src/cpu/sparc/vm/interp_masm_sparc.cpp

Thu, 07 Oct 2010 15:12:57 -0400

author
bobv
date
Thu, 07 Oct 2010 15:12:57 -0400
changeset 2223
3dc12ef8735e
parent 2138
d5d065957597
child 2314
f95d63e2154a
permissions
-rw-r--r--

6989297: Integrate additional portability improvements
Reviewed-by: vladidan, dholmes

duke@435 1 /*
trims@1907 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_interp_masm_sparc.cpp.incl"
duke@435 27
duke@435 28 #ifndef CC_INTERP
duke@435 29 #ifndef FAST_DISPATCH
duke@435 30 #define FAST_DISPATCH 1
duke@435 31 #endif
duke@435 32 #undef FAST_DISPATCH
duke@435 33
duke@435 34 // Implementation of InterpreterMacroAssembler
duke@435 35
duke@435 36 // This file specializes the assember with interpreter-specific macros
duke@435 37
twisti@1162 38 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
twisti@1162 39 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
duke@435 40
duke@435 41 #else // CC_INTERP
duke@435 42 #ifndef STATE
duke@435 43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
duke@435 44 #endif // STATE
duke@435 45
duke@435 46 #endif // CC_INTERP
duke@435 47
duke@435 48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
duke@435 49 // Note: this algorithm is also used by C1's OSR entry sequence.
duke@435 50 // Any changes should also be applied to CodeEmitter::emit_osr_entry().
duke@435 51 assert_different_registers(args_size, locals_size);
duke@435 52 // max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
duke@435 53 subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
duke@435 54 // Use br/mov combination because it works on both V8 and V9 and is
duke@435 55 // faster.
duke@435 56 Label skip_move;
duke@435 57 br(Assembler::negative, true, Assembler::pt, skip_move);
duke@435 58 delayed()->mov(G0, delta);
duke@435 59 bind(skip_move);
duke@435 60 round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
duke@435 61 sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
duke@435 62 }
duke@435 63
duke@435 64 #ifndef CC_INTERP
duke@435 65
duke@435 66 // Dispatch code executed in the prolog of a bytecode which does not do it's
duke@435 67 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
duke@435 68 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
duke@435 69 assert_not_delayed();
duke@435 70 #ifdef FAST_DISPATCH
duke@435 71 // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
duke@435 72 // they both use I2.
duke@435 73 assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
duke@435 74 ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 75 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 76 // add offset to correct dispatch table
duke@435 77 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 78 ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
duke@435 79 #else
twisti@1162 80 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 81 // dispatch table to use
twisti@1162 82 AddressLiteral tbl(Interpreter::dispatch_table(state));
twisti@1162 83 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 84 set(tbl, G3_scratch); // compute addr of table
twisti@1162 85 ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
duke@435 86 #endif
duke@435 87 }
duke@435 88
duke@435 89
duke@435 90 // Dispatch code executed in the epilog of a bytecode which does not do it's
duke@435 91 // own dispatch. The dispatch address in IdispatchAddress is used for the
duke@435 92 // dispatch.
duke@435 93 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
duke@435 94 assert_not_delayed();
duke@435 95 verify_FPU(1, state);
duke@435 96 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 97 jmp( IdispatchAddress, 0 );
duke@435 98 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 99 else delayed()->nop();
duke@435 100 }
duke@435 101
duke@435 102
duke@435 103 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
duke@435 104 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 105 assert_not_delayed();
duke@435 106 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 107 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
duke@435 108 }
duke@435 109
duke@435 110
duke@435 111 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
duke@435 112 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 113 assert_not_delayed();
duke@435 114 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 115 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
duke@435 116 }
duke@435 117
duke@435 118
duke@435 119 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
duke@435 120 // load current bytecode
duke@435 121 assert_not_delayed();
duke@435 122 ldub( Lbcp, 0, Lbyte_code); // load next bytecode
duke@435 123 dispatch_base(state, table);
duke@435 124 }
duke@435 125
duke@435 126
duke@435 127 void InterpreterMacroAssembler::call_VM_leaf_base(
duke@435 128 Register java_thread,
duke@435 129 address entry_point,
duke@435 130 int number_of_arguments
duke@435 131 ) {
duke@435 132 if (!java_thread->is_valid())
duke@435 133 java_thread = L7_thread_cache;
duke@435 134 // super call
duke@435 135 MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
duke@435 136 }
duke@435 137
duke@435 138
duke@435 139 void InterpreterMacroAssembler::call_VM_base(
duke@435 140 Register oop_result,
duke@435 141 Register java_thread,
duke@435 142 Register last_java_sp,
duke@435 143 address entry_point,
duke@435 144 int number_of_arguments,
duke@435 145 bool check_exception
duke@435 146 ) {
duke@435 147 if (!java_thread->is_valid())
duke@435 148 java_thread = L7_thread_cache;
duke@435 149 // See class ThreadInVMfromInterpreter, which assumes that the interpreter
duke@435 150 // takes responsibility for setting its own thread-state on call-out.
duke@435 151 // However, ThreadInVMfromInterpreter resets the state to "in_Java".
duke@435 152
duke@435 153 //save_bcp(); // save bcp
duke@435 154 MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
duke@435 155 //restore_bcp(); // restore bcp
duke@435 156 //restore_locals(); // restore locals pointer
duke@435 157 }
duke@435 158
duke@435 159
duke@435 160 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 161 if (JvmtiExport::can_pop_frame()) {
duke@435 162 Label L;
duke@435 163
duke@435 164 // Check the "pending popframe condition" flag in the current thread
twisti@1162 165 ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
duke@435 166
duke@435 167 // Initiate popframe handling only if it is not already being processed. If the flag
duke@435 168 // has the popframe_processing bit set, it means that this code is called *during* popframe
duke@435 169 // handling - we don't want to reenter.
duke@435 170 btst(JavaThread::popframe_pending_bit, scratch_reg);
duke@435 171 br(zero, false, pt, L);
duke@435 172 delayed()->nop();
duke@435 173 btst(JavaThread::popframe_processing_bit, scratch_reg);
duke@435 174 br(notZero, false, pt, L);
duke@435 175 delayed()->nop();
duke@435 176
duke@435 177 // Call Interpreter::remove_activation_preserving_args_entry() to get the
duke@435 178 // address of the same-named entrypoint in the generated interpreter code.
duke@435 179 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
duke@435 180
duke@435 181 // Jump to Interpreter::_remove_activation_preserving_args_entry
duke@435 182 jmpl(O0, G0, G0);
duke@435 183 delayed()->nop();
duke@435 184 bind(L);
duke@435 185 }
duke@435 186 }
duke@435 187
duke@435 188
duke@435 189 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
duke@435 190 Register thr_state = G4_scratch;
twisti@1162 191 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
twisti@1162 192 const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
twisti@1162 193 const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
twisti@1162 194 const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
duke@435 195 switch (state) {
duke@435 196 case ltos: ld_long(val_addr, Otos_l); break;
duke@435 197 case atos: ld_ptr(oop_addr, Otos_l);
duke@435 198 st_ptr(G0, oop_addr); break;
duke@435 199 case btos: // fall through
duke@435 200 case ctos: // fall through
duke@435 201 case stos: // fall through
duke@435 202 case itos: ld(val_addr, Otos_l1); break;
duke@435 203 case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
duke@435 204 case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
duke@435 205 case vtos: /* nothing to do */ break;
duke@435 206 default : ShouldNotReachHere();
duke@435 207 }
duke@435 208 // Clean up tos value in the jvmti thread state
duke@435 209 or3(G0, ilgl, G3_scratch);
duke@435 210 stw(G3_scratch, tos_addr);
duke@435 211 st_long(G0, val_addr);
duke@435 212 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 213 }
duke@435 214
duke@435 215
duke@435 216 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 217 if (JvmtiExport::can_force_early_return()) {
duke@435 218 Label L;
duke@435 219 Register thr_state = G3_scratch;
twisti@1162 220 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
duke@435 221 tst(thr_state);
duke@435 222 br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
duke@435 223 delayed()->nop();
duke@435 224
duke@435 225 // Initiate earlyret handling only if it is not already being processed.
duke@435 226 // If the flag has the earlyret_processing bit set, it means that this code
duke@435 227 // is called *during* earlyret handling - we don't want to reenter.
twisti@1162 228 ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
duke@435 229 cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
duke@435 230 br(Assembler::notEqual, false, pt, L);
duke@435 231 delayed()->nop();
duke@435 232
duke@435 233 // Call Interpreter::remove_activation_early_entry() to get the address of the
duke@435 234 // same-named entrypoint in the generated interpreter code
twisti@1162 235 ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
duke@435 236 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
duke@435 237
duke@435 238 // Jump to Interpreter::_remove_activation_early_entry
duke@435 239 jmpl(O0, G0, G0);
duke@435 240 delayed()->nop();
duke@435 241 bind(L);
duke@435 242 }
duke@435 243 }
duke@435 244
duke@435 245
twisti@1730 246 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 247 mov(arg_1, O0);
twisti@1730 248 mov(arg_2, O1);
twisti@1730 249 MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
duke@435 250 }
duke@435 251 #endif /* CC_INTERP */
duke@435 252
duke@435 253
duke@435 254 #ifndef CC_INTERP
duke@435 255
duke@435 256 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
duke@435 257 assert_not_delayed();
duke@435 258 dispatch_Lbyte_code(state, table);
duke@435 259 }
duke@435 260
duke@435 261
duke@435 262 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
duke@435 263 dispatch_base(state, Interpreter::normal_table(state));
duke@435 264 }
duke@435 265
duke@435 266
duke@435 267 void InterpreterMacroAssembler::dispatch_only(TosState state) {
duke@435 268 dispatch_base(state, Interpreter::dispatch_table(state));
duke@435 269 }
duke@435 270
duke@435 271
duke@435 272 // common code to dispatch and dispatch_only
duke@435 273 // dispatch value in Lbyte_code and increment Lbcp
duke@435 274
duke@435 275 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
duke@435 276 verify_FPU(1, state);
duke@435 277 // %%%%% maybe implement +VerifyActivationFrameSize here
duke@435 278 //verify_thread(); //too slow; we will just verify on method entry & exit
duke@435 279 if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 280 #ifdef FAST_DISPATCH
duke@435 281 if (table == Interpreter::dispatch_table(state)) {
duke@435 282 // use IdispatchTables
duke@435 283 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 284 // add offset to correct dispatch table
duke@435 285 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 286 ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr
duke@435 287 } else {
duke@435 288 #endif
duke@435 289 // dispatch table to use
twisti@1162 290 AddressLiteral tbl(table);
duke@435 291 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 292 set(tbl, G3_scratch); // compute addr of table
duke@435 293 ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
duke@435 294 #ifdef FAST_DISPATCH
duke@435 295 }
duke@435 296 #endif
duke@435 297 jmp( G3_scratch, 0 );
duke@435 298 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 299 else delayed()->nop();
duke@435 300 }
duke@435 301
duke@435 302
duke@435 303 // Helpers for expression stack
duke@435 304
duke@435 305 // Longs and doubles are Category 2 computational types in the
duke@435 306 // JVM specification (section 3.11.1) and take 2 expression stack or
duke@435 307 // local slots.
duke@435 308 // Aligning them on 32 bit with tagged stacks is hard because the code generated
duke@435 309 // for the dup* bytecodes depends on what types are already on the stack.
duke@435 310 // If the types are split into the two stack/local slots, that is much easier
duke@435 311 // (and we can use 0 for non-reference tags).
duke@435 312
duke@435 313 // Known good alignment in _LP64 but unknown otherwise
duke@435 314 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
duke@435 315 assert_not_delayed();
duke@435 316
duke@435 317 #ifdef _LP64
duke@435 318 ldf(FloatRegisterImpl::D, r1, offset, d);
duke@435 319 #else
duke@435 320 ldf(FloatRegisterImpl::S, r1, offset, d);
twisti@1861 321 ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
duke@435 322 #endif
duke@435 323 }
duke@435 324
duke@435 325 // Known good alignment in _LP64 but unknown otherwise
duke@435 326 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
duke@435 327 assert_not_delayed();
duke@435 328
duke@435 329 #ifdef _LP64
duke@435 330 stf(FloatRegisterImpl::D, d, r1, offset);
duke@435 331 // store something more useful here
twisti@1861 332 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
duke@435 333 #else
duke@435 334 stf(FloatRegisterImpl::S, d, r1, offset);
twisti@1861 335 stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
duke@435 336 #endif
duke@435 337 }
duke@435 338
duke@435 339
duke@435 340 // Known good alignment in _LP64 but unknown otherwise
duke@435 341 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
duke@435 342 assert_not_delayed();
duke@435 343 #ifdef _LP64
duke@435 344 ldx(r1, offset, rd);
duke@435 345 #else
duke@435 346 ld(r1, offset, rd);
twisti@1861 347 ld(r1, offset + Interpreter::stackElementSize, rd->successor());
duke@435 348 #endif
duke@435 349 }
duke@435 350
duke@435 351 // Known good alignment in _LP64 but unknown otherwise
duke@435 352 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
duke@435 353 assert_not_delayed();
duke@435 354
duke@435 355 #ifdef _LP64
duke@435 356 stx(l, r1, offset);
duke@435 357 // store something more useful here
twisti@1861 358 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
duke@435 359 #else
duke@435 360 st(l, r1, offset);
twisti@1861 361 st(l->successor(), r1, offset + Interpreter::stackElementSize);
duke@435 362 #endif
duke@435 363 }
duke@435 364
duke@435 365 void InterpreterMacroAssembler::pop_i(Register r) {
duke@435 366 assert_not_delayed();
duke@435 367 ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 368 inc(Lesp, Interpreter::stackElementSize);
duke@435 369 debug_only(verify_esp(Lesp));
duke@435 370 }
duke@435 371
duke@435 372 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
duke@435 373 assert_not_delayed();
duke@435 374 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 375 inc(Lesp, Interpreter::stackElementSize);
duke@435 376 debug_only(verify_esp(Lesp));
duke@435 377 }
duke@435 378
duke@435 379 void InterpreterMacroAssembler::pop_l(Register r) {
duke@435 380 assert_not_delayed();
duke@435 381 load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 382 inc(Lesp, 2*Interpreter::stackElementSize);
duke@435 383 debug_only(verify_esp(Lesp));
duke@435 384 }
duke@435 385
duke@435 386
duke@435 387 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
duke@435 388 assert_not_delayed();
duke@435 389 ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
twisti@1861 390 inc(Lesp, Interpreter::stackElementSize);
duke@435 391 debug_only(verify_esp(Lesp));
duke@435 392 }
duke@435 393
duke@435 394
duke@435 395 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
duke@435 396 assert_not_delayed();
duke@435 397 load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
twisti@1861 398 inc(Lesp, 2*Interpreter::stackElementSize);
duke@435 399 debug_only(verify_esp(Lesp));
duke@435 400 }
duke@435 401
duke@435 402
duke@435 403 void InterpreterMacroAssembler::push_i(Register r) {
duke@435 404 assert_not_delayed();
duke@435 405 debug_only(verify_esp(Lesp));
twisti@1861 406 st(r, Lesp, 0);
twisti@1861 407 dec(Lesp, Interpreter::stackElementSize);
duke@435 408 }
duke@435 409
duke@435 410 void InterpreterMacroAssembler::push_ptr(Register r) {
duke@435 411 assert_not_delayed();
twisti@1861 412 st_ptr(r, Lesp, 0);
twisti@1861 413 dec(Lesp, Interpreter::stackElementSize);
duke@435 414 }
duke@435 415
duke@435 416 // remember: our convention for longs in SPARC is:
duke@435 417 // O0 (Otos_l1) has high-order part in first word,
duke@435 418 // O1 (Otos_l2) has low-order part in second word
duke@435 419
duke@435 420 void InterpreterMacroAssembler::push_l(Register r) {
duke@435 421 assert_not_delayed();
duke@435 422 debug_only(verify_esp(Lesp));
twisti@1861 423 // Longs are stored in memory-correct order, even if unaligned.
twisti@1861 424 int offset = -Interpreter::stackElementSize;
duke@435 425 store_unaligned_long(r, Lesp, offset);
twisti@1861 426 dec(Lesp, 2 * Interpreter::stackElementSize);
duke@435 427 }
duke@435 428
duke@435 429
duke@435 430 void InterpreterMacroAssembler::push_f(FloatRegister f) {
duke@435 431 assert_not_delayed();
duke@435 432 debug_only(verify_esp(Lesp));
twisti@1861 433 stf(FloatRegisterImpl::S, f, Lesp, 0);
twisti@1861 434 dec(Lesp, Interpreter::stackElementSize);
duke@435 435 }
duke@435 436
duke@435 437
duke@435 438 void InterpreterMacroAssembler::push_d(FloatRegister d) {
duke@435 439 assert_not_delayed();
duke@435 440 debug_only(verify_esp(Lesp));
twisti@1861 441 // Longs are stored in memory-correct order, even if unaligned.
twisti@1861 442 int offset = -Interpreter::stackElementSize;
duke@435 443 store_unaligned_double(d, Lesp, offset);
twisti@1861 444 dec(Lesp, 2 * Interpreter::stackElementSize);
duke@435 445 }
duke@435 446
duke@435 447
duke@435 448 void InterpreterMacroAssembler::push(TosState state) {
duke@435 449 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 450 switch (state) {
duke@435 451 case atos: push_ptr(); break;
duke@435 452 case btos: push_i(); break;
duke@435 453 case ctos:
duke@435 454 case stos: push_i(); break;
duke@435 455 case itos: push_i(); break;
duke@435 456 case ltos: push_l(); break;
duke@435 457 case ftos: push_f(); break;
duke@435 458 case dtos: push_d(); break;
duke@435 459 case vtos: /* nothing to do */ break;
duke@435 460 default : ShouldNotReachHere();
duke@435 461 }
duke@435 462 }
duke@435 463
duke@435 464
duke@435 465 void InterpreterMacroAssembler::pop(TosState state) {
duke@435 466 switch (state) {
duke@435 467 case atos: pop_ptr(); break;
duke@435 468 case btos: pop_i(); break;
duke@435 469 case ctos:
duke@435 470 case stos: pop_i(); break;
duke@435 471 case itos: pop_i(); break;
duke@435 472 case ltos: pop_l(); break;
duke@435 473 case ftos: pop_f(); break;
duke@435 474 case dtos: pop_d(); break;
duke@435 475 case vtos: /* nothing to do */ break;
duke@435 476 default : ShouldNotReachHere();
duke@435 477 }
duke@435 478 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 479 }
duke@435 480
duke@435 481
twisti@1861 482 // Helpers for swap and dup
twisti@1861 483 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
duke@435 484 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
duke@435 485 }
twisti@1861 486 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
duke@435 487 st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
duke@435 488 }
duke@435 489
duke@435 490
duke@435 491 void InterpreterMacroAssembler::load_receiver(Register param_count,
duke@435 492 Register recv) {
twisti@1861 493 sll(param_count, Interpreter::logStackElementSize, param_count);
duke@435 494 ld_ptr(Lesp, param_count, recv); // gets receiver Oop
duke@435 495 }
duke@435 496
duke@435 497 void InterpreterMacroAssembler::empty_expression_stack() {
duke@435 498 // Reset Lesp.
duke@435 499 sub( Lmonitors, wordSize, Lesp );
duke@435 500
duke@435 501 // Reset SP by subtracting more space from Lesp.
duke@435 502 Label done;
duke@435 503 verify_oop(Lmethod);
twisti@1162 504 assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
duke@435 505
duke@435 506 // A native does not need to do this, since its callee does not change SP.
twisti@1162 507 ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size); // Load access flags.
duke@435 508 btst(JVM_ACC_NATIVE, Gframe_size);
duke@435 509 br(Assembler::notZero, false, Assembler::pt, done);
duke@435 510 delayed()->nop();
duke@435 511
duke@435 512 // Compute max expression stack+register save area
twisti@1162 513 lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size); // Load max stack.
duke@435 514 add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
duke@435 515
duke@435 516 //
duke@435 517 // now set up a stack frame with the size computed above
duke@435 518 //
duke@435 519 //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
duke@435 520 sll( Gframe_size, LogBytesPerWord, Gframe_size );
duke@435 521 sub( Lesp, Gframe_size, Gframe_size );
duke@435 522 and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
duke@435 523 debug_only(verify_sp(Gframe_size, G4_scratch));
duke@435 524 #ifdef _LP64
duke@435 525 sub(Gframe_size, STACK_BIAS, Gframe_size );
duke@435 526 #endif
duke@435 527 mov(Gframe_size, SP);
duke@435 528
duke@435 529 bind(done);
duke@435 530 }
duke@435 531
duke@435 532
duke@435 533 #ifdef ASSERT
duke@435 534 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
duke@435 535 Label Bad, OK;
duke@435 536
duke@435 537 // Saved SP must be aligned.
duke@435 538 #ifdef _LP64
duke@435 539 btst(2*BytesPerWord-1, Rsp);
duke@435 540 #else
duke@435 541 btst(LongAlignmentMask, Rsp);
duke@435 542 #endif
duke@435 543 br(Assembler::notZero, false, Assembler::pn, Bad);
duke@435 544 delayed()->nop();
duke@435 545
duke@435 546 // Saved SP, plus register window size, must not be above FP.
duke@435 547 add(Rsp, frame::register_save_words * wordSize, Rtemp);
duke@435 548 #ifdef _LP64
duke@435 549 sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
duke@435 550 #endif
duke@435 551 cmp(Rtemp, FP);
duke@435 552 brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
duke@435 553 delayed()->nop();
duke@435 554
duke@435 555 // Saved SP must not be ridiculously below current SP.
duke@435 556 size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
duke@435 557 set(maxstack, Rtemp);
duke@435 558 sub(SP, Rtemp, Rtemp);
duke@435 559 #ifdef _LP64
duke@435 560 add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
duke@435 561 #endif
duke@435 562 cmp(Rsp, Rtemp);
duke@435 563 brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
duke@435 564 delayed()->nop();
duke@435 565
duke@435 566 br(Assembler::always, false, Assembler::pn, OK);
duke@435 567 delayed()->nop();
duke@435 568
duke@435 569 bind(Bad);
duke@435 570 stop("on return to interpreted call, restored SP is corrupted");
duke@435 571
duke@435 572 bind(OK);
duke@435 573 }
duke@435 574
duke@435 575
duke@435 576 void InterpreterMacroAssembler::verify_esp(Register Resp) {
duke@435 577 // about to read or write Resp[0]
duke@435 578 // make sure it is not in the monitors or the register save area
duke@435 579 Label OK1, OK2;
duke@435 580
duke@435 581 cmp(Resp, Lmonitors);
duke@435 582 brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
duke@435 583 delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 584 stop("too many pops: Lesp points into monitor area");
duke@435 585 bind(OK1);
duke@435 586 #ifdef _LP64
duke@435 587 sub(Resp, STACK_BIAS, Resp);
duke@435 588 #endif
duke@435 589 cmp(Resp, SP);
duke@435 590 brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
duke@435 591 delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 592 stop("too many pushes: Lesp points into register window");
duke@435 593 bind(OK2);
duke@435 594 }
duke@435 595 #endif // ASSERT
duke@435 596
duke@435 597 // Load compiled (i2c) or interpreter entry when calling from interpreted and
duke@435 598 // do the call. Centralized so that all interpreter calls will do the same actions.
duke@435 599 // If jvmti single stepping is on for a thread we must not call compiled code.
duke@435 600 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
duke@435 601
duke@435 602 // Assume we want to go compiled if available
duke@435 603
duke@435 604 ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
duke@435 605
duke@435 606 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 607 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
duke@435 608 // compiled code in threads for which the event is enabled. Check here for
duke@435 609 // interp_only_mode if these events CAN be enabled.
duke@435 610 verify_thread();
duke@435 611 Label skip_compiled_code;
duke@435 612
twisti@1162 613 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 614 ld(interp_only, scratch);
duke@435 615 tst(scratch);
duke@435 616 br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
duke@435 617 delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
duke@435 618 bind(skip_compiled_code);
duke@435 619 }
duke@435 620
duke@435 621 // the i2c_adapters need methodOop in G5_method (right? %%%)
duke@435 622 // do the call
duke@435 623 #ifdef ASSERT
duke@435 624 {
duke@435 625 Label ok;
duke@435 626 br_notnull(target, false, Assembler::pt, ok);
duke@435 627 delayed()->nop();
duke@435 628 stop("null entry point");
duke@435 629 bind(ok);
duke@435 630 }
duke@435 631 #endif // ASSERT
duke@435 632
duke@435 633 // Adjust Rret first so Llast_SP can be same as Rret
duke@435 634 add(Rret, -frame::pc_return_offset, O7);
duke@435 635 add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
duke@435 636 // Record SP so we can remove any stack space allocated by adapter transition
duke@435 637 jmp(target, 0);
duke@435 638 delayed()->mov(SP, Llast_SP);
duke@435 639 }
duke@435 640
duke@435 641 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
duke@435 642 assert_not_delayed();
duke@435 643
duke@435 644 Label not_taken;
duke@435 645 if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
duke@435 646 else br (cc, false, Assembler::pn, not_taken);
duke@435 647 delayed()->nop();
duke@435 648
duke@435 649 TemplateTable::branch(false,false);
duke@435 650
duke@435 651 bind(not_taken);
duke@435 652
duke@435 653 profile_not_taken_branch(G3_scratch);
duke@435 654 }
duke@435 655
duke@435 656
duke@435 657 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
duke@435 658 int bcp_offset,
duke@435 659 Register Rtmp,
duke@435 660 Register Rdst,
duke@435 661 signedOrNot is_signed,
duke@435 662 setCCOrNot should_set_CC ) {
duke@435 663 assert(Rtmp != Rdst, "need separate temp register");
duke@435 664 assert_not_delayed();
duke@435 665 switch (is_signed) {
duke@435 666 default: ShouldNotReachHere();
duke@435 667
duke@435 668 case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 669 case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 670 }
duke@435 671 ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
duke@435 672 sll( Rdst, BitsPerByte, Rdst);
duke@435 673 switch (should_set_CC ) {
duke@435 674 default: ShouldNotReachHere();
duke@435 675
duke@435 676 case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
duke@435 677 case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
duke@435 678 }
duke@435 679 }
duke@435 680
duke@435 681
duke@435 682 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
duke@435 683 int bcp_offset,
duke@435 684 Register Rtmp,
duke@435 685 Register Rdst,
duke@435 686 setCCOrNot should_set_CC ) {
duke@435 687 assert(Rtmp != Rdst, "need separate temp register");
duke@435 688 assert_not_delayed();
duke@435 689 add( Lbcp, bcp_offset, Rtmp);
duke@435 690 andcc( Rtmp, 3, G0);
duke@435 691 Label aligned;
duke@435 692 switch (should_set_CC ) {
duke@435 693 default: ShouldNotReachHere();
duke@435 694
duke@435 695 case set_CC: break;
duke@435 696 case dont_set_CC: break;
duke@435 697 }
duke@435 698
duke@435 699 br(Assembler::zero, true, Assembler::pn, aligned);
duke@435 700 #ifdef _LP64
duke@435 701 delayed()->ldsw(Rtmp, 0, Rdst);
duke@435 702 #else
duke@435 703 delayed()->ld(Rtmp, 0, Rdst);
duke@435 704 #endif
duke@435 705
duke@435 706 ldub(Lbcp, bcp_offset + 3, Rdst);
duke@435 707 ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 708 ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 709 #ifdef _LP64
duke@435 710 ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 711 #else
duke@435 712 // Unsigned load is faster than signed on some implementations
duke@435 713 ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 714 #endif
duke@435 715 or3(Rtmp, Rdst, Rdst );
duke@435 716
duke@435 717 bind(aligned);
duke@435 718 if (should_set_CC == set_CC) tst(Rdst);
duke@435 719 }
duke@435 720
duke@435 721
twisti@1858 722 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register cache, Register tmp,
jrose@1920 723 int bcp_offset, size_t index_size) {
twisti@1858 724 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
jrose@1920 725 if (index_size == sizeof(u2)) {
twisti@1858 726 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
jrose@1920 727 } else if (index_size == sizeof(u4)) {
twisti@1858 728 assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
twisti@1858 729 get_4_byte_integer_at_bcp(bcp_offset, cache, tmp);
twisti@1858 730 assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
twisti@1858 731 xor3(tmp, -1, tmp); // convert to plain index
jrose@1920 732 } else if (index_size == sizeof(u1)) {
jrose@1920 733 assert(EnableMethodHandles, "tiny index used only for EnableMethodHandles");
jrose@1920 734 ldub(Lbcp, bcp_offset, tmp);
jrose@1920 735 } else {
jrose@1920 736 ShouldNotReachHere();
twisti@1858 737 }
twisti@1858 738 }
twisti@1858 739
twisti@1858 740
twisti@1858 741 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
jrose@1920 742 int bcp_offset, size_t index_size) {
duke@435 743 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 744 assert_different_registers(cache, tmp);
duke@435 745 assert_not_delayed();
jrose@1920 746 get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
twisti@1858 747 // convert from field index to ConstantPoolCacheEntry index and from
twisti@1858 748 // word index to byte offset
duke@435 749 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 750 add(LcpoolCache, tmp, cache);
duke@435 751 }
duke@435 752
duke@435 753
twisti@1858 754 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
jrose@1920 755 int bcp_offset, size_t index_size) {
duke@435 756 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 757 assert_different_registers(cache, tmp);
duke@435 758 assert_not_delayed();
jrose@1920 759 if (index_size == sizeof(u2)) {
jrose@1920 760 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
jrose@1920 761 } else {
jrose@1920 762 ShouldNotReachHere(); // other sizes not supported here
jrose@1920 763 }
duke@435 764 // convert from field index to ConstantPoolCacheEntry index
duke@435 765 // and from word index to byte offset
duke@435 766 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 767 // skip past the header
duke@435 768 add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
duke@435 769 // construct pointer to cache entry
duke@435 770 add(LcpoolCache, tmp, cache);
duke@435 771 }
duke@435 772
duke@435 773
duke@435 774 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
coleenp@548 775 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
duke@435 776 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
duke@435 777 Register Rsuper_klass,
duke@435 778 Register Rtmp1,
duke@435 779 Register Rtmp2,
duke@435 780 Register Rtmp3,
duke@435 781 Label &ok_is_subtype ) {
jrose@1079 782 Label not_subtype;
duke@435 783
duke@435 784 // Profile the not-null value's klass.
duke@435 785 profile_typecheck(Rsub_klass, Rtmp1);
duke@435 786
jrose@1079 787 check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
jrose@1079 788 Rtmp1, Rtmp2,
jrose@1079 789 &ok_is_subtype, &not_subtype, NULL);
jrose@1079 790
jrose@1079 791 check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
jrose@1079 792 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
jrose@1079 793 &ok_is_subtype, NULL);
duke@435 794
duke@435 795 bind(not_subtype);
duke@435 796 profile_typecheck_failed(Rtmp1);
duke@435 797 }
duke@435 798
duke@435 799 // Separate these two to allow for delay slot in middle
duke@435 800 // These are used to do a test and full jump to exception-throwing code.
duke@435 801
duke@435 802 // %%%%% Could possibly reoptimize this by testing to see if could use
duke@435 803 // a single conditional branch (i.e. if span is small enough.
duke@435 804 // If you go that route, than get rid of the split and give up
duke@435 805 // on the delay-slot hack.
duke@435 806
duke@435 807 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
duke@435 808 Label& ok ) {
duke@435 809 assert_not_delayed();
duke@435 810 br(ok_condition, true, pt, ok);
duke@435 811 // DELAY SLOT
duke@435 812 }
duke@435 813
duke@435 814 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
duke@435 815 Label& ok ) {
duke@435 816 assert_not_delayed();
duke@435 817 bp( ok_condition, true, Assembler::xcc, pt, ok);
duke@435 818 // DELAY SLOT
duke@435 819 }
duke@435 820
duke@435 821 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
duke@435 822 Label& ok ) {
duke@435 823 assert_not_delayed();
duke@435 824 brx(ok_condition, true, pt, ok);
duke@435 825 // DELAY SLOT
duke@435 826 }
duke@435 827
duke@435 828 void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
duke@435 829 Register Rscratch,
duke@435 830 Label& ok ) {
duke@435 831 assert(throw_entry_point != NULL, "entry point must be generated by now");
twisti@1162 832 AddressLiteral dest(throw_entry_point);
twisti@1162 833 jump_to(dest, Rscratch);
duke@435 834 delayed()->nop();
duke@435 835 bind(ok);
duke@435 836 }
duke@435 837
duke@435 838
duke@435 839 // And if you cannot use the delay slot, here is a shorthand:
duke@435 840
duke@435 841 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
duke@435 842 address throw_entry_point,
duke@435 843 Register Rscratch ) {
duke@435 844 Label ok;
duke@435 845 if (ok_condition != never) {
duke@435 846 throw_if_not_1_icc( ok_condition, ok);
duke@435 847 delayed()->nop();
duke@435 848 }
duke@435 849 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 850 }
duke@435 851 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
duke@435 852 address throw_entry_point,
duke@435 853 Register Rscratch ) {
duke@435 854 Label ok;
duke@435 855 if (ok_condition != never) {
duke@435 856 throw_if_not_1_xcc( ok_condition, ok);
duke@435 857 delayed()->nop();
duke@435 858 }
duke@435 859 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 860 }
duke@435 861 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
duke@435 862 address throw_entry_point,
duke@435 863 Register Rscratch ) {
duke@435 864 Label ok;
duke@435 865 if (ok_condition != never) {
duke@435 866 throw_if_not_1_x( ok_condition, ok);
duke@435 867 delayed()->nop();
duke@435 868 }
duke@435 869 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 870 }
duke@435 871
duke@435 872 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
duke@435 873 // Note: res is still shy of address by array offset into object.
duke@435 874
duke@435 875 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 876 assert_not_delayed();
duke@435 877
duke@435 878 verify_oop(array);
duke@435 879 #ifdef _LP64
duke@435 880 // sign extend since tos (index) can be a 32bit value
duke@435 881 sra(index, G0, index);
duke@435 882 #endif // _LP64
duke@435 883
duke@435 884 // check array
duke@435 885 Label ptr_ok;
duke@435 886 tst(array);
duke@435 887 throw_if_not_1_x( notZero, ptr_ok );
duke@435 888 delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
duke@435 889 throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
duke@435 890
duke@435 891 Label index_ok;
duke@435 892 cmp(index, tmp);
duke@435 893 throw_if_not_1_icc( lessUnsigned, index_ok );
duke@435 894 if (index_shift > 0) delayed()->sll(index, index_shift, index);
duke@435 895 else delayed()->add(array, index, res); // addr - const offset in index
duke@435 896 // convention: move aberrant index into G3_scratch for exception message
duke@435 897 mov(index, G3_scratch);
duke@435 898 throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
duke@435 899
duke@435 900 // add offset if didn't do it in delay slot
duke@435 901 if (index_shift > 0) add(array, index, res); // addr - const offset in index
duke@435 902 }
duke@435 903
duke@435 904
duke@435 905 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 906 assert_not_delayed();
duke@435 907
duke@435 908 // pop array
duke@435 909 pop_ptr(array);
duke@435 910
duke@435 911 // check array
duke@435 912 index_check_without_pop(array, index, index_shift, tmp, res);
duke@435 913 }
duke@435 914
duke@435 915
duke@435 916 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
duke@435 917 ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
duke@435 918 }
duke@435 919
duke@435 920
duke@435 921 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
duke@435 922 get_constant_pool(Rdst);
duke@435 923 ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
duke@435 924 }
duke@435 925
duke@435 926
duke@435 927 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
duke@435 928 get_constant_pool(Rcpool);
duke@435 929 ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
duke@435 930 }
duke@435 931
duke@435 932
duke@435 933 // unlock if synchronized method
duke@435 934 //
duke@435 935 // Unlock the receiver if this is a synchronized method.
duke@435 936 // Unlock any Java monitors from syncronized blocks.
duke@435 937 //
duke@435 938 // If there are locked Java monitors
duke@435 939 // If throw_monitor_exception
duke@435 940 // throws IllegalMonitorStateException
duke@435 941 // Else if install_monitor_exception
duke@435 942 // installs IllegalMonitorStateException
duke@435 943 // Else
duke@435 944 // no error processing
duke@435 945 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
duke@435 946 bool throw_monitor_exception,
duke@435 947 bool install_monitor_exception) {
duke@435 948 Label unlocked, unlock, no_unlock;
duke@435 949
duke@435 950 // get the value of _do_not_unlock_if_synchronized into G1_scratch
twisti@1162 951 const Address do_not_unlock_if_synchronized(G2_thread,
twisti@1162 952 JavaThread::do_not_unlock_if_synchronized_offset());
duke@435 953 ldbool(do_not_unlock_if_synchronized, G1_scratch);
duke@435 954 stbool(G0, do_not_unlock_if_synchronized); // reset the flag
duke@435 955
duke@435 956 // check if synchronized method
twisti@1162 957 const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
duke@435 958 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 959 push(state); // save tos
twisti@1162 960 ld(access_flags, G3_scratch); // Load access flags.
duke@435 961 btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
twisti@1162 962 br(zero, false, pt, unlocked);
duke@435 963 delayed()->nop();
duke@435 964
duke@435 965 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
duke@435 966 // is set.
duke@435 967 tstbool(G1_scratch);
duke@435 968 br(Assembler::notZero, false, pn, no_unlock);
duke@435 969 delayed()->nop();
duke@435 970
duke@435 971 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
duke@435 972 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
duke@435 973
duke@435 974 //Intel: if (throw_monitor_exception) ... else ...
duke@435 975 // Entry already unlocked, need to throw exception
duke@435 976 //...
duke@435 977
duke@435 978 // pass top-most monitor elem
duke@435 979 add( top_most_monitor(), O1 );
duke@435 980
duke@435 981 ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
duke@435 982 br_notnull(G3_scratch, false, pt, unlock);
duke@435 983 delayed()->nop();
duke@435 984
duke@435 985 if (throw_monitor_exception) {
duke@435 986 // Entry already unlocked need to throw an exception
duke@435 987 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 988 should_not_reach_here();
duke@435 989 } else {
duke@435 990 // Monitor already unlocked during a stack unroll.
duke@435 991 // If requested, install an illegal_monitor_state_exception.
duke@435 992 // Continue with stack unrolling.
duke@435 993 if (install_monitor_exception) {
duke@435 994 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 995 }
duke@435 996 ba(false, unlocked);
duke@435 997 delayed()->nop();
duke@435 998 }
duke@435 999
duke@435 1000 bind(unlock);
duke@435 1001
duke@435 1002 unlock_object(O1);
duke@435 1003
duke@435 1004 bind(unlocked);
duke@435 1005
duke@435 1006 // I0, I1: Might contain return value
duke@435 1007
duke@435 1008 // Check that all monitors are unlocked
duke@435 1009 { Label loop, exception, entry, restart;
duke@435 1010
duke@435 1011 Register Rmptr = O0;
duke@435 1012 Register Rtemp = O1;
duke@435 1013 Register Rlimit = Lmonitors;
duke@435 1014 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1015 assert( (delta & LongAlignmentMask) == 0,
duke@435 1016 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1017
duke@435 1018 #ifdef ASSERT
duke@435 1019 add(top_most_monitor(), Rmptr, delta);
duke@435 1020 { Label L;
duke@435 1021 // ensure that Rmptr starts out above (or at) Rlimit
duke@435 1022 cmp(Rmptr, Rlimit);
duke@435 1023 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 1024 delayed()->nop();
duke@435 1025 stop("monitor stack has negative size");
duke@435 1026 bind(L);
duke@435 1027 }
duke@435 1028 #endif
duke@435 1029 bind(restart);
duke@435 1030 ba(false, entry);
duke@435 1031 delayed()->
duke@435 1032 add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
duke@435 1033
duke@435 1034 // Entry is still locked, need to throw exception
duke@435 1035 bind(exception);
duke@435 1036 if (throw_monitor_exception) {
duke@435 1037 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1038 should_not_reach_here();
duke@435 1039 } else {
duke@435 1040 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
duke@435 1041 // Unlock does not block, so don't have to worry about the frame
duke@435 1042 unlock_object(Rmptr);
duke@435 1043 if (install_monitor_exception) {
duke@435 1044 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1045 }
duke@435 1046 ba(false, restart);
duke@435 1047 delayed()->nop();
duke@435 1048 }
duke@435 1049
duke@435 1050 bind(loop);
duke@435 1051 cmp(Rtemp, G0); // check if current entry is used
duke@435 1052 brx(Assembler::notEqual, false, pn, exception);
duke@435 1053 delayed()->
duke@435 1054 dec(Rmptr, delta); // otherwise advance to next entry
duke@435 1055 #ifdef ASSERT
duke@435 1056 { Label L;
duke@435 1057 // ensure that Rmptr has not somehow stepped below Rlimit
duke@435 1058 cmp(Rmptr, Rlimit);
duke@435 1059 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 1060 delayed()->nop();
duke@435 1061 stop("ran off the end of the monitor stack");
duke@435 1062 bind(L);
duke@435 1063 }
duke@435 1064 #endif
duke@435 1065 bind(entry);
duke@435 1066 cmp(Rmptr, Rlimit); // check if bottom reached
duke@435 1067 brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
duke@435 1068 delayed()->
duke@435 1069 ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
duke@435 1070 }
duke@435 1071
duke@435 1072 bind(no_unlock);
duke@435 1073 pop(state);
duke@435 1074 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1075 }
duke@435 1076
duke@435 1077
duke@435 1078 // remove activation
duke@435 1079 //
duke@435 1080 // Unlock the receiver if this is a synchronized method.
duke@435 1081 // Unlock any Java monitors from syncronized blocks.
duke@435 1082 // Remove the activation from the stack.
duke@435 1083 //
duke@435 1084 // If there are locked Java monitors
duke@435 1085 // If throw_monitor_exception
duke@435 1086 // throws IllegalMonitorStateException
duke@435 1087 // Else if install_monitor_exception
duke@435 1088 // installs IllegalMonitorStateException
duke@435 1089 // Else
duke@435 1090 // no error processing
duke@435 1091 void InterpreterMacroAssembler::remove_activation(TosState state,
duke@435 1092 bool throw_monitor_exception,
duke@435 1093 bool install_monitor_exception) {
duke@435 1094
duke@435 1095 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
duke@435 1096
duke@435 1097 // save result (push state before jvmti call and pop it afterwards) and notify jvmti
duke@435 1098 notify_method_exit(false, state, NotifyJVMTI);
duke@435 1099
duke@435 1100 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1101 verify_oop(Lmethod);
duke@435 1102 verify_thread();
duke@435 1103
duke@435 1104 // return tos
duke@435 1105 assert(Otos_l1 == Otos_i, "adjust code below");
duke@435 1106 switch (state) {
duke@435 1107 #ifdef _LP64
duke@435 1108 case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
duke@435 1109 #else
duke@435 1110 case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1
duke@435 1111 #endif
duke@435 1112 case btos: // fall through
duke@435 1113 case ctos:
duke@435 1114 case stos: // fall through
duke@435 1115 case atos: // fall through
duke@435 1116 case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
duke@435 1117 case ftos: // fall through
duke@435 1118 case dtos: // fall through
duke@435 1119 case vtos: /* nothing to do */ break;
duke@435 1120 default : ShouldNotReachHere();
duke@435 1121 }
duke@435 1122
duke@435 1123 #if defined(COMPILER2) && !defined(_LP64)
duke@435 1124 if (state == ltos) {
duke@435 1125 // C2 expects long results in G1 we can't tell if we're returning to interpreted
duke@435 1126 // or compiled so just be safe use G1 and O0/O1
duke@435 1127
duke@435 1128 // Shift bits into high (msb) of G1
duke@435 1129 sllx(Otos_l1->after_save(), 32, G1);
duke@435 1130 // Zero extend low bits
duke@435 1131 srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
duke@435 1132 or3 (Otos_l2->after_save(), G1, G1);
duke@435 1133 }
duke@435 1134 #endif /* COMPILER2 */
duke@435 1135
duke@435 1136 }
duke@435 1137 #endif /* CC_INTERP */
duke@435 1138
duke@435 1139
duke@435 1140 // Lock object
duke@435 1141 //
duke@435 1142 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
duke@435 1143 // it must be initialized with the object to lock
duke@435 1144 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
duke@435 1145 if (UseHeavyMonitors) {
duke@435 1146 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1147 }
duke@435 1148 else {
duke@435 1149 Register obj_reg = Object;
duke@435 1150 Register mark_reg = G4_scratch;
duke@435 1151 Register temp_reg = G1_scratch;
twisti@1162 1152 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
twisti@1162 1153 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1154 Label done;
duke@435 1155
duke@435 1156 Label slow_case;
duke@435 1157
duke@435 1158 assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
duke@435 1159
duke@435 1160 // load markOop from object into mark_reg
duke@435 1161 ld_ptr(mark_addr, mark_reg);
duke@435 1162
duke@435 1163 if (UseBiasedLocking) {
duke@435 1164 biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
duke@435 1165 }
duke@435 1166
duke@435 1167 // get the address of basicLock on stack that will be stored in the object
duke@435 1168 // we need a temporary register here as we do not want to clobber lock_reg
duke@435 1169 // (cas clobbers the destination register)
duke@435 1170 mov(lock_reg, temp_reg);
duke@435 1171 // set mark reg to be (markOop of object | UNLOCK_VALUE)
duke@435 1172 or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
duke@435 1173 // initialize the box (Must happen before we update the object mark!)
duke@435 1174 st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1175 // compare and exchange object_addr, markOop | 1, stack address of basicLock
duke@435 1176 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1177 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
duke@435 1178 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1179
duke@435 1180 // if the compare and exchange succeeded we are done (we saw an unlocked object)
duke@435 1181 cmp(mark_reg, temp_reg);
duke@435 1182 brx(Assembler::equal, true, Assembler::pt, done);
duke@435 1183 delayed()->nop();
duke@435 1184
duke@435 1185 // We did not see an unlocked object so try the fast recursive case
duke@435 1186
duke@435 1187 // Check if owner is self by comparing the value in the markOop of object
duke@435 1188 // with the stack pointer
duke@435 1189 sub(temp_reg, SP, temp_reg);
duke@435 1190 #ifdef _LP64
duke@435 1191 sub(temp_reg, STACK_BIAS, temp_reg);
duke@435 1192 #endif
duke@435 1193 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 1194
duke@435 1195 // Composite "andcc" test:
duke@435 1196 // (a) %sp -vs- markword proximity check, and,
duke@435 1197 // (b) verify mark word LSBs == 0 (Stack-locked).
duke@435 1198 //
duke@435 1199 // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
duke@435 1200 // Note that the page size used for %sp proximity testing is arbitrary and is
duke@435 1201 // unrelated to the actual MMU page size. We use a 'logical' page size of
duke@435 1202 // 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
duke@435 1203 // field of the andcc instruction.
duke@435 1204 andcc (temp_reg, 0xFFFFF003, G0) ;
duke@435 1205
duke@435 1206 // if condition is true we are done and hence we can store 0 in the displaced
duke@435 1207 // header indicating it is a recursive lock and be done
duke@435 1208 brx(Assembler::zero, true, Assembler::pt, done);
duke@435 1209 delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1210
duke@435 1211 // none of the above fast optimizations worked so we have to get into the
duke@435 1212 // slow case of monitor enter
duke@435 1213 bind(slow_case);
duke@435 1214 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1215
duke@435 1216 bind(done);
duke@435 1217 }
duke@435 1218 }
duke@435 1219
duke@435 1220 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
duke@435 1221 //
duke@435 1222 // Argument - lock_reg points to the BasicObjectLock for lock
duke@435 1223 // Throw IllegalMonitorException if object is not locked by current thread
duke@435 1224 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
duke@435 1225 if (UseHeavyMonitors) {
duke@435 1226 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1227 } else {
duke@435 1228 Register obj_reg = G3_scratch;
duke@435 1229 Register mark_reg = G4_scratch;
duke@435 1230 Register displaced_header_reg = G1_scratch;
twisti@1162 1231 Address lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
twisti@1162 1232 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1233 Label done;
duke@435 1234
duke@435 1235 if (UseBiasedLocking) {
duke@435 1236 // load the object out of the BasicObjectLock
duke@435 1237 ld_ptr(lockobj_addr, obj_reg);
duke@435 1238 biased_locking_exit(mark_addr, mark_reg, done, true);
duke@435 1239 st_ptr(G0, lockobj_addr); // free entry
duke@435 1240 }
duke@435 1241
duke@435 1242 // Test first if we are in the fast recursive case
twisti@1162 1243 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
twisti@1162 1244 ld_ptr(lock_addr, displaced_header_reg);
duke@435 1245 br_null(displaced_header_reg, true, Assembler::pn, done);
duke@435 1246 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1247
duke@435 1248 // See if it is still a light weight lock, if so we just unlock
duke@435 1249 // the object and we are done
duke@435 1250
duke@435 1251 if (!UseBiasedLocking) {
duke@435 1252 // load the object out of the BasicObjectLock
duke@435 1253 ld_ptr(lockobj_addr, obj_reg);
duke@435 1254 }
duke@435 1255
duke@435 1256 // we have the displaced header in displaced_header_reg
duke@435 1257 // we expect to see the stack address of the basicLock in case the
duke@435 1258 // lock is still a light weight lock (lock_reg)
duke@435 1259 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1260 casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
duke@435 1261 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1262 cmp(lock_reg, displaced_header_reg);
duke@435 1263 brx(Assembler::equal, true, Assembler::pn, done);
duke@435 1264 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1265
duke@435 1266 // The lock has been converted into a heavy lock and hence
duke@435 1267 // we need to get into the slow case
duke@435 1268
duke@435 1269 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1270
duke@435 1271 bind(done);
duke@435 1272 }
duke@435 1273 }
duke@435 1274
duke@435 1275 #ifndef CC_INTERP
duke@435 1276
duke@435 1277 // Get the method data pointer from the methodOop and set the
duke@435 1278 // specified register to its value.
duke@435 1279
duke@435 1280 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
duke@435 1281 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1282 Label get_continue;
duke@435 1283
duke@435 1284 ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
duke@435 1285 test_method_data_pointer(get_continue);
duke@435 1286 add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
duke@435 1287 if (Roff != noreg)
duke@435 1288 // Roff contains a method data index ("mdi"). It defaults to zero.
duke@435 1289 add(ImethodDataPtr, Roff, ImethodDataPtr);
duke@435 1290 bind(get_continue);
duke@435 1291 }
duke@435 1292
duke@435 1293 // Set the method data pointer for the current bcp.
duke@435 1294
duke@435 1295 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
duke@435 1296 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1297 Label zero_continue;
duke@435 1298
duke@435 1299 // Test MDO to avoid the call if it is NULL.
twisti@1162 1300 ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
duke@435 1301 test_method_data_pointer(zero_continue);
duke@435 1302 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
duke@435 1303 set_method_data_pointer_offset(O0);
duke@435 1304 bind(zero_continue);
duke@435 1305 }
duke@435 1306
duke@435 1307 // Test ImethodDataPtr. If it is null, continue at the specified label
duke@435 1308
duke@435 1309 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
duke@435 1310 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1311 #ifdef _LP64
duke@435 1312 bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
duke@435 1313 #else
duke@435 1314 tst(ImethodDataPtr);
duke@435 1315 br(Assembler::zero, false, Assembler::pn, zero_continue);
duke@435 1316 #endif
duke@435 1317 delayed()->nop();
duke@435 1318 }
duke@435 1319
duke@435 1320 void InterpreterMacroAssembler::verify_method_data_pointer() {
duke@435 1321 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1322 #ifdef ASSERT
duke@435 1323 Label verify_continue;
duke@435 1324 test_method_data_pointer(verify_continue);
duke@435 1325
duke@435 1326 // If the mdp is valid, it will point to a DataLayout header which is
duke@435 1327 // consistent with the bcp. The converse is highly probable also.
duke@435 1328 lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
twisti@1162 1329 ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
duke@435 1330 add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
duke@435 1331 add(G3_scratch, O5, G3_scratch);
duke@435 1332 cmp(Lbcp, G3_scratch);
duke@435 1333 brx(Assembler::equal, false, Assembler::pt, verify_continue);
duke@435 1334
duke@435 1335 Register temp_reg = O5;
duke@435 1336 delayed()->mov(ImethodDataPtr, temp_reg);
duke@435 1337 // %%% should use call_VM_leaf here?
duke@435 1338 //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
duke@435 1339 save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
twisti@1162 1340 Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
duke@435 1341 stf(FloatRegisterImpl::D, Ftos_d, d_save);
duke@435 1342 mov(temp_reg->after_save(), O2);
duke@435 1343 save_thread(L7_thread_cache);
duke@435 1344 call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
duke@435 1345 delayed()->nop();
duke@435 1346 restore_thread(L7_thread_cache);
duke@435 1347 ldf(FloatRegisterImpl::D, d_save, Ftos_d);
duke@435 1348 restore();
duke@435 1349 bind(verify_continue);
duke@435 1350 #endif // ASSERT
duke@435 1351 }
duke@435 1352
duke@435 1353 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
duke@435 1354 Register cur_bcp,
duke@435 1355 Register Rtmp,
duke@435 1356 Label &profile_continue) {
duke@435 1357 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1358 // Control will flow to "profile_continue" if the counter is less than the
duke@435 1359 // limit or if we call profile_method()
duke@435 1360
duke@435 1361 Label done;
duke@435 1362
duke@435 1363 // if no method data exists, and the counter is high enough, make one
duke@435 1364 #ifdef _LP64
duke@435 1365 bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
duke@435 1366 #else
duke@435 1367 tst(ImethodDataPtr);
duke@435 1368 br(Assembler::notZero, false, Assembler::pn, done);
duke@435 1369 #endif
duke@435 1370
duke@435 1371 // Test to see if we should create a method data oop
twisti@1162 1372 AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
duke@435 1373 #ifdef _LP64
duke@435 1374 delayed()->nop();
twisti@1162 1375 sethi(profile_limit, Rtmp);
duke@435 1376 #else
twisti@1162 1377 delayed()->sethi(profile_limit, Rtmp);
duke@435 1378 #endif
twisti@1162 1379 ld(Rtmp, profile_limit.low10(), Rtmp);
duke@435 1380 cmp(invocation_count, Rtmp);
duke@435 1381 br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
duke@435 1382 delayed()->nop();
duke@435 1383
duke@435 1384 // Build it now.
duke@435 1385 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
duke@435 1386 set_method_data_pointer_offset(O0);
duke@435 1387 ba(false, profile_continue);
duke@435 1388 delayed()->nop();
duke@435 1389 bind(done);
duke@435 1390 }
duke@435 1391
duke@435 1392 // Store a value at some constant offset from the method data pointer.
duke@435 1393
duke@435 1394 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
duke@435 1395 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1396 st_ptr(value, ImethodDataPtr, constant);
duke@435 1397 }
duke@435 1398
duke@435 1399 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
duke@435 1400 Register bumped_count,
duke@435 1401 bool decrement) {
duke@435 1402 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1403
duke@435 1404 // Load the counter.
duke@435 1405 ld_ptr(counter, bumped_count);
duke@435 1406
duke@435 1407 if (decrement) {
duke@435 1408 // Decrement the register. Set condition codes.
duke@435 1409 subcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1410
duke@435 1411 // If the decrement causes the counter to overflow, stay negative
duke@435 1412 Label L;
duke@435 1413 brx(Assembler::negative, true, Assembler::pn, L);
duke@435 1414
duke@435 1415 // Store the decremented counter, if it is still negative.
duke@435 1416 delayed()->st_ptr(bumped_count, counter);
duke@435 1417 bind(L);
duke@435 1418 } else {
duke@435 1419 // Increment the register. Set carry flag.
duke@435 1420 addcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1421
duke@435 1422 // If the increment causes the counter to overflow, pull back by 1.
duke@435 1423 assert(DataLayout::counter_increment == 1, "subc works");
duke@435 1424 subc(bumped_count, G0, bumped_count);
duke@435 1425
duke@435 1426 // Store the incremented counter.
duke@435 1427 st_ptr(bumped_count, counter);
duke@435 1428 }
duke@435 1429 }
duke@435 1430
duke@435 1431 // Increment the value at some constant offset from the method data pointer.
duke@435 1432
duke@435 1433 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
duke@435 1434 Register bumped_count,
duke@435 1435 bool decrement) {
duke@435 1436 // Locate the counter at a fixed offset from the mdp:
twisti@1162 1437 Address counter(ImethodDataPtr, constant);
duke@435 1438 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1439 }
duke@435 1440
duke@435 1441 // Increment the value at some non-fixed (reg + constant) offset from
duke@435 1442 // the method data pointer.
duke@435 1443
duke@435 1444 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
duke@435 1445 int constant,
duke@435 1446 Register bumped_count,
duke@435 1447 Register scratch2,
duke@435 1448 bool decrement) {
duke@435 1449 // Add the constant to reg to get the offset.
duke@435 1450 add(ImethodDataPtr, reg, scratch2);
twisti@1162 1451 Address counter(scratch2, constant);
duke@435 1452 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1453 }
duke@435 1454
duke@435 1455 // Set a flag value at the current method data pointer position.
duke@435 1456 // Updates a single byte of the header, to avoid races with other header bits.
duke@435 1457
duke@435 1458 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
duke@435 1459 Register scratch) {
duke@435 1460 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1461 // Load the data header
duke@435 1462 ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
duke@435 1463
duke@435 1464 // Set the flag
duke@435 1465 or3(scratch, flag_constant, scratch);
duke@435 1466
duke@435 1467 // Store the modified header.
duke@435 1468 stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
duke@435 1469 }
duke@435 1470
duke@435 1471 // Test the location at some offset from the method data pointer.
duke@435 1472 // If it is not equal to value, branch to the not_equal_continue Label.
duke@435 1473 // Set condition codes to match the nullness of the loaded value.
duke@435 1474
duke@435 1475 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
duke@435 1476 Register value,
duke@435 1477 Label& not_equal_continue,
duke@435 1478 Register scratch) {
duke@435 1479 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1480 ld_ptr(ImethodDataPtr, offset, scratch);
duke@435 1481 cmp(value, scratch);
duke@435 1482 brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
duke@435 1483 delayed()->tst(scratch);
duke@435 1484 }
duke@435 1485
duke@435 1486 // Update the method data pointer by the displacement located at some fixed
duke@435 1487 // offset from the method data pointer.
duke@435 1488
duke@435 1489 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
duke@435 1490 Register scratch) {
duke@435 1491 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1492 ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
duke@435 1493 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1494 }
duke@435 1495
duke@435 1496 // Update the method data pointer by the displacement located at the
duke@435 1497 // offset (reg + offset_of_disp).
duke@435 1498
duke@435 1499 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
duke@435 1500 int offset_of_disp,
duke@435 1501 Register scratch) {
duke@435 1502 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1503 add(reg, offset_of_disp, scratch);
duke@435 1504 ld_ptr(ImethodDataPtr, scratch, scratch);
duke@435 1505 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1506 }
duke@435 1507
duke@435 1508 // Update the method data pointer by a simple constant displacement.
duke@435 1509
duke@435 1510 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
duke@435 1511 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1512 add(ImethodDataPtr, constant, ImethodDataPtr);
duke@435 1513 }
duke@435 1514
duke@435 1515 // Update the method data pointer for a _ret bytecode whose target
duke@435 1516 // was not among our cached targets.
duke@435 1517
duke@435 1518 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
duke@435 1519 Register return_bci) {
duke@435 1520 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1521 push(state);
duke@435 1522 st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
duke@435 1523 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
duke@435 1524 ld_ptr(l_tmp, return_bci);
duke@435 1525 pop(state);
duke@435 1526 }
duke@435 1527
duke@435 1528 // Count a taken branch in the bytecodes.
duke@435 1529
duke@435 1530 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
duke@435 1531 if (ProfileInterpreter) {
duke@435 1532 Label profile_continue;
duke@435 1533
duke@435 1534 // If no method data exists, go to profile_continue.
duke@435 1535 test_method_data_pointer(profile_continue);
duke@435 1536
duke@435 1537 // We are taking a branch. Increment the taken count.
duke@435 1538 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
duke@435 1539
duke@435 1540 // The method data pointer needs to be updated to reflect the new target.
duke@435 1541 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
duke@435 1542 bind (profile_continue);
duke@435 1543 }
duke@435 1544 }
duke@435 1545
duke@435 1546
duke@435 1547 // Count a not-taken branch in the bytecodes.
duke@435 1548
duke@435 1549 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
duke@435 1550 if (ProfileInterpreter) {
duke@435 1551 Label profile_continue;
duke@435 1552
duke@435 1553 // If no method data exists, go to profile_continue.
duke@435 1554 test_method_data_pointer(profile_continue);
duke@435 1555
duke@435 1556 // We are taking a branch. Increment the not taken count.
duke@435 1557 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
duke@435 1558
duke@435 1559 // The method data pointer needs to be updated to correspond to the
duke@435 1560 // next bytecode.
duke@435 1561 update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
duke@435 1562 bind (profile_continue);
duke@435 1563 }
duke@435 1564 }
duke@435 1565
duke@435 1566
duke@435 1567 // Count a non-virtual call in the bytecodes.
duke@435 1568
duke@435 1569 void InterpreterMacroAssembler::profile_call(Register scratch) {
duke@435 1570 if (ProfileInterpreter) {
duke@435 1571 Label profile_continue;
duke@435 1572
duke@435 1573 // If no method data exists, go to profile_continue.
duke@435 1574 test_method_data_pointer(profile_continue);
duke@435 1575
duke@435 1576 // We are making a call. Increment the count.
duke@435 1577 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1578
duke@435 1579 // The method data pointer needs to be updated to reflect the new target.
duke@435 1580 update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
duke@435 1581 bind (profile_continue);
duke@435 1582 }
duke@435 1583 }
duke@435 1584
duke@435 1585
duke@435 1586 // Count a final call in the bytecodes.
duke@435 1587
duke@435 1588 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
duke@435 1589 if (ProfileInterpreter) {
duke@435 1590 Label profile_continue;
duke@435 1591
duke@435 1592 // If no method data exists, go to profile_continue.
duke@435 1593 test_method_data_pointer(profile_continue);
duke@435 1594
duke@435 1595 // We are making a call. Increment the count.
duke@435 1596 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1597
duke@435 1598 // The method data pointer needs to be updated to reflect the new target.
duke@435 1599 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1600 bind (profile_continue);
duke@435 1601 }
duke@435 1602 }
duke@435 1603
duke@435 1604
duke@435 1605 // Count a virtual call in the bytecodes.
duke@435 1606
duke@435 1607 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
twisti@1858 1608 Register scratch,
twisti@1858 1609 bool receiver_can_be_null) {
duke@435 1610 if (ProfileInterpreter) {
duke@435 1611 Label profile_continue;
duke@435 1612
duke@435 1613 // If no method data exists, go to profile_continue.
duke@435 1614 test_method_data_pointer(profile_continue);
duke@435 1615
twisti@1858 1616
twisti@1858 1617 Label skip_receiver_profile;
twisti@1858 1618 if (receiver_can_be_null) {
twisti@1858 1619 Label not_null;
twisti@1858 1620 tst(receiver);
twisti@1858 1621 brx(Assembler::notZero, false, Assembler::pt, not_null);
twisti@1858 1622 delayed()->nop();
twisti@1858 1623 // We are making a call. Increment the count for null receiver.
twisti@1858 1624 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
twisti@1858 1625 ba(false, skip_receiver_profile);
twisti@1858 1626 delayed()->nop();
twisti@1858 1627 bind(not_null);
twisti@1858 1628 }
twisti@1858 1629
duke@435 1630 // Record the receiver type.
kvn@1641 1631 record_klass_in_profile(receiver, scratch, true);
twisti@1858 1632 bind(skip_receiver_profile);
duke@435 1633
duke@435 1634 // The method data pointer needs to be updated to reflect the new target.
duke@435 1635 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1636 bind (profile_continue);
duke@435 1637 }
duke@435 1638 }
duke@435 1639
duke@435 1640 void InterpreterMacroAssembler::record_klass_in_profile_helper(
duke@435 1641 Register receiver, Register scratch,
kvn@1641 1642 int start_row, Label& done, bool is_virtual_call) {
kvn@1641 1643 if (TypeProfileWidth == 0) {
kvn@1641 1644 if (is_virtual_call) {
kvn@1641 1645 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@1641 1646 }
poonam@1402 1647 return;
kvn@1641 1648 }
poonam@1402 1649
duke@435 1650 int last_row = VirtualCallData::row_limit() - 1;
duke@435 1651 assert(start_row <= last_row, "must be work left to do");
duke@435 1652 // Test this row for both the receiver and for null.
duke@435 1653 // Take any of three different outcomes:
duke@435 1654 // 1. found receiver => increment count and goto done
duke@435 1655 // 2. found null => keep looking for case 1, maybe allocate this cell
duke@435 1656 // 3. found something else => keep looking for cases 1 and 2
duke@435 1657 // Case 3 is handled by a recursive call.
duke@435 1658 for (int row = start_row; row <= last_row; row++) {
duke@435 1659 Label next_test;
duke@435 1660 bool test_for_null_also = (row == start_row);
duke@435 1661
duke@435 1662 // See if the receiver is receiver[n].
duke@435 1663 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
duke@435 1664 test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
kvn@1641 1665 // delayed()->tst(scratch);
duke@435 1666
duke@435 1667 // The receiver is receiver[n]. Increment count[n].
duke@435 1668 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
duke@435 1669 increment_mdp_data_at(count_offset, scratch);
duke@435 1670 ba(false, done);
duke@435 1671 delayed()->nop();
duke@435 1672 bind(next_test);
duke@435 1673
duke@435 1674 if (test_for_null_also) {
kvn@1641 1675 Label found_null;
duke@435 1676 // Failed the equality check on receiver[n]... Test for null.
duke@435 1677 if (start_row == last_row) {
duke@435 1678 // The only thing left to do is handle the null case.
kvn@1641 1679 if (is_virtual_call) {
kvn@1641 1680 brx(Assembler::zero, false, Assembler::pn, found_null);
kvn@1641 1681 delayed()->nop();
kvn@1641 1682 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 1683 // Increment total counter to indicate polymorphic case.
kvn@1641 1684 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@1641 1685 ba(false, done);
kvn@1641 1686 delayed()->nop();
kvn@1641 1687 bind(found_null);
kvn@1641 1688 } else {
kvn@1641 1689 brx(Assembler::notZero, false, Assembler::pt, done);
kvn@1641 1690 delayed()->nop();
kvn@1641 1691 }
duke@435 1692 break;
duke@435 1693 }
duke@435 1694 // Since null is rare, make it be the branch-taken case.
duke@435 1695 brx(Assembler::zero, false, Assembler::pn, found_null);
duke@435 1696 delayed()->nop();
duke@435 1697
duke@435 1698 // Put all the "Case 3" tests here.
kvn@1641 1699 record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
duke@435 1700
duke@435 1701 // Found a null. Keep searching for a matching receiver,
duke@435 1702 // but remember that this is an empty (unused) slot.
duke@435 1703 bind(found_null);
duke@435 1704 }
duke@435 1705 }
duke@435 1706
duke@435 1707 // In the fall-through case, we found no matching receiver, but we
duke@435 1708 // observed the receiver[start_row] is NULL.
duke@435 1709
duke@435 1710 // Fill in the receiver field and increment the count.
duke@435 1711 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
duke@435 1712 set_mdp_data_at(recvr_offset, receiver);
duke@435 1713 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
duke@435 1714 mov(DataLayout::counter_increment, scratch);
duke@435 1715 set_mdp_data_at(count_offset, scratch);
kvn@1641 1716 if (start_row > 0) {
kvn@1641 1717 ba(false, done);
kvn@1641 1718 delayed()->nop();
kvn@1641 1719 }
duke@435 1720 }
duke@435 1721
duke@435 1722 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
kvn@1641 1723 Register scratch, bool is_virtual_call) {
duke@435 1724 assert(ProfileInterpreter, "must be profiling");
duke@435 1725 Label done;
duke@435 1726
kvn@1641 1727 record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
duke@435 1728
duke@435 1729 bind (done);
duke@435 1730 }
duke@435 1731
duke@435 1732
duke@435 1733 // Count a ret in the bytecodes.
duke@435 1734
duke@435 1735 void InterpreterMacroAssembler::profile_ret(TosState state,
duke@435 1736 Register return_bci,
duke@435 1737 Register scratch) {
duke@435 1738 if (ProfileInterpreter) {
duke@435 1739 Label profile_continue;
duke@435 1740 uint row;
duke@435 1741
duke@435 1742 // If no method data exists, go to profile_continue.
duke@435 1743 test_method_data_pointer(profile_continue);
duke@435 1744
duke@435 1745 // Update the total ret count.
duke@435 1746 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1747
duke@435 1748 for (row = 0; row < RetData::row_limit(); row++) {
duke@435 1749 Label next_test;
duke@435 1750
duke@435 1751 // See if return_bci is equal to bci[n]:
duke@435 1752 test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
duke@435 1753 return_bci, next_test, scratch);
duke@435 1754
duke@435 1755 // return_bci is equal to bci[n]. Increment the count.
duke@435 1756 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
duke@435 1757
duke@435 1758 // The method data pointer needs to be updated to reflect the new target.
duke@435 1759 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
duke@435 1760 ba(false, profile_continue);
duke@435 1761 delayed()->nop();
duke@435 1762 bind(next_test);
duke@435 1763 }
duke@435 1764
duke@435 1765 update_mdp_for_ret(state, return_bci);
duke@435 1766
duke@435 1767 bind (profile_continue);
duke@435 1768 }
duke@435 1769 }
duke@435 1770
duke@435 1771 // Profile an unexpected null in the bytecodes.
duke@435 1772 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
duke@435 1773 if (ProfileInterpreter) {
duke@435 1774 Label profile_continue;
duke@435 1775
duke@435 1776 // If no method data exists, go to profile_continue.
duke@435 1777 test_method_data_pointer(profile_continue);
duke@435 1778
duke@435 1779 set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
duke@435 1780
duke@435 1781 // The method data pointer needs to be updated.
duke@435 1782 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1783 if (TypeProfileCasts) {
duke@435 1784 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1785 }
duke@435 1786 update_mdp_by_constant(mdp_delta);
duke@435 1787
duke@435 1788 bind (profile_continue);
duke@435 1789 }
duke@435 1790 }
duke@435 1791
duke@435 1792 void InterpreterMacroAssembler::profile_typecheck(Register klass,
duke@435 1793 Register scratch) {
duke@435 1794 if (ProfileInterpreter) {
duke@435 1795 Label profile_continue;
duke@435 1796
duke@435 1797 // If no method data exists, go to profile_continue.
duke@435 1798 test_method_data_pointer(profile_continue);
duke@435 1799
duke@435 1800 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1801 if (TypeProfileCasts) {
duke@435 1802 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1803
duke@435 1804 // Record the object type.
kvn@1641 1805 record_klass_in_profile(klass, scratch, false);
duke@435 1806 }
duke@435 1807
duke@435 1808 // The method data pointer needs to be updated.
duke@435 1809 update_mdp_by_constant(mdp_delta);
duke@435 1810
duke@435 1811 bind (profile_continue);
duke@435 1812 }
duke@435 1813 }
duke@435 1814
duke@435 1815 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
duke@435 1816 if (ProfileInterpreter && TypeProfileCasts) {
duke@435 1817 Label profile_continue;
duke@435 1818
duke@435 1819 // If no method data exists, go to profile_continue.
duke@435 1820 test_method_data_pointer(profile_continue);
duke@435 1821
duke@435 1822 int count_offset = in_bytes(CounterData::count_offset());
duke@435 1823 // Back up the address, since we have already bumped the mdp.
duke@435 1824 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1825
duke@435 1826 // *Decrement* the counter. We expect to see zero or small negatives.
duke@435 1827 increment_mdp_data_at(count_offset, scratch, true);
duke@435 1828
duke@435 1829 bind (profile_continue);
duke@435 1830 }
duke@435 1831 }
duke@435 1832
duke@435 1833 // Count the default case of a switch construct.
duke@435 1834
duke@435 1835 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
duke@435 1836 if (ProfileInterpreter) {
duke@435 1837 Label profile_continue;
duke@435 1838
duke@435 1839 // If no method data exists, go to profile_continue.
duke@435 1840 test_method_data_pointer(profile_continue);
duke@435 1841
duke@435 1842 // Update the default case count
duke@435 1843 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
duke@435 1844 scratch);
duke@435 1845
duke@435 1846 // The method data pointer needs to be updated.
duke@435 1847 update_mdp_by_offset(
duke@435 1848 in_bytes(MultiBranchData::default_displacement_offset()),
duke@435 1849 scratch);
duke@435 1850
duke@435 1851 bind (profile_continue);
duke@435 1852 }
duke@435 1853 }
duke@435 1854
duke@435 1855 // Count the index'th case of a switch construct.
duke@435 1856
duke@435 1857 void InterpreterMacroAssembler::profile_switch_case(Register index,
duke@435 1858 Register scratch,
duke@435 1859 Register scratch2,
duke@435 1860 Register scratch3) {
duke@435 1861 if (ProfileInterpreter) {
duke@435 1862 Label profile_continue;
duke@435 1863
duke@435 1864 // If no method data exists, go to profile_continue.
duke@435 1865 test_method_data_pointer(profile_continue);
duke@435 1866
duke@435 1867 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
duke@435 1868 set(in_bytes(MultiBranchData::per_case_size()), scratch);
duke@435 1869 smul(index, scratch, scratch);
duke@435 1870 add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
duke@435 1871
duke@435 1872 // Update the case count
duke@435 1873 increment_mdp_data_at(scratch,
duke@435 1874 in_bytes(MultiBranchData::relative_count_offset()),
duke@435 1875 scratch2,
duke@435 1876 scratch3);
duke@435 1877
duke@435 1878 // The method data pointer needs to be updated.
duke@435 1879 update_mdp_by_offset(scratch,
duke@435 1880 in_bytes(MultiBranchData::relative_displacement_offset()),
duke@435 1881 scratch2);
duke@435 1882
duke@435 1883 bind (profile_continue);
duke@435 1884 }
duke@435 1885 }
duke@435 1886
duke@435 1887 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
duke@435 1888
duke@435 1889 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
duke@435 1890 Register Rtemp,
duke@435 1891 Register Rtemp2 ) {
duke@435 1892
duke@435 1893 Register Rlimit = Lmonitors;
duke@435 1894 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1895 assert( (delta & LongAlignmentMask) == 0,
duke@435 1896 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1897
duke@435 1898 sub( SP, delta, SP);
duke@435 1899 sub( Lesp, delta, Lesp);
duke@435 1900 sub( Lmonitors, delta, Lmonitors);
duke@435 1901
duke@435 1902 if (!stack_is_empty) {
duke@435 1903
duke@435 1904 // must copy stack contents down
duke@435 1905
duke@435 1906 Label start_copying, next;
duke@435 1907
duke@435 1908 // untested("monitor stack expansion");
duke@435 1909 compute_stack_base(Rtemp);
duke@435 1910 ba( false, start_copying );
duke@435 1911 delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
duke@435 1912
duke@435 1913 // note: must copy from low memory upwards
duke@435 1914 // On entry to loop,
duke@435 1915 // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
duke@435 1916 // Loop mutates Rtemp
duke@435 1917
duke@435 1918 bind( next);
duke@435 1919
duke@435 1920 st_ptr(Rtemp2, Rtemp, 0);
duke@435 1921 inc(Rtemp, wordSize);
duke@435 1922 cmp(Rtemp, Rlimit); // are we done? (duplicated above)
duke@435 1923
duke@435 1924 bind( start_copying );
duke@435 1925
duke@435 1926 brx( notEqual, true, pn, next );
duke@435 1927 delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
duke@435 1928
duke@435 1929 // done copying stack
duke@435 1930 }
duke@435 1931 }
duke@435 1932
duke@435 1933 // Locals
duke@435 1934 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
duke@435 1935 assert_not_delayed();
twisti@1861 1936 sll(index, Interpreter::logStackElementSize, index);
duke@435 1937 sub(Llocals, index, index);
twisti@1861 1938 ld_ptr(index, 0, dst);
duke@435 1939 // Note: index must hold the effective address--the iinc template uses it
duke@435 1940 }
duke@435 1941
duke@435 1942 // Just like access_local_ptr but the tag is a returnAddress
duke@435 1943 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
duke@435 1944 Register dst ) {
duke@435 1945 assert_not_delayed();
twisti@1861 1946 sll(index, Interpreter::logStackElementSize, index);
duke@435 1947 sub(Llocals, index, index);
twisti@1861 1948 ld_ptr(index, 0, dst);
duke@435 1949 }
duke@435 1950
duke@435 1951 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
duke@435 1952 assert_not_delayed();
twisti@1861 1953 sll(index, Interpreter::logStackElementSize, index);
duke@435 1954 sub(Llocals, index, index);
twisti@1861 1955 ld(index, 0, dst);
duke@435 1956 // Note: index must hold the effective address--the iinc template uses it
duke@435 1957 }
duke@435 1958
duke@435 1959
duke@435 1960 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
duke@435 1961 assert_not_delayed();
twisti@1861 1962 sll(index, Interpreter::logStackElementSize, index);
duke@435 1963 sub(Llocals, index, index);
duke@435 1964 // First half stored at index n+1 (which grows down from Llocals[n])
duke@435 1965 load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 1966 }
duke@435 1967
duke@435 1968
duke@435 1969 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
duke@435 1970 assert_not_delayed();
twisti@1861 1971 sll(index, Interpreter::logStackElementSize, index);
duke@435 1972 sub(Llocals, index, index);
twisti@1861 1973 ldf(FloatRegisterImpl::S, index, 0, dst);
duke@435 1974 }
duke@435 1975
duke@435 1976
duke@435 1977 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
duke@435 1978 assert_not_delayed();
twisti@1861 1979 sll(index, Interpreter::logStackElementSize, index);
duke@435 1980 sub(Llocals, index, index);
duke@435 1981 load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 1982 }
duke@435 1983
duke@435 1984
duke@435 1985 #ifdef ASSERT
duke@435 1986 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
duke@435 1987 Label L;
duke@435 1988
duke@435 1989 assert(Rindex != Rscratch, "Registers cannot be same");
duke@435 1990 assert(Rindex != Rscratch1, "Registers cannot be same");
duke@435 1991 assert(Rlimit != Rscratch, "Registers cannot be same");
duke@435 1992 assert(Rlimit != Rscratch1, "Registers cannot be same");
duke@435 1993 assert(Rscratch1 != Rscratch, "Registers cannot be same");
duke@435 1994
duke@435 1995 // untested("reg area corruption");
duke@435 1996 add(Rindex, offset, Rscratch);
duke@435 1997 add(Rlimit, 64 + STACK_BIAS, Rscratch1);
duke@435 1998 cmp(Rscratch, Rscratch1);
duke@435 1999 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 2000 delayed()->nop();
duke@435 2001 stop("regsave area is being clobbered");
duke@435 2002 bind(L);
duke@435 2003 }
duke@435 2004 #endif // ASSERT
duke@435 2005
duke@435 2006
duke@435 2007 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
duke@435 2008 assert_not_delayed();
twisti@1861 2009 sll(index, Interpreter::logStackElementSize, index);
duke@435 2010 sub(Llocals, index, index);
twisti@1861 2011 debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
twisti@1861 2012 st(src, index, 0);
duke@435 2013 }
duke@435 2014
twisti@1861 2015 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
duke@435 2016 assert_not_delayed();
twisti@1861 2017 sll(index, Interpreter::logStackElementSize, index);
duke@435 2018 sub(Llocals, index, index);
twisti@1861 2019 #ifdef ASSERT
twisti@1861 2020 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
twisti@1861 2021 #endif
twisti@1861 2022 st_ptr(src, index, 0);
duke@435 2023 }
duke@435 2024
duke@435 2025
duke@435 2026
twisti@1861 2027 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
twisti@1861 2028 st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
duke@435 2029 }
duke@435 2030
duke@435 2031 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
duke@435 2032 assert_not_delayed();
twisti@1861 2033 sll(index, Interpreter::logStackElementSize, index);
duke@435 2034 sub(Llocals, index, index);
twisti@1861 2035 #ifdef ASSERT
duke@435 2036 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
twisti@1861 2037 #endif
duke@435 2038 store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
duke@435 2039 }
duke@435 2040
duke@435 2041
duke@435 2042 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
duke@435 2043 assert_not_delayed();
twisti@1861 2044 sll(index, Interpreter::logStackElementSize, index);
duke@435 2045 sub(Llocals, index, index);
twisti@1861 2046 #ifdef ASSERT
twisti@1861 2047 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
twisti@1861 2048 #endif
twisti@1861 2049 stf(FloatRegisterImpl::S, src, index, 0);
duke@435 2050 }
duke@435 2051
duke@435 2052
duke@435 2053 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
duke@435 2054 assert_not_delayed();
twisti@1861 2055 sll(index, Interpreter::logStackElementSize, index);
duke@435 2056 sub(Llocals, index, index);
twisti@1861 2057 #ifdef ASSERT
duke@435 2058 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
twisti@1861 2059 #endif
duke@435 2060 store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
duke@435 2061 }
duke@435 2062
duke@435 2063
duke@435 2064 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
duke@435 2065 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 2066 int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
duke@435 2067 return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
duke@435 2068 }
duke@435 2069
duke@435 2070
duke@435 2071 Address InterpreterMacroAssembler::top_most_monitor() {
twisti@1162 2072 return Address(FP, top_most_monitor_byte_offset());
duke@435 2073 }
duke@435 2074
duke@435 2075
duke@435 2076 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
duke@435 2077 add( Lesp, wordSize, Rdest );
duke@435 2078 }
duke@435 2079
duke@435 2080 #endif /* CC_INTERP */
duke@435 2081
duke@435 2082 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2083 assert(UseCompiler, "incrementing must be useful");
duke@435 2084 #ifdef CC_INTERP
twisti@1162 2085 Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
twisti@1162 2086 InvocationCounter::counter_offset());
twisti@1162 2087 Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
twisti@1162 2088 InvocationCounter::counter_offset());
duke@435 2089 #else
twisti@1162 2090 Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
twisti@1162 2091 InvocationCounter::counter_offset());
twisti@1162 2092 Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
twisti@1162 2093 InvocationCounter::counter_offset());
duke@435 2094 #endif /* CC_INTERP */
duke@435 2095 int delta = InvocationCounter::count_increment;
duke@435 2096
duke@435 2097 // Load each counter in a register
duke@435 2098 ld( inv_counter, Rtmp );
duke@435 2099 ld( be_counter, Rtmp2 );
duke@435 2100
duke@435 2101 assert( is_simm13( delta ), " delta too large.");
duke@435 2102
duke@435 2103 // Add the delta to the invocation counter and store the result
duke@435 2104 add( Rtmp, delta, Rtmp );
duke@435 2105
duke@435 2106 // Mask the backedge counter
duke@435 2107 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2108
duke@435 2109 // Store value
duke@435 2110 st( Rtmp, inv_counter);
duke@435 2111
duke@435 2112 // Add invocation counter + backedge counter
duke@435 2113 add( Rtmp, Rtmp2, Rtmp);
duke@435 2114
duke@435 2115 // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
duke@435 2116 }
duke@435 2117
duke@435 2118 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2119 assert(UseCompiler, "incrementing must be useful");
duke@435 2120 #ifdef CC_INTERP
twisti@1162 2121 Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
twisti@1162 2122 InvocationCounter::counter_offset());
twisti@1162 2123 Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
twisti@1162 2124 InvocationCounter::counter_offset());
duke@435 2125 #else
twisti@1162 2126 Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
twisti@1162 2127 InvocationCounter::counter_offset());
twisti@1162 2128 Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
twisti@1162 2129 InvocationCounter::counter_offset());
duke@435 2130 #endif /* CC_INTERP */
duke@435 2131 int delta = InvocationCounter::count_increment;
duke@435 2132 // Load each counter in a register
duke@435 2133 ld( be_counter, Rtmp );
duke@435 2134 ld( inv_counter, Rtmp2 );
duke@435 2135
duke@435 2136 // Add the delta to the backedge counter
duke@435 2137 add( Rtmp, delta, Rtmp );
duke@435 2138
duke@435 2139 // Mask the invocation counter, add to backedge counter
duke@435 2140 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2141
duke@435 2142 // and store the result to memory
duke@435 2143 st( Rtmp, be_counter );
duke@435 2144
duke@435 2145 // Add backedge + invocation counter
duke@435 2146 add( Rtmp, Rtmp2, Rtmp );
duke@435 2147
duke@435 2148 // Note that this macro must leave backedge_count + invocation_count in Rtmp!
duke@435 2149 }
duke@435 2150
duke@435 2151 #ifndef CC_INTERP
duke@435 2152 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
duke@435 2153 Register branch_bcp,
duke@435 2154 Register Rtmp ) {
duke@435 2155 Label did_not_overflow;
duke@435 2156 Label overflow_with_error;
duke@435 2157 assert_different_registers(backedge_count, Rtmp, branch_bcp);
duke@435 2158 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
duke@435 2159
twisti@1162 2160 AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
duke@435 2161 load_contents(limit, Rtmp);
duke@435 2162 cmp(backedge_count, Rtmp);
duke@435 2163 br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
duke@435 2164 delayed()->nop();
duke@435 2165
duke@435 2166 // When ProfileInterpreter is on, the backedge_count comes from the
duke@435 2167 // methodDataOop, which value does not get reset on the call to
duke@435 2168 // frequency_counter_overflow(). To avoid excessive calls to the overflow
duke@435 2169 // routine while the method is being compiled, add a second test to make sure
duke@435 2170 // the overflow function is called only once every overflow_frequency.
duke@435 2171 if (ProfileInterpreter) {
duke@435 2172 const int overflow_frequency = 1024;
duke@435 2173 andcc(backedge_count, overflow_frequency-1, Rtmp);
duke@435 2174 brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
duke@435 2175 delayed()->nop();
duke@435 2176 }
duke@435 2177
duke@435 2178 // overflow in loop, pass branch bytecode
duke@435 2179 set(6,Rtmp);
duke@435 2180 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
duke@435 2181
duke@435 2182 // Was an OSR adapter generated?
duke@435 2183 // O0 = osr nmethod
duke@435 2184 tst(O0);
duke@435 2185 brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
duke@435 2186 delayed()->nop();
duke@435 2187
duke@435 2188 // Has the nmethod been invalidated already?
duke@435 2189 ld(O0, nmethod::entry_bci_offset(), O2);
duke@435 2190 cmp(O2, InvalidOSREntryBci);
duke@435 2191 br(Assembler::equal, false, Assembler::pn, overflow_with_error);
duke@435 2192 delayed()->nop();
duke@435 2193
duke@435 2194 // migrate the interpreter frame off of the stack
duke@435 2195
duke@435 2196 mov(G2_thread, L7);
duke@435 2197 // save nmethod
duke@435 2198 mov(O0, L6);
duke@435 2199 set_last_Java_frame(SP, noreg);
duke@435 2200 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
duke@435 2201 reset_last_Java_frame();
duke@435 2202 mov(L7, G2_thread);
duke@435 2203
duke@435 2204 // move OSR nmethod to I1
duke@435 2205 mov(L6, I1);
duke@435 2206
duke@435 2207 // OSR buffer to I0
duke@435 2208 mov(O0, I0);
duke@435 2209
duke@435 2210 // remove the interpreter frame
duke@435 2211 restore(I5_savedSP, 0, SP);
duke@435 2212
duke@435 2213 // Jump to the osr code.
duke@435 2214 ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
duke@435 2215 jmp(O2, G0);
duke@435 2216 delayed()->nop();
duke@435 2217
duke@435 2218 bind(overflow_with_error);
duke@435 2219
duke@435 2220 bind(did_not_overflow);
duke@435 2221 }
duke@435 2222
duke@435 2223
duke@435 2224
duke@435 2225 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
duke@435 2226 if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
duke@435 2227 }
duke@435 2228
duke@435 2229
duke@435 2230 // local helper function for the verify_oop_or_return_address macro
duke@435 2231 static bool verify_return_address(methodOopDesc* m, int bci) {
duke@435 2232 #ifndef PRODUCT
duke@435 2233 address pc = (address)(m->constMethod())
duke@435 2234 + in_bytes(constMethodOopDesc::codes_offset()) + bci;
duke@435 2235 // assume it is a valid return address if it is inside m and is preceded by a jsr
duke@435 2236 if (!m->contains(pc)) return false;
duke@435 2237 address jsr_pc;
duke@435 2238 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
duke@435 2239 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
duke@435 2240 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
duke@435 2241 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
duke@435 2242 #endif // PRODUCT
duke@435 2243 return false;
duke@435 2244 }
duke@435 2245
duke@435 2246
duke@435 2247 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
duke@435 2248 if (!VerifyOops) return;
duke@435 2249 // the VM documentation for the astore[_wide] bytecode allows
duke@435 2250 // the TOS to be not only an oop but also a return address
duke@435 2251 Label test;
duke@435 2252 Label skip;
duke@435 2253 // See if it is an address (in the current method):
duke@435 2254
duke@435 2255 mov(reg, Rtmp);
duke@435 2256 const int log2_bytecode_size_limit = 16;
duke@435 2257 srl(Rtmp, log2_bytecode_size_limit, Rtmp);
duke@435 2258 br_notnull( Rtmp, false, pt, test );
duke@435 2259 delayed()->nop();
duke@435 2260
duke@435 2261 // %%% should use call_VM_leaf here?
duke@435 2262 save_frame_and_mov(0, Lmethod, O0, reg, O1);
duke@435 2263 save_thread(L7_thread_cache);
duke@435 2264 call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
duke@435 2265 delayed()->nop();
duke@435 2266 restore_thread(L7_thread_cache);
duke@435 2267 br_notnull( O0, false, pt, skip );
duke@435 2268 delayed()->restore();
duke@435 2269
duke@435 2270 // Perform a more elaborate out-of-line call
duke@435 2271 // Not an address; verify it:
duke@435 2272 bind(test);
duke@435 2273 verify_oop(reg);
duke@435 2274 bind(skip);
duke@435 2275 }
duke@435 2276
duke@435 2277
duke@435 2278 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
duke@435 2279 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
duke@435 2280 }
duke@435 2281 #endif /* CC_INTERP */
duke@435 2282
duke@435 2283 // Inline assembly for:
duke@435 2284 //
duke@435 2285 // if (thread is in interp_only_mode) {
duke@435 2286 // InterpreterRuntime::post_method_entry();
duke@435 2287 // }
duke@435 2288 // if (DTraceMethodProbes) {
twisti@1040 2289 // SharedRuntime::dtrace_method_entry(method, receiver);
duke@435 2290 // }
dcubed@1045 2291 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2292 // SharedRuntime::rc_trace_method_entry(method, receiver);
coleenp@857 2293 // }
duke@435 2294
duke@435 2295 void InterpreterMacroAssembler::notify_method_entry() {
duke@435 2296
duke@435 2297 // C++ interpreter only uses this for native methods.
duke@435 2298
duke@435 2299 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2300 // entry/exit events are sent for that thread to track stack
duke@435 2301 // depth. If it is possible to enter interp_only_mode we add
duke@435 2302 // the code to check if the event should be sent.
duke@435 2303 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 2304 Label L;
duke@435 2305 Register temp_reg = O5;
twisti@1162 2306 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2307 ld(interp_only, temp_reg);
duke@435 2308 tst(temp_reg);
duke@435 2309 br(zero, false, pt, L);
duke@435 2310 delayed()->nop();
duke@435 2311 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
duke@435 2312 bind(L);
duke@435 2313 }
duke@435 2314
duke@435 2315 {
duke@435 2316 Register temp_reg = O5;
duke@435 2317 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2318 call_VM_leaf(noreg,
duke@435 2319 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2320 G2_thread, Lmethod);
duke@435 2321 }
dcubed@1045 2322
dcubed@1045 2323 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2324 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2325 call_VM_leaf(noreg,
dcubed@1045 2326 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2327 G2_thread, Lmethod);
dcubed@1045 2328 }
duke@435 2329 }
duke@435 2330
duke@435 2331
duke@435 2332 // Inline assembly for:
duke@435 2333 //
duke@435 2334 // if (thread is in interp_only_mode) {
duke@435 2335 // // save result
duke@435 2336 // InterpreterRuntime::post_method_exit();
duke@435 2337 // // restore result
duke@435 2338 // }
duke@435 2339 // if (DTraceMethodProbes) {
duke@435 2340 // SharedRuntime::dtrace_method_exit(thread, method);
duke@435 2341 // }
duke@435 2342 //
duke@435 2343 // Native methods have their result stored in d_tmp and l_tmp
duke@435 2344 // Java methods have their result stored in the expression stack
duke@435 2345
duke@435 2346 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
duke@435 2347 TosState state,
duke@435 2348 NotifyMethodExitMode mode) {
duke@435 2349 // C++ interpreter only uses this for native methods.
duke@435 2350
duke@435 2351 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2352 // entry/exit events are sent for that thread to track stack
duke@435 2353 // depth. If it is possible to enter interp_only_mode we add
duke@435 2354 // the code to check if the event should be sent.
duke@435 2355 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
duke@435 2356 Label L;
duke@435 2357 Register temp_reg = O5;
twisti@1162 2358 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2359 ld(interp_only, temp_reg);
duke@435 2360 tst(temp_reg);
duke@435 2361 br(zero, false, pt, L);
duke@435 2362 delayed()->nop();
duke@435 2363
duke@435 2364 // Note: frame::interpreter_frame_result has a dependency on how the
duke@435 2365 // method result is saved across the call to post_method_exit. For
duke@435 2366 // native methods it assumes the result registers are saved to
duke@435 2367 // l_scratch and d_scratch. If this changes then the interpreter_frame_result
duke@435 2368 // implementation will need to be updated too.
duke@435 2369
duke@435 2370 save_return_value(state, is_native_method);
duke@435 2371 call_VM(noreg,
duke@435 2372 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
duke@435 2373 restore_return_value(state, is_native_method);
duke@435 2374 bind(L);
duke@435 2375 }
duke@435 2376
duke@435 2377 {
duke@435 2378 Register temp_reg = O5;
duke@435 2379 // Dtrace notification
duke@435 2380 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2381 save_return_value(state, is_native_method);
duke@435 2382 call_VM_leaf(
duke@435 2383 noreg,
duke@435 2384 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2385 G2_thread, Lmethod);
duke@435 2386 restore_return_value(state, is_native_method);
duke@435 2387 }
duke@435 2388 }
duke@435 2389
duke@435 2390 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
duke@435 2391 #ifdef CC_INTERP
duke@435 2392 // result potentially in O0/O1: save it across calls
duke@435 2393 stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
duke@435 2394 #ifdef _LP64
duke@435 2395 stx(O0, STATE(_native_lresult));
duke@435 2396 #else
duke@435 2397 std(O0, STATE(_native_lresult));
duke@435 2398 #endif
duke@435 2399 #else // CC_INTERP
duke@435 2400 if (is_native_call) {
duke@435 2401 stf(FloatRegisterImpl::D, F0, d_tmp);
duke@435 2402 #ifdef _LP64
duke@435 2403 stx(O0, l_tmp);
duke@435 2404 #else
duke@435 2405 std(O0, l_tmp);
duke@435 2406 #endif
duke@435 2407 } else {
duke@435 2408 push(state);
duke@435 2409 }
duke@435 2410 #endif // CC_INTERP
duke@435 2411 }
duke@435 2412
duke@435 2413 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
duke@435 2414 #ifdef CC_INTERP
duke@435 2415 ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
duke@435 2416 #ifdef _LP64
duke@435 2417 ldx(STATE(_native_lresult), O0);
duke@435 2418 #else
duke@435 2419 ldd(STATE(_native_lresult), O0);
duke@435 2420 #endif
duke@435 2421 #else // CC_INTERP
duke@435 2422 if (is_native_call) {
duke@435 2423 ldf(FloatRegisterImpl::D, d_tmp, F0);
duke@435 2424 #ifdef _LP64
duke@435 2425 ldx(l_tmp, O0);
duke@435 2426 #else
duke@435 2427 ldd(l_tmp, O0);
duke@435 2428 #endif
duke@435 2429 } else {
duke@435 2430 pop(state);
duke@435 2431 }
duke@435 2432 #endif // CC_INTERP
duke@435 2433 }
iveresov@2138 2434
iveresov@2138 2435 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
iveresov@2138 2436 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
iveresov@2138 2437 int increment, int mask,
iveresov@2138 2438 Register scratch1, Register scratch2,
iveresov@2138 2439 Condition cond, Label *where) {
iveresov@2138 2440 ld(counter_addr, scratch1);
iveresov@2138 2441 add(scratch1, increment, scratch1);
iveresov@2138 2442 if (is_simm13(mask)) {
iveresov@2138 2443 andcc(scratch1, mask, G0);
iveresov@2138 2444 } else {
iveresov@2138 2445 set(mask, scratch2);
iveresov@2138 2446 andcc(scratch1, scratch2, G0);
iveresov@2138 2447 }
iveresov@2138 2448 br(cond, false, Assembler::pn, *where);
iveresov@2138 2449 delayed()->st(scratch1, counter_addr);
iveresov@2138 2450 }

mercurial