src/cpu/sparc/vm/interp_masm_sparc.cpp

Thu, 07 Oct 2010 15:12:57 -0400

author
bobv
date
Thu, 07 Oct 2010 15:12:57 -0400
changeset 2223
3dc12ef8735e
parent 2138
d5d065957597
child 2314
f95d63e2154a
permissions
-rw-r--r--

6989297: Integrate additional portability improvements
Reviewed-by: vladidan, dholmes

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interp_masm_sparc.cpp.incl"
    28 #ifndef CC_INTERP
    29 #ifndef FAST_DISPATCH
    30 #define FAST_DISPATCH 1
    31 #endif
    32 #undef FAST_DISPATCH
    34 // Implementation of InterpreterMacroAssembler
    36 // This file specializes the assember with interpreter-specific macros
    38 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
    39 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
    41 #else // CC_INTERP
    42 #ifndef STATE
    43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
    44 #endif // STATE
    46 #endif // CC_INTERP
    48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
    49   // Note: this algorithm is also used by C1's OSR entry sequence.
    50   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
    51   assert_different_registers(args_size, locals_size);
    52   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
    53   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
    54   // Use br/mov combination because it works on both V8 and V9 and is
    55   // faster.
    56   Label skip_move;
    57   br(Assembler::negative, true, Assembler::pt, skip_move);
    58   delayed()->mov(G0, delta);
    59   bind(skip_move);
    60   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
    61   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
    62 }
    64 #ifndef CC_INTERP
    66 // Dispatch code executed in the prolog of a bytecode which does not do it's
    67 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
    68 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
    69   assert_not_delayed();
    70 #ifdef FAST_DISPATCH
    71   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
    72   // they both use I2.
    73   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
    74   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
    75   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
    76                                                         // add offset to correct dispatch table
    77   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
    78   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
    79 #else
    80   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
    81   // dispatch table to use
    82   AddressLiteral tbl(Interpreter::dispatch_table(state));
    83   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
    84   set(tbl, G3_scratch);                                 // compute addr of table
    85   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
    86 #endif
    87 }
    90 // Dispatch code executed in the epilog of a bytecode which does not do it's
    91 // own dispatch. The dispatch address in IdispatchAddress is used for the
    92 // dispatch.
    93 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
    94   assert_not_delayed();
    95   verify_FPU(1, state);
    96   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
    97   jmp( IdispatchAddress, 0 );
    98   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
    99   else                delayed()->nop();
   100 }
   103 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
   104   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   105   assert_not_delayed();
   106   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   107   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
   108 }
   111 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
   112   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   113   assert_not_delayed();
   114   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   115   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
   116 }
   119 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   120   // load current bytecode
   121   assert_not_delayed();
   122   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
   123   dispatch_base(state, table);
   124 }
   127 void InterpreterMacroAssembler::call_VM_leaf_base(
   128   Register java_thread,
   129   address  entry_point,
   130   int      number_of_arguments
   131 ) {
   132   if (!java_thread->is_valid())
   133     java_thread = L7_thread_cache;
   134   // super call
   135   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
   136 }
   139 void InterpreterMacroAssembler::call_VM_base(
   140   Register        oop_result,
   141   Register        java_thread,
   142   Register        last_java_sp,
   143   address         entry_point,
   144   int             number_of_arguments,
   145   bool            check_exception
   146 ) {
   147   if (!java_thread->is_valid())
   148     java_thread = L7_thread_cache;
   149   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
   150   // takes responsibility for setting its own thread-state on call-out.
   151   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
   153   //save_bcp();                                  // save bcp
   154   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
   155   //restore_bcp();                               // restore bcp
   156   //restore_locals();                            // restore locals pointer
   157 }
   160 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
   161   if (JvmtiExport::can_pop_frame()) {
   162     Label L;
   164     // Check the "pending popframe condition" flag in the current thread
   165     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
   167     // Initiate popframe handling only if it is not already being processed.  If the flag
   168     // has the popframe_processing bit set, it means that this code is called *during* popframe
   169     // handling - we don't want to reenter.
   170     btst(JavaThread::popframe_pending_bit, scratch_reg);
   171     br(zero, false, pt, L);
   172     delayed()->nop();
   173     btst(JavaThread::popframe_processing_bit, scratch_reg);
   174     br(notZero, false, pt, L);
   175     delayed()->nop();
   177     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   178     // address of the same-named entrypoint in the generated interpreter code.
   179     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   181     // Jump to Interpreter::_remove_activation_preserving_args_entry
   182     jmpl(O0, G0, G0);
   183     delayed()->nop();
   184     bind(L);
   185   }
   186 }
   189 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   190   Register thr_state = G4_scratch;
   191   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   192   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
   193   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
   194   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
   195   switch (state) {
   196   case ltos: ld_long(val_addr, Otos_l);                   break;
   197   case atos: ld_ptr(oop_addr, Otos_l);
   198              st_ptr(G0, oop_addr);                        break;
   199   case btos:                                           // fall through
   200   case ctos:                                           // fall through
   201   case stos:                                           // fall through
   202   case itos: ld(val_addr, Otos_l1);                       break;
   203   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
   204   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
   205   case vtos: /* nothing to do */                          break;
   206   default  : ShouldNotReachHere();
   207   }
   208   // Clean up tos value in the jvmti thread state
   209   or3(G0, ilgl, G3_scratch);
   210   stw(G3_scratch, tos_addr);
   211   st_long(G0, val_addr);
   212   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   213 }
   216 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
   217   if (JvmtiExport::can_force_early_return()) {
   218     Label L;
   219     Register thr_state = G3_scratch;
   220     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   221     tst(thr_state);
   222     br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
   223     delayed()->nop();
   225     // Initiate earlyret handling only if it is not already being processed.
   226     // If the flag has the earlyret_processing bit set, it means that this code
   227     // is called *during* earlyret handling - we don't want to reenter.
   228     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
   229     cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
   230     br(Assembler::notEqual, false, pt, L);
   231     delayed()->nop();
   233     // Call Interpreter::remove_activation_early_entry() to get the address of the
   234     // same-named entrypoint in the generated interpreter code
   235     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
   236     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
   238     // Jump to Interpreter::_remove_activation_early_entry
   239     jmpl(O0, G0, G0);
   240     delayed()->nop();
   241     bind(L);
   242   }
   243 }
   246 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
   247   mov(arg_1, O0);
   248   mov(arg_2, O1);
   249   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
   250 }
   251 #endif /* CC_INTERP */
   254 #ifndef CC_INTERP
   256 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
   257   assert_not_delayed();
   258   dispatch_Lbyte_code(state, table);
   259 }
   262 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
   263   dispatch_base(state, Interpreter::normal_table(state));
   264 }
   267 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   268   dispatch_base(state, Interpreter::dispatch_table(state));
   269 }
   272 // common code to dispatch and dispatch_only
   273 // dispatch value in Lbyte_code and increment Lbcp
   275 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
   276   verify_FPU(1, state);
   277   // %%%%% maybe implement +VerifyActivationFrameSize here
   278   //verify_thread(); //too slow; we will just verify on method entry & exit
   279   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   280 #ifdef FAST_DISPATCH
   281   if (table == Interpreter::dispatch_table(state)) {
   282     // use IdispatchTables
   283     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
   284                                                         // add offset to correct dispatch table
   285     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   286     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
   287   } else {
   288 #endif
   289     // dispatch table to use
   290     AddressLiteral tbl(table);
   291     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   292     set(tbl, G3_scratch);                               // compute addr of table
   293     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
   294 #ifdef FAST_DISPATCH
   295   }
   296 #endif
   297   jmp( G3_scratch, 0 );
   298   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   299   else                delayed()->nop();
   300 }
   303 // Helpers for expression stack
   305 // Longs and doubles are Category 2 computational types in the
   306 // JVM specification (section 3.11.1) and take 2 expression stack or
   307 // local slots.
   308 // Aligning them on 32 bit with tagged stacks is hard because the code generated
   309 // for the dup* bytecodes depends on what types are already on the stack.
   310 // If the types are split into the two stack/local slots, that is much easier
   311 // (and we can use 0 for non-reference tags).
   313 // Known good alignment in _LP64 but unknown otherwise
   314 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
   315   assert_not_delayed();
   317 #ifdef _LP64
   318   ldf(FloatRegisterImpl::D, r1, offset, d);
   319 #else
   320   ldf(FloatRegisterImpl::S, r1, offset, d);
   321   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
   322 #endif
   323 }
   325 // Known good alignment in _LP64 but unknown otherwise
   326 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
   327   assert_not_delayed();
   329 #ifdef _LP64
   330   stf(FloatRegisterImpl::D, d, r1, offset);
   331   // store something more useful here
   332   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
   333 #else
   334   stf(FloatRegisterImpl::S, d, r1, offset);
   335   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
   336 #endif
   337 }
   340 // Known good alignment in _LP64 but unknown otherwise
   341 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
   342   assert_not_delayed();
   343 #ifdef _LP64
   344   ldx(r1, offset, rd);
   345 #else
   346   ld(r1, offset, rd);
   347   ld(r1, offset + Interpreter::stackElementSize, rd->successor());
   348 #endif
   349 }
   351 // Known good alignment in _LP64 but unknown otherwise
   352 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
   353   assert_not_delayed();
   355 #ifdef _LP64
   356   stx(l, r1, offset);
   357   // store something more useful here
   358   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
   359 #else
   360   st(l, r1, offset);
   361   st(l->successor(), r1, offset + Interpreter::stackElementSize);
   362 #endif
   363 }
   365 void InterpreterMacroAssembler::pop_i(Register r) {
   366   assert_not_delayed();
   367   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   368   inc(Lesp, Interpreter::stackElementSize);
   369   debug_only(verify_esp(Lesp));
   370 }
   372 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
   373   assert_not_delayed();
   374   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   375   inc(Lesp, Interpreter::stackElementSize);
   376   debug_only(verify_esp(Lesp));
   377 }
   379 void InterpreterMacroAssembler::pop_l(Register r) {
   380   assert_not_delayed();
   381   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   382   inc(Lesp, 2*Interpreter::stackElementSize);
   383   debug_only(verify_esp(Lesp));
   384 }
   387 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
   388   assert_not_delayed();
   389   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
   390   inc(Lesp, Interpreter::stackElementSize);
   391   debug_only(verify_esp(Lesp));
   392 }
   395 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
   396   assert_not_delayed();
   397   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
   398   inc(Lesp, 2*Interpreter::stackElementSize);
   399   debug_only(verify_esp(Lesp));
   400 }
   403 void InterpreterMacroAssembler::push_i(Register r) {
   404   assert_not_delayed();
   405   debug_only(verify_esp(Lesp));
   406   st(r, Lesp, 0);
   407   dec(Lesp, Interpreter::stackElementSize);
   408 }
   410 void InterpreterMacroAssembler::push_ptr(Register r) {
   411   assert_not_delayed();
   412   st_ptr(r, Lesp, 0);
   413   dec(Lesp, Interpreter::stackElementSize);
   414 }
   416 // remember: our convention for longs in SPARC is:
   417 // O0 (Otos_l1) has high-order part in first word,
   418 // O1 (Otos_l2) has low-order part in second word
   420 void InterpreterMacroAssembler::push_l(Register r) {
   421   assert_not_delayed();
   422   debug_only(verify_esp(Lesp));
   423   // Longs are stored in memory-correct order, even if unaligned.
   424   int offset = -Interpreter::stackElementSize;
   425   store_unaligned_long(r, Lesp, offset);
   426   dec(Lesp, 2 * Interpreter::stackElementSize);
   427 }
   430 void InterpreterMacroAssembler::push_f(FloatRegister f) {
   431   assert_not_delayed();
   432   debug_only(verify_esp(Lesp));
   433   stf(FloatRegisterImpl::S, f, Lesp, 0);
   434   dec(Lesp, Interpreter::stackElementSize);
   435 }
   438 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
   439   assert_not_delayed();
   440   debug_only(verify_esp(Lesp));
   441   // Longs are stored in memory-correct order, even if unaligned.
   442   int offset = -Interpreter::stackElementSize;
   443   store_unaligned_double(d, Lesp, offset);
   444   dec(Lesp, 2 * Interpreter::stackElementSize);
   445 }
   448 void InterpreterMacroAssembler::push(TosState state) {
   449   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   450   switch (state) {
   451     case atos: push_ptr();            break;
   452     case btos: push_i();              break;
   453     case ctos:
   454     case stos: push_i();              break;
   455     case itos: push_i();              break;
   456     case ltos: push_l();              break;
   457     case ftos: push_f();              break;
   458     case dtos: push_d();              break;
   459     case vtos: /* nothing to do */    break;
   460     default  : ShouldNotReachHere();
   461   }
   462 }
   465 void InterpreterMacroAssembler::pop(TosState state) {
   466   switch (state) {
   467     case atos: pop_ptr();            break;
   468     case btos: pop_i();              break;
   469     case ctos:
   470     case stos: pop_i();              break;
   471     case itos: pop_i();              break;
   472     case ltos: pop_l();              break;
   473     case ftos: pop_f();              break;
   474     case dtos: pop_d();              break;
   475     case vtos: /* nothing to do */   break;
   476     default  : ShouldNotReachHere();
   477   }
   478   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   479 }
   482 // Helpers for swap and dup
   483 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
   484   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
   485 }
   486 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
   487   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
   488 }
   491 void InterpreterMacroAssembler::load_receiver(Register param_count,
   492                                               Register recv) {
   493   sll(param_count, Interpreter::logStackElementSize, param_count);
   494   ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
   495 }
   497 void InterpreterMacroAssembler::empty_expression_stack() {
   498   // Reset Lesp.
   499   sub( Lmonitors, wordSize, Lesp );
   501   // Reset SP by subtracting more space from Lesp.
   502   Label done;
   503   verify_oop(Lmethod);
   504   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
   506   // A native does not need to do this, since its callee does not change SP.
   507   ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size);  // Load access flags.
   508   btst(JVM_ACC_NATIVE, Gframe_size);
   509   br(Assembler::notZero, false, Assembler::pt, done);
   510   delayed()->nop();
   512   // Compute max expression stack+register save area
   513   lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size);  // Load max stack.
   514   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
   516   //
   517   // now set up a stack frame with the size computed above
   518   //
   519   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
   520   sll( Gframe_size, LogBytesPerWord, Gframe_size );
   521   sub( Lesp, Gframe_size, Gframe_size );
   522   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
   523   debug_only(verify_sp(Gframe_size, G4_scratch));
   524 #ifdef _LP64
   525   sub(Gframe_size, STACK_BIAS, Gframe_size );
   526 #endif
   527   mov(Gframe_size, SP);
   529   bind(done);
   530 }
   533 #ifdef ASSERT
   534 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
   535   Label Bad, OK;
   537   // Saved SP must be aligned.
   538 #ifdef _LP64
   539   btst(2*BytesPerWord-1, Rsp);
   540 #else
   541   btst(LongAlignmentMask, Rsp);
   542 #endif
   543   br(Assembler::notZero, false, Assembler::pn, Bad);
   544   delayed()->nop();
   546   // Saved SP, plus register window size, must not be above FP.
   547   add(Rsp, frame::register_save_words * wordSize, Rtemp);
   548 #ifdef _LP64
   549   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
   550 #endif
   551   cmp(Rtemp, FP);
   552   brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
   553   delayed()->nop();
   555   // Saved SP must not be ridiculously below current SP.
   556   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
   557   set(maxstack, Rtemp);
   558   sub(SP, Rtemp, Rtemp);
   559 #ifdef _LP64
   560   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
   561 #endif
   562   cmp(Rsp, Rtemp);
   563   brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
   564   delayed()->nop();
   566   br(Assembler::always, false, Assembler::pn, OK);
   567   delayed()->nop();
   569   bind(Bad);
   570   stop("on return to interpreted call, restored SP is corrupted");
   572   bind(OK);
   573 }
   576 void InterpreterMacroAssembler::verify_esp(Register Resp) {
   577   // about to read or write Resp[0]
   578   // make sure it is not in the monitors or the register save area
   579   Label OK1, OK2;
   581   cmp(Resp, Lmonitors);
   582   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
   583   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
   584   stop("too many pops:  Lesp points into monitor area");
   585   bind(OK1);
   586 #ifdef _LP64
   587   sub(Resp, STACK_BIAS, Resp);
   588 #endif
   589   cmp(Resp, SP);
   590   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
   591   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
   592   stop("too many pushes:  Lesp points into register window");
   593   bind(OK2);
   594 }
   595 #endif // ASSERT
   597 // Load compiled (i2c) or interpreter entry when calling from interpreted and
   598 // do the call. Centralized so that all interpreter calls will do the same actions.
   599 // If jvmti single stepping is on for a thread we must not call compiled code.
   600 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
   602   // Assume we want to go compiled if available
   604   ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
   606   if (JvmtiExport::can_post_interpreter_events()) {
   607     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   608     // compiled code in threads for which the event is enabled.  Check here for
   609     // interp_only_mode if these events CAN be enabled.
   610     verify_thread();
   611     Label skip_compiled_code;
   613     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
   614     ld(interp_only, scratch);
   615     tst(scratch);
   616     br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
   617     delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
   618     bind(skip_compiled_code);
   619   }
   621   // the i2c_adapters need methodOop in G5_method (right? %%%)
   622   // do the call
   623 #ifdef ASSERT
   624   {
   625     Label ok;
   626     br_notnull(target, false, Assembler::pt, ok);
   627     delayed()->nop();
   628     stop("null entry point");
   629     bind(ok);
   630   }
   631 #endif // ASSERT
   633   // Adjust Rret first so Llast_SP can be same as Rret
   634   add(Rret, -frame::pc_return_offset, O7);
   635   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
   636   // Record SP so we can remove any stack space allocated by adapter transition
   637   jmp(target, 0);
   638   delayed()->mov(SP, Llast_SP);
   639 }
   641 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
   642   assert_not_delayed();
   644   Label not_taken;
   645   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
   646   else             br (cc, false, Assembler::pn, not_taken);
   647   delayed()->nop();
   649   TemplateTable::branch(false,false);
   651   bind(not_taken);
   653   profile_not_taken_branch(G3_scratch);
   654 }
   657 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
   658                                   int         bcp_offset,
   659                                   Register    Rtmp,
   660                                   Register    Rdst,
   661                                   signedOrNot is_signed,
   662                                   setCCOrNot  should_set_CC ) {
   663   assert(Rtmp != Rdst, "need separate temp register");
   664   assert_not_delayed();
   665   switch (is_signed) {
   666    default: ShouldNotReachHere();
   668    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
   669    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
   670   }
   671   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
   672   sll( Rdst, BitsPerByte, Rdst);
   673   switch (should_set_CC ) {
   674    default: ShouldNotReachHere();
   676    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
   677    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
   678   }
   679 }
   682 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
   683                                   int        bcp_offset,
   684                                   Register   Rtmp,
   685                                   Register   Rdst,
   686                                   setCCOrNot should_set_CC ) {
   687   assert(Rtmp != Rdst, "need separate temp register");
   688   assert_not_delayed();
   689   add( Lbcp, bcp_offset, Rtmp);
   690   andcc( Rtmp, 3, G0);
   691   Label aligned;
   692   switch (should_set_CC ) {
   693    default: ShouldNotReachHere();
   695    case      set_CC: break;
   696    case dont_set_CC: break;
   697   }
   699   br(Assembler::zero, true, Assembler::pn, aligned);
   700 #ifdef _LP64
   701   delayed()->ldsw(Rtmp, 0, Rdst);
   702 #else
   703   delayed()->ld(Rtmp, 0, Rdst);
   704 #endif
   706   ldub(Lbcp, bcp_offset + 3, Rdst);
   707   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
   708   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
   709 #ifdef _LP64
   710   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   711 #else
   712   // Unsigned load is faster than signed on some implementations
   713   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   714 #endif
   715   or3(Rtmp, Rdst, Rdst );
   717   bind(aligned);
   718   if (should_set_CC == set_CC) tst(Rdst);
   719 }
   722 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register cache, Register tmp,
   723                                                        int bcp_offset, size_t index_size) {
   724   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   725   if (index_size == sizeof(u2)) {
   726     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   727   } else if (index_size == sizeof(u4)) {
   728     assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
   729     get_4_byte_integer_at_bcp(bcp_offset, cache, tmp);
   730     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
   731     xor3(tmp, -1, tmp);  // convert to plain index
   732   } else if (index_size == sizeof(u1)) {
   733     assert(EnableMethodHandles, "tiny index used only for EnableMethodHandles");
   734     ldub(Lbcp, bcp_offset, tmp);
   735   } else {
   736     ShouldNotReachHere();
   737   }
   738 }
   741 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
   742                                                            int bcp_offset, size_t index_size) {
   743   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   744   assert_different_registers(cache, tmp);
   745   assert_not_delayed();
   746   get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
   747   // convert from field index to ConstantPoolCacheEntry index and from
   748   // word index to byte offset
   749   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   750   add(LcpoolCache, tmp, cache);
   751 }
   754 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
   755                                                                int bcp_offset, size_t index_size) {
   756   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   757   assert_different_registers(cache, tmp);
   758   assert_not_delayed();
   759   if (index_size == sizeof(u2)) {
   760     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   761   } else {
   762     ShouldNotReachHere();  // other sizes not supported here
   763   }
   764               // convert from field index to ConstantPoolCacheEntry index
   765               // and from word index to byte offset
   766   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   767               // skip past the header
   768   add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
   769               // construct pointer to cache entry
   770   add(LcpoolCache, tmp, cache);
   771 }
   774 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   775 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
   776 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   777                                                   Register Rsuper_klass,
   778                                                   Register Rtmp1,
   779                                                   Register Rtmp2,
   780                                                   Register Rtmp3,
   781                                                   Label &ok_is_subtype ) {
   782   Label not_subtype;
   784   // Profile the not-null value's klass.
   785   profile_typecheck(Rsub_klass, Rtmp1);
   787   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
   788                                 Rtmp1, Rtmp2,
   789                                 &ok_is_subtype, &not_subtype, NULL);
   791   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
   792                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
   793                                 &ok_is_subtype, NULL);
   795   bind(not_subtype);
   796   profile_typecheck_failed(Rtmp1);
   797 }
   799 // Separate these two to allow for delay slot in middle
   800 // These are used to do a test and full jump to exception-throwing code.
   802 // %%%%% Could possibly reoptimize this by testing to see if could use
   803 // a single conditional branch (i.e. if span is small enough.
   804 // If you go that route, than get rid of the split and give up
   805 // on the delay-slot hack.
   807 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
   808                                                     Label&    ok ) {
   809   assert_not_delayed();
   810   br(ok_condition, true, pt, ok);
   811   // DELAY SLOT
   812 }
   814 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
   815                                                     Label&    ok ) {
   816   assert_not_delayed();
   817   bp( ok_condition, true, Assembler::xcc, pt, ok);
   818   // DELAY SLOT
   819 }
   821 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
   822                                                   Label&    ok ) {
   823   assert_not_delayed();
   824   brx(ok_condition, true, pt, ok);
   825   // DELAY SLOT
   826 }
   828 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
   829                                                 Register Rscratch,
   830                                                 Label&   ok ) {
   831   assert(throw_entry_point != NULL, "entry point must be generated by now");
   832   AddressLiteral dest(throw_entry_point);
   833   jump_to(dest, Rscratch);
   834   delayed()->nop();
   835   bind(ok);
   836 }
   839 // And if you cannot use the delay slot, here is a shorthand:
   841 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
   842                                                   address   throw_entry_point,
   843                                                   Register  Rscratch ) {
   844   Label ok;
   845   if (ok_condition != never) {
   846     throw_if_not_1_icc( ok_condition, ok);
   847     delayed()->nop();
   848   }
   849   throw_if_not_2( throw_entry_point, Rscratch, ok);
   850 }
   851 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
   852                                                   address   throw_entry_point,
   853                                                   Register  Rscratch ) {
   854   Label ok;
   855   if (ok_condition != never) {
   856     throw_if_not_1_xcc( ok_condition, ok);
   857     delayed()->nop();
   858   }
   859   throw_if_not_2( throw_entry_point, Rscratch, ok);
   860 }
   861 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
   862                                                 address   throw_entry_point,
   863                                                 Register  Rscratch ) {
   864   Label ok;
   865   if (ok_condition != never) {
   866     throw_if_not_1_x( ok_condition, ok);
   867     delayed()->nop();
   868   }
   869   throw_if_not_2( throw_entry_point, Rscratch, ok);
   870 }
   872 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
   873 // Note: res is still shy of address by array offset into object.
   875 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
   876   assert_not_delayed();
   878   verify_oop(array);
   879 #ifdef _LP64
   880   // sign extend since tos (index) can be a 32bit value
   881   sra(index, G0, index);
   882 #endif // _LP64
   884   // check array
   885   Label ptr_ok;
   886   tst(array);
   887   throw_if_not_1_x( notZero, ptr_ok );
   888   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
   889   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
   891   Label index_ok;
   892   cmp(index, tmp);
   893   throw_if_not_1_icc( lessUnsigned, index_ok );
   894   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
   895   else                  delayed()->add(array, index, res); // addr - const offset in index
   896   // convention: move aberrant index into G3_scratch for exception message
   897   mov(index, G3_scratch);
   898   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
   900   // add offset if didn't do it in delay slot
   901   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
   902 }
   905 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
   906   assert_not_delayed();
   908   // pop array
   909   pop_ptr(array);
   911   // check array
   912   index_check_without_pop(array, index, index_shift, tmp, res);
   913 }
   916 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
   917   ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
   918 }
   921 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
   922   get_constant_pool(Rdst);
   923   ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
   924 }
   927 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
   928   get_constant_pool(Rcpool);
   929   ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
   930 }
   933 // unlock if synchronized method
   934 //
   935 // Unlock the receiver if this is a synchronized method.
   936 // Unlock any Java monitors from syncronized blocks.
   937 //
   938 // If there are locked Java monitors
   939 //    If throw_monitor_exception
   940 //       throws IllegalMonitorStateException
   941 //    Else if install_monitor_exception
   942 //       installs IllegalMonitorStateException
   943 //    Else
   944 //       no error processing
   945 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
   946                                                               bool throw_monitor_exception,
   947                                                               bool install_monitor_exception) {
   948   Label unlocked, unlock, no_unlock;
   950   // get the value of _do_not_unlock_if_synchronized into G1_scratch
   951   const Address do_not_unlock_if_synchronized(G2_thread,
   952     JavaThread::do_not_unlock_if_synchronized_offset());
   953   ldbool(do_not_unlock_if_synchronized, G1_scratch);
   954   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
   956   // check if synchronized method
   957   const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
   958   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   959   push(state); // save tos
   960   ld(access_flags, G3_scratch); // Load access flags.
   961   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
   962   br(zero, false, pt, unlocked);
   963   delayed()->nop();
   965   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   966   // is set.
   967   tstbool(G1_scratch);
   968   br(Assembler::notZero, false, pn, no_unlock);
   969   delayed()->nop();
   971   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
   972   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
   974   //Intel: if (throw_monitor_exception) ... else ...
   975   // Entry already unlocked, need to throw exception
   976   //...
   978   // pass top-most monitor elem
   979   add( top_most_monitor(), O1 );
   981   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
   982   br_notnull(G3_scratch, false, pt, unlock);
   983   delayed()->nop();
   985   if (throw_monitor_exception) {
   986     // Entry already unlocked need to throw an exception
   987     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   988     should_not_reach_here();
   989   } else {
   990     // Monitor already unlocked during a stack unroll.
   991     // If requested, install an illegal_monitor_state_exception.
   992     // Continue with stack unrolling.
   993     if (install_monitor_exception) {
   994       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   995     }
   996     ba(false, unlocked);
   997     delayed()->nop();
   998   }
  1000   bind(unlock);
  1002   unlock_object(O1);
  1004   bind(unlocked);
  1006   // I0, I1: Might contain return value
  1008   // Check that all monitors are unlocked
  1009   { Label loop, exception, entry, restart;
  1011     Register Rmptr   = O0;
  1012     Register Rtemp   = O1;
  1013     Register Rlimit  = Lmonitors;
  1014     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1015     assert( (delta & LongAlignmentMask) == 0,
  1016             "sizeof BasicObjectLock must be even number of doublewords");
  1018     #ifdef ASSERT
  1019     add(top_most_monitor(), Rmptr, delta);
  1020     { Label L;
  1021       // ensure that Rmptr starts out above (or at) Rlimit
  1022       cmp(Rmptr, Rlimit);
  1023       brx(Assembler::greaterEqualUnsigned, false, pn, L);
  1024       delayed()->nop();
  1025       stop("monitor stack has negative size");
  1026       bind(L);
  1028     #endif
  1029     bind(restart);
  1030     ba(false, entry);
  1031     delayed()->
  1032     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
  1034     // Entry is still locked, need to throw exception
  1035     bind(exception);
  1036     if (throw_monitor_exception) {
  1037       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1038       should_not_reach_here();
  1039     } else {
  1040       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
  1041       // Unlock does not block, so don't have to worry about the frame
  1042       unlock_object(Rmptr);
  1043       if (install_monitor_exception) {
  1044         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1046       ba(false, restart);
  1047       delayed()->nop();
  1050     bind(loop);
  1051     cmp(Rtemp, G0);                             // check if current entry is used
  1052     brx(Assembler::notEqual, false, pn, exception);
  1053     delayed()->
  1054     dec(Rmptr, delta);                          // otherwise advance to next entry
  1055     #ifdef ASSERT
  1056     { Label L;
  1057       // ensure that Rmptr has not somehow stepped below Rlimit
  1058       cmp(Rmptr, Rlimit);
  1059       brx(Assembler::greaterEqualUnsigned, false, pn, L);
  1060       delayed()->nop();
  1061       stop("ran off the end of the monitor stack");
  1062       bind(L);
  1064     #endif
  1065     bind(entry);
  1066     cmp(Rmptr, Rlimit);                         // check if bottom reached
  1067     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
  1068     delayed()->
  1069     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
  1072   bind(no_unlock);
  1073   pop(state);
  1074   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1078 // remove activation
  1079 //
  1080 // Unlock the receiver if this is a synchronized method.
  1081 // Unlock any Java monitors from syncronized blocks.
  1082 // Remove the activation from the stack.
  1083 //
  1084 // If there are locked Java monitors
  1085 //    If throw_monitor_exception
  1086 //       throws IllegalMonitorStateException
  1087 //    Else if install_monitor_exception
  1088 //       installs IllegalMonitorStateException
  1089 //    Else
  1090 //       no error processing
  1091 void InterpreterMacroAssembler::remove_activation(TosState state,
  1092                                                   bool throw_monitor_exception,
  1093                                                   bool install_monitor_exception) {
  1095   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
  1097   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
  1098   notify_method_exit(false, state, NotifyJVMTI);
  1100   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1101   verify_oop(Lmethod);
  1102   verify_thread();
  1104   // return tos
  1105   assert(Otos_l1 == Otos_i, "adjust code below");
  1106   switch (state) {
  1107 #ifdef _LP64
  1108   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
  1109 #else
  1110   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
  1111 #endif
  1112   case btos:                                      // fall through
  1113   case ctos:
  1114   case stos:                                      // fall through
  1115   case atos:                                      // fall through
  1116   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
  1117   case ftos:                                      // fall through
  1118   case dtos:                                      // fall through
  1119   case vtos: /* nothing to do */                     break;
  1120   default  : ShouldNotReachHere();
  1123 #if defined(COMPILER2) && !defined(_LP64)
  1124   if (state == ltos) {
  1125     // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1126     // or compiled so just be safe use G1 and O0/O1
  1128     // Shift bits into high (msb) of G1
  1129     sllx(Otos_l1->after_save(), 32, G1);
  1130     // Zero extend low bits
  1131     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
  1132     or3 (Otos_l2->after_save(), G1, G1);
  1134 #endif /* COMPILER2 */
  1137 #endif /* CC_INTERP */
  1140 // Lock object
  1141 //
  1142 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
  1143 //            it must be initialized with the object to lock
  1144 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
  1145   if (UseHeavyMonitors) {
  1146     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1148   else {
  1149     Register obj_reg = Object;
  1150     Register mark_reg = G4_scratch;
  1151     Register temp_reg = G1_scratch;
  1152     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
  1153     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1154     Label    done;
  1156     Label slow_case;
  1158     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
  1160     // load markOop from object into mark_reg
  1161     ld_ptr(mark_addr, mark_reg);
  1163     if (UseBiasedLocking) {
  1164       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
  1167     // get the address of basicLock on stack that will be stored in the object
  1168     // we need a temporary register here as we do not want to clobber lock_reg
  1169     // (cas clobbers the destination register)
  1170     mov(lock_reg, temp_reg);
  1171     // set mark reg to be (markOop of object | UNLOCK_VALUE)
  1172     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
  1173     // initialize the box  (Must happen before we update the object mark!)
  1174     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1175     // compare and exchange object_addr, markOop | 1, stack address of basicLock
  1176     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1177     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  1178       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1180     // if the compare and exchange succeeded we are done (we saw an unlocked object)
  1181     cmp(mark_reg, temp_reg);
  1182     brx(Assembler::equal, true, Assembler::pt, done);
  1183     delayed()->nop();
  1185     // We did not see an unlocked object so try the fast recursive case
  1187     // Check if owner is self by comparing the value in the markOop of object
  1188     // with the stack pointer
  1189     sub(temp_reg, SP, temp_reg);
  1190 #ifdef _LP64
  1191     sub(temp_reg, STACK_BIAS, temp_reg);
  1192 #endif
  1193     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  1195     // Composite "andcc" test:
  1196     // (a) %sp -vs- markword proximity check, and,
  1197     // (b) verify mark word LSBs == 0 (Stack-locked).
  1198     //
  1199     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
  1200     // Note that the page size used for %sp proximity testing is arbitrary and is
  1201     // unrelated to the actual MMU page size.  We use a 'logical' page size of
  1202     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
  1203     // field of the andcc instruction.
  1204     andcc (temp_reg, 0xFFFFF003, G0) ;
  1206     // if condition is true we are done and hence we can store 0 in the displaced
  1207     // header indicating it is a recursive lock and be done
  1208     brx(Assembler::zero, true, Assembler::pt, done);
  1209     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1211     // none of the above fast optimizations worked so we have to get into the
  1212     // slow case of monitor enter
  1213     bind(slow_case);
  1214     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1216     bind(done);
  1220 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
  1221 //
  1222 // Argument - lock_reg points to the BasicObjectLock for lock
  1223 // Throw IllegalMonitorException if object is not locked by current thread
  1224 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
  1225   if (UseHeavyMonitors) {
  1226     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1227   } else {
  1228     Register obj_reg = G3_scratch;
  1229     Register mark_reg = G4_scratch;
  1230     Register displaced_header_reg = G1_scratch;
  1231     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
  1232     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1233     Label    done;
  1235     if (UseBiasedLocking) {
  1236       // load the object out of the BasicObjectLock
  1237       ld_ptr(lockobj_addr, obj_reg);
  1238       biased_locking_exit(mark_addr, mark_reg, done, true);
  1239       st_ptr(G0, lockobj_addr);  // free entry
  1242     // Test first if we are in the fast recursive case
  1243     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
  1244     ld_ptr(lock_addr, displaced_header_reg);
  1245     br_null(displaced_header_reg, true, Assembler::pn, done);
  1246     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1248     // See if it is still a light weight lock, if so we just unlock
  1249     // the object and we are done
  1251     if (!UseBiasedLocking) {
  1252       // load the object out of the BasicObjectLock
  1253       ld_ptr(lockobj_addr, obj_reg);
  1256     // we have the displaced header in displaced_header_reg
  1257     // we expect to see the stack address of the basicLock in case the
  1258     // lock is still a light weight lock (lock_reg)
  1259     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1260     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
  1261       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1262     cmp(lock_reg, displaced_header_reg);
  1263     brx(Assembler::equal, true, Assembler::pn, done);
  1264     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1266     // The lock has been converted into a heavy lock and hence
  1267     // we need to get into the slow case
  1269     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1271     bind(done);
  1275 #ifndef CC_INTERP
  1277 // Get the method data pointer from the methodOop and set the
  1278 // specified register to its value.
  1280 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
  1281   assert(ProfileInterpreter, "must be profiling interpreter");
  1282   Label get_continue;
  1284   ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
  1285   test_method_data_pointer(get_continue);
  1286   add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
  1287   if (Roff != noreg)
  1288     // Roff contains a method data index ("mdi").  It defaults to zero.
  1289     add(ImethodDataPtr, Roff, ImethodDataPtr);
  1290   bind(get_continue);
  1293 // Set the method data pointer for the current bcp.
  1295 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  1296   assert(ProfileInterpreter, "must be profiling interpreter");
  1297   Label zero_continue;
  1299   // Test MDO to avoid the call if it is NULL.
  1300   ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
  1301   test_method_data_pointer(zero_continue);
  1302   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
  1303   set_method_data_pointer_offset(O0);
  1304   bind(zero_continue);
  1307 // Test ImethodDataPtr.  If it is null, continue at the specified label
  1309 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
  1310   assert(ProfileInterpreter, "must be profiling interpreter");
  1311 #ifdef _LP64
  1312   bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
  1313 #else
  1314   tst(ImethodDataPtr);
  1315   br(Assembler::zero, false, Assembler::pn, zero_continue);
  1316 #endif
  1317   delayed()->nop();
  1320 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1321   assert(ProfileInterpreter, "must be profiling interpreter");
  1322 #ifdef ASSERT
  1323   Label verify_continue;
  1324   test_method_data_pointer(verify_continue);
  1326   // If the mdp is valid, it will point to a DataLayout header which is
  1327   // consistent with the bcp.  The converse is highly probable also.
  1328   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
  1329   ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
  1330   add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
  1331   add(G3_scratch, O5, G3_scratch);
  1332   cmp(Lbcp, G3_scratch);
  1333   brx(Assembler::equal, false, Assembler::pt, verify_continue);
  1335   Register temp_reg = O5;
  1336   delayed()->mov(ImethodDataPtr, temp_reg);
  1337   // %%% should use call_VM_leaf here?
  1338   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
  1339   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
  1340   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
  1341   stf(FloatRegisterImpl::D, Ftos_d, d_save);
  1342   mov(temp_reg->after_save(), O2);
  1343   save_thread(L7_thread_cache);
  1344   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
  1345   delayed()->nop();
  1346   restore_thread(L7_thread_cache);
  1347   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
  1348   restore();
  1349   bind(verify_continue);
  1350 #endif // ASSERT
  1353 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
  1354                                                                 Register cur_bcp,
  1355                                                                 Register Rtmp,
  1356                                                                 Label &profile_continue) {
  1357   assert(ProfileInterpreter, "must be profiling interpreter");
  1358   // Control will flow to "profile_continue" if the counter is less than the
  1359   // limit or if we call profile_method()
  1361   Label done;
  1363   // if no method data exists, and the counter is high enough, make one
  1364 #ifdef _LP64
  1365   bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
  1366 #else
  1367   tst(ImethodDataPtr);
  1368   br(Assembler::notZero, false, Assembler::pn, done);
  1369 #endif
  1371   // Test to see if we should create a method data oop
  1372   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
  1373 #ifdef _LP64
  1374   delayed()->nop();
  1375   sethi(profile_limit, Rtmp);
  1376 #else
  1377   delayed()->sethi(profile_limit, Rtmp);
  1378 #endif
  1379   ld(Rtmp, profile_limit.low10(), Rtmp);
  1380   cmp(invocation_count, Rtmp);
  1381   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
  1382   delayed()->nop();
  1384   // Build it now.
  1385   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
  1386   set_method_data_pointer_offset(O0);
  1387   ba(false, profile_continue);
  1388   delayed()->nop();
  1389   bind(done);
  1392 // Store a value at some constant offset from the method data pointer.
  1394 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
  1395   assert(ProfileInterpreter, "must be profiling interpreter");
  1396   st_ptr(value, ImethodDataPtr, constant);
  1399 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
  1400                                                       Register bumped_count,
  1401                                                       bool decrement) {
  1402   assert(ProfileInterpreter, "must be profiling interpreter");
  1404   // Load the counter.
  1405   ld_ptr(counter, bumped_count);
  1407   if (decrement) {
  1408     // Decrement the register.  Set condition codes.
  1409     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1411     // If the decrement causes the counter to overflow, stay negative
  1412     Label L;
  1413     brx(Assembler::negative, true, Assembler::pn, L);
  1415     // Store the decremented counter, if it is still negative.
  1416     delayed()->st_ptr(bumped_count, counter);
  1417     bind(L);
  1418   } else {
  1419     // Increment the register.  Set carry flag.
  1420     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1422     // If the increment causes the counter to overflow, pull back by 1.
  1423     assert(DataLayout::counter_increment == 1, "subc works");
  1424     subc(bumped_count, G0, bumped_count);
  1426     // Store the incremented counter.
  1427     st_ptr(bumped_count, counter);
  1431 // Increment the value at some constant offset from the method data pointer.
  1433 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
  1434                                                       Register bumped_count,
  1435                                                       bool decrement) {
  1436   // Locate the counter at a fixed offset from the mdp:
  1437   Address counter(ImethodDataPtr, constant);
  1438   increment_mdp_data_at(counter, bumped_count, decrement);
  1441 // Increment the value at some non-fixed (reg + constant) offset from
  1442 // the method data pointer.
  1444 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
  1445                                                       int constant,
  1446                                                       Register bumped_count,
  1447                                                       Register scratch2,
  1448                                                       bool decrement) {
  1449   // Add the constant to reg to get the offset.
  1450   add(ImethodDataPtr, reg, scratch2);
  1451   Address counter(scratch2, constant);
  1452   increment_mdp_data_at(counter, bumped_count, decrement);
  1455 // Set a flag value at the current method data pointer position.
  1456 // Updates a single byte of the header, to avoid races with other header bits.
  1458 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
  1459                                                 Register scratch) {
  1460   assert(ProfileInterpreter, "must be profiling interpreter");
  1461   // Load the data header
  1462   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
  1464   // Set the flag
  1465   or3(scratch, flag_constant, scratch);
  1467   // Store the modified header.
  1468   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
  1471 // Test the location at some offset from the method data pointer.
  1472 // If it is not equal to value, branch to the not_equal_continue Label.
  1473 // Set condition codes to match the nullness of the loaded value.
  1475 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
  1476                                                  Register value,
  1477                                                  Label& not_equal_continue,
  1478                                                  Register scratch) {
  1479   assert(ProfileInterpreter, "must be profiling interpreter");
  1480   ld_ptr(ImethodDataPtr, offset, scratch);
  1481   cmp(value, scratch);
  1482   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
  1483   delayed()->tst(scratch);
  1486 // Update the method data pointer by the displacement located at some fixed
  1487 // offset from the method data pointer.
  1489 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
  1490                                                      Register scratch) {
  1491   assert(ProfileInterpreter, "must be profiling interpreter");
  1492   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
  1493   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1496 // Update the method data pointer by the displacement located at the
  1497 // offset (reg + offset_of_disp).
  1499 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
  1500                                                      int offset_of_disp,
  1501                                                      Register scratch) {
  1502   assert(ProfileInterpreter, "must be profiling interpreter");
  1503   add(reg, offset_of_disp, scratch);
  1504   ld_ptr(ImethodDataPtr, scratch, scratch);
  1505   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1508 // Update the method data pointer by a simple constant displacement.
  1510 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
  1511   assert(ProfileInterpreter, "must be profiling interpreter");
  1512   add(ImethodDataPtr, constant, ImethodDataPtr);
  1515 // Update the method data pointer for a _ret bytecode whose target
  1516 // was not among our cached targets.
  1518 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
  1519                                                    Register return_bci) {
  1520   assert(ProfileInterpreter, "must be profiling interpreter");
  1521   push(state);
  1522   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
  1523   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  1524   ld_ptr(l_tmp, return_bci);
  1525   pop(state);
  1528 // Count a taken branch in the bytecodes.
  1530 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
  1531   if (ProfileInterpreter) {
  1532     Label profile_continue;
  1534     // If no method data exists, go to profile_continue.
  1535     test_method_data_pointer(profile_continue);
  1537     // We are taking a branch.  Increment the taken count.
  1538     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
  1540     // The method data pointer needs to be updated to reflect the new target.
  1541     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
  1542     bind (profile_continue);
  1547 // Count a not-taken branch in the bytecodes.
  1549 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
  1550   if (ProfileInterpreter) {
  1551     Label profile_continue;
  1553     // If no method data exists, go to profile_continue.
  1554     test_method_data_pointer(profile_continue);
  1556     // We are taking a branch.  Increment the not taken count.
  1557     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
  1559     // The method data pointer needs to be updated to correspond to the
  1560     // next bytecode.
  1561     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
  1562     bind (profile_continue);
  1567 // Count a non-virtual call in the bytecodes.
  1569 void InterpreterMacroAssembler::profile_call(Register scratch) {
  1570   if (ProfileInterpreter) {
  1571     Label profile_continue;
  1573     // If no method data exists, go to profile_continue.
  1574     test_method_data_pointer(profile_continue);
  1576     // We are making a call.  Increment the count.
  1577     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1579     // The method data pointer needs to be updated to reflect the new target.
  1580     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
  1581     bind (profile_continue);
  1586 // Count a final call in the bytecodes.
  1588 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
  1589   if (ProfileInterpreter) {
  1590     Label profile_continue;
  1592     // If no method data exists, go to profile_continue.
  1593     test_method_data_pointer(profile_continue);
  1595     // We are making a call.  Increment the count.
  1596     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1598     // The method data pointer needs to be updated to reflect the new target.
  1599     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1600     bind (profile_continue);
  1605 // Count a virtual call in the bytecodes.
  1607 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1608                                                      Register scratch,
  1609                                                      bool receiver_can_be_null) {
  1610   if (ProfileInterpreter) {
  1611     Label profile_continue;
  1613     // If no method data exists, go to profile_continue.
  1614     test_method_data_pointer(profile_continue);
  1617     Label skip_receiver_profile;
  1618     if (receiver_can_be_null) {
  1619       Label not_null;
  1620       tst(receiver);
  1621       brx(Assembler::notZero, false, Assembler::pt, not_null);
  1622       delayed()->nop();
  1623       // We are making a call.  Increment the count for null receiver.
  1624       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1625       ba(false, skip_receiver_profile);
  1626       delayed()->nop();
  1627       bind(not_null);
  1630     // Record the receiver type.
  1631     record_klass_in_profile(receiver, scratch, true);
  1632     bind(skip_receiver_profile);
  1634     // The method data pointer needs to be updated to reflect the new target.
  1635     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1636     bind (profile_continue);
  1640 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1641                                         Register receiver, Register scratch,
  1642                                         int start_row, Label& done, bool is_virtual_call) {
  1643   if (TypeProfileWidth == 0) {
  1644     if (is_virtual_call) {
  1645       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1647     return;
  1650   int last_row = VirtualCallData::row_limit() - 1;
  1651   assert(start_row <= last_row, "must be work left to do");
  1652   // Test this row for both the receiver and for null.
  1653   // Take any of three different outcomes:
  1654   //   1. found receiver => increment count and goto done
  1655   //   2. found null => keep looking for case 1, maybe allocate this cell
  1656   //   3. found something else => keep looking for cases 1 and 2
  1657   // Case 3 is handled by a recursive call.
  1658   for (int row = start_row; row <= last_row; row++) {
  1659     Label next_test;
  1660     bool test_for_null_also = (row == start_row);
  1662     // See if the receiver is receiver[n].
  1663     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1664     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
  1665     // delayed()->tst(scratch);
  1667     // The receiver is receiver[n].  Increment count[n].
  1668     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1669     increment_mdp_data_at(count_offset, scratch);
  1670     ba(false, done);
  1671     delayed()->nop();
  1672     bind(next_test);
  1674     if (test_for_null_also) {
  1675       Label found_null;
  1676       // Failed the equality check on receiver[n]...  Test for null.
  1677       if (start_row == last_row) {
  1678         // The only thing left to do is handle the null case.
  1679         if (is_virtual_call) {
  1680           brx(Assembler::zero, false, Assembler::pn, found_null);
  1681           delayed()->nop();
  1682           // Receiver did not match any saved receiver and there is no empty row for it.
  1683           // Increment total counter to indicate polymorphic case.
  1684           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1685           ba(false, done);
  1686           delayed()->nop();
  1687           bind(found_null);
  1688         } else {
  1689           brx(Assembler::notZero, false, Assembler::pt, done);
  1690           delayed()->nop();
  1692         break;
  1694       // Since null is rare, make it be the branch-taken case.
  1695       brx(Assembler::zero, false, Assembler::pn, found_null);
  1696       delayed()->nop();
  1698       // Put all the "Case 3" tests here.
  1699       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
  1701       // Found a null.  Keep searching for a matching receiver,
  1702       // but remember that this is an empty (unused) slot.
  1703       bind(found_null);
  1707   // In the fall-through case, we found no matching receiver, but we
  1708   // observed the receiver[start_row] is NULL.
  1710   // Fill in the receiver field and increment the count.
  1711   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1712   set_mdp_data_at(recvr_offset, receiver);
  1713   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1714   mov(DataLayout::counter_increment, scratch);
  1715   set_mdp_data_at(count_offset, scratch);
  1716   if (start_row > 0) {
  1717     ba(false, done);
  1718     delayed()->nop();
  1722 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1723                                                         Register scratch, bool is_virtual_call) {
  1724   assert(ProfileInterpreter, "must be profiling");
  1725   Label done;
  1727   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
  1729   bind (done);
  1733 // Count a ret in the bytecodes.
  1735 void InterpreterMacroAssembler::profile_ret(TosState state,
  1736                                             Register return_bci,
  1737                                             Register scratch) {
  1738   if (ProfileInterpreter) {
  1739     Label profile_continue;
  1740     uint row;
  1742     // If no method data exists, go to profile_continue.
  1743     test_method_data_pointer(profile_continue);
  1745     // Update the total ret count.
  1746     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1748     for (row = 0; row < RetData::row_limit(); row++) {
  1749       Label next_test;
  1751       // See if return_bci is equal to bci[n]:
  1752       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
  1753                        return_bci, next_test, scratch);
  1755       // return_bci is equal to bci[n].  Increment the count.
  1756       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
  1758       // The method data pointer needs to be updated to reflect the new target.
  1759       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
  1760       ba(false, profile_continue);
  1761       delayed()->nop();
  1762       bind(next_test);
  1765     update_mdp_for_ret(state, return_bci);
  1767     bind (profile_continue);
  1771 // Profile an unexpected null in the bytecodes.
  1772 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
  1773   if (ProfileInterpreter) {
  1774     Label profile_continue;
  1776     // If no method data exists, go to profile_continue.
  1777     test_method_data_pointer(profile_continue);
  1779     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
  1781     // The method data pointer needs to be updated.
  1782     int mdp_delta = in_bytes(BitData::bit_data_size());
  1783     if (TypeProfileCasts) {
  1784       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1786     update_mdp_by_constant(mdp_delta);
  1788     bind (profile_continue);
  1792 void InterpreterMacroAssembler::profile_typecheck(Register klass,
  1793                                                   Register scratch) {
  1794   if (ProfileInterpreter) {
  1795     Label profile_continue;
  1797     // If no method data exists, go to profile_continue.
  1798     test_method_data_pointer(profile_continue);
  1800     int mdp_delta = in_bytes(BitData::bit_data_size());
  1801     if (TypeProfileCasts) {
  1802       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1804       // Record the object type.
  1805       record_klass_in_profile(klass, scratch, false);
  1808     // The method data pointer needs to be updated.
  1809     update_mdp_by_constant(mdp_delta);
  1811     bind (profile_continue);
  1815 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
  1816   if (ProfileInterpreter && TypeProfileCasts) {
  1817     Label profile_continue;
  1819     // If no method data exists, go to profile_continue.
  1820     test_method_data_pointer(profile_continue);
  1822     int count_offset = in_bytes(CounterData::count_offset());
  1823     // Back up the address, since we have already bumped the mdp.
  1824     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1826     // *Decrement* the counter.  We expect to see zero or small negatives.
  1827     increment_mdp_data_at(count_offset, scratch, true);
  1829     bind (profile_continue);
  1833 // Count the default case of a switch construct.
  1835 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
  1836   if (ProfileInterpreter) {
  1837     Label profile_continue;
  1839     // If no method data exists, go to profile_continue.
  1840     test_method_data_pointer(profile_continue);
  1842     // Update the default case count
  1843     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
  1844                           scratch);
  1846     // The method data pointer needs to be updated.
  1847     update_mdp_by_offset(
  1848                     in_bytes(MultiBranchData::default_displacement_offset()),
  1849                     scratch);
  1851     bind (profile_continue);
  1855 // Count the index'th case of a switch construct.
  1857 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1858                                                     Register scratch,
  1859                                                     Register scratch2,
  1860                                                     Register scratch3) {
  1861   if (ProfileInterpreter) {
  1862     Label profile_continue;
  1864     // If no method data exists, go to profile_continue.
  1865     test_method_data_pointer(profile_continue);
  1867     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1868     set(in_bytes(MultiBranchData::per_case_size()), scratch);
  1869     smul(index, scratch, scratch);
  1870     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
  1872     // Update the case count
  1873     increment_mdp_data_at(scratch,
  1874                           in_bytes(MultiBranchData::relative_count_offset()),
  1875                           scratch2,
  1876                           scratch3);
  1878     // The method data pointer needs to be updated.
  1879     update_mdp_by_offset(scratch,
  1880                      in_bytes(MultiBranchData::relative_displacement_offset()),
  1881                      scratch2);
  1883     bind (profile_continue);
  1887 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
  1889 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
  1890                                                       Register Rtemp,
  1891                                                       Register Rtemp2 ) {
  1893   Register Rlimit = Lmonitors;
  1894   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1895   assert( (delta & LongAlignmentMask) == 0,
  1896           "sizeof BasicObjectLock must be even number of doublewords");
  1898   sub( SP,        delta, SP);
  1899   sub( Lesp,      delta, Lesp);
  1900   sub( Lmonitors, delta, Lmonitors);
  1902   if (!stack_is_empty) {
  1904     // must copy stack contents down
  1906     Label start_copying, next;
  1908     // untested("monitor stack expansion");
  1909     compute_stack_base(Rtemp);
  1910     ba( false, start_copying );
  1911     delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
  1913     // note: must copy from low memory upwards
  1914     // On entry to loop,
  1915     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
  1916     // Loop mutates Rtemp
  1918     bind( next);
  1920     st_ptr(Rtemp2, Rtemp, 0);
  1921     inc(Rtemp, wordSize);
  1922     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
  1924     bind( start_copying );
  1926     brx( notEqual, true, pn, next );
  1927     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
  1929     // done copying stack
  1933 // Locals
  1934 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
  1935   assert_not_delayed();
  1936   sll(index, Interpreter::logStackElementSize, index);
  1937   sub(Llocals, index, index);
  1938   ld_ptr(index, 0, dst);
  1939   // Note:  index must hold the effective address--the iinc template uses it
  1942 // Just like access_local_ptr but the tag is a returnAddress
  1943 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
  1944                                                            Register dst ) {
  1945   assert_not_delayed();
  1946   sll(index, Interpreter::logStackElementSize, index);
  1947   sub(Llocals, index, index);
  1948   ld_ptr(index, 0, dst);
  1951 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
  1952   assert_not_delayed();
  1953   sll(index, Interpreter::logStackElementSize, index);
  1954   sub(Llocals, index, index);
  1955   ld(index, 0, dst);
  1956   // Note:  index must hold the effective address--the iinc template uses it
  1960 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
  1961   assert_not_delayed();
  1962   sll(index, Interpreter::logStackElementSize, index);
  1963   sub(Llocals, index, index);
  1964   // First half stored at index n+1 (which grows down from Llocals[n])
  1965   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
  1969 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
  1970   assert_not_delayed();
  1971   sll(index, Interpreter::logStackElementSize, index);
  1972   sub(Llocals, index, index);
  1973   ldf(FloatRegisterImpl::S, index, 0, dst);
  1977 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
  1978   assert_not_delayed();
  1979   sll(index, Interpreter::logStackElementSize, index);
  1980   sub(Llocals, index, index);
  1981   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
  1985 #ifdef ASSERT
  1986 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
  1987   Label L;
  1989   assert(Rindex != Rscratch, "Registers cannot be same");
  1990   assert(Rindex != Rscratch1, "Registers cannot be same");
  1991   assert(Rlimit != Rscratch, "Registers cannot be same");
  1992   assert(Rlimit != Rscratch1, "Registers cannot be same");
  1993   assert(Rscratch1 != Rscratch, "Registers cannot be same");
  1995   // untested("reg area corruption");
  1996   add(Rindex, offset, Rscratch);
  1997   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
  1998   cmp(Rscratch, Rscratch1);
  1999   brx(Assembler::greaterEqualUnsigned, false, pn, L);
  2000   delayed()->nop();
  2001   stop("regsave area is being clobbered");
  2002   bind(L);
  2004 #endif // ASSERT
  2007 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
  2008   assert_not_delayed();
  2009   sll(index, Interpreter::logStackElementSize, index);
  2010   sub(Llocals, index, index);
  2011   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
  2012   st(src, index, 0);
  2015 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
  2016   assert_not_delayed();
  2017   sll(index, Interpreter::logStackElementSize, index);
  2018   sub(Llocals, index, index);
  2019 #ifdef ASSERT
  2020   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
  2021 #endif
  2022   st_ptr(src, index, 0);
  2027 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
  2028   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
  2031 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
  2032   assert_not_delayed();
  2033   sll(index, Interpreter::logStackElementSize, index);
  2034   sub(Llocals, index, index);
  2035 #ifdef ASSERT
  2036   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2037 #endif
  2038   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
  2042 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
  2043   assert_not_delayed();
  2044   sll(index, Interpreter::logStackElementSize, index);
  2045   sub(Llocals, index, index);
  2046 #ifdef ASSERT
  2047   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
  2048 #endif
  2049   stf(FloatRegisterImpl::S, src, index, 0);
  2053 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
  2054   assert_not_delayed();
  2055   sll(index, Interpreter::logStackElementSize, index);
  2056   sub(Llocals, index, index);
  2057 #ifdef ASSERT
  2058   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2059 #endif
  2060   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
  2064 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
  2065   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  2066   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
  2067   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
  2071 Address InterpreterMacroAssembler::top_most_monitor() {
  2072   return Address(FP, top_most_monitor_byte_offset());
  2076 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
  2077   add( Lesp,      wordSize,                                    Rdest );
  2080 #endif /* CC_INTERP */
  2082 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
  2083   assert(UseCompiler, "incrementing must be useful");
  2084 #ifdef CC_INTERP
  2085   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
  2086                                  InvocationCounter::counter_offset());
  2087   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
  2088                                  InvocationCounter::counter_offset());
  2089 #else
  2090   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
  2091                                InvocationCounter::counter_offset());
  2092   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
  2093                                InvocationCounter::counter_offset());
  2094 #endif /* CC_INTERP */
  2095   int delta = InvocationCounter::count_increment;
  2097   // Load each counter in a register
  2098   ld( inv_counter, Rtmp );
  2099   ld( be_counter, Rtmp2 );
  2101   assert( is_simm13( delta ), " delta too large.");
  2103   // Add the delta to the invocation counter and store the result
  2104   add( Rtmp, delta, Rtmp );
  2106   // Mask the backedge counter
  2107   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2109   // Store value
  2110   st( Rtmp, inv_counter);
  2112   // Add invocation counter + backedge counter
  2113   add( Rtmp, Rtmp2, Rtmp);
  2115   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
  2118 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
  2119   assert(UseCompiler, "incrementing must be useful");
  2120 #ifdef CC_INTERP
  2121   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
  2122                                  InvocationCounter::counter_offset());
  2123   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
  2124                                  InvocationCounter::counter_offset());
  2125 #else
  2126   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
  2127                                InvocationCounter::counter_offset());
  2128   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
  2129                                InvocationCounter::counter_offset());
  2130 #endif /* CC_INTERP */
  2131   int delta = InvocationCounter::count_increment;
  2132   // Load each counter in a register
  2133   ld( be_counter, Rtmp );
  2134   ld( inv_counter, Rtmp2 );
  2136   // Add the delta to the backedge counter
  2137   add( Rtmp, delta, Rtmp );
  2139   // Mask the invocation counter, add to backedge counter
  2140   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2142   // and store the result to memory
  2143   st( Rtmp, be_counter );
  2145   // Add backedge + invocation counter
  2146   add( Rtmp, Rtmp2, Rtmp );
  2148   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
  2151 #ifndef CC_INTERP
  2152 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
  2153                                                              Register branch_bcp,
  2154                                                              Register Rtmp ) {
  2155   Label did_not_overflow;
  2156   Label overflow_with_error;
  2157   assert_different_registers(backedge_count, Rtmp, branch_bcp);
  2158   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
  2160   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
  2161   load_contents(limit, Rtmp);
  2162   cmp(backedge_count, Rtmp);
  2163   br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
  2164   delayed()->nop();
  2166   // When ProfileInterpreter is on, the backedge_count comes from the
  2167   // methodDataOop, which value does not get reset on the call to
  2168   // frequency_counter_overflow().  To avoid excessive calls to the overflow
  2169   // routine while the method is being compiled, add a second test to make sure
  2170   // the overflow function is called only once every overflow_frequency.
  2171   if (ProfileInterpreter) {
  2172     const int overflow_frequency = 1024;
  2173     andcc(backedge_count, overflow_frequency-1, Rtmp);
  2174     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
  2175     delayed()->nop();
  2178   // overflow in loop, pass branch bytecode
  2179   set(6,Rtmp);
  2180   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
  2182   // Was an OSR adapter generated?
  2183   // O0 = osr nmethod
  2184   tst(O0);
  2185   brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
  2186   delayed()->nop();
  2188   // Has the nmethod been invalidated already?
  2189   ld(O0, nmethod::entry_bci_offset(), O2);
  2190   cmp(O2, InvalidOSREntryBci);
  2191   br(Assembler::equal, false, Assembler::pn, overflow_with_error);
  2192   delayed()->nop();
  2194   // migrate the interpreter frame off of the stack
  2196   mov(G2_thread, L7);
  2197   // save nmethod
  2198   mov(O0, L6);
  2199   set_last_Java_frame(SP, noreg);
  2200   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  2201   reset_last_Java_frame();
  2202   mov(L7, G2_thread);
  2204   // move OSR nmethod to I1
  2205   mov(L6, I1);
  2207   // OSR buffer to I0
  2208   mov(O0, I0);
  2210   // remove the interpreter frame
  2211   restore(I5_savedSP, 0, SP);
  2213   // Jump to the osr code.
  2214   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  2215   jmp(O2, G0);
  2216   delayed()->nop();
  2218   bind(overflow_with_error);
  2220   bind(did_not_overflow);
  2225 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
  2226   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
  2230 // local helper function for the verify_oop_or_return_address macro
  2231 static bool verify_return_address(methodOopDesc* m, int bci) {
  2232 #ifndef PRODUCT
  2233   address pc = (address)(m->constMethod())
  2234              + in_bytes(constMethodOopDesc::codes_offset()) + bci;
  2235   // assume it is a valid return address if it is inside m and is preceded by a jsr
  2236   if (!m->contains(pc))                                          return false;
  2237   address jsr_pc;
  2238   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
  2239   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
  2240   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
  2241   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
  2242 #endif // PRODUCT
  2243   return false;
  2247 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
  2248   if (!VerifyOops)  return;
  2249   // the VM documentation for the astore[_wide] bytecode allows
  2250   // the TOS to be not only an oop but also a return address
  2251   Label test;
  2252   Label skip;
  2253   // See if it is an address (in the current method):
  2255   mov(reg, Rtmp);
  2256   const int log2_bytecode_size_limit = 16;
  2257   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
  2258   br_notnull( Rtmp, false, pt, test );
  2259   delayed()->nop();
  2261   // %%% should use call_VM_leaf here?
  2262   save_frame_and_mov(0, Lmethod, O0, reg, O1);
  2263   save_thread(L7_thread_cache);
  2264   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
  2265   delayed()->nop();
  2266   restore_thread(L7_thread_cache);
  2267   br_notnull( O0, false, pt, skip );
  2268   delayed()->restore();
  2270   // Perform a more elaborate out-of-line call
  2271   // Not an address; verify it:
  2272   bind(test);
  2273   verify_oop(reg);
  2274   bind(skip);
  2278 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  2279   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  2281 #endif /* CC_INTERP */
  2283 // Inline assembly for:
  2284 //
  2285 // if (thread is in interp_only_mode) {
  2286 //   InterpreterRuntime::post_method_entry();
  2287 // }
  2288 // if (DTraceMethodProbes) {
  2289 //   SharedRuntime::dtrace_method_entry(method, receiver);
  2290 // }
  2291 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2292 //   SharedRuntime::rc_trace_method_entry(method, receiver);
  2293 // }
  2295 void InterpreterMacroAssembler::notify_method_entry() {
  2297   // C++ interpreter only uses this for native methods.
  2299   // Whenever JVMTI puts a thread in interp_only_mode, method
  2300   // entry/exit events are sent for that thread to track stack
  2301   // depth.  If it is possible to enter interp_only_mode we add
  2302   // the code to check if the event should be sent.
  2303   if (JvmtiExport::can_post_interpreter_events()) {
  2304     Label L;
  2305     Register temp_reg = O5;
  2306     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2307     ld(interp_only, temp_reg);
  2308     tst(temp_reg);
  2309     br(zero, false, pt, L);
  2310     delayed()->nop();
  2311     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  2312     bind(L);
  2316     Register temp_reg = O5;
  2317     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2318     call_VM_leaf(noreg,
  2319       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2320       G2_thread, Lmethod);
  2323   // RedefineClasses() tracing support for obsolete method entry
  2324   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2325     call_VM_leaf(noreg,
  2326       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2327       G2_thread, Lmethod);
  2332 // Inline assembly for:
  2333 //
  2334 // if (thread is in interp_only_mode) {
  2335 //   // save result
  2336 //   InterpreterRuntime::post_method_exit();
  2337 //   // restore result
  2338 // }
  2339 // if (DTraceMethodProbes) {
  2340 //   SharedRuntime::dtrace_method_exit(thread, method);
  2341 // }
  2342 //
  2343 // Native methods have their result stored in d_tmp and l_tmp
  2344 // Java methods have their result stored in the expression stack
  2346 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
  2347                                                    TosState state,
  2348                                                    NotifyMethodExitMode mode) {
  2349   // C++ interpreter only uses this for native methods.
  2351   // Whenever JVMTI puts a thread in interp_only_mode, method
  2352   // entry/exit events are sent for that thread to track stack
  2353   // depth.  If it is possible to enter interp_only_mode we add
  2354   // the code to check if the event should be sent.
  2355   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  2356     Label L;
  2357     Register temp_reg = O5;
  2358     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2359     ld(interp_only, temp_reg);
  2360     tst(temp_reg);
  2361     br(zero, false, pt, L);
  2362     delayed()->nop();
  2364     // Note: frame::interpreter_frame_result has a dependency on how the
  2365     // method result is saved across the call to post_method_exit. For
  2366     // native methods it assumes the result registers are saved to
  2367     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
  2368     // implementation will need to be updated too.
  2370     save_return_value(state, is_native_method);
  2371     call_VM(noreg,
  2372             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  2373     restore_return_value(state, is_native_method);
  2374     bind(L);
  2378     Register temp_reg = O5;
  2379     // Dtrace notification
  2380     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2381     save_return_value(state, is_native_method);
  2382     call_VM_leaf(
  2383       noreg,
  2384       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2385       G2_thread, Lmethod);
  2386     restore_return_value(state, is_native_method);
  2390 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
  2391 #ifdef CC_INTERP
  2392   // result potentially in O0/O1: save it across calls
  2393   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
  2394 #ifdef _LP64
  2395   stx(O0, STATE(_native_lresult));
  2396 #else
  2397   std(O0, STATE(_native_lresult));
  2398 #endif
  2399 #else // CC_INTERP
  2400   if (is_native_call) {
  2401     stf(FloatRegisterImpl::D, F0, d_tmp);
  2402 #ifdef _LP64
  2403     stx(O0, l_tmp);
  2404 #else
  2405     std(O0, l_tmp);
  2406 #endif
  2407   } else {
  2408     push(state);
  2410 #endif // CC_INTERP
  2413 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
  2414 #ifdef CC_INTERP
  2415   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
  2416 #ifdef _LP64
  2417   ldx(STATE(_native_lresult), O0);
  2418 #else
  2419   ldd(STATE(_native_lresult), O0);
  2420 #endif
  2421 #else // CC_INTERP
  2422   if (is_native_call) {
  2423     ldf(FloatRegisterImpl::D, d_tmp, F0);
  2424 #ifdef _LP64
  2425     ldx(l_tmp, O0);
  2426 #else
  2427     ldd(l_tmp, O0);
  2428 #endif
  2429   } else {
  2430     pop(state);
  2432 #endif // CC_INTERP
  2435 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
  2436 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
  2437                                                         int increment, int mask,
  2438                                                         Register scratch1, Register scratch2,
  2439                                                         Condition cond, Label *where) {
  2440   ld(counter_addr, scratch1);
  2441   add(scratch1, increment, scratch1);
  2442   if (is_simm13(mask)) {
  2443     andcc(scratch1, mask, G0);
  2444   } else {
  2445     set(mask, scratch2);
  2446     andcc(scratch1, scratch2,  G0);
  2448   br(cond, false, Assembler::pn, *where);
  2449   delayed()->st(scratch1, counter_addr);

mercurial