src/share/vm/opto/matcher.cpp

Fri, 25 Mar 2011 09:35:39 +0100

author
roland
date
Fri, 25 Mar 2011 09:35:39 +0100
changeset 2683
7e88bdae86ec
parent 2322
828eafbd85cc
child 2708
1d1603768966
permissions
-rw-r--r--

7029017: Additional architecture support for c2 compiler
Summary: Enables cross building of a c2 VM. Support masking of shift counts when the processor architecture mandates it.
Reviewed-by: kvn, never

duke@435 1 /*
trims@1907 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/addnode.hpp"
stefank@2314 28 #include "opto/callnode.hpp"
stefank@2314 29 #include "opto/connode.hpp"
stefank@2314 30 #include "opto/idealGraphPrinter.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/memnode.hpp"
stefank@2314 33 #include "opto/opcodes.hpp"
stefank@2314 34 #include "opto/regmask.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
stefank@2314 36 #include "opto/runtime.hpp"
stefank@2314 37 #include "opto/type.hpp"
stefank@2314 38 #include "runtime/atomic.hpp"
stefank@2314 39 #include "runtime/os.hpp"
stefank@2314 40 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 41 # include "adfiles/ad_x86_32.hpp"
stefank@2314 42 #endif
stefank@2314 43 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 44 # include "adfiles/ad_x86_64.hpp"
stefank@2314 45 #endif
stefank@2314 46 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 47 # include "adfiles/ad_sparc.hpp"
stefank@2314 48 #endif
stefank@2314 49 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 50 # include "adfiles/ad_zero.hpp"
stefank@2314 51 #endif
roland@2683 52 #ifdef TARGET_ARCH_MODEL_arm
roland@2683 53 # include "adfiles/ad_arm.hpp"
roland@2683 54 #endif
duke@435 55
duke@435 56 OptoReg::Name OptoReg::c_frame_pointer;
duke@435 57
duke@435 58
duke@435 59
duke@435 60 const int Matcher::base2reg[Type::lastype] = {
coleenp@548 61 Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
duke@435 62 Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
duke@435 63 Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
duke@435 64 0, 0/*abio*/,
duke@435 65 Op_RegP /* Return address */, 0, /* the memories */
duke@435 66 Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
duke@435 67 0 /*bottom*/
duke@435 68 };
duke@435 69
duke@435 70 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
duke@435 71 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
duke@435 72 RegMask Matcher::STACK_ONLY_mask;
duke@435 73 RegMask Matcher::c_frame_ptr_mask;
duke@435 74 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
duke@435 75 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
duke@435 76
duke@435 77 //---------------------------Matcher-------------------------------------------
duke@435 78 Matcher::Matcher( Node_List &proj_list ) :
duke@435 79 PhaseTransform( Phase::Ins_Select ),
duke@435 80 #ifdef ASSERT
duke@435 81 _old2new_map(C->comp_arena()),
never@657 82 _new2old_map(C->comp_arena()),
duke@435 83 #endif
kvn@603 84 _shared_nodes(C->comp_arena()),
duke@435 85 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
duke@435 86 _swallowed(swallowed),
duke@435 87 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
duke@435 88 _end_inst_chain_rule(_END_INST_CHAIN_RULE),
duke@435 89 _must_clone(must_clone), _proj_list(proj_list),
duke@435 90 _register_save_policy(register_save_policy),
duke@435 91 _c_reg_save_policy(c_reg_save_policy),
duke@435 92 _register_save_type(register_save_type),
duke@435 93 _ruleName(ruleName),
duke@435 94 _allocation_started(false),
duke@435 95 _states_arena(Chunk::medium_size),
duke@435 96 _visited(&_states_arena),
duke@435 97 _shared(&_states_arena),
duke@435 98 _dontcare(&_states_arena) {
duke@435 99 C->set_matcher(this);
duke@435 100
twisti@1572 101 idealreg2spillmask [Op_RegI] = NULL;
twisti@1572 102 idealreg2spillmask [Op_RegN] = NULL;
twisti@1572 103 idealreg2spillmask [Op_RegL] = NULL;
twisti@1572 104 idealreg2spillmask [Op_RegF] = NULL;
twisti@1572 105 idealreg2spillmask [Op_RegD] = NULL;
twisti@1572 106 idealreg2spillmask [Op_RegP] = NULL;
duke@435 107
twisti@1572 108 idealreg2debugmask [Op_RegI] = NULL;
twisti@1572 109 idealreg2debugmask [Op_RegN] = NULL;
twisti@1572 110 idealreg2debugmask [Op_RegL] = NULL;
twisti@1572 111 idealreg2debugmask [Op_RegF] = NULL;
twisti@1572 112 idealreg2debugmask [Op_RegD] = NULL;
twisti@1572 113 idealreg2debugmask [Op_RegP] = NULL;
twisti@1572 114
twisti@1572 115 idealreg2mhdebugmask[Op_RegI] = NULL;
twisti@1572 116 idealreg2mhdebugmask[Op_RegN] = NULL;
twisti@1572 117 idealreg2mhdebugmask[Op_RegL] = NULL;
twisti@1572 118 idealreg2mhdebugmask[Op_RegF] = NULL;
twisti@1572 119 idealreg2mhdebugmask[Op_RegD] = NULL;
twisti@1572 120 idealreg2mhdebugmask[Op_RegP] = NULL;
twisti@1572 121
kvn@651 122 debug_only(_mem_node = NULL;) // Ideal memory node consumed by mach node
duke@435 123 }
duke@435 124
duke@435 125 //------------------------------warp_incoming_stk_arg------------------------
duke@435 126 // This warps a VMReg into an OptoReg::Name
duke@435 127 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
duke@435 128 OptoReg::Name warped;
duke@435 129 if( reg->is_stack() ) { // Stack slot argument?
duke@435 130 warped = OptoReg::add(_old_SP, reg->reg2stack() );
duke@435 131 warped = OptoReg::add(warped, C->out_preserve_stack_slots());
duke@435 132 if( warped >= _in_arg_limit )
duke@435 133 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
duke@435 134 if (!RegMask::can_represent(warped)) {
duke@435 135 // the compiler cannot represent this method's calling sequence
duke@435 136 C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
duke@435 137 return OptoReg::Bad;
duke@435 138 }
duke@435 139 return warped;
duke@435 140 }
duke@435 141 return OptoReg::as_OptoReg(reg);
duke@435 142 }
duke@435 143
duke@435 144 //---------------------------compute_old_SP------------------------------------
duke@435 145 OptoReg::Name Compile::compute_old_SP() {
duke@435 146 int fixed = fixed_slots();
duke@435 147 int preserve = in_preserve_stack_slots();
duke@435 148 return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
duke@435 149 }
duke@435 150
duke@435 151
duke@435 152
duke@435 153 #ifdef ASSERT
duke@435 154 void Matcher::verify_new_nodes_only(Node* xroot) {
duke@435 155 // Make sure that the new graph only references new nodes
duke@435 156 ResourceMark rm;
duke@435 157 Unique_Node_List worklist;
duke@435 158 VectorSet visited(Thread::current()->resource_area());
duke@435 159 worklist.push(xroot);
duke@435 160 while (worklist.size() > 0) {
duke@435 161 Node* n = worklist.pop();
duke@435 162 visited <<= n->_idx;
duke@435 163 assert(C->node_arena()->contains(n), "dead node");
duke@435 164 for (uint j = 0; j < n->req(); j++) {
duke@435 165 Node* in = n->in(j);
duke@435 166 if (in != NULL) {
duke@435 167 assert(C->node_arena()->contains(in), "dead node");
duke@435 168 if (!visited.test(in->_idx)) {
duke@435 169 worklist.push(in);
duke@435 170 }
duke@435 171 }
duke@435 172 }
duke@435 173 }
duke@435 174 }
duke@435 175 #endif
duke@435 176
duke@435 177
duke@435 178 //---------------------------match---------------------------------------------
duke@435 179 void Matcher::match( ) {
kvn@1258 180 if( MaxLabelRootDepth < 100 ) { // Too small?
kvn@1258 181 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
kvn@1258 182 MaxLabelRootDepth = 100;
kvn@1258 183 }
duke@435 184 // One-time initialization of some register masks.
duke@435 185 init_spill_mask( C->root()->in(1) );
duke@435 186 _return_addr_mask = return_addr();
duke@435 187 #ifdef _LP64
duke@435 188 // Pointers take 2 slots in 64-bit land
duke@435 189 _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
duke@435 190 #endif
duke@435 191
duke@435 192 // Map a Java-signature return type into return register-value
duke@435 193 // machine registers for 0, 1 and 2 returned values.
duke@435 194 const TypeTuple *range = C->tf()->range();
duke@435 195 if( range->cnt() > TypeFunc::Parms ) { // If not a void function
duke@435 196 // Get ideal-register return type
duke@435 197 int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
duke@435 198 // Get machine return register
duke@435 199 uint sop = C->start()->Opcode();
duke@435 200 OptoRegPair regs = return_value(ireg, false);
duke@435 201
duke@435 202 // And mask for same
duke@435 203 _return_value_mask = RegMask(regs.first());
duke@435 204 if( OptoReg::is_valid(regs.second()) )
duke@435 205 _return_value_mask.Insert(regs.second());
duke@435 206 }
duke@435 207
duke@435 208 // ---------------
duke@435 209 // Frame Layout
duke@435 210
duke@435 211 // Need the method signature to determine the incoming argument types,
duke@435 212 // because the types determine which registers the incoming arguments are
duke@435 213 // in, and this affects the matched code.
duke@435 214 const TypeTuple *domain = C->tf()->domain();
duke@435 215 uint argcnt = domain->cnt() - TypeFunc::Parms;
duke@435 216 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 217 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 218 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
duke@435 219 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
duke@435 220 uint i;
duke@435 221 for( i = 0; i<argcnt; i++ ) {
duke@435 222 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 223 }
duke@435 224
duke@435 225 // Pass array of ideal registers and length to USER code (from the AD file)
duke@435 226 // that will convert this to an array of register numbers.
duke@435 227 const StartNode *start = C->start();
duke@435 228 start->calling_convention( sig_bt, vm_parm_regs, argcnt );
duke@435 229 #ifdef ASSERT
duke@435 230 // Sanity check users' calling convention. Real handy while trying to
duke@435 231 // get the initial port correct.
duke@435 232 { for (uint i = 0; i<argcnt; i++) {
duke@435 233 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 234 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
duke@435 235 _parm_regs[i].set_bad();
duke@435 236 continue;
duke@435 237 }
duke@435 238 VMReg parm_reg = vm_parm_regs[i].first();
duke@435 239 assert(parm_reg->is_valid(), "invalid arg?");
duke@435 240 if (parm_reg->is_reg()) {
duke@435 241 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
duke@435 242 assert(can_be_java_arg(opto_parm_reg) ||
duke@435 243 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
duke@435 244 opto_parm_reg == inline_cache_reg(),
duke@435 245 "parameters in register must be preserved by runtime stubs");
duke@435 246 }
duke@435 247 for (uint j = 0; j < i; j++) {
duke@435 248 assert(parm_reg != vm_parm_regs[j].first(),
duke@435 249 "calling conv. must produce distinct regs");
duke@435 250 }
duke@435 251 }
duke@435 252 }
duke@435 253 #endif
duke@435 254
duke@435 255 // Do some initial frame layout.
duke@435 256
duke@435 257 // Compute the old incoming SP (may be called FP) as
duke@435 258 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
duke@435 259 _old_SP = C->compute_old_SP();
duke@435 260 assert( is_even(_old_SP), "must be even" );
duke@435 261
duke@435 262 // Compute highest incoming stack argument as
duke@435 263 // _old_SP + out_preserve_stack_slots + incoming argument size.
duke@435 264 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 265 assert( is_even(_in_arg_limit), "out_preserve must be even" );
duke@435 266 for( i = 0; i < argcnt; i++ ) {
duke@435 267 // Permit args to have no register
duke@435 268 _calling_convention_mask[i].Clear();
duke@435 269 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 270 continue;
duke@435 271 }
duke@435 272 // calling_convention returns stack arguments as a count of
duke@435 273 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to
duke@435 274 // the allocators point of view, taking into account all the
duke@435 275 // preserve area, locks & pad2.
duke@435 276
duke@435 277 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
duke@435 278 if( OptoReg::is_valid(reg1))
duke@435 279 _calling_convention_mask[i].Insert(reg1);
duke@435 280
duke@435 281 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
duke@435 282 if( OptoReg::is_valid(reg2))
duke@435 283 _calling_convention_mask[i].Insert(reg2);
duke@435 284
duke@435 285 // Saved biased stack-slot register number
duke@435 286 _parm_regs[i].set_pair(reg2, reg1);
duke@435 287 }
duke@435 288
duke@435 289 // Finally, make sure the incoming arguments take up an even number of
duke@435 290 // words, in case the arguments or locals need to contain doubleword stack
duke@435 291 // slots. The rest of the system assumes that stack slot pairs (in
duke@435 292 // particular, in the spill area) which look aligned will in fact be
duke@435 293 // aligned relative to the stack pointer in the target machine. Double
duke@435 294 // stack slots will always be allocated aligned.
duke@435 295 _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
duke@435 296
duke@435 297 // Compute highest outgoing stack argument as
duke@435 298 // _new_SP + out_preserve_stack_slots + max(outgoing argument size).
duke@435 299 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 300 assert( is_even(_out_arg_limit), "out_preserve must be even" );
duke@435 301
duke@435 302 if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
duke@435 303 // the compiler cannot represent this method's calling sequence
duke@435 304 C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
duke@435 305 }
duke@435 306
duke@435 307 if (C->failing()) return; // bailed out on incoming arg failure
duke@435 308
duke@435 309 // ---------------
duke@435 310 // Collect roots of matcher trees. Every node for which
duke@435 311 // _shared[_idx] is cleared is guaranteed to not be shared, and thus
duke@435 312 // can be a valid interior of some tree.
duke@435 313 find_shared( C->root() );
duke@435 314 find_shared( C->top() );
duke@435 315
never@802 316 C->print_method("Before Matching");
duke@435 317
kvn@1164 318 // Create new ideal node ConP #NULL even if it does exist in old space
kvn@1164 319 // to avoid false sharing if the corresponding mach node is not used.
kvn@1164 320 // The corresponding mach node is only used in rare cases for derived
kvn@1164 321 // pointers.
kvn@1164 322 Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
kvn@1164 323
duke@435 324 // Swap out to old-space; emptying new-space
duke@435 325 Arena *old = C->node_arena()->move_contents(C->old_arena());
duke@435 326
duke@435 327 // Save debug and profile information for nodes in old space:
duke@435 328 _old_node_note_array = C->node_note_array();
duke@435 329 if (_old_node_note_array != NULL) {
duke@435 330 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
duke@435 331 (C->comp_arena(), _old_node_note_array->length(),
duke@435 332 0, NULL));
duke@435 333 }
duke@435 334
duke@435 335 // Pre-size the new_node table to avoid the need for range checks.
duke@435 336 grow_new_node_array(C->unique());
duke@435 337
duke@435 338 // Reset node counter so MachNodes start with _idx at 0
duke@435 339 int nodes = C->unique(); // save value
duke@435 340 C->set_unique(0);
duke@435 341
duke@435 342 // Recursively match trees from old space into new space.
duke@435 343 // Correct leaves of new-space Nodes; they point to old-space.
duke@435 344 _visited.Clear(); // Clear visit bits for xform call
duke@435 345 C->set_cached_top_node(xform( C->top(), nodes ));
duke@435 346 if (!C->failing()) {
duke@435 347 Node* xroot = xform( C->root(), 1 );
duke@435 348 if (xroot == NULL) {
duke@435 349 Matcher::soft_match_failure(); // recursive matching process failed
duke@435 350 C->record_method_not_compilable("instruction match failed");
duke@435 351 } else {
duke@435 352 // During matching shared constants were attached to C->root()
duke@435 353 // because xroot wasn't available yet, so transfer the uses to
duke@435 354 // the xroot.
duke@435 355 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
duke@435 356 Node* n = C->root()->fast_out(j);
duke@435 357 if (C->node_arena()->contains(n)) {
duke@435 358 assert(n->in(0) == C->root(), "should be control user");
duke@435 359 n->set_req(0, xroot);
duke@435 360 --j;
duke@435 361 --jmax;
duke@435 362 }
duke@435 363 }
duke@435 364
kvn@1164 365 // Generate new mach node for ConP #NULL
kvn@1164 366 assert(new_ideal_null != NULL, "sanity");
kvn@1164 367 _mach_null = match_tree(new_ideal_null);
kvn@1164 368 // Don't set control, it will confuse GCM since there are no uses.
kvn@1164 369 // The control will be set when this node is used first time
kvn@1164 370 // in find_base_for_derived().
kvn@1164 371 assert(_mach_null != NULL, "");
kvn@1164 372
duke@435 373 C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
kvn@1164 374
duke@435 375 #ifdef ASSERT
duke@435 376 verify_new_nodes_only(xroot);
duke@435 377 #endif
duke@435 378 }
duke@435 379 }
duke@435 380 if (C->top() == NULL || C->root() == NULL) {
duke@435 381 C->record_method_not_compilable("graph lost"); // %%% cannot happen?
duke@435 382 }
duke@435 383 if (C->failing()) {
duke@435 384 // delete old;
duke@435 385 old->destruct_contents();
duke@435 386 return;
duke@435 387 }
duke@435 388 assert( C->top(), "" );
duke@435 389 assert( C->root(), "" );
duke@435 390 validate_null_checks();
duke@435 391
duke@435 392 // Now smoke old-space
duke@435 393 NOT_DEBUG( old->destruct_contents() );
duke@435 394
duke@435 395 // ------------------------
duke@435 396 // Set up save-on-entry registers
duke@435 397 Fixup_Save_On_Entry( );
duke@435 398 }
duke@435 399
duke@435 400
duke@435 401 //------------------------------Fixup_Save_On_Entry----------------------------
duke@435 402 // The stated purpose of this routine is to take care of save-on-entry
duke@435 403 // registers. However, the overall goal of the Match phase is to convert into
duke@435 404 // machine-specific instructions which have RegMasks to guide allocation.
duke@435 405 // So what this procedure really does is put a valid RegMask on each input
duke@435 406 // to the machine-specific variations of all Return, TailCall and Halt
duke@435 407 // instructions. It also adds edgs to define the save-on-entry values (and of
duke@435 408 // course gives them a mask).
duke@435 409
duke@435 410 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
duke@435 411 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
duke@435 412 // Do all the pre-defined register masks
duke@435 413 rms[TypeFunc::Control ] = RegMask::Empty;
duke@435 414 rms[TypeFunc::I_O ] = RegMask::Empty;
duke@435 415 rms[TypeFunc::Memory ] = RegMask::Empty;
duke@435 416 rms[TypeFunc::ReturnAdr] = ret_adr;
duke@435 417 rms[TypeFunc::FramePtr ] = fp;
duke@435 418 return rms;
duke@435 419 }
duke@435 420
duke@435 421 //---------------------------init_first_stack_mask-----------------------------
duke@435 422 // Create the initial stack mask used by values spilling to the stack.
duke@435 423 // Disallow any debug info in outgoing argument areas by setting the
duke@435 424 // initial mask accordingly.
duke@435 425 void Matcher::init_first_stack_mask() {
duke@435 426
duke@435 427 // Allocate storage for spill masks as masks for the appropriate load type.
twisti@1572 428 RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * 3*6);
twisti@1572 429
twisti@1572 430 idealreg2spillmask [Op_RegN] = &rms[0];
twisti@1572 431 idealreg2spillmask [Op_RegI] = &rms[1];
twisti@1572 432 idealreg2spillmask [Op_RegL] = &rms[2];
twisti@1572 433 idealreg2spillmask [Op_RegF] = &rms[3];
twisti@1572 434 idealreg2spillmask [Op_RegD] = &rms[4];
twisti@1572 435 idealreg2spillmask [Op_RegP] = &rms[5];
twisti@1572 436
twisti@1572 437 idealreg2debugmask [Op_RegN] = &rms[6];
twisti@1572 438 idealreg2debugmask [Op_RegI] = &rms[7];
twisti@1572 439 idealreg2debugmask [Op_RegL] = &rms[8];
twisti@1572 440 idealreg2debugmask [Op_RegF] = &rms[9];
twisti@1572 441 idealreg2debugmask [Op_RegD] = &rms[10];
twisti@1572 442 idealreg2debugmask [Op_RegP] = &rms[11];
twisti@1572 443
twisti@1572 444 idealreg2mhdebugmask[Op_RegN] = &rms[12];
twisti@1572 445 idealreg2mhdebugmask[Op_RegI] = &rms[13];
twisti@1572 446 idealreg2mhdebugmask[Op_RegL] = &rms[14];
twisti@1572 447 idealreg2mhdebugmask[Op_RegF] = &rms[15];
twisti@1572 448 idealreg2mhdebugmask[Op_RegD] = &rms[16];
twisti@1572 449 idealreg2mhdebugmask[Op_RegP] = &rms[17];
duke@435 450
duke@435 451 OptoReg::Name i;
duke@435 452
duke@435 453 // At first, start with the empty mask
duke@435 454 C->FIRST_STACK_mask().Clear();
duke@435 455
duke@435 456 // Add in the incoming argument area
duke@435 457 OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 458 for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
duke@435 459 C->FIRST_STACK_mask().Insert(i);
duke@435 460
duke@435 461 // Add in all bits past the outgoing argument area
duke@435 462 guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
duke@435 463 "must be able to represent all call arguments in reg mask");
duke@435 464 init = _out_arg_limit;
duke@435 465 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 466 C->FIRST_STACK_mask().Insert(i);
duke@435 467
duke@435 468 // Finally, set the "infinite stack" bit.
duke@435 469 C->FIRST_STACK_mask().set_AllStack();
duke@435 470
duke@435 471 // Make spill masks. Registers for their class, plus FIRST_STACK_mask.
coleenp@548 472 #ifdef _LP64
coleenp@548 473 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
coleenp@548 474 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
coleenp@548 475 #endif
duke@435 476 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
duke@435 477 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
duke@435 478 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
duke@435 479 idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
duke@435 480 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
duke@435 481 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
duke@435 482 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
duke@435 483 idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
duke@435 484 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
duke@435 485 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
duke@435 486
never@2085 487 if (UseFPUForSpilling) {
never@2085 488 // This mask logic assumes that the spill operations are
never@2085 489 // symmetric and that the registers involved are the same size.
never@2085 490 // On sparc for instance we may have to use 64 bit moves will
never@2085 491 // kill 2 registers when used with F0-F31.
never@2085 492 idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
never@2085 493 idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
never@2085 494 #ifdef _LP64
never@2085 495 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
never@2085 496 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
never@2085 497 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
never@2085 498 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
never@2085 499 #else
never@2085 500 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
never@2085 501 #endif
never@2085 502 }
never@2085 503
duke@435 504 // Make up debug masks. Any spill slot plus callee-save registers.
duke@435 505 // Caller-save registers are assumed to be trashable by the various
duke@435 506 // inline-cache fixup routines.
twisti@1572 507 *idealreg2debugmask [Op_RegN]= *idealreg2spillmask[Op_RegN];
twisti@1572 508 *idealreg2debugmask [Op_RegI]= *idealreg2spillmask[Op_RegI];
twisti@1572 509 *idealreg2debugmask [Op_RegL]= *idealreg2spillmask[Op_RegL];
twisti@1572 510 *idealreg2debugmask [Op_RegF]= *idealreg2spillmask[Op_RegF];
twisti@1572 511 *idealreg2debugmask [Op_RegD]= *idealreg2spillmask[Op_RegD];
twisti@1572 512 *idealreg2debugmask [Op_RegP]= *idealreg2spillmask[Op_RegP];
twisti@1572 513
twisti@1572 514 *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
twisti@1572 515 *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
twisti@1572 516 *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
twisti@1572 517 *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
twisti@1572 518 *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
twisti@1572 519 *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
duke@435 520
duke@435 521 // Prevent stub compilations from attempting to reference
duke@435 522 // callee-saved registers from debug info
duke@435 523 bool exclude_soe = !Compile::current()->is_method_compilation();
duke@435 524
duke@435 525 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 526 // registers the caller has to save do not work
duke@435 527 if( _register_save_policy[i] == 'C' ||
duke@435 528 _register_save_policy[i] == 'A' ||
duke@435 529 (_register_save_policy[i] == 'E' && exclude_soe) ) {
twisti@1572 530 idealreg2debugmask [Op_RegN]->Remove(i);
twisti@1572 531 idealreg2debugmask [Op_RegI]->Remove(i); // Exclude save-on-call
twisti@1572 532 idealreg2debugmask [Op_RegL]->Remove(i); // registers from debug
twisti@1572 533 idealreg2debugmask [Op_RegF]->Remove(i); // masks
twisti@1572 534 idealreg2debugmask [Op_RegD]->Remove(i);
twisti@1572 535 idealreg2debugmask [Op_RegP]->Remove(i);
twisti@1572 536
twisti@1572 537 idealreg2mhdebugmask[Op_RegN]->Remove(i);
twisti@1572 538 idealreg2mhdebugmask[Op_RegI]->Remove(i);
twisti@1572 539 idealreg2mhdebugmask[Op_RegL]->Remove(i);
twisti@1572 540 idealreg2mhdebugmask[Op_RegF]->Remove(i);
twisti@1572 541 idealreg2mhdebugmask[Op_RegD]->Remove(i);
twisti@1572 542 idealreg2mhdebugmask[Op_RegP]->Remove(i);
duke@435 543 }
duke@435 544 }
twisti@1572 545
twisti@1572 546 // Subtract the register we use to save the SP for MethodHandle
twisti@1572 547 // invokes to from the debug mask.
twisti@1572 548 const RegMask save_mask = method_handle_invoke_SP_save_mask();
twisti@1572 549 idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
twisti@1572 550 idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
twisti@1572 551 idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
twisti@1572 552 idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
twisti@1572 553 idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
twisti@1572 554 idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
duke@435 555 }
duke@435 556
duke@435 557 //---------------------------is_save_on_entry----------------------------------
duke@435 558 bool Matcher::is_save_on_entry( int reg ) {
duke@435 559 return
duke@435 560 _register_save_policy[reg] == 'E' ||
duke@435 561 _register_save_policy[reg] == 'A' || // Save-on-entry register?
duke@435 562 // Also save argument registers in the trampolining stubs
duke@435 563 (C->save_argument_registers() && is_spillable_arg(reg));
duke@435 564 }
duke@435 565
duke@435 566 //---------------------------Fixup_Save_On_Entry-------------------------------
duke@435 567 void Matcher::Fixup_Save_On_Entry( ) {
duke@435 568 init_first_stack_mask();
duke@435 569
duke@435 570 Node *root = C->root(); // Short name for root
duke@435 571 // Count number of save-on-entry registers.
duke@435 572 uint soe_cnt = number_of_saved_registers();
duke@435 573 uint i;
duke@435 574
duke@435 575 // Find the procedure Start Node
duke@435 576 StartNode *start = C->start();
duke@435 577 assert( start, "Expect a start node" );
duke@435 578
duke@435 579 // Save argument registers in the trampolining stubs
duke@435 580 if( C->save_argument_registers() )
duke@435 581 for( i = 0; i < _last_Mach_Reg; i++ )
duke@435 582 if( is_spillable_arg(i) )
duke@435 583 soe_cnt++;
duke@435 584
duke@435 585 // Input RegMask array shared by all Returns.
duke@435 586 // The type for doubles and longs has a count of 2, but
duke@435 587 // there is only 1 returned value
duke@435 588 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
duke@435 589 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 590 // Returns have 0 or 1 returned values depending on call signature.
duke@435 591 // Return register is specified by return_value in the AD file.
duke@435 592 if (ret_edge_cnt > TypeFunc::Parms)
duke@435 593 ret_rms[TypeFunc::Parms+0] = _return_value_mask;
duke@435 594
duke@435 595 // Input RegMask array shared by all Rethrows.
duke@435 596 uint reth_edge_cnt = TypeFunc::Parms+1;
duke@435 597 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 598 // Rethrow takes exception oop only, but in the argument 0 slot.
duke@435 599 reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
duke@435 600 #ifdef _LP64
duke@435 601 // Need two slots for ptrs in 64-bit land
duke@435 602 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
duke@435 603 #endif
duke@435 604
duke@435 605 // Input RegMask array shared by all TailCalls
duke@435 606 uint tail_call_edge_cnt = TypeFunc::Parms+2;
duke@435 607 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 608
duke@435 609 // Input RegMask array shared by all TailJumps
duke@435 610 uint tail_jump_edge_cnt = TypeFunc::Parms+2;
duke@435 611 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 612
duke@435 613 // TailCalls have 2 returned values (target & moop), whose masks come
duke@435 614 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 615 // TailCall to extract these masks and put the correct masks into
duke@435 616 // the tail_call_rms array.
duke@435 617 for( i=1; i < root->req(); i++ ) {
duke@435 618 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 619 if( m->ideal_Opcode() == Op_TailCall ) {
duke@435 620 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 621 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 622 break;
duke@435 623 }
duke@435 624 }
duke@435 625
duke@435 626 // TailJumps have 2 returned values (target & ex_oop), whose masks come
duke@435 627 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 628 // TailJump to extract these masks and put the correct masks into
duke@435 629 // the tail_jump_rms array.
duke@435 630 for( i=1; i < root->req(); i++ ) {
duke@435 631 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 632 if( m->ideal_Opcode() == Op_TailJump ) {
duke@435 633 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 634 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 635 break;
duke@435 636 }
duke@435 637 }
duke@435 638
duke@435 639 // Input RegMask array shared by all Halts
duke@435 640 uint halt_edge_cnt = TypeFunc::Parms;
duke@435 641 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 642
duke@435 643 // Capture the return input masks into each exit flavor
duke@435 644 for( i=1; i < root->req(); i++ ) {
duke@435 645 MachReturnNode *exit = root->in(i)->as_MachReturn();
duke@435 646 switch( exit->ideal_Opcode() ) {
duke@435 647 case Op_Return : exit->_in_rms = ret_rms; break;
duke@435 648 case Op_Rethrow : exit->_in_rms = reth_rms; break;
duke@435 649 case Op_TailCall : exit->_in_rms = tail_call_rms; break;
duke@435 650 case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
duke@435 651 case Op_Halt : exit->_in_rms = halt_rms; break;
duke@435 652 default : ShouldNotReachHere();
duke@435 653 }
duke@435 654 }
duke@435 655
duke@435 656 // Next unused projection number from Start.
duke@435 657 int proj_cnt = C->tf()->domain()->cnt();
duke@435 658
duke@435 659 // Do all the save-on-entry registers. Make projections from Start for
duke@435 660 // them, and give them a use at the exit points. To the allocator, they
duke@435 661 // look like incoming register arguments.
duke@435 662 for( i = 0; i < _last_Mach_Reg; i++ ) {
duke@435 663 if( is_save_on_entry(i) ) {
duke@435 664
duke@435 665 // Add the save-on-entry to the mask array
duke@435 666 ret_rms [ ret_edge_cnt] = mreg2regmask[i];
duke@435 667 reth_rms [ reth_edge_cnt] = mreg2regmask[i];
duke@435 668 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
duke@435 669 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
duke@435 670 // Halts need the SOE registers, but only in the stack as debug info.
duke@435 671 // A just-prior uncommon-trap or deoptimization will use the SOE regs.
duke@435 672 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
duke@435 673
duke@435 674 Node *mproj;
duke@435 675
duke@435 676 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
duke@435 677 // into a single RegD.
duke@435 678 if( (i&1) == 0 &&
duke@435 679 _register_save_type[i ] == Op_RegF &&
duke@435 680 _register_save_type[i+1] == Op_RegF &&
duke@435 681 is_save_on_entry(i+1) ) {
duke@435 682 // Add other bit for double
duke@435 683 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 684 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 685 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 686 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 687 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 688 mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
duke@435 689 proj_cnt += 2; // Skip 2 for doubles
duke@435 690 }
duke@435 691 else if( (i&1) == 1 && // Else check for high half of double
duke@435 692 _register_save_type[i-1] == Op_RegF &&
duke@435 693 _register_save_type[i ] == Op_RegF &&
duke@435 694 is_save_on_entry(i-1) ) {
duke@435 695 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 696 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 697 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 698 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 699 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 700 mproj = C->top();
duke@435 701 }
duke@435 702 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's
duke@435 703 // into a single RegL.
duke@435 704 else if( (i&1) == 0 &&
duke@435 705 _register_save_type[i ] == Op_RegI &&
duke@435 706 _register_save_type[i+1] == Op_RegI &&
duke@435 707 is_save_on_entry(i+1) ) {
duke@435 708 // Add other bit for long
duke@435 709 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 710 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 711 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 712 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 713 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 714 mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
duke@435 715 proj_cnt += 2; // Skip 2 for longs
duke@435 716 }
duke@435 717 else if( (i&1) == 1 && // Else check for high half of long
duke@435 718 _register_save_type[i-1] == Op_RegI &&
duke@435 719 _register_save_type[i ] == Op_RegI &&
duke@435 720 is_save_on_entry(i-1) ) {
duke@435 721 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 722 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 723 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 724 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 725 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 726 mproj = C->top();
duke@435 727 } else {
duke@435 728 // Make a projection for it off the Start
duke@435 729 mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
duke@435 730 }
duke@435 731
duke@435 732 ret_edge_cnt ++;
duke@435 733 reth_edge_cnt ++;
duke@435 734 tail_call_edge_cnt ++;
duke@435 735 tail_jump_edge_cnt ++;
duke@435 736 halt_edge_cnt ++;
duke@435 737
duke@435 738 // Add a use of the SOE register to all exit paths
duke@435 739 for( uint j=1; j < root->req(); j++ )
duke@435 740 root->in(j)->add_req(mproj);
duke@435 741 } // End of if a save-on-entry register
duke@435 742 } // End of for all machine registers
duke@435 743 }
duke@435 744
duke@435 745 //------------------------------init_spill_mask--------------------------------
duke@435 746 void Matcher::init_spill_mask( Node *ret ) {
duke@435 747 if( idealreg2regmask[Op_RegI] ) return; // One time only init
duke@435 748
duke@435 749 OptoReg::c_frame_pointer = c_frame_pointer();
duke@435 750 c_frame_ptr_mask = c_frame_pointer();
duke@435 751 #ifdef _LP64
duke@435 752 // pointers are twice as big
duke@435 753 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
duke@435 754 #endif
duke@435 755
duke@435 756 // Start at OptoReg::stack0()
duke@435 757 STACK_ONLY_mask.Clear();
duke@435 758 OptoReg::Name init = OptoReg::stack2reg(0);
duke@435 759 // STACK_ONLY_mask is all stack bits
duke@435 760 OptoReg::Name i;
duke@435 761 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 762 STACK_ONLY_mask.Insert(i);
duke@435 763 // Also set the "infinite stack" bit.
duke@435 764 STACK_ONLY_mask.set_AllStack();
duke@435 765
duke@435 766 // Copy the register names over into the shared world
duke@435 767 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 768 // SharedInfo::regName[i] = regName[i];
duke@435 769 // Handy RegMasks per machine register
duke@435 770 mreg2regmask[i].Insert(i);
duke@435 771 }
duke@435 772
duke@435 773 // Grab the Frame Pointer
duke@435 774 Node *fp = ret->in(TypeFunc::FramePtr);
duke@435 775 Node *mem = ret->in(TypeFunc::Memory);
duke@435 776 const TypePtr* atp = TypePtr::BOTTOM;
duke@435 777 // Share frame pointer while making spill ops
duke@435 778 set_shared(fp);
duke@435 779
duke@435 780 // Compute generic short-offset Loads
coleenp@548 781 #ifdef _LP64
coleenp@548 782 MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
coleenp@548 783 #endif
duke@435 784 MachNode *spillI = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
duke@435 785 MachNode *spillL = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
duke@435 786 MachNode *spillF = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
duke@435 787 MachNode *spillD = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
duke@435 788 MachNode *spillP = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
duke@435 789 assert(spillI != NULL && spillL != NULL && spillF != NULL &&
duke@435 790 spillD != NULL && spillP != NULL, "");
duke@435 791
duke@435 792 // Get the ADLC notion of the right regmask, for each basic type.
coleenp@548 793 #ifdef _LP64
coleenp@548 794 idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
coleenp@548 795 #endif
duke@435 796 idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
duke@435 797 idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
duke@435 798 idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
duke@435 799 idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
duke@435 800 idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
duke@435 801 }
duke@435 802
duke@435 803 #ifdef ASSERT
duke@435 804 static void match_alias_type(Compile* C, Node* n, Node* m) {
duke@435 805 if (!VerifyAliases) return; // do not go looking for trouble by default
duke@435 806 const TypePtr* nat = n->adr_type();
duke@435 807 const TypePtr* mat = m->adr_type();
duke@435 808 int nidx = C->get_alias_index(nat);
duke@435 809 int midx = C->get_alias_index(mat);
duke@435 810 // Detune the assert for cases like (AndI 0xFF (LoadB p)).
duke@435 811 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
duke@435 812 for (uint i = 1; i < n->req(); i++) {
duke@435 813 Node* n1 = n->in(i);
duke@435 814 const TypePtr* n1at = n1->adr_type();
duke@435 815 if (n1at != NULL) {
duke@435 816 nat = n1at;
duke@435 817 nidx = C->get_alias_index(n1at);
duke@435 818 }
duke@435 819 }
duke@435 820 }
duke@435 821 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases:
duke@435 822 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
duke@435 823 switch (n->Opcode()) {
duke@435 824 case Op_PrefetchRead:
duke@435 825 case Op_PrefetchWrite:
duke@435 826 nidx = Compile::AliasIdxRaw;
duke@435 827 nat = TypeRawPtr::BOTTOM;
duke@435 828 break;
duke@435 829 }
duke@435 830 }
duke@435 831 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
duke@435 832 switch (n->Opcode()) {
duke@435 833 case Op_ClearArray:
duke@435 834 midx = Compile::AliasIdxRaw;
duke@435 835 mat = TypeRawPtr::BOTTOM;
duke@435 836 break;
duke@435 837 }
duke@435 838 }
duke@435 839 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
duke@435 840 switch (n->Opcode()) {
duke@435 841 case Op_Return:
duke@435 842 case Op_Rethrow:
duke@435 843 case Op_Halt:
duke@435 844 case Op_TailCall:
duke@435 845 case Op_TailJump:
duke@435 846 nidx = Compile::AliasIdxBot;
duke@435 847 nat = TypePtr::BOTTOM;
duke@435 848 break;
duke@435 849 }
duke@435 850 }
duke@435 851 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
duke@435 852 switch (n->Opcode()) {
duke@435 853 case Op_StrComp:
cfang@1116 854 case Op_StrEquals:
cfang@1116 855 case Op_StrIndexOf:
rasbold@604 856 case Op_AryEq:
duke@435 857 case Op_MemBarVolatile:
duke@435 858 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
duke@435 859 nidx = Compile::AliasIdxTop;
duke@435 860 nat = NULL;
duke@435 861 break;
duke@435 862 }
duke@435 863 }
duke@435 864 if (nidx != midx) {
duke@435 865 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
duke@435 866 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
duke@435 867 n->dump();
duke@435 868 m->dump();
duke@435 869 }
duke@435 870 assert(C->subsume_loads() && C->must_alias(nat, midx),
duke@435 871 "must not lose alias info when matching");
duke@435 872 }
duke@435 873 }
duke@435 874 #endif
duke@435 875
duke@435 876
duke@435 877 //------------------------------MStack-----------------------------------------
duke@435 878 // State and MStack class used in xform() and find_shared() iterative methods.
duke@435 879 enum Node_State { Pre_Visit, // node has to be pre-visited
duke@435 880 Visit, // visit node
duke@435 881 Post_Visit, // post-visit node
duke@435 882 Alt_Post_Visit // alternative post-visit path
duke@435 883 };
duke@435 884
duke@435 885 class MStack: public Node_Stack {
duke@435 886 public:
duke@435 887 MStack(int size) : Node_Stack(size) { }
duke@435 888
duke@435 889 void push(Node *n, Node_State ns) {
duke@435 890 Node_Stack::push(n, (uint)ns);
duke@435 891 }
duke@435 892 void push(Node *n, Node_State ns, Node *parent, int indx) {
duke@435 893 ++_inode_top;
duke@435 894 if ((_inode_top + 1) >= _inode_max) grow();
duke@435 895 _inode_top->node = parent;
duke@435 896 _inode_top->indx = (uint)indx;
duke@435 897 ++_inode_top;
duke@435 898 _inode_top->node = n;
duke@435 899 _inode_top->indx = (uint)ns;
duke@435 900 }
duke@435 901 Node *parent() {
duke@435 902 pop();
duke@435 903 return node();
duke@435 904 }
duke@435 905 Node_State state() const {
duke@435 906 return (Node_State)index();
duke@435 907 }
duke@435 908 void set_state(Node_State ns) {
duke@435 909 set_index((uint)ns);
duke@435 910 }
duke@435 911 };
duke@435 912
duke@435 913
duke@435 914 //------------------------------xform------------------------------------------
duke@435 915 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
duke@435 916 // Node in new-space. Given a new-space Node, recursively walk his children.
duke@435 917 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
duke@435 918 Node *Matcher::xform( Node *n, int max_stack ) {
duke@435 919 // Use one stack to keep both: child's node/state and parent's node/index
duke@435 920 MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
duke@435 921 mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root
duke@435 922
duke@435 923 while (mstack.is_nonempty()) {
duke@435 924 n = mstack.node(); // Leave node on stack
duke@435 925 Node_State nstate = mstack.state();
duke@435 926 if (nstate == Visit) {
duke@435 927 mstack.set_state(Post_Visit);
duke@435 928 Node *oldn = n;
duke@435 929 // Old-space or new-space check
duke@435 930 if (!C->node_arena()->contains(n)) {
duke@435 931 // Old space!
duke@435 932 Node* m;
duke@435 933 if (has_new_node(n)) { // Not yet Label/Reduced
duke@435 934 m = new_node(n);
duke@435 935 } else {
duke@435 936 if (!is_dontcare(n)) { // Matcher can match this guy
duke@435 937 // Calls match special. They match alone with no children.
duke@435 938 // Their children, the incoming arguments, match normally.
duke@435 939 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
duke@435 940 if (C->failing()) return NULL;
duke@435 941 if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
duke@435 942 } else { // Nothing the matcher cares about
duke@435 943 if( n->is_Proj() && n->in(0)->is_Multi()) { // Projections?
duke@435 944 // Convert to machine-dependent projection
duke@435 945 m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
never@657 946 #ifdef ASSERT
never@657 947 _new2old_map.map(m->_idx, n);
never@657 948 #endif
duke@435 949 if (m->in(0) != NULL) // m might be top
kvn@803 950 collect_null_checks(m, n);
duke@435 951 } else { // Else just a regular 'ol guy
duke@435 952 m = n->clone(); // So just clone into new-space
never@657 953 #ifdef ASSERT
never@657 954 _new2old_map.map(m->_idx, n);
never@657 955 #endif
duke@435 956 // Def-Use edges will be added incrementally as Uses
duke@435 957 // of this node are matched.
duke@435 958 assert(m->outcnt() == 0, "no Uses of this clone yet");
duke@435 959 }
duke@435 960 }
duke@435 961
duke@435 962 set_new_node(n, m); // Map old to new
duke@435 963 if (_old_node_note_array != NULL) {
duke@435 964 Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
duke@435 965 n->_idx);
duke@435 966 C->set_node_notes_at(m->_idx, nn);
duke@435 967 }
duke@435 968 debug_only(match_alias_type(C, n, m));
duke@435 969 }
duke@435 970 n = m; // n is now a new-space node
duke@435 971 mstack.set_node(n);
duke@435 972 }
duke@435 973
duke@435 974 // New space!
duke@435 975 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
duke@435 976
duke@435 977 int i;
duke@435 978 // Put precedence edges on stack first (match them last).
duke@435 979 for (i = oldn->req(); (uint)i < oldn->len(); i++) {
duke@435 980 Node *m = oldn->in(i);
duke@435 981 if (m == NULL) break;
duke@435 982 // set -1 to call add_prec() instead of set_req() during Step1
duke@435 983 mstack.push(m, Visit, n, -1);
duke@435 984 }
duke@435 985
duke@435 986 // For constant debug info, I'd rather have unmatched constants.
duke@435 987 int cnt = n->req();
duke@435 988 JVMState* jvms = n->jvms();
duke@435 989 int debug_cnt = jvms ? jvms->debug_start() : cnt;
duke@435 990
duke@435 991 // Now do only debug info. Clone constants rather than matching.
duke@435 992 // Constants are represented directly in the debug info without
duke@435 993 // the need for executable machine instructions.
duke@435 994 // Monitor boxes are also represented directly.
duke@435 995 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
duke@435 996 Node *m = n->in(i); // Get input
duke@435 997 int op = m->Opcode();
duke@435 998 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
kvn@598 999 if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
duke@435 1000 op == Op_ConF || op == Op_ConD || op == Op_ConL
duke@435 1001 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp
duke@435 1002 ) {
duke@435 1003 m = m->clone();
never@657 1004 #ifdef ASSERT
never@657 1005 _new2old_map.map(m->_idx, n);
never@657 1006 #endif
twisti@1040 1007 mstack.push(m, Post_Visit, n, i); // Don't need to visit
duke@435 1008 mstack.push(m->in(0), Visit, m, 0);
duke@435 1009 } else {
duke@435 1010 mstack.push(m, Visit, n, i);
duke@435 1011 }
duke@435 1012 }
duke@435 1013
duke@435 1014 // And now walk his children, and convert his inputs to new-space.
duke@435 1015 for( ; i >= 0; --i ) { // For all normal inputs do
duke@435 1016 Node *m = n->in(i); // Get input
duke@435 1017 if(m != NULL)
duke@435 1018 mstack.push(m, Visit, n, i);
duke@435 1019 }
duke@435 1020
duke@435 1021 }
duke@435 1022 else if (nstate == Post_Visit) {
duke@435 1023 // Set xformed input
duke@435 1024 Node *p = mstack.parent();
duke@435 1025 if (p != NULL) { // root doesn't have parent
duke@435 1026 int i = (int)mstack.index();
duke@435 1027 if (i >= 0)
duke@435 1028 p->set_req(i, n); // required input
duke@435 1029 else if (i == -1)
duke@435 1030 p->add_prec(n); // precedence input
duke@435 1031 else
duke@435 1032 ShouldNotReachHere();
duke@435 1033 }
duke@435 1034 mstack.pop(); // remove processed node from stack
duke@435 1035 }
duke@435 1036 else {
duke@435 1037 ShouldNotReachHere();
duke@435 1038 }
duke@435 1039 } // while (mstack.is_nonempty())
duke@435 1040 return n; // Return new-space Node
duke@435 1041 }
duke@435 1042
duke@435 1043 //------------------------------warp_outgoing_stk_arg------------------------
duke@435 1044 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
duke@435 1045 // Convert outgoing argument location to a pre-biased stack offset
duke@435 1046 if (reg->is_stack()) {
duke@435 1047 OptoReg::Name warped = reg->reg2stack();
duke@435 1048 // Adjust the stack slot offset to be the register number used
duke@435 1049 // by the allocator.
duke@435 1050 warped = OptoReg::add(begin_out_arg_area, warped);
duke@435 1051 // Keep track of the largest numbered stack slot used for an arg.
duke@435 1052 // Largest used slot per call-site indicates the amount of stack
duke@435 1053 // that is killed by the call.
duke@435 1054 if( warped >= out_arg_limit_per_call )
duke@435 1055 out_arg_limit_per_call = OptoReg::add(warped,1);
duke@435 1056 if (!RegMask::can_represent(warped)) {
duke@435 1057 C->record_method_not_compilable_all_tiers("unsupported calling sequence");
duke@435 1058 return OptoReg::Bad;
duke@435 1059 }
duke@435 1060 return warped;
duke@435 1061 }
duke@435 1062 return OptoReg::as_OptoReg(reg);
duke@435 1063 }
duke@435 1064
duke@435 1065
duke@435 1066 //------------------------------match_sfpt-------------------------------------
duke@435 1067 // Helper function to match call instructions. Calls match special.
duke@435 1068 // They match alone with no children. Their children, the incoming
duke@435 1069 // arguments, match normally.
duke@435 1070 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
duke@435 1071 MachSafePointNode *msfpt = NULL;
duke@435 1072 MachCallNode *mcall = NULL;
duke@435 1073 uint cnt;
duke@435 1074 // Split out case for SafePoint vs Call
duke@435 1075 CallNode *call;
duke@435 1076 const TypeTuple *domain;
duke@435 1077 ciMethod* method = NULL;
twisti@1572 1078 bool is_method_handle_invoke = false; // for special kill effects
duke@435 1079 if( sfpt->is_Call() ) {
duke@435 1080 call = sfpt->as_Call();
duke@435 1081 domain = call->tf()->domain();
duke@435 1082 cnt = domain->cnt();
duke@435 1083
duke@435 1084 // Match just the call, nothing else
duke@435 1085 MachNode *m = match_tree(call);
duke@435 1086 if (C->failing()) return NULL;
duke@435 1087 if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
duke@435 1088
duke@435 1089 // Copy data from the Ideal SafePoint to the machine version
duke@435 1090 mcall = m->as_MachCall();
duke@435 1091
duke@435 1092 mcall->set_tf( call->tf());
duke@435 1093 mcall->set_entry_point(call->entry_point());
duke@435 1094 mcall->set_cnt( call->cnt());
duke@435 1095
duke@435 1096 if( mcall->is_MachCallJava() ) {
duke@435 1097 MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
duke@435 1098 const CallJavaNode *call_java = call->as_CallJava();
duke@435 1099 method = call_java->method();
duke@435 1100 mcall_java->_method = method;
duke@435 1101 mcall_java->_bci = call_java->_bci;
duke@435 1102 mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
twisti@1572 1103 is_method_handle_invoke = call_java->is_method_handle_invoke();
twisti@1572 1104 mcall_java->_method_handle_invoke = is_method_handle_invoke;
duke@435 1105 if( mcall_java->is_MachCallStaticJava() )
duke@435 1106 mcall_java->as_MachCallStaticJava()->_name =
duke@435 1107 call_java->as_CallStaticJava()->_name;
duke@435 1108 if( mcall_java->is_MachCallDynamicJava() )
duke@435 1109 mcall_java->as_MachCallDynamicJava()->_vtable_index =
duke@435 1110 call_java->as_CallDynamicJava()->_vtable_index;
duke@435 1111 }
duke@435 1112 else if( mcall->is_MachCallRuntime() ) {
duke@435 1113 mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
duke@435 1114 }
duke@435 1115 msfpt = mcall;
duke@435 1116 }
duke@435 1117 // This is a non-call safepoint
duke@435 1118 else {
duke@435 1119 call = NULL;
duke@435 1120 domain = NULL;
duke@435 1121 MachNode *mn = match_tree(sfpt);
duke@435 1122 if (C->failing()) return NULL;
duke@435 1123 msfpt = mn->as_MachSafePoint();
duke@435 1124 cnt = TypeFunc::Parms;
duke@435 1125 }
duke@435 1126
duke@435 1127 // Advertise the correct memory effects (for anti-dependence computation).
duke@435 1128 msfpt->set_adr_type(sfpt->adr_type());
duke@435 1129
duke@435 1130 // Allocate a private array of RegMasks. These RegMasks are not shared.
duke@435 1131 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
duke@435 1132 // Empty them all.
duke@435 1133 memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
duke@435 1134
duke@435 1135 // Do all the pre-defined non-Empty register masks
duke@435 1136 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
duke@435 1137 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
duke@435 1138
duke@435 1139 // Place first outgoing argument can possibly be put.
duke@435 1140 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 1141 assert( is_even(begin_out_arg_area), "" );
duke@435 1142 // Compute max outgoing register number per call site.
duke@435 1143 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
duke@435 1144 // Calls to C may hammer extra stack slots above and beyond any arguments.
duke@435 1145 // These are usually backing store for register arguments for varargs.
duke@435 1146 if( call != NULL && call->is_CallRuntime() )
duke@435 1147 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
duke@435 1148
duke@435 1149
duke@435 1150 // Do the normal argument list (parameters) register masks
duke@435 1151 int argcnt = cnt - TypeFunc::Parms;
duke@435 1152 if( argcnt > 0 ) { // Skip it all if we have no args
duke@435 1153 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 1154 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 1155 int i;
duke@435 1156 for( i = 0; i < argcnt; i++ ) {
duke@435 1157 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 1158 }
duke@435 1159 // V-call to pick proper calling convention
duke@435 1160 call->calling_convention( sig_bt, parm_regs, argcnt );
duke@435 1161
duke@435 1162 #ifdef ASSERT
duke@435 1163 // Sanity check users' calling convention. Really handy during
duke@435 1164 // the initial porting effort. Fairly expensive otherwise.
duke@435 1165 { for (int i = 0; i<argcnt; i++) {
duke@435 1166 if( !parm_regs[i].first()->is_valid() &&
duke@435 1167 !parm_regs[i].second()->is_valid() ) continue;
duke@435 1168 VMReg reg1 = parm_regs[i].first();
duke@435 1169 VMReg reg2 = parm_regs[i].second();
duke@435 1170 for (int j = 0; j < i; j++) {
duke@435 1171 if( !parm_regs[j].first()->is_valid() &&
duke@435 1172 !parm_regs[j].second()->is_valid() ) continue;
duke@435 1173 VMReg reg3 = parm_regs[j].first();
duke@435 1174 VMReg reg4 = parm_regs[j].second();
duke@435 1175 if( !reg1->is_valid() ) {
duke@435 1176 assert( !reg2->is_valid(), "valid halvsies" );
duke@435 1177 } else if( !reg3->is_valid() ) {
duke@435 1178 assert( !reg4->is_valid(), "valid halvsies" );
duke@435 1179 } else {
duke@435 1180 assert( reg1 != reg2, "calling conv. must produce distinct regs");
duke@435 1181 assert( reg1 != reg3, "calling conv. must produce distinct regs");
duke@435 1182 assert( reg1 != reg4, "calling conv. must produce distinct regs");
duke@435 1183 assert( reg2 != reg3, "calling conv. must produce distinct regs");
duke@435 1184 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
duke@435 1185 assert( reg3 != reg4, "calling conv. must produce distinct regs");
duke@435 1186 }
duke@435 1187 }
duke@435 1188 }
duke@435 1189 }
duke@435 1190 #endif
duke@435 1191
duke@435 1192 // Visit each argument. Compute its outgoing register mask.
duke@435 1193 // Return results now can have 2 bits returned.
duke@435 1194 // Compute max over all outgoing arguments both per call-site
duke@435 1195 // and over the entire method.
duke@435 1196 for( i = 0; i < argcnt; i++ ) {
duke@435 1197 // Address of incoming argument mask to fill in
duke@435 1198 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
duke@435 1199 if( !parm_regs[i].first()->is_valid() &&
duke@435 1200 !parm_regs[i].second()->is_valid() ) {
duke@435 1201 continue; // Avoid Halves
duke@435 1202 }
duke@435 1203 // Grab first register, adjust stack slots and insert in mask.
duke@435 1204 OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1205 if (OptoReg::is_valid(reg1))
duke@435 1206 rm->Insert( reg1 );
duke@435 1207 // Grab second register (if any), adjust stack slots and insert in mask.
duke@435 1208 OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1209 if (OptoReg::is_valid(reg2))
duke@435 1210 rm->Insert( reg2 );
duke@435 1211 } // End of for all arguments
duke@435 1212
duke@435 1213 // Compute number of stack slots needed to restore stack in case of
duke@435 1214 // Pascal-style argument popping.
duke@435 1215 mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
duke@435 1216 }
duke@435 1217
twisti@1572 1218 if (is_method_handle_invoke) {
twisti@1572 1219 // Kill some extra stack space in case method handles want to do
twisti@1572 1220 // a little in-place argument insertion.
twisti@1572 1221 int regs_per_word = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
twisti@1572 1222 out_arg_limit_per_call += MethodHandlePushLimit * regs_per_word;
twisti@1572 1223 // Do not update mcall->_argsize because (a) the extra space is not
twisti@1572 1224 // pushed as arguments and (b) _argsize is dead (not used anywhere).
twisti@1572 1225 }
twisti@1572 1226
duke@435 1227 // Compute the max stack slot killed by any call. These will not be
duke@435 1228 // available for debug info, and will be used to adjust FIRST_STACK_mask
duke@435 1229 // after all call sites have been visited.
duke@435 1230 if( _out_arg_limit < out_arg_limit_per_call)
duke@435 1231 _out_arg_limit = out_arg_limit_per_call;
duke@435 1232
duke@435 1233 if (mcall) {
duke@435 1234 // Kill the outgoing argument area, including any non-argument holes and
duke@435 1235 // any legacy C-killed slots. Use Fat-Projections to do the killing.
duke@435 1236 // Since the max-per-method covers the max-per-call-site and debug info
duke@435 1237 // is excluded on the max-per-method basis, debug info cannot land in
duke@435 1238 // this killed area.
duke@435 1239 uint r_cnt = mcall->tf()->range()->cnt();
duke@435 1240 MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
duke@435 1241 if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
duke@435 1242 C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
duke@435 1243 } else {
duke@435 1244 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
duke@435 1245 proj->_rout.Insert(OptoReg::Name(i));
duke@435 1246 }
duke@435 1247 if( proj->_rout.is_NotEmpty() )
duke@435 1248 _proj_list.push(proj);
duke@435 1249 }
duke@435 1250 // Transfer the safepoint information from the call to the mcall
duke@435 1251 // Move the JVMState list
duke@435 1252 msfpt->set_jvms(sfpt->jvms());
duke@435 1253 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
duke@435 1254 jvms->set_map(sfpt);
duke@435 1255 }
duke@435 1256
duke@435 1257 // Debug inputs begin just after the last incoming parameter
duke@435 1258 assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
duke@435 1259 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
duke@435 1260
duke@435 1261 // Move the OopMap
duke@435 1262 msfpt->_oop_map = sfpt->_oop_map;
duke@435 1263
duke@435 1264 // Registers killed by the call are set in the local scheduling pass
duke@435 1265 // of Global Code Motion.
duke@435 1266 return msfpt;
duke@435 1267 }
duke@435 1268
duke@435 1269 //---------------------------match_tree----------------------------------------
duke@435 1270 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
duke@435 1271 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for
duke@435 1272 // making GotoNodes while building the CFG and in init_spill_mask() to identify
duke@435 1273 // a Load's result RegMask for memoization in idealreg2regmask[]
duke@435 1274 MachNode *Matcher::match_tree( const Node *n ) {
duke@435 1275 assert( n->Opcode() != Op_Phi, "cannot match" );
duke@435 1276 assert( !n->is_block_start(), "cannot match" );
duke@435 1277 // Set the mark for all locally allocated State objects.
duke@435 1278 // When this call returns, the _states_arena arena will be reset
duke@435 1279 // freeing all State objects.
duke@435 1280 ResourceMark rm( &_states_arena );
duke@435 1281
duke@435 1282 LabelRootDepth = 0;
duke@435 1283
duke@435 1284 // StoreNodes require their Memory input to match any LoadNodes
duke@435 1285 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
kvn@651 1286 #ifdef ASSERT
kvn@651 1287 Node* save_mem_node = _mem_node;
kvn@651 1288 _mem_node = n->is_Store() ? (Node*)n : NULL;
kvn@651 1289 #endif
duke@435 1290 // State object for root node of match tree
duke@435 1291 // Allocate it on _states_arena - stack allocation can cause stack overflow.
duke@435 1292 State *s = new (&_states_arena) State;
duke@435 1293 s->_kids[0] = NULL;
duke@435 1294 s->_kids[1] = NULL;
duke@435 1295 s->_leaf = (Node*)n;
duke@435 1296 // Label the input tree, allocating labels from top-level arena
duke@435 1297 Label_Root( n, s, n->in(0), mem );
duke@435 1298 if (C->failing()) return NULL;
duke@435 1299
duke@435 1300 // The minimum cost match for the whole tree is found at the root State
duke@435 1301 uint mincost = max_juint;
duke@435 1302 uint cost = max_juint;
duke@435 1303 uint i;
duke@435 1304 for( i = 0; i < NUM_OPERANDS; i++ ) {
duke@435 1305 if( s->valid(i) && // valid entry and
duke@435 1306 s->_cost[i] < cost && // low cost and
duke@435 1307 s->_rule[i] >= NUM_OPERANDS ) // not an operand
duke@435 1308 cost = s->_cost[mincost=i];
duke@435 1309 }
duke@435 1310 if (mincost == max_juint) {
duke@435 1311 #ifndef PRODUCT
duke@435 1312 tty->print("No matching rule for:");
duke@435 1313 s->dump();
duke@435 1314 #endif
duke@435 1315 Matcher::soft_match_failure();
duke@435 1316 return NULL;
duke@435 1317 }
duke@435 1318 // Reduce input tree based upon the state labels to machine Nodes
duke@435 1319 MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
duke@435 1320 #ifdef ASSERT
duke@435 1321 _old2new_map.map(n->_idx, m);
never@657 1322 _new2old_map.map(m->_idx, (Node*)n);
duke@435 1323 #endif
duke@435 1324
duke@435 1325 // Add any Matcher-ignored edges
duke@435 1326 uint cnt = n->req();
duke@435 1327 uint start = 1;
duke@435 1328 if( mem != (Node*)1 ) start = MemNode::Memory+1;
kvn@603 1329 if( n->is_AddP() ) {
duke@435 1330 assert( mem == (Node*)1, "" );
duke@435 1331 start = AddPNode::Base+1;
duke@435 1332 }
duke@435 1333 for( i = start; i < cnt; i++ ) {
duke@435 1334 if( !n->match_edge(i) ) {
duke@435 1335 if( i < m->req() )
duke@435 1336 m->ins_req( i, n->in(i) );
duke@435 1337 else
duke@435 1338 m->add_req( n->in(i) );
duke@435 1339 }
duke@435 1340 }
duke@435 1341
kvn@651 1342 debug_only( _mem_node = save_mem_node; )
duke@435 1343 return m;
duke@435 1344 }
duke@435 1345
duke@435 1346
duke@435 1347 //------------------------------match_into_reg---------------------------------
duke@435 1348 // Choose to either match this Node in a register or part of the current
duke@435 1349 // match tree. Return true for requiring a register and false for matching
duke@435 1350 // as part of the current match tree.
duke@435 1351 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
duke@435 1352
duke@435 1353 const Type *t = m->bottom_type();
duke@435 1354
duke@435 1355 if( t->singleton() ) {
duke@435 1356 // Never force constants into registers. Allow them to match as
duke@435 1357 // constants or registers. Copies of the same value will share
kvn@603 1358 // the same register. See find_shared_node.
duke@435 1359 return false;
duke@435 1360 } else { // Not a constant
duke@435 1361 // Stop recursion if they have different Controls.
duke@435 1362 // Slot 0 of constants is not really a Control.
duke@435 1363 if( control && m->in(0) && control != m->in(0) ) {
duke@435 1364
duke@435 1365 // Actually, we can live with the most conservative control we
duke@435 1366 // find, if it post-dominates the others. This allows us to
duke@435 1367 // pick up load/op/store trees where the load can float a little
duke@435 1368 // above the store.
duke@435 1369 Node *x = control;
duke@435 1370 const uint max_scan = 6; // Arbitrary scan cutoff
duke@435 1371 uint j;
duke@435 1372 for( j=0; j<max_scan; j++ ) {
duke@435 1373 if( x->is_Region() ) // Bail out at merge points
duke@435 1374 return true;
duke@435 1375 x = x->in(0);
duke@435 1376 if( x == m->in(0) ) // Does 'control' post-dominate
duke@435 1377 break; // m->in(0)? If so, we can use it
duke@435 1378 }
duke@435 1379 if( j == max_scan ) // No post-domination before scan end?
duke@435 1380 return true; // Then break the match tree up
duke@435 1381 }
kvn@1930 1382 if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
coleenp@548 1383 // These are commonly used in address expressions and can
kvn@603 1384 // efficiently fold into them on X64 in some cases.
kvn@603 1385 return false;
coleenp@548 1386 }
duke@435 1387 }
duke@435 1388
twisti@1040 1389 // Not forceable cloning. If shared, put it into a register.
duke@435 1390 return shared;
duke@435 1391 }
duke@435 1392
duke@435 1393
duke@435 1394 //------------------------------Instruction Selection--------------------------
duke@435 1395 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
duke@435 1396 // ideal nodes to machine instructions. Trees are delimited by shared Nodes,
duke@435 1397 // things the Matcher does not match (e.g., Memory), and things with different
duke@435 1398 // Controls (hence forced into different blocks). We pass in the Control
duke@435 1399 // selected for this entire State tree.
duke@435 1400
duke@435 1401 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
duke@435 1402 // Store and the Load must have identical Memories (as well as identical
duke@435 1403 // pointers). Since the Matcher does not have anything for Memory (and
duke@435 1404 // does not handle DAGs), I have to match the Memory input myself. If the
duke@435 1405 // Tree root is a Store, I require all Loads to have the identical memory.
duke@435 1406 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
duke@435 1407 // Since Label_Root is a recursive function, its possible that we might run
duke@435 1408 // out of stack space. See bugs 6272980 & 6227033 for more info.
duke@435 1409 LabelRootDepth++;
duke@435 1410 if (LabelRootDepth > MaxLabelRootDepth) {
duke@435 1411 C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
duke@435 1412 return NULL;
duke@435 1413 }
duke@435 1414 uint care = 0; // Edges matcher cares about
duke@435 1415 uint cnt = n->req();
duke@435 1416 uint i = 0;
duke@435 1417
duke@435 1418 // Examine children for memory state
duke@435 1419 // Can only subsume a child into your match-tree if that child's memory state
duke@435 1420 // is not modified along the path to another input.
duke@435 1421 // It is unsafe even if the other inputs are separate roots.
duke@435 1422 Node *input_mem = NULL;
duke@435 1423 for( i = 1; i < cnt; i++ ) {
duke@435 1424 if( !n->match_edge(i) ) continue;
duke@435 1425 Node *m = n->in(i); // Get ith input
duke@435 1426 assert( m, "expect non-null children" );
duke@435 1427 if( m->is_Load() ) {
duke@435 1428 if( input_mem == NULL ) {
duke@435 1429 input_mem = m->in(MemNode::Memory);
duke@435 1430 } else if( input_mem != m->in(MemNode::Memory) ) {
duke@435 1431 input_mem = NodeSentinel;
duke@435 1432 }
duke@435 1433 }
duke@435 1434 }
duke@435 1435
duke@435 1436 for( i = 1; i < cnt; i++ ){// For my children
duke@435 1437 if( !n->match_edge(i) ) continue;
duke@435 1438 Node *m = n->in(i); // Get ith input
duke@435 1439 // Allocate states out of a private arena
duke@435 1440 State *s = new (&_states_arena) State;
duke@435 1441 svec->_kids[care++] = s;
duke@435 1442 assert( care <= 2, "binary only for now" );
duke@435 1443
duke@435 1444 // Recursively label the State tree.
duke@435 1445 s->_kids[0] = NULL;
duke@435 1446 s->_kids[1] = NULL;
duke@435 1447 s->_leaf = m;
duke@435 1448
duke@435 1449 // Check for leaves of the State Tree; things that cannot be a part of
duke@435 1450 // the current tree. If it finds any, that value is matched as a
duke@435 1451 // register operand. If not, then the normal matching is used.
duke@435 1452 if( match_into_reg(n, m, control, i, is_shared(m)) ||
duke@435 1453 //
duke@435 1454 // Stop recursion if this is LoadNode and the root of this tree is a
duke@435 1455 // StoreNode and the load & store have different memories.
duke@435 1456 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
duke@435 1457 // Can NOT include the match of a subtree when its memory state
duke@435 1458 // is used by any of the other subtrees
duke@435 1459 (input_mem == NodeSentinel) ) {
duke@435 1460 #ifndef PRODUCT
duke@435 1461 // Print when we exclude matching due to different memory states at input-loads
duke@435 1462 if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
duke@435 1463 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
duke@435 1464 tty->print_cr("invalid input_mem");
duke@435 1465 }
duke@435 1466 #endif
duke@435 1467 // Switch to a register-only opcode; this value must be in a register
duke@435 1468 // and cannot be subsumed as part of a larger instruction.
duke@435 1469 s->DFA( m->ideal_reg(), m );
duke@435 1470
duke@435 1471 } else {
duke@435 1472 // If match tree has no control and we do, adopt it for entire tree
duke@435 1473 if( control == NULL && m->in(0) != NULL && m->req() > 1 )
duke@435 1474 control = m->in(0); // Pick up control
duke@435 1475 // Else match as a normal part of the match tree.
duke@435 1476 control = Label_Root(m,s,control,mem);
duke@435 1477 if (C->failing()) return NULL;
duke@435 1478 }
duke@435 1479 }
duke@435 1480
duke@435 1481
duke@435 1482 // Call DFA to match this node, and return
duke@435 1483 svec->DFA( n->Opcode(), n );
duke@435 1484
duke@435 1485 #ifdef ASSERT
duke@435 1486 uint x;
duke@435 1487 for( x = 0; x < _LAST_MACH_OPER; x++ )
duke@435 1488 if( svec->valid(x) )
duke@435 1489 break;
duke@435 1490
duke@435 1491 if (x >= _LAST_MACH_OPER) {
duke@435 1492 n->dump();
duke@435 1493 svec->dump();
duke@435 1494 assert( false, "bad AD file" );
duke@435 1495 }
duke@435 1496 #endif
duke@435 1497 return control;
duke@435 1498 }
duke@435 1499
duke@435 1500
duke@435 1501 // Con nodes reduced using the same rule can share their MachNode
duke@435 1502 // which reduces the number of copies of a constant in the final
duke@435 1503 // program. The register allocator is free to split uses later to
duke@435 1504 // split live ranges.
kvn@603 1505 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
kvn@603 1506 if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
duke@435 1507
duke@435 1508 // See if this Con has already been reduced using this rule.
kvn@603 1509 if (_shared_nodes.Size() <= leaf->_idx) return NULL;
kvn@603 1510 MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
duke@435 1511 if (last != NULL && rule == last->rule()) {
kvn@603 1512 // Don't expect control change for DecodeN
kvn@603 1513 if (leaf->is_DecodeN())
kvn@603 1514 return last;
duke@435 1515 // Get the new space root.
duke@435 1516 Node* xroot = new_node(C->root());
duke@435 1517 if (xroot == NULL) {
duke@435 1518 // This shouldn't happen give the order of matching.
duke@435 1519 return NULL;
duke@435 1520 }
duke@435 1521
duke@435 1522 // Shared constants need to have their control be root so they
duke@435 1523 // can be scheduled properly.
duke@435 1524 Node* control = last->in(0);
duke@435 1525 if (control != xroot) {
duke@435 1526 if (control == NULL || control == C->root()) {
duke@435 1527 last->set_req(0, xroot);
duke@435 1528 } else {
duke@435 1529 assert(false, "unexpected control");
duke@435 1530 return NULL;
duke@435 1531 }
duke@435 1532 }
duke@435 1533 return last;
duke@435 1534 }
duke@435 1535 return NULL;
duke@435 1536 }
duke@435 1537
duke@435 1538
duke@435 1539 //------------------------------ReduceInst-------------------------------------
duke@435 1540 // Reduce a State tree (with given Control) into a tree of MachNodes.
duke@435 1541 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
duke@435 1542 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes.
duke@435 1543 // Each MachNode has a number of complicated MachOper operands; each
duke@435 1544 // MachOper also covers a further tree of Ideal Nodes.
duke@435 1545
duke@435 1546 // The root of the Ideal match tree is always an instruction, so we enter
duke@435 1547 // the recursion here. After building the MachNode, we need to recurse
duke@435 1548 // the tree checking for these cases:
duke@435 1549 // (1) Child is an instruction -
duke@435 1550 // Build the instruction (recursively), add it as an edge.
duke@435 1551 // Build a simple operand (register) to hold the result of the instruction.
duke@435 1552 // (2) Child is an interior part of an instruction -
duke@435 1553 // Skip over it (do nothing)
duke@435 1554 // (3) Child is the start of a operand -
duke@435 1555 // Build the operand, place it inside the instruction
duke@435 1556 // Call ReduceOper.
duke@435 1557 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
duke@435 1558 assert( rule >= NUM_OPERANDS, "called with operand rule" );
duke@435 1559
kvn@603 1560 MachNode* shared_node = find_shared_node(s->_leaf, rule);
kvn@603 1561 if (shared_node != NULL) {
kvn@603 1562 return shared_node;
duke@435 1563 }
duke@435 1564
duke@435 1565 // Build the object to represent this state & prepare for recursive calls
duke@435 1566 MachNode *mach = s->MachNodeGenerator( rule, C );
duke@435 1567 mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
duke@435 1568 assert( mach->_opnds[0] != NULL, "Missing result operand" );
duke@435 1569 Node *leaf = s->_leaf;
duke@435 1570 // Check for instruction or instruction chain rule
duke@435 1571 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
never@744 1572 assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
never@744 1573 "duplicating node that's already been matched");
duke@435 1574 // Instruction
duke@435 1575 mach->add_req( leaf->in(0) ); // Set initial control
duke@435 1576 // Reduce interior of complex instruction
duke@435 1577 ReduceInst_Interior( s, rule, mem, mach, 1 );
duke@435 1578 } else {
duke@435 1579 // Instruction chain rules are data-dependent on their inputs
duke@435 1580 mach->add_req(0); // Set initial control to none
duke@435 1581 ReduceInst_Chain_Rule( s, rule, mem, mach );
duke@435 1582 }
duke@435 1583
duke@435 1584 // If a Memory was used, insert a Memory edge
kvn@651 1585 if( mem != (Node*)1 ) {
duke@435 1586 mach->ins_req(MemNode::Memory,mem);
kvn@651 1587 #ifdef ASSERT
kvn@651 1588 // Verify adr type after matching memory operation
kvn@651 1589 const MachOper* oper = mach->memory_operand();
kvn@1286 1590 if (oper != NULL && oper != (MachOper*)-1) {
kvn@651 1591 // It has a unique memory operand. Find corresponding ideal mem node.
kvn@651 1592 Node* m = NULL;
kvn@651 1593 if (leaf->is_Mem()) {
kvn@651 1594 m = leaf;
kvn@651 1595 } else {
kvn@651 1596 m = _mem_node;
kvn@651 1597 assert(m != NULL && m->is_Mem(), "expecting memory node");
kvn@651 1598 }
kvn@803 1599 const Type* mach_at = mach->adr_type();
kvn@803 1600 // DecodeN node consumed by an address may have different type
kvn@803 1601 // then its input. Don't compare types for such case.
kvn@1077 1602 if (m->adr_type() != mach_at &&
kvn@1077 1603 (m->in(MemNode::Address)->is_DecodeN() ||
kvn@1077 1604 m->in(MemNode::Address)->is_AddP() &&
kvn@1077 1605 m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
kvn@1077 1606 m->in(MemNode::Address)->is_AddP() &&
kvn@1077 1607 m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
kvn@1077 1608 m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
kvn@803 1609 mach_at = m->adr_type();
kvn@803 1610 }
kvn@803 1611 if (m->adr_type() != mach_at) {
kvn@651 1612 m->dump();
kvn@651 1613 tty->print_cr("mach:");
kvn@651 1614 mach->dump(1);
kvn@651 1615 }
kvn@803 1616 assert(m->adr_type() == mach_at, "matcher should not change adr type");
kvn@651 1617 }
kvn@651 1618 #endif
kvn@651 1619 }
duke@435 1620
duke@435 1621 // If the _leaf is an AddP, insert the base edge
kvn@603 1622 if( leaf->is_AddP() )
duke@435 1623 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
duke@435 1624
duke@435 1625 uint num_proj = _proj_list.size();
duke@435 1626
duke@435 1627 // Perform any 1-to-many expansions required
never@1638 1628 MachNode *ex = mach->Expand(s,_proj_list, mem);
duke@435 1629 if( ex != mach ) {
duke@435 1630 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
duke@435 1631 if( ex->in(1)->is_Con() )
duke@435 1632 ex->in(1)->set_req(0, C->root());
duke@435 1633 // Remove old node from the graph
duke@435 1634 for( uint i=0; i<mach->req(); i++ ) {
duke@435 1635 mach->set_req(i,NULL);
duke@435 1636 }
never@657 1637 #ifdef ASSERT
never@657 1638 _new2old_map.map(ex->_idx, s->_leaf);
never@657 1639 #endif
duke@435 1640 }
duke@435 1641
duke@435 1642 // PhaseChaitin::fixup_spills will sometimes generate spill code
duke@435 1643 // via the matcher. By the time, nodes have been wired into the CFG,
duke@435 1644 // and any further nodes generated by expand rules will be left hanging
duke@435 1645 // in space, and will not get emitted as output code. Catch this.
duke@435 1646 // Also, catch any new register allocation constraints ("projections")
duke@435 1647 // generated belatedly during spill code generation.
duke@435 1648 if (_allocation_started) {
duke@435 1649 guarantee(ex == mach, "no expand rules during spill generation");
duke@435 1650 guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
duke@435 1651 }
duke@435 1652
kvn@603 1653 if (leaf->is_Con() || leaf->is_DecodeN()) {
duke@435 1654 // Record the con for sharing
kvn@603 1655 _shared_nodes.map(leaf->_idx, ex);
duke@435 1656 }
duke@435 1657
duke@435 1658 return ex;
duke@435 1659 }
duke@435 1660
duke@435 1661 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1662 // 'op' is what I am expecting to receive
duke@435 1663 int op = _leftOp[rule];
duke@435 1664 // Operand type to catch childs result
duke@435 1665 // This is what my child will give me.
duke@435 1666 int opnd_class_instance = s->_rule[op];
duke@435 1667 // Choose between operand class or not.
twisti@1040 1668 // This is what I will receive.
duke@435 1669 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1670 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1671 int newrule = s->_rule[catch_op];
duke@435 1672
duke@435 1673 if( newrule < NUM_OPERANDS ) {
duke@435 1674 // Chain from operand or operand class, may be output of shared node
duke@435 1675 assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
duke@435 1676 "Bad AD file: Instruction chain rule must chain from operand");
duke@435 1677 // Insert operand into array of operands for this instruction
duke@435 1678 mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
duke@435 1679
duke@435 1680 ReduceOper( s, newrule, mem, mach );
duke@435 1681 } else {
duke@435 1682 // Chain from the result of an instruction
duke@435 1683 assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
duke@435 1684 mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1685 Node *mem1 = (Node*)1;
kvn@651 1686 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1687 mach->add_req( ReduceInst(s, newrule, mem1) );
kvn@651 1688 debug_only(_mem_node = save_mem_node;)
duke@435 1689 }
duke@435 1690 return;
duke@435 1691 }
duke@435 1692
duke@435 1693
duke@435 1694 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
duke@435 1695 if( s->_leaf->is_Load() ) {
duke@435 1696 Node *mem2 = s->_leaf->in(MemNode::Memory);
duke@435 1697 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
kvn@651 1698 debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
duke@435 1699 mem = mem2;
duke@435 1700 }
duke@435 1701 if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
duke@435 1702 if( mach->in(0) == NULL )
duke@435 1703 mach->set_req(0, s->_leaf->in(0));
duke@435 1704 }
duke@435 1705
duke@435 1706 // Now recursively walk the state tree & add operand list.
duke@435 1707 for( uint i=0; i<2; i++ ) { // binary tree
duke@435 1708 State *newstate = s->_kids[i];
duke@435 1709 if( newstate == NULL ) break; // Might only have 1 child
duke@435 1710 // 'op' is what I am expecting to receive
duke@435 1711 int op;
duke@435 1712 if( i == 0 ) {
duke@435 1713 op = _leftOp[rule];
duke@435 1714 } else {
duke@435 1715 op = _rightOp[rule];
duke@435 1716 }
duke@435 1717 // Operand type to catch childs result
duke@435 1718 // This is what my child will give me.
duke@435 1719 int opnd_class_instance = newstate->_rule[op];
duke@435 1720 // Choose between operand class or not.
duke@435 1721 // This is what I will receive.
duke@435 1722 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1723 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1724 int newrule = newstate->_rule[catch_op];
duke@435 1725
duke@435 1726 if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
duke@435 1727 // Operand/operandClass
duke@435 1728 // Insert operand into array of operands for this instruction
duke@435 1729 mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
duke@435 1730 ReduceOper( newstate, newrule, mem, mach );
duke@435 1731
duke@435 1732 } else { // Child is internal operand or new instruction
duke@435 1733 if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
duke@435 1734 // internal operand --> call ReduceInst_Interior
duke@435 1735 // Interior of complex instruction. Do nothing but recurse.
duke@435 1736 num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
duke@435 1737 } else {
duke@435 1738 // instruction --> call build operand( ) to catch result
duke@435 1739 // --> ReduceInst( newrule )
duke@435 1740 mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1741 Node *mem1 = (Node*)1;
kvn@651 1742 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1743 mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
kvn@651 1744 debug_only(_mem_node = save_mem_node;)
duke@435 1745 }
duke@435 1746 }
duke@435 1747 assert( mach->_opnds[num_opnds-1], "" );
duke@435 1748 }
duke@435 1749 return num_opnds;
duke@435 1750 }
duke@435 1751
duke@435 1752 // This routine walks the interior of possible complex operands.
duke@435 1753 // At each point we check our children in the match tree:
duke@435 1754 // (1) No children -
duke@435 1755 // We are a leaf; add _leaf field as an input to the MachNode
duke@435 1756 // (2) Child is an internal operand -
duke@435 1757 // Skip over it ( do nothing )
duke@435 1758 // (3) Child is an instruction -
duke@435 1759 // Call ReduceInst recursively and
duke@435 1760 // and instruction as an input to the MachNode
duke@435 1761 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1762 assert( rule < _LAST_MACH_OPER, "called with operand rule" );
duke@435 1763 State *kid = s->_kids[0];
duke@435 1764 assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
duke@435 1765
duke@435 1766 // Leaf? And not subsumed?
duke@435 1767 if( kid == NULL && !_swallowed[rule] ) {
duke@435 1768 mach->add_req( s->_leaf ); // Add leaf pointer
duke@435 1769 return; // Bail out
duke@435 1770 }
duke@435 1771
duke@435 1772 if( s->_leaf->is_Load() ) {
duke@435 1773 assert( mem == (Node*)1, "multiple Memories being matched at once?" );
duke@435 1774 mem = s->_leaf->in(MemNode::Memory);
kvn@651 1775 debug_only(_mem_node = s->_leaf;)
duke@435 1776 }
duke@435 1777 if( s->_leaf->in(0) && s->_leaf->req() > 1) {
duke@435 1778 if( !mach->in(0) )
duke@435 1779 mach->set_req(0,s->_leaf->in(0));
duke@435 1780 else {
duke@435 1781 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
duke@435 1782 }
duke@435 1783 }
duke@435 1784
duke@435 1785 for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree
duke@435 1786 int newrule;
duke@435 1787 if( i == 0 )
duke@435 1788 newrule = kid->_rule[_leftOp[rule]];
duke@435 1789 else
duke@435 1790 newrule = kid->_rule[_rightOp[rule]];
duke@435 1791
duke@435 1792 if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
duke@435 1793 // Internal operand; recurse but do nothing else
duke@435 1794 ReduceOper( kid, newrule, mem, mach );
duke@435 1795
duke@435 1796 } else { // Child is a new instruction
duke@435 1797 // Reduce the instruction, and add a direct pointer from this
duke@435 1798 // machine instruction to the newly reduced one.
duke@435 1799 Node *mem1 = (Node*)1;
kvn@651 1800 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1801 mach->add_req( ReduceInst( kid, newrule, mem1 ) );
kvn@651 1802 debug_only(_mem_node = save_mem_node;)
duke@435 1803 }
duke@435 1804 }
duke@435 1805 }
duke@435 1806
duke@435 1807
duke@435 1808 // -------------------------------------------------------------------------
duke@435 1809 // Java-Java calling convention
duke@435 1810 // (what you use when Java calls Java)
duke@435 1811
duke@435 1812 //------------------------------find_receiver----------------------------------
duke@435 1813 // For a given signature, return the OptoReg for parameter 0.
duke@435 1814 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
duke@435 1815 VMRegPair regs;
duke@435 1816 BasicType sig_bt = T_OBJECT;
duke@435 1817 calling_convention(&sig_bt, &regs, 1, is_outgoing);
duke@435 1818 // Return argument 0 register. In the LP64 build pointers
duke@435 1819 // take 2 registers, but the VM wants only the 'main' name.
duke@435 1820 return OptoReg::as_OptoReg(regs.first());
duke@435 1821 }
duke@435 1822
duke@435 1823 // A method-klass-holder may be passed in the inline_cache_reg
duke@435 1824 // and then expanded into the inline_cache_reg and a method_oop register
duke@435 1825 // defined in ad_<arch>.cpp
duke@435 1826
duke@435 1827
duke@435 1828 //------------------------------find_shared------------------------------------
duke@435 1829 // Set bits if Node is shared or otherwise a root
duke@435 1830 void Matcher::find_shared( Node *n ) {
duke@435 1831 // Allocate stack of size C->unique() * 2 to avoid frequent realloc
duke@435 1832 MStack mstack(C->unique() * 2);
kvn@1021 1833 // Mark nodes as address_visited if they are inputs to an address expression
kvn@1021 1834 VectorSet address_visited(Thread::current()->resource_area());
duke@435 1835 mstack.push(n, Visit); // Don't need to pre-visit root node
duke@435 1836 while (mstack.is_nonempty()) {
duke@435 1837 n = mstack.node(); // Leave node on stack
duke@435 1838 Node_State nstate = mstack.state();
kvn@1021 1839 uint nop = n->Opcode();
duke@435 1840 if (nstate == Pre_Visit) {
kvn@1021 1841 if (address_visited.test(n->_idx)) { // Visited in address already?
kvn@1021 1842 // Flag as visited and shared now.
kvn@1021 1843 set_visited(n);
kvn@1021 1844 }
duke@435 1845 if (is_visited(n)) { // Visited already?
duke@435 1846 // Node is shared and has no reason to clone. Flag it as shared.
duke@435 1847 // This causes it to match into a register for the sharing.
duke@435 1848 set_shared(n); // Flag as shared and
duke@435 1849 mstack.pop(); // remove node from stack
duke@435 1850 continue;
duke@435 1851 }
duke@435 1852 nstate = Visit; // Not already visited; so visit now
duke@435 1853 }
duke@435 1854 if (nstate == Visit) {
duke@435 1855 mstack.set_state(Post_Visit);
duke@435 1856 set_visited(n); // Flag as visited now
duke@435 1857 bool mem_op = false;
duke@435 1858
kvn@1021 1859 switch( nop ) { // Handle some opcodes special
duke@435 1860 case Op_Phi: // Treat Phis as shared roots
duke@435 1861 case Op_Parm:
duke@435 1862 case Op_Proj: // All handled specially during matching
kvn@498 1863 case Op_SafePointScalarObject:
duke@435 1864 set_shared(n);
duke@435 1865 set_dontcare(n);
duke@435 1866 break;
duke@435 1867 case Op_If:
duke@435 1868 case Op_CountedLoopEnd:
duke@435 1869 mstack.set_state(Alt_Post_Visit); // Alternative way
duke@435 1870 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps
duke@435 1871 // with matching cmp/branch in 1 instruction. The Matcher needs the
duke@435 1872 // Bool and CmpX side-by-side, because it can only get at constants
duke@435 1873 // that are at the leaves of Match trees, and the Bool's condition acts
duke@435 1874 // as a constant here.
duke@435 1875 mstack.push(n->in(1), Visit); // Clone the Bool
duke@435 1876 mstack.push(n->in(0), Pre_Visit); // Visit control input
duke@435 1877 continue; // while (mstack.is_nonempty())
duke@435 1878 case Op_ConvI2D: // These forms efficiently match with a prior
duke@435 1879 case Op_ConvI2F: // Load but not a following Store
duke@435 1880 if( n->in(1)->is_Load() && // Prior load
duke@435 1881 n->outcnt() == 1 && // Not already shared
duke@435 1882 n->unique_out()->is_Store() ) // Following store
duke@435 1883 set_shared(n); // Force it to be a root
duke@435 1884 break;
duke@435 1885 case Op_ReverseBytesI:
duke@435 1886 case Op_ReverseBytesL:
duke@435 1887 if( n->in(1)->is_Load() && // Prior load
duke@435 1888 n->outcnt() == 1 ) // Not already shared
duke@435 1889 set_shared(n); // Force it to be a root
duke@435 1890 break;
duke@435 1891 case Op_BoxLock: // Cant match until we get stack-regs in ADLC
duke@435 1892 case Op_IfFalse:
duke@435 1893 case Op_IfTrue:
duke@435 1894 case Op_MachProj:
duke@435 1895 case Op_MergeMem:
duke@435 1896 case Op_Catch:
duke@435 1897 case Op_CatchProj:
duke@435 1898 case Op_CProj:
duke@435 1899 case Op_JumpProj:
duke@435 1900 case Op_JProj:
duke@435 1901 case Op_NeverBranch:
duke@435 1902 set_dontcare(n);
duke@435 1903 break;
duke@435 1904 case Op_Jump:
duke@435 1905 mstack.push(n->in(1), Visit); // Switch Value
duke@435 1906 mstack.push(n->in(0), Pre_Visit); // Visit Control input
duke@435 1907 continue; // while (mstack.is_nonempty())
duke@435 1908 case Op_StrComp:
cfang@1116 1909 case Op_StrEquals:
cfang@1116 1910 case Op_StrIndexOf:
rasbold@604 1911 case Op_AryEq:
duke@435 1912 set_shared(n); // Force result into register (it will be anyways)
duke@435 1913 break;
duke@435 1914 case Op_ConP: { // Convert pointers above the centerline to NUL
duke@435 1915 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
duke@435 1916 const TypePtr* tp = tn->type()->is_ptr();
duke@435 1917 if (tp->_ptr == TypePtr::AnyNull) {
duke@435 1918 tn->set_type(TypePtr::NULL_PTR);
duke@435 1919 }
duke@435 1920 break;
duke@435 1921 }
kvn@598 1922 case Op_ConN: { // Convert narrow pointers above the centerline to NUL
kvn@598 1923 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
kvn@656 1924 const TypePtr* tp = tn->type()->make_ptr();
kvn@656 1925 if (tp && tp->_ptr == TypePtr::AnyNull) {
kvn@598 1926 tn->set_type(TypeNarrowOop::NULL_PTR);
kvn@598 1927 }
kvn@598 1928 break;
kvn@598 1929 }
duke@435 1930 case Op_Binary: // These are introduced in the Post_Visit state.
duke@435 1931 ShouldNotReachHere();
duke@435 1932 break;
duke@435 1933 case Op_ClearArray:
duke@435 1934 case Op_SafePoint:
duke@435 1935 mem_op = true;
duke@435 1936 break;
kvn@1496 1937 default:
kvn@1496 1938 if( n->is_Store() ) {
kvn@1496 1939 // Do match stores, despite no ideal reg
kvn@1496 1940 mem_op = true;
kvn@1496 1941 break;
kvn@1496 1942 }
kvn@1496 1943 if( n->is_Mem() ) { // Loads and LoadStores
kvn@1496 1944 mem_op = true;
kvn@1496 1945 // Loads must be root of match tree due to prior load conflict
kvn@1496 1946 if( C->subsume_loads() == false )
kvn@1496 1947 set_shared(n);
duke@435 1948 }
duke@435 1949 // Fall into default case
duke@435 1950 if( !n->ideal_reg() )
duke@435 1951 set_dontcare(n); // Unmatchable Nodes
duke@435 1952 } // end_switch
duke@435 1953
duke@435 1954 for(int i = n->req() - 1; i >= 0; --i) { // For my children
duke@435 1955 Node *m = n->in(i); // Get ith input
duke@435 1956 if (m == NULL) continue; // Ignore NULLs
duke@435 1957 uint mop = m->Opcode();
duke@435 1958
duke@435 1959 // Must clone all producers of flags, or we will not match correctly.
duke@435 1960 // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
duke@435 1961 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags
duke@435 1962 // are also there, so we may match a float-branch to int-flags and
duke@435 1963 // expect the allocator to haul the flags from the int-side to the
duke@435 1964 // fp-side. No can do.
duke@435 1965 if( _must_clone[mop] ) {
duke@435 1966 mstack.push(m, Visit);
duke@435 1967 continue; // for(int i = ...)
duke@435 1968 }
duke@435 1969
kvn@1496 1970 if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
kvn@1496 1971 // Bases used in addresses must be shared but since
kvn@1496 1972 // they are shared through a DecodeN they may appear
kvn@1496 1973 // to have a single use so force sharing here.
kvn@1496 1974 set_shared(m->in(AddPNode::Base)->in(1));
kvn@1496 1975 }
kvn@1496 1976
kvn@1496 1977 // Clone addressing expressions as they are "free" in memory access instructions
duke@435 1978 if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
kvn@1021 1979 // Some inputs for address expression are not put on stack
kvn@1021 1980 // to avoid marking them as shared and forcing them into register
kvn@1021 1981 // if they are used only in address expressions.
kvn@1021 1982 // But they should be marked as shared if there are other uses
kvn@1021 1983 // besides address expressions.
kvn@1021 1984
duke@435 1985 Node *off = m->in(AddPNode::Offset);
kvn@1021 1986 if( off->is_Con() &&
kvn@1021 1987 // When there are other uses besides address expressions
kvn@1021 1988 // put it on stack and mark as shared.
kvn@1021 1989 !is_visited(m) ) {
kvn@1021 1990 address_visited.test_set(m->_idx); // Flag as address_visited
duke@435 1991 Node *adr = m->in(AddPNode::Address);
duke@435 1992
duke@435 1993 // Intel, ARM and friends can handle 2 adds in addressing mode
kvn@603 1994 if( clone_shift_expressions && adr->is_AddP() &&
duke@435 1995 // AtomicAdd is not an addressing expression.
duke@435 1996 // Cheap to find it by looking for screwy base.
kvn@1021 1997 !adr->in(AddPNode::Base)->is_top() &&
kvn@1021 1998 // Are there other uses besides address expressions?
kvn@1021 1999 !is_visited(adr) ) {
kvn@1021 2000 address_visited.set(adr->_idx); // Flag as address_visited
duke@435 2001 Node *shift = adr->in(AddPNode::Offset);
duke@435 2002 // Check for shift by small constant as well
duke@435 2003 if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
kvn@1021 2004 shift->in(2)->get_int() <= 3 &&
kvn@1021 2005 // Are there other uses besides address expressions?
kvn@1021 2006 !is_visited(shift) ) {
kvn@1021 2007 address_visited.set(shift->_idx); // Flag as address_visited
duke@435 2008 mstack.push(shift->in(2), Visit);
kvn@1021 2009 Node *conv = shift->in(1);
duke@435 2010 #ifdef _LP64
duke@435 2011 // Allow Matcher to match the rule which bypass
duke@435 2012 // ConvI2L operation for an array index on LP64
duke@435 2013 // if the index value is positive.
kvn@1021 2014 if( conv->Opcode() == Op_ConvI2L &&
kvn@1021 2015 conv->as_Type()->type()->is_long()->_lo >= 0 &&
kvn@1021 2016 // Are there other uses besides address expressions?
kvn@1021 2017 !is_visited(conv) ) {
kvn@1021 2018 address_visited.set(conv->_idx); // Flag as address_visited
kvn@1021 2019 mstack.push(conv->in(1), Pre_Visit);
duke@435 2020 } else
duke@435 2021 #endif
kvn@1021 2022 mstack.push(conv, Pre_Visit);
duke@435 2023 } else {
duke@435 2024 mstack.push(shift, Pre_Visit);
duke@435 2025 }
duke@435 2026 mstack.push(adr->in(AddPNode::Address), Pre_Visit);
duke@435 2027 mstack.push(adr->in(AddPNode::Base), Pre_Visit);
duke@435 2028 } else { // Sparc, Alpha, PPC and friends
duke@435 2029 mstack.push(adr, Pre_Visit);
duke@435 2030 }
duke@435 2031
duke@435 2032 // Clone X+offset as it also folds into most addressing expressions
duke@435 2033 mstack.push(off, Visit);
duke@435 2034 mstack.push(m->in(AddPNode::Base), Pre_Visit);
duke@435 2035 continue; // for(int i = ...)
duke@435 2036 } // if( off->is_Con() )
duke@435 2037 } // if( mem_op &&
duke@435 2038 mstack.push(m, Pre_Visit);
duke@435 2039 } // for(int i = ...)
duke@435 2040 }
duke@435 2041 else if (nstate == Alt_Post_Visit) {
duke@435 2042 mstack.pop(); // Remove node from stack
duke@435 2043 // We cannot remove the Cmp input from the Bool here, as the Bool may be
duke@435 2044 // shared and all users of the Bool need to move the Cmp in parallel.
duke@435 2045 // This leaves both the Bool and the If pointing at the Cmp. To
duke@435 2046 // prevent the Matcher from trying to Match the Cmp along both paths
duke@435 2047 // BoolNode::match_edge always returns a zero.
duke@435 2048
duke@435 2049 // We reorder the Op_If in a pre-order manner, so we can visit without
twisti@1040 2050 // accidentally sharing the Cmp (the Bool and the If make 2 users).
duke@435 2051 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
duke@435 2052 }
duke@435 2053 else if (nstate == Post_Visit) {
duke@435 2054 mstack.pop(); // Remove node from stack
duke@435 2055
duke@435 2056 // Now hack a few special opcodes
duke@435 2057 switch( n->Opcode() ) { // Handle some opcodes special
duke@435 2058 case Op_StorePConditional:
kvn@855 2059 case Op_StoreIConditional:
duke@435 2060 case Op_StoreLConditional:
duke@435 2061 case Op_CompareAndSwapI:
duke@435 2062 case Op_CompareAndSwapL:
coleenp@548 2063 case Op_CompareAndSwapP:
coleenp@548 2064 case Op_CompareAndSwapN: { // Convert trinary to binary-tree
duke@435 2065 Node *newval = n->in(MemNode::ValueIn );
duke@435 2066 Node *oldval = n->in(LoadStoreNode::ExpectedIn);
duke@435 2067 Node *pair = new (C, 3) BinaryNode( oldval, newval );
duke@435 2068 n->set_req(MemNode::ValueIn,pair);
duke@435 2069 n->del_req(LoadStoreNode::ExpectedIn);
duke@435 2070 break;
duke@435 2071 }
duke@435 2072 case Op_CMoveD: // Convert trinary to binary-tree
duke@435 2073 case Op_CMoveF:
duke@435 2074 case Op_CMoveI:
duke@435 2075 case Op_CMoveL:
kvn@599 2076 case Op_CMoveN:
duke@435 2077 case Op_CMoveP: {
duke@435 2078 // Restructure into a binary tree for Matching. It's possible that
duke@435 2079 // we could move this code up next to the graph reshaping for IfNodes
duke@435 2080 // or vice-versa, but I do not want to debug this for Ladybird.
duke@435 2081 // 10/2/2000 CNC.
duke@435 2082 Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
duke@435 2083 n->set_req(1,pair1);
duke@435 2084 Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
duke@435 2085 n->set_req(2,pair2);
duke@435 2086 n->del_req(3);
duke@435 2087 break;
duke@435 2088 }
kvn@1421 2089 case Op_StrEquals: {
kvn@1421 2090 Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
kvn@1421 2091 n->set_req(2,pair1);
kvn@1421 2092 n->set_req(3,n->in(4));
kvn@1421 2093 n->del_req(4);
kvn@1421 2094 break;
kvn@1421 2095 }
kvn@1421 2096 case Op_StrComp:
kvn@1421 2097 case Op_StrIndexOf: {
kvn@1421 2098 Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
kvn@1421 2099 n->set_req(2,pair1);
kvn@1421 2100 Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
kvn@1421 2101 n->set_req(3,pair2);
kvn@1421 2102 n->del_req(5);
kvn@1421 2103 n->del_req(4);
kvn@1421 2104 break;
kvn@1421 2105 }
duke@435 2106 default:
duke@435 2107 break;
duke@435 2108 }
duke@435 2109 }
duke@435 2110 else {
duke@435 2111 ShouldNotReachHere();
duke@435 2112 }
duke@435 2113 } // end of while (mstack.is_nonempty())
duke@435 2114 }
duke@435 2115
duke@435 2116 #ifdef ASSERT
duke@435 2117 // machine-independent root to machine-dependent root
duke@435 2118 void Matcher::dump_old2new_map() {
duke@435 2119 _old2new_map.dump();
duke@435 2120 }
duke@435 2121 #endif
duke@435 2122
duke@435 2123 //---------------------------collect_null_checks-------------------------------
duke@435 2124 // Find null checks in the ideal graph; write a machine-specific node for
duke@435 2125 // it. Used by later implicit-null-check handling. Actually collects
duke@435 2126 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
duke@435 2127 // value being tested.
kvn@803 2128 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
duke@435 2129 Node *iff = proj->in(0);
duke@435 2130 if( iff->Opcode() == Op_If ) {
duke@435 2131 // During matching If's have Bool & Cmp side-by-side
duke@435 2132 BoolNode *b = iff->in(1)->as_Bool();
duke@435 2133 Node *cmp = iff->in(2);
coleenp@548 2134 int opc = cmp->Opcode();
coleenp@548 2135 if (opc != Op_CmpP && opc != Op_CmpN) return;
duke@435 2136
coleenp@548 2137 const Type* ct = cmp->in(2)->bottom_type();
coleenp@548 2138 if (ct == TypePtr::NULL_PTR ||
coleenp@548 2139 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
coleenp@548 2140
kvn@803 2141 bool push_it = false;
coleenp@548 2142 if( proj->Opcode() == Op_IfTrue ) {
coleenp@548 2143 extern int all_null_checks_found;
coleenp@548 2144 all_null_checks_found++;
coleenp@548 2145 if( b->_test._test == BoolTest::ne ) {
kvn@803 2146 push_it = true;
coleenp@548 2147 }
coleenp@548 2148 } else {
coleenp@548 2149 assert( proj->Opcode() == Op_IfFalse, "" );
coleenp@548 2150 if( b->_test._test == BoolTest::eq ) {
kvn@803 2151 push_it = true;
duke@435 2152 }
duke@435 2153 }
kvn@803 2154 if( push_it ) {
kvn@803 2155 _null_check_tests.push(proj);
kvn@803 2156 Node* val = cmp->in(1);
kvn@803 2157 #ifdef _LP64
kvn@1930 2158 if (val->bottom_type()->isa_narrowoop() &&
kvn@1930 2159 !Matcher::narrow_oop_use_complex_address()) {
kvn@803 2160 //
kvn@803 2161 // Look for DecodeN node which should be pinned to orig_proj.
kvn@803 2162 // On platforms (Sparc) which can not handle 2 adds
kvn@803 2163 // in addressing mode we have to keep a DecodeN node and
kvn@803 2164 // use it to do implicit NULL check in address.
kvn@803 2165 //
kvn@803 2166 // DecodeN node was pinned to non-null path (orig_proj) during
kvn@803 2167 // CastPP transformation in final_graph_reshaping_impl().
kvn@803 2168 //
kvn@803 2169 uint cnt = orig_proj->outcnt();
kvn@803 2170 for (uint i = 0; i < orig_proj->outcnt(); i++) {
kvn@803 2171 Node* d = orig_proj->raw_out(i);
kvn@803 2172 if (d->is_DecodeN() && d->in(1) == val) {
kvn@803 2173 val = d;
kvn@803 2174 val->set_req(0, NULL); // Unpin now.
kvn@1930 2175 // Mark this as special case to distinguish from
kvn@1930 2176 // a regular case: CmpP(DecodeN, NULL).
kvn@1930 2177 val = (Node*)(((intptr_t)val) | 1);
kvn@803 2178 break;
kvn@803 2179 }
kvn@803 2180 }
kvn@803 2181 }
kvn@803 2182 #endif
kvn@803 2183 _null_check_tests.push(val);
kvn@803 2184 }
duke@435 2185 }
duke@435 2186 }
duke@435 2187 }
duke@435 2188
duke@435 2189 //---------------------------validate_null_checks------------------------------
duke@435 2190 // Its possible that the value being NULL checked is not the root of a match
duke@435 2191 // tree. If so, I cannot use the value in an implicit null check.
duke@435 2192 void Matcher::validate_null_checks( ) {
duke@435 2193 uint cnt = _null_check_tests.size();
duke@435 2194 for( uint i=0; i < cnt; i+=2 ) {
duke@435 2195 Node *test = _null_check_tests[i];
duke@435 2196 Node *val = _null_check_tests[i+1];
kvn@1930 2197 bool is_decoden = ((intptr_t)val) & 1;
kvn@1930 2198 val = (Node*)(((intptr_t)val) & ~1);
duke@435 2199 if (has_new_node(val)) {
kvn@1930 2200 Node* new_val = new_node(val);
kvn@1930 2201 if (is_decoden) {
kvn@1930 2202 assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
kvn@1930 2203 // Note: new_val may have a control edge if
kvn@1930 2204 // the original ideal node DecodeN was matched before
kvn@1930 2205 // it was unpinned in Matcher::collect_null_checks().
kvn@1930 2206 // Unpin the mach node and mark it.
kvn@1930 2207 new_val->set_req(0, NULL);
kvn@1930 2208 new_val = (Node*)(((intptr_t)new_val) | 1);
kvn@1930 2209 }
duke@435 2210 // Is a match-tree root, so replace with the matched value
kvn@1930 2211 _null_check_tests.map(i+1, new_val);
duke@435 2212 } else {
duke@435 2213 // Yank from candidate list
duke@435 2214 _null_check_tests.map(i+1,_null_check_tests[--cnt]);
duke@435 2215 _null_check_tests.map(i,_null_check_tests[--cnt]);
duke@435 2216 _null_check_tests.pop();
duke@435 2217 _null_check_tests.pop();
duke@435 2218 i-=2;
duke@435 2219 }
duke@435 2220 }
duke@435 2221 }
duke@435 2222
duke@435 2223
duke@435 2224 // Used by the DFA in dfa_sparc.cpp. Check for a prior FastLock
duke@435 2225 // acting as an Acquire and thus we don't need an Acquire here. We
duke@435 2226 // retain the Node to act as a compiler ordering barrier.
duke@435 2227 bool Matcher::prior_fast_lock( const Node *acq ) {
duke@435 2228 Node *r = acq->in(0);
duke@435 2229 if( !r->is_Region() || r->req() <= 1 ) return false;
duke@435 2230 Node *proj = r->in(1);
duke@435 2231 if( !proj->is_Proj() ) return false;
duke@435 2232 Node *call = proj->in(0);
duke@435 2233 if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
duke@435 2234 return false;
duke@435 2235
duke@435 2236 return true;
duke@435 2237 }
duke@435 2238
duke@435 2239 // Used by the DFA in dfa_sparc.cpp. Check for a following FastUnLock
duke@435 2240 // acting as a Release and thus we don't need a Release here. We
duke@435 2241 // retain the Node to act as a compiler ordering barrier.
duke@435 2242 bool Matcher::post_fast_unlock( const Node *rel ) {
duke@435 2243 Compile *C = Compile::current();
duke@435 2244 assert( rel->Opcode() == Op_MemBarRelease, "" );
duke@435 2245 const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
duke@435 2246 DUIterator_Fast imax, i = mem->fast_outs(imax);
duke@435 2247 Node *ctrl = NULL;
duke@435 2248 while( true ) {
duke@435 2249 ctrl = mem->fast_out(i); // Throw out-of-bounds if proj not found
duke@435 2250 assert( ctrl->is_Proj(), "only projections here" );
duke@435 2251 ProjNode *proj = (ProjNode*)ctrl;
duke@435 2252 if( proj->_con == TypeFunc::Control &&
duke@435 2253 !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
duke@435 2254 break;
duke@435 2255 i++;
duke@435 2256 }
duke@435 2257 Node *iff = NULL;
duke@435 2258 for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
duke@435 2259 Node *x = ctrl->fast_out(j);
duke@435 2260 if( x->is_If() && x->req() > 1 &&
duke@435 2261 !C->node_arena()->contains(x) ) { // Unmatched old-space only
duke@435 2262 iff = x;
duke@435 2263 break;
duke@435 2264 }
duke@435 2265 }
duke@435 2266 if( !iff ) return false;
duke@435 2267 Node *bol = iff->in(1);
duke@435 2268 // The iff might be some random subclass of If or bol might be Con-Top
duke@435 2269 if (!bol->is_Bool()) return false;
duke@435 2270 assert( bol->req() > 1, "" );
duke@435 2271 return (bol->in(1)->Opcode() == Op_FastUnlock);
duke@435 2272 }
duke@435 2273
duke@435 2274 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or
duke@435 2275 // atomic instruction acting as a store_load barrier without any
duke@435 2276 // intervening volatile load, and thus we don't need a barrier here.
duke@435 2277 // We retain the Node to act as a compiler ordering barrier.
duke@435 2278 bool Matcher::post_store_load_barrier(const Node *vmb) {
duke@435 2279 Compile *C = Compile::current();
duke@435 2280 assert( vmb->is_MemBar(), "" );
duke@435 2281 assert( vmb->Opcode() != Op_MemBarAcquire, "" );
duke@435 2282 const MemBarNode *mem = (const MemBarNode*)vmb;
duke@435 2283
duke@435 2284 // Get the Proj node, ctrl, that can be used to iterate forward
duke@435 2285 Node *ctrl = NULL;
duke@435 2286 DUIterator_Fast imax, i = mem->fast_outs(imax);
duke@435 2287 while( true ) {
duke@435 2288 ctrl = mem->fast_out(i); // Throw out-of-bounds if proj not found
duke@435 2289 assert( ctrl->is_Proj(), "only projections here" );
duke@435 2290 ProjNode *proj = (ProjNode*)ctrl;
duke@435 2291 if( proj->_con == TypeFunc::Control &&
duke@435 2292 !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
duke@435 2293 break;
duke@435 2294 i++;
duke@435 2295 }
duke@435 2296
duke@435 2297 for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
duke@435 2298 Node *x = ctrl->fast_out(j);
duke@435 2299 int xop = x->Opcode();
duke@435 2300
duke@435 2301 // We don't need current barrier if we see another or a lock
duke@435 2302 // before seeing volatile load.
duke@435 2303 //
duke@435 2304 // Op_Fastunlock previously appeared in the Op_* list below.
duke@435 2305 // With the advent of 1-0 lock operations we're no longer guaranteed
duke@435 2306 // that a monitor exit operation contains a serializing instruction.
duke@435 2307
duke@435 2308 if (xop == Op_MemBarVolatile ||
duke@435 2309 xop == Op_FastLock ||
duke@435 2310 xop == Op_CompareAndSwapL ||
duke@435 2311 xop == Op_CompareAndSwapP ||
coleenp@548 2312 xop == Op_CompareAndSwapN ||
duke@435 2313 xop == Op_CompareAndSwapI)
duke@435 2314 return true;
duke@435 2315
duke@435 2316 if (x->is_MemBar()) {
duke@435 2317 // We must retain this membar if there is an upcoming volatile
duke@435 2318 // load, which will be preceded by acquire membar.
duke@435 2319 if (xop == Op_MemBarAcquire)
duke@435 2320 return false;
duke@435 2321 // For other kinds of barriers, check by pretending we
duke@435 2322 // are them, and seeing if we can be removed.
duke@435 2323 else
duke@435 2324 return post_store_load_barrier((const MemBarNode*)x);
duke@435 2325 }
duke@435 2326
duke@435 2327 // Delicate code to detect case of an upcoming fastlock block
duke@435 2328 if( x->is_If() && x->req() > 1 &&
duke@435 2329 !C->node_arena()->contains(x) ) { // Unmatched old-space only
duke@435 2330 Node *iff = x;
duke@435 2331 Node *bol = iff->in(1);
duke@435 2332 // The iff might be some random subclass of If or bol might be Con-Top
duke@435 2333 if (!bol->is_Bool()) return false;
duke@435 2334 assert( bol->req() > 1, "" );
duke@435 2335 return (bol->in(1)->Opcode() == Op_FastUnlock);
duke@435 2336 }
duke@435 2337 // probably not necessary to check for these
duke@435 2338 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
duke@435 2339 return false;
duke@435 2340 }
duke@435 2341 return false;
duke@435 2342 }
duke@435 2343
duke@435 2344 //=============================================================================
duke@435 2345 //---------------------------State---------------------------------------------
duke@435 2346 State::State(void) {
duke@435 2347 #ifdef ASSERT
duke@435 2348 _id = 0;
duke@435 2349 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2350 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2351 //memset(_cost, -1, sizeof(_cost));
duke@435 2352 //memset(_rule, -1, sizeof(_rule));
duke@435 2353 #endif
duke@435 2354 memset(_valid, 0, sizeof(_valid));
duke@435 2355 }
duke@435 2356
duke@435 2357 #ifdef ASSERT
duke@435 2358 State::~State() {
duke@435 2359 _id = 99;
duke@435 2360 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2361 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2362 memset(_cost, -3, sizeof(_cost));
duke@435 2363 memset(_rule, -3, sizeof(_rule));
duke@435 2364 }
duke@435 2365 #endif
duke@435 2366
duke@435 2367 #ifndef PRODUCT
duke@435 2368 //---------------------------dump----------------------------------------------
duke@435 2369 void State::dump() {
duke@435 2370 tty->print("\n");
duke@435 2371 dump(0);
duke@435 2372 }
duke@435 2373
duke@435 2374 void State::dump(int depth) {
duke@435 2375 for( int j = 0; j < depth; j++ )
duke@435 2376 tty->print(" ");
duke@435 2377 tty->print("--N: ");
duke@435 2378 _leaf->dump();
duke@435 2379 uint i;
duke@435 2380 for( i = 0; i < _LAST_MACH_OPER; i++ )
duke@435 2381 // Check for valid entry
duke@435 2382 if( valid(i) ) {
duke@435 2383 for( int j = 0; j < depth; j++ )
duke@435 2384 tty->print(" ");
duke@435 2385 assert(_cost[i] != max_juint, "cost must be a valid value");
duke@435 2386 assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
duke@435 2387 tty->print_cr("%s %d %s",
duke@435 2388 ruleName[i], _cost[i], ruleName[_rule[i]] );
duke@435 2389 }
duke@435 2390 tty->print_cr("");
duke@435 2391
duke@435 2392 for( i=0; i<2; i++ )
duke@435 2393 if( _kids[i] )
duke@435 2394 _kids[i]->dump(depth+1);
duke@435 2395 }
duke@435 2396 #endif

mercurial