572 445 idealreg2debugmask [Op_RegN] = &rms[6];
twisti@1572 446 idealreg2debugmask [Op_RegI] = &rms[7];
twisti@1572 447 idealreg2debugmask [Op_RegL] = &rms[8];
twisti@1572 448 idealreg2debugmask [Op_RegF] = &rms[9];
twisti@1572 449 idealreg2debugmask [Op_RegD] = &rms[10];
twisti@1572 450 idealreg2debugmask [Op_RegP] = &rms[11];
twisti@1572 451
twisti@1572 452 idealreg2mhdebugmask[Op_RegN] = &rms[12];
twisti@1572 453 idealreg2mhdebugmask[Op_RegI] = &rms[13];
twisti@1572 454 idealreg2mhdebugmask[Op_RegL] = &rms[14];
twisti@1572 455 idealreg2mhdebugmask[Op_RegF] = &rms[15];
twisti@1572 456 idealreg2mhdebugmask[Op_RegD] = &rms[16];
twisti@1572 457 idealreg2mhdebugmask[Op_RegP] = &rms[17];
duke@435 458
kvn@3882 459 idealreg2spillmask [Op_VecS] = &rms[18];
kvn@3882 460 idealreg2spillmask [Op_VecD] = &rms[19];
kvn@3882 461 idealreg2spillmask [Op_VecX] = &rms[20];
kvn@3882 462 idealreg2spillmask [Op_VecY] = &rms[21];
kvn@3882 463
duke@435 464 OptoReg::Name i;
duke@435 465
duke@435 466 // At first, start with the empty mask
duke@435 467 C->FIRST_STACK_mask().Clear();
duke@435 468
duke@435 469 // Add in the incoming argument area
kvn@6098 470 OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
kvn@6098 471 for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
duke@435 472 C->FIRST_STACK_mask().Insert(i);
kvn@6098 473 }
duke@435 474 // Add in all bits past the outgoing argument area
kvn@3882 475 guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
duke@435 476 "must be able to represent all call arguments in reg mask");
kvn@6098 477 OptoReg::Name init = _out_arg_limit;
kvn@6098 478 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
duke@435 479 C->FIRST_STACK_mask().Insert(i);
kvn@6098 480 }
duke@435 481 // Finally, set the "infinite stack" bit.
duke@435 482 C->FIRST_STACK_mask().set_AllStack();
duke@435 483
duke@435 484 // Make spill masks. Registers for their class, plus FIRST_STACK_mask.
kvn@3882 485 RegMask aligned_stack_mask = C->FIRST_STACK_mask();
kvn@3882 486 // Keep spill masks aligned.
kvn@3882 487 aligned_stack_mask.clear_to_pairs();
kvn@3882 488 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
kvn@3882 489
kvn@3882 490 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
coleenp@548 491 #ifdef _LP64
coleenp@548 492 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
coleenp@548 493 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
kvn@3882 494 idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
kvn@3882 495 #else
kvn@3882 496 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
coleenp@548 497 #endif
duke@435 498 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
duke@435 499 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
duke@435 500 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
kvn@3882 501 idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
duke@435 502 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
duke@435 503 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
duke@435 504 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
kvn@3882 505 idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
duke@435 506
kvn@3882 507 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 508 *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
kvn@3882 509 idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
kvn@3882 510 }
kvn@3882 511 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@6098 512 // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
kvn@6098 513 // RA guarantees such alignment since it is needed for Double and Long values.
kvn@3882 514 *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
kvn@3882 515 idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
kvn@3882 516 }
kvn@3882 517 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@6098 518 // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
kvn@6098 519 //
kvn@6098 520 // RA can use input arguments stack slots for spills but until RA
kvn@6098 521 // we don't know frame size and offset of input arg stack slots.
kvn@6098 522 //
kvn@6098 523 // Exclude last input arg stack slots to avoid spilling vectors there
kvn@6098 524 // otherwise vector spills could stomp over stack slots in caller frame.
kvn@6098 525 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
kvn@6098 526 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
kvn@6098 527 aligned_stack_mask.Remove(in);
kvn@6098 528 in = OptoReg::add(in, -1);
kvn@6098 529 }
kvn@3882 530 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
kvn@3882 531 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
kvn@3882 532 *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
kvn@3882 533 idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
kvn@3882 534 }
kvn@3882 535 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@6098 536 // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
kvn@6098 537 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
kvn@6098 538 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
kvn@6098 539 aligned_stack_mask.Remove(in);
kvn@6098 540 in = OptoReg::add(in, -1);
kvn@6098 541 }
kvn@3882 542 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
kvn@3882 543 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
kvn@3882 544 *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
kvn@3882 545 idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
kvn@3882 546 }
never@2085 547 if (UseFPUForSpilling) {
never@2085 548 // This mask logic assumes that the spill operations are
never@2085 549 // symmetric and that the registers involved are the same size.
never@2085 550 // On sparc for instance we may have to use 64 bit moves will
never@2085 551 // kill 2 registers when used with F0-F31.
never@2085 552 idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
never@2085 553 idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
never@2085 554 #ifdef _LP64
never@2085 555 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
never@2085 556 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
never@2085 557 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
never@2085 558 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
never@2085 559 #else
never@2085 560 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
roland@3109 561 #ifdef ARM
roland@3109 562 // ARM has support for moving 64bit values between a pair of
roland@3109 563 // integer registers and a double register
roland@3109 564 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
roland@3109 565 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
roland@3109 566 #endif
never@2085 567 #endif
never@2085 568 }
never@2085 569
duke@435 570 // Make up debug masks. Any spill slot plus callee-save registers.
duke@435 571 // Caller-save registers are assumed to be trashable by the various
duke@435 572 // inline-cache fixup routines.
twisti@1572 573 *idealreg2debugmask [Op_RegN]= *idealreg2spillmask[Op_RegN];
twisti@1572 574 *idealreg2debugmask [Op_RegI]= *idealreg2spillmask[Op_RegI];
twisti@1572 575 *idealreg2debugmask [Op_RegL]= *idealreg2spillmask[Op_RegL];
twisti@1572 576 *idealreg2debugmask [Op_RegF]= *idealreg2spillmask[Op_RegF];
twisti@1572 577 *idealreg2debugmask [Op_RegD]= *idealreg2spillmask[Op_RegD];
twisti@1572 578 *idealreg2debugmask [Op_RegP]= *idealreg2spillmask[Op_RegP];
twisti@1572 579
twisti@1572 580 *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
twisti@1572 581 *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
twisti@1572 582 *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
twisti@1572 583 *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
twisti@1572 584 *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
twisti@1572 585 *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
duke@435 586
duke@435 587 // Prevent stub compilations from attempting to reference
duke@435 588 // callee-saved registers from debug info
duke@435 589 bool exclude_soe = !Compile::current()->is_method_compilation();
duke@435 590
duke@435 591 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 592 // registers the caller has to save do not work
duke@435 593 if( _register_save_policy[i] == 'C' ||
duke@435 594 _register_save_policy[i] == 'A' ||
duke@435 595 (_register_save_policy[i] == 'E' && exclude_soe) ) {
twisti@1572 596 idealreg2debugmask [Op_RegN]->Remove(i);
twisti@1572 597 idealreg2debugmask [Op_RegI]->Remove(i); // Exclude save-on-call
twisti@1572 598 idealreg2debugmask [Op_RegL]->Remove(i); // registers from debug
twisti@1572 599 idealreg2debugmask [Op_RegF]->Remove(i); // masks
twisti@1572 600 idealreg2debugmask [Op_RegD]->Remove(i);
twisti@1572 601 idealreg2debugmask [Op_RegP]->Remove(i);
twisti@1572 602
twisti@1572 603 idealreg2mhdebugmask[Op_RegN]->Remove(i);
twisti@1572 604 idealreg2mhdebugmask[Op_RegI]->Remove(i);
twisti@1572 605 idealreg2mhdebugmask[Op_RegL]->Remove(i);
twisti@1572 606 idealreg2mhdebugmask[Op_RegF]->Remove(i);
twisti@1572 607 idealreg2mhdebugmask[Op_RegD]->Remove(i);
twisti@1572 608 idealreg2mhdebugmask[Op_RegP]->Remove(i);
duke@435 609 }
duke@435 610 }
twisti@1572 611
twisti@1572 612 // Subtract the register we use to save the SP for MethodHandle
twisti@1572 613 // invokes to from the debug mask.
twisti@1572 614 const RegMask save_mask = method_handle_invoke_SP_save_mask();
twisti@1572 615 idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
twisti@1572 616 idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
twisti@1572 617 idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
twisti@1572 618 idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
twisti@1572 619 idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
twisti@1572 620 idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
duke@435 621 }
duke@435 622
duke@435 623 //---------------------------is_save_on_entry----------------------------------
duke@435 624 bool Matcher::is_save_on_entry( int reg ) {
duke@435 625 return
duke@435 626 _register_save_policy[reg] == 'E' ||
duke@435 627 _register_save_policy[reg] == 'A' || // Save-on-entry register?
duke@435 628 // Also save argument registers in the trampolining stubs
duke@435 629 (C->save_argument_registers() && is_spillable_arg(reg));
duke@435 630 }
duke@435 631
duke@435 632 //---------------------------Fixup_Save_On_Entry-------------------------------
duke@435 633 void Matcher::Fixup_Save_On_Entry( ) {
duke@435 634 init_first_stack_mask();
duke@435 635
duke@435 636 Node *root = C->root(); // Short name for root
duke@435 637 // Count number of save-on-entry registers.
duke@435 638 uint soe_cnt = number_of_saved_registers();
duke@435 639 uint i;
duke@435 640
duke@435 641 // Find the procedure Start Node
duke@435 642 StartNode *start = C->start();
duke@435 643 assert( start, "Expect a start node" );
duke@435 644
duke@435 645 // Save argument registers in the trampolining stubs
duke@435 646 if( C->save_argument_registers() )
duke@435 647 for( i = 0; i < _last_Mach_Reg; i++ )
duke@435 648 if( is_spillable_arg(i) )
duke@435 649 soe_cnt++;
duke@435 650
duke@435 651 // Input RegMask array shared by all Returns.
duke@435 652 // The type for doubles and longs has a count of 2, but
duke@435 653 // there is only 1 returned value
duke@435 654 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
duke@435 655 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 656 // Returns have 0 or 1 returned values depending on call signature.
duke@435 657 // Return register is specified by return_value in the AD file.
duke@435 658 if (ret_edge_cnt > TypeFunc::Parms)
duke@435 659 ret_rms[TypeFunc::Parms+0] = _return_value_mask;
duke@435 660
duke@435 661 // Input RegMask array shared by all Rethrows.
duke@435 662 uint reth_edge_cnt = TypeFunc::Parms+1;
duke@435 663 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 664 // Rethrow takes exception oop only, but in the argument 0 slot.
duke@435 665 reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
duke@435 666 #ifdef _LP64
duke@435 667 // Need two slots for ptrs in 64-bit land
duke@435 668 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
duke@435 669 #endif
duke@435 670
duke@435 671 // Input RegMask array shared by all TailCalls
duke@435 672 uint tail_call_edge_cnt = TypeFunc::Parms+2;
duke@435 673 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 674
duke@435 675 // Input RegMask array shared by all TailJumps
duke@435 676 uint tail_jump_edge_cnt = TypeFunc::Parms+2;
duke@435 677 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 678
duke@435 679 // TailCalls have 2 returned values (target & moop), whose masks come
duke@435 680 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 681 // TailCall to extract these masks and put the correct masks into
duke@435 682 // the tail_call_rms array.
duke@435 683 for( i=1; i < root->req(); i++ ) {
duke@435 684 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 685 if( m->ideal_Opcode() == Op_TailCall ) {
duke@435 686 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 687 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 688 break;
duke@435 689 }
duke@435 690 }
duke@435 691
duke@435 692 // TailJumps have 2 returned values (target & ex_oop), whose masks come
duke@435 693 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 694 // TailJump to extract these masks and put the correct masks into
duke@435 695 // the tail_jump_rms array.
duke@435 696 for( i=1; i < root->req(); i++ ) {
duke@435 697 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 698 if( m->ideal_Opcode() == Op_TailJump ) {
duke@435 699 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 700 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 701 break;
duke@435 702 }
duke@435 703 }
duke@435 704
duke@435 705 // Input RegMask array shared by all Halts
duke@435 706 uint halt_edge_cnt = TypeFunc::Parms;
duke@435 707 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 708
duke@435 709 // Capture the return input masks into each exit flavor
duke@435 710 for( i=1; i < root->req(); i++ ) {
duke@435 711 MachReturnNode *exit = root->in(i)->as_MachReturn();
duke@435 712 switch( exit->ideal_Opcode() ) {
duke@435 713 case Op_Return : exit->_in_rms = ret_rms; break;
duke@435 714 case Op_Rethrow : exit->_in_rms = reth_rms; break;
duke@435 715 case Op_TailCall : exit->_in_rms = tail_call_rms; break;
duke@435 716 case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
duke@435 717 case Op_Halt : exit->_in_rms = halt_rms; break;
duke@435 718 default : ShouldNotReachHere();
duke@435 719 }
duke@435 720 }
duke@435 721
duke@435 722 // Next unused projection number from Start.
duke@435 723 int proj_cnt = C->tf()->domain()->cnt();
duke@435 724
duke@435 725 // Do all the save-on-entry registers. Make projections from Start for
duke@435 726 // them, and give them a use at the exit points. To the allocator, they
duke@435 727 // look like incoming register arguments.
duke@435 728 for( i = 0; i < _last_Mach_Reg; i++ ) {
duke@435 729 if( is_save_on_entry(i) ) {
duke@435 730
duke@435 731 // Add the save-on-entry to the mask array
duke@435 732 ret_rms [ ret_edge_cnt] = mreg2regmask[i];
duke@435 733 reth_rms [ reth_edge_cnt] = mreg2regmask[i];
duke@435 734 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
duke@435 735 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
duke@435 736 // Halts need the SOE registers, but only in the stack as debug info.
duke@435 737 // A just-prior uncommon-trap or deoptimization will use the SOE regs.
duke@435 738 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
duke@435 739
duke@435 740 Node *mproj;
duke@435 741
duke@435 742 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
duke@435 743 // into a single RegD.
duke@435 744 if( (i&1) == 0 &&
duke@435 745 _register_save_type[i ] == Op_RegF &&
duke@435 746 _register_save_type[i+1] == Op_RegF &&
duke@435 747 is_save_on_entry(i+1) ) {
duke@435 748 // Add other bit for double
duke@435 749 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 750 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 751 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 752 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 753 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
kvn@4115 754 mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
duke@435 755 proj_cnt += 2; // Skip 2 for doubles
duke@435 756 }
duke@435 757 else if( (i&1) == 1 && // Else check for high half of double
duke@435 758 _register_save_type[i-1] == Op_RegF &&
duke@435 759 _register_save_type[i ] == Op_RegF &&
duke@435 760 is_save_on_entry(i-1) ) {
duke@435 761 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 762 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 763 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 764 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 765 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 766 mproj = C->top();
duke@435 767 }
duke@435 768 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's
duke@435 769 // into a single RegL.
duke@435 770 else if( (i&1) == 0 &&
duke@435 771 _register_save_type[i ] == Op_RegI &&
duke@435 772 _register_save_type[i+1] == Op_RegI &&
duke@435 773 is_save_on_entry(i+1) ) {
duke@435 774 // Add other bit for long
duke@435 775 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 776 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 777 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 778 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 779 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
kvn@4115 780 mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
duke@435 781 proj_cnt += 2; // Skip 2 for longs
duke@435 782 }
duke@435 783 else if( (i&1) == 1 && // Else check for high half of long
duke@435 784 _register_save_type[i-1] == Op_RegI &&
duke@435 785 _register_save_type[i ] == Op_RegI &&
duke@435 786 is_save_on_entry(i-1) ) {
duke@435 787 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 788 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 789 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 790 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 791 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 792 mproj = C->top();
duke@435 793 } else {
duke@435 794 // Make a projection for it off the Start
kvn@4115 795 mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
duke@435 796 }
duke@435 797
duke@435 798 ret_edge_cnt ++;
duke@435 799 reth_edge_cnt ++;
duke@435 800 tail_call_edge_cnt ++;
duke@435 801 tail_jump_edge_cnt ++;
duke@435 802 halt_edge_cnt ++;
duke@435 803
duke@435 804 // Add a use of the SOE register to all exit paths
duke@435 805 for( uint j=1; j < root->req(); j++ )
duke@435 806 root->in(j)->add_req(mproj);
duke@435 807 } // End of if a save-on-entry register
duke@435 808 } // End of for all machine registers
duke@435 809 }
duke@435 810
duke@435 811 //------------------------------init_spill_mask--------------------------------
duke@435 812 void Matcher::init_spill_mask( Node *ret ) {
duke@435 813 if( idealreg2regmask[Op_RegI] ) return; // One time only init
duke@435 814
duke@435 815 OptoReg::c_frame_pointer = c_frame_pointer();
duke@435 816 c_frame_ptr_mask = c_frame_pointer();
duke@435 817 #ifdef _LP64
duke@435 818 // pointers are twice as big
duke@435 819 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
duke@435 820 #endif
duke@435 821
duke@435 822 // Start at OptoReg::stack0()
duke@435 823 STACK_ONLY_mask.Clear();
duke@435 824 OptoReg::Name init = OptoReg::stack2reg(0);
duke@435 825 // STACK_ONLY_mask is all stack bits
duke@435 826 OptoReg::Name i;
duke@435 827 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 828 STACK_ONLY_mask.Insert(i);
duke@435 829 // Also set the "infinite stack" bit.
duke@435 830 STACK_ONLY_mask.set_AllStack();
duke@435 831
duke@435 832 // Copy the register names over into the shared world
duke@435 833 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 834 // SharedInfo::regName[i] = regName[i];
duke@435 835 // Handy RegMasks per machine register
duke@435 836 mreg2regmask[i].Insert(i);
duke@435 837 }
duke@435 838
duke@435 839 // Grab the Frame Pointer
duke@435 840 Node *fp = ret->in(TypeFunc::FramePtr);
duke@435 841 Node *mem = ret->in(TypeFunc::Memory);
duke@435 842 const TypePtr* atp = TypePtr::BOTTOM;
duke@435 843 // Share frame pointer while making spill ops
duke@435 844 set_shared(fp);
duke@435 845
duke@435 846 // Compute generic short-offset Loads
coleenp@548 847 #ifdef _LP64
goetz@6479 848 MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
coleenp@548 849 #endif
goetz@6479 850 MachNode *spillI = match_tree(new (C) LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
goetz@6479 851 MachNode *spillL = match_tree(new (C) LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered,false));
goetz@6479 852 MachNode *spillF = match_tree(new (C) LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
goetz@6479 853 MachNode *spillD = match_tree(new (C) LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
goetz@6479 854 MachNode *spillP = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
duke@435 855 assert(spillI != NULL && spillL != NULL && spillF != NULL &&
duke@435 856 spillD != NULL && spillP != NULL, "");
duke@435 857 // Get the ADLC notion of the right regmask, for each basic type.
coleenp@548 858 #ifdef _LP64
coleenp@548 859 idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
coleenp@548 860 #endif
duke@435 861 idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
duke@435 862 idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
duke@435 863 idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
duke@435 864 idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
duke@435 865 idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
kvn@3882 866
kvn@3882 867 // Vector regmasks.
kvn@3882 868 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 869 TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
kvn@4115 870 MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
kvn@3882 871 idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
kvn@3882 872 }
kvn@3882 873 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@4115 874 MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
kvn@3882 875 idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
kvn@3882 876 }
kvn@3882 877 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@4115 878 MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
kvn@3882 879 idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
kvn@3882 880 }
kvn@3882 881 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@4115 882 MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
kvn@3882 883 idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
kvn@3882 884 }
duke@435 885 }
duke@435 886
duke@435 887 #ifdef ASSERT
duke@435 888 static void match_alias_type(Compile* C, Node* n, Node* m) {
duke@435 889 if (!VerifyAliases) return; // do not go looking for trouble by default
duke@435 890 const TypePtr* nat = n->adr_type();
duke@435 891 const TypePtr* mat = m->adr_type();
duke@435 892 int nidx = C->get_alias_index(nat);
duke@435 893 int midx = C->get_alias_index(mat);
duke@435 894 // Detune the assert for cases like (AndI 0xFF (LoadB p)).
duke@435 895 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
duke@435 896 for (uint i = 1; i < n->req(); i++) {
duke@435 897 Node* n1 = n->in(i);
duke@435 898 const TypePtr* n1at = n1->adr_type();
duke@435 899 if (n1at != NULL) {
duke@435 900 nat = n1at;
duke@435 901 nidx = C->get_alias_index(n1at);
duke@435 902 }
duke@435 903 }
duke@435 904 }
duke@435 905 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases:
duke@435 906 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
duke@435 907 switch (n->Opcode()) {
duke@435 908 case Op_PrefetchRead:
duke@435 909 case Op_PrefetchWrite:
kvn@3052 910 case Op_PrefetchAllocation:
duke@435 911 nidx = Compile::AliasIdxRaw;
duke@435 912 nat = TypeRawPtr::BOTTOM;
duke@435 913 break;
duke@435 914 }
duke@435 915 }
duke@435 916 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
duke@435 917 switch (n->Opcode()) {
duke@435 918 case Op_ClearArray:
duke@435 919 midx = Compile::AliasIdxRaw;
duke@435 920 mat = TypeRawPtr::BOTTOM;
duke@435 921 break;
duke@435 922 }
duke@435 923 }
duke@435 924 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
duke@435 925 switch (n->Opcode()) {
duke@435 926 case Op_Return:
duke@435 927 case Op_Rethrow:
duke@435 928 case Op_Halt:
duke@435 929 case Op_TailCall:
duke@435 930 case Op_TailJump:
duke@435 931 nidx = Compile::AliasIdxBot;
duke@435 932 nat = TypePtr::BOTTOM;
duke@435 933 break;
duke@435 934 }
duke@435 935 }
duke@435 936 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
duke@435 937 switch (n->Opcode()) {
duke@435 938 case Op_StrComp:
cfang@1116 939 case Op_StrEquals:
cfang@1116 940 case Op_StrIndexOf:
rasbold@604 941 case Op_AryEq:
duke@435 942 case Op_MemBarVolatile:
duke@435 943 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
kvn@4479 944 case Op_EncodeISOArray:
duke@435 945 nidx = Compile::AliasIdxTop;
duke@435 946 nat = NULL;
duke@435 947 break;
duke@435 948 }
duke@435 949 }
duke@435 950 if (nidx != midx) {
duke@435 951 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
duke@435 952 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
duke@435 953 n->dump();
duke@435 954 m->dump();
duke@435 955 }
duke@435 956 assert(C->subsume_loads() && C->must_alias(nat, midx),
duke@435 957 "must not lose alias info when matching");
duke@435 958 }
duke@435 959 }
duke@435 960 #endif
duke@435 961
duke@435 962
duke@435 963 //------------------------------MStack-----------------------------------------
duke@435 964 // State and MStack class used in xform() and find_shared() iterative methods.
duke@435 965 enum Node_State { Pre_Visit, // node has to be pre-visited
duke@435 966 Visit, // visit node
duke@435 967 Post_Visit, // post-visit node
duke@435 968 Alt_Post_Visit // alternative post-visit path
duke@435 969 };
duke@435 970
duke@435 971 class MStack: public Node_Stack {
duke@435 972 public:
duke@435 973 MStack(int size) : Node_Stack(size) { }
duke@435 974
duke@435 975 void push(Node *n, Node_State ns) {
duke@435 976 Node_Stack::push(n, (uint)ns);
duke@435 977 }
duke@435 978 void push(Node *n, Node_State ns, Node *parent, int indx) {
duke@435 979 ++_inode_top;
duke@435 980 if ((_inode_top + 1) >= _inode_max) grow();
duke@435 981 _inode_top->node = parent;
duke@435 982 _inode_top->indx = (uint)indx;
duke@435 983 ++_inode_top;
duke@435 984 _inode_top->node = n;
duke@435 985 _inode_top->indx = (uint)ns;
duke@435 986 }
duke@435 987 Node *parent() {
duke@435 988 pop();
duke@435 989 return node();
duke@435 990 }
duke@435 991 Node_State state() const {
duke@435 992 return (Node_State)index();
duke@435 993 }
duke@435 994 void set_state(Node_State ns) {
duke@435 995 set_index((uint)ns);
duke@435 996 }
duke@435 997 };
duke@435 998
duke@435 999
duke@435 1000 //------------------------------xform------------------------------------------
duke@435 1001 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
duke@435 1002 // Node in new-space. Given a new-space Node, recursively walk his children.
duke@435 1003 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
duke@435 1004 Node *Matcher::xform( Node *n, int max_stack ) {
duke@435 1005 // Use one stack to keep both: child's node/state and parent's node/index
duke@435 1006 MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
duke@435 1007 mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root
duke@435 1008
duke@435 1009 while (mstack.is_nonempty()) {
drchase@5285 1010 C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
drchase@5285 1011 if (C->failing()) return NULL;
duke@435 1012 n = mstack.node(); // Leave node on stack
duke@435 1013 Node_State nstate = mstack.state();
duke@435 1014 if (nstate == Visit) {
duke@435 1015 mstack.set_state(Post_Visit);
duke@435 1016 Node *oldn = n;
duke@435 1017 // Old-space or new-space check
duke@435 1018 if (!C->node_arena()->contains(n)) {
duke@435 1019 // Old space!
duke@435 1020 Node* m;
duke@435 1021 if (has_new_node(n)) { // Not yet Label/Reduced
duke@435 1022 m = new_node(n);
duke@435 1023 } else {
duke@435 1024 if (!is_dontcare(n)) { // Matcher can match this guy
duke@435 1025 // Calls match special. They match alone with no children.
duke@435 1026 // Their children, the incoming arguments, match normally.
duke@435 1027 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
duke@435 1028 if (C->failing()) return NULL;
duke@435 1029 if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
duke@435 1030 } else { // Nothing the matcher cares about
duke@435 1031 if( n->is_Proj() && n->in(0)->is_Multi()) { // Projections?
duke@435 1032 // Convert to machine-dependent projection
duke@435 1033 m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
never@657 1034 #ifdef ASSERT
never@657 1035 _new2old_map.map(m->_idx, n);
never@657 1036 #endif
duke@435 1037 if (m->in(0) != NULL) // m might be top
kvn@803 1038 collect_null_checks(m, n);
duke@435 1039 } else { // Else just a regular 'ol guy
duke@435 1040 m = n->clone(); // So just clone into new-space
never@657 1041 #ifdef ASSERT
never@657 1042 _new2old_map.map(m->_idx, n);
never@657 1043 #endif
duke@435 1044 // Def-Use edges will be added incrementally as Uses
duke@435 1045 // of this node are matched.
duke@435 1046 assert(m->outcnt() == 0, "no Uses of this clone yet");
duke@435 1047 }
duke@435 1048 }
duke@435 1049
duke@435 1050 set_new_node(n, m); // Map old to new
duke@435 1051 if (_old_node_note_array != NULL) {
duke@435 1052 Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
duke@435 1053 n->_idx);
duke@435 1054 C->set_node_notes_at(m->_idx, nn);
duke@435 1055 }
duke@435 1056 debug_only(match_alias_type(C, n, m));
duke@435 1057 }
duke@435 1058 n = m; // n is now a new-space node
duke@435 1059 mstack.set_node(n);
duke@435 1060 }
duke@435 1061
duke@435 1062 // New space!
duke@435 1063 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
duke@435 1064
duke@435 1065 int i;
duke@435 1066 // Put precedence edges on stack first (match them last).
duke@435 1067 for (i = oldn->req(); (uint)i < oldn->len(); i++) {
duke@435 1068 Node *m = oldn->in(i);
duke@435 1069 if (m == NULL) break;
duke@435 1070 // set -1 to call add_prec() instead of set_req() during Step1
duke@435 1071 mstack.push(m, Visit, n, -1);
duke@435 1072 }
duke@435 1073
duke@435 1074 // For constant debug info, I'd rather have unmatched constants.
duke@435 1075 int cnt = n->req();
duke@435 1076 JVMState* jvms = n->jvms();
duke@435 1077 int debug_cnt = jvms ? jvms->debug_start() : cnt;
duke@435 1078
duke@435 1079 // Now do only debug info. Clone constants rather than matching.
duke@435 1080 // Constants are represented directly in the debug info without
duke@435 1081 // the need for executable machine instructions.
duke@435 1082 // Monitor boxes are also represented directly.
duke@435 1083 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
duke@435 1084 Node *m = n->in(i); // Get input
duke@435 1085 int op = m->Opcode();
duke@435 1086 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
roland@4159 1087 if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
duke@435 1088 op == Op_ConF || op == Op_ConD || op == Op_ConL
duke@435 1089 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp
duke@435 1090 ) {
duke@435 1091 m = m->clone();
never@657 1092 #ifdef ASSERT
never@657 1093 _new2old_map.map(m->_idx, n);
never@657 1094 #endif
twisti@1040 1095 mstack.push(m, Post_Visit, n, i); // Don't need to visit
duke@435 1096 mstack.push(m->in(0), Visit, m, 0);
duke@435 1097 } else {
duke@435 1098 mstack.push(m, Visit, n, i);
duke@435 1099 }
duke@435 1100 }
duke@435 1101
duke@435 1102 // And now walk his children, and convert his inputs to new-space.
duke@435 1103 for( ; i >= 0; --i ) { // For all normal inputs do
duke@435 1104 Node *m = n->in(i); // Get input
duke@435 1105 if(m != NULL)
duke@435 1106 mstack.push(m, Visit, n, i);
duke@435 1107 }
duke@435 1108
duke@435 1109 }
duke@435 1110 else if (nstate == Post_Visit) {
duke@435 1111 // Set xformed input
duke@435 1112 Node *p = mstack.parent();
duke@435 1113 if (p != NULL) { // root doesn't have parent
duke@435 1114 int i = (int)mstack.index();
duke@435 1115 if (i >= 0)
duke@435 1116 p->set_req(i, n); // required input
duke@435 1117 else if (i == -1)
duke@435 1118 p->add_prec(n); // precedence input
duke@435 1119 else
duke@435 1120 ShouldNotReachHere();
duke@435 1121 }
duke@435 1122 mstack.pop(); // remove processed node from stack
duke@435 1123 }
duke@435 1124 else {
duke@435 1125 ShouldNotReachHere();
duke@435 1126 }
duke@435 1127 } // while (mstack.is_nonempty())
duke@435 1128 return n; // Return new-space Node
duke@435 1129 }
duke@435 1130
duke@435 1131 //------------------------------warp_outgoing_stk_arg------------------------
duke@435 1132 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
duke@435 1133 // Convert outgoing argument location to a pre-biased stack offset
duke@435 1134 if (reg->is_stack()) {
duke@435 1135 OptoReg::Name warped = reg->reg2stack();
duke@435 1136 // Adjust the stack slot offset to be the register number used
duke@435 1137 // by the allocator.
duke@435 1138 warped = OptoReg::add(begin_out_arg_area, warped);
duke@435 1139 // Keep track of the largest numbered stack slot used for an arg.
duke@435 1140 // Largest used slot per call-site indicates the amount of stack
duke@435 1141 // that is killed by the call.
duke@435 1142 if( warped >= out_arg_limit_per_call )
duke@435 1143 out_arg_limit_per_call = OptoReg::add(warped,1);
kvn@3882 1144 if (!RegMask::can_represent_arg(warped)) {
duke@435 1145 C->record_method_not_compilable_all_tiers("unsupported calling sequence");
duke@435 1146 return OptoReg::Bad;
duke@435 1147 }
duke@435 1148 return warped;
duke@435 1149 }
duke@435 1150 return OptoReg::as_OptoReg(reg);
duke@435 1151 }
duke@435 1152
duke@435 1153
duke@435 1154 //------------------------------match_sfpt-------------------------------------
duke@435 1155 // Helper function to match call instructions. Calls match special.
duke@435 1156 // They match alone with no children. Their children, the incoming
duke@435 1157 // arguments, match normally.
duke@435 1158 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
duke@435 1159 MachSafePointNode *msfpt = NULL;
duke@435 1160 MachCallNode *mcall = NULL;
duke@435 1161 uint cnt;
duke@435 1162 // Split out case for SafePoint vs Call
duke@435 1163 CallNode *call;
duke@435 1164 const TypeTuple *domain;
duke@435 1165 ciMethod* method = NULL;
twisti@1572 1166 bool is_method_handle_invoke = false; // for special kill effects
duke@435 1167 if( sfpt->is_Call() ) {
duke@435 1168 call = sfpt->as_Call();
duke@435 1169 domain = call->tf()->domain();
duke@435 1170 cnt = domain->cnt();
duke@435 1171
duke@435 1172 // Match just the call, nothing else
duke@435 1173 MachNode *m = match_tree(call);
duke@435 1174 if (C->failing()) return NULL;
duke@435 1175 if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
duke@435 1176
duke@435 1177 // Copy data from the Ideal SafePoint to the machine version
duke@435 1178 mcall = m->as_MachCall();
duke@435 1179
duke@435 1180 mcall->set_tf( call->tf());
duke@435 1181 mcall->set_entry_point(call->entry_point());
duke@435 1182 mcall->set_cnt( call->cnt());
duke@435 1183
duke@435 1184 if( mcall->is_MachCallJava() ) {
duke@435 1185 MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
duke@435 1186 const CallJavaNode *call_java = call->as_CallJava();
duke@435 1187 method = call_java->method();
duke@435 1188 mcall_java->_method = method;
duke@435 1189 mcall_java->_bci = call_java->_bci;
duke@435 1190 mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
twisti@1572 1191 is_method_handle_invoke = call_java->is_method_handle_invoke();
twisti@1572 1192 mcall_java->_method_handle_invoke = is_method_handle_invoke;
never@3105 1193 if (is_method_handle_invoke) {
never@3105 1194 C->set_has_method_handle_invokes(true);
never@3105 1195 }
duke@435 1196 if( mcall_java->is_MachCallStaticJava() )
duke@435 1197 mcall_java->as_MachCallStaticJava()->_name =
duke@435 1198 call_java->as_CallStaticJava()->_name;
duke@435 1199 if( mcall_java->is_MachCallDynamicJava() )
duke@435 1200 mcall_java->as_MachCallDynamicJava()->_vtable_index =
duke@435 1201 call_java->as_CallDynamicJava()->_vtable_index;
duke@435 1202 }
duke@435 1203 else if( mcall->is_MachCallRuntime() ) {
duke@435 1204 mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
duke@435 1205 }
duke@435 1206 msfpt = mcall;
duke@435 1207 }
duke@435 1208 // This is a non-call safepoint
duke@435 1209 else {
duke@435 1210 call = NULL;
duke@435 1211 domain = NULL;
duke@435 1212 MachNode *mn = match_tree(sfpt);
duke@435 1213 if (C->failing()) return NULL;
duke@435 1214 msfpt = mn->as_MachSafePoint();
duke@435 1215 cnt = TypeFunc::Parms;
duke@435 1216 }
duke@435 1217
duke@435 1218 // Advertise the correct memory effects (for anti-dependence computation).
duke@435 1219 msfpt->set_adr_type(sfpt->adr_type());
duke@435 1220
duke@435 1221 // Allocate a private array of RegMasks. These RegMasks are not shared.
duke@435 1222 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
duke@435 1223 // Empty them all.
duke@435 1224 memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
duke@435 1225
duke@435 1226 // Do all the pre-defined non-Empty register masks
duke@435 1227 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
duke@435 1228 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
duke@435 1229
duke@435 1230 // Place first outgoing argument can possibly be put.
duke@435 1231 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 1232 assert( is_even(begin_out_arg_area), "" );
duke@435 1233 // Compute max outgoing register number per call site.
duke@435 1234 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
duke@435 1235 // Calls to C may hammer extra stack slots above and beyond any arguments.
duke@435 1236 // These are usually backing store for register arguments for varargs.
duke@435 1237 if( call != NULL && call->is_CallRuntime() )
duke@435 1238 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
duke@435 1239
duke@435 1240
duke@435 1241 // Do the normal argument list (parameters) register masks
duke@435 1242 int argcnt = cnt - TypeFunc::Parms;
duke@435 1243 if( argcnt > 0 ) { // Skip it all if we have no args
duke@435 1244 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 1245 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 1246 int i;
duke@435 1247 for( i = 0; i < argcnt; i++ ) {
duke@435 1248 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 1249 }
duke@435 1250 // V-call to pick proper calling convention
duke@435 1251 call->calling_convention( sig_bt, parm_regs, argcnt );
duke@435 1252
duke@435 1253 #ifdef ASSERT
duke@435 1254 // Sanity check users' calling convention. Really handy during
duke@435 1255 // the initial porting effort. Fairly expensive otherwise.
duke@435 1256 { for (int i = 0; i<argcnt; i++) {
duke@435 1257 if( !parm_regs[i].first()->is_valid() &&
duke@435 1258 !parm_regs[i].second()->is_valid() ) continue;
duke@435 1259 VMReg reg1 = parm_regs[i].first();
duke@435 1260 VMReg reg2 = parm_regs[i].second();
duke@435 1261 for (int j = 0; j < i; j++) {
duke@435 1262 if( !parm_regs[j].first()->is_valid() &&
duke@435 1263 !parm_regs[j].second()->is_valid() ) continue;
duke@435 1264 VMReg reg3 = parm_regs[j].first();
duke@435 1265 VMReg reg4 = parm_regs[j].second();
duke@435 1266 if( !reg1->is_valid() ) {
duke@435 1267 assert( !reg2->is_valid(), "valid halvsies" );
duke@435 1268 } else if( !reg3->is_valid() ) {
duke@435 1269 assert( !reg4->is_valid(), "valid halvsies" );
duke@435 1270 } else {
duke@435 1271 assert( reg1 != reg2, "calling conv. must produce distinct regs");
duke@435 1272 assert( reg1 != reg3, "calling conv. must produce distinct regs");
duke@435 1273 assert( reg1 != reg4, "calling conv. must produce distinct regs");
duke@435 1274 assert( reg2 != reg3, "calling conv. must produce distinct regs");
duke@435 1275 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
duke@435 1276 assert( reg3 != reg4, "calling conv. must produce distinct regs");
duke@435 1277 }
duke@435 1278 }
duke@435 1279 }
duke@435 1280 }
duke@435 1281 #endif
duke@435 1282
duke@435 1283 // Visit each argument. Compute its outgoing register mask.
duke@435 1284 // Return results now can have 2 bits returned.
duke@435 1285 // Compute max over all outgoing arguments both per call-site
duke@435 1286 // and over the entire method.
duke@435 1287 for( i = 0; i < argcnt; i++ ) {
duke@435 1288 // Address of incoming argument mask to fill in
duke@435 1289 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
duke@435 1290 if( !parm_regs[i].first()->is_valid() &&
duke@435 1291 !parm_regs[i].second()->is_valid() ) {
duke@435 1292 continue; // Avoid Halves
duke@435 1293 }
duke@435 1294 // Grab first register, adjust stack slots and insert in mask.
duke@435 1295 OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1296 if (OptoReg::is_valid(reg1))
duke@435 1297 rm->Insert( reg1 );
duke@435 1298 // Grab second register (if any), adjust stack slots and insert in mask.
duke@435 1299 OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1300 if (OptoReg::is_valid(reg2))
duke@435 1301 rm->Insert( reg2 );
duke@435 1302 } // End of for all arguments
duke@435 1303
duke@435 1304 // Compute number of stack slots needed to restore stack in case of
duke@435 1305 // Pascal-style argument popping.
duke@435 1306 mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
duke@435 1307 }
duke@435 1308
duke@435 1309 // Compute the max stack slot killed by any call. These will not be
duke@435 1310 // available for debug info, and will be used to adjust FIRST_STACK_mask
duke@435 1311 // after all call sites have been visited.
duke@435 1312 if( _out_arg_limit < out_arg_limit_per_call)
duke@435 1313 _out_arg_limit = out_arg_limit_per_call;
duke@435 1314
duke@435 1315 if (mcall) {
duke@435 1316 // Kill the outgoing argument area, including any non-argument holes and
duke@435 1317 // any legacy C-killed slots. Use Fat-Projections to do the killing.
duke@435 1318 // Since the max-per-method covers the max-per-call-site and debug info
duke@435 1319 // is excluded on the max-per-method basis, debug info cannot land in
duke@435 1320 // this killed area.
duke@435 1321 uint r_cnt = mcall->tf()->range()->cnt();
kvn@4115 1322 MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
kvn@3882 1323 if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
duke@435 1324 C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
duke@435 1325 } else {
duke@435 1326 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
duke@435 1327 proj->_rout.Insert(OptoReg::Name(i));
duke@435 1328 }
adlertz@5539 1329 if (proj->_rout.is_NotEmpty()) {
adlertz@5539 1330 push_projection(proj);
adlertz@5539 1331 }
duke@435 1332 }
duke@435 1333 // Transfer the safepoint information from the call to the mcall
duke@435 1334 // Move the JVMState list
duke@435 1335 msfpt->set_jvms(sfpt->jvms());
duke@435 1336 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
duke@435 1337 jvms->set_map(sfpt);
duke@435 1338 }
duke@435 1339
duke@435 1340 // Debug inputs begin just after the last incoming parameter
duke@435 1341 assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
duke@435 1342 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
duke@435 1343
duke@435 1344 // Move the OopMap
duke@435 1345 msfpt->_oop_map = sfpt->_oop_map;
duke@435 1346
duke@435 1347 // Registers killed by the call are set in the local scheduling pass
duke@435 1348 // of Global Code Motion.
duke@435 1349 return msfpt;
duke@435 1350 }
duke@435 1351
duke@435 1352 //---------------------------match_tree----------------------------------------
duke@435 1353 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
duke@435 1354 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for
duke@435 1355 // making GotoNodes while building the CFG and in init_spill_mask() to identify
duke@435 1356 // a Load's result RegMask for memoization in idealreg2regmask[]
duke@435 1357 MachNode *Matcher::match_tree( const Node *n ) {
duke@435 1358 assert( n->Opcode() != Op_Phi, "cannot match" );
duke@435 1359 assert( !n->is_block_start(), "cannot match" );
duke@435 1360 // Set the mark for all locally allocated State objects.
duke@435 1361 // When this call returns, the _states_arena arena will be reset
duke@435 1362 // freeing all State objects.
duke@435 1363 ResourceMark rm( &_states_arena );
duke@435 1364
duke@435 1365 LabelRootDepth = 0;
duke@435 1366
duke@435 1367 // StoreNodes require their Memory input to match any LoadNodes
duke@435 1368 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
kvn@651 1369 #ifdef ASSERT
kvn@651 1370 Node* save_mem_node = _mem_node;
kvn@651 1371 _mem_node = n->is_Store() ? (Node*)n : NULL;
kvn@651 1372 #endif
duke@435 1373 // State object for root node of match tree
duke@435 1374 // Allocate it on _states_arena - stack allocation can cause stack overflow.
duke@435 1375 State *s = new (&_states_arena) State;
duke@435 1376 s->_kids[0] = NULL;
duke@435 1377 s->_kids[1] = NULL;
duke@435 1378 s->_leaf = (Node*)n;
duke@435 1379 // Label the input tree, allocating labels from top-level arena
duke@435 1380 Label_Root( n, s, n->in(0), mem );
duke@435 1381 if (C->failing()) return NULL;
duke@435 1382
duke@435 1383 // The minimum cost match for the whole tree is found at the root State
duke@435 1384 uint mincost = max_juint;
duke@435 1385 uint cost = max_juint;
duke@435 1386 uint i;
duke@435 1387 for( i = 0; i < NUM_OPERANDS; i++ ) {
duke@435 1388 if( s->valid(i) && // valid entry and
duke@435 1389 s->_cost[i] < cost && // low cost and
duke@435 1390 s->_rule[i] >= NUM_OPERANDS ) // not an operand
duke@435 1391 cost = s->_cost[mincost=i];
duke@435 1392 }
duke@435 1393 if (mincost == max_juint) {
duke@435 1394 #ifndef PRODUCT
duke@435 1395 tty->print("No matching rule for:");
duke@435 1396 s->dump();
duke@435 1397 #endif
duke@435 1398 Matcher::soft_match_failure();
duke@435 1399 return NULL;
duke@435 1400 }
duke@435 1401 // Reduce input tree based upon the state labels to machine Nodes
duke@435 1402 MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
duke@435 1403 #ifdef ASSERT
duke@435 1404 _old2new_map.map(n->_idx, m);
never@657 1405 _new2old_map.map(m->_idx, (Node*)n);
duke@435 1406 #endif
duke@435 1407
duke@435 1408 // Add any Matcher-ignored edges
duke@435 1409 uint cnt = n->req();
duke@435 1410 uint start = 1;
duke@435 1411 if( mem != (Node*)1 ) start = MemNode::Memory+1;
kvn@603 1412 if( n->is_AddP() ) {
duke@435 1413 assert( mem == (Node*)1, "" );
duke@435 1414 start = AddPNode::Base+1;
duke@435 1415 }
duke@435 1416 for( i = start; i < cnt; i++ ) {
duke@435 1417 if( !n->match_edge(i) ) {
duke@435 1418 if( i < m->req() )
duke@435 1419 m->ins_req( i, n->in(i) );
duke@435 1420 else
duke@435 1421 m->add_req( n->in(i) );
duke@435 1422 }
duke@435 1423 }
duke@435 1424
kvn@651 1425 debug_only( _mem_node = save_mem_node; )
duke@435 1426 return m;
duke@435 1427 }
duke@435 1428
duke@435 1429
duke@435 1430 //------------------------------match_into_reg---------------------------------
duke@435 1431 // Choose to either match this Node in a register or part of the current
duke@435 1432 // match tree. Return true for requiring a register and false for matching
duke@435 1433 // as part of the current match tree.
duke@435 1434 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
duke@435 1435
duke@435 1436 const Type *t = m->bottom_type();
duke@435 1437
kvn@3390 1438 if (t->singleton()) {
duke@435 1439 // Never force constants into registers. Allow them to match as
duke@435 1440 // constants or registers. Copies of the same value will share
kvn@603 1441 // the same register. See find_shared_node.
duke@435 1442 return false;
duke@435 1443 } else { // Not a constant
duke@435 1444 // Stop recursion if they have different Controls.
kvn@3390 1445 Node* m_control = m->in(0);
kvn@3390 1446 // Control of load's memory can post-dominates load's control.
kvn@3390 1447 // So use it since load can't float above its memory.
kvn@3390 1448 Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
kvn@3390 1449 if (control && m_control && control != m_control && control != mem_control) {
duke@435 1450
duke@435 1451 // Actually, we can live with the most conservative control we
duke@435 1452 // find, if it post-dominates the others. This allows us to
duke@435 1453 // pick up load/op/store trees where the load can float a little
duke@435 1454 // above the store.
duke@435 1455 Node *x = control;
kvn@3390 1456 const uint max_scan = 6; // Arbitrary scan cutoff
duke@435 1457 uint j;
kvn@3390 1458 for (j=0; j<max_scan; j++) {
kvn@3390 1459 if (x->is_Region()) // Bail out at merge points
duke@435 1460 return true;
duke@435 1461 x = x->in(0);
kvn@3390 1462 if (x == m_control) // Does 'control' post-dominate
duke@435 1463 break; // m->in(0)? If so, we can use it
kvn@3390 1464 if (x == mem_control) // Does 'control' post-dominate
kvn@3390 1465 break; // mem_control? If so, we can use it
duke@435 1466 }
kvn@3390 1467 if (j == max_scan) // No post-domination before scan end?
duke@435 1468 return true; // Then break the match tree up
duke@435 1469 }
roland@4159 1470 if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
roland@4159 1471 (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
coleenp@548 1472 // These are commonly used in address expressions and can
kvn@603 1473 // efficiently fold into them on X64 in some cases.
kvn@603 1474 return false;
coleenp@548 1475 }
duke@435 1476 }
duke@435 1477
twisti@1040 1478 // Not forceable cloning. If shared, put it into a register.
duke@435 1479 return shared;
duke@435 1480 }
duke@435 1481
duke@435 1482
duke@435 1483 //------------------------------Instruction Selection--------------------------
duke@435 1484 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
duke@435 1485 // ideal nodes to machine instructions. Trees are delimited by shared Nodes,
duke@435 1486 // things the Matcher does not match (e.g., Memory), and things with different
duke@435 1487 // Controls (hence forced into different blocks). We pass in the Control
duke@435 1488 // selected for this entire State tree.
duke@435 1489
duke@435 1490 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
duke@435 1491 // Store and the Load must have identical Memories (as well as identical
duke@435 1492 // pointers). Since the Matcher does not have anything for Memory (and
duke@435 1493 // does not handle DAGs), I have to match the Memory input myself. If the
duke@435 1494 // Tree root is a Store, I require all Loads to have the identical memory.
duke@435 1495 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
duke@435 1496 // Since Label_Root is a recursive function, its possible that we might run
duke@435 1497 // out of stack space. See bugs 6272980 & 6227033 for more info.
duke@435 1498 LabelRootDepth++;
duke@435 1499 if (LabelRootDepth > MaxLabelRootDepth) {
duke@435 1500 C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
duke@435 1501 return NULL;
duke@435 1502 }
duke@435 1503 uint care = 0; // Edges matcher cares about
duke@435 1504 uint cnt = n->req();
duke@435 1505 uint i = 0;
duke@435 1506
duke@435 1507 // Examine children for memory state
duke@435 1508 // Can only subsume a child into your match-tree if that child's memory state
duke@435 1509 // is not modified along the path to another input.
duke@435 1510 // It is unsafe even if the other inputs are separate roots.
duke@435 1511 Node *input_mem = NULL;
duke@435 1512 for( i = 1; i < cnt; i++ ) {
duke@435 1513 if( !n->match_edge(i) ) continue;
duke@435 1514 Node *m = n->in(i); // Get ith input
duke@435 1515 assert( m, "expect non-null children" );
duke@435 1516 if( m->is_Load() ) {
duke@435 1517 if( input_mem == NULL ) {
duke@435 1518 input_mem = m->in(MemNode::Memory);
duke@435 1519 } else if( input_mem != m->in(MemNode::Memory) ) {
duke@435 1520 input_mem = NodeSentinel;
duke@435 1521 }
duke@435 1522 }
duke@435 1523 }
duke@435 1524
duke@435 1525 for( i = 1; i < cnt; i++ ){// For my children
duke@435 1526 if( !n->match_edge(i) ) continue;
duke@435 1527 Node *m = n->in(i); // Get ith input
duke@435 1528 // Allocate states out of a private arena
duke@435 1529 State *s = new (&_states_arena) State;
duke@435 1530 svec->_kids[care++] = s;
duke@435 1531 assert( care <= 2, "binary only for now" );
duke@435 1532
duke@435 1533 // Recursively label the State tree.
duke@435 1534 s->_kids[0] = NULL;
duke@435 1535 s->_kids[1] = NULL;
duke@435 1536 s->_leaf = m;
duke@435 1537
duke@435 1538 // Check for leaves of the State Tree; things that cannot be a part of
duke@435 1539 // the current tree. If it finds any, that value is matched as a
duke@435 1540 // register operand. If not, then the normal matching is used.
duke@435 1541 if( match_into_reg(n, m, control, i, is_shared(m)) ||
duke@435 1542 //
duke@435 1543 // Stop recursion if this is LoadNode and the root of this tree is a
duke@435 1544 // StoreNode and the load & store have different memories.
duke@435 1545 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
duke@435 1546 // Can NOT include the match of a subtree when its memory state
duke@435 1547 // is used by any of the other subtrees
duke@435 1548 (input_mem == NodeSentinel) ) {
duke@435 1549 #ifndef PRODUCT
duke@435 1550 // Print when we exclude matching due to different memory states at input-loads
duke@435 1551 if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
duke@435 1552 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
duke@435 1553 tty->print_cr("invalid input_mem");
duke@435 1554 }
duke@435 1555 #endif
duke@435 1556 // Switch to a register-only opcode; this value must be in a register
duke@435 1557 // and cannot be subsumed as part of a larger instruction.
duke@435 1558 s->DFA( m->ideal_reg(), m );
duke@435 1559
duke@435 1560 } else {
duke@435 1561 // If match tree has no control and we do, adopt it for entire tree
duke@435 1562 if( control == NULL && m->in(0) != NULL && m->req() > 1 )
duke@435 1563 control = m->in(0); // Pick up control
duke@435 1564 // Else match as a normal part of the match tree.
duke@435 1565 control = Label_Root(m,s,control,mem);
duke@435 1566 if (C->failing()) return NULL;
duke@435 1567 }
duke@435 1568 }
duke@435 1569
duke@435 1570
duke@435 1571 // Call DFA to match this node, and return
duke@435 1572 svec->DFA( n->Opcode(), n );
duke@435 1573
duke@435 1574 #ifdef ASSERT
duke@435 1575 uint x;
duke@435 1576 for( x = 0; x < _LAST_MACH_OPER; x++ )
duke@435 1577 if( svec->valid(x) )
duke@435 1578 break;
duke@435 1579
duke@435 1580 if (x >= _LAST_MACH_OPER) {
duke@435 1581 n->dump();
duke@435 1582 svec->dump();
duke@435 1583 assert( false, "bad AD file" );
duke@435 1584 }
duke@435 1585 #endif
duke@435 1586 return control;
duke@435 1587 }
duke@435 1588
duke@435 1589
duke@435 1590 // Con nodes reduced using the same rule can share their MachNode
duke@435 1591 // which reduces the number of copies of a constant in the final
duke@435 1592 // program. The register allocator is free to split uses later to
duke@435 1593 // split live ranges.
kvn@603 1594 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
roland@4159 1595 if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
duke@435 1596
duke@435 1597 // See if this Con has already been reduced using this rule.
kvn@603 1598 if (_shared_nodes.Size() <= leaf->_idx) return NULL;
kvn@603 1599 MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
duke@435 1600 if (last != NULL && rule == last->rule()) {
kvn@603 1601 // Don't expect control change for DecodeN
roland@4159 1602 if (leaf->is_DecodeNarrowPtr())
kvn@603 1603 return last;
duke@435 1604 // Get the new space root.
duke@435 1605 Node* xroot = new_node(C->root());
duke@435 1606 if (xroot == NULL) {
duke@435 1607 // This shouldn't happen give the order of matching.
duke@435 1608 return NULL;
duke@435 1609 }
duke@435 1610
duke@435 1611 // Shared constants need to have their control be root so they
duke@435 1612 // can be scheduled properly.
duke@435 1613 Node* control = last->in(0);
duke@435 1614 if (control != xroot) {
duke@435 1615 if (control == NULL || control == C->root()) {
duke@435 1616 last->set_req(0, xroot);
duke@435 1617 } else {
duke@435 1618 assert(false, "unexpected control");
duke@435 1619 return NULL;
duke@435 1620 }
duke@435 1621 }
duke@435 1622 return last;
duke@435 1623 }
duke@435 1624 return NULL;
duke@435 1625 }
duke@435 1626
duke@435 1627
duke@435 1628 //------------------------------ReduceInst-------------------------------------
duke@435 1629 // Reduce a State tree (with given Control) into a tree of MachNodes.
duke@435 1630 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
duke@435 1631 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes.
duke@435 1632 // Each MachNode has a number of complicated MachOper operands; each
duke@435 1633 // MachOper also covers a further tree of Ideal Nodes.
duke@435 1634
duke@435 1635 // The root of the Ideal match tree is always an instruction, so we enter
duke@435 1636 // the recursion here. After building the MachNode, we need to recurse
duke@435 1637 // the tree checking for these cases:
duke@435 1638 // (1) Child is an instruction -
duke@435 1639 // Build the instruction (recursively), add it as an edge.
duke@435 1640 // Build a simple operand (register) to hold the result of the instruction.
duke@435 1641 // (2) Child is an interior part of an instruction -
duke@435 1642 // Skip over it (do nothing)
duke@435 1643 // (3) Child is the start of a operand -
duke@435 1644 // Build the operand, place it inside the instruction
duke@435 1645 // Call ReduceOper.
duke@435 1646 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
duke@435 1647 assert( rule >= NUM_OPERANDS, "called with operand rule" );
duke@435 1648
kvn@603 1649 MachNode* shared_node = find_shared_node(s->_leaf, rule);
kvn@603 1650 if (shared_node != NULL) {
kvn@603 1651 return shared_node;
duke@435 1652 }
duke@435 1653
duke@435 1654 // Build the object to represent this state & prepare for recursive calls
duke@435 1655 MachNode *mach = s->MachNodeGenerator( rule, C );
duke@435 1656 mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
duke@435 1657 assert( mach->_opnds[0] != NULL, "Missing result operand" );
duke@435 1658 Node *leaf = s->_leaf;
duke@435 1659 // Check for instruction or instruction chain rule
duke@435 1660 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
never@744 1661 assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
never@744 1662 "duplicating node that's already been matched");
duke@435 1663 // Instruction
duke@435 1664 mach->add_req( leaf->in(0) ); // Set initial control
duke@435 1665 // Reduce interior of complex instruction
duke@435 1666 ReduceInst_Interior( s, rule, mem, mach, 1 );
duke@435 1667 } else {
duke@435 1668 // Instruction chain rules are data-dependent on their inputs
duke@435 1669 mach->add_req(0); // Set initial control to none
duke@435 1670 ReduceInst_Chain_Rule( s, rule, mem, mach );
duke@435 1671 }
duke@435 1672
duke@435 1673 // If a Memory was used, insert a Memory edge
kvn@651 1674 if( mem != (Node*)1 ) {
duke@435 1675 mach->ins_req(MemNode::Memory,mem);
kvn@651 1676 #ifdef ASSERT
kvn@651 1677 // Verify adr type after matching memory operation
kvn@651 1678 const MachOper* oper = mach->memory_operand();
kvn@1286 1679 if (oper != NULL && oper != (MachOper*)-1) {
kvn@651 1680 // It has a unique memory operand. Find corresponding ideal mem node.
kvn@651 1681 Node* m = NULL;
kvn@651 1682 if (leaf->is_Mem()) {
kvn@651 1683 m = leaf;
kvn@651 1684 } else {
kvn@651 1685 m = _mem_node;
kvn@651 1686 assert(m != NULL && m->is_Mem(), "expecting memory node");
kvn@651 1687 }
kvn@803 1688 const Type* mach_at = mach->adr_type();
kvn@803 1689 // DecodeN node consumed by an address may have different type
kvn@803 1690 // then its input. Don't compare types for such case.
kvn@1077 1691 if (m->adr_type() != mach_at &&
roland@4159 1692 (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
kvn@1077 1693 m->in(MemNode::Address)->is_AddP() &&
roland@4159 1694 m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
kvn@1077 1695 m->in(MemNode::Address)->is_AddP() &&
kvn@1077 1696 m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
roland@4159 1697 m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
kvn@803 1698 mach_at = m->adr_type();
kvn@803 1699 }
kvn@803 1700 if (m->adr_type() != mach_at) {
kvn@651 1701 m->dump();
kvn@651 1702 tty->print_cr("mach:");
kvn@651 1703 mach->dump(1);
kvn@651 1704 }
kvn@803 1705 assert(m->adr_type() == mach_at, "matcher should not change adr type");
kvn@651 1706 }
kvn@651 1707 #endif
kvn@651 1708 }
duke@435 1709
duke@435 1710 // If the _leaf is an AddP, insert the base edge
adlertz@5539 1711 if (leaf->is_AddP()) {
duke@435 1712 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
adlertz@5539 1713 }
duke@435 1714
adlertz@5539 1715 uint number_of_projections_prior = number_of_projections();
duke@435 1716
duke@435 1717 // Perform any 1-to-many expansions required
adlertz@5539 1718 MachNode *ex = mach->Expand(s, _projection_list, mem);
adlertz@5539 1719 if (ex != mach) {
duke@435 1720 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
duke@435 1721 if( ex->in(1)->is_Con() )
duke@435 1722 ex->in(1)->set_req(0, C->root());
duke@435 1723 // Remove old node from the graph
duke@435 1724 for( uint i=0; i<mach->req(); i++ ) {
duke@435 1725 mach->set_req(i,NULL);
duke@435 1726 }
never@657 1727 #ifdef ASSERT
never@657 1728 _new2old_map.map(ex->_idx, s->_leaf);
never@657 1729 #endif
duke@435 1730 }
duke@435 1731
duke@435 1732 // PhaseChaitin::fixup_spills will sometimes generate spill code
duke@435 1733 // via the matcher. By the time, nodes have been wired into the CFG,
duke@435 1734 // and any further nodes generated by expand rules will be left hanging
duke@435 1735 // in space, and will not get emitted as output code. Catch this.
duke@435 1736 // Also, catch any new register allocation constraints ("projections")
duke@435 1737 // generated belatedly during spill code generation.
duke@435 1738 if (_allocation_started) {
duke@435 1739 guarantee(ex == mach, "no expand rules during spill generation");
adlertz@5539 1740 guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
duke@435 1741 }
duke@435 1742
roland@4159 1743 if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
duke@435 1744 // Record the con for sharing
kvn@603 1745 _shared_nodes.map(leaf->_idx, ex);
duke@435 1746 }
duke@435 1747
duke@435 1748 return ex;
duke@435 1749 }
duke@435 1750
duke@435 1751 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1752 // 'op' is what I am expecting to receive
duke@435 1753 int op = _leftOp[rule];
duke@435 1754 // Operand type to catch childs result
duke@435 1755 // This is what my child will give me.
duke@435 1756 int opnd_class_instance = s->_rule[op];
duke@435 1757 // Choose between operand class or not.
twisti@1040 1758 // This is what I will receive.
duke@435 1759 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1760 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1761 int newrule = s->_rule[catch_op];
duke@435 1762
duke@435 1763 if( newrule < NUM_OPERANDS ) {
duke@435 1764 // Chain from operand or operand class, may be output of shared node
duke@435 1765 assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
duke@435 1766 "Bad AD file: Instruction chain rule must chain from operand");
duke@435 1767 // Insert operand into array of operands for this instruction
duke@435 1768 mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
duke@435 1769
duke@435 1770 ReduceOper( s, newrule, mem, mach );
duke@435 1771 } else {
duke@435 1772 // Chain from the result of an instruction
duke@435 1773 assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
duke@435 1774 mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1775 Node *mem1 = (Node*)1;
kvn@651 1776 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1777 mach->add_req( ReduceInst(s, newrule, mem1) );
kvn@651 1778 debug_only(_mem_node = save_mem_node;)
duke@435 1779 }
duke@435 1780 return;
duke@435 1781 }
duke@435 1782
duke@435 1783
duke@435 1784 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
duke@435 1785 if( s->_leaf->is_Load() ) {
duke@435 1786 Node *mem2 = s->_leaf->in(MemNode::Memory);
duke@435 1787 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
kvn@651 1788 debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
duke@435 1789 mem = mem2;
duke@435 1790 }
duke@435 1791 if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
duke@435 1792 if( mach->in(0) == NULL )
duke@435 1793 mach->set_req(0, s->_leaf->in(0));
duke@435 1794 }
duke@435 1795
duke@435 1796 // Now recursively walk the state tree & add operand list.
duke@435 1797 for( uint i=0; i<2; i++ ) { // binary tree
duke@435 1798 State *newstate = s->_kids[i];
duke@435 1799 if( newstate == NULL ) break; // Might only have 1 child
duke@435 1800 // 'op' is what I am expecting to receive
duke@435 1801 int op;
duke@435 1802 if( i == 0 ) {
duke@435 1803 op = _leftOp[rule];
duke@435 1804 } else {
duke@435 1805 op = _rightOp[rule];
duke@435 1806 }
duke@435 1807 // Operand type to catch childs result
duke@435 1808 // This is what my child will give me.
duke@435 1809 int opnd_class_instance = newstate->_rule[op];
duke@435 1810 // Choose between operand class or not.
duke@435 1811 // This is what I will receive.
duke@435 1812 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1813 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1814 int newrule = newstate->_rule[catch_op];
duke@435 1815
duke@435 1816 if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
duke@435 1817 // Operand/operandClass
duke@435 1818 // Insert operand into array of operands for this instruction
duke@435 1819 mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
duke@435 1820 ReduceOper( newstate, newrule, mem, mach );
duke@435 1821
duke@435 1822 } else { // Child is internal operand or new instruction
duke@435 1823 if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
duke@435 1824 // internal operand --> call ReduceInst_Interior
duke@435 1825 // Interior of complex instruction. Do nothing but recurse.
duke@435 1826 num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
duke@435 1827 } else {
duke@435 1828 // instruction --> call build operand( ) to catch result
duke@435 1829 // --> ReduceInst( newrule )
duke@435 1830 mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1831 Node *mem1 = (Node*)1;
kvn@651 1832 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1833 mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
kvn@651 1834 debug_only(_mem_node = save_mem_node;)
duke@435 1835 }
duke@435 1836 }
duke@435 1837 assert( mach->_opnds[num_opnds-1], "" );
duke@435 1838 }
duke@435 1839 return num_opnds;
duke@435 1840 }
duke@435 1841
duke@435 1842 // This routine walks the interior of possible complex operands.
duke@435 1843 // At each point we check our children in the match tree:
duke@435 1844 // (1) No children -
duke@435 1845 // We are a leaf; add _leaf field as an input to the MachNode
duke@435 1846 // (2) Child is an internal operand -
duke@435 1847 // Skip over it ( do nothing )
duke@435 1848 // (3) Child is an instruction -
duke@435 1849 // Call ReduceInst recursively and
duke@435 1850 // and instruction as an input to the MachNode
duke@435 1851 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1852 assert( rule < _LAST_MACH_OPER, "called with operand rule" );
duke@435 1853 State *kid = s->_kids[0];
duke@435 1854 assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
duke@435 1855
duke@435 1856 // Leaf? And not subsumed?
duke@435 1857 if( kid == NULL && !_swallowed[rule] ) {
duke@435 1858 mach->add_req( s->_leaf ); // Add leaf pointer
duke@435 1859 return; // Bail out
duke@435 1860 }
duke@435 1861
duke@435 1862 if( s->_leaf->is_Load() ) {
duke@435 1863 assert( mem == (Node*)1, "multiple Memories being matched at once?" );
duke@435 1864 mem = s->_leaf->in(MemNode::Memory);
kvn@651 1865 debug_only(_mem_node = s->_leaf;)
duke@435 1866 }
duke@435 1867 if( s->_leaf->in(0) && s->_leaf->req() > 1) {
duke@435 1868 if( !mach->in(0) )
duke@435 1869 mach->set_req(0,s->_leaf->in(0));
duke@435 1870 else {
duke@435 1871 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
duke@435 1872 }
duke@435 1873 }
duke@435 1874
duke@435 1875 for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree
duke@435 1876 int newrule;
sla@5237 1877 if( i == 0)
duke@435 1878 newrule = kid->_rule[_leftOp[rule]];
duke@435 1879 else
duke@435 1880 newrule = kid->_rule[_rightOp[rule]];
duke@435 1881
duke@435 1882 if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
duke@435 1883 // Internal operand; recurse but do nothing else
duke@435 1884 ReduceOper( kid, newrule, mem, mach );
duke@435 1885
duke@435 1886 } else { // Child is a new instruction
duke@435 1887 // Reduce the instruction, and add a direct pointer from this
duke@435 1888 // machine instruction to the newly reduced one.
duke@435 1889 Node *mem1 = (Node*)1;
kvn@651 1890 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1891 mach->add_req( ReduceInst( kid, newrule, mem1 ) );
kvn@651 1892 debug_only(_mem_node = save_mem_node;)
duke@435 1893 }
duke@435 1894 }
duke@435 1895 }
duke@435 1896
duke@435 1897
duke@435 1898 // -------------------------------------------------------------------------
duke@435 1899 // Java-Java calling convention
duke@435 1900 // (what you use when Java calls Java)
duke@435 1901
duke@435 1902 //------------------------------find_receiver----------------------------------
duke@435 1903 // For a given signature, return the OptoReg for parameter 0.
duke@435 1904 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
duke@435 1905 VMRegPair regs;
duke@435 1906 BasicType sig_bt = T_OBJECT;
duke@435 1907 calling_convention(&sig_bt, &regs, 1, is_outgoing);
duke@435 1908 // Return argument 0 register. In the LP64 build pointers
duke@435 1909 // take 2 registers, but the VM wants only the 'main' name.
duke@435 1910 return OptoReg::as_OptoReg(regs.first());
duke@435 1911 }
duke@435 1912
duke@435 1913 // A method-klass-holder may be passed in the inline_cache_reg
duke@435 1914 // and then expanded into the inline_cache_reg and a method_oop register
duke@435 1915 // defined in ad_<arch>.cpp
duke@435 1916
duke@435 1917
duke@435 1918 //------------------------------find_shared------------------------------------
duke@435 1919 // Set bits if Node is shared or otherwise a root
duke@435 1920 void Matcher::find_shared( Node *n ) {
duke@435 1921 // Allocate stack of size C->unique() * 2 to avoid frequent realloc
duke@435 1922 MStack mstack(C->unique() * 2);
kvn@1021 1923 // Mark nodes as address_visited if they are inputs to an address expression
kvn@1021 1924 VectorSet address_visited(Thread::current()->resource_area());
duke@435 1925 mstack.push(n, Visit); // Don't need to pre-visit root node
duke@435 1926 while (mstack.is_nonempty()) {
duke@435 1927 n = mstack.node(); // Leave node on stack
duke@435 1928 Node_State nstate = mstack.state();
kvn@1021 1929 uint nop = n->Opcode();
duke@435 1930 if (nstate == Pre_Visit) {
kvn@1021 1931 if (address_visited.test(n->_idx)) { // Visited in address already?
kvn@1021 1932 // Flag as visited and shared now.
kvn@1021 1933 set_visited(n);
kvn@1021 1934 }
duke@435 1935 if (is_visited(n)) { // Visited already?
duke@435 1936 // Node is shared and has no reason to clone. Flag it as shared.
duke@435 1937 // This causes it to match into a register for the sharing.
duke@435 1938 set_shared(n); // Flag as shared and
duke@435 1939 mstack.pop(); // remove node from stack
duke@435 1940 continue;
duke@435 1941 }
duke@435 1942 nstate = Visit; // Not already visited; so visit now
duke@435 1943 }
duke@435 1944 if (nstate == Visit) {
duke@435 1945 mstack.set_state(Post_Visit);
duke@435 1946 set_visited(n); // Flag as visited now
duke@435 1947 bool mem_op = false;
duke@435 1948
kvn@1021 1949 switch( nop ) { // Handle some opcodes special
duke@435 1950 case Op_Phi: // Treat Phis as shared roots
duke@435 1951 case Op_Parm:
duke@435 1952 case Op_Proj: // All handled specially during matching
kvn@498 1953 case Op_SafePointScalarObject:
duke@435 1954 set_shared(n);
duke@435 1955 set_dontcare(n);
duke@435 1956 break;
duke@435 1957 case Op_If:
duke@435 1958 case Op_CountedLoopEnd:
duke@435 1959 mstack.set_state(Alt_Post_Visit); // Alternative way
duke@435 1960 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps
duke@435 1961 // with matching cmp/branch in 1 instruction. The Matcher needs the
duke@435 1962 // Bool and CmpX side-by-side, because it can only get at constants
duke@435 1963 // that are at the leaves of Match trees, and the Bool's condition acts
duke@435 1964 // as a constant here.
duke@435 1965 mstack.push(n->in(1), Visit); // Clone the Bool
duke@435 1966 mstack.push(n->in(0), Pre_Visit); // Visit control input
duke@435 1967 continue; // while (mstack.is_nonempty())
duke@435 1968 case Op_ConvI2D: // These forms efficiently match with a prior
duke@435 1969 case Op_ConvI2F: // Load but not a following Store
duke@435 1970 if( n->in(1)->is_Load() && // Prior load
duke@435 1971 n->outcnt() == 1 && // Not already shared
duke@435 1972 n->unique_out()->is_Store() ) // Following store
duke@435 1973 set_shared(n); // Force it to be a root
duke@435 1974 break;
duke@435 1975 case Op_ReverseBytesI:
duke@435 1976 case Op_ReverseBytesL:
duke@435 1977 if( n->in(1)->is_Load() && // Prior load
duke@435 1978 n->outcnt() == 1 ) // Not already shared
duke@435 1979 set_shared(n); // Force it to be a root
duke@435 1980 break;
duke@435 1981 case Op_BoxLock: // Cant match until we get stack-regs in ADLC
duke@435 1982 case Op_IfFalse:
duke@435 1983 case Op_IfTrue:
duke@435 1984 case Op_MachProj:
duke@435 1985 case Op_MergeMem:
duke@435 1986 case Op_Catch:
duke@435 1987 case Op_CatchProj:
duke@435 1988 case Op_CProj:
rbackman@5791 1989 case Op_FlagsProj:
duke@435 1990 case Op_JumpProj:
duke@435 1991 case Op_JProj:
duke@435 1992 case Op_NeverBranch:
duke@435 1993 set_dontcare(n);
duke@435 1994 break;
duke@435 1995 case Op_Jump:
kvn@3260 1996 mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared)
duke@435 1997 mstack.push(n->in(0), Pre_Visit); // Visit Control input
duke@435 1998 continue; // while (mstack.is_nonempty())
duke@435 1999 case Op_StrComp:
cfang@1116 2000 case Op_StrEquals:
cfang@1116 2001 case Op_StrIndexOf:
rasbold@604 2002 case Op_AryEq:
kvn@4479 2003 case Op_EncodeISOArray:
duke@435 2004 set_shared(n); // Force result into register (it will be anyways)
duke@435 2005 break;
duke@435 2006 case Op_ConP: { // Convert pointers above the centerline to NUL
duke@435 2007 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
duke@435 2008 const TypePtr* tp = tn->type()->is_ptr();
duke@435 2009 if (tp->_ptr == TypePtr::AnyNull) {
duke@435 2010 tn->set_type(TypePtr::NULL_PTR);
duke@435 2011 }
duke@435 2012 break;
duke@435 2013 }
kvn@598 2014 case Op_ConN: { // Convert narrow pointers above the centerline to NUL
kvn@598 2015 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
kvn@656 2016 const TypePtr* tp = tn->type()->make_ptr();
kvn@656 2017 if (tp && tp->_ptr == TypePtr::AnyNull) {
kvn@598 2018 tn->set_type(TypeNarrowOop::NULL_PTR);
kvn@598 2019 }
kvn@598 2020 break;
kvn@598 2021 }
duke@435 2022 case Op_Binary: // These are introduced in the Post_Visit state.
duke@435 2023 ShouldNotReachHere();
duke@435 2024 break;
duke@435 2025 case Op_ClearArray:
duke@435 2026 case Op_SafePoint:
duke@435 2027 mem_op = true;
duke@435 2028 break;
kvn@1496 2029 default:
kvn@1496 2030 if( n->is_Store() ) {
kvn@1496 2031 // Do match stores, despite no ideal reg
kvn@1496 2032 mem_op = true;
kvn@1496 2033 break;
kvn@1496 2034 }
kvn@1496 2035 if( n->is_Mem() ) { // Loads and LoadStores
kvn@1496 2036 mem_op = true;
kvn@1496 2037 // Loads must be root of match tree due to prior load conflict
kvn@1496 2038 if( C->subsume_loads() == false )
kvn@1496 2039 set_shared(n);
duke@435 2040 }
duke@435 2041 // Fall into default case
duke@435 2042 if( !n->ideal_reg() )
duke@435 2043 set_dontcare(n); // Unmatchable Nodes
duke@435 2044 } // end_switch
duke@435 2045
duke@435 2046 for(int i = n->req() - 1; i >= 0; --i) { // For my children
duke@435 2047 Node *m = n->in(i); // Get ith input
duke@435 2048 if (m == NULL) continue; // Ignore NULLs
duke@435 2049 uint mop = m->Opcode();
duke@435 2050
duke@435 2051 // Must clone all producers of flags, or we will not match correctly.
duke@435 2052 // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
duke@435 2053 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags
duke@435 2054 // are also there, so we may match a float-branch to int-flags and
duke@435 2055 // expect the allocator to haul the flags from the int-side to the
duke@435 2056 // fp-side. No can do.
duke@435 2057 if( _must_clone[mop] ) {
duke@435 2058 mstack.push(m, Visit);
duke@435 2059 continue; // for(int i = ...)
duke@435 2060 }
duke@435 2061
roland@4159 2062 if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
kvn@1496 2063 // Bases used in addresses must be shared but since
kvn@1496 2064 // they are shared through a DecodeN they may appear
kvn@1496 2065 // to have a single use so force sharing here.
kvn@1496 2066 set_shared(m->in(AddPNode::Base)->in(1));
kvn@1496 2067 }
kvn@1496 2068
kvn@1496 2069 // Clone addressing expressions as they are "free" in memory access instructions
duke@435 2070 if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
kvn@1021 2071 // Some inputs for address expression are not put on stack
kvn@1021 2072 // to avoid marking them as shared and forcing them into register
kvn@1021 2073 // if they are used only in address expressions.
kvn@1021 2074 // But they should be marked as shared if there are other uses
kvn@1021 2075 // besides address expressions.
kvn@1021 2076
duke@435 2077 Node *off = m->in(AddPNode::Offset);
kvn@1021 2078 if( off->is_Con() &&
kvn@1021 2079 // When there are other uses besides address expressions
kvn@1021 2080 // put it on stack and mark as shared.
kvn@1021 2081 !is_visited(m) ) {
kvn@1021 2082 address_visited.test_set(m->_idx); // Flag as address_visited
duke@435 2083 Node *adr = m->in(AddPNode::Address);
duke@435 2084
duke@435 2085 // Intel, ARM and friends can handle 2 adds in addressing mode
kvn@603 2086 if( clone_shift_expressions && adr->is_AddP() &&
duke@435 2087 // AtomicAdd is not an addressing expression.
duke@435 2088 // Cheap to find it by looking for screwy base.
kvn@1021 2089 !adr->in(AddPNode::Base)->is_top() &&
kvn@1021 2090 // Are there other uses besides address expressions?
kvn@1021 2091 !is_visited(adr) ) {
kvn@1021 2092 address_visited.set(adr->_idx); // Flag as address_visited
duke@435 2093 Node *shift = adr->in(AddPNode::Offset);
duke@435 2094 // Check for shift by small constant as well
duke@435 2095 if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
kvn@1021 2096 shift->in(2)->get_int() <= 3 &&
kvn@1021 2097 // Are there other uses besides address expressions?
kvn@1021 2098 !is_visited(shift) ) {
kvn@1021 2099 address_visited.set(shift->_idx); // Flag as address_visited
duke@435 2100 mstack.push(shift->in(2), Visit);
kvn@1021 2101 Node *conv = shift->in(1);
duke@435 2102 #ifdef _LP64
duke@435 2103 // Allow Matcher to match the rule which bypass
duke@435 2104 // ConvI2L operation for an array index on LP64
duke@435 2105 // if the index value is positive.
kvn@1021 2106 if( conv->Opcode() == Op_ConvI2L &&
kvn@1021 2107 conv->as_Type()->type()->is_long()->_lo >= 0 &&
kvn@1021 2108 // Are there other uses besides address expressions?
kvn@1021 2109 !is_visited(conv) ) {
kvn@1021 2110 address_visited.set(conv->_idx); // Flag as address_visited
kvn@1021 2111 mstack.push(conv->in(1), Pre_Visit);
duke@435 2112 } else
duke@435 2113 #endif
kvn@1021 2114 mstack.push(conv, Pre_Visit);
duke@435 2115 } else {
duke@435 2116 mstack.push(shift, Pre_Visit);
duke@435 2117 }
duke@435 2118 mstack.push(adr->in(AddPNode::Address), Pre_Visit);
duke@435 2119 mstack.push(adr->in(AddPNode::Base), Pre_Visit);
duke@435 2120 } else { // Sparc, Alpha, PPC and friends
duke@435 2121 mstack.push(adr, Pre_Visit);
duke@435 2122 }
duke@435 2123
duke@435 2124 // Clone X+offset as it also folds into most addressing expressions
duke@435 2125 mstack.push(off, Visit);
duke@435 2126 mstack.push(m->in(AddPNode::Base), Pre_Visit);
duke@435 2127 continue; // for(int i = ...)
duke@435 2128 } // if( off->is_Con() )
duke@435 2129 } // if( mem_op &&
duke@435 2130 mstack.push(m, Pre_Visit);
duke@435 2131 } // for(int i = ...)
duke@435 2132 }
duke@435 2133 else if (nstate == Alt_Post_Visit) {
duke@435 2134 mstack.pop(); // Remove node from stack
duke@435 2135 // We cannot remove the Cmp input from the Bool here, as the Bool may be
duke@435 2136 // shared and all users of the Bool need to move the Cmp in parallel.
duke@435 2137 // This leaves both the Bool and the If pointing at the Cmp. To
duke@435 2138 // prevent the Matcher from trying to Match the Cmp along both paths
duke@435 2139 // BoolNode::match_edge always returns a zero.
duke@435 2140
duke@435 2141 // We reorder the Op_If in a pre-order manner, so we can visit without
twisti@1040 2142 // accidentally sharing the Cmp (the Bool and the If make 2 users).
duke@435 2143 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
duke@435 2144 }
duke@435 2145 else if (nstate == Post_Visit) {
duke@435 2146 mstack.pop(); // Remove node from stack
duke@435 2147
duke@435 2148 // Now hack a few special opcodes
duke@435 2149 switch( n->Opcode() ) { // Handle some opcodes special
duke@435 2150 case Op_StorePConditional:
kvn@855 2151 case Op_StoreIConditional:
duke@435 2152 case Op_StoreLConditional:
duke@435 2153 case Op_CompareAndSwapI:
duke@435 2154 case Op_CompareAndSwapL:
coleenp@548 2155 case Op_CompareAndSwapP:
coleenp@548 2156 case Op_CompareAndSwapN: { // Convert trinary to binary-tree
duke@435 2157 Node *newval = n->in(MemNode::ValueIn );
roland@4106 2158 Node *oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
kvn@4115 2159 Node *pair = new (C) BinaryNode( oldval, newval );
duke@435 2160 n->set_req(MemNode::ValueIn,pair);
roland@4106 2161 n->del_req(LoadStoreConditionalNode::ExpectedIn);
duke@435 2162 break;
duke@435 2163 }
duke@435 2164 case Op_CMoveD: // Convert trinary to binary-tree
duke@435 2165 case Op_CMoveF:
duke@435 2166 case Op_CMoveI:
duke@435 2167 case Op_CMoveL:
kvn@599 2168 case Op_CMoveN:
duke@435 2169 case Op_CMoveP: {
duke@435 2170 // Restructure into a binary tree for Matching. It's possible that
duke@435 2171 // we could move this code up next to the graph reshaping for IfNodes
duke@435 2172 // or vice-versa, but I do not want to debug this for Ladybird.
duke@435 2173 // 10/2/2000 CNC.
kvn@4115 2174 Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
duke@435 2175 n->set_req(1,pair1);
kvn@4115 2176 Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
duke@435 2177 n->set_req(2,pair2);
duke@435 2178 n->del_req(3);
duke@435 2179 break;
duke@435 2180 }
kvn@2877 2181 case Op_LoopLimit: {
kvn@4115 2182 Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
kvn@2877 2183 n->set_req(1,pair1);
kvn@2877 2184 n->set_req(2,n->in(3));
kvn@2877 2185 n->del_req(3);
kvn@2877 2186 break;
kvn@2877 2187 }
kvn@1421 2188 case Op_StrEquals: {
kvn@4115 2189 Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
kvn@1421 2190 n->set_req(2,pair1);
kvn@1421 2191 n->set_req(3,n->in(4));
kvn@1421 2192 n->del_req(4);
kvn@1421 2193 break;
kvn@1421 2194 }
kvn@1421 2195 case Op_StrComp:
kvn@1421 2196 case Op_StrIndexOf: {
kvn@4115 2197 Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
kvn@1421 2198 n->set_req(2,pair1);
kvn@4115 2199 Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
kvn@1421 2200 n->set_req(3,pair2);
kvn@1421 2201 n->del_req(5);
kvn@1421 2202 n->del_req(4);
kvn@1421 2203 break;
kvn@1421 2204 }
kvn@4479 2205 case Op_EncodeISOArray: {
kvn@4479 2206 // Restructure into a binary tree for Matching.
kvn@4479 2207 Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
kvn@4479 2208 n->set_req(3, pair);
kvn@4479 2209 n->del_req(4);
kvn@4479 2210 break;
kvn@4479 2211 }
duke@435 2212 default:
duke@435 2213 break;
duke@435 2214 }
duke@435 2215 }
duke@435 2216 else {
duke@435 2217 ShouldNotReachHere();
duke@435 2218 }
duke@435 2219 } // end of while (mstack.is_nonempty())
duke@435 2220 }
duke@435 2221
duke@435 2222 #ifdef ASSERT
duke@435 2223 // machine-independent root to machine-dependent root
duke@435 2224 void Matcher::dump_old2new_map() {
duke@435 2225 _old2new_map.dump();
duke@435 2226 }
duke@435 2227 #endif
duke@435 2228
duke@435 2229 //---------------------------collect_null_checks-------------------------------
duke@435 2230 // Find null checks in the ideal graph; write a machine-specific node for
duke@435 2231 // it. Used by later implicit-null-check handling. Actually collects
duke@435 2232 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
duke@435 2233 // value being tested.
kvn@803 2234 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
duke@435 2235 Node *iff = proj->in(0);
duke@435 2236 if( iff->Opcode() == Op_If ) {
duke@435 2237 // During matching If's have Bool & Cmp side-by-side
duke@435 2238 BoolNode *b = iff->in(1)->as_Bool();
duke@435 2239 Node *cmp = iff->in(2);
coleenp@548 2240 int opc = cmp->Opcode();
coleenp@548 2241 if (opc != Op_CmpP && opc != Op_CmpN) return;
duke@435 2242
coleenp@548 2243 const Type* ct = cmp->in(2)->bottom_type();
coleenp@548 2244 if (ct == TypePtr::NULL_PTR ||
coleenp@548 2245 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
coleenp@548 2246
kvn@803 2247 bool push_it = false;
coleenp@548 2248 if( proj->Opcode() == Op_IfTrue ) {
coleenp@548 2249 extern int all_null_checks_found;
coleenp@548 2250 all_null_checks_found++;
coleenp@548 2251 if( b->_test._test == BoolTest::ne ) {
kvn@803 2252 push_it = true;
coleenp@548 2253 }
coleenp@548 2254 } else {
coleenp@548 2255 assert( proj->Opcode() == Op_IfFalse, "" );
coleenp@548 2256 if( b->_test._test == BoolTest::eq ) {
kvn@803 2257 push_it = true;
duke@435 2258 }
duke@435 2259 }
kvn@803 2260 if( push_it ) {
kvn@803 2261 _null_check_tests.push(proj);
kvn@803 2262 Node* val = cmp->in(1);
kvn@803 2263 #ifdef _LP64
kvn@1930 2264 if (val->bottom_type()->isa_narrowoop() &&
kvn@1930 2265 !Matcher::narrow_oop_use_complex_address()) {
kvn@803 2266 //
kvn@803 2267 // Look for DecodeN node which should be pinned to orig_proj.
kvn@803 2268 // On platforms (Sparc) which can not handle 2 adds
kvn@803 2269 // in addressing mode we have to keep a DecodeN node and
kvn@803 2270 // use it to do implicit NULL check in address.
kvn@803 2271 //
kvn@803 2272 // DecodeN node was pinned to non-null path (orig_proj) during
kvn@803 2273 // CastPP transformation in final_graph_reshaping_impl().
kvn@803 2274 //
kvn@803 2275 uint cnt = orig_proj->outcnt();
kvn@803 2276 for (uint i = 0; i < orig_proj->outcnt(); i++) {
kvn@803 2277 Node* d = orig_proj->raw_out(i);
kvn@803 2278 if (d->is_DecodeN() && d->in(1) == val) {
kvn@803 2279 val = d;
kvn@803 2280 val->set_req(0, NULL); // Unpin now.
kvn@1930 2281 // Mark this as special case to distinguish from
kvn@1930 2282 // a regular case: CmpP(DecodeN, NULL).
kvn@1930 2283 val = (Node*)(((intptr_t)val) | 1);
kvn@803 2284 break;
kvn@803 2285 }
kvn@803 2286 }
kvn@803 2287 }
kvn@803 2288 #endif
kvn@803 2289 _null_check_tests.push(val);
kvn@803 2290 }
duke@435 2291 }
duke@435 2292 }
duke@435 2293 }
duke@435 2294
duke@435 2295 //---------------------------validate_null_checks------------------------------
duke@435 2296 // Its possible that the value being NULL checked is not the root of a match
duke@435 2297 // tree. If so, I cannot use the value in an implicit null check.
duke@435 2298 void Matcher::validate_null_checks( ) {
duke@435 2299 uint cnt = _null_check_tests.size();
duke@435 2300 for( uint i=0; i < cnt; i+=2 ) {
duke@435 2301 Node *test = _null_check_tests[i];
duke@435 2302 Node *val = _null_check_tests[i+1];
kvn@1930 2303 bool is_decoden = ((intptr_t)val) & 1;
kvn@1930 2304 val = (Node*)(((intptr_t)val) & ~1);
duke@435 2305 if (has_new_node(val)) {
kvn@1930 2306 Node* new_val = new_node(val);
kvn@1930 2307 if (is_decoden) {
roland@4159 2308 assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
kvn@1930 2309 // Note: new_val may have a control edge if
kvn@1930 2310 // the original ideal node DecodeN was matched before
kvn@1930 2311 // it was unpinned in Matcher::collect_null_checks().
kvn@1930 2312 // Unpin the mach node and mark it.
kvn@1930 2313 new_val->set_req(0, NULL);
kvn@1930 2314 new_val = (Node*)(((intptr_t)new_val) | 1);
kvn@1930 2315 }
duke@435 2316 // Is a match-tree root, so replace with the matched value
kvn@1930 2317 _null_check_tests.map(i+1, new_val);
duke@435 2318 } else {
duke@435 2319 // Yank from candidate list
duke@435 2320 _null_check_tests.map(i+1,_null_check_tests[--cnt]);
duke@435 2321 _null_check_tests.map(i,_null_check_tests[--cnt]);
duke@435 2322 _null_check_tests.pop();
duke@435 2323 _null_check_tests.pop();
duke@435 2324 i-=2;
duke@435 2325 }
duke@435 2326 }
duke@435 2327 }
duke@435 2328
duke@435 2329 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or
duke@435 2330 // atomic instruction acting as a store_load barrier without any
duke@435 2331 // intervening volatile load, and thus we don't need a barrier here.
duke@435 2332 // We retain the Node to act as a compiler ordering barrier.
kvn@5437 2333 bool Matcher::post_store_load_barrier(const Node* vmb) {
kvn@5437 2334 Compile* C = Compile::current();
kvn@5437 2335 assert(vmb->is_MemBar(), "");
goetz@6489 2336 assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
kvn@5437 2337 const MemBarNode* membar = vmb->as_MemBar();
duke@435 2338
kvn@5437 2339 // Get the Ideal Proj node, ctrl, that can be used to iterate forward
kvn@5437 2340 Node* ctrl = NULL;
kvn@5437 2341 for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
kvn@5437 2342 Node* p = membar->fast_out(i);
kvn@5437 2343 assert(p->is_Proj(), "only projections here");
kvn@5437 2344 if ((p->as_Proj()->_con == TypeFunc::Control) &&
kvn@5437 2345 !C->node_arena()->contains(p)) { // Unmatched old-space only
kvn@5437 2346 ctrl = p;
duke@435 2347 break;
kvn@5437 2348 }
duke@435 2349 }
kvn@5437 2350 assert((ctrl != NULL), "missing control projection");
duke@435 2351
kvn@5437 2352 for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
duke@435 2353 Node *x = ctrl->fast_out(j);
duke@435 2354 int xop = x->Opcode();
duke@435 2355
duke@435 2356 // We don't need current barrier if we see another or a lock
duke@435 2357 // before seeing volatile load.
duke@435 2358 //
duke@435 2359 // Op_Fastunlock previously appeared in the Op_* list below.
duke@435 2360 // With the advent of 1-0 lock operations we're no longer guaranteed
duke@435 2361 // that a monitor exit operation contains a serializing instruction.
duke@435 2362
duke@435 2363 if (xop == Op_MemBarVolatile ||
duke@435 2364 xop == Op_CompareAndSwapL ||
duke@435 2365 xop == Op_CompareAndSwapP ||
coleenp@548 2366 xop == Op_CompareAndSwapN ||
kvn@5437 2367 xop == Op_CompareAndSwapI) {
duke@435 2368 return true;
kvn@5437 2369 }
kvn@5437 2370
kvn@5437 2371 // Op_FastLock previously appeared in the Op_* list above.
kvn@5437 2372 // With biased locking we're no longer guaranteed that a monitor
kvn@5437 2373 // enter operation contains a serializing instruction.
kvn@5437 2374 if ((xop == Op_FastLock) && !UseBiasedLocking) {
kvn@5437 2375 return true;
kvn@5437 2376 }
duke@435 2377
duke@435 2378 if (x->is_MemBar()) {
duke@435 2379 // We must retain this membar if there is an upcoming volatile
kvn@5437 2380 // load, which will be followed by acquire membar.
goetz@6489 2381 if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
duke@435 2382 return false;
kvn@5437 2383 } else {
kvn@5437 2384 // For other kinds of barriers, check by pretending we
kvn@5437 2385 // are them, and seeing if we can be removed.
kvn@5437 2386 return post_store_load_barrier(x->as_MemBar());
kvn@5437 2387 }
duke@435 2388 }
duke@435 2389
kvn@5437 2390 // probably not necessary to check for these
kvn@5437 2391 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
kvn@5437 2392 return false;
duke@435 2393 }
duke@435 2394 }
duke@435 2395 return false;
duke@435 2396 }
duke@435 2397
duke@435 2398 //=============================================================================
duke@435 2399 //---------------------------State---------------------------------------------
duke@435 2400 State::State(void) {
duke@435 2401 #ifdef ASSERT
duke@435 2402 _id = 0;
duke@435 2403 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2404 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2405 //memset(_cost, -1, sizeof(_cost));
duke@435 2406 //memset(_rule, -1, sizeof(_rule));
duke@435 2407 #endif
duke@435 2408 memset(_valid, 0, sizeof(_valid));
duke@435 2409 }
duke@435 2410
duke@435 2411 #ifdef ASSERT
duke@435 2412 State::~State() {
duke@435 2413 _id = 99;
duke@435 2414 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2415 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2416 memset(_cost, -3, sizeof(_cost));
duke@435 2417 memset(_rule, -3, sizeof(_rule));
duke@435 2418 }
duke@435 2419 #endif
duke@435 2420
duke@435 2421 #ifndef PRODUCT
duke@435 2422 //---------------------------dump----------------------------------------------
duke@435 2423 void State::dump() {
duke@435 2424 tty->print("\n");
duke@435 2425 dump(0);
duke@435 2426 }
duke@435 2427
duke@435 2428 void State::dump(int depth) {
duke@435 2429 for( int j = 0; j < depth; j++ )
duke@435 2430 tty->print(" ");
duke@435 2431 tty->print("--N: ");
duke@435 2432 _leaf->dump();
duke@435 2433 uint i;
duke@435 2434 for( i = 0; i < _LAST_MACH_OPER; i++ )
duke@435 2435 // Check for valid entry
duke@435 2436 if( valid(i) ) {
duke@435 2437 for( int j = 0; j < depth; j++ )
duke@435 2438 tty->print(" ");
duke@435 2439 assert(_cost[i] != max_juint, "cost must be a valid value");
duke@435 2440 assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
duke@435 2441 tty->print_cr("%s %d %s",
duke@435 2442 ruleName[i], _cost[i], ruleName[_rule[i]] );
duke@435 2443 }
duke@435 2444 tty->print_cr("");
duke@435 2445
duke@435 2446 for( i=0; i<2; i++ )
duke@435 2447 if( _kids[i] )
duke@435 2448 _kids[i]->dump(depth+1);
duke@435 2449 }
duke@435 2450 #endif

mercurial