src/share/vm/opto/matcher.cpp

Mon, 10 Jun 2013 11:30:51 +0200

author
sla
date
Mon, 10 Jun 2013 11:30:51 +0200
changeset 5237
f2110083203d
parent 5225
603ca7e51354
child 5289
ac91879aa56f
child 6442
b5c8a61d7fa0
permissions
-rw-r--r--

8005849: JEP 167: Event-Based JVM Tracing
Reviewed-by: acorn, coleenp, sla
Contributed-by: Karen Kinnear <karen.kinnear@oracle.com>, Bengt Rutisson <bengt.rutisson@oracle.com>, Calvin Cheung <calvin.cheung@oracle.com>, Erik Gahlin <erik.gahlin@oracle.com>, Erik Helin <erik.helin@oracle.com>, Jesper Wilhelmsson <jesper.wilhelmsson@oracle.com>, Keith McGuigan <keith.mcguigan@oracle.com>, Mattias Tobiasson <mattias.tobiasson@oracle.com>, Markus Gronlund <markus.gronlund@oracle.com>, Mikael Auno <mikael.auno@oracle.com>, Nils Eliasson <nils.eliasson@oracle.com>, Nils Loodin <nils.loodin@oracle.com>, Rickard Backman <rickard.backman@oracle.com>, Staffan Larsen <staffan.larsen@oracle.com>, Stefan Karlsson <stefan.karlsson@oracle.com>, Yekaterina Kantserova <yekaterina.kantserova@oracle.com>

duke@435 1 /*
sla@5237 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/addnode.hpp"
stefank@2314 28 #include "opto/callnode.hpp"
stefank@2314 29 #include "opto/connode.hpp"
stefank@2314 30 #include "opto/idealGraphPrinter.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/memnode.hpp"
stefank@2314 33 #include "opto/opcodes.hpp"
stefank@2314 34 #include "opto/regmask.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
stefank@2314 36 #include "opto/runtime.hpp"
stefank@2314 37 #include "opto/type.hpp"
kvn@3882 38 #include "opto/vectornode.hpp"
stefank@2314 39 #include "runtime/atomic.hpp"
stefank@2314 40 #include "runtime/os.hpp"
stefank@2314 41 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 42 # include "adfiles/ad_x86_32.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 45 # include "adfiles/ad_x86_64.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 48 # include "adfiles/ad_sparc.hpp"
stefank@2314 49 #endif
stefank@2314 50 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 51 # include "adfiles/ad_zero.hpp"
stefank@2314 52 #endif
roland@2683 53 #ifdef TARGET_ARCH_MODEL_arm
roland@2683 54 # include "adfiles/ad_arm.hpp"
roland@2683 55 #endif
jcoomes@2993 56 #ifdef TARGET_ARCH_MODEL_ppc
jcoomes@2993 57 # include "adfiles/ad_ppc.hpp"
jcoomes@2993 58 #endif
duke@435 59
duke@435 60 OptoReg::Name OptoReg::c_frame_pointer;
duke@435 61
duke@435 62 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
duke@435 63 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
duke@435 64 RegMask Matcher::STACK_ONLY_mask;
duke@435 65 RegMask Matcher::c_frame_ptr_mask;
duke@435 66 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
duke@435 67 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
duke@435 68
duke@435 69 //---------------------------Matcher-------------------------------------------
duke@435 70 Matcher::Matcher( Node_List &proj_list ) :
duke@435 71 PhaseTransform( Phase::Ins_Select ),
duke@435 72 #ifdef ASSERT
duke@435 73 _old2new_map(C->comp_arena()),
never@657 74 _new2old_map(C->comp_arena()),
duke@435 75 #endif
kvn@603 76 _shared_nodes(C->comp_arena()),
duke@435 77 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
duke@435 78 _swallowed(swallowed),
duke@435 79 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
duke@435 80 _end_inst_chain_rule(_END_INST_CHAIN_RULE),
duke@435 81 _must_clone(must_clone), _proj_list(proj_list),
duke@435 82 _register_save_policy(register_save_policy),
duke@435 83 _c_reg_save_policy(c_reg_save_policy),
duke@435 84 _register_save_type(register_save_type),
duke@435 85 _ruleName(ruleName),
duke@435 86 _allocation_started(false),
duke@435 87 _states_arena(Chunk::medium_size),
duke@435 88 _visited(&_states_arena),
duke@435 89 _shared(&_states_arena),
duke@435 90 _dontcare(&_states_arena) {
duke@435 91 C->set_matcher(this);
duke@435 92
twisti@1572 93 idealreg2spillmask [Op_RegI] = NULL;
twisti@1572 94 idealreg2spillmask [Op_RegN] = NULL;
twisti@1572 95 idealreg2spillmask [Op_RegL] = NULL;
twisti@1572 96 idealreg2spillmask [Op_RegF] = NULL;
twisti@1572 97 idealreg2spillmask [Op_RegD] = NULL;
twisti@1572 98 idealreg2spillmask [Op_RegP] = NULL;
kvn@3882 99 idealreg2spillmask [Op_VecS] = NULL;
kvn@3882 100 idealreg2spillmask [Op_VecD] = NULL;
kvn@3882 101 idealreg2spillmask [Op_VecX] = NULL;
kvn@3882 102 idealreg2spillmask [Op_VecY] = NULL;
duke@435 103
twisti@1572 104 idealreg2debugmask [Op_RegI] = NULL;
twisti@1572 105 idealreg2debugmask [Op_RegN] = NULL;
twisti@1572 106 idealreg2debugmask [Op_RegL] = NULL;
twisti@1572 107 idealreg2debugmask [Op_RegF] = NULL;
twisti@1572 108 idealreg2debugmask [Op_RegD] = NULL;
twisti@1572 109 idealreg2debugmask [Op_RegP] = NULL;
kvn@3882 110 idealreg2debugmask [Op_VecS] = NULL;
kvn@3882 111 idealreg2debugmask [Op_VecD] = NULL;
kvn@3882 112 idealreg2debugmask [Op_VecX] = NULL;
kvn@3882 113 idealreg2debugmask [Op_VecY] = NULL;
twisti@1572 114
twisti@1572 115 idealreg2mhdebugmask[Op_RegI] = NULL;
twisti@1572 116 idealreg2mhdebugmask[Op_RegN] = NULL;
twisti@1572 117 idealreg2mhdebugmask[Op_RegL] = NULL;
twisti@1572 118 idealreg2mhdebugmask[Op_RegF] = NULL;
twisti@1572 119 idealreg2mhdebugmask[Op_RegD] = NULL;
twisti@1572 120 idealreg2mhdebugmask[Op_RegP] = NULL;
kvn@3882 121 idealreg2mhdebugmask[Op_VecS] = NULL;
kvn@3882 122 idealreg2mhdebugmask[Op_VecD] = NULL;
kvn@3882 123 idealreg2mhdebugmask[Op_VecX] = NULL;
kvn@3882 124 idealreg2mhdebugmask[Op_VecY] = NULL;
twisti@1572 125
kvn@651 126 debug_only(_mem_node = NULL;) // Ideal memory node consumed by mach node
duke@435 127 }
duke@435 128
duke@435 129 //------------------------------warp_incoming_stk_arg------------------------
duke@435 130 // This warps a VMReg into an OptoReg::Name
duke@435 131 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
duke@435 132 OptoReg::Name warped;
duke@435 133 if( reg->is_stack() ) { // Stack slot argument?
duke@435 134 warped = OptoReg::add(_old_SP, reg->reg2stack() );
duke@435 135 warped = OptoReg::add(warped, C->out_preserve_stack_slots());
duke@435 136 if( warped >= _in_arg_limit )
duke@435 137 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
kvn@3882 138 if (!RegMask::can_represent_arg(warped)) {
duke@435 139 // the compiler cannot represent this method's calling sequence
duke@435 140 C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
duke@435 141 return OptoReg::Bad;
duke@435 142 }
duke@435 143 return warped;
duke@435 144 }
duke@435 145 return OptoReg::as_OptoReg(reg);
duke@435 146 }
duke@435 147
duke@435 148 //---------------------------compute_old_SP------------------------------------
duke@435 149 OptoReg::Name Compile::compute_old_SP() {
duke@435 150 int fixed = fixed_slots();
duke@435 151 int preserve = in_preserve_stack_slots();
duke@435 152 return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
duke@435 153 }
duke@435 154
duke@435 155
duke@435 156
duke@435 157 #ifdef ASSERT
duke@435 158 void Matcher::verify_new_nodes_only(Node* xroot) {
duke@435 159 // Make sure that the new graph only references new nodes
duke@435 160 ResourceMark rm;
duke@435 161 Unique_Node_List worklist;
duke@435 162 VectorSet visited(Thread::current()->resource_area());
duke@435 163 worklist.push(xroot);
duke@435 164 while (worklist.size() > 0) {
duke@435 165 Node* n = worklist.pop();
duke@435 166 visited <<= n->_idx;
duke@435 167 assert(C->node_arena()->contains(n), "dead node");
duke@435 168 for (uint j = 0; j < n->req(); j++) {
duke@435 169 Node* in = n->in(j);
duke@435 170 if (in != NULL) {
duke@435 171 assert(C->node_arena()->contains(in), "dead node");
duke@435 172 if (!visited.test(in->_idx)) {
duke@435 173 worklist.push(in);
duke@435 174 }
duke@435 175 }
duke@435 176 }
duke@435 177 }
duke@435 178 }
duke@435 179 #endif
duke@435 180
duke@435 181
duke@435 182 //---------------------------match---------------------------------------------
duke@435 183 void Matcher::match( ) {
kvn@1258 184 if( MaxLabelRootDepth < 100 ) { // Too small?
kvn@1258 185 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
kvn@1258 186 MaxLabelRootDepth = 100;
kvn@1258 187 }
duke@435 188 // One-time initialization of some register masks.
duke@435 189 init_spill_mask( C->root()->in(1) );
duke@435 190 _return_addr_mask = return_addr();
duke@435 191 #ifdef _LP64
duke@435 192 // Pointers take 2 slots in 64-bit land
duke@435 193 _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
duke@435 194 #endif
duke@435 195
duke@435 196 // Map a Java-signature return type into return register-value
duke@435 197 // machine registers for 0, 1 and 2 returned values.
duke@435 198 const TypeTuple *range = C->tf()->range();
duke@435 199 if( range->cnt() > TypeFunc::Parms ) { // If not a void function
duke@435 200 // Get ideal-register return type
coleenp@4037 201 int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
duke@435 202 // Get machine return register
duke@435 203 uint sop = C->start()->Opcode();
duke@435 204 OptoRegPair regs = return_value(ireg, false);
duke@435 205
duke@435 206 // And mask for same
duke@435 207 _return_value_mask = RegMask(regs.first());
duke@435 208 if( OptoReg::is_valid(regs.second()) )
duke@435 209 _return_value_mask.Insert(regs.second());
duke@435 210 }
duke@435 211
duke@435 212 // ---------------
duke@435 213 // Frame Layout
duke@435 214
duke@435 215 // Need the method signature to determine the incoming argument types,
duke@435 216 // because the types determine which registers the incoming arguments are
duke@435 217 // in, and this affects the matched code.
duke@435 218 const TypeTuple *domain = C->tf()->domain();
duke@435 219 uint argcnt = domain->cnt() - TypeFunc::Parms;
duke@435 220 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 221 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 222 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
duke@435 223 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
duke@435 224 uint i;
duke@435 225 for( i = 0; i<argcnt; i++ ) {
duke@435 226 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 227 }
duke@435 228
duke@435 229 // Pass array of ideal registers and length to USER code (from the AD file)
duke@435 230 // that will convert this to an array of register numbers.
duke@435 231 const StartNode *start = C->start();
duke@435 232 start->calling_convention( sig_bt, vm_parm_regs, argcnt );
duke@435 233 #ifdef ASSERT
duke@435 234 // Sanity check users' calling convention. Real handy while trying to
duke@435 235 // get the initial port correct.
duke@435 236 { for (uint i = 0; i<argcnt; i++) {
duke@435 237 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 238 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
duke@435 239 _parm_regs[i].set_bad();
duke@435 240 continue;
duke@435 241 }
duke@435 242 VMReg parm_reg = vm_parm_regs[i].first();
duke@435 243 assert(parm_reg->is_valid(), "invalid arg?");
duke@435 244 if (parm_reg->is_reg()) {
duke@435 245 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
duke@435 246 assert(can_be_java_arg(opto_parm_reg) ||
duke@435 247 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
duke@435 248 opto_parm_reg == inline_cache_reg(),
duke@435 249 "parameters in register must be preserved by runtime stubs");
duke@435 250 }
duke@435 251 for (uint j = 0; j < i; j++) {
duke@435 252 assert(parm_reg != vm_parm_regs[j].first(),
duke@435 253 "calling conv. must produce distinct regs");
duke@435 254 }
duke@435 255 }
duke@435 256 }
duke@435 257 #endif
duke@435 258
duke@435 259 // Do some initial frame layout.
duke@435 260
duke@435 261 // Compute the old incoming SP (may be called FP) as
duke@435 262 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
duke@435 263 _old_SP = C->compute_old_SP();
duke@435 264 assert( is_even(_old_SP), "must be even" );
duke@435 265
duke@435 266 // Compute highest incoming stack argument as
duke@435 267 // _old_SP + out_preserve_stack_slots + incoming argument size.
duke@435 268 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 269 assert( is_even(_in_arg_limit), "out_preserve must be even" );
duke@435 270 for( i = 0; i < argcnt; i++ ) {
duke@435 271 // Permit args to have no register
duke@435 272 _calling_convention_mask[i].Clear();
duke@435 273 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 274 continue;
duke@435 275 }
duke@435 276 // calling_convention returns stack arguments as a count of
duke@435 277 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to
duke@435 278 // the allocators point of view, taking into account all the
duke@435 279 // preserve area, locks & pad2.
duke@435 280
duke@435 281 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
duke@435 282 if( OptoReg::is_valid(reg1))
duke@435 283 _calling_convention_mask[i].Insert(reg1);
duke@435 284
duke@435 285 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
duke@435 286 if( OptoReg::is_valid(reg2))
duke@435 287 _calling_convention_mask[i].Insert(reg2);
duke@435 288
duke@435 289 // Saved biased stack-slot register number
duke@435 290 _parm_regs[i].set_pair(reg2, reg1);
duke@435 291 }
duke@435 292
duke@435 293 // Finally, make sure the incoming arguments take up an even number of
duke@435 294 // words, in case the arguments or locals need to contain doubleword stack
duke@435 295 // slots. The rest of the system assumes that stack slot pairs (in
duke@435 296 // particular, in the spill area) which look aligned will in fact be
duke@435 297 // aligned relative to the stack pointer in the target machine. Double
duke@435 298 // stack slots will always be allocated aligned.
duke@435 299 _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
duke@435 300
duke@435 301 // Compute highest outgoing stack argument as
duke@435 302 // _new_SP + out_preserve_stack_slots + max(outgoing argument size).
duke@435 303 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 304 assert( is_even(_out_arg_limit), "out_preserve must be even" );
duke@435 305
kvn@3882 306 if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
duke@435 307 // the compiler cannot represent this method's calling sequence
duke@435 308 C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
duke@435 309 }
duke@435 310
duke@435 311 if (C->failing()) return; // bailed out on incoming arg failure
duke@435 312
duke@435 313 // ---------------
duke@435 314 // Collect roots of matcher trees. Every node for which
duke@435 315 // _shared[_idx] is cleared is guaranteed to not be shared, and thus
duke@435 316 // can be a valid interior of some tree.
duke@435 317 find_shared( C->root() );
duke@435 318 find_shared( C->top() );
duke@435 319
sla@5237 320 C->print_method(PHASE_BEFORE_MATCHING);
duke@435 321
kvn@1164 322 // Create new ideal node ConP #NULL even if it does exist in old space
kvn@1164 323 // to avoid false sharing if the corresponding mach node is not used.
kvn@1164 324 // The corresponding mach node is only used in rare cases for derived
kvn@1164 325 // pointers.
kvn@1164 326 Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
kvn@1164 327
duke@435 328 // Swap out to old-space; emptying new-space
duke@435 329 Arena *old = C->node_arena()->move_contents(C->old_arena());
duke@435 330
duke@435 331 // Save debug and profile information for nodes in old space:
duke@435 332 _old_node_note_array = C->node_note_array();
duke@435 333 if (_old_node_note_array != NULL) {
duke@435 334 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
duke@435 335 (C->comp_arena(), _old_node_note_array->length(),
duke@435 336 0, NULL));
duke@435 337 }
duke@435 338
duke@435 339 // Pre-size the new_node table to avoid the need for range checks.
duke@435 340 grow_new_node_array(C->unique());
duke@435 341
duke@435 342 // Reset node counter so MachNodes start with _idx at 0
duke@435 343 int nodes = C->unique(); // save value
duke@435 344 C->set_unique(0);
bharadwaj@4315 345 C->reset_dead_node_list();
duke@435 346
duke@435 347 // Recursively match trees from old space into new space.
duke@435 348 // Correct leaves of new-space Nodes; they point to old-space.
duke@435 349 _visited.Clear(); // Clear visit bits for xform call
duke@435 350 C->set_cached_top_node(xform( C->top(), nodes ));
duke@435 351 if (!C->failing()) {
duke@435 352 Node* xroot = xform( C->root(), 1 );
duke@435 353 if (xroot == NULL) {
duke@435 354 Matcher::soft_match_failure(); // recursive matching process failed
duke@435 355 C->record_method_not_compilable("instruction match failed");
duke@435 356 } else {
duke@435 357 // During matching shared constants were attached to C->root()
duke@435 358 // because xroot wasn't available yet, so transfer the uses to
duke@435 359 // the xroot.
duke@435 360 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
duke@435 361 Node* n = C->root()->fast_out(j);
duke@435 362 if (C->node_arena()->contains(n)) {
duke@435 363 assert(n->in(0) == C->root(), "should be control user");
duke@435 364 n->set_req(0, xroot);
duke@435 365 --j;
duke@435 366 --jmax;
duke@435 367 }
duke@435 368 }
duke@435 369
kvn@1164 370 // Generate new mach node for ConP #NULL
kvn@1164 371 assert(new_ideal_null != NULL, "sanity");
kvn@1164 372 _mach_null = match_tree(new_ideal_null);
kvn@1164 373 // Don't set control, it will confuse GCM since there are no uses.
kvn@1164 374 // The control will be set when this node is used first time
kvn@1164 375 // in find_base_for_derived().
kvn@1164 376 assert(_mach_null != NULL, "");
kvn@1164 377
duke@435 378 C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
kvn@1164 379
duke@435 380 #ifdef ASSERT
duke@435 381 verify_new_nodes_only(xroot);
duke@435 382 #endif
duke@435 383 }
duke@435 384 }
duke@435 385 if (C->top() == NULL || C->root() == NULL) {
duke@435 386 C->record_method_not_compilable("graph lost"); // %%% cannot happen?
duke@435 387 }
duke@435 388 if (C->failing()) {
duke@435 389 // delete old;
duke@435 390 old->destruct_contents();
duke@435 391 return;
duke@435 392 }
duke@435 393 assert( C->top(), "" );
duke@435 394 assert( C->root(), "" );
duke@435 395 validate_null_checks();
duke@435 396
duke@435 397 // Now smoke old-space
duke@435 398 NOT_DEBUG( old->destruct_contents() );
duke@435 399
duke@435 400 // ------------------------
duke@435 401 // Set up save-on-entry registers
duke@435 402 Fixup_Save_On_Entry( );
duke@435 403 }
duke@435 404
duke@435 405
duke@435 406 //------------------------------Fixup_Save_On_Entry----------------------------
duke@435 407 // The stated purpose of this routine is to take care of save-on-entry
duke@435 408 // registers. However, the overall goal of the Match phase is to convert into
duke@435 409 // machine-specific instructions which have RegMasks to guide allocation.
duke@435 410 // So what this procedure really does is put a valid RegMask on each input
duke@435 411 // to the machine-specific variations of all Return, TailCall and Halt
duke@435 412 // instructions. It also adds edgs to define the save-on-entry values (and of
duke@435 413 // course gives them a mask).
duke@435 414
duke@435 415 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
duke@435 416 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
duke@435 417 // Do all the pre-defined register masks
duke@435 418 rms[TypeFunc::Control ] = RegMask::Empty;
duke@435 419 rms[TypeFunc::I_O ] = RegMask::Empty;
duke@435 420 rms[TypeFunc::Memory ] = RegMask::Empty;
duke@435 421 rms[TypeFunc::ReturnAdr] = ret_adr;
duke@435 422 rms[TypeFunc::FramePtr ] = fp;
duke@435 423 return rms;
duke@435 424 }
duke@435 425
duke@435 426 //---------------------------init_first_stack_mask-----------------------------
duke@435 427 // Create the initial stack mask used by values spilling to the stack.
duke@435 428 // Disallow any debug info in outgoing argument areas by setting the
duke@435 429 // initial mask accordingly.
duke@435 430 void Matcher::init_first_stack_mask() {
duke@435 431
duke@435 432 // Allocate storage for spill masks as masks for the appropriate load type.
kvn@3882 433 RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
twisti@1572 434
twisti@1572 435 idealreg2spillmask [Op_RegN] = &rms[0];
twisti@1572 436 idealreg2spillmask [Op_RegI] = &rms[1];
twisti@1572 437 idealreg2spillmask [Op_RegL] = &rms[2];
twisti@1572 438 idealreg2spillmask [Op_RegF] = &rms[3];
twisti@1572 439 idealreg2spillmask [Op_RegD] = &rms[4];
twisti@1572 440 idealreg2spillmask [Op_RegP] = &rms[5];
twisti@1572 441
twisti@1572 442 idealreg2debugmask [Op_RegN] = &rms[6];
twisti@1572 443 idealreg2debugmask [Op_RegI] = &rms[7];
twisti@1572 444 idealreg2debugmask [Op_RegL] = &rms[8];
twisti@1572 445 idealreg2debugmask [Op_RegF] = &rms[9];
twisti@1572 446 idealreg2debugmask [Op_RegD] = &rms[10];
twisti@1572 447 idealreg2debugmask [Op_RegP] = &rms[11];
twisti@1572 448
twisti@1572 449 idealreg2mhdebugmask[Op_RegN] = &rms[12];
twisti@1572 450 idealreg2mhdebugmask[Op_RegI] = &rms[13];
twisti@1572 451 idealreg2mhdebugmask[Op_RegL] = &rms[14];
twisti@1572 452 idealreg2mhdebugmask[Op_RegF] = &rms[15];
twisti@1572 453 idealreg2mhdebugmask[Op_RegD] = &rms[16];
twisti@1572 454 idealreg2mhdebugmask[Op_RegP] = &rms[17];
duke@435 455
kvn@3882 456 idealreg2spillmask [Op_VecS] = &rms[18];
kvn@3882 457 idealreg2spillmask [Op_VecD] = &rms[19];
kvn@3882 458 idealreg2spillmask [Op_VecX] = &rms[20];
kvn@3882 459 idealreg2spillmask [Op_VecY] = &rms[21];
kvn@3882 460
duke@435 461 OptoReg::Name i;
duke@435 462
duke@435 463 // At first, start with the empty mask
duke@435 464 C->FIRST_STACK_mask().Clear();
duke@435 465
duke@435 466 // Add in the incoming argument area
duke@435 467 OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 468 for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
duke@435 469 C->FIRST_STACK_mask().Insert(i);
duke@435 470
duke@435 471 // Add in all bits past the outgoing argument area
kvn@3882 472 guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
duke@435 473 "must be able to represent all call arguments in reg mask");
duke@435 474 init = _out_arg_limit;
duke@435 475 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 476 C->FIRST_STACK_mask().Insert(i);
duke@435 477
duke@435 478 // Finally, set the "infinite stack" bit.
duke@435 479 C->FIRST_STACK_mask().set_AllStack();
duke@435 480
duke@435 481 // Make spill masks. Registers for their class, plus FIRST_STACK_mask.
kvn@3882 482 RegMask aligned_stack_mask = C->FIRST_STACK_mask();
kvn@3882 483 // Keep spill masks aligned.
kvn@3882 484 aligned_stack_mask.clear_to_pairs();
kvn@3882 485 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
kvn@3882 486
kvn@3882 487 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
coleenp@548 488 #ifdef _LP64
coleenp@548 489 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
coleenp@548 490 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
kvn@3882 491 idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
kvn@3882 492 #else
kvn@3882 493 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
coleenp@548 494 #endif
duke@435 495 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
duke@435 496 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
duke@435 497 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
kvn@3882 498 idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
duke@435 499 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
duke@435 500 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
duke@435 501 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
kvn@3882 502 idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
duke@435 503
kvn@3882 504 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 505 *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
kvn@3882 506 idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
kvn@3882 507 }
kvn@3882 508 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@3882 509 *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
kvn@3882 510 idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
kvn@3882 511 }
kvn@3882 512 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@3882 513 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
kvn@3882 514 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
kvn@3882 515 *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
kvn@3882 516 idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
kvn@3882 517 }
kvn@3882 518 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@3882 519 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
kvn@3882 520 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
kvn@3882 521 *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
kvn@3882 522 idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
kvn@3882 523 }
never@2085 524 if (UseFPUForSpilling) {
never@2085 525 // This mask logic assumes that the spill operations are
never@2085 526 // symmetric and that the registers involved are the same size.
never@2085 527 // On sparc for instance we may have to use 64 bit moves will
never@2085 528 // kill 2 registers when used with F0-F31.
never@2085 529 idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
never@2085 530 idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
never@2085 531 #ifdef _LP64
never@2085 532 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
never@2085 533 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
never@2085 534 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
never@2085 535 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
never@2085 536 #else
never@2085 537 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
roland@3109 538 #ifdef ARM
roland@3109 539 // ARM has support for moving 64bit values between a pair of
roland@3109 540 // integer registers and a double register
roland@3109 541 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
roland@3109 542 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
roland@3109 543 #endif
never@2085 544 #endif
never@2085 545 }
never@2085 546
duke@435 547 // Make up debug masks. Any spill slot plus callee-save registers.
duke@435 548 // Caller-save registers are assumed to be trashable by the various
duke@435 549 // inline-cache fixup routines.
twisti@1572 550 *idealreg2debugmask [Op_RegN]= *idealreg2spillmask[Op_RegN];
twisti@1572 551 *idealreg2debugmask [Op_RegI]= *idealreg2spillmask[Op_RegI];
twisti@1572 552 *idealreg2debugmask [Op_RegL]= *idealreg2spillmask[Op_RegL];
twisti@1572 553 *idealreg2debugmask [Op_RegF]= *idealreg2spillmask[Op_RegF];
twisti@1572 554 *idealreg2debugmask [Op_RegD]= *idealreg2spillmask[Op_RegD];
twisti@1572 555 *idealreg2debugmask [Op_RegP]= *idealreg2spillmask[Op_RegP];
twisti@1572 556
twisti@1572 557 *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
twisti@1572 558 *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
twisti@1572 559 *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
twisti@1572 560 *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
twisti@1572 561 *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
twisti@1572 562 *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
duke@435 563
duke@435 564 // Prevent stub compilations from attempting to reference
duke@435 565 // callee-saved registers from debug info
duke@435 566 bool exclude_soe = !Compile::current()->is_method_compilation();
duke@435 567
duke@435 568 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 569 // registers the caller has to save do not work
duke@435 570 if( _register_save_policy[i] == 'C' ||
duke@435 571 _register_save_policy[i] == 'A' ||
duke@435 572 (_register_save_policy[i] == 'E' && exclude_soe) ) {
twisti@1572 573 idealreg2debugmask [Op_RegN]->Remove(i);
twisti@1572 574 idealreg2debugmask [Op_RegI]->Remove(i); // Exclude save-on-call
twisti@1572 575 idealreg2debugmask [Op_RegL]->Remove(i); // registers from debug
twisti@1572 576 idealreg2debugmask [Op_RegF]->Remove(i); // masks
twisti@1572 577 idealreg2debugmask [Op_RegD]->Remove(i);
twisti@1572 578 idealreg2debugmask [Op_RegP]->Remove(i);
twisti@1572 579
twisti@1572 580 idealreg2mhdebugmask[Op_RegN]->Remove(i);
twisti@1572 581 idealreg2mhdebugmask[Op_RegI]->Remove(i);
twisti@1572 582 idealreg2mhdebugmask[Op_RegL]->Remove(i);
twisti@1572 583 idealreg2mhdebugmask[Op_RegF]->Remove(i);
twisti@1572 584 idealreg2mhdebugmask[Op_RegD]->Remove(i);
twisti@1572 585 idealreg2mhdebugmask[Op_RegP]->Remove(i);
duke@435 586 }
duke@435 587 }
twisti@1572 588
twisti@1572 589 // Subtract the register we use to save the SP for MethodHandle
twisti@1572 590 // invokes to from the debug mask.
twisti@1572 591 const RegMask save_mask = method_handle_invoke_SP_save_mask();
twisti@1572 592 idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
twisti@1572 593 idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
twisti@1572 594 idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
twisti@1572 595 idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
twisti@1572 596 idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
twisti@1572 597 idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
duke@435 598 }
duke@435 599
duke@435 600 //---------------------------is_save_on_entry----------------------------------
duke@435 601 bool Matcher::is_save_on_entry( int reg ) {
duke@435 602 return
duke@435 603 _register_save_policy[reg] == 'E' ||
duke@435 604 _register_save_policy[reg] == 'A' || // Save-on-entry register?
duke@435 605 // Also save argument registers in the trampolining stubs
duke@435 606 (C->save_argument_registers() && is_spillable_arg(reg));
duke@435 607 }
duke@435 608
duke@435 609 //---------------------------Fixup_Save_On_Entry-------------------------------
duke@435 610 void Matcher::Fixup_Save_On_Entry( ) {
duke@435 611 init_first_stack_mask();
duke@435 612
duke@435 613 Node *root = C->root(); // Short name for root
duke@435 614 // Count number of save-on-entry registers.
duke@435 615 uint soe_cnt = number_of_saved_registers();
duke@435 616 uint i;
duke@435 617
duke@435 618 // Find the procedure Start Node
duke@435 619 StartNode *start = C->start();
duke@435 620 assert( start, "Expect a start node" );
duke@435 621
duke@435 622 // Save argument registers in the trampolining stubs
duke@435 623 if( C->save_argument_registers() )
duke@435 624 for( i = 0; i < _last_Mach_Reg; i++ )
duke@435 625 if( is_spillable_arg(i) )
duke@435 626 soe_cnt++;
duke@435 627
duke@435 628 // Input RegMask array shared by all Returns.
duke@435 629 // The type for doubles and longs has a count of 2, but
duke@435 630 // there is only 1 returned value
duke@435 631 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
duke@435 632 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 633 // Returns have 0 or 1 returned values depending on call signature.
duke@435 634 // Return register is specified by return_value in the AD file.
duke@435 635 if (ret_edge_cnt > TypeFunc::Parms)
duke@435 636 ret_rms[TypeFunc::Parms+0] = _return_value_mask;
duke@435 637
duke@435 638 // Input RegMask array shared by all Rethrows.
duke@435 639 uint reth_edge_cnt = TypeFunc::Parms+1;
duke@435 640 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 641 // Rethrow takes exception oop only, but in the argument 0 slot.
duke@435 642 reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
duke@435 643 #ifdef _LP64
duke@435 644 // Need two slots for ptrs in 64-bit land
duke@435 645 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
duke@435 646 #endif
duke@435 647
duke@435 648 // Input RegMask array shared by all TailCalls
duke@435 649 uint tail_call_edge_cnt = TypeFunc::Parms+2;
duke@435 650 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 651
duke@435 652 // Input RegMask array shared by all TailJumps
duke@435 653 uint tail_jump_edge_cnt = TypeFunc::Parms+2;
duke@435 654 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 655
duke@435 656 // TailCalls have 2 returned values (target & moop), whose masks come
duke@435 657 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 658 // TailCall to extract these masks and put the correct masks into
duke@435 659 // the tail_call_rms array.
duke@435 660 for( i=1; i < root->req(); i++ ) {
duke@435 661 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 662 if( m->ideal_Opcode() == Op_TailCall ) {
duke@435 663 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 664 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 665 break;
duke@435 666 }
duke@435 667 }
duke@435 668
duke@435 669 // TailJumps have 2 returned values (target & ex_oop), whose masks come
duke@435 670 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 671 // TailJump to extract these masks and put the correct masks into
duke@435 672 // the tail_jump_rms array.
duke@435 673 for( i=1; i < root->req(); i++ ) {
duke@435 674 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 675 if( m->ideal_Opcode() == Op_TailJump ) {
duke@435 676 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 677 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 678 break;
duke@435 679 }
duke@435 680 }
duke@435 681
duke@435 682 // Input RegMask array shared by all Halts
duke@435 683 uint halt_edge_cnt = TypeFunc::Parms;
duke@435 684 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 685
duke@435 686 // Capture the return input masks into each exit flavor
duke@435 687 for( i=1; i < root->req(); i++ ) {
duke@435 688 MachReturnNode *exit = root->in(i)->as_MachReturn();
duke@435 689 switch( exit->ideal_Opcode() ) {
duke@435 690 case Op_Return : exit->_in_rms = ret_rms; break;
duke@435 691 case Op_Rethrow : exit->_in_rms = reth_rms; break;
duke@435 692 case Op_TailCall : exit->_in_rms = tail_call_rms; break;
duke@435 693 case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
duke@435 694 case Op_Halt : exit->_in_rms = halt_rms; break;
duke@435 695 default : ShouldNotReachHere();
duke@435 696 }
duke@435 697 }
duke@435 698
duke@435 699 // Next unused projection number from Start.
duke@435 700 int proj_cnt = C->tf()->domain()->cnt();
duke@435 701
duke@435 702 // Do all the save-on-entry registers. Make projections from Start for
duke@435 703 // them, and give them a use at the exit points. To the allocator, they
duke@435 704 // look like incoming register arguments.
duke@435 705 for( i = 0; i < _last_Mach_Reg; i++ ) {
duke@435 706 if( is_save_on_entry(i) ) {
duke@435 707
duke@435 708 // Add the save-on-entry to the mask array
duke@435 709 ret_rms [ ret_edge_cnt] = mreg2regmask[i];
duke@435 710 reth_rms [ reth_edge_cnt] = mreg2regmask[i];
duke@435 711 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
duke@435 712 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
duke@435 713 // Halts need the SOE registers, but only in the stack as debug info.
duke@435 714 // A just-prior uncommon-trap or deoptimization will use the SOE regs.
duke@435 715 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
duke@435 716
duke@435 717 Node *mproj;
duke@435 718
duke@435 719 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
duke@435 720 // into a single RegD.
duke@435 721 if( (i&1) == 0 &&
duke@435 722 _register_save_type[i ] == Op_RegF &&
duke@435 723 _register_save_type[i+1] == Op_RegF &&
duke@435 724 is_save_on_entry(i+1) ) {
duke@435 725 // Add other bit for double
duke@435 726 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 727 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 728 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 729 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 730 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
kvn@4115 731 mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
duke@435 732 proj_cnt += 2; // Skip 2 for doubles
duke@435 733 }
duke@435 734 else if( (i&1) == 1 && // Else check for high half of double
duke@435 735 _register_save_type[i-1] == Op_RegF &&
duke@435 736 _register_save_type[i ] == Op_RegF &&
duke@435 737 is_save_on_entry(i-1) ) {
duke@435 738 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 739 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 740 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 741 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 742 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 743 mproj = C->top();
duke@435 744 }
duke@435 745 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's
duke@435 746 // into a single RegL.
duke@435 747 else if( (i&1) == 0 &&
duke@435 748 _register_save_type[i ] == Op_RegI &&
duke@435 749 _register_save_type[i+1] == Op_RegI &&
duke@435 750 is_save_on_entry(i+1) ) {
duke@435 751 // Add other bit for long
duke@435 752 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 753 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 754 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 755 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 756 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
kvn@4115 757 mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
duke@435 758 proj_cnt += 2; // Skip 2 for longs
duke@435 759 }
duke@435 760 else if( (i&1) == 1 && // Else check for high half of long
duke@435 761 _register_save_type[i-1] == Op_RegI &&
duke@435 762 _register_save_type[i ] == Op_RegI &&
duke@435 763 is_save_on_entry(i-1) ) {
duke@435 764 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 765 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 766 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 767 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 768 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 769 mproj = C->top();
duke@435 770 } else {
duke@435 771 // Make a projection for it off the Start
kvn@4115 772 mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
duke@435 773 }
duke@435 774
duke@435 775 ret_edge_cnt ++;
duke@435 776 reth_edge_cnt ++;
duke@435 777 tail_call_edge_cnt ++;
duke@435 778 tail_jump_edge_cnt ++;
duke@435 779 halt_edge_cnt ++;
duke@435 780
duke@435 781 // Add a use of the SOE register to all exit paths
duke@435 782 for( uint j=1; j < root->req(); j++ )
duke@435 783 root->in(j)->add_req(mproj);
duke@435 784 } // End of if a save-on-entry register
duke@435 785 } // End of for all machine registers
duke@435 786 }
duke@435 787
duke@435 788 //------------------------------init_spill_mask--------------------------------
duke@435 789 void Matcher::init_spill_mask( Node *ret ) {
duke@435 790 if( idealreg2regmask[Op_RegI] ) return; // One time only init
duke@435 791
duke@435 792 OptoReg::c_frame_pointer = c_frame_pointer();
duke@435 793 c_frame_ptr_mask = c_frame_pointer();
duke@435 794 #ifdef _LP64
duke@435 795 // pointers are twice as big
duke@435 796 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
duke@435 797 #endif
duke@435 798
duke@435 799 // Start at OptoReg::stack0()
duke@435 800 STACK_ONLY_mask.Clear();
duke@435 801 OptoReg::Name init = OptoReg::stack2reg(0);
duke@435 802 // STACK_ONLY_mask is all stack bits
duke@435 803 OptoReg::Name i;
duke@435 804 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 805 STACK_ONLY_mask.Insert(i);
duke@435 806 // Also set the "infinite stack" bit.
duke@435 807 STACK_ONLY_mask.set_AllStack();
duke@435 808
duke@435 809 // Copy the register names over into the shared world
duke@435 810 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 811 // SharedInfo::regName[i] = regName[i];
duke@435 812 // Handy RegMasks per machine register
duke@435 813 mreg2regmask[i].Insert(i);
duke@435 814 }
duke@435 815
duke@435 816 // Grab the Frame Pointer
duke@435 817 Node *fp = ret->in(TypeFunc::FramePtr);
duke@435 818 Node *mem = ret->in(TypeFunc::Memory);
duke@435 819 const TypePtr* atp = TypePtr::BOTTOM;
duke@435 820 // Share frame pointer while making spill ops
duke@435 821 set_shared(fp);
duke@435 822
duke@435 823 // Compute generic short-offset Loads
coleenp@548 824 #ifdef _LP64
kvn@4115 825 MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
coleenp@548 826 #endif
kvn@4115 827 MachNode *spillI = match_tree(new (C) LoadINode(NULL,mem,fp,atp));
kvn@4115 828 MachNode *spillL = match_tree(new (C) LoadLNode(NULL,mem,fp,atp));
kvn@4115 829 MachNode *spillF = match_tree(new (C) LoadFNode(NULL,mem,fp,atp));
kvn@4115 830 MachNode *spillD = match_tree(new (C) LoadDNode(NULL,mem,fp,atp));
kvn@4115 831 MachNode *spillP = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
duke@435 832 assert(spillI != NULL && spillL != NULL && spillF != NULL &&
duke@435 833 spillD != NULL && spillP != NULL, "");
duke@435 834
duke@435 835 // Get the ADLC notion of the right regmask, for each basic type.
coleenp@548 836 #ifdef _LP64
coleenp@548 837 idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
coleenp@548 838 #endif
duke@435 839 idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
duke@435 840 idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
duke@435 841 idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
duke@435 842 idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
duke@435 843 idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
kvn@3882 844
kvn@3882 845 // Vector regmasks.
kvn@3882 846 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 847 TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
kvn@4115 848 MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
kvn@3882 849 idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
kvn@3882 850 }
kvn@3882 851 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@4115 852 MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
kvn@3882 853 idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
kvn@3882 854 }
kvn@3882 855 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@4115 856 MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
kvn@3882 857 idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
kvn@3882 858 }
kvn@3882 859 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@4115 860 MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
kvn@3882 861 idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
kvn@3882 862 }
duke@435 863 }
duke@435 864
duke@435 865 #ifdef ASSERT
duke@435 866 static void match_alias_type(Compile* C, Node* n, Node* m) {
duke@435 867 if (!VerifyAliases) return; // do not go looking for trouble by default
duke@435 868 const TypePtr* nat = n->adr_type();
duke@435 869 const TypePtr* mat = m->adr_type();
duke@435 870 int nidx = C->get_alias_index(nat);
duke@435 871 int midx = C->get_alias_index(mat);
duke@435 872 // Detune the assert for cases like (AndI 0xFF (LoadB p)).
duke@435 873 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
duke@435 874 for (uint i = 1; i < n->req(); i++) {
duke@435 875 Node* n1 = n->in(i);
duke@435 876 const TypePtr* n1at = n1->adr_type();
duke@435 877 if (n1at != NULL) {
duke@435 878 nat = n1at;
duke@435 879 nidx = C->get_alias_index(n1at);
duke@435 880 }
duke@435 881 }
duke@435 882 }
duke@435 883 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases:
duke@435 884 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
duke@435 885 switch (n->Opcode()) {
duke@435 886 case Op_PrefetchRead:
duke@435 887 case Op_PrefetchWrite:
kvn@3052 888 case Op_PrefetchAllocation:
duke@435 889 nidx = Compile::AliasIdxRaw;
duke@435 890 nat = TypeRawPtr::BOTTOM;
duke@435 891 break;
duke@435 892 }
duke@435 893 }
duke@435 894 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
duke@435 895 switch (n->Opcode()) {
duke@435 896 case Op_ClearArray:
duke@435 897 midx = Compile::AliasIdxRaw;
duke@435 898 mat = TypeRawPtr::BOTTOM;
duke@435 899 break;
duke@435 900 }
duke@435 901 }
duke@435 902 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
duke@435 903 switch (n->Opcode()) {
duke@435 904 case Op_Return:
duke@435 905 case Op_Rethrow:
duke@435 906 case Op_Halt:
duke@435 907 case Op_TailCall:
duke@435 908 case Op_TailJump:
duke@435 909 nidx = Compile::AliasIdxBot;
duke@435 910 nat = TypePtr::BOTTOM;
duke@435 911 break;
duke@435 912 }
duke@435 913 }
duke@435 914 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
duke@435 915 switch (n->Opcode()) {
duke@435 916 case Op_StrComp:
cfang@1116 917 case Op_StrEquals:
cfang@1116 918 case Op_StrIndexOf:
rasbold@604 919 case Op_AryEq:
duke@435 920 case Op_MemBarVolatile:
duke@435 921 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
kvn@4479 922 case Op_EncodeISOArray:
duke@435 923 nidx = Compile::AliasIdxTop;
duke@435 924 nat = NULL;
duke@435 925 break;
duke@435 926 }
duke@435 927 }
duke@435 928 if (nidx != midx) {
duke@435 929 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
duke@435 930 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
duke@435 931 n->dump();
duke@435 932 m->dump();
duke@435 933 }
duke@435 934 assert(C->subsume_loads() && C->must_alias(nat, midx),
duke@435 935 "must not lose alias info when matching");
duke@435 936 }
duke@435 937 }
duke@435 938 #endif
duke@435 939
duke@435 940
duke@435 941 //------------------------------MStack-----------------------------------------
duke@435 942 // State and MStack class used in xform() and find_shared() iterative methods.
duke@435 943 enum Node_State { Pre_Visit, // node has to be pre-visited
duke@435 944 Visit, // visit node
duke@435 945 Post_Visit, // post-visit node
duke@435 946 Alt_Post_Visit // alternative post-visit path
duke@435 947 };
duke@435 948
duke@435 949 class MStack: public Node_Stack {
duke@435 950 public:
duke@435 951 MStack(int size) : Node_Stack(size) { }
duke@435 952
duke@435 953 void push(Node *n, Node_State ns) {
duke@435 954 Node_Stack::push(n, (uint)ns);
duke@435 955 }
duke@435 956 void push(Node *n, Node_State ns, Node *parent, int indx) {
duke@435 957 ++_inode_top;
duke@435 958 if ((_inode_top + 1) >= _inode_max) grow();
duke@435 959 _inode_top->node = parent;
duke@435 960 _inode_top->indx = (uint)indx;
duke@435 961 ++_inode_top;
duke@435 962 _inode_top->node = n;
duke@435 963 _inode_top->indx = (uint)ns;
duke@435 964 }
duke@435 965 Node *parent() {
duke@435 966 pop();
duke@435 967 return node();
duke@435 968 }
duke@435 969 Node_State state() const {
duke@435 970 return (Node_State)index();
duke@435 971 }
duke@435 972 void set_state(Node_State ns) {
duke@435 973 set_index((uint)ns);
duke@435 974 }
duke@435 975 };
duke@435 976
duke@435 977
duke@435 978 //------------------------------xform------------------------------------------
duke@435 979 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
duke@435 980 // Node in new-space. Given a new-space Node, recursively walk his children.
duke@435 981 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
duke@435 982 Node *Matcher::xform( Node *n, int max_stack ) {
duke@435 983 // Use one stack to keep both: child's node/state and parent's node/index
duke@435 984 MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
duke@435 985 mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root
duke@435 986
duke@435 987 while (mstack.is_nonempty()) {
duke@435 988 n = mstack.node(); // Leave node on stack
duke@435 989 Node_State nstate = mstack.state();
duke@435 990 if (nstate == Visit) {
duke@435 991 mstack.set_state(Post_Visit);
duke@435 992 Node *oldn = n;
duke@435 993 // Old-space or new-space check
duke@435 994 if (!C->node_arena()->contains(n)) {
duke@435 995 // Old space!
duke@435 996 Node* m;
duke@435 997 if (has_new_node(n)) { // Not yet Label/Reduced
duke@435 998 m = new_node(n);
duke@435 999 } else {
duke@435 1000 if (!is_dontcare(n)) { // Matcher can match this guy
duke@435 1001 // Calls match special. They match alone with no children.
duke@435 1002 // Their children, the incoming arguments, match normally.
duke@435 1003 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
duke@435 1004 if (C->failing()) return NULL;
duke@435 1005 if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
duke@435 1006 } else { // Nothing the matcher cares about
duke@435 1007 if( n->is_Proj() && n->in(0)->is_Multi()) { // Projections?
duke@435 1008 // Convert to machine-dependent projection
duke@435 1009 m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
never@657 1010 #ifdef ASSERT
never@657 1011 _new2old_map.map(m->_idx, n);
never@657 1012 #endif
duke@435 1013 if (m->in(0) != NULL) // m might be top
kvn@803 1014 collect_null_checks(m, n);
duke@435 1015 } else { // Else just a regular 'ol guy
duke@435 1016 m = n->clone(); // So just clone into new-space
never@657 1017 #ifdef ASSERT
never@657 1018 _new2old_map.map(m->_idx, n);
never@657 1019 #endif
duke@435 1020 // Def-Use edges will be added incrementally as Uses
duke@435 1021 // of this node are matched.
duke@435 1022 assert(m->outcnt() == 0, "no Uses of this clone yet");
duke@435 1023 }
duke@435 1024 }
duke@435 1025
duke@435 1026 set_new_node(n, m); // Map old to new
duke@435 1027 if (_old_node_note_array != NULL) {
duke@435 1028 Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
duke@435 1029 n->_idx);
duke@435 1030 C->set_node_notes_at(m->_idx, nn);
duke@435 1031 }
duke@435 1032 debug_only(match_alias_type(C, n, m));
duke@435 1033 }
duke@435 1034 n = m; // n is now a new-space node
duke@435 1035 mstack.set_node(n);
duke@435 1036 }
duke@435 1037
duke@435 1038 // New space!
duke@435 1039 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
duke@435 1040
duke@435 1041 int i;
duke@435 1042 // Put precedence edges on stack first (match them last).
duke@435 1043 for (i = oldn->req(); (uint)i < oldn->len(); i++) {
duke@435 1044 Node *m = oldn->in(i);
duke@435 1045 if (m == NULL) break;
duke@435 1046 // set -1 to call add_prec() instead of set_req() during Step1
duke@435 1047 mstack.push(m, Visit, n, -1);
duke@435 1048 }
duke@435 1049
duke@435 1050 // For constant debug info, I'd rather have unmatched constants.
duke@435 1051 int cnt = n->req();
duke@435 1052 JVMState* jvms = n->jvms();
duke@435 1053 int debug_cnt = jvms ? jvms->debug_start() : cnt;
duke@435 1054
duke@435 1055 // Now do only debug info. Clone constants rather than matching.
duke@435 1056 // Constants are represented directly in the debug info without
duke@435 1057 // the need for executable machine instructions.
duke@435 1058 // Monitor boxes are also represented directly.
duke@435 1059 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
duke@435 1060 Node *m = n->in(i); // Get input
duke@435 1061 int op = m->Opcode();
duke@435 1062 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
roland@4159 1063 if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
duke@435 1064 op == Op_ConF || op == Op_ConD || op == Op_ConL
duke@435 1065 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp
duke@435 1066 ) {
duke@435 1067 m = m->clone();
never@657 1068 #ifdef ASSERT
never@657 1069 _new2old_map.map(m->_idx, n);
never@657 1070 #endif
twisti@1040 1071 mstack.push(m, Post_Visit, n, i); // Don't need to visit
duke@435 1072 mstack.push(m->in(0), Visit, m, 0);
duke@435 1073 } else {
duke@435 1074 mstack.push(m, Visit, n, i);
duke@435 1075 }
duke@435 1076 }
duke@435 1077
duke@435 1078 // And now walk his children, and convert his inputs to new-space.
duke@435 1079 for( ; i >= 0; --i ) { // For all normal inputs do
duke@435 1080 Node *m = n->in(i); // Get input
duke@435 1081 if(m != NULL)
duke@435 1082 mstack.push(m, Visit, n, i);
duke@435 1083 }
duke@435 1084
duke@435 1085 }
duke@435 1086 else if (nstate == Post_Visit) {
duke@435 1087 // Set xformed input
duke@435 1088 Node *p = mstack.parent();
duke@435 1089 if (p != NULL) { // root doesn't have parent
duke@435 1090 int i = (int)mstack.index();
duke@435 1091 if (i >= 0)
duke@435 1092 p->set_req(i, n); // required input
duke@435 1093 else if (i == -1)
duke@435 1094 p->add_prec(n); // precedence input
duke@435 1095 else
duke@435 1096 ShouldNotReachHere();
duke@435 1097 }
duke@435 1098 mstack.pop(); // remove processed node from stack
duke@435 1099 }
duke@435 1100 else {
duke@435 1101 ShouldNotReachHere();
duke@435 1102 }
duke@435 1103 } // while (mstack.is_nonempty())
duke@435 1104 return n; // Return new-space Node
duke@435 1105 }
duke@435 1106
duke@435 1107 //------------------------------warp_outgoing_stk_arg------------------------
duke@435 1108 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
duke@435 1109 // Convert outgoing argument location to a pre-biased stack offset
duke@435 1110 if (reg->is_stack()) {
duke@435 1111 OptoReg::Name warped = reg->reg2stack();
duke@435 1112 // Adjust the stack slot offset to be the register number used
duke@435 1113 // by the allocator.
duke@435 1114 warped = OptoReg::add(begin_out_arg_area, warped);
duke@435 1115 // Keep track of the largest numbered stack slot used for an arg.
duke@435 1116 // Largest used slot per call-site indicates the amount of stack
duke@435 1117 // that is killed by the call.
duke@435 1118 if( warped >= out_arg_limit_per_call )
duke@435 1119 out_arg_limit_per_call = OptoReg::add(warped,1);
kvn@3882 1120 if (!RegMask::can_represent_arg(warped)) {
duke@435 1121 C->record_method_not_compilable_all_tiers("unsupported calling sequence");
duke@435 1122 return OptoReg::Bad;
duke@435 1123 }
duke@435 1124 return warped;
duke@435 1125 }
duke@435 1126 return OptoReg::as_OptoReg(reg);
duke@435 1127 }
duke@435 1128
duke@435 1129
duke@435 1130 //------------------------------match_sfpt-------------------------------------
duke@435 1131 // Helper function to match call instructions. Calls match special.
duke@435 1132 // They match alone with no children. Their children, the incoming
duke@435 1133 // arguments, match normally.
duke@435 1134 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
duke@435 1135 MachSafePointNode *msfpt = NULL;
duke@435 1136 MachCallNode *mcall = NULL;
duke@435 1137 uint cnt;
duke@435 1138 // Split out case for SafePoint vs Call
duke@435 1139 CallNode *call;
duke@435 1140 const TypeTuple *domain;
duke@435 1141 ciMethod* method = NULL;
twisti@1572 1142 bool is_method_handle_invoke = false; // for special kill effects
duke@435 1143 if( sfpt->is_Call() ) {
duke@435 1144 call = sfpt->as_Call();
duke@435 1145 domain = call->tf()->domain();
duke@435 1146 cnt = domain->cnt();
duke@435 1147
duke@435 1148 // Match just the call, nothing else
duke@435 1149 MachNode *m = match_tree(call);
duke@435 1150 if (C->failing()) return NULL;
duke@435 1151 if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
duke@435 1152
duke@435 1153 // Copy data from the Ideal SafePoint to the machine version
duke@435 1154 mcall = m->as_MachCall();
duke@435 1155
duke@435 1156 mcall->set_tf( call->tf());
duke@435 1157 mcall->set_entry_point(call->entry_point());
duke@435 1158 mcall->set_cnt( call->cnt());
duke@435 1159
duke@435 1160 if( mcall->is_MachCallJava() ) {
duke@435 1161 MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
duke@435 1162 const CallJavaNode *call_java = call->as_CallJava();
duke@435 1163 method = call_java->method();
duke@435 1164 mcall_java->_method = method;
duke@435 1165 mcall_java->_bci = call_java->_bci;
duke@435 1166 mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
twisti@1572 1167 is_method_handle_invoke = call_java->is_method_handle_invoke();
twisti@1572 1168 mcall_java->_method_handle_invoke = is_method_handle_invoke;
never@3105 1169 if (is_method_handle_invoke) {
never@3105 1170 C->set_has_method_handle_invokes(true);
never@3105 1171 }
duke@435 1172 if( mcall_java->is_MachCallStaticJava() )
duke@435 1173 mcall_java->as_MachCallStaticJava()->_name =
duke@435 1174 call_java->as_CallStaticJava()->_name;
duke@435 1175 if( mcall_java->is_MachCallDynamicJava() )
duke@435 1176 mcall_java->as_MachCallDynamicJava()->_vtable_index =
duke@435 1177 call_java->as_CallDynamicJava()->_vtable_index;
duke@435 1178 }
duke@435 1179 else if( mcall->is_MachCallRuntime() ) {
duke@435 1180 mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
duke@435 1181 }
duke@435 1182 msfpt = mcall;
duke@435 1183 }
duke@435 1184 // This is a non-call safepoint
duke@435 1185 else {
duke@435 1186 call = NULL;
duke@435 1187 domain = NULL;
duke@435 1188 MachNode *mn = match_tree(sfpt);
duke@435 1189 if (C->failing()) return NULL;
duke@435 1190 msfpt = mn->as_MachSafePoint();
duke@435 1191 cnt = TypeFunc::Parms;
duke@435 1192 }
duke@435 1193
duke@435 1194 // Advertise the correct memory effects (for anti-dependence computation).
duke@435 1195 msfpt->set_adr_type(sfpt->adr_type());
duke@435 1196
duke@435 1197 // Allocate a private array of RegMasks. These RegMasks are not shared.
duke@435 1198 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
duke@435 1199 // Empty them all.
duke@435 1200 memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
duke@435 1201
duke@435 1202 // Do all the pre-defined non-Empty register masks
duke@435 1203 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
duke@435 1204 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
duke@435 1205
duke@435 1206 // Place first outgoing argument can possibly be put.
duke@435 1207 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 1208 assert( is_even(begin_out_arg_area), "" );
duke@435 1209 // Compute max outgoing register number per call site.
duke@435 1210 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
duke@435 1211 // Calls to C may hammer extra stack slots above and beyond any arguments.
duke@435 1212 // These are usually backing store for register arguments for varargs.
duke@435 1213 if( call != NULL && call->is_CallRuntime() )
duke@435 1214 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
duke@435 1215
duke@435 1216
duke@435 1217 // Do the normal argument list (parameters) register masks
duke@435 1218 int argcnt = cnt - TypeFunc::Parms;
duke@435 1219 if( argcnt > 0 ) { // Skip it all if we have no args
duke@435 1220 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 1221 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 1222 int i;
duke@435 1223 for( i = 0; i < argcnt; i++ ) {
duke@435 1224 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 1225 }
duke@435 1226 // V-call to pick proper calling convention
duke@435 1227 call->calling_convention( sig_bt, parm_regs, argcnt );
duke@435 1228
duke@435 1229 #ifdef ASSERT
duke@435 1230 // Sanity check users' calling convention. Really handy during
duke@435 1231 // the initial porting effort. Fairly expensive otherwise.
duke@435 1232 { for (int i = 0; i<argcnt; i++) {
duke@435 1233 if( !parm_regs[i].first()->is_valid() &&
duke@435 1234 !parm_regs[i].second()->is_valid() ) continue;
duke@435 1235 VMReg reg1 = parm_regs[i].first();
duke@435 1236 VMReg reg2 = parm_regs[i].second();
duke@435 1237 for (int j = 0; j < i; j++) {
duke@435 1238 if( !parm_regs[j].first()->is_valid() &&
duke@435 1239 !parm_regs[j].second()->is_valid() ) continue;
duke@435 1240 VMReg reg3 = parm_regs[j].first();
duke@435 1241 VMReg reg4 = parm_regs[j].second();
duke@435 1242 if( !reg1->is_valid() ) {
duke@435 1243 assert( !reg2->is_valid(), "valid halvsies" );
duke@435 1244 } else if( !reg3->is_valid() ) {
duke@435 1245 assert( !reg4->is_valid(), "valid halvsies" );
duke@435 1246 } else {
duke@435 1247 assert( reg1 != reg2, "calling conv. must produce distinct regs");
duke@435 1248 assert( reg1 != reg3, "calling conv. must produce distinct regs");
duke@435 1249 assert( reg1 != reg4, "calling conv. must produce distinct regs");
duke@435 1250 assert( reg2 != reg3, "calling conv. must produce distinct regs");
duke@435 1251 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
duke@435 1252 assert( reg3 != reg4, "calling conv. must produce distinct regs");
duke@435 1253 }
duke@435 1254 }
duke@435 1255 }
duke@435 1256 }
duke@435 1257 #endif
duke@435 1258
duke@435 1259 // Visit each argument. Compute its outgoing register mask.
duke@435 1260 // Return results now can have 2 bits returned.
duke@435 1261 // Compute max over all outgoing arguments both per call-site
duke@435 1262 // and over the entire method.
duke@435 1263 for( i = 0; i < argcnt; i++ ) {
duke@435 1264 // Address of incoming argument mask to fill in
duke@435 1265 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
duke@435 1266 if( !parm_regs[i].first()->is_valid() &&
duke@435 1267 !parm_regs[i].second()->is_valid() ) {
duke@435 1268 continue; // Avoid Halves
duke@435 1269 }
duke@435 1270 // Grab first register, adjust stack slots and insert in mask.
duke@435 1271 OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1272 if (OptoReg::is_valid(reg1))
duke@435 1273 rm->Insert( reg1 );
duke@435 1274 // Grab second register (if any), adjust stack slots and insert in mask.
duke@435 1275 OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1276 if (OptoReg::is_valid(reg2))
duke@435 1277 rm->Insert( reg2 );
duke@435 1278 } // End of for all arguments
duke@435 1279
duke@435 1280 // Compute number of stack slots needed to restore stack in case of
duke@435 1281 // Pascal-style argument popping.
duke@435 1282 mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
duke@435 1283 }
duke@435 1284
duke@435 1285 // Compute the max stack slot killed by any call. These will not be
duke@435 1286 // available for debug info, and will be used to adjust FIRST_STACK_mask
duke@435 1287 // after all call sites have been visited.
duke@435 1288 if( _out_arg_limit < out_arg_limit_per_call)
duke@435 1289 _out_arg_limit = out_arg_limit_per_call;
duke@435 1290
duke@435 1291 if (mcall) {
duke@435 1292 // Kill the outgoing argument area, including any non-argument holes and
duke@435 1293 // any legacy C-killed slots. Use Fat-Projections to do the killing.
duke@435 1294 // Since the max-per-method covers the max-per-call-site and debug info
duke@435 1295 // is excluded on the max-per-method basis, debug info cannot land in
duke@435 1296 // this killed area.
duke@435 1297 uint r_cnt = mcall->tf()->range()->cnt();
kvn@4115 1298 MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
kvn@3882 1299 if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
duke@435 1300 C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
duke@435 1301 } else {
duke@435 1302 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
duke@435 1303 proj->_rout.Insert(OptoReg::Name(i));
duke@435 1304 }
duke@435 1305 if( proj->_rout.is_NotEmpty() )
duke@435 1306 _proj_list.push(proj);
duke@435 1307 }
duke@435 1308 // Transfer the safepoint information from the call to the mcall
duke@435 1309 // Move the JVMState list
duke@435 1310 msfpt->set_jvms(sfpt->jvms());
duke@435 1311 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
duke@435 1312 jvms->set_map(sfpt);
duke@435 1313 }
duke@435 1314
duke@435 1315 // Debug inputs begin just after the last incoming parameter
duke@435 1316 assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
duke@435 1317 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
duke@435 1318
duke@435 1319 // Move the OopMap
duke@435 1320 msfpt->_oop_map = sfpt->_oop_map;
duke@435 1321
duke@435 1322 // Registers killed by the call are set in the local scheduling pass
duke@435 1323 // of Global Code Motion.
duke@435 1324 return msfpt;
duke@435 1325 }
duke@435 1326
duke@435 1327 //---------------------------match_tree----------------------------------------
duke@435 1328 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
duke@435 1329 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for
duke@435 1330 // making GotoNodes while building the CFG and in init_spill_mask() to identify
duke@435 1331 // a Load's result RegMask for memoization in idealreg2regmask[]
duke@435 1332 MachNode *Matcher::match_tree( const Node *n ) {
duke@435 1333 assert( n->Opcode() != Op_Phi, "cannot match" );
duke@435 1334 assert( !n->is_block_start(), "cannot match" );
duke@435 1335 // Set the mark for all locally allocated State objects.
duke@435 1336 // When this call returns, the _states_arena arena will be reset
duke@435 1337 // freeing all State objects.
duke@435 1338 ResourceMark rm( &_states_arena );
duke@435 1339
duke@435 1340 LabelRootDepth = 0;
duke@435 1341
duke@435 1342 // StoreNodes require their Memory input to match any LoadNodes
duke@435 1343 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
kvn@651 1344 #ifdef ASSERT
kvn@651 1345 Node* save_mem_node = _mem_node;
kvn@651 1346 _mem_node = n->is_Store() ? (Node*)n : NULL;
kvn@651 1347 #endif
duke@435 1348 // State object for root node of match tree
duke@435 1349 // Allocate it on _states_arena - stack allocation can cause stack overflow.
duke@435 1350 State *s = new (&_states_arena) State;
duke@435 1351 s->_kids[0] = NULL;
duke@435 1352 s->_kids[1] = NULL;
duke@435 1353 s->_leaf = (Node*)n;
duke@435 1354 // Label the input tree, allocating labels from top-level arena
duke@435 1355 Label_Root( n, s, n->in(0), mem );
duke@435 1356 if (C->failing()) return NULL;
duke@435 1357
duke@435 1358 // The minimum cost match for the whole tree is found at the root State
duke@435 1359 uint mincost = max_juint;
duke@435 1360 uint cost = max_juint;
duke@435 1361 uint i;
duke@435 1362 for( i = 0; i < NUM_OPERANDS; i++ ) {
duke@435 1363 if( s->valid(i) && // valid entry and
duke@435 1364 s->_cost[i] < cost && // low cost and
duke@435 1365 s->_rule[i] >= NUM_OPERANDS ) // not an operand
duke@435 1366 cost = s->_cost[mincost=i];
duke@435 1367 }
duke@435 1368 if (mincost == max_juint) {
duke@435 1369 #ifndef PRODUCT
duke@435 1370 tty->print("No matching rule for:");
duke@435 1371 s->dump();
duke@435 1372 #endif
duke@435 1373 Matcher::soft_match_failure();
duke@435 1374 return NULL;
duke@435 1375 }
duke@435 1376 // Reduce input tree based upon the state labels to machine Nodes
duke@435 1377 MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
duke@435 1378 #ifdef ASSERT
duke@435 1379 _old2new_map.map(n->_idx, m);
never@657 1380 _new2old_map.map(m->_idx, (Node*)n);
duke@435 1381 #endif
duke@435 1382
duke@435 1383 // Add any Matcher-ignored edges
duke@435 1384 uint cnt = n->req();
duke@435 1385 uint start = 1;
duke@435 1386 if( mem != (Node*)1 ) start = MemNode::Memory+1;
kvn@603 1387 if( n->is_AddP() ) {
duke@435 1388 assert( mem == (Node*)1, "" );
duke@435 1389 start = AddPNode::Base+1;
duke@435 1390 }
duke@435 1391 for( i = start; i < cnt; i++ ) {
duke@435 1392 if( !n->match_edge(i) ) {
duke@435 1393 if( i < m->req() )
duke@435 1394 m->ins_req( i, n->in(i) );
duke@435 1395 else
duke@435 1396 m->add_req( n->in(i) );
duke@435 1397 }
duke@435 1398 }
duke@435 1399
kvn@651 1400 debug_only( _mem_node = save_mem_node; )
duke@435 1401 return m;
duke@435 1402 }
duke@435 1403
duke@435 1404
duke@435 1405 //------------------------------match_into_reg---------------------------------
duke@435 1406 // Choose to either match this Node in a register or part of the current
duke@435 1407 // match tree. Return true for requiring a register and false for matching
duke@435 1408 // as part of the current match tree.
duke@435 1409 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
duke@435 1410
duke@435 1411 const Type *t = m->bottom_type();
duke@435 1412
kvn@3390 1413 if (t->singleton()) {
duke@435 1414 // Never force constants into registers. Allow them to match as
duke@435 1415 // constants or registers. Copies of the same value will share
kvn@603 1416 // the same register. See find_shared_node.
duke@435 1417 return false;
duke@435 1418 } else { // Not a constant
duke@435 1419 // Stop recursion if they have different Controls.
kvn@3390 1420 Node* m_control = m->in(0);
kvn@3390 1421 // Control of load's memory can post-dominates load's control.
kvn@3390 1422 // So use it since load can't float above its memory.
kvn@3390 1423 Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
kvn@3390 1424 if (control && m_control && control != m_control && control != mem_control) {
duke@435 1425
duke@435 1426 // Actually, we can live with the most conservative control we
duke@435 1427 // find, if it post-dominates the others. This allows us to
duke@435 1428 // pick up load/op/store trees where the load can float a little
duke@435 1429 // above the store.
duke@435 1430 Node *x = control;
kvn@3390 1431 const uint max_scan = 6; // Arbitrary scan cutoff
duke@435 1432 uint j;
kvn@3390 1433 for (j=0; j<max_scan; j++) {
kvn@3390 1434 if (x->is_Region()) // Bail out at merge points
duke@435 1435 return true;
duke@435 1436 x = x->in(0);
kvn@3390 1437 if (x == m_control) // Does 'control' post-dominate
duke@435 1438 break; // m->in(0)? If so, we can use it
kvn@3390 1439 if (x == mem_control) // Does 'control' post-dominate
kvn@3390 1440 break; // mem_control? If so, we can use it
duke@435 1441 }
kvn@3390 1442 if (j == max_scan) // No post-domination before scan end?
duke@435 1443 return true; // Then break the match tree up
duke@435 1444 }
roland@4159 1445 if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
roland@4159 1446 (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
coleenp@548 1447 // These are commonly used in address expressions and can
kvn@603 1448 // efficiently fold into them on X64 in some cases.
kvn@603 1449 return false;
coleenp@548 1450 }
duke@435 1451 }
duke@435 1452
twisti@1040 1453 // Not forceable cloning. If shared, put it into a register.
duke@435 1454 return shared;
duke@435 1455 }
duke@435 1456
duke@435 1457
duke@435 1458 //------------------------------Instruction Selection--------------------------
duke@435 1459 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
duke@435 1460 // ideal nodes to machine instructions. Trees are delimited by shared Nodes,
duke@435 1461 // things the Matcher does not match (e.g., Memory), and things with different
duke@435 1462 // Controls (hence forced into different blocks). We pass in the Control
duke@435 1463 // selected for this entire State tree.
duke@435 1464
duke@435 1465 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
duke@435 1466 // Store and the Load must have identical Memories (as well as identical
duke@435 1467 // pointers). Since the Matcher does not have anything for Memory (and
duke@435 1468 // does not handle DAGs), I have to match the Memory input myself. If the
duke@435 1469 // Tree root is a Store, I require all Loads to have the identical memory.
duke@435 1470 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
duke@435 1471 // Since Label_Root is a recursive function, its possible that we might run
duke@435 1472 // out of stack space. See bugs 6272980 & 6227033 for more info.
duke@435 1473 LabelRootDepth++;
duke@435 1474 if (LabelRootDepth > MaxLabelRootDepth) {
duke@435 1475 C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
duke@435 1476 return NULL;
duke@435 1477 }
duke@435 1478 uint care = 0; // Edges matcher cares about
duke@435 1479 uint cnt = n->req();
duke@435 1480 uint i = 0;
duke@435 1481
duke@435 1482 // Examine children for memory state
duke@435 1483 // Can only subsume a child into your match-tree if that child's memory state
duke@435 1484 // is not modified along the path to another input.
duke@435 1485 // It is unsafe even if the other inputs are separate roots.
duke@435 1486 Node *input_mem = NULL;
duke@435 1487 for( i = 1; i < cnt; i++ ) {
duke@435 1488 if( !n->match_edge(i) ) continue;
duke@435 1489 Node *m = n->in(i); // Get ith input
duke@435 1490 assert( m, "expect non-null children" );
duke@435 1491 if( m->is_Load() ) {
duke@435 1492 if( input_mem == NULL ) {
duke@435 1493 input_mem = m->in(MemNode::Memory);
duke@435 1494 } else if( input_mem != m->in(MemNode::Memory) ) {
duke@435 1495 input_mem = NodeSentinel;
duke@435 1496 }
duke@435 1497 }
duke@435 1498 }
duke@435 1499
duke@435 1500 for( i = 1; i < cnt; i++ ){// For my children
duke@435 1501 if( !n->match_edge(i) ) continue;
duke@435 1502 Node *m = n->in(i); // Get ith input
duke@435 1503 // Allocate states out of a private arena
duke@435 1504 State *s = new (&_states_arena) State;
duke@435 1505 svec->_kids[care++] = s;
duke@435 1506 assert( care <= 2, "binary only for now" );
duke@435 1507
duke@435 1508 // Recursively label the State tree.
duke@435 1509 s->_kids[0] = NULL;
duke@435 1510 s->_kids[1] = NULL;
duke@435 1511 s->_leaf = m;
duke@435 1512
duke@435 1513 // Check for leaves of the State Tree; things that cannot be a part of
duke@435 1514 // the current tree. If it finds any, that value is matched as a
duke@435 1515 // register operand. If not, then the normal matching is used.
duke@435 1516 if( match_into_reg(n, m, control, i, is_shared(m)) ||
duke@435 1517 //
duke@435 1518 // Stop recursion if this is LoadNode and the root of this tree is a
duke@435 1519 // StoreNode and the load & store have different memories.
duke@435 1520 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
duke@435 1521 // Can NOT include the match of a subtree when its memory state
duke@435 1522 // is used by any of the other subtrees
duke@435 1523 (input_mem == NodeSentinel) ) {
duke@435 1524 #ifndef PRODUCT
duke@435 1525 // Print when we exclude matching due to different memory states at input-loads
duke@435 1526 if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
duke@435 1527 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
duke@435 1528 tty->print_cr("invalid input_mem");
duke@435 1529 }
duke@435 1530 #endif
duke@435 1531 // Switch to a register-only opcode; this value must be in a register
duke@435 1532 // and cannot be subsumed as part of a larger instruction.
duke@435 1533 s->DFA( m->ideal_reg(), m );
duke@435 1534
duke@435 1535 } else {
duke@435 1536 // If match tree has no control and we do, adopt it for entire tree
duke@435 1537 if( control == NULL && m->in(0) != NULL && m->req() > 1 )
duke@435 1538 control = m->in(0); // Pick up control
duke@435 1539 // Else match as a normal part of the match tree.
duke@435 1540 control = Label_Root(m,s,control,mem);
duke@435 1541 if (C->failing()) return NULL;
duke@435 1542 }
duke@435 1543 }
duke@435 1544
duke@435 1545
duke@435 1546 // Call DFA to match this node, and return
duke@435 1547 svec->DFA( n->Opcode(), n );
duke@435 1548
duke@435 1549 #ifdef ASSERT
duke@435 1550 uint x;
duke@435 1551 for( x = 0; x < _LAST_MACH_OPER; x++ )
duke@435 1552 if( svec->valid(x) )
duke@435 1553 break;
duke@435 1554
duke@435 1555 if (x >= _LAST_MACH_OPER) {
duke@435 1556 n->dump();
duke@435 1557 svec->dump();
duke@435 1558 assert( false, "bad AD file" );
duke@435 1559 }
duke@435 1560 #endif
duke@435 1561 return control;
duke@435 1562 }
duke@435 1563
duke@435 1564
duke@435 1565 // Con nodes reduced using the same rule can share their MachNode
duke@435 1566 // which reduces the number of copies of a constant in the final
duke@435 1567 // program. The register allocator is free to split uses later to
duke@435 1568 // split live ranges.
kvn@603 1569 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
roland@4159 1570 if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
duke@435 1571
duke@435 1572 // See if this Con has already been reduced using this rule.
kvn@603 1573 if (_shared_nodes.Size() <= leaf->_idx) return NULL;
kvn@603 1574 MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
duke@435 1575 if (last != NULL && rule == last->rule()) {
kvn@603 1576 // Don't expect control change for DecodeN
roland@4159 1577 if (leaf->is_DecodeNarrowPtr())
kvn@603 1578 return last;
duke@435 1579 // Get the new space root.
duke@435 1580 Node* xroot = new_node(C->root());
duke@435 1581 if (xroot == NULL) {
duke@435 1582 // This shouldn't happen give the order of matching.
duke@435 1583 return NULL;
duke@435 1584 }
duke@435 1585
duke@435 1586 // Shared constants need to have their control be root so they
duke@435 1587 // can be scheduled properly.
duke@435 1588 Node* control = last->in(0);
duke@435 1589 if (control != xroot) {
duke@435 1590 if (control == NULL || control == C->root()) {
duke@435 1591 last->set_req(0, xroot);
duke@435 1592 } else {
duke@435 1593 assert(false, "unexpected control");
duke@435 1594 return NULL;
duke@435 1595 }
duke@435 1596 }
duke@435 1597 return last;
duke@435 1598 }
duke@435 1599 return NULL;
duke@435 1600 }
duke@435 1601
duke@435 1602
duke@435 1603 //------------------------------ReduceInst-------------------------------------
duke@435 1604 // Reduce a State tree (with given Control) into a tree of MachNodes.
duke@435 1605 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
duke@435 1606 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes.
duke@435 1607 // Each MachNode has a number of complicated MachOper operands; each
duke@435 1608 // MachOper also covers a further tree of Ideal Nodes.
duke@435 1609
duke@435 1610 // The root of the Ideal match tree is always an instruction, so we enter
duke@435 1611 // the recursion here. After building the MachNode, we need to recurse
duke@435 1612 // the tree checking for these cases:
duke@435 1613 // (1) Child is an instruction -
duke@435 1614 // Build the instruction (recursively), add it as an edge.
duke@435 1615 // Build a simple operand (register) to hold the result of the instruction.
duke@435 1616 // (2) Child is an interior part of an instruction -
duke@435 1617 // Skip over it (do nothing)
duke@435 1618 // (3) Child is the start of a operand -
duke@435 1619 // Build the operand, place it inside the instruction
duke@435 1620 // Call ReduceOper.
duke@435 1621 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
duke@435 1622 assert( rule >= NUM_OPERANDS, "called with operand rule" );
duke@435 1623
kvn@603 1624 MachNode* shared_node = find_shared_node(s->_leaf, rule);
kvn@603 1625 if (shared_node != NULL) {
kvn@603 1626 return shared_node;
duke@435 1627 }
duke@435 1628
duke@435 1629 // Build the object to represent this state & prepare for recursive calls
duke@435 1630 MachNode *mach = s->MachNodeGenerator( rule, C );
duke@435 1631 mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
duke@435 1632 assert( mach->_opnds[0] != NULL, "Missing result operand" );
duke@435 1633 Node *leaf = s->_leaf;
duke@435 1634 // Check for instruction or instruction chain rule
duke@435 1635 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
never@744 1636 assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
never@744 1637 "duplicating node that's already been matched");
duke@435 1638 // Instruction
duke@435 1639 mach->add_req( leaf->in(0) ); // Set initial control
duke@435 1640 // Reduce interior of complex instruction
duke@435 1641 ReduceInst_Interior( s, rule, mem, mach, 1 );
duke@435 1642 } else {
duke@435 1643 // Instruction chain rules are data-dependent on their inputs
duke@435 1644 mach->add_req(0); // Set initial control to none
duke@435 1645 ReduceInst_Chain_Rule( s, rule, mem, mach );
duke@435 1646 }
duke@435 1647
duke@435 1648 // If a Memory was used, insert a Memory edge
kvn@651 1649 if( mem != (Node*)1 ) {
duke@435 1650 mach->ins_req(MemNode::Memory,mem);
kvn@651 1651 #ifdef ASSERT
kvn@651 1652 // Verify adr type after matching memory operation
kvn@651 1653 const MachOper* oper = mach->memory_operand();
kvn@1286 1654 if (oper != NULL && oper != (MachOper*)-1) {
kvn@651 1655 // It has a unique memory operand. Find corresponding ideal mem node.
kvn@651 1656 Node* m = NULL;
kvn@651 1657 if (leaf->is_Mem()) {
kvn@651 1658 m = leaf;
kvn@651 1659 } else {
kvn@651 1660 m = _mem_node;
kvn@651 1661 assert(m != NULL && m->is_Mem(), "expecting memory node");
kvn@651 1662 }
kvn@803 1663 const Type* mach_at = mach->adr_type();
kvn@803 1664 // DecodeN node consumed by an address may have different type
kvn@803 1665 // then its input. Don't compare types for such case.
kvn@1077 1666 if (m->adr_type() != mach_at &&
roland@4159 1667 (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
kvn@1077 1668 m->in(MemNode::Address)->is_AddP() &&
roland@4159 1669 m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
kvn@1077 1670 m->in(MemNode::Address)->is_AddP() &&
kvn@1077 1671 m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
roland@4159 1672 m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
kvn@803 1673 mach_at = m->adr_type();
kvn@803 1674 }
kvn@803 1675 if (m->adr_type() != mach_at) {
kvn@651 1676 m->dump();
kvn@651 1677 tty->print_cr("mach:");
kvn@651 1678 mach->dump(1);
kvn@651 1679 }
kvn@803 1680 assert(m->adr_type() == mach_at, "matcher should not change adr type");
kvn@651 1681 }
kvn@651 1682 #endif
kvn@651 1683 }
duke@435 1684
duke@435 1685 // If the _leaf is an AddP, insert the base edge
kvn@603 1686 if( leaf->is_AddP() )
duke@435 1687 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
duke@435 1688
duke@435 1689 uint num_proj = _proj_list.size();
duke@435 1690
duke@435 1691 // Perform any 1-to-many expansions required
never@1638 1692 MachNode *ex = mach->Expand(s,_proj_list, mem);
duke@435 1693 if( ex != mach ) {
duke@435 1694 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
duke@435 1695 if( ex->in(1)->is_Con() )
duke@435 1696 ex->in(1)->set_req(0, C->root());
duke@435 1697 // Remove old node from the graph
duke@435 1698 for( uint i=0; i<mach->req(); i++ ) {
duke@435 1699 mach->set_req(i,NULL);
duke@435 1700 }
never@657 1701 #ifdef ASSERT
never@657 1702 _new2old_map.map(ex->_idx, s->_leaf);
never@657 1703 #endif
duke@435 1704 }
duke@435 1705
duke@435 1706 // PhaseChaitin::fixup_spills will sometimes generate spill code
duke@435 1707 // via the matcher. By the time, nodes have been wired into the CFG,
duke@435 1708 // and any further nodes generated by expand rules will be left hanging
duke@435 1709 // in space, and will not get emitted as output code. Catch this.
duke@435 1710 // Also, catch any new register allocation constraints ("projections")
duke@435 1711 // generated belatedly during spill code generation.
duke@435 1712 if (_allocation_started) {
duke@435 1713 guarantee(ex == mach, "no expand rules during spill generation");
duke@435 1714 guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
duke@435 1715 }
duke@435 1716
roland@4159 1717 if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
duke@435 1718 // Record the con for sharing
kvn@603 1719 _shared_nodes.map(leaf->_idx, ex);
duke@435 1720 }
duke@435 1721
duke@435 1722 return ex;
duke@435 1723 }
duke@435 1724
duke@435 1725 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1726 // 'op' is what I am expecting to receive
duke@435 1727 int op = _leftOp[rule];
duke@435 1728 // Operand type to catch childs result
duke@435 1729 // This is what my child will give me.
duke@435 1730 int opnd_class_instance = s->_rule[op];
duke@435 1731 // Choose between operand class or not.
twisti@1040 1732 // This is what I will receive.
duke@435 1733 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1734 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1735 int newrule = s->_rule[catch_op];
duke@435 1736
duke@435 1737 if( newrule < NUM_OPERANDS ) {
duke@435 1738 // Chain from operand or operand class, may be output of shared node
duke@435 1739 assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
duke@435 1740 "Bad AD file: Instruction chain rule must chain from operand");
duke@435 1741 // Insert operand into array of operands for this instruction
duke@435 1742 mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
duke@435 1743
duke@435 1744 ReduceOper( s, newrule, mem, mach );
duke@435 1745 } else {
duke@435 1746 // Chain from the result of an instruction
duke@435 1747 assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
duke@435 1748 mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1749 Node *mem1 = (Node*)1;
kvn@651 1750 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1751 mach->add_req( ReduceInst(s, newrule, mem1) );
kvn@651 1752 debug_only(_mem_node = save_mem_node;)
duke@435 1753 }
duke@435 1754 return;
duke@435 1755 }
duke@435 1756
duke@435 1757
duke@435 1758 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
duke@435 1759 if( s->_leaf->is_Load() ) {
duke@435 1760 Node *mem2 = s->_leaf->in(MemNode::Memory);
duke@435 1761 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
kvn@651 1762 debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
duke@435 1763 mem = mem2;
duke@435 1764 }
duke@435 1765 if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
duke@435 1766 if( mach->in(0) == NULL )
duke@435 1767 mach->set_req(0, s->_leaf->in(0));
duke@435 1768 }
duke@435 1769
duke@435 1770 // Now recursively walk the state tree & add operand list.
duke@435 1771 for( uint i=0; i<2; i++ ) { // binary tree
duke@435 1772 State *newstate = s->_kids[i];
duke@435 1773 if( newstate == NULL ) break; // Might only have 1 child
duke@435 1774 // 'op' is what I am expecting to receive
duke@435 1775 int op;
duke@435 1776 if( i == 0 ) {
duke@435 1777 op = _leftOp[rule];
duke@435 1778 } else {
duke@435 1779 op = _rightOp[rule];
duke@435 1780 }
duke@435 1781 // Operand type to catch childs result
duke@435 1782 // This is what my child will give me.
duke@435 1783 int opnd_class_instance = newstate->_rule[op];
duke@435 1784 // Choose between operand class or not.
duke@435 1785 // This is what I will receive.
duke@435 1786 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1787 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1788 int newrule = newstate->_rule[catch_op];
duke@435 1789
duke@435 1790 if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
duke@435 1791 // Operand/operandClass
duke@435 1792 // Insert operand into array of operands for this instruction
duke@435 1793 mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
duke@435 1794 ReduceOper( newstate, newrule, mem, mach );
duke@435 1795
duke@435 1796 } else { // Child is internal operand or new instruction
duke@435 1797 if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
duke@435 1798 // internal operand --> call ReduceInst_Interior
duke@435 1799 // Interior of complex instruction. Do nothing but recurse.
duke@435 1800 num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
duke@435 1801 } else {
duke@435 1802 // instruction --> call build operand( ) to catch result
duke@435 1803 // --> ReduceInst( newrule )
duke@435 1804 mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1805 Node *mem1 = (Node*)1;
kvn@651 1806 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1807 mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
kvn@651 1808 debug_only(_mem_node = save_mem_node;)
duke@435 1809 }
duke@435 1810 }
duke@435 1811 assert( mach->_opnds[num_opnds-1], "" );
duke@435 1812 }
duke@435 1813 return num_opnds;
duke@435 1814 }
duke@435 1815
duke@435 1816 // This routine walks the interior of possible complex operands.
duke@435 1817 // At each point we check our children in the match tree:
duke@435 1818 // (1) No children -
duke@435 1819 // We are a leaf; add _leaf field as an input to the MachNode
duke@435 1820 // (2) Child is an internal operand -
duke@435 1821 // Skip over it ( do nothing )
duke@435 1822 // (3) Child is an instruction -
duke@435 1823 // Call ReduceInst recursively and
duke@435 1824 // and instruction as an input to the MachNode
duke@435 1825 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1826 assert( rule < _LAST_MACH_OPER, "called with operand rule" );
duke@435 1827 State *kid = s->_kids[0];
duke@435 1828 assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
duke@435 1829
duke@435 1830 // Leaf? And not subsumed?
duke@435 1831 if( kid == NULL && !_swallowed[rule] ) {
duke@435 1832 mach->add_req( s->_leaf ); // Add leaf pointer
duke@435 1833 return; // Bail out
duke@435 1834 }
duke@435 1835
duke@435 1836 if( s->_leaf->is_Load() ) {
duke@435 1837 assert( mem == (Node*)1, "multiple Memories being matched at once?" );
duke@435 1838 mem = s->_leaf->in(MemNode::Memory);
kvn@651 1839 debug_only(_mem_node = s->_leaf;)
duke@435 1840 }
duke@435 1841 if( s->_leaf->in(0) && s->_leaf->req() > 1) {
duke@435 1842 if( !mach->in(0) )
duke@435 1843 mach->set_req(0,s->_leaf->in(0));
duke@435 1844 else {
duke@435 1845 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
duke@435 1846 }
duke@435 1847 }
duke@435 1848
duke@435 1849 for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree
duke@435 1850 int newrule;
sla@5237 1851 if( i == 0)
duke@435 1852 newrule = kid->_rule[_leftOp[rule]];
duke@435 1853 else
duke@435 1854 newrule = kid->_rule[_rightOp[rule]];
duke@435 1855
duke@435 1856 if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
duke@435 1857 // Internal operand; recurse but do nothing else
duke@435 1858 ReduceOper( kid, newrule, mem, mach );
duke@435 1859
duke@435 1860 } else { // Child is a new instruction
duke@435 1861 // Reduce the instruction, and add a direct pointer from this
duke@435 1862 // machine instruction to the newly reduced one.
duke@435 1863 Node *mem1 = (Node*)1;
kvn@651 1864 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1865 mach->add_req( ReduceInst( kid, newrule, mem1 ) );
kvn@651 1866 debug_only(_mem_node = save_mem_node;)
duke@435 1867 }
duke@435 1868 }
duke@435 1869 }
duke@435 1870
duke@435 1871
duke@435 1872 // -------------------------------------------------------------------------
duke@435 1873 // Java-Java calling convention
duke@435 1874 // (what you use when Java calls Java)
duke@435 1875
duke@435 1876 //------------------------------find_receiver----------------------------------
duke@435 1877 // For a given signature, return the OptoReg for parameter 0.
duke@435 1878 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
duke@435 1879 VMRegPair regs;
duke@435 1880 BasicType sig_bt = T_OBJECT;
duke@435 1881 calling_convention(&sig_bt, &regs, 1, is_outgoing);
duke@435 1882 // Return argument 0 register. In the LP64 build pointers
duke@435 1883 // take 2 registers, but the VM wants only the 'main' name.
duke@435 1884 return OptoReg::as_OptoReg(regs.first());
duke@435 1885 }
duke@435 1886
duke@435 1887 // A method-klass-holder may be passed in the inline_cache_reg
duke@435 1888 // and then expanded into the inline_cache_reg and a method_oop register
duke@435 1889 // defined in ad_<arch>.cpp
duke@435 1890
duke@435 1891
duke@435 1892 //------------------------------find_shared------------------------------------
duke@435 1893 // Set bits if Node is shared or otherwise a root
duke@435 1894 void Matcher::find_shared( Node *n ) {
duke@435 1895 // Allocate stack of size C->unique() * 2 to avoid frequent realloc
duke@435 1896 MStack mstack(C->unique() * 2);
kvn@1021 1897 // Mark nodes as address_visited if they are inputs to an address expression
kvn@1021 1898 VectorSet address_visited(Thread::current()->resource_area());
duke@435 1899 mstack.push(n, Visit); // Don't need to pre-visit root node
duke@435 1900 while (mstack.is_nonempty()) {
duke@435 1901 n = mstack.node(); // Leave node on stack
duke@435 1902 Node_State nstate = mstack.state();
kvn@1021 1903 uint nop = n->Opcode();
duke@435 1904 if (nstate == Pre_Visit) {
kvn@1021 1905 if (address_visited.test(n->_idx)) { // Visited in address already?
kvn@1021 1906 // Flag as visited and shared now.
kvn@1021 1907 set_visited(n);
kvn@1021 1908 }
duke@435 1909 if (is_visited(n)) { // Visited already?
duke@435 1910 // Node is shared and has no reason to clone. Flag it as shared.
duke@435 1911 // This causes it to match into a register for the sharing.
duke@435 1912 set_shared(n); // Flag as shared and
duke@435 1913 mstack.pop(); // remove node from stack
duke@435 1914 continue;
duke@435 1915 }
duke@435 1916 nstate = Visit; // Not already visited; so visit now
duke@435 1917 }
duke@435 1918 if (nstate == Visit) {
duke@435 1919 mstack.set_state(Post_Visit);
duke@435 1920 set_visited(n); // Flag as visited now
duke@435 1921 bool mem_op = false;
duke@435 1922
kvn@1021 1923 switch( nop ) { // Handle some opcodes special
duke@435 1924 case Op_Phi: // Treat Phis as shared roots
duke@435 1925 case Op_Parm:
duke@435 1926 case Op_Proj: // All handled specially during matching
kvn@498 1927 case Op_SafePointScalarObject:
duke@435 1928 set_shared(n);
duke@435 1929 set_dontcare(n);
duke@435 1930 break;
duke@435 1931 case Op_If:
duke@435 1932 case Op_CountedLoopEnd:
duke@435 1933 mstack.set_state(Alt_Post_Visit); // Alternative way
duke@435 1934 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps
duke@435 1935 // with matching cmp/branch in 1 instruction. The Matcher needs the
duke@435 1936 // Bool and CmpX side-by-side, because it can only get at constants
duke@435 1937 // that are at the leaves of Match trees, and the Bool's condition acts
duke@435 1938 // as a constant here.
duke@435 1939 mstack.push(n->in(1), Visit); // Clone the Bool
duke@435 1940 mstack.push(n->in(0), Pre_Visit); // Visit control input
duke@435 1941 continue; // while (mstack.is_nonempty())
duke@435 1942 case Op_ConvI2D: // These forms efficiently match with a prior
duke@435 1943 case Op_ConvI2F: // Load but not a following Store
duke@435 1944 if( n->in(1)->is_Load() && // Prior load
duke@435 1945 n->outcnt() == 1 && // Not already shared
duke@435 1946 n->unique_out()->is_Store() ) // Following store
duke@435 1947 set_shared(n); // Force it to be a root
duke@435 1948 break;
duke@435 1949 case Op_ReverseBytesI:
duke@435 1950 case Op_ReverseBytesL:
duke@435 1951 if( n->in(1)->is_Load() && // Prior load
duke@435 1952 n->outcnt() == 1 ) // Not already shared
duke@435 1953 set_shared(n); // Force it to be a root
duke@435 1954 break;
duke@435 1955 case Op_BoxLock: // Cant match until we get stack-regs in ADLC
duke@435 1956 case Op_IfFalse:
duke@435 1957 case Op_IfTrue:
duke@435 1958 case Op_MachProj:
duke@435 1959 case Op_MergeMem:
duke@435 1960 case Op_Catch:
duke@435 1961 case Op_CatchProj:
duke@435 1962 case Op_CProj:
duke@435 1963 case Op_JumpProj:
duke@435 1964 case Op_JProj:
duke@435 1965 case Op_NeverBranch:
duke@435 1966 set_dontcare(n);
duke@435 1967 break;
duke@435 1968 case Op_Jump:
kvn@3260 1969 mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared)
duke@435 1970 mstack.push(n->in(0), Pre_Visit); // Visit Control input
duke@435 1971 continue; // while (mstack.is_nonempty())
duke@435 1972 case Op_StrComp:
cfang@1116 1973 case Op_StrEquals:
cfang@1116 1974 case Op_StrIndexOf:
rasbold@604 1975 case Op_AryEq:
kvn@4479 1976 case Op_EncodeISOArray:
duke@435 1977 set_shared(n); // Force result into register (it will be anyways)
duke@435 1978 break;
duke@435 1979 case Op_ConP: { // Convert pointers above the centerline to NUL
duke@435 1980 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
duke@435 1981 const TypePtr* tp = tn->type()->is_ptr();
duke@435 1982 if (tp->_ptr == TypePtr::AnyNull) {
duke@435 1983 tn->set_type(TypePtr::NULL_PTR);
duke@435 1984 }
duke@435 1985 break;
duke@435 1986 }
kvn@598 1987 case Op_ConN: { // Convert narrow pointers above the centerline to NUL
kvn@598 1988 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
kvn@656 1989 const TypePtr* tp = tn->type()->make_ptr();
kvn@656 1990 if (tp && tp->_ptr == TypePtr::AnyNull) {
kvn@598 1991 tn->set_type(TypeNarrowOop::NULL_PTR);
kvn@598 1992 }
kvn@598 1993 break;
kvn@598 1994 }
duke@435 1995 case Op_Binary: // These are introduced in the Post_Visit state.
duke@435 1996 ShouldNotReachHere();
duke@435 1997 break;
duke@435 1998 case Op_ClearArray:
duke@435 1999 case Op_SafePoint:
duke@435 2000 mem_op = true;
duke@435 2001 break;
kvn@1496 2002 default:
kvn@1496 2003 if( n->is_Store() ) {
kvn@1496 2004 // Do match stores, despite no ideal reg
kvn@1496 2005 mem_op = true;
kvn@1496 2006 break;
kvn@1496 2007 }
kvn@1496 2008 if( n->is_Mem() ) { // Loads and LoadStores
kvn@1496 2009 mem_op = true;
kvn@1496 2010 // Loads must be root of match tree due to prior load conflict
kvn@1496 2011 if( C->subsume_loads() == false )
kvn@1496 2012 set_shared(n);
duke@435 2013 }
duke@435 2014 // Fall into default case
duke@435 2015 if( !n->ideal_reg() )
duke@435 2016 set_dontcare(n); // Unmatchable Nodes
duke@435 2017 } // end_switch
duke@435 2018
duke@435 2019 for(int i = n->req() - 1; i >= 0; --i) { // For my children
duke@435 2020 Node *m = n->in(i); // Get ith input
duke@435 2021 if (m == NULL) continue; // Ignore NULLs
duke@435 2022 uint mop = m->Opcode();
duke@435 2023
duke@435 2024 // Must clone all producers of flags, or we will not match correctly.
duke@435 2025 // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
duke@435 2026 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags
duke@435 2027 // are also there, so we may match a float-branch to int-flags and
duke@435 2028 // expect the allocator to haul the flags from the int-side to the
duke@435 2029 // fp-side. No can do.
duke@435 2030 if( _must_clone[mop] ) {
duke@435 2031 mstack.push(m, Visit);
duke@435 2032 continue; // for(int i = ...)
duke@435 2033 }
duke@435 2034
roland@4159 2035 if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
kvn@1496 2036 // Bases used in addresses must be shared but since
kvn@1496 2037 // they are shared through a DecodeN they may appear
kvn@1496 2038 // to have a single use so force sharing here.
kvn@1496 2039 set_shared(m->in(AddPNode::Base)->in(1));
kvn@1496 2040 }
kvn@1496 2041
kvn@1496 2042 // Clone addressing expressions as they are "free" in memory access instructions
duke@435 2043 if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
kvn@1021 2044 // Some inputs for address expression are not put on stack
kvn@1021 2045 // to avoid marking them as shared and forcing them into register
kvn@1021 2046 // if they are used only in address expressions.
kvn@1021 2047 // But they should be marked as shared if there are other uses
kvn@1021 2048 // besides address expressions.
kvn@1021 2049
duke@435 2050 Node *off = m->in(AddPNode::Offset);
kvn@1021 2051 if( off->is_Con() &&
kvn@1021 2052 // When there are other uses besides address expressions
kvn@1021 2053 // put it on stack and mark as shared.
kvn@1021 2054 !is_visited(m) ) {
kvn@1021 2055 address_visited.test_set(m->_idx); // Flag as address_visited
duke@435 2056 Node *adr = m->in(AddPNode::Address);
duke@435 2057
duke@435 2058 // Intel, ARM and friends can handle 2 adds in addressing mode
kvn@603 2059 if( clone_shift_expressions && adr->is_AddP() &&
duke@435 2060 // AtomicAdd is not an addressing expression.
duke@435 2061 // Cheap to find it by looking for screwy base.
kvn@1021 2062 !adr->in(AddPNode::Base)->is_top() &&
kvn@1021 2063 // Are there other uses besides address expressions?
kvn@1021 2064 !is_visited(adr) ) {
kvn@1021 2065 address_visited.set(adr->_idx); // Flag as address_visited
duke@435 2066 Node *shift = adr->in(AddPNode::Offset);
duke@435 2067 // Check for shift by small constant as well
duke@435 2068 if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
kvn@1021 2069 shift->in(2)->get_int() <= 3 &&
kvn@1021 2070 // Are there other uses besides address expressions?
kvn@1021 2071 !is_visited(shift) ) {
kvn@1021 2072 address_visited.set(shift->_idx); // Flag as address_visited
duke@435 2073 mstack.push(shift->in(2), Visit);
kvn@1021 2074 Node *conv = shift->in(1);
duke@435 2075 #ifdef _LP64
duke@435 2076 // Allow Matcher to match the rule which bypass
duke@435 2077 // ConvI2L operation for an array index on LP64
duke@435 2078 // if the index value is positive.
kvn@1021 2079 if( conv->Opcode() == Op_ConvI2L &&
kvn@1021 2080 conv->as_Type()->type()->is_long()->_lo >= 0 &&
kvn@1021 2081 // Are there other uses besides address expressions?
kvn@1021 2082 !is_visited(conv) ) {
kvn@1021 2083 address_visited.set(conv->_idx); // Flag as address_visited
kvn@1021 2084 mstack.push(conv->in(1), Pre_Visit);
duke@435 2085 } else
duke@435 2086 #endif
kvn@1021 2087 mstack.push(conv, Pre_Visit);
duke@435 2088 } else {
duke@435 2089 mstack.push(shift, Pre_Visit);
duke@435 2090 }
duke@435 2091 mstack.push(adr->in(AddPNode::Address), Pre_Visit);
duke@435 2092 mstack.push(adr->in(AddPNode::Base), Pre_Visit);
duke@435 2093 } else { // Sparc, Alpha, PPC and friends
duke@435 2094 mstack.push(adr, Pre_Visit);
duke@435 2095 }
duke@435 2096
duke@435 2097 // Clone X+offset as it also folds into most addressing expressions
duke@435 2098 mstack.push(off, Visit);
duke@435 2099 mstack.push(m->in(AddPNode::Base), Pre_Visit);
duke@435 2100 continue; // for(int i = ...)
duke@435 2101 } // if( off->is_Con() )
duke@435 2102 } // if( mem_op &&
duke@435 2103 mstack.push(m, Pre_Visit);
duke@435 2104 } // for(int i = ...)
duke@435 2105 }
duke@435 2106 else if (nstate == Alt_Post_Visit) {
duke@435 2107 mstack.pop(); // Remove node from stack
duke@435 2108 // We cannot remove the Cmp input from the Bool here, as the Bool may be
duke@435 2109 // shared and all users of the Bool need to move the Cmp in parallel.
duke@435 2110 // This leaves both the Bool and the If pointing at the Cmp. To
duke@435 2111 // prevent the Matcher from trying to Match the Cmp along both paths
duke@435 2112 // BoolNode::match_edge always returns a zero.
duke@435 2113
duke@435 2114 // We reorder the Op_If in a pre-order manner, so we can visit without
twisti@1040 2115 // accidentally sharing the Cmp (the Bool and the If make 2 users).
duke@435 2116 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
duke@435 2117 }
duke@435 2118 else if (nstate == Post_Visit) {
duke@435 2119 mstack.pop(); // Remove node from stack
duke@435 2120
duke@435 2121 // Now hack a few special opcodes
duke@435 2122 switch( n->Opcode() ) { // Handle some opcodes special
duke@435 2123 case Op_StorePConditional:
kvn@855 2124 case Op_StoreIConditional:
duke@435 2125 case Op_StoreLConditional:
duke@435 2126 case Op_CompareAndSwapI:
duke@435 2127 case Op_CompareAndSwapL:
coleenp@548 2128 case Op_CompareAndSwapP:
coleenp@548 2129 case Op_CompareAndSwapN: { // Convert trinary to binary-tree
duke@435 2130 Node *newval = n->in(MemNode::ValueIn );
roland@4106 2131 Node *oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
kvn@4115 2132 Node *pair = new (C) BinaryNode( oldval, newval );
duke@435 2133 n->set_req(MemNode::ValueIn,pair);
roland@4106 2134 n->del_req(LoadStoreConditionalNode::ExpectedIn);
duke@435 2135 break;
duke@435 2136 }
duke@435 2137 case Op_CMoveD: // Convert trinary to binary-tree
duke@435 2138 case Op_CMoveF:
duke@435 2139 case Op_CMoveI:
duke@435 2140 case Op_CMoveL:
kvn@599 2141 case Op_CMoveN:
duke@435 2142 case Op_CMoveP: {
duke@435 2143 // Restructure into a binary tree for Matching. It's possible that
duke@435 2144 // we could move this code up next to the graph reshaping for IfNodes
duke@435 2145 // or vice-versa, but I do not want to debug this for Ladybird.
duke@435 2146 // 10/2/2000 CNC.
kvn@4115 2147 Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
duke@435 2148 n->set_req(1,pair1);
kvn@4115 2149 Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
duke@435 2150 n->set_req(2,pair2);
duke@435 2151 n->del_req(3);
duke@435 2152 break;
duke@435 2153 }
kvn@2877 2154 case Op_LoopLimit: {
kvn@4115 2155 Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
kvn@2877 2156 n->set_req(1,pair1);
kvn@2877 2157 n->set_req(2,n->in(3));
kvn@2877 2158 n->del_req(3);
kvn@2877 2159 break;
kvn@2877 2160 }
kvn@1421 2161 case Op_StrEquals: {
kvn@4115 2162 Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
kvn@1421 2163 n->set_req(2,pair1);
kvn@1421 2164 n->set_req(3,n->in(4));
kvn@1421 2165 n->del_req(4);
kvn@1421 2166 break;
kvn@1421 2167 }
kvn@1421 2168 case Op_StrComp:
kvn@1421 2169 case Op_StrIndexOf: {
kvn@4115 2170 Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
kvn@1421 2171 n->set_req(2,pair1);
kvn@4115 2172 Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
kvn@1421 2173 n->set_req(3,pair2);
kvn@1421 2174 n->del_req(5);
kvn@1421 2175 n->del_req(4);
kvn@1421 2176 break;
kvn@1421 2177 }
kvn@4479 2178 case Op_EncodeISOArray: {
kvn@4479 2179 // Restructure into a binary tree for Matching.
kvn@4479 2180 Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
kvn@4479 2181 n->set_req(3, pair);
kvn@4479 2182 n->del_req(4);
kvn@4479 2183 break;
kvn@4479 2184 }
duke@435 2185 default:
duke@435 2186 break;
duke@435 2187 }
duke@435 2188 }
duke@435 2189 else {
duke@435 2190 ShouldNotReachHere();
duke@435 2191 }
duke@435 2192 } // end of while (mstack.is_nonempty())
duke@435 2193 }
duke@435 2194
duke@435 2195 #ifdef ASSERT
duke@435 2196 // machine-independent root to machine-dependent root
duke@435 2197 void Matcher::dump_old2new_map() {
duke@435 2198 _old2new_map.dump();
duke@435 2199 }
duke@435 2200 #endif
duke@435 2201
duke@435 2202 //---------------------------collect_null_checks-------------------------------
duke@435 2203 // Find null checks in the ideal graph; write a machine-specific node for
duke@435 2204 // it. Used by later implicit-null-check handling. Actually collects
duke@435 2205 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
duke@435 2206 // value being tested.
kvn@803 2207 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
duke@435 2208 Node *iff = proj->in(0);
duke@435 2209 if( iff->Opcode() == Op_If ) {
duke@435 2210 // During matching If's have Bool & Cmp side-by-side
duke@435 2211 BoolNode *b = iff->in(1)->as_Bool();
duke@435 2212 Node *cmp = iff->in(2);
coleenp@548 2213 int opc = cmp->Opcode();
coleenp@548 2214 if (opc != Op_CmpP && opc != Op_CmpN) return;
duke@435 2215
coleenp@548 2216 const Type* ct = cmp->in(2)->bottom_type();
coleenp@548 2217 if (ct == TypePtr::NULL_PTR ||
coleenp@548 2218 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
coleenp@548 2219
kvn@803 2220 bool push_it = false;
coleenp@548 2221 if( proj->Opcode() == Op_IfTrue ) {
coleenp@548 2222 extern int all_null_checks_found;
coleenp@548 2223 all_null_checks_found++;
coleenp@548 2224 if( b->_test._test == BoolTest::ne ) {
kvn@803 2225 push_it = true;
coleenp@548 2226 }
coleenp@548 2227 } else {
coleenp@548 2228 assert( proj->Opcode() == Op_IfFalse, "" );
coleenp@548 2229 if( b->_test._test == BoolTest::eq ) {
kvn@803 2230 push_it = true;
duke@435 2231 }
duke@435 2232 }
kvn@803 2233 if( push_it ) {
kvn@803 2234 _null_check_tests.push(proj);
kvn@803 2235 Node* val = cmp->in(1);
kvn@803 2236 #ifdef _LP64
kvn@1930 2237 if (val->bottom_type()->isa_narrowoop() &&
kvn@1930 2238 !Matcher::narrow_oop_use_complex_address()) {
kvn@803 2239 //
kvn@803 2240 // Look for DecodeN node which should be pinned to orig_proj.
kvn@803 2241 // On platforms (Sparc) which can not handle 2 adds
kvn@803 2242 // in addressing mode we have to keep a DecodeN node and
kvn@803 2243 // use it to do implicit NULL check in address.
kvn@803 2244 //
kvn@803 2245 // DecodeN node was pinned to non-null path (orig_proj) during
kvn@803 2246 // CastPP transformation in final_graph_reshaping_impl().
kvn@803 2247 //
kvn@803 2248 uint cnt = orig_proj->outcnt();
kvn@803 2249 for (uint i = 0; i < orig_proj->outcnt(); i++) {
kvn@803 2250 Node* d = orig_proj->raw_out(i);
kvn@803 2251 if (d->is_DecodeN() && d->in(1) == val) {
kvn@803 2252 val = d;
kvn@803 2253 val->set_req(0, NULL); // Unpin now.
kvn@1930 2254 // Mark this as special case to distinguish from
kvn@1930 2255 // a regular case: CmpP(DecodeN, NULL).
kvn@1930 2256 val = (Node*)(((intptr_t)val) | 1);
kvn@803 2257 break;
kvn@803 2258 }
kvn@803 2259 }
kvn@803 2260 }
kvn@803 2261 #endif
kvn@803 2262 _null_check_tests.push(val);
kvn@803 2263 }
duke@435 2264 }
duke@435 2265 }
duke@435 2266 }
duke@435 2267
duke@435 2268 //---------------------------validate_null_checks------------------------------
duke@435 2269 // Its possible that the value being NULL checked is not the root of a match
duke@435 2270 // tree. If so, I cannot use the value in an implicit null check.
duke@435 2271 void Matcher::validate_null_checks( ) {
duke@435 2272 uint cnt = _null_check_tests.size();
duke@435 2273 for( uint i=0; i < cnt; i+=2 ) {
duke@435 2274 Node *test = _null_check_tests[i];
duke@435 2275 Node *val = _null_check_tests[i+1];
kvn@1930 2276 bool is_decoden = ((intptr_t)val) & 1;
kvn@1930 2277 val = (Node*)(((intptr_t)val) & ~1);
duke@435 2278 if (has_new_node(val)) {
kvn@1930 2279 Node* new_val = new_node(val);
kvn@1930 2280 if (is_decoden) {
roland@4159 2281 assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
kvn@1930 2282 // Note: new_val may have a control edge if
kvn@1930 2283 // the original ideal node DecodeN was matched before
kvn@1930 2284 // it was unpinned in Matcher::collect_null_checks().
kvn@1930 2285 // Unpin the mach node and mark it.
kvn@1930 2286 new_val->set_req(0, NULL);
kvn@1930 2287 new_val = (Node*)(((intptr_t)new_val) | 1);
kvn@1930 2288 }
duke@435 2289 // Is a match-tree root, so replace with the matched value
kvn@1930 2290 _null_check_tests.map(i+1, new_val);
duke@435 2291 } else {
duke@435 2292 // Yank from candidate list
duke@435 2293 _null_check_tests.map(i+1,_null_check_tests[--cnt]);
duke@435 2294 _null_check_tests.map(i,_null_check_tests[--cnt]);
duke@435 2295 _null_check_tests.pop();
duke@435 2296 _null_check_tests.pop();
duke@435 2297 i-=2;
duke@435 2298 }
duke@435 2299 }
duke@435 2300 }
duke@435 2301
duke@435 2302 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or
duke@435 2303 // atomic instruction acting as a store_load barrier without any
duke@435 2304 // intervening volatile load, and thus we don't need a barrier here.
duke@435 2305 // We retain the Node to act as a compiler ordering barrier.
duke@435 2306 bool Matcher::post_store_load_barrier(const Node *vmb) {
duke@435 2307 Compile *C = Compile::current();
duke@435 2308 assert( vmb->is_MemBar(), "" );
duke@435 2309 assert( vmb->Opcode() != Op_MemBarAcquire, "" );
duke@435 2310 const MemBarNode *mem = (const MemBarNode*)vmb;
duke@435 2311
duke@435 2312 // Get the Proj node, ctrl, that can be used to iterate forward
duke@435 2313 Node *ctrl = NULL;
duke@435 2314 DUIterator_Fast imax, i = mem->fast_outs(imax);
duke@435 2315 while( true ) {
duke@435 2316 ctrl = mem->fast_out(i); // Throw out-of-bounds if proj not found
duke@435 2317 assert( ctrl->is_Proj(), "only projections here" );
duke@435 2318 ProjNode *proj = (ProjNode*)ctrl;
duke@435 2319 if( proj->_con == TypeFunc::Control &&
duke@435 2320 !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
duke@435 2321 break;
duke@435 2322 i++;
duke@435 2323 }
duke@435 2324
duke@435 2325 for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
duke@435 2326 Node *x = ctrl->fast_out(j);
duke@435 2327 int xop = x->Opcode();
duke@435 2328
duke@435 2329 // We don't need current barrier if we see another or a lock
duke@435 2330 // before seeing volatile load.
duke@435 2331 //
duke@435 2332 // Op_Fastunlock previously appeared in the Op_* list below.
duke@435 2333 // With the advent of 1-0 lock operations we're no longer guaranteed
duke@435 2334 // that a monitor exit operation contains a serializing instruction.
duke@435 2335
duke@435 2336 if (xop == Op_MemBarVolatile ||
duke@435 2337 xop == Op_FastLock ||
duke@435 2338 xop == Op_CompareAndSwapL ||
duke@435 2339 xop == Op_CompareAndSwapP ||
coleenp@548 2340 xop == Op_CompareAndSwapN ||
duke@435 2341 xop == Op_CompareAndSwapI)
duke@435 2342 return true;
duke@435 2343
duke@435 2344 if (x->is_MemBar()) {
duke@435 2345 // We must retain this membar if there is an upcoming volatile
duke@435 2346 // load, which will be preceded by acquire membar.
duke@435 2347 if (xop == Op_MemBarAcquire)
duke@435 2348 return false;
duke@435 2349 // For other kinds of barriers, check by pretending we
duke@435 2350 // are them, and seeing if we can be removed.
duke@435 2351 else
duke@435 2352 return post_store_load_barrier((const MemBarNode*)x);
duke@435 2353 }
duke@435 2354
duke@435 2355 // Delicate code to detect case of an upcoming fastlock block
duke@435 2356 if( x->is_If() && x->req() > 1 &&
duke@435 2357 !C->node_arena()->contains(x) ) { // Unmatched old-space only
duke@435 2358 Node *iff = x;
duke@435 2359 Node *bol = iff->in(1);
duke@435 2360 // The iff might be some random subclass of If or bol might be Con-Top
duke@435 2361 if (!bol->is_Bool()) return false;
duke@435 2362 assert( bol->req() > 1, "" );
duke@435 2363 return (bol->in(1)->Opcode() == Op_FastUnlock);
duke@435 2364 }
duke@435 2365 // probably not necessary to check for these
duke@435 2366 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
duke@435 2367 return false;
duke@435 2368 }
duke@435 2369 return false;
duke@435 2370 }
duke@435 2371
duke@435 2372 //=============================================================================
duke@435 2373 //---------------------------State---------------------------------------------
duke@435 2374 State::State(void) {
duke@435 2375 #ifdef ASSERT
duke@435 2376 _id = 0;
duke@435 2377 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2378 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2379 //memset(_cost, -1, sizeof(_cost));
duke@435 2380 //memset(_rule, -1, sizeof(_rule));
duke@435 2381 #endif
duke@435 2382 memset(_valid, 0, sizeof(_valid));
duke@435 2383 }
duke@435 2384
duke@435 2385 #ifdef ASSERT
duke@435 2386 State::~State() {
duke@435 2387 _id = 99;
duke@435 2388 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2389 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2390 memset(_cost, -3, sizeof(_cost));
duke@435 2391 memset(_rule, -3, sizeof(_rule));
duke@435 2392 }
duke@435 2393 #endif
duke@435 2394
duke@435 2395 #ifndef PRODUCT
duke@435 2396 //---------------------------dump----------------------------------------------
duke@435 2397 void State::dump() {
duke@435 2398 tty->print("\n");
duke@435 2399 dump(0);
duke@435 2400 }
duke@435 2401
duke@435 2402 void State::dump(int depth) {
duke@435 2403 for( int j = 0; j < depth; j++ )
duke@435 2404 tty->print(" ");
duke@435 2405 tty->print("--N: ");
duke@435 2406 _leaf->dump();
duke@435 2407 uint i;
duke@435 2408 for( i = 0; i < _LAST_MACH_OPER; i++ )
duke@435 2409 // Check for valid entry
duke@435 2410 if( valid(i) ) {
duke@435 2411 for( int j = 0; j < depth; j++ )
duke@435 2412 tty->print(" ");
duke@435 2413 assert(_cost[i] != max_juint, "cost must be a valid value");
duke@435 2414 assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
duke@435 2415 tty->print_cr("%s %d %s",
duke@435 2416 ruleName[i], _cost[i], ruleName[_rule[i]] );
duke@435 2417 }
duke@435 2418 tty->print_cr("");
duke@435 2419
duke@435 2420 for( i=0; i<2; i++ )
duke@435 2421 if( _kids[i] )
duke@435 2422 _kids[i]->dump(depth+1);
duke@435 2423 }
duke@435 2424 #endif

mercurial