src/share/vm/opto/matcher.cpp

Tue, 26 Nov 2013 18:38:19 -0800

author
goetz
date
Tue, 26 Nov 2013 18:38:19 -0800
changeset 6489
50fdb38839eb
parent 6485
da862781b584
child 6490
41b780b43b74
permissions
-rw-r--r--

8028515: PPPC64 (part 113.2): opto: Introduce LoadFence/StoreFence.
Summary: Use new nodes for loadFence/storeFence intrinsics in C2.
Reviewed-by: kvn, dholmes

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/idealGraphPrinter.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/opcodes.hpp"
    34 #include "opto/regmask.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "opto/runtime.hpp"
    37 #include "opto/type.hpp"
    38 #include "opto/vectornode.hpp"
    39 #include "runtime/atomic.hpp"
    40 #include "runtime/os.hpp"
    41 #ifdef TARGET_ARCH_MODEL_x86_32
    42 # include "adfiles/ad_x86_32.hpp"
    43 #endif
    44 #ifdef TARGET_ARCH_MODEL_x86_64
    45 # include "adfiles/ad_x86_64.hpp"
    46 #endif
    47 #ifdef TARGET_ARCH_MODEL_sparc
    48 # include "adfiles/ad_sparc.hpp"
    49 #endif
    50 #ifdef TARGET_ARCH_MODEL_zero
    51 # include "adfiles/ad_zero.hpp"
    52 #endif
    53 #ifdef TARGET_ARCH_MODEL_arm
    54 # include "adfiles/ad_arm.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_MODEL_ppc_32
    57 # include "adfiles/ad_ppc_32.hpp"
    58 #endif
    59 #ifdef TARGET_ARCH_MODEL_ppc_64
    60 # include "adfiles/ad_ppc_64.hpp"
    61 #endif
    63 OptoReg::Name OptoReg::c_frame_pointer;
    65 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
    66 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
    67 RegMask Matcher::STACK_ONLY_mask;
    68 RegMask Matcher::c_frame_ptr_mask;
    69 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
    70 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
    72 //---------------------------Matcher-------------------------------------------
    73 Matcher::Matcher()
    74 : PhaseTransform( Phase::Ins_Select ),
    75 #ifdef ASSERT
    76   _old2new_map(C->comp_arena()),
    77   _new2old_map(C->comp_arena()),
    78 #endif
    79   _shared_nodes(C->comp_arena()),
    80   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
    81   _swallowed(swallowed),
    82   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
    83   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
    84   _must_clone(must_clone),
    85   _register_save_policy(register_save_policy),
    86   _c_reg_save_policy(c_reg_save_policy),
    87   _register_save_type(register_save_type),
    88   _ruleName(ruleName),
    89   _allocation_started(false),
    90   _states_arena(Chunk::medium_size),
    91   _visited(&_states_arena),
    92   _shared(&_states_arena),
    93   _dontcare(&_states_arena) {
    94   C->set_matcher(this);
    96   idealreg2spillmask  [Op_RegI] = NULL;
    97   idealreg2spillmask  [Op_RegN] = NULL;
    98   idealreg2spillmask  [Op_RegL] = NULL;
    99   idealreg2spillmask  [Op_RegF] = NULL;
   100   idealreg2spillmask  [Op_RegD] = NULL;
   101   idealreg2spillmask  [Op_RegP] = NULL;
   102   idealreg2spillmask  [Op_VecS] = NULL;
   103   idealreg2spillmask  [Op_VecD] = NULL;
   104   idealreg2spillmask  [Op_VecX] = NULL;
   105   idealreg2spillmask  [Op_VecY] = NULL;
   107   idealreg2debugmask  [Op_RegI] = NULL;
   108   idealreg2debugmask  [Op_RegN] = NULL;
   109   idealreg2debugmask  [Op_RegL] = NULL;
   110   idealreg2debugmask  [Op_RegF] = NULL;
   111   idealreg2debugmask  [Op_RegD] = NULL;
   112   idealreg2debugmask  [Op_RegP] = NULL;
   113   idealreg2debugmask  [Op_VecS] = NULL;
   114   idealreg2debugmask  [Op_VecD] = NULL;
   115   idealreg2debugmask  [Op_VecX] = NULL;
   116   idealreg2debugmask  [Op_VecY] = NULL;
   118   idealreg2mhdebugmask[Op_RegI] = NULL;
   119   idealreg2mhdebugmask[Op_RegN] = NULL;
   120   idealreg2mhdebugmask[Op_RegL] = NULL;
   121   idealreg2mhdebugmask[Op_RegF] = NULL;
   122   idealreg2mhdebugmask[Op_RegD] = NULL;
   123   idealreg2mhdebugmask[Op_RegP] = NULL;
   124   idealreg2mhdebugmask[Op_VecS] = NULL;
   125   idealreg2mhdebugmask[Op_VecD] = NULL;
   126   idealreg2mhdebugmask[Op_VecX] = NULL;
   127   idealreg2mhdebugmask[Op_VecY] = NULL;
   129   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
   130 }
   132 //------------------------------warp_incoming_stk_arg------------------------
   133 // This warps a VMReg into an OptoReg::Name
   134 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
   135   OptoReg::Name warped;
   136   if( reg->is_stack() ) {  // Stack slot argument?
   137     warped = OptoReg::add(_old_SP, reg->reg2stack() );
   138     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
   139     if( warped >= _in_arg_limit )
   140       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
   141     if (!RegMask::can_represent_arg(warped)) {
   142       // the compiler cannot represent this method's calling sequence
   143       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
   144       return OptoReg::Bad;
   145     }
   146     return warped;
   147   }
   148   return OptoReg::as_OptoReg(reg);
   149 }
   151 //---------------------------compute_old_SP------------------------------------
   152 OptoReg::Name Compile::compute_old_SP() {
   153   int fixed    = fixed_slots();
   154   int preserve = in_preserve_stack_slots();
   155   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
   156 }
   160 #ifdef ASSERT
   161 void Matcher::verify_new_nodes_only(Node* xroot) {
   162   // Make sure that the new graph only references new nodes
   163   ResourceMark rm;
   164   Unique_Node_List worklist;
   165   VectorSet visited(Thread::current()->resource_area());
   166   worklist.push(xroot);
   167   while (worklist.size() > 0) {
   168     Node* n = worklist.pop();
   169     visited <<= n->_idx;
   170     assert(C->node_arena()->contains(n), "dead node");
   171     for (uint j = 0; j < n->req(); j++) {
   172       Node* in = n->in(j);
   173       if (in != NULL) {
   174         assert(C->node_arena()->contains(in), "dead node");
   175         if (!visited.test(in->_idx)) {
   176           worklist.push(in);
   177         }
   178       }
   179     }
   180   }
   181 }
   182 #endif
   185 //---------------------------match---------------------------------------------
   186 void Matcher::match( ) {
   187   if( MaxLabelRootDepth < 100 ) { // Too small?
   188     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
   189     MaxLabelRootDepth = 100;
   190   }
   191   // One-time initialization of some register masks.
   192   init_spill_mask( C->root()->in(1) );
   193   _return_addr_mask = return_addr();
   194 #ifdef _LP64
   195   // Pointers take 2 slots in 64-bit land
   196   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
   197 #endif
   199   // Map a Java-signature return type into return register-value
   200   // machine registers for 0, 1 and 2 returned values.
   201   const TypeTuple *range = C->tf()->range();
   202   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
   203     // Get ideal-register return type
   204     int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
   205     // Get machine return register
   206     uint sop = C->start()->Opcode();
   207     OptoRegPair regs = return_value(ireg, false);
   209     // And mask for same
   210     _return_value_mask = RegMask(regs.first());
   211     if( OptoReg::is_valid(regs.second()) )
   212       _return_value_mask.Insert(regs.second());
   213   }
   215   // ---------------
   216   // Frame Layout
   218   // Need the method signature to determine the incoming argument types,
   219   // because the types determine which registers the incoming arguments are
   220   // in, and this affects the matched code.
   221   const TypeTuple *domain = C->tf()->domain();
   222   uint             argcnt = domain->cnt() - TypeFunc::Parms;
   223   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
   224   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
   225   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
   226   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
   227   uint i;
   228   for( i = 0; i<argcnt; i++ ) {
   229     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
   230   }
   232   // Pass array of ideal registers and length to USER code (from the AD file)
   233   // that will convert this to an array of register numbers.
   234   const StartNode *start = C->start();
   235   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
   236 #ifdef ASSERT
   237   // Sanity check users' calling convention.  Real handy while trying to
   238   // get the initial port correct.
   239   { for (uint i = 0; i<argcnt; i++) {
   240       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   241         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
   242         _parm_regs[i].set_bad();
   243         continue;
   244       }
   245       VMReg parm_reg = vm_parm_regs[i].first();
   246       assert(parm_reg->is_valid(), "invalid arg?");
   247       if (parm_reg->is_reg()) {
   248         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
   249         assert(can_be_java_arg(opto_parm_reg) ||
   250                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
   251                opto_parm_reg == inline_cache_reg(),
   252                "parameters in register must be preserved by runtime stubs");
   253       }
   254       for (uint j = 0; j < i; j++) {
   255         assert(parm_reg != vm_parm_regs[j].first(),
   256                "calling conv. must produce distinct regs");
   257       }
   258     }
   259   }
   260 #endif
   262   // Do some initial frame layout.
   264   // Compute the old incoming SP (may be called FP) as
   265   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
   266   _old_SP = C->compute_old_SP();
   267   assert( is_even(_old_SP), "must be even" );
   269   // Compute highest incoming stack argument as
   270   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   271   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   272   assert( is_even(_in_arg_limit), "out_preserve must be even" );
   273   for( i = 0; i < argcnt; i++ ) {
   274     // Permit args to have no register
   275     _calling_convention_mask[i].Clear();
   276     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   277       continue;
   278     }
   279     // calling_convention returns stack arguments as a count of
   280     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
   281     // the allocators point of view, taking into account all the
   282     // preserve area, locks & pad2.
   284     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
   285     if( OptoReg::is_valid(reg1))
   286       _calling_convention_mask[i].Insert(reg1);
   288     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
   289     if( OptoReg::is_valid(reg2))
   290       _calling_convention_mask[i].Insert(reg2);
   292     // Saved biased stack-slot register number
   293     _parm_regs[i].set_pair(reg2, reg1);
   294   }
   296   // Finally, make sure the incoming arguments take up an even number of
   297   // words, in case the arguments or locals need to contain doubleword stack
   298   // slots.  The rest of the system assumes that stack slot pairs (in
   299   // particular, in the spill area) which look aligned will in fact be
   300   // aligned relative to the stack pointer in the target machine.  Double
   301   // stack slots will always be allocated aligned.
   302   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
   304   // Compute highest outgoing stack argument as
   305   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
   306   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
   307   assert( is_even(_out_arg_limit), "out_preserve must be even" );
   309   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
   310     // the compiler cannot represent this method's calling sequence
   311     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
   312   }
   314   if (C->failing())  return;  // bailed out on incoming arg failure
   316   // ---------------
   317   // Collect roots of matcher trees.  Every node for which
   318   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
   319   // can be a valid interior of some tree.
   320   find_shared( C->root() );
   321   find_shared( C->top() );
   323   C->print_method(PHASE_BEFORE_MATCHING);
   325   // Create new ideal node ConP #NULL even if it does exist in old space
   326   // to avoid false sharing if the corresponding mach node is not used.
   327   // The corresponding mach node is only used in rare cases for derived
   328   // pointers.
   329   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
   331   // Swap out to old-space; emptying new-space
   332   Arena *old = C->node_arena()->move_contents(C->old_arena());
   334   // Save debug and profile information for nodes in old space:
   335   _old_node_note_array = C->node_note_array();
   336   if (_old_node_note_array != NULL) {
   337     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
   338                            (C->comp_arena(), _old_node_note_array->length(),
   339                             0, NULL));
   340   }
   342   // Pre-size the new_node table to avoid the need for range checks.
   343   grow_new_node_array(C->unique());
   345   // Reset node counter so MachNodes start with _idx at 0
   346   int nodes = C->unique(); // save value
   347   C->set_unique(0);
   348   C->reset_dead_node_list();
   350   // Recursively match trees from old space into new space.
   351   // Correct leaves of new-space Nodes; they point to old-space.
   352   _visited.Clear();             // Clear visit bits for xform call
   353   C->set_cached_top_node(xform( C->top(), nodes ));
   354   if (!C->failing()) {
   355     Node* xroot =        xform( C->root(), 1 );
   356     if (xroot == NULL) {
   357       Matcher::soft_match_failure();  // recursive matching process failed
   358       C->record_method_not_compilable("instruction match failed");
   359     } else {
   360       // During matching shared constants were attached to C->root()
   361       // because xroot wasn't available yet, so transfer the uses to
   362       // the xroot.
   363       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
   364         Node* n = C->root()->fast_out(j);
   365         if (C->node_arena()->contains(n)) {
   366           assert(n->in(0) == C->root(), "should be control user");
   367           n->set_req(0, xroot);
   368           --j;
   369           --jmax;
   370         }
   371       }
   373       // Generate new mach node for ConP #NULL
   374       assert(new_ideal_null != NULL, "sanity");
   375       _mach_null = match_tree(new_ideal_null);
   376       // Don't set control, it will confuse GCM since there are no uses.
   377       // The control will be set when this node is used first time
   378       // in find_base_for_derived().
   379       assert(_mach_null != NULL, "");
   381       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
   383 #ifdef ASSERT
   384       verify_new_nodes_only(xroot);
   385 #endif
   386     }
   387   }
   388   if (C->top() == NULL || C->root() == NULL) {
   389     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
   390   }
   391   if (C->failing()) {
   392     // delete old;
   393     old->destruct_contents();
   394     return;
   395   }
   396   assert( C->top(), "" );
   397   assert( C->root(), "" );
   398   validate_null_checks();
   400   // Now smoke old-space
   401   NOT_DEBUG( old->destruct_contents() );
   403   // ------------------------
   404   // Set up save-on-entry registers
   405   Fixup_Save_On_Entry( );
   406 }
   409 //------------------------------Fixup_Save_On_Entry----------------------------
   410 // The stated purpose of this routine is to take care of save-on-entry
   411 // registers.  However, the overall goal of the Match phase is to convert into
   412 // machine-specific instructions which have RegMasks to guide allocation.
   413 // So what this procedure really does is put a valid RegMask on each input
   414 // to the machine-specific variations of all Return, TailCall and Halt
   415 // instructions.  It also adds edgs to define the save-on-entry values (and of
   416 // course gives them a mask).
   418 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
   419   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
   420   // Do all the pre-defined register masks
   421   rms[TypeFunc::Control  ] = RegMask::Empty;
   422   rms[TypeFunc::I_O      ] = RegMask::Empty;
   423   rms[TypeFunc::Memory   ] = RegMask::Empty;
   424   rms[TypeFunc::ReturnAdr] = ret_adr;
   425   rms[TypeFunc::FramePtr ] = fp;
   426   return rms;
   427 }
   429 //---------------------------init_first_stack_mask-----------------------------
   430 // Create the initial stack mask used by values spilling to the stack.
   431 // Disallow any debug info in outgoing argument areas by setting the
   432 // initial mask accordingly.
   433 void Matcher::init_first_stack_mask() {
   435   // Allocate storage for spill masks as masks for the appropriate load type.
   436   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
   438   idealreg2spillmask  [Op_RegN] = &rms[0];
   439   idealreg2spillmask  [Op_RegI] = &rms[1];
   440   idealreg2spillmask  [Op_RegL] = &rms[2];
   441   idealreg2spillmask  [Op_RegF] = &rms[3];
   442   idealreg2spillmask  [Op_RegD] = &rms[4];
   443   idealreg2spillmask  [Op_RegP] = &rms[5];
   445   idealreg2debugmask  [Op_RegN] = &rms[6];
   446   idealreg2debugmask  [Op_RegI] = &rms[7];
   447   idealreg2debugmask  [Op_RegL] = &rms[8];
   448   idealreg2debugmask  [Op_RegF] = &rms[9];
   449   idealreg2debugmask  [Op_RegD] = &rms[10];
   450   idealreg2debugmask  [Op_RegP] = &rms[11];
   452   idealreg2mhdebugmask[Op_RegN] = &rms[12];
   453   idealreg2mhdebugmask[Op_RegI] = &rms[13];
   454   idealreg2mhdebugmask[Op_RegL] = &rms[14];
   455   idealreg2mhdebugmask[Op_RegF] = &rms[15];
   456   idealreg2mhdebugmask[Op_RegD] = &rms[16];
   457   idealreg2mhdebugmask[Op_RegP] = &rms[17];
   459   idealreg2spillmask  [Op_VecS] = &rms[18];
   460   idealreg2spillmask  [Op_VecD] = &rms[19];
   461   idealreg2spillmask  [Op_VecX] = &rms[20];
   462   idealreg2spillmask  [Op_VecY] = &rms[21];
   464   OptoReg::Name i;
   466   // At first, start with the empty mask
   467   C->FIRST_STACK_mask().Clear();
   469   // Add in the incoming argument area
   470   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   471   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
   472     C->FIRST_STACK_mask().Insert(i);
   473   }
   474   // Add in all bits past the outgoing argument area
   475   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
   476             "must be able to represent all call arguments in reg mask");
   477   OptoReg::Name init = _out_arg_limit;
   478   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
   479     C->FIRST_STACK_mask().Insert(i);
   480   }
   481   // Finally, set the "infinite stack" bit.
   482   C->FIRST_STACK_mask().set_AllStack();
   484   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
   485   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
   486   // Keep spill masks aligned.
   487   aligned_stack_mask.clear_to_pairs();
   488   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   490   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
   491 #ifdef _LP64
   492   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
   493    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
   494    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
   495 #else
   496    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
   497 #endif
   498   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   499    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
   500   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
   501    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
   502   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   503    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
   504   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
   505    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
   507   if (Matcher::vector_size_supported(T_BYTE,4)) {
   508     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
   509      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
   510   }
   511   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   512     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
   513     // RA guarantees such alignment since it is needed for Double and Long values.
   514     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
   515      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
   516   }
   517   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   518     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
   519     //
   520     // RA can use input arguments stack slots for spills but until RA
   521     // we don't know frame size and offset of input arg stack slots.
   522     //
   523     // Exclude last input arg stack slots to avoid spilling vectors there
   524     // otherwise vector spills could stomp over stack slots in caller frame.
   525     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
   526     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
   527       aligned_stack_mask.Remove(in);
   528       in = OptoReg::add(in, -1);
   529     }
   530      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
   531      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   532     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
   533      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
   534   }
   535   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   536     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
   537     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
   538     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
   539       aligned_stack_mask.Remove(in);
   540       in = OptoReg::add(in, -1);
   541     }
   542      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
   543      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
   544     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
   545      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
   546   }
   547    if (UseFPUForSpilling) {
   548      // This mask logic assumes that the spill operations are
   549      // symmetric and that the registers involved are the same size.
   550      // On sparc for instance we may have to use 64 bit moves will
   551      // kill 2 registers when used with F0-F31.
   552      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
   553      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
   554 #ifdef _LP64
   555      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
   556      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   557      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   558      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
   559 #else
   560      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
   561 #ifdef ARM
   562      // ARM has support for moving 64bit values between a pair of
   563      // integer registers and a double register
   564      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   565      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   566 #endif
   567 #endif
   568    }
   570   // Make up debug masks.  Any spill slot plus callee-save registers.
   571   // Caller-save registers are assumed to be trashable by the various
   572   // inline-cache fixup routines.
   573   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
   574   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
   575   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
   576   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
   577   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
   578   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
   580   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
   581   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
   582   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
   583   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
   584   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
   585   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
   587   // Prevent stub compilations from attempting to reference
   588   // callee-saved registers from debug info
   589   bool exclude_soe = !Compile::current()->is_method_compilation();
   591   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   592     // registers the caller has to save do not work
   593     if( _register_save_policy[i] == 'C' ||
   594         _register_save_policy[i] == 'A' ||
   595         (_register_save_policy[i] == 'E' && exclude_soe) ) {
   596       idealreg2debugmask  [Op_RegN]->Remove(i);
   597       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
   598       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
   599       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
   600       idealreg2debugmask  [Op_RegD]->Remove(i);
   601       idealreg2debugmask  [Op_RegP]->Remove(i);
   603       idealreg2mhdebugmask[Op_RegN]->Remove(i);
   604       idealreg2mhdebugmask[Op_RegI]->Remove(i);
   605       idealreg2mhdebugmask[Op_RegL]->Remove(i);
   606       idealreg2mhdebugmask[Op_RegF]->Remove(i);
   607       idealreg2mhdebugmask[Op_RegD]->Remove(i);
   608       idealreg2mhdebugmask[Op_RegP]->Remove(i);
   609     }
   610   }
   612   // Subtract the register we use to save the SP for MethodHandle
   613   // invokes to from the debug mask.
   614   const RegMask save_mask = method_handle_invoke_SP_save_mask();
   615   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
   616   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
   617   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
   618   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
   619   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
   620   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
   621 }
   623 //---------------------------is_save_on_entry----------------------------------
   624 bool Matcher::is_save_on_entry( int reg ) {
   625   return
   626     _register_save_policy[reg] == 'E' ||
   627     _register_save_policy[reg] == 'A' || // Save-on-entry register?
   628     // Also save argument registers in the trampolining stubs
   629     (C->save_argument_registers() && is_spillable_arg(reg));
   630 }
   632 //---------------------------Fixup_Save_On_Entry-------------------------------
   633 void Matcher::Fixup_Save_On_Entry( ) {
   634   init_first_stack_mask();
   636   Node *root = C->root();       // Short name for root
   637   // Count number of save-on-entry registers.
   638   uint soe_cnt = number_of_saved_registers();
   639   uint i;
   641   // Find the procedure Start Node
   642   StartNode *start = C->start();
   643   assert( start, "Expect a start node" );
   645   // Save argument registers in the trampolining stubs
   646   if( C->save_argument_registers() )
   647     for( i = 0; i < _last_Mach_Reg; i++ )
   648       if( is_spillable_arg(i) )
   649         soe_cnt++;
   651   // Input RegMask array shared by all Returns.
   652   // The type for doubles and longs has a count of 2, but
   653   // there is only 1 returned value
   654   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
   655   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   656   // Returns have 0 or 1 returned values depending on call signature.
   657   // Return register is specified by return_value in the AD file.
   658   if (ret_edge_cnt > TypeFunc::Parms)
   659     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
   661   // Input RegMask array shared by all Rethrows.
   662   uint reth_edge_cnt = TypeFunc::Parms+1;
   663   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   664   // Rethrow takes exception oop only, but in the argument 0 slot.
   665   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
   666 #ifdef _LP64
   667   // Need two slots for ptrs in 64-bit land
   668   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
   669 #endif
   671   // Input RegMask array shared by all TailCalls
   672   uint tail_call_edge_cnt = TypeFunc::Parms+2;
   673   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   675   // Input RegMask array shared by all TailJumps
   676   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
   677   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   679   // TailCalls have 2 returned values (target & moop), whose masks come
   680   // from the usual MachNode/MachOper mechanism.  Find a sample
   681   // TailCall to extract these masks and put the correct masks into
   682   // the tail_call_rms array.
   683   for( i=1; i < root->req(); i++ ) {
   684     MachReturnNode *m = root->in(i)->as_MachReturn();
   685     if( m->ideal_Opcode() == Op_TailCall ) {
   686       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   687       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   688       break;
   689     }
   690   }
   692   // TailJumps have 2 returned values (target & ex_oop), whose masks come
   693   // from the usual MachNode/MachOper mechanism.  Find a sample
   694   // TailJump to extract these masks and put the correct masks into
   695   // the tail_jump_rms array.
   696   for( i=1; i < root->req(); i++ ) {
   697     MachReturnNode *m = root->in(i)->as_MachReturn();
   698     if( m->ideal_Opcode() == Op_TailJump ) {
   699       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   700       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   701       break;
   702     }
   703   }
   705   // Input RegMask array shared by all Halts
   706   uint halt_edge_cnt = TypeFunc::Parms;
   707   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   709   // Capture the return input masks into each exit flavor
   710   for( i=1; i < root->req(); i++ ) {
   711     MachReturnNode *exit = root->in(i)->as_MachReturn();
   712     switch( exit->ideal_Opcode() ) {
   713       case Op_Return   : exit->_in_rms = ret_rms;  break;
   714       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
   715       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
   716       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
   717       case Op_Halt     : exit->_in_rms = halt_rms; break;
   718       default          : ShouldNotReachHere();
   719     }
   720   }
   722   // Next unused projection number from Start.
   723   int proj_cnt = C->tf()->domain()->cnt();
   725   // Do all the save-on-entry registers.  Make projections from Start for
   726   // them, and give them a use at the exit points.  To the allocator, they
   727   // look like incoming register arguments.
   728   for( i = 0; i < _last_Mach_Reg; i++ ) {
   729     if( is_save_on_entry(i) ) {
   731       // Add the save-on-entry to the mask array
   732       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
   733       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
   734       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
   735       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
   736       // Halts need the SOE registers, but only in the stack as debug info.
   737       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
   738       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
   740       Node *mproj;
   742       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
   743       // into a single RegD.
   744       if( (i&1) == 0 &&
   745           _register_save_type[i  ] == Op_RegF &&
   746           _register_save_type[i+1] == Op_RegF &&
   747           is_save_on_entry(i+1) ) {
   748         // Add other bit for double
   749         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   750         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   751         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   752         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   753         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   754         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
   755         proj_cnt += 2;          // Skip 2 for doubles
   756       }
   757       else if( (i&1) == 1 &&    // Else check for high half of double
   758                _register_save_type[i-1] == Op_RegF &&
   759                _register_save_type[i  ] == Op_RegF &&
   760                is_save_on_entry(i-1) ) {
   761         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   762         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   763         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   764         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   765         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   766         mproj = C->top();
   767       }
   768       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
   769       // into a single RegL.
   770       else if( (i&1) == 0 &&
   771           _register_save_type[i  ] == Op_RegI &&
   772           _register_save_type[i+1] == Op_RegI &&
   773         is_save_on_entry(i+1) ) {
   774         // Add other bit for long
   775         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   776         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   777         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   778         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   779         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   780         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
   781         proj_cnt += 2;          // Skip 2 for longs
   782       }
   783       else if( (i&1) == 1 &&    // Else check for high half of long
   784                _register_save_type[i-1] == Op_RegI &&
   785                _register_save_type[i  ] == Op_RegI &&
   786                is_save_on_entry(i-1) ) {
   787         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   788         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   789         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   790         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   791         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   792         mproj = C->top();
   793       } else {
   794         // Make a projection for it off the Start
   795         mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
   796       }
   798       ret_edge_cnt ++;
   799       reth_edge_cnt ++;
   800       tail_call_edge_cnt ++;
   801       tail_jump_edge_cnt ++;
   802       halt_edge_cnt ++;
   804       // Add a use of the SOE register to all exit paths
   805       for( uint j=1; j < root->req(); j++ )
   806         root->in(j)->add_req(mproj);
   807     } // End of if a save-on-entry register
   808   } // End of for all machine registers
   809 }
   811 //------------------------------init_spill_mask--------------------------------
   812 void Matcher::init_spill_mask( Node *ret ) {
   813   if( idealreg2regmask[Op_RegI] ) return; // One time only init
   815   OptoReg::c_frame_pointer = c_frame_pointer();
   816   c_frame_ptr_mask = c_frame_pointer();
   817 #ifdef _LP64
   818   // pointers are twice as big
   819   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
   820 #endif
   822   // Start at OptoReg::stack0()
   823   STACK_ONLY_mask.Clear();
   824   OptoReg::Name init = OptoReg::stack2reg(0);
   825   // STACK_ONLY_mask is all stack bits
   826   OptoReg::Name i;
   827   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   828     STACK_ONLY_mask.Insert(i);
   829   // Also set the "infinite stack" bit.
   830   STACK_ONLY_mask.set_AllStack();
   832   // Copy the register names over into the shared world
   833   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   834     // SharedInfo::regName[i] = regName[i];
   835     // Handy RegMasks per machine register
   836     mreg2regmask[i].Insert(i);
   837   }
   839   // Grab the Frame Pointer
   840   Node *fp  = ret->in(TypeFunc::FramePtr);
   841   Node *mem = ret->in(TypeFunc::Memory);
   842   const TypePtr* atp = TypePtr::BOTTOM;
   843   // Share frame pointer while making spill ops
   844   set_shared(fp);
   846   // Compute generic short-offset Loads
   847 #ifdef _LP64
   848   MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
   849 #endif
   850   MachNode *spillI  = match_tree(new (C) LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
   851   MachNode *spillL  = match_tree(new (C) LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered,false));
   852   MachNode *spillF  = match_tree(new (C) LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
   853   MachNode *spillD  = match_tree(new (C) LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
   854   MachNode *spillP  = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
   855   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
   856          spillD != NULL && spillP != NULL, "");
   857   // Get the ADLC notion of the right regmask, for each basic type.
   858 #ifdef _LP64
   859   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
   860 #endif
   861   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
   862   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
   863   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
   864   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
   865   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
   867   // Vector regmasks.
   868   if (Matcher::vector_size_supported(T_BYTE,4)) {
   869     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
   870     MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
   871     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
   872   }
   873   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   874     MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
   875     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
   876   }
   877   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   878     MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
   879     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
   880   }
   881   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   882     MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
   883     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
   884   }
   885 }
   887 #ifdef ASSERT
   888 static void match_alias_type(Compile* C, Node* n, Node* m) {
   889   if (!VerifyAliases)  return;  // do not go looking for trouble by default
   890   const TypePtr* nat = n->adr_type();
   891   const TypePtr* mat = m->adr_type();
   892   int nidx = C->get_alias_index(nat);
   893   int midx = C->get_alias_index(mat);
   894   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
   895   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
   896     for (uint i = 1; i < n->req(); i++) {
   897       Node* n1 = n->in(i);
   898       const TypePtr* n1at = n1->adr_type();
   899       if (n1at != NULL) {
   900         nat = n1at;
   901         nidx = C->get_alias_index(n1at);
   902       }
   903     }
   904   }
   905   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
   906   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
   907     switch (n->Opcode()) {
   908     case Op_PrefetchRead:
   909     case Op_PrefetchWrite:
   910     case Op_PrefetchAllocation:
   911       nidx = Compile::AliasIdxRaw;
   912       nat = TypeRawPtr::BOTTOM;
   913       break;
   914     }
   915   }
   916   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
   917     switch (n->Opcode()) {
   918     case Op_ClearArray:
   919       midx = Compile::AliasIdxRaw;
   920       mat = TypeRawPtr::BOTTOM;
   921       break;
   922     }
   923   }
   924   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
   925     switch (n->Opcode()) {
   926     case Op_Return:
   927     case Op_Rethrow:
   928     case Op_Halt:
   929     case Op_TailCall:
   930     case Op_TailJump:
   931       nidx = Compile::AliasIdxBot;
   932       nat = TypePtr::BOTTOM;
   933       break;
   934     }
   935   }
   936   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
   937     switch (n->Opcode()) {
   938     case Op_StrComp:
   939     case Op_StrEquals:
   940     case Op_StrIndexOf:
   941     case Op_AryEq:
   942     case Op_MemBarVolatile:
   943     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
   944     case Op_EncodeISOArray:
   945       nidx = Compile::AliasIdxTop;
   946       nat = NULL;
   947       break;
   948     }
   949   }
   950   if (nidx != midx) {
   951     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
   952       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
   953       n->dump();
   954       m->dump();
   955     }
   956     assert(C->subsume_loads() && C->must_alias(nat, midx),
   957            "must not lose alias info when matching");
   958   }
   959 }
   960 #endif
   963 //------------------------------MStack-----------------------------------------
   964 // State and MStack class used in xform() and find_shared() iterative methods.
   965 enum Node_State { Pre_Visit,  // node has to be pre-visited
   966                       Visit,  // visit node
   967                  Post_Visit,  // post-visit node
   968              Alt_Post_Visit   // alternative post-visit path
   969                 };
   971 class MStack: public Node_Stack {
   972   public:
   973     MStack(int size) : Node_Stack(size) { }
   975     void push(Node *n, Node_State ns) {
   976       Node_Stack::push(n, (uint)ns);
   977     }
   978     void push(Node *n, Node_State ns, Node *parent, int indx) {
   979       ++_inode_top;
   980       if ((_inode_top + 1) >= _inode_max) grow();
   981       _inode_top->node = parent;
   982       _inode_top->indx = (uint)indx;
   983       ++_inode_top;
   984       _inode_top->node = n;
   985       _inode_top->indx = (uint)ns;
   986     }
   987     Node *parent() {
   988       pop();
   989       return node();
   990     }
   991     Node_State state() const {
   992       return (Node_State)index();
   993     }
   994     void set_state(Node_State ns) {
   995       set_index((uint)ns);
   996     }
   997 };
  1000 //------------------------------xform------------------------------------------
  1001 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
  1002 // Node in new-space.  Given a new-space Node, recursively walk his children.
  1003 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
  1004 Node *Matcher::xform( Node *n, int max_stack ) {
  1005   // Use one stack to keep both: child's node/state and parent's node/index
  1006   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
  1007   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
  1009   while (mstack.is_nonempty()) {
  1010     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
  1011     if (C->failing()) return NULL;
  1012     n = mstack.node();          // Leave node on stack
  1013     Node_State nstate = mstack.state();
  1014     if (nstate == Visit) {
  1015       mstack.set_state(Post_Visit);
  1016       Node *oldn = n;
  1017       // Old-space or new-space check
  1018       if (!C->node_arena()->contains(n)) {
  1019         // Old space!
  1020         Node* m;
  1021         if (has_new_node(n)) {  // Not yet Label/Reduced
  1022           m = new_node(n);
  1023         } else {
  1024           if (!is_dontcare(n)) { // Matcher can match this guy
  1025             // Calls match special.  They match alone with no children.
  1026             // Their children, the incoming arguments, match normally.
  1027             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
  1028             if (C->failing())  return NULL;
  1029             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
  1030           } else {                  // Nothing the matcher cares about
  1031             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
  1032               // Convert to machine-dependent projection
  1033               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
  1034 #ifdef ASSERT
  1035               _new2old_map.map(m->_idx, n);
  1036 #endif
  1037               if (m->in(0) != NULL) // m might be top
  1038                 collect_null_checks(m, n);
  1039             } else {                // Else just a regular 'ol guy
  1040               m = n->clone();       // So just clone into new-space
  1041 #ifdef ASSERT
  1042               _new2old_map.map(m->_idx, n);
  1043 #endif
  1044               // Def-Use edges will be added incrementally as Uses
  1045               // of this node are matched.
  1046               assert(m->outcnt() == 0, "no Uses of this clone yet");
  1050           set_new_node(n, m);       // Map old to new
  1051           if (_old_node_note_array != NULL) {
  1052             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
  1053                                                   n->_idx);
  1054             C->set_node_notes_at(m->_idx, nn);
  1056           debug_only(match_alias_type(C, n, m));
  1058         n = m;    // n is now a new-space node
  1059         mstack.set_node(n);
  1062       // New space!
  1063       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
  1065       int i;
  1066       // Put precedence edges on stack first (match them last).
  1067       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
  1068         Node *m = oldn->in(i);
  1069         if (m == NULL) break;
  1070         // set -1 to call add_prec() instead of set_req() during Step1
  1071         mstack.push(m, Visit, n, -1);
  1074       // For constant debug info, I'd rather have unmatched constants.
  1075       int cnt = n->req();
  1076       JVMState* jvms = n->jvms();
  1077       int debug_cnt = jvms ? jvms->debug_start() : cnt;
  1079       // Now do only debug info.  Clone constants rather than matching.
  1080       // Constants are represented directly in the debug info without
  1081       // the need for executable machine instructions.
  1082       // Monitor boxes are also represented directly.
  1083       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
  1084         Node *m = n->in(i);          // Get input
  1085         int op = m->Opcode();
  1086         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
  1087         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
  1088             op == Op_ConF || op == Op_ConD || op == Op_ConL
  1089             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
  1090             ) {
  1091           m = m->clone();
  1092 #ifdef ASSERT
  1093           _new2old_map.map(m->_idx, n);
  1094 #endif
  1095           mstack.push(m, Post_Visit, n, i); // Don't need to visit
  1096           mstack.push(m->in(0), Visit, m, 0);
  1097         } else {
  1098           mstack.push(m, Visit, n, i);
  1102       // And now walk his children, and convert his inputs to new-space.
  1103       for( ; i >= 0; --i ) { // For all normal inputs do
  1104         Node *m = n->in(i);  // Get input
  1105         if(m != NULL)
  1106           mstack.push(m, Visit, n, i);
  1110     else if (nstate == Post_Visit) {
  1111       // Set xformed input
  1112       Node *p = mstack.parent();
  1113       if (p != NULL) { // root doesn't have parent
  1114         int i = (int)mstack.index();
  1115         if (i >= 0)
  1116           p->set_req(i, n); // required input
  1117         else if (i == -1)
  1118           p->add_prec(n);   // precedence input
  1119         else
  1120           ShouldNotReachHere();
  1122       mstack.pop(); // remove processed node from stack
  1124     else {
  1125       ShouldNotReachHere();
  1127   } // while (mstack.is_nonempty())
  1128   return n; // Return new-space Node
  1131 //------------------------------warp_outgoing_stk_arg------------------------
  1132 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
  1133   // Convert outgoing argument location to a pre-biased stack offset
  1134   if (reg->is_stack()) {
  1135     OptoReg::Name warped = reg->reg2stack();
  1136     // Adjust the stack slot offset to be the register number used
  1137     // by the allocator.
  1138     warped = OptoReg::add(begin_out_arg_area, warped);
  1139     // Keep track of the largest numbered stack slot used for an arg.
  1140     // Largest used slot per call-site indicates the amount of stack
  1141     // that is killed by the call.
  1142     if( warped >= out_arg_limit_per_call )
  1143       out_arg_limit_per_call = OptoReg::add(warped,1);
  1144     if (!RegMask::can_represent_arg(warped)) {
  1145       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
  1146       return OptoReg::Bad;
  1148     return warped;
  1150   return OptoReg::as_OptoReg(reg);
  1154 //------------------------------match_sfpt-------------------------------------
  1155 // Helper function to match call instructions.  Calls match special.
  1156 // They match alone with no children.  Their children, the incoming
  1157 // arguments, match normally.
  1158 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
  1159   MachSafePointNode *msfpt = NULL;
  1160   MachCallNode      *mcall = NULL;
  1161   uint               cnt;
  1162   // Split out case for SafePoint vs Call
  1163   CallNode *call;
  1164   const TypeTuple *domain;
  1165   ciMethod*        method = NULL;
  1166   bool             is_method_handle_invoke = false;  // for special kill effects
  1167   if( sfpt->is_Call() ) {
  1168     call = sfpt->as_Call();
  1169     domain = call->tf()->domain();
  1170     cnt = domain->cnt();
  1172     // Match just the call, nothing else
  1173     MachNode *m = match_tree(call);
  1174     if (C->failing())  return NULL;
  1175     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
  1177     // Copy data from the Ideal SafePoint to the machine version
  1178     mcall = m->as_MachCall();
  1180     mcall->set_tf(         call->tf());
  1181     mcall->set_entry_point(call->entry_point());
  1182     mcall->set_cnt(        call->cnt());
  1184     if( mcall->is_MachCallJava() ) {
  1185       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
  1186       const CallJavaNode *call_java =  call->as_CallJava();
  1187       method = call_java->method();
  1188       mcall_java->_method = method;
  1189       mcall_java->_bci = call_java->_bci;
  1190       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
  1191       is_method_handle_invoke = call_java->is_method_handle_invoke();
  1192       mcall_java->_method_handle_invoke = is_method_handle_invoke;
  1193       if (is_method_handle_invoke) {
  1194         C->set_has_method_handle_invokes(true);
  1196       if( mcall_java->is_MachCallStaticJava() )
  1197         mcall_java->as_MachCallStaticJava()->_name =
  1198          call_java->as_CallStaticJava()->_name;
  1199       if( mcall_java->is_MachCallDynamicJava() )
  1200         mcall_java->as_MachCallDynamicJava()->_vtable_index =
  1201          call_java->as_CallDynamicJava()->_vtable_index;
  1203     else if( mcall->is_MachCallRuntime() ) {
  1204       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
  1206     msfpt = mcall;
  1208   // This is a non-call safepoint
  1209   else {
  1210     call = NULL;
  1211     domain = NULL;
  1212     MachNode *mn = match_tree(sfpt);
  1213     if (C->failing())  return NULL;
  1214     msfpt = mn->as_MachSafePoint();
  1215     cnt = TypeFunc::Parms;
  1218   // Advertise the correct memory effects (for anti-dependence computation).
  1219   msfpt->set_adr_type(sfpt->adr_type());
  1221   // Allocate a private array of RegMasks.  These RegMasks are not shared.
  1222   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
  1223   // Empty them all.
  1224   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
  1226   // Do all the pre-defined non-Empty register masks
  1227   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
  1228   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
  1230   // Place first outgoing argument can possibly be put.
  1231   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  1232   assert( is_even(begin_out_arg_area), "" );
  1233   // Compute max outgoing register number per call site.
  1234   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  1235   // Calls to C may hammer extra stack slots above and beyond any arguments.
  1236   // These are usually backing store for register arguments for varargs.
  1237   if( call != NULL && call->is_CallRuntime() )
  1238     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
  1241   // Do the normal argument list (parameters) register masks
  1242   int argcnt = cnt - TypeFunc::Parms;
  1243   if( argcnt > 0 ) {          // Skip it all if we have no args
  1244     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  1245     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  1246     int i;
  1247     for( i = 0; i < argcnt; i++ ) {
  1248       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  1250     // V-call to pick proper calling convention
  1251     call->calling_convention( sig_bt, parm_regs, argcnt );
  1253 #ifdef ASSERT
  1254     // Sanity check users' calling convention.  Really handy during
  1255     // the initial porting effort.  Fairly expensive otherwise.
  1256     { for (int i = 0; i<argcnt; i++) {
  1257       if( !parm_regs[i].first()->is_valid() &&
  1258           !parm_regs[i].second()->is_valid() ) continue;
  1259       VMReg reg1 = parm_regs[i].first();
  1260       VMReg reg2 = parm_regs[i].second();
  1261       for (int j = 0; j < i; j++) {
  1262         if( !parm_regs[j].first()->is_valid() &&
  1263             !parm_regs[j].second()->is_valid() ) continue;
  1264         VMReg reg3 = parm_regs[j].first();
  1265         VMReg reg4 = parm_regs[j].second();
  1266         if( !reg1->is_valid() ) {
  1267           assert( !reg2->is_valid(), "valid halvsies" );
  1268         } else if( !reg3->is_valid() ) {
  1269           assert( !reg4->is_valid(), "valid halvsies" );
  1270         } else {
  1271           assert( reg1 != reg2, "calling conv. must produce distinct regs");
  1272           assert( reg1 != reg3, "calling conv. must produce distinct regs");
  1273           assert( reg1 != reg4, "calling conv. must produce distinct regs");
  1274           assert( reg2 != reg3, "calling conv. must produce distinct regs");
  1275           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
  1276           assert( reg3 != reg4, "calling conv. must produce distinct regs");
  1281 #endif
  1283     // Visit each argument.  Compute its outgoing register mask.
  1284     // Return results now can have 2 bits returned.
  1285     // Compute max over all outgoing arguments both per call-site
  1286     // and over the entire method.
  1287     for( i = 0; i < argcnt; i++ ) {
  1288       // Address of incoming argument mask to fill in
  1289       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
  1290       if( !parm_regs[i].first()->is_valid() &&
  1291           !parm_regs[i].second()->is_valid() ) {
  1292         continue;               // Avoid Halves
  1294       // Grab first register, adjust stack slots and insert in mask.
  1295       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
  1296       if (OptoReg::is_valid(reg1))
  1297         rm->Insert( reg1 );
  1298       // Grab second register (if any), adjust stack slots and insert in mask.
  1299       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
  1300       if (OptoReg::is_valid(reg2))
  1301         rm->Insert( reg2 );
  1302     } // End of for all arguments
  1304     // Compute number of stack slots needed to restore stack in case of
  1305     // Pascal-style argument popping.
  1306     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  1309   // Compute the max stack slot killed by any call.  These will not be
  1310   // available for debug info, and will be used to adjust FIRST_STACK_mask
  1311   // after all call sites have been visited.
  1312   if( _out_arg_limit < out_arg_limit_per_call)
  1313     _out_arg_limit = out_arg_limit_per_call;
  1315   if (mcall) {
  1316     // Kill the outgoing argument area, including any non-argument holes and
  1317     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
  1318     // Since the max-per-method covers the max-per-call-site and debug info
  1319     // is excluded on the max-per-method basis, debug info cannot land in
  1320     // this killed area.
  1321     uint r_cnt = mcall->tf()->range()->cnt();
  1322     MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
  1323     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
  1324       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
  1325     } else {
  1326       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
  1327         proj->_rout.Insert(OptoReg::Name(i));
  1329     if (proj->_rout.is_NotEmpty()) {
  1330       push_projection(proj);
  1333   // Transfer the safepoint information from the call to the mcall
  1334   // Move the JVMState list
  1335   msfpt->set_jvms(sfpt->jvms());
  1336   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
  1337     jvms->set_map(sfpt);
  1340   // Debug inputs begin just after the last incoming parameter
  1341   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
  1342           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
  1344   // Move the OopMap
  1345   msfpt->_oop_map = sfpt->_oop_map;
  1347   // Registers killed by the call are set in the local scheduling pass
  1348   // of Global Code Motion.
  1349   return msfpt;
  1352 //---------------------------match_tree----------------------------------------
  1353 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
  1354 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
  1355 // making GotoNodes while building the CFG and in init_spill_mask() to identify
  1356 // a Load's result RegMask for memoization in idealreg2regmask[]
  1357 MachNode *Matcher::match_tree( const Node *n ) {
  1358   assert( n->Opcode() != Op_Phi, "cannot match" );
  1359   assert( !n->is_block_start(), "cannot match" );
  1360   // Set the mark for all locally allocated State objects.
  1361   // When this call returns, the _states_arena arena will be reset
  1362   // freeing all State objects.
  1363   ResourceMark rm( &_states_arena );
  1365   LabelRootDepth = 0;
  1367   // StoreNodes require their Memory input to match any LoadNodes
  1368   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
  1369 #ifdef ASSERT
  1370   Node* save_mem_node = _mem_node;
  1371   _mem_node = n->is_Store() ? (Node*)n : NULL;
  1372 #endif
  1373   // State object for root node of match tree
  1374   // Allocate it on _states_arena - stack allocation can cause stack overflow.
  1375   State *s = new (&_states_arena) State;
  1376   s->_kids[0] = NULL;
  1377   s->_kids[1] = NULL;
  1378   s->_leaf = (Node*)n;
  1379   // Label the input tree, allocating labels from top-level arena
  1380   Label_Root( n, s, n->in(0), mem );
  1381   if (C->failing())  return NULL;
  1383   // The minimum cost match for the whole tree is found at the root State
  1384   uint mincost = max_juint;
  1385   uint cost = max_juint;
  1386   uint i;
  1387   for( i = 0; i < NUM_OPERANDS; i++ ) {
  1388     if( s->valid(i) &&                // valid entry and
  1389         s->_cost[i] < cost &&         // low cost and
  1390         s->_rule[i] >= NUM_OPERANDS ) // not an operand
  1391       cost = s->_cost[mincost=i];
  1393   if (mincost == max_juint) {
  1394 #ifndef PRODUCT
  1395     tty->print("No matching rule for:");
  1396     s->dump();
  1397 #endif
  1398     Matcher::soft_match_failure();
  1399     return NULL;
  1401   // Reduce input tree based upon the state labels to machine Nodes
  1402   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
  1403 #ifdef ASSERT
  1404   _old2new_map.map(n->_idx, m);
  1405   _new2old_map.map(m->_idx, (Node*)n);
  1406 #endif
  1408   // Add any Matcher-ignored edges
  1409   uint cnt = n->req();
  1410   uint start = 1;
  1411   if( mem != (Node*)1 ) start = MemNode::Memory+1;
  1412   if( n->is_AddP() ) {
  1413     assert( mem == (Node*)1, "" );
  1414     start = AddPNode::Base+1;
  1416   for( i = start; i < cnt; i++ ) {
  1417     if( !n->match_edge(i) ) {
  1418       if( i < m->req() )
  1419         m->ins_req( i, n->in(i) );
  1420       else
  1421         m->add_req( n->in(i) );
  1425   debug_only( _mem_node = save_mem_node; )
  1426   return m;
  1430 //------------------------------match_into_reg---------------------------------
  1431 // Choose to either match this Node in a register or part of the current
  1432 // match tree.  Return true for requiring a register and false for matching
  1433 // as part of the current match tree.
  1434 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
  1436   const Type *t = m->bottom_type();
  1438   if (t->singleton()) {
  1439     // Never force constants into registers.  Allow them to match as
  1440     // constants or registers.  Copies of the same value will share
  1441     // the same register.  See find_shared_node.
  1442     return false;
  1443   } else {                      // Not a constant
  1444     // Stop recursion if they have different Controls.
  1445     Node* m_control = m->in(0);
  1446     // Control of load's memory can post-dominates load's control.
  1447     // So use it since load can't float above its memory.
  1448     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
  1449     if (control && m_control && control != m_control && control != mem_control) {
  1451       // Actually, we can live with the most conservative control we
  1452       // find, if it post-dominates the others.  This allows us to
  1453       // pick up load/op/store trees where the load can float a little
  1454       // above the store.
  1455       Node *x = control;
  1456       const uint max_scan = 6;  // Arbitrary scan cutoff
  1457       uint j;
  1458       for (j=0; j<max_scan; j++) {
  1459         if (x->is_Region())     // Bail out at merge points
  1460           return true;
  1461         x = x->in(0);
  1462         if (x == m_control)     // Does 'control' post-dominate
  1463           break;                // m->in(0)?  If so, we can use it
  1464         if (x == mem_control)   // Does 'control' post-dominate
  1465           break;                // mem_control?  If so, we can use it
  1467       if (j == max_scan)        // No post-domination before scan end?
  1468         return true;            // Then break the match tree up
  1470     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
  1471         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
  1472       // These are commonly used in address expressions and can
  1473       // efficiently fold into them on X64 in some cases.
  1474       return false;
  1478   // Not forceable cloning.  If shared, put it into a register.
  1479   return shared;
  1483 //------------------------------Instruction Selection--------------------------
  1484 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
  1485 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
  1486 // things the Matcher does not match (e.g., Memory), and things with different
  1487 // Controls (hence forced into different blocks).  We pass in the Control
  1488 // selected for this entire State tree.
  1490 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
  1491 // Store and the Load must have identical Memories (as well as identical
  1492 // pointers).  Since the Matcher does not have anything for Memory (and
  1493 // does not handle DAGs), I have to match the Memory input myself.  If the
  1494 // Tree root is a Store, I require all Loads to have the identical memory.
  1495 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  1496   // Since Label_Root is a recursive function, its possible that we might run
  1497   // out of stack space.  See bugs 6272980 & 6227033 for more info.
  1498   LabelRootDepth++;
  1499   if (LabelRootDepth > MaxLabelRootDepth) {
  1500     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
  1501     return NULL;
  1503   uint care = 0;                // Edges matcher cares about
  1504   uint cnt = n->req();
  1505   uint i = 0;
  1507   // Examine children for memory state
  1508   // Can only subsume a child into your match-tree if that child's memory state
  1509   // is not modified along the path to another input.
  1510   // It is unsafe even if the other inputs are separate roots.
  1511   Node *input_mem = NULL;
  1512   for( i = 1; i < cnt; i++ ) {
  1513     if( !n->match_edge(i) ) continue;
  1514     Node *m = n->in(i);         // Get ith input
  1515     assert( m, "expect non-null children" );
  1516     if( m->is_Load() ) {
  1517       if( input_mem == NULL ) {
  1518         input_mem = m->in(MemNode::Memory);
  1519       } else if( input_mem != m->in(MemNode::Memory) ) {
  1520         input_mem = NodeSentinel;
  1525   for( i = 1; i < cnt; i++ ){// For my children
  1526     if( !n->match_edge(i) ) continue;
  1527     Node *m = n->in(i);         // Get ith input
  1528     // Allocate states out of a private arena
  1529     State *s = new (&_states_arena) State;
  1530     svec->_kids[care++] = s;
  1531     assert( care <= 2, "binary only for now" );
  1533     // Recursively label the State tree.
  1534     s->_kids[0] = NULL;
  1535     s->_kids[1] = NULL;
  1536     s->_leaf = m;
  1538     // Check for leaves of the State Tree; things that cannot be a part of
  1539     // the current tree.  If it finds any, that value is matched as a
  1540     // register operand.  If not, then the normal matching is used.
  1541     if( match_into_reg(n, m, control, i, is_shared(m)) ||
  1542         //
  1543         // Stop recursion if this is LoadNode and the root of this tree is a
  1544         // StoreNode and the load & store have different memories.
  1545         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
  1546         // Can NOT include the match of a subtree when its memory state
  1547         // is used by any of the other subtrees
  1548         (input_mem == NodeSentinel) ) {
  1549 #ifndef PRODUCT
  1550       // Print when we exclude matching due to different memory states at input-loads
  1551       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
  1552         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
  1553         tty->print_cr("invalid input_mem");
  1555 #endif
  1556       // Switch to a register-only opcode; this value must be in a register
  1557       // and cannot be subsumed as part of a larger instruction.
  1558       s->DFA( m->ideal_reg(), m );
  1560     } else {
  1561       // If match tree has no control and we do, adopt it for entire tree
  1562       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
  1563         control = m->in(0);         // Pick up control
  1564       // Else match as a normal part of the match tree.
  1565       control = Label_Root(m,s,control,mem);
  1566       if (C->failing()) return NULL;
  1571   // Call DFA to match this node, and return
  1572   svec->DFA( n->Opcode(), n );
  1574 #ifdef ASSERT
  1575   uint x;
  1576   for( x = 0; x < _LAST_MACH_OPER; x++ )
  1577     if( svec->valid(x) )
  1578       break;
  1580   if (x >= _LAST_MACH_OPER) {
  1581     n->dump();
  1582     svec->dump();
  1583     assert( false, "bad AD file" );
  1585 #endif
  1586   return control;
  1590 // Con nodes reduced using the same rule can share their MachNode
  1591 // which reduces the number of copies of a constant in the final
  1592 // program.  The register allocator is free to split uses later to
  1593 // split live ranges.
  1594 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
  1595   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
  1597   // See if this Con has already been reduced using this rule.
  1598   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
  1599   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
  1600   if (last != NULL && rule == last->rule()) {
  1601     // Don't expect control change for DecodeN
  1602     if (leaf->is_DecodeNarrowPtr())
  1603       return last;
  1604     // Get the new space root.
  1605     Node* xroot = new_node(C->root());
  1606     if (xroot == NULL) {
  1607       // This shouldn't happen give the order of matching.
  1608       return NULL;
  1611     // Shared constants need to have their control be root so they
  1612     // can be scheduled properly.
  1613     Node* control = last->in(0);
  1614     if (control != xroot) {
  1615       if (control == NULL || control == C->root()) {
  1616         last->set_req(0, xroot);
  1617       } else {
  1618         assert(false, "unexpected control");
  1619         return NULL;
  1622     return last;
  1624   return NULL;
  1628 //------------------------------ReduceInst-------------------------------------
  1629 // Reduce a State tree (with given Control) into a tree of MachNodes.
  1630 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
  1631 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
  1632 // Each MachNode has a number of complicated MachOper operands; each
  1633 // MachOper also covers a further tree of Ideal Nodes.
  1635 // The root of the Ideal match tree is always an instruction, so we enter
  1636 // the recursion here.  After building the MachNode, we need to recurse
  1637 // the tree checking for these cases:
  1638 // (1) Child is an instruction -
  1639 //     Build the instruction (recursively), add it as an edge.
  1640 //     Build a simple operand (register) to hold the result of the instruction.
  1641 // (2) Child is an interior part of an instruction -
  1642 //     Skip over it (do nothing)
  1643 // (3) Child is the start of a operand -
  1644 //     Build the operand, place it inside the instruction
  1645 //     Call ReduceOper.
  1646 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  1647   assert( rule >= NUM_OPERANDS, "called with operand rule" );
  1649   MachNode* shared_node = find_shared_node(s->_leaf, rule);
  1650   if (shared_node != NULL) {
  1651     return shared_node;
  1654   // Build the object to represent this state & prepare for recursive calls
  1655   MachNode *mach = s->MachNodeGenerator( rule, C );
  1656   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  1657   assert( mach->_opnds[0] != NULL, "Missing result operand" );
  1658   Node *leaf = s->_leaf;
  1659   // Check for instruction or instruction chain rule
  1660   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
  1661     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
  1662            "duplicating node that's already been matched");
  1663     // Instruction
  1664     mach->add_req( leaf->in(0) ); // Set initial control
  1665     // Reduce interior of complex instruction
  1666     ReduceInst_Interior( s, rule, mem, mach, 1 );
  1667   } else {
  1668     // Instruction chain rules are data-dependent on their inputs
  1669     mach->add_req(0);             // Set initial control to none
  1670     ReduceInst_Chain_Rule( s, rule, mem, mach );
  1673   // If a Memory was used, insert a Memory edge
  1674   if( mem != (Node*)1 ) {
  1675     mach->ins_req(MemNode::Memory,mem);
  1676 #ifdef ASSERT
  1677     // Verify adr type after matching memory operation
  1678     const MachOper* oper = mach->memory_operand();
  1679     if (oper != NULL && oper != (MachOper*)-1) {
  1680       // It has a unique memory operand.  Find corresponding ideal mem node.
  1681       Node* m = NULL;
  1682       if (leaf->is_Mem()) {
  1683         m = leaf;
  1684       } else {
  1685         m = _mem_node;
  1686         assert(m != NULL && m->is_Mem(), "expecting memory node");
  1688       const Type* mach_at = mach->adr_type();
  1689       // DecodeN node consumed by an address may have different type
  1690       // then its input. Don't compare types for such case.
  1691       if (m->adr_type() != mach_at &&
  1692           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
  1693            m->in(MemNode::Address)->is_AddP() &&
  1694            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
  1695            m->in(MemNode::Address)->is_AddP() &&
  1696            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
  1697            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
  1698         mach_at = m->adr_type();
  1700       if (m->adr_type() != mach_at) {
  1701         m->dump();
  1702         tty->print_cr("mach:");
  1703         mach->dump(1);
  1705       assert(m->adr_type() == mach_at, "matcher should not change adr type");
  1707 #endif
  1710   // If the _leaf is an AddP, insert the base edge
  1711   if (leaf->is_AddP()) {
  1712     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
  1715   uint number_of_projections_prior = number_of_projections();
  1717   // Perform any 1-to-many expansions required
  1718   MachNode *ex = mach->Expand(s, _projection_list, mem);
  1719   if (ex != mach) {
  1720     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
  1721     if( ex->in(1)->is_Con() )
  1722       ex->in(1)->set_req(0, C->root());
  1723     // Remove old node from the graph
  1724     for( uint i=0; i<mach->req(); i++ ) {
  1725       mach->set_req(i,NULL);
  1727 #ifdef ASSERT
  1728     _new2old_map.map(ex->_idx, s->_leaf);
  1729 #endif
  1732   // PhaseChaitin::fixup_spills will sometimes generate spill code
  1733   // via the matcher.  By the time, nodes have been wired into the CFG,
  1734   // and any further nodes generated by expand rules will be left hanging
  1735   // in space, and will not get emitted as output code.  Catch this.
  1736   // Also, catch any new register allocation constraints ("projections")
  1737   // generated belatedly during spill code generation.
  1738   if (_allocation_started) {
  1739     guarantee(ex == mach, "no expand rules during spill generation");
  1740     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
  1743   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
  1744     // Record the con for sharing
  1745     _shared_nodes.map(leaf->_idx, ex);
  1748   return ex;
  1751 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  1752   // 'op' is what I am expecting to receive
  1753   int op = _leftOp[rule];
  1754   // Operand type to catch childs result
  1755   // This is what my child will give me.
  1756   int opnd_class_instance = s->_rule[op];
  1757   // Choose between operand class or not.
  1758   // This is what I will receive.
  1759   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1760   // New rule for child.  Chase operand classes to get the actual rule.
  1761   int newrule = s->_rule[catch_op];
  1763   if( newrule < NUM_OPERANDS ) {
  1764     // Chain from operand or operand class, may be output of shared node
  1765     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
  1766             "Bad AD file: Instruction chain rule must chain from operand");
  1767     // Insert operand into array of operands for this instruction
  1768     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
  1770     ReduceOper( s, newrule, mem, mach );
  1771   } else {
  1772     // Chain from the result of an instruction
  1773     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
  1774     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1775     Node *mem1 = (Node*)1;
  1776     debug_only(Node *save_mem_node = _mem_node;)
  1777     mach->add_req( ReduceInst(s, newrule, mem1) );
  1778     debug_only(_mem_node = save_mem_node;)
  1780   return;
  1784 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  1785   if( s->_leaf->is_Load() ) {
  1786     Node *mem2 = s->_leaf->in(MemNode::Memory);
  1787     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
  1788     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
  1789     mem = mem2;
  1791   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
  1792     if( mach->in(0) == NULL )
  1793       mach->set_req(0, s->_leaf->in(0));
  1796   // Now recursively walk the state tree & add operand list.
  1797   for( uint i=0; i<2; i++ ) {   // binary tree
  1798     State *newstate = s->_kids[i];
  1799     if( newstate == NULL ) break;      // Might only have 1 child
  1800     // 'op' is what I am expecting to receive
  1801     int op;
  1802     if( i == 0 ) {
  1803       op = _leftOp[rule];
  1804     } else {
  1805       op = _rightOp[rule];
  1807     // Operand type to catch childs result
  1808     // This is what my child will give me.
  1809     int opnd_class_instance = newstate->_rule[op];
  1810     // Choose between operand class or not.
  1811     // This is what I will receive.
  1812     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1813     // New rule for child.  Chase operand classes to get the actual rule.
  1814     int newrule = newstate->_rule[catch_op];
  1816     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
  1817       // Operand/operandClass
  1818       // Insert operand into array of operands for this instruction
  1819       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
  1820       ReduceOper( newstate, newrule, mem, mach );
  1822     } else {                    // Child is internal operand or new instruction
  1823       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
  1824         // internal operand --> call ReduceInst_Interior
  1825         // Interior of complex instruction.  Do nothing but recurse.
  1826         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
  1827       } else {
  1828         // instruction --> call build operand(  ) to catch result
  1829         //             --> ReduceInst( newrule )
  1830         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1831         Node *mem1 = (Node*)1;
  1832         debug_only(Node *save_mem_node = _mem_node;)
  1833         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
  1834         debug_only(_mem_node = save_mem_node;)
  1837     assert( mach->_opnds[num_opnds-1], "" );
  1839   return num_opnds;
  1842 // This routine walks the interior of possible complex operands.
  1843 // At each point we check our children in the match tree:
  1844 // (1) No children -
  1845 //     We are a leaf; add _leaf field as an input to the MachNode
  1846 // (2) Child is an internal operand -
  1847 //     Skip over it ( do nothing )
  1848 // (3) Child is an instruction -
  1849 //     Call ReduceInst recursively and
  1850 //     and instruction as an input to the MachNode
  1851 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  1852   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  1853   State *kid = s->_kids[0];
  1854   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
  1856   // Leaf?  And not subsumed?
  1857   if( kid == NULL && !_swallowed[rule] ) {
  1858     mach->add_req( s->_leaf );  // Add leaf pointer
  1859     return;                     // Bail out
  1862   if( s->_leaf->is_Load() ) {
  1863     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
  1864     mem = s->_leaf->in(MemNode::Memory);
  1865     debug_only(_mem_node = s->_leaf;)
  1867   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
  1868     if( !mach->in(0) )
  1869       mach->set_req(0,s->_leaf->in(0));
  1870     else {
  1871       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
  1875   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
  1876     int newrule;
  1877     if( i == 0)
  1878       newrule = kid->_rule[_leftOp[rule]];
  1879     else
  1880       newrule = kid->_rule[_rightOp[rule]];
  1882     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
  1883       // Internal operand; recurse but do nothing else
  1884       ReduceOper( kid, newrule, mem, mach );
  1886     } else {                    // Child is a new instruction
  1887       // Reduce the instruction, and add a direct pointer from this
  1888       // machine instruction to the newly reduced one.
  1889       Node *mem1 = (Node*)1;
  1890       debug_only(Node *save_mem_node = _mem_node;)
  1891       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
  1892       debug_only(_mem_node = save_mem_node;)
  1898 // -------------------------------------------------------------------------
  1899 // Java-Java calling convention
  1900 // (what you use when Java calls Java)
  1902 //------------------------------find_receiver----------------------------------
  1903 // For a given signature, return the OptoReg for parameter 0.
  1904 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  1905   VMRegPair regs;
  1906   BasicType sig_bt = T_OBJECT;
  1907   calling_convention(&sig_bt, &regs, 1, is_outgoing);
  1908   // Return argument 0 register.  In the LP64 build pointers
  1909   // take 2 registers, but the VM wants only the 'main' name.
  1910   return OptoReg::as_OptoReg(regs.first());
  1913 // A method-klass-holder may be passed in the inline_cache_reg
  1914 // and then expanded into the inline_cache_reg and a method_oop register
  1915 //   defined in ad_<arch>.cpp
  1918 //------------------------------find_shared------------------------------------
  1919 // Set bits if Node is shared or otherwise a root
  1920 void Matcher::find_shared( Node *n ) {
  1921   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
  1922   MStack mstack(C->unique() * 2);
  1923   // Mark nodes as address_visited if they are inputs to an address expression
  1924   VectorSet address_visited(Thread::current()->resource_area());
  1925   mstack.push(n, Visit);     // Don't need to pre-visit root node
  1926   while (mstack.is_nonempty()) {
  1927     n = mstack.node();       // Leave node on stack
  1928     Node_State nstate = mstack.state();
  1929     uint nop = n->Opcode();
  1930     if (nstate == Pre_Visit) {
  1931       if (address_visited.test(n->_idx)) { // Visited in address already?
  1932         // Flag as visited and shared now.
  1933         set_visited(n);
  1935       if (is_visited(n)) {   // Visited already?
  1936         // Node is shared and has no reason to clone.  Flag it as shared.
  1937         // This causes it to match into a register for the sharing.
  1938         set_shared(n);       // Flag as shared and
  1939         mstack.pop();        // remove node from stack
  1940         continue;
  1942       nstate = Visit; // Not already visited; so visit now
  1944     if (nstate == Visit) {
  1945       mstack.set_state(Post_Visit);
  1946       set_visited(n);   // Flag as visited now
  1947       bool mem_op = false;
  1949       switch( nop ) {  // Handle some opcodes special
  1950       case Op_Phi:             // Treat Phis as shared roots
  1951       case Op_Parm:
  1952       case Op_Proj:            // All handled specially during matching
  1953       case Op_SafePointScalarObject:
  1954         set_shared(n);
  1955         set_dontcare(n);
  1956         break;
  1957       case Op_If:
  1958       case Op_CountedLoopEnd:
  1959         mstack.set_state(Alt_Post_Visit); // Alternative way
  1960         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
  1961         // with matching cmp/branch in 1 instruction.  The Matcher needs the
  1962         // Bool and CmpX side-by-side, because it can only get at constants
  1963         // that are at the leaves of Match trees, and the Bool's condition acts
  1964         // as a constant here.
  1965         mstack.push(n->in(1), Visit);         // Clone the Bool
  1966         mstack.push(n->in(0), Pre_Visit);     // Visit control input
  1967         continue; // while (mstack.is_nonempty())
  1968       case Op_ConvI2D:         // These forms efficiently match with a prior
  1969       case Op_ConvI2F:         //   Load but not a following Store
  1970         if( n->in(1)->is_Load() &&        // Prior load
  1971             n->outcnt() == 1 &&           // Not already shared
  1972             n->unique_out()->is_Store() ) // Following store
  1973           set_shared(n);       // Force it to be a root
  1974         break;
  1975       case Op_ReverseBytesI:
  1976       case Op_ReverseBytesL:
  1977         if( n->in(1)->is_Load() &&        // Prior load
  1978             n->outcnt() == 1 )            // Not already shared
  1979           set_shared(n);                  // Force it to be a root
  1980         break;
  1981       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
  1982       case Op_IfFalse:
  1983       case Op_IfTrue:
  1984       case Op_MachProj:
  1985       case Op_MergeMem:
  1986       case Op_Catch:
  1987       case Op_CatchProj:
  1988       case Op_CProj:
  1989       case Op_FlagsProj:
  1990       case Op_JumpProj:
  1991       case Op_JProj:
  1992       case Op_NeverBranch:
  1993         set_dontcare(n);
  1994         break;
  1995       case Op_Jump:
  1996         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
  1997         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
  1998         continue;                             // while (mstack.is_nonempty())
  1999       case Op_StrComp:
  2000       case Op_StrEquals:
  2001       case Op_StrIndexOf:
  2002       case Op_AryEq:
  2003       case Op_EncodeISOArray:
  2004         set_shared(n); // Force result into register (it will be anyways)
  2005         break;
  2006       case Op_ConP: {  // Convert pointers above the centerline to NUL
  2007         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  2008         const TypePtr* tp = tn->type()->is_ptr();
  2009         if (tp->_ptr == TypePtr::AnyNull) {
  2010           tn->set_type(TypePtr::NULL_PTR);
  2012         break;
  2014       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
  2015         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  2016         const TypePtr* tp = tn->type()->make_ptr();
  2017         if (tp && tp->_ptr == TypePtr::AnyNull) {
  2018           tn->set_type(TypeNarrowOop::NULL_PTR);
  2020         break;
  2022       case Op_Binary:         // These are introduced in the Post_Visit state.
  2023         ShouldNotReachHere();
  2024         break;
  2025       case Op_ClearArray:
  2026       case Op_SafePoint:
  2027         mem_op = true;
  2028         break;
  2029       default:
  2030         if( n->is_Store() ) {
  2031           // Do match stores, despite no ideal reg
  2032           mem_op = true;
  2033           break;
  2035         if( n->is_Mem() ) { // Loads and LoadStores
  2036           mem_op = true;
  2037           // Loads must be root of match tree due to prior load conflict
  2038           if( C->subsume_loads() == false )
  2039             set_shared(n);
  2041         // Fall into default case
  2042         if( !n->ideal_reg() )
  2043           set_dontcare(n);  // Unmatchable Nodes
  2044       } // end_switch
  2046       for(int i = n->req() - 1; i >= 0; --i) { // For my children
  2047         Node *m = n->in(i); // Get ith input
  2048         if (m == NULL) continue;  // Ignore NULLs
  2049         uint mop = m->Opcode();
  2051         // Must clone all producers of flags, or we will not match correctly.
  2052         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
  2053         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
  2054         // are also there, so we may match a float-branch to int-flags and
  2055         // expect the allocator to haul the flags from the int-side to the
  2056         // fp-side.  No can do.
  2057         if( _must_clone[mop] ) {
  2058           mstack.push(m, Visit);
  2059           continue; // for(int i = ...)
  2062         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
  2063           // Bases used in addresses must be shared but since
  2064           // they are shared through a DecodeN they may appear
  2065           // to have a single use so force sharing here.
  2066           set_shared(m->in(AddPNode::Base)->in(1));
  2069         // Clone addressing expressions as they are "free" in memory access instructions
  2070         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
  2071           // Some inputs for address expression are not put on stack
  2072           // to avoid marking them as shared and forcing them into register
  2073           // if they are used only in address expressions.
  2074           // But they should be marked as shared if there are other uses
  2075           // besides address expressions.
  2077           Node *off = m->in(AddPNode::Offset);
  2078           if( off->is_Con() &&
  2079               // When there are other uses besides address expressions
  2080               // put it on stack and mark as shared.
  2081               !is_visited(m) ) {
  2082             address_visited.test_set(m->_idx); // Flag as address_visited
  2083             Node *adr = m->in(AddPNode::Address);
  2085             // Intel, ARM and friends can handle 2 adds in addressing mode
  2086             if( clone_shift_expressions && adr->is_AddP() &&
  2087                 // AtomicAdd is not an addressing expression.
  2088                 // Cheap to find it by looking for screwy base.
  2089                 !adr->in(AddPNode::Base)->is_top() &&
  2090                 // Are there other uses besides address expressions?
  2091                 !is_visited(adr) ) {
  2092               address_visited.set(adr->_idx); // Flag as address_visited
  2093               Node *shift = adr->in(AddPNode::Offset);
  2094               // Check for shift by small constant as well
  2095               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
  2096                   shift->in(2)->get_int() <= 3 &&
  2097                   // Are there other uses besides address expressions?
  2098                   !is_visited(shift) ) {
  2099                 address_visited.set(shift->_idx); // Flag as address_visited
  2100                 mstack.push(shift->in(2), Visit);
  2101                 Node *conv = shift->in(1);
  2102 #ifdef _LP64
  2103                 // Allow Matcher to match the rule which bypass
  2104                 // ConvI2L operation for an array index on LP64
  2105                 // if the index value is positive.
  2106                 if( conv->Opcode() == Op_ConvI2L &&
  2107                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
  2108                     // Are there other uses besides address expressions?
  2109                     !is_visited(conv) ) {
  2110                   address_visited.set(conv->_idx); // Flag as address_visited
  2111                   mstack.push(conv->in(1), Pre_Visit);
  2112                 } else
  2113 #endif
  2114                 mstack.push(conv, Pre_Visit);
  2115               } else {
  2116                 mstack.push(shift, Pre_Visit);
  2118               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
  2119               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
  2120             } else {  // Sparc, Alpha, PPC and friends
  2121               mstack.push(adr, Pre_Visit);
  2124             // Clone X+offset as it also folds into most addressing expressions
  2125             mstack.push(off, Visit);
  2126             mstack.push(m->in(AddPNode::Base), Pre_Visit);
  2127             continue; // for(int i = ...)
  2128           } // if( off->is_Con() )
  2129         }   // if( mem_op &&
  2130         mstack.push(m, Pre_Visit);
  2131       }     // for(int i = ...)
  2133     else if (nstate == Alt_Post_Visit) {
  2134       mstack.pop(); // Remove node from stack
  2135       // We cannot remove the Cmp input from the Bool here, as the Bool may be
  2136       // shared and all users of the Bool need to move the Cmp in parallel.
  2137       // This leaves both the Bool and the If pointing at the Cmp.  To
  2138       // prevent the Matcher from trying to Match the Cmp along both paths
  2139       // BoolNode::match_edge always returns a zero.
  2141       // We reorder the Op_If in a pre-order manner, so we can visit without
  2142       // accidentally sharing the Cmp (the Bool and the If make 2 users).
  2143       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
  2145     else if (nstate == Post_Visit) {
  2146       mstack.pop(); // Remove node from stack
  2148       // Now hack a few special opcodes
  2149       switch( n->Opcode() ) {       // Handle some opcodes special
  2150       case Op_StorePConditional:
  2151       case Op_StoreIConditional:
  2152       case Op_StoreLConditional:
  2153       case Op_CompareAndSwapI:
  2154       case Op_CompareAndSwapL:
  2155       case Op_CompareAndSwapP:
  2156       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
  2157         Node *newval = n->in(MemNode::ValueIn );
  2158         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
  2159         Node *pair = new (C) BinaryNode( oldval, newval );
  2160         n->set_req(MemNode::ValueIn,pair);
  2161         n->del_req(LoadStoreConditionalNode::ExpectedIn);
  2162         break;
  2164       case Op_CMoveD:              // Convert trinary to binary-tree
  2165       case Op_CMoveF:
  2166       case Op_CMoveI:
  2167       case Op_CMoveL:
  2168       case Op_CMoveN:
  2169       case Op_CMoveP: {
  2170         // Restructure into a binary tree for Matching.  It's possible that
  2171         // we could move this code up next to the graph reshaping for IfNodes
  2172         // or vice-versa, but I do not want to debug this for Ladybird.
  2173         // 10/2/2000 CNC.
  2174         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
  2175         n->set_req(1,pair1);
  2176         Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
  2177         n->set_req(2,pair2);
  2178         n->del_req(3);
  2179         break;
  2181       case Op_LoopLimit: {
  2182         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
  2183         n->set_req(1,pair1);
  2184         n->set_req(2,n->in(3));
  2185         n->del_req(3);
  2186         break;
  2188       case Op_StrEquals: {
  2189         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
  2190         n->set_req(2,pair1);
  2191         n->set_req(3,n->in(4));
  2192         n->del_req(4);
  2193         break;
  2195       case Op_StrComp:
  2196       case Op_StrIndexOf: {
  2197         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
  2198         n->set_req(2,pair1);
  2199         Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
  2200         n->set_req(3,pair2);
  2201         n->del_req(5);
  2202         n->del_req(4);
  2203         break;
  2205       case Op_EncodeISOArray: {
  2206         // Restructure into a binary tree for Matching.
  2207         Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
  2208         n->set_req(3, pair);
  2209         n->del_req(4);
  2210         break;
  2212       default:
  2213         break;
  2216     else {
  2217       ShouldNotReachHere();
  2219   } // end of while (mstack.is_nonempty())
  2222 #ifdef ASSERT
  2223 // machine-independent root to machine-dependent root
  2224 void Matcher::dump_old2new_map() {
  2225   _old2new_map.dump();
  2227 #endif
  2229 //---------------------------collect_null_checks-------------------------------
  2230 // Find null checks in the ideal graph; write a machine-specific node for
  2231 // it.  Used by later implicit-null-check handling.  Actually collects
  2232 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
  2233 // value being tested.
  2234 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
  2235   Node *iff = proj->in(0);
  2236   if( iff->Opcode() == Op_If ) {
  2237     // During matching If's have Bool & Cmp side-by-side
  2238     BoolNode *b = iff->in(1)->as_Bool();
  2239     Node *cmp = iff->in(2);
  2240     int opc = cmp->Opcode();
  2241     if (opc != Op_CmpP && opc != Op_CmpN) return;
  2243     const Type* ct = cmp->in(2)->bottom_type();
  2244     if (ct == TypePtr::NULL_PTR ||
  2245         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
  2247       bool push_it = false;
  2248       if( proj->Opcode() == Op_IfTrue ) {
  2249         extern int all_null_checks_found;
  2250         all_null_checks_found++;
  2251         if( b->_test._test == BoolTest::ne ) {
  2252           push_it = true;
  2254       } else {
  2255         assert( proj->Opcode() == Op_IfFalse, "" );
  2256         if( b->_test._test == BoolTest::eq ) {
  2257           push_it = true;
  2260       if( push_it ) {
  2261         _null_check_tests.push(proj);
  2262         Node* val = cmp->in(1);
  2263 #ifdef _LP64
  2264         if (val->bottom_type()->isa_narrowoop() &&
  2265             !Matcher::narrow_oop_use_complex_address()) {
  2266           //
  2267           // Look for DecodeN node which should be pinned to orig_proj.
  2268           // On platforms (Sparc) which can not handle 2 adds
  2269           // in addressing mode we have to keep a DecodeN node and
  2270           // use it to do implicit NULL check in address.
  2271           //
  2272           // DecodeN node was pinned to non-null path (orig_proj) during
  2273           // CastPP transformation in final_graph_reshaping_impl().
  2274           //
  2275           uint cnt = orig_proj->outcnt();
  2276           for (uint i = 0; i < orig_proj->outcnt(); i++) {
  2277             Node* d = orig_proj->raw_out(i);
  2278             if (d->is_DecodeN() && d->in(1) == val) {
  2279               val = d;
  2280               val->set_req(0, NULL); // Unpin now.
  2281               // Mark this as special case to distinguish from
  2282               // a regular case: CmpP(DecodeN, NULL).
  2283               val = (Node*)(((intptr_t)val) | 1);
  2284               break;
  2288 #endif
  2289         _null_check_tests.push(val);
  2295 //---------------------------validate_null_checks------------------------------
  2296 // Its possible that the value being NULL checked is not the root of a match
  2297 // tree.  If so, I cannot use the value in an implicit null check.
  2298 void Matcher::validate_null_checks( ) {
  2299   uint cnt = _null_check_tests.size();
  2300   for( uint i=0; i < cnt; i+=2 ) {
  2301     Node *test = _null_check_tests[i];
  2302     Node *val = _null_check_tests[i+1];
  2303     bool is_decoden = ((intptr_t)val) & 1;
  2304     val = (Node*)(((intptr_t)val) & ~1);
  2305     if (has_new_node(val)) {
  2306       Node* new_val = new_node(val);
  2307       if (is_decoden) {
  2308         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
  2309         // Note: new_val may have a control edge if
  2310         // the original ideal node DecodeN was matched before
  2311         // it was unpinned in Matcher::collect_null_checks().
  2312         // Unpin the mach node and mark it.
  2313         new_val->set_req(0, NULL);
  2314         new_val = (Node*)(((intptr_t)new_val) | 1);
  2316       // Is a match-tree root, so replace with the matched value
  2317       _null_check_tests.map(i+1, new_val);
  2318     } else {
  2319       // Yank from candidate list
  2320       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
  2321       _null_check_tests.map(i,_null_check_tests[--cnt]);
  2322       _null_check_tests.pop();
  2323       _null_check_tests.pop();
  2324       i-=2;
  2329 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
  2330 // atomic instruction acting as a store_load barrier without any
  2331 // intervening volatile load, and thus we don't need a barrier here.
  2332 // We retain the Node to act as a compiler ordering barrier.
  2333 bool Matcher::post_store_load_barrier(const Node* vmb) {
  2334   Compile* C = Compile::current();
  2335   assert(vmb->is_MemBar(), "");
  2336   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
  2337   const MemBarNode* membar = vmb->as_MemBar();
  2339   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
  2340   Node* ctrl = NULL;
  2341   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
  2342     Node* p = membar->fast_out(i);
  2343     assert(p->is_Proj(), "only projections here");
  2344     if ((p->as_Proj()->_con == TypeFunc::Control) &&
  2345         !C->node_arena()->contains(p)) { // Unmatched old-space only
  2346       ctrl = p;
  2347       break;
  2350   assert((ctrl != NULL), "missing control projection");
  2352   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
  2353     Node *x = ctrl->fast_out(j);
  2354     int xop = x->Opcode();
  2356     // We don't need current barrier if we see another or a lock
  2357     // before seeing volatile load.
  2358     //
  2359     // Op_Fastunlock previously appeared in the Op_* list below.
  2360     // With the advent of 1-0 lock operations we're no longer guaranteed
  2361     // that a monitor exit operation contains a serializing instruction.
  2363     if (xop == Op_MemBarVolatile ||
  2364         xop == Op_CompareAndSwapL ||
  2365         xop == Op_CompareAndSwapP ||
  2366         xop == Op_CompareAndSwapN ||
  2367         xop == Op_CompareAndSwapI) {
  2368       return true;
  2371     // Op_FastLock previously appeared in the Op_* list above.
  2372     // With biased locking we're no longer guaranteed that a monitor
  2373     // enter operation contains a serializing instruction.
  2374     if ((xop == Op_FastLock) && !UseBiasedLocking) {
  2375       return true;
  2378     if (x->is_MemBar()) {
  2379       // We must retain this membar if there is an upcoming volatile
  2380       // load, which will be followed by acquire membar.
  2381       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
  2382         return false;
  2383       } else {
  2384         // For other kinds of barriers, check by pretending we
  2385         // are them, and seeing if we can be removed.
  2386         return post_store_load_barrier(x->as_MemBar());
  2390     // probably not necessary to check for these
  2391     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
  2392       return false;
  2395   return false;
  2398 //=============================================================================
  2399 //---------------------------State---------------------------------------------
  2400 State::State(void) {
  2401 #ifdef ASSERT
  2402   _id = 0;
  2403   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2404   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2405   //memset(_cost, -1, sizeof(_cost));
  2406   //memset(_rule, -1, sizeof(_rule));
  2407 #endif
  2408   memset(_valid, 0, sizeof(_valid));
  2411 #ifdef ASSERT
  2412 State::~State() {
  2413   _id = 99;
  2414   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2415   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2416   memset(_cost, -3, sizeof(_cost));
  2417   memset(_rule, -3, sizeof(_rule));
  2419 #endif
  2421 #ifndef PRODUCT
  2422 //---------------------------dump----------------------------------------------
  2423 void State::dump() {
  2424   tty->print("\n");
  2425   dump(0);
  2428 void State::dump(int depth) {
  2429   for( int j = 0; j < depth; j++ )
  2430     tty->print("   ");
  2431   tty->print("--N: ");
  2432   _leaf->dump();
  2433   uint i;
  2434   for( i = 0; i < _LAST_MACH_OPER; i++ )
  2435     // Check for valid entry
  2436     if( valid(i) ) {
  2437       for( int j = 0; j < depth; j++ )
  2438         tty->print("   ");
  2439         assert(_cost[i] != max_juint, "cost must be a valid value");
  2440         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
  2441         tty->print_cr("%s  %d  %s",
  2442                       ruleName[i], _cost[i], ruleName[_rule[i]] );
  2444   tty->print_cr("");
  2446   for( i=0; i<2; i++ )
  2447     if( _kids[i] )
  2448       _kids[i]->dump(depth+1);
  2450 #endif

mercurial