src/share/vm/opto/loopTransform.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2985
e3cbc9ddd434
child 3043
c96c3eb1efae
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

duke@435 1 /*
trims@2708 2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/connode.hpp"
stefank@2314 31 #include "opto/divnode.hpp"
stefank@2314 32 #include "opto/loopnode.hpp"
stefank@2314 33 #include "opto/mulnode.hpp"
stefank@2314 34 #include "opto/rootnode.hpp"
stefank@2314 35 #include "opto/runtime.hpp"
stefank@2314 36 #include "opto/subnode.hpp"
duke@435 37
duke@435 38 //------------------------------is_loop_exit-----------------------------------
duke@435 39 // Given an IfNode, return the loop-exiting projection or NULL if both
duke@435 40 // arms remain in the loop.
duke@435 41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
duke@435 42 if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
duke@435 43 PhaseIdealLoop *phase = _phase;
duke@435 44 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 45 // we need loop unswitching instead of peeling.
duke@435 46 if( !is_member(phase->get_loop( iff->raw_out(0) )) )
duke@435 47 return iff->raw_out(0);
duke@435 48 if( !is_member(phase->get_loop( iff->raw_out(1) )) )
duke@435 49 return iff->raw_out(1);
duke@435 50 return NULL;
duke@435 51 }
duke@435 52
duke@435 53
duke@435 54 //=============================================================================
duke@435 55
duke@435 56
duke@435 57 //------------------------------record_for_igvn----------------------------
duke@435 58 // Put loop body on igvn work list
duke@435 59 void IdealLoopTree::record_for_igvn() {
duke@435 60 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 61 Node *n = _body.at(i);
duke@435 62 _phase->_igvn._worklist.push(n);
duke@435 63 }
duke@435 64 }
duke@435 65
kvn@2747 66 //------------------------------compute_exact_trip_count-----------------------
kvn@2747 67 // Compute loop exact trip count if possible. Do not recalculate trip count for
kvn@2747 68 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
kvn@2747 69 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
kvn@2747 70 if (!_head->as_Loop()->is_valid_counted_loop()) {
kvn@2747 71 return;
kvn@2747 72 }
kvn@2747 73 CountedLoopNode* cl = _head->as_CountedLoop();
kvn@2747 74 // Trip count may become nonexact for iteration split loops since
kvn@2747 75 // RCE modifies limits. Note, _trip_count value is not reset since
kvn@2747 76 // it is used to limit unrolling of main loop.
kvn@2747 77 cl->set_nonexact_trip_count();
kvn@2747 78
kvn@2747 79 // Loop's test should be part of loop.
kvn@2747 80 if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
kvn@2747 81 return; // Infinite loop
kvn@2747 82
kvn@2747 83 #ifdef ASSERT
kvn@2747 84 BoolTest::mask bt = cl->loopexit()->test_trip();
kvn@2747 85 assert(bt == BoolTest::lt || bt == BoolTest::gt ||
kvn@2979 86 bt == BoolTest::ne, "canonical test is expected");
kvn@2747 87 #endif
kvn@2747 88
kvn@2747 89 Node* init_n = cl->init_trip();
kvn@2747 90 Node* limit_n = cl->limit();
kvn@2747 91 if (init_n != NULL && init_n->is_Con() &&
kvn@2747 92 limit_n != NULL && limit_n->is_Con()) {
kvn@2747 93 // Use longs to avoid integer overflow.
kvn@2747 94 int stride_con = cl->stride_con();
kvn@2747 95 long init_con = cl->init_trip()->get_int();
kvn@2747 96 long limit_con = cl->limit()->get_int();
kvn@2747 97 int stride_m = stride_con - (stride_con > 0 ? 1 : -1);
kvn@2747 98 long trip_count = (limit_con - init_con + stride_m)/stride_con;
kvn@2747 99 if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
kvn@2747 100 // Set exact trip count.
kvn@2747 101 cl->set_exact_trip_count((uint)trip_count);
kvn@2747 102 }
kvn@2747 103 }
kvn@2747 104 }
kvn@2747 105
duke@435 106 //------------------------------compute_profile_trip_cnt----------------------------
duke@435 107 // Compute loop trip count from profile data as
duke@435 108 // (backedge_count + loop_exit_count) / loop_exit_count
duke@435 109 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
duke@435 110 if (!_head->is_CountedLoop()) {
duke@435 111 return;
duke@435 112 }
duke@435 113 CountedLoopNode* head = _head->as_CountedLoop();
duke@435 114 if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
duke@435 115 return; // Already computed
duke@435 116 }
duke@435 117 float trip_cnt = (float)max_jint; // default is big
duke@435 118
duke@435 119 Node* back = head->in(LoopNode::LoopBackControl);
duke@435 120 while (back != head) {
duke@435 121 if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 122 back->in(0) &&
duke@435 123 back->in(0)->is_If() &&
duke@435 124 back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
duke@435 125 back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
duke@435 126 break;
duke@435 127 }
duke@435 128 back = phase->idom(back);
duke@435 129 }
duke@435 130 if (back != head) {
duke@435 131 assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 132 back->in(0), "if-projection exists");
duke@435 133 IfNode* back_if = back->in(0)->as_If();
duke@435 134 float loop_back_cnt = back_if->_fcnt * back_if->_prob;
duke@435 135
duke@435 136 // Now compute a loop exit count
duke@435 137 float loop_exit_cnt = 0.0f;
duke@435 138 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 139 Node *n = _body[i];
duke@435 140 if( n->is_If() ) {
duke@435 141 IfNode *iff = n->as_If();
duke@435 142 if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
duke@435 143 Node *exit = is_loop_exit(iff);
duke@435 144 if( exit ) {
duke@435 145 float exit_prob = iff->_prob;
duke@435 146 if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
duke@435 147 if (exit_prob > PROB_MIN) {
duke@435 148 float exit_cnt = iff->_fcnt * exit_prob;
duke@435 149 loop_exit_cnt += exit_cnt;
duke@435 150 }
duke@435 151 }
duke@435 152 }
duke@435 153 }
duke@435 154 }
duke@435 155 if (loop_exit_cnt > 0.0f) {
duke@435 156 trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
duke@435 157 } else {
duke@435 158 // No exit count so use
duke@435 159 trip_cnt = loop_back_cnt;
duke@435 160 }
duke@435 161 }
duke@435 162 #ifndef PRODUCT
duke@435 163 if (TraceProfileTripCount) {
duke@435 164 tty->print_cr("compute_profile_trip_cnt lp: %d cnt: %f\n", head->_idx, trip_cnt);
duke@435 165 }
duke@435 166 #endif
duke@435 167 head->set_profile_trip_cnt(trip_cnt);
duke@435 168 }
duke@435 169
duke@435 170 //---------------------is_invariant_addition-----------------------------
duke@435 171 // Return nonzero index of invariant operand for an Add or Sub
twisti@1040 172 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
duke@435 173 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
duke@435 174 int op = n->Opcode();
duke@435 175 if (op == Op_AddI || op == Op_SubI) {
duke@435 176 bool in1_invar = this->is_invariant(n->in(1));
duke@435 177 bool in2_invar = this->is_invariant(n->in(2));
duke@435 178 if (in1_invar && !in2_invar) return 1;
duke@435 179 if (!in1_invar && in2_invar) return 2;
duke@435 180 }
duke@435 181 return 0;
duke@435 182 }
duke@435 183
duke@435 184 //---------------------reassociate_add_sub-----------------------------
duke@435 185 // Reassociate invariant add and subtract expressions:
duke@435 186 //
duke@435 187 // inv1 + (x + inv2) => ( inv1 + inv2) + x
duke@435 188 // (x + inv2) + inv1 => ( inv1 + inv2) + x
duke@435 189 // inv1 + (x - inv2) => ( inv1 - inv2) + x
duke@435 190 // inv1 - (inv2 - x) => ( inv1 - inv2) + x
duke@435 191 // (x + inv2) - inv1 => (-inv1 + inv2) + x
duke@435 192 // (x - inv2) + inv1 => ( inv1 - inv2) + x
duke@435 193 // (x - inv2) - inv1 => (-inv1 - inv2) + x
duke@435 194 // inv1 + (inv2 - x) => ( inv1 + inv2) - x
duke@435 195 // inv1 - (x - inv2) => ( inv1 + inv2) - x
duke@435 196 // (inv2 - x) + inv1 => ( inv1 + inv2) - x
duke@435 197 // (inv2 - x) - inv1 => (-inv1 + inv2) - x
duke@435 198 // inv1 - (x + inv2) => ( inv1 - inv2) - x
duke@435 199 //
duke@435 200 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
duke@435 201 if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
duke@435 202 if (is_invariant(n1)) return NULL;
duke@435 203 int inv1_idx = is_invariant_addition(n1, phase);
duke@435 204 if (!inv1_idx) return NULL;
duke@435 205 // Don't mess with add of constant (igvn moves them to expression tree root.)
duke@435 206 if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
duke@435 207 Node* inv1 = n1->in(inv1_idx);
duke@435 208 Node* n2 = n1->in(3 - inv1_idx);
duke@435 209 int inv2_idx = is_invariant_addition(n2, phase);
duke@435 210 if (!inv2_idx) return NULL;
duke@435 211 Node* x = n2->in(3 - inv2_idx);
duke@435 212 Node* inv2 = n2->in(inv2_idx);
duke@435 213
duke@435 214 bool neg_x = n2->is_Sub() && inv2_idx == 1;
duke@435 215 bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
duke@435 216 bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
duke@435 217 if (n1->is_Sub() && inv1_idx == 1) {
duke@435 218 neg_x = !neg_x;
duke@435 219 neg_inv2 = !neg_inv2;
duke@435 220 }
duke@435 221 Node* inv1_c = phase->get_ctrl(inv1);
duke@435 222 Node* inv2_c = phase->get_ctrl(inv2);
duke@435 223 Node* n_inv1;
duke@435 224 if (neg_inv1) {
duke@435 225 Node *zero = phase->_igvn.intcon(0);
duke@435 226 phase->set_ctrl(zero, phase->C->root());
duke@435 227 n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
duke@435 228 phase->register_new_node(n_inv1, inv1_c);
duke@435 229 } else {
duke@435 230 n_inv1 = inv1;
duke@435 231 }
duke@435 232 Node* inv;
duke@435 233 if (neg_inv2) {
duke@435 234 inv = new (phase->C, 3) SubINode(n_inv1, inv2);
duke@435 235 } else {
duke@435 236 inv = new (phase->C, 3) AddINode(n_inv1, inv2);
duke@435 237 }
duke@435 238 phase->register_new_node(inv, phase->get_early_ctrl(inv));
duke@435 239
duke@435 240 Node* addx;
duke@435 241 if (neg_x) {
duke@435 242 addx = new (phase->C, 3) SubINode(inv, x);
duke@435 243 } else {
duke@435 244 addx = new (phase->C, 3) AddINode(x, inv);
duke@435 245 }
duke@435 246 phase->register_new_node(addx, phase->get_ctrl(x));
kvn@1976 247 phase->_igvn.replace_node(n1, addx);
kvn@2665 248 assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
kvn@2665 249 _body.yank(n1);
duke@435 250 return addx;
duke@435 251 }
duke@435 252
duke@435 253 //---------------------reassociate_invariants-----------------------------
duke@435 254 // Reassociate invariant expressions:
duke@435 255 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
duke@435 256 for (int i = _body.size() - 1; i >= 0; i--) {
duke@435 257 Node *n = _body.at(i);
duke@435 258 for (int j = 0; j < 5; j++) {
duke@435 259 Node* nn = reassociate_add_sub(n, phase);
duke@435 260 if (nn == NULL) break;
duke@435 261 n = nn; // again
duke@435 262 };
duke@435 263 }
duke@435 264 }
duke@435 265
duke@435 266 //------------------------------policy_peeling---------------------------------
duke@435 267 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
duke@435 268 // make some loop-invariant test (usually a null-check) happen before the loop.
duke@435 269 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
duke@435 270 Node *test = ((IdealLoopTree*)this)->tail();
duke@435 271 int body_size = ((IdealLoopTree*)this)->_body.size();
duke@435 272 int uniq = phase->C->unique();
duke@435 273 // Peeling does loop cloning which can result in O(N^2) node construction
duke@435 274 if( body_size > 255 /* Prevent overflow for large body_size */
duke@435 275 || (body_size * body_size + uniq > MaxNodeLimit) ) {
duke@435 276 return false; // too large to safely clone
duke@435 277 }
duke@435 278 while( test != _head ) { // Scan till run off top of loop
duke@435 279 if( test->is_If() ) { // Test?
duke@435 280 Node *ctrl = phase->get_ctrl(test->in(1));
duke@435 281 if (ctrl->is_top())
duke@435 282 return false; // Found dead test on live IF? No peeling!
duke@435 283 // Standard IF only has one input value to check for loop invariance
duke@435 284 assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
duke@435 285 // Condition is not a member of this loop?
duke@435 286 if( !is_member(phase->get_loop(ctrl)) &&
duke@435 287 is_loop_exit(test) )
duke@435 288 return true; // Found reason to peel!
duke@435 289 }
duke@435 290 // Walk up dominators to loop _head looking for test which is
duke@435 291 // executed on every path thru loop.
duke@435 292 test = phase->idom(test);
duke@435 293 }
duke@435 294 return false;
duke@435 295 }
duke@435 296
duke@435 297 //------------------------------peeled_dom_test_elim---------------------------
duke@435 298 // If we got the effect of peeling, either by actually peeling or by making
duke@435 299 // a pre-loop which must execute at least once, we can remove all
duke@435 300 // loop-invariant dominated tests in the main body.
duke@435 301 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 302 bool progress = true;
duke@435 303 while( progress ) {
duke@435 304 progress = false; // Reset for next iteration
duke@435 305 Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
duke@435 306 Node *test = prev->in(0);
duke@435 307 while( test != loop->_head ) { // Scan till run off top of loop
duke@435 308
duke@435 309 int p_op = prev->Opcode();
duke@435 310 if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
duke@435 311 test->is_If() && // Test?
duke@435 312 !test->in(1)->is_Con() && // And not already obvious?
duke@435 313 // Condition is not a member of this loop?
duke@435 314 !loop->is_member(get_loop(get_ctrl(test->in(1))))){
duke@435 315 // Walk loop body looking for instances of this test
duke@435 316 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 317 Node *n = loop->_body.at(i);
duke@435 318 if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
duke@435 319 // IfNode was dominated by version in peeled loop body
duke@435 320 progress = true;
duke@435 321 dominated_by( old_new[prev->_idx], n );
duke@435 322 }
duke@435 323 }
duke@435 324 }
duke@435 325 prev = test;
duke@435 326 test = idom(test);
duke@435 327 } // End of scan tests in loop
duke@435 328
duke@435 329 } // End of while( progress )
duke@435 330 }
duke@435 331
duke@435 332 //------------------------------do_peeling-------------------------------------
duke@435 333 // Peel the first iteration of the given loop.
duke@435 334 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 335 // The pre-loop illegally has 2 control users (old & new loops).
duke@435 336 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 337 // Do this by making the old-loop fall-in edges act as if they came
duke@435 338 // around the loopback from the prior iteration (follow the old-loop
duke@435 339 // backedges) and then map to the new peeled iteration. This leaves
duke@435 340 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 341 // peeled-loop backedge has 2 users.
duke@435 342 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 343 // extra backedge user.
kvn@2727 344 //
kvn@2727 345 // orig
kvn@2727 346 //
kvn@2727 347 // stmt1
kvn@2727 348 // |
kvn@2727 349 // v
kvn@2727 350 // loop predicate
kvn@2727 351 // |
kvn@2727 352 // v
kvn@2727 353 // loop<----+
kvn@2727 354 // | |
kvn@2727 355 // stmt2 |
kvn@2727 356 // | |
kvn@2727 357 // v |
kvn@2727 358 // if ^
kvn@2727 359 // / \ |
kvn@2727 360 // / \ |
kvn@2727 361 // v v |
kvn@2727 362 // false true |
kvn@2727 363 // / \ |
kvn@2727 364 // / ----+
kvn@2727 365 // |
kvn@2727 366 // v
kvn@2727 367 // exit
kvn@2727 368 //
kvn@2727 369 //
kvn@2727 370 // after clone loop
kvn@2727 371 //
kvn@2727 372 // stmt1
kvn@2727 373 // |
kvn@2727 374 // v
kvn@2727 375 // loop predicate
kvn@2727 376 // / \
kvn@2727 377 // clone / \ orig
kvn@2727 378 // / \
kvn@2727 379 // / \
kvn@2727 380 // v v
kvn@2727 381 // +---->loop clone loop<----+
kvn@2727 382 // | | | |
kvn@2727 383 // | stmt2 clone stmt2 |
kvn@2727 384 // | | | |
kvn@2727 385 // | v v |
kvn@2727 386 // ^ if clone If ^
kvn@2727 387 // | / \ / \ |
kvn@2727 388 // | / \ / \ |
kvn@2727 389 // | v v v v |
kvn@2727 390 // | true false false true |
kvn@2727 391 // | / \ / \ |
kvn@2727 392 // +---- \ / ----+
kvn@2727 393 // \ /
kvn@2727 394 // 1v v2
kvn@2727 395 // region
kvn@2727 396 // |
kvn@2727 397 // v
kvn@2727 398 // exit
kvn@2727 399 //
kvn@2727 400 //
kvn@2727 401 // after peel and predicate move
kvn@2727 402 //
kvn@2727 403 // stmt1
kvn@2727 404 // /
kvn@2727 405 // /
kvn@2727 406 // clone / orig
kvn@2727 407 // /
kvn@2727 408 // / +----------+
kvn@2727 409 // / | |
kvn@2727 410 // / loop predicate |
kvn@2727 411 // / | |
kvn@2727 412 // v v |
kvn@2727 413 // TOP-->loop clone loop<----+ |
kvn@2727 414 // | | | |
kvn@2727 415 // stmt2 clone stmt2 | |
kvn@2727 416 // | | | ^
kvn@2727 417 // v v | |
kvn@2727 418 // if clone If ^ |
kvn@2727 419 // / \ / \ | |
kvn@2727 420 // / \ / \ | |
kvn@2727 421 // v v v v | |
kvn@2727 422 // true false false true | |
kvn@2727 423 // | \ / \ | |
kvn@2727 424 // | \ / ----+ ^
kvn@2727 425 // | \ / |
kvn@2727 426 // | 1v v2 |
kvn@2727 427 // v region |
kvn@2727 428 // | | |
kvn@2727 429 // | v |
kvn@2727 430 // | exit |
kvn@2727 431 // | |
kvn@2727 432 // +--------------->-----------------+
kvn@2727 433 //
kvn@2727 434 //
kvn@2727 435 // final graph
kvn@2727 436 //
kvn@2727 437 // stmt1
kvn@2727 438 // |
kvn@2727 439 // v
kvn@2727 440 // stmt2 clone
kvn@2727 441 // |
kvn@2727 442 // v
kvn@2727 443 // if clone
kvn@2727 444 // / |
kvn@2727 445 // / |
kvn@2727 446 // v v
kvn@2727 447 // false true
kvn@2727 448 // | |
kvn@2727 449 // | v
kvn@2727 450 // | loop predicate
kvn@2727 451 // | |
kvn@2727 452 // | v
kvn@2727 453 // | loop<----+
kvn@2727 454 // | | |
kvn@2727 455 // | stmt2 |
kvn@2727 456 // | | |
kvn@2727 457 // | v |
kvn@2727 458 // v if ^
kvn@2727 459 // | / \ |
kvn@2727 460 // | / \ |
kvn@2727 461 // | v v |
kvn@2727 462 // | false true |
kvn@2727 463 // | | \ |
kvn@2727 464 // v v --+
kvn@2727 465 // region
kvn@2727 466 // |
kvn@2727 467 // v
kvn@2727 468 // exit
kvn@2727 469 //
duke@435 470 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 471
duke@435 472 C->set_major_progress();
duke@435 473 // Peeling a 'main' loop in a pre/main/post situation obfuscates the
duke@435 474 // 'pre' loop from the main and the 'pre' can no longer have it's
duke@435 475 // iterations adjusted. Therefore, we need to declare this loop as
duke@435 476 // no longer a 'main' loop; it will need new pre and post loops before
duke@435 477 // we can do further RCE.
kvn@2665 478 #ifndef PRODUCT
kvn@2665 479 if (TraceLoopOpts) {
kvn@2665 480 tty->print("Peel ");
kvn@2665 481 loop->dump_head();
kvn@2665 482 }
kvn@2665 483 #endif
kvn@2727 484 Node* head = loop->_head;
kvn@2727 485 bool counted_loop = head->is_CountedLoop();
kvn@2727 486 if (counted_loop) {
kvn@2727 487 CountedLoopNode *cl = head->as_CountedLoop();
duke@435 488 assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
duke@435 489 cl->set_trip_count(cl->trip_count() - 1);
kvn@2665 490 if (cl->is_main_loop()) {
duke@435 491 cl->set_normal_loop();
duke@435 492 #ifndef PRODUCT
kvn@2665 493 if (PrintOpto && VerifyLoopOptimizations) {
duke@435 494 tty->print("Peeling a 'main' loop; resetting to 'normal' ");
duke@435 495 loop->dump_head();
duke@435 496 }
duke@435 497 #endif
duke@435 498 }
duke@435 499 }
kvn@2727 500 Node* entry = head->in(LoopNode::EntryControl);
duke@435 501
duke@435 502 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 503 // The pre-loop illegally has 2 control users (old & new loops).
kvn@2727 504 clone_loop( loop, old_new, dom_depth(head) );
duke@435 505
duke@435 506 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 507 // Do this by making the old-loop fall-in edges act as if they came
duke@435 508 // around the loopback from the prior iteration (follow the old-loop
duke@435 509 // backedges) and then map to the new peeled iteration. This leaves
duke@435 510 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 511 // peeled-loop backedge has 2 users.
kvn@2727 512 Node* new_exit_value = old_new[head->in(LoopNode::LoopBackControl)->_idx];
kvn@2877 513 new_exit_value = move_loop_predicates(entry, new_exit_value, !counted_loop);
kvn@2727 514 _igvn.hash_delete(head);
kvn@2727 515 head->set_req(LoopNode::EntryControl, new_exit_value);
kvn@2727 516 for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
kvn@2727 517 Node* old = head->fast_out(j);
kvn@2727 518 if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
kvn@2727 519 new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
kvn@2727 520 if (!new_exit_value ) // Backedge value is ALSO loop invariant?
duke@435 521 // Then loop body backedge value remains the same.
duke@435 522 new_exit_value = old->in(LoopNode::LoopBackControl);
duke@435 523 _igvn.hash_delete(old);
duke@435 524 old->set_req(LoopNode::EntryControl, new_exit_value);
duke@435 525 }
duke@435 526 }
duke@435 527
duke@435 528
duke@435 529 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 530 // extra backedge user.
kvn@2727 531 Node* new_head = old_new[head->_idx];
kvn@2727 532 _igvn.hash_delete(new_head);
kvn@2727 533 new_head->set_req(LoopNode::LoopBackControl, C->top());
kvn@2727 534 for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
kvn@2727 535 Node* use = new_head->fast_out(j2);
kvn@2727 536 if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
duke@435 537 _igvn.hash_delete(use);
duke@435 538 use->set_req(LoopNode::LoopBackControl, C->top());
duke@435 539 }
duke@435 540 }
duke@435 541
duke@435 542
duke@435 543 // Step 4: Correct dom-depth info. Set to loop-head depth.
kvn@2727 544 int dd = dom_depth(head);
kvn@2727 545 set_idom(head, head->in(1), dd);
duke@435 546 for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
duke@435 547 Node *old = loop->_body.at(j3);
duke@435 548 Node *nnn = old_new[old->_idx];
duke@435 549 if (!has_ctrl(nnn))
duke@435 550 set_idom(nnn, idom(nnn), dd-1);
duke@435 551 // While we're at it, remove any SafePoints from the peeled code
kvn@2727 552 if (old->Opcode() == Op_SafePoint) {
duke@435 553 Node *nnn = old_new[old->_idx];
duke@435 554 lazy_replace(nnn,nnn->in(TypeFunc::Control));
duke@435 555 }
duke@435 556 }
duke@435 557
duke@435 558 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 559 // finds some, but we _know_ they are all useless.
duke@435 560 peeled_dom_test_elim(loop,old_new);
duke@435 561
duke@435 562 loop->record_for_igvn();
duke@435 563 }
duke@435 564
kvn@2735 565 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
kvn@2735 566
duke@435 567 //------------------------------policy_maximally_unroll------------------------
kvn@2735 568 // Calculate exact loop trip count and return true if loop can be maximally
kvn@2735 569 // unrolled.
duke@435 570 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
duke@435 571 CountedLoopNode *cl = _head->as_CountedLoop();
kvn@2694 572 assert(cl->is_normal_loop(), "");
kvn@2735 573 if (!cl->is_valid_counted_loop())
kvn@2735 574 return false; // Malformed counted loop
duke@435 575
kvn@2747 576 if (!cl->has_exact_trip_count()) {
kvn@2747 577 // Trip count is not exact.
duke@435 578 return false;
duke@435 579 }
duke@435 580
kvn@2747 581 uint trip_count = cl->trip_count();
kvn@2747 582 // Note, max_juint is used to indicate unknown trip count.
kvn@2747 583 assert(trip_count > 1, "one iteration loop should be optimized out already");
kvn@2747 584 assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
duke@435 585
duke@435 586 // Real policy: if we maximally unroll, does it get too big?
duke@435 587 // Allow the unrolled mess to get larger than standard loop
duke@435 588 // size. After all, it will no longer be a loop.
duke@435 589 uint body_size = _body.size();
duke@435 590 uint unroll_limit = (uint)LoopUnrollLimit * 4;
duke@435 591 assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
kvn@2694 592 if (trip_count > unroll_limit || body_size > unroll_limit) {
kvn@2694 593 return false;
kvn@2694 594 }
kvn@2694 595
kvn@2877 596 // Fully unroll a loop with few iterations regardless next
kvn@2877 597 // conditions since following loop optimizations will split
kvn@2877 598 // such loop anyway (pre-main-post).
kvn@2877 599 if (trip_count <= 3)
kvn@2877 600 return true;
kvn@2877 601
kvn@2735 602 // Take into account that after unroll conjoined heads and tails will fold,
kvn@2735 603 // otherwise policy_unroll() may allow more unrolling than max unrolling.
kvn@2735 604 uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
kvn@2735 605 uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
kvn@2735 606 if (body_size != tst_body_size) // Check for int overflow
kvn@2735 607 return false;
kvn@2735 608 if (new_body_size > unroll_limit ||
kvn@2735 609 // Unrolling can result in a large amount of node construction
kvn@2735 610 new_body_size >= MaxNodeLimit - phase->C->unique()) {
kvn@2735 611 return false;
kvn@2735 612 }
kvn@2735 613
kvn@2694 614 // Do not unroll a loop with String intrinsics code.
kvn@2694 615 // String intrinsics are large and have loops.
kvn@2694 616 for (uint k = 0; k < _body.size(); k++) {
kvn@2694 617 Node* n = _body.at(k);
kvn@2694 618 switch (n->Opcode()) {
kvn@2694 619 case Op_StrComp:
kvn@2694 620 case Op_StrEquals:
kvn@2694 621 case Op_StrIndexOf:
kvn@2694 622 case Op_AryEq: {
kvn@2694 623 return false;
kvn@2694 624 }
kvn@2694 625 } // switch
kvn@2694 626 }
kvn@2694 627
kvn@2735 628 return true; // Do maximally unroll
duke@435 629 }
duke@435 630
duke@435 631
kvn@2865 632 #define MAX_UNROLL 16 // maximum number of unrolls for main loop
kvn@2865 633
duke@435 634 //------------------------------policy_unroll----------------------------------
duke@435 635 // Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
duke@435 636 // the loop is a CountedLoop and the body is small enough.
duke@435 637 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
duke@435 638
duke@435 639 CountedLoopNode *cl = _head->as_CountedLoop();
kvn@2694 640 assert(cl->is_normal_loop() || cl->is_main_loop(), "");
duke@435 641
kvn@2735 642 if (!cl->is_valid_counted_loop())
kvn@2735 643 return false; // Malformed counted loop
duke@435 644
kvn@2877 645 // Protect against over-unrolling.
kvn@2877 646 // After split at least one iteration will be executed in pre-loop.
kvn@2877 647 if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
duke@435 648
kvn@2865 649 int future_unroll_ct = cl->unrolled_count() * 2;
kvn@2865 650 if (future_unroll_ct > MAX_UNROLL) return false;
kvn@2735 651
kvn@2865 652 // Check for initial stride being a small enough constant
kvn@2865 653 if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
duke@435 654
duke@435 655 // Don't unroll if the next round of unrolling would push us
duke@435 656 // over the expected trip count of the loop. One is subtracted
duke@435 657 // from the expected trip count because the pre-loop normally
duke@435 658 // executes 1 iteration.
duke@435 659 if (UnrollLimitForProfileCheck > 0 &&
duke@435 660 cl->profile_trip_cnt() != COUNT_UNKNOWN &&
duke@435 661 future_unroll_ct > UnrollLimitForProfileCheck &&
duke@435 662 (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
duke@435 663 return false;
duke@435 664 }
duke@435 665
duke@435 666 // When unroll count is greater than LoopUnrollMin, don't unroll if:
duke@435 667 // the residual iterations are more than 10% of the trip count
duke@435 668 // and rounds of "unroll,optimize" are not making significant progress
duke@435 669 // Progress defined as current size less than 20% larger than previous size.
duke@435 670 if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
duke@435 671 future_unroll_ct > LoopUnrollMin &&
duke@435 672 (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
duke@435 673 1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
duke@435 674 return false;
duke@435 675 }
duke@435 676
duke@435 677 Node *init_n = cl->init_trip();
duke@435 678 Node *limit_n = cl->limit();
kvn@2877 679 int stride_con = cl->stride_con();
duke@435 680 // Non-constant bounds.
duke@435 681 // Protect against over-unrolling when init or/and limit are not constant
duke@435 682 // (so that trip_count's init value is maxint) but iv range is known.
kvn@2694 683 if (init_n == NULL || !init_n->is_Con() ||
kvn@2694 684 limit_n == NULL || !limit_n->is_Con()) {
duke@435 685 Node* phi = cl->phi();
kvn@2694 686 if (phi != NULL) {
duke@435 687 assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
duke@435 688 const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
kvn@2877 689 int next_stride = stride_con * 2; // stride after this unroll
kvn@2694 690 if (next_stride > 0) {
kvn@2694 691 if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
kvn@2694 692 iv_type->_lo + next_stride > iv_type->_hi) {
duke@435 693 return false; // over-unrolling
duke@435 694 }
kvn@2694 695 } else if (next_stride < 0) {
kvn@2694 696 if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
kvn@2694 697 iv_type->_hi + next_stride < iv_type->_lo) {
duke@435 698 return false; // over-unrolling
duke@435 699 }
duke@435 700 }
duke@435 701 }
duke@435 702 }
duke@435 703
kvn@2877 704 // After unroll limit will be adjusted: new_limit = limit-stride.
kvn@2877 705 // Bailout if adjustment overflow.
kvn@2877 706 const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
kvn@2877 707 if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
kvn@2877 708 stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
kvn@2877 709 return false; // overflow
kvn@2877 710
duke@435 711 // Adjust body_size to determine if we unroll or not
duke@435 712 uint body_size = _body.size();
duke@435 713 // Also count ModL, DivL and MulL which expand mightly
kvn@2694 714 for (uint k = 0; k < _body.size(); k++) {
kvn@2694 715 Node* n = _body.at(k);
kvn@2694 716 switch (n->Opcode()) {
kvn@2694 717 case Op_ModL: body_size += 30; break;
kvn@2694 718 case Op_DivL: body_size += 30; break;
kvn@2694 719 case Op_MulL: body_size += 10; break;
kvn@2694 720 case Op_StrComp:
kvn@2694 721 case Op_StrEquals:
kvn@2694 722 case Op_StrIndexOf:
kvn@2694 723 case Op_AryEq: {
kvn@2694 724 // Do not unroll a loop with String intrinsics code.
kvn@2694 725 // String intrinsics are large and have loops.
kvn@2694 726 return false;
kvn@2694 727 }
kvn@2694 728 } // switch
duke@435 729 }
duke@435 730
duke@435 731 // Check for being too big
kvn@2694 732 if (body_size > (uint)LoopUnrollLimit) {
kvn@2877 733 // Normal case: loop too big
duke@435 734 return false;
duke@435 735 }
duke@435 736
duke@435 737 // Unroll once! (Each trip will soon do double iterations)
duke@435 738 return true;
duke@435 739 }
duke@435 740
duke@435 741 //------------------------------policy_align-----------------------------------
duke@435 742 // Return TRUE or FALSE if the loop should be cache-line aligned. Gather the
duke@435 743 // expression that does the alignment. Note that only one array base can be
twisti@1040 744 // aligned in a loop (unless the VM guarantees mutual alignment). Note that
duke@435 745 // if we vectorize short memory ops into longer memory ops, we may want to
duke@435 746 // increase alignment.
duke@435 747 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
duke@435 748 return false;
duke@435 749 }
duke@435 750
duke@435 751 //------------------------------policy_range_check-----------------------------
duke@435 752 // Return TRUE or FALSE if the loop should be range-check-eliminated.
duke@435 753 // Actually we do iteration-splitting, a more powerful form of RCE.
duke@435 754 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
kvn@2877 755 if (!RangeCheckElimination) return false;
duke@435 756
duke@435 757 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 758 // If we unrolled with no intention of doing RCE and we later
duke@435 759 // changed our minds, we got no pre-loop. Either we need to
duke@435 760 // make a new pre-loop, or we gotta disallow RCE.
kvn@2877 761 if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
duke@435 762 Node *trip_counter = cl->phi();
duke@435 763
duke@435 764 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 765 // loop-invariant.
kvn@2877 766 for (uint i = 0; i < _body.size(); i++) {
duke@435 767 Node *iff = _body[i];
kvn@2877 768 if (iff->Opcode() == Op_If) { // Test?
duke@435 769
duke@435 770 // Comparing trip+off vs limit
duke@435 771 Node *bol = iff->in(1);
kvn@2877 772 if (bol->req() != 2) continue; // dead constant test
cfang@1607 773 if (!bol->is_Bool()) {
cfang@1607 774 assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
cfang@1607 775 continue;
cfang@1607 776 }
kvn@2877 777 if (bol->as_Bool()->_test._test == BoolTest::ne)
kvn@2877 778 continue; // not RC
kvn@2877 779
duke@435 780 Node *cmp = bol->in(1);
duke@435 781
duke@435 782 Node *rc_exp = cmp->in(1);
duke@435 783 Node *limit = cmp->in(2);
duke@435 784
duke@435 785 Node *limit_c = phase->get_ctrl(limit);
duke@435 786 if( limit_c == phase->C->top() )
duke@435 787 return false; // Found dead test on live IF? No RCE!
duke@435 788 if( is_member(phase->get_loop(limit_c) ) ) {
duke@435 789 // Compare might have operands swapped; commute them
duke@435 790 rc_exp = cmp->in(2);
duke@435 791 limit = cmp->in(1);
duke@435 792 limit_c = phase->get_ctrl(limit);
duke@435 793 if( is_member(phase->get_loop(limit_c) ) )
duke@435 794 continue; // Both inputs are loop varying; cannot RCE
duke@435 795 }
duke@435 796
duke@435 797 if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
duke@435 798 continue;
duke@435 799 }
duke@435 800 // Yeah! Found a test like 'trip+off vs limit'
duke@435 801 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 802 // we need loop unswitching instead of iteration splitting.
duke@435 803 if( is_loop_exit(iff) )
duke@435 804 return true; // Found reason to split iterations
duke@435 805 } // End of is IF
duke@435 806 }
duke@435 807
duke@435 808 return false;
duke@435 809 }
duke@435 810
duke@435 811 //------------------------------policy_peel_only-------------------------------
duke@435 812 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned. Useful
duke@435 813 // for unrolling loops with NO array accesses.
duke@435 814 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
duke@435 815
duke@435 816 for( uint i = 0; i < _body.size(); i++ )
duke@435 817 if( _body[i]->is_Mem() )
duke@435 818 return false;
duke@435 819
duke@435 820 // No memory accesses at all!
duke@435 821 return true;
duke@435 822 }
duke@435 823
duke@435 824 //------------------------------clone_up_backedge_goo--------------------------
duke@435 825 // If Node n lives in the back_ctrl block and cannot float, we clone a private
duke@435 826 // version of n in preheader_ctrl block and return that, otherwise return n.
kvn@2985 827 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
duke@435 828 if( get_ctrl(n) != back_ctrl ) return n;
duke@435 829
kvn@2985 830 // Only visit once
kvn@2985 831 if (visited.test_set(n->_idx)) {
kvn@2985 832 Node *x = clones.find(n->_idx);
kvn@2985 833 if (x != NULL)
kvn@2985 834 return x;
kvn@2985 835 return n;
kvn@2985 836 }
kvn@2985 837
duke@435 838 Node *x = NULL; // If required, a clone of 'n'
duke@435 839 // Check for 'n' being pinned in the backedge.
duke@435 840 if( n->in(0) && n->in(0) == back_ctrl ) {
kvn@2985 841 assert(clones.find(n->_idx) == NULL, "dead loop");
duke@435 842 x = n->clone(); // Clone a copy of 'n' to preheader
kvn@2985 843 clones.push(x, n->_idx);
duke@435 844 x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
duke@435 845 }
duke@435 846
duke@435 847 // Recursive fixup any other input edges into x.
duke@435 848 // If there are no changes we can just return 'n', otherwise
duke@435 849 // we need to clone a private copy and change it.
duke@435 850 for( uint i = 1; i < n->req(); i++ ) {
kvn@2985 851 Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
duke@435 852 if( g != n->in(i) ) {
kvn@2985 853 if( !x ) {
kvn@2985 854 assert(clones.find(n->_idx) == NULL, "dead loop");
duke@435 855 x = n->clone();
kvn@2985 856 clones.push(x, n->_idx);
kvn@2985 857 }
duke@435 858 x->set_req(i, g);
duke@435 859 }
duke@435 860 }
duke@435 861 if( x ) { // x can legally float to pre-header location
duke@435 862 register_new_node( x, preheader_ctrl );
duke@435 863 return x;
duke@435 864 } else { // raise n to cover LCA of uses
duke@435 865 set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
duke@435 866 }
duke@435 867 return n;
duke@435 868 }
duke@435 869
duke@435 870 //------------------------------insert_pre_post_loops--------------------------
duke@435 871 // Insert pre and post loops. If peel_only is set, the pre-loop can not have
duke@435 872 // more iterations added. It acts as a 'peel' only, no lower-bound RCE, no
duke@435 873 // alignment. Useful to unroll loops that do no array accesses.
duke@435 874 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
duke@435 875
kvn@2665 876 #ifndef PRODUCT
kvn@2665 877 if (TraceLoopOpts) {
kvn@2665 878 if (peel_only)
kvn@2665 879 tty->print("PeelMainPost ");
kvn@2665 880 else
kvn@2665 881 tty->print("PreMainPost ");
kvn@2665 882 loop->dump_head();
kvn@2665 883 }
kvn@2665 884 #endif
duke@435 885 C->set_major_progress();
duke@435 886
duke@435 887 // Find common pieces of the loop being guarded with pre & post loops
duke@435 888 CountedLoopNode *main_head = loop->_head->as_CountedLoop();
duke@435 889 assert( main_head->is_normal_loop(), "" );
duke@435 890 CountedLoopEndNode *main_end = main_head->loopexit();
duke@435 891 assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
duke@435 892 uint dd_main_head = dom_depth(main_head);
duke@435 893 uint max = main_head->outcnt();
duke@435 894
duke@435 895 Node *pre_header= main_head->in(LoopNode::EntryControl);
duke@435 896 Node *init = main_head->init_trip();
duke@435 897 Node *incr = main_end ->incr();
duke@435 898 Node *limit = main_end ->limit();
duke@435 899 Node *stride = main_end ->stride();
duke@435 900 Node *cmp = main_end ->cmp_node();
duke@435 901 BoolTest::mask b_test = main_end->test_trip();
duke@435 902
duke@435 903 // Need only 1 user of 'bol' because I will be hacking the loop bounds.
duke@435 904 Node *bol = main_end->in(CountedLoopEndNode::TestValue);
duke@435 905 if( bol->outcnt() != 1 ) {
duke@435 906 bol = bol->clone();
duke@435 907 register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
duke@435 908 _igvn.hash_delete(main_end);
duke@435 909 main_end->set_req(CountedLoopEndNode::TestValue, bol);
duke@435 910 }
duke@435 911 // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
duke@435 912 if( cmp->outcnt() != 1 ) {
duke@435 913 cmp = cmp->clone();
duke@435 914 register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
duke@435 915 _igvn.hash_delete(bol);
duke@435 916 bol->set_req(1, cmp);
duke@435 917 }
duke@435 918
duke@435 919 //------------------------------
duke@435 920 // Step A: Create Post-Loop.
duke@435 921 Node* main_exit = main_end->proj_out(false);
duke@435 922 assert( main_exit->Opcode() == Op_IfFalse, "" );
duke@435 923 int dd_main_exit = dom_depth(main_exit);
duke@435 924
duke@435 925 // Step A1: Clone the loop body. The clone becomes the post-loop. The main
duke@435 926 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 927 clone_loop( loop, old_new, dd_main_exit );
duke@435 928 assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
duke@435 929 CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 930 post_head->set_post_loop(main_head);
duke@435 931
kvn@835 932 // Reduce the post-loop trip count.
kvn@835 933 CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
kvn@835 934 post_end->_prob = PROB_FAIR;
kvn@835 935
duke@435 936 // Build the main-loop normal exit.
duke@435 937 IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
duke@435 938 _igvn.register_new_node_with_optimizer( new_main_exit );
duke@435 939 set_idom(new_main_exit, main_end, dd_main_exit );
duke@435 940 set_loop(new_main_exit, loop->_parent);
duke@435 941
duke@435 942 // Step A2: Build a zero-trip guard for the post-loop. After leaving the
duke@435 943 // main-loop, the post-loop may not execute at all. We 'opaque' the incr
duke@435 944 // (the main-loop trip-counter exit value) because we will be changing
duke@435 945 // the exit value (via unrolling) so we cannot constant-fold away the zero
duke@435 946 // trip guard until all unrolling is done.
kvn@651 947 Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
duke@435 948 Node *zer_cmp = new (C, 3) CmpINode( zer_opaq, limit );
duke@435 949 Node *zer_bol = new (C, 2) BoolNode( zer_cmp, b_test );
duke@435 950 register_new_node( zer_opaq, new_main_exit );
duke@435 951 register_new_node( zer_cmp , new_main_exit );
duke@435 952 register_new_node( zer_bol , new_main_exit );
duke@435 953
duke@435 954 // Build the IfNode
duke@435 955 IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
duke@435 956 _igvn.register_new_node_with_optimizer( zer_iff );
duke@435 957 set_idom(zer_iff, new_main_exit, dd_main_exit);
duke@435 958 set_loop(zer_iff, loop->_parent);
duke@435 959
duke@435 960 // Plug in the false-path, taken if we need to skip post-loop
duke@435 961 _igvn.hash_delete( main_exit );
duke@435 962 main_exit->set_req(0, zer_iff);
duke@435 963 _igvn._worklist.push(main_exit);
duke@435 964 set_idom(main_exit, zer_iff, dd_main_exit);
duke@435 965 set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
duke@435 966 // Make the true-path, must enter the post loop
duke@435 967 Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
duke@435 968 _igvn.register_new_node_with_optimizer( zer_taken );
duke@435 969 set_idom(zer_taken, zer_iff, dd_main_exit);
duke@435 970 set_loop(zer_taken, loop->_parent);
duke@435 971 // Plug in the true path
duke@435 972 _igvn.hash_delete( post_head );
duke@435 973 post_head->set_req(LoopNode::EntryControl, zer_taken);
duke@435 974 set_idom(post_head, zer_taken, dd_main_exit);
duke@435 975
kvn@2985 976 Arena *a = Thread::current()->resource_area();
kvn@2985 977 VectorSet visited(a);
kvn@2985 978 Node_Stack clones(a, main_head->back_control()->outcnt());
duke@435 979 // Step A3: Make the fall-in values to the post-loop come from the
duke@435 980 // fall-out values of the main-loop.
duke@435 981 for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
duke@435 982 Node* main_phi = main_head->fast_out(i);
duke@435 983 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
duke@435 984 Node *post_phi = old_new[main_phi->_idx];
duke@435 985 Node *fallmain = clone_up_backedge_goo(main_head->back_control(),
duke@435 986 post_head->init_control(),
kvn@2985 987 main_phi->in(LoopNode::LoopBackControl),
kvn@2985 988 visited, clones);
duke@435 989 _igvn.hash_delete(post_phi);
duke@435 990 post_phi->set_req( LoopNode::EntryControl, fallmain );
duke@435 991 }
duke@435 992 }
duke@435 993
duke@435 994 // Update local caches for next stanza
duke@435 995 main_exit = new_main_exit;
duke@435 996
duke@435 997
duke@435 998 //------------------------------
duke@435 999 // Step B: Create Pre-Loop.
duke@435 1000
duke@435 1001 // Step B1: Clone the loop body. The clone becomes the pre-loop. The main
duke@435 1002 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 1003 clone_loop( loop, old_new, dd_main_head );
duke@435 1004 CountedLoopNode* pre_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 1005 CountedLoopEndNode* pre_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
duke@435 1006 pre_head->set_pre_loop(main_head);
duke@435 1007 Node *pre_incr = old_new[incr->_idx];
duke@435 1008
kvn@835 1009 // Reduce the pre-loop trip count.
kvn@835 1010 pre_end->_prob = PROB_FAIR;
kvn@835 1011
duke@435 1012 // Find the pre-loop normal exit.
duke@435 1013 Node* pre_exit = pre_end->proj_out(false);
duke@435 1014 assert( pre_exit->Opcode() == Op_IfFalse, "" );
duke@435 1015 IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
duke@435 1016 _igvn.register_new_node_with_optimizer( new_pre_exit );
duke@435 1017 set_idom(new_pre_exit, pre_end, dd_main_head);
duke@435 1018 set_loop(new_pre_exit, loop->_parent);
duke@435 1019
duke@435 1020 // Step B2: Build a zero-trip guard for the main-loop. After leaving the
duke@435 1021 // pre-loop, the main-loop may not execute at all. Later in life this
duke@435 1022 // zero-trip guard will become the minimum-trip guard when we unroll
duke@435 1023 // the main-loop.
kvn@651 1024 Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
duke@435 1025 Node *min_cmp = new (C, 3) CmpINode( pre_incr, min_opaq );
duke@435 1026 Node *min_bol = new (C, 2) BoolNode( min_cmp, b_test );
duke@435 1027 register_new_node( min_opaq, new_pre_exit );
duke@435 1028 register_new_node( min_cmp , new_pre_exit );
duke@435 1029 register_new_node( min_bol , new_pre_exit );
duke@435 1030
kvn@835 1031 // Build the IfNode (assume the main-loop is executed always).
kvn@835 1032 IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
duke@435 1033 _igvn.register_new_node_with_optimizer( min_iff );
duke@435 1034 set_idom(min_iff, new_pre_exit, dd_main_head);
duke@435 1035 set_loop(min_iff, loop->_parent);
duke@435 1036
duke@435 1037 // Plug in the false-path, taken if we need to skip main-loop
duke@435 1038 _igvn.hash_delete( pre_exit );
duke@435 1039 pre_exit->set_req(0, min_iff);
duke@435 1040 set_idom(pre_exit, min_iff, dd_main_head);
duke@435 1041 set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
duke@435 1042 // Make the true-path, must enter the main loop
duke@435 1043 Node *min_taken = new (C, 1) IfTrueNode( min_iff );
duke@435 1044 _igvn.register_new_node_with_optimizer( min_taken );
duke@435 1045 set_idom(min_taken, min_iff, dd_main_head);
duke@435 1046 set_loop(min_taken, loop->_parent);
duke@435 1047 // Plug in the true path
duke@435 1048 _igvn.hash_delete( main_head );
duke@435 1049 main_head->set_req(LoopNode::EntryControl, min_taken);
duke@435 1050 set_idom(main_head, min_taken, dd_main_head);
duke@435 1051
kvn@2985 1052 visited.Clear();
kvn@2985 1053 clones.clear();
duke@435 1054 // Step B3: Make the fall-in values to the main-loop come from the
duke@435 1055 // fall-out values of the pre-loop.
duke@435 1056 for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
duke@435 1057 Node* main_phi = main_head->fast_out(i2);
duke@435 1058 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
duke@435 1059 Node *pre_phi = old_new[main_phi->_idx];
duke@435 1060 Node *fallpre = clone_up_backedge_goo(pre_head->back_control(),
duke@435 1061 main_head->init_control(),
kvn@2985 1062 pre_phi->in(LoopNode::LoopBackControl),
kvn@2985 1063 visited, clones);
duke@435 1064 _igvn.hash_delete(main_phi);
duke@435 1065 main_phi->set_req( LoopNode::EntryControl, fallpre );
duke@435 1066 }
duke@435 1067 }
duke@435 1068
duke@435 1069 // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
duke@435 1070 // RCE and alignment may change this later.
duke@435 1071 Node *cmp_end = pre_end->cmp_node();
duke@435 1072 assert( cmp_end->in(2) == limit, "" );
duke@435 1073 Node *pre_limit = new (C, 3) AddINode( init, stride );
duke@435 1074
duke@435 1075 // Save the original loop limit in this Opaque1 node for
duke@435 1076 // use by range check elimination.
kvn@651 1077 Node *pre_opaq = new (C, 3) Opaque1Node(C, pre_limit, limit);
duke@435 1078
duke@435 1079 register_new_node( pre_limit, pre_head->in(0) );
duke@435 1080 register_new_node( pre_opaq , pre_head->in(0) );
duke@435 1081
duke@435 1082 // Since no other users of pre-loop compare, I can hack limit directly
duke@435 1083 assert( cmp_end->outcnt() == 1, "no other users" );
duke@435 1084 _igvn.hash_delete(cmp_end);
duke@435 1085 cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
duke@435 1086
duke@435 1087 // Special case for not-equal loop bounds:
duke@435 1088 // Change pre loop test, main loop test, and the
duke@435 1089 // main loop guard test to use lt or gt depending on stride
duke@435 1090 // direction:
duke@435 1091 // positive stride use <
duke@435 1092 // negative stride use >
kvn@2979 1093 //
kvn@2979 1094 // not-equal test is kept for post loop to handle case
kvn@2979 1095 // when init > limit when stride > 0 (and reverse).
duke@435 1096
duke@435 1097 if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
duke@435 1098
duke@435 1099 BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
duke@435 1100 // Modify pre loop end condition
duke@435 1101 Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 1102 BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
duke@435 1103 register_new_node( new_bol0, pre_head->in(0) );
duke@435 1104 _igvn.hash_delete(pre_end);
duke@435 1105 pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
duke@435 1106 // Modify main loop guard condition
duke@435 1107 assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
duke@435 1108 BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
duke@435 1109 register_new_node( new_bol1, new_pre_exit );
duke@435 1110 _igvn.hash_delete(min_iff);
duke@435 1111 min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
duke@435 1112 // Modify main loop end condition
duke@435 1113 BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 1114 BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
duke@435 1115 register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
duke@435 1116 _igvn.hash_delete(main_end);
duke@435 1117 main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
duke@435 1118 }
duke@435 1119
duke@435 1120 // Flag main loop
duke@435 1121 main_head->set_main_loop();
duke@435 1122 if( peel_only ) main_head->set_main_no_pre_loop();
duke@435 1123
kvn@2877 1124 // Subtract a trip count for the pre-loop.
kvn@2877 1125 main_head->set_trip_count(main_head->trip_count() - 1);
kvn@2877 1126
duke@435 1127 // It's difficult to be precise about the trip-counts
duke@435 1128 // for the pre/post loops. They are usually very short,
duke@435 1129 // so guess that 4 trips is a reasonable value.
duke@435 1130 post_head->set_profile_trip_cnt(4.0);
duke@435 1131 pre_head->set_profile_trip_cnt(4.0);
duke@435 1132
duke@435 1133 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 1134 // finds some, but we _know_ they are all useless.
duke@435 1135 peeled_dom_test_elim(loop,old_new);
duke@435 1136 }
duke@435 1137
duke@435 1138 //------------------------------is_invariant-----------------------------
duke@435 1139 // Return true if n is invariant
duke@435 1140 bool IdealLoopTree::is_invariant(Node* n) const {
cfang@1607 1141 Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
duke@435 1142 if (n_c->is_top()) return false;
duke@435 1143 return !is_member(_phase->get_loop(n_c));
duke@435 1144 }
duke@435 1145
duke@435 1146
duke@435 1147 //------------------------------do_unroll--------------------------------------
duke@435 1148 // Unroll the loop body one step - make each trip do 2 iterations.
duke@435 1149 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
kvn@2665 1150 assert(LoopUnrollLimit, "");
kvn@2665 1151 CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
kvn@2665 1152 CountedLoopEndNode *loop_end = loop_head->loopexit();
kvn@2665 1153 assert(loop_end, "");
duke@435 1154 #ifndef PRODUCT
kvn@2665 1155 if (PrintOpto && VerifyLoopOptimizations) {
duke@435 1156 tty->print("Unrolling ");
duke@435 1157 loop->dump_head();
kvn@2665 1158 } else if (TraceLoopOpts) {
kvn@2747 1159 if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
kvn@2877 1160 tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
kvn@2735 1161 } else {
kvn@2877 1162 tty->print("Unroll %d ", loop_head->unrolled_count()*2);
kvn@2735 1163 }
kvn@2665 1164 loop->dump_head();
duke@435 1165 }
duke@435 1166 #endif
duke@435 1167
duke@435 1168 // Remember loop node count before unrolling to detect
duke@435 1169 // if rounds of unroll,optimize are making progress
duke@435 1170 loop_head->set_node_count_before_unroll(loop->_body.size());
duke@435 1171
duke@435 1172 Node *ctrl = loop_head->in(LoopNode::EntryControl);
duke@435 1173 Node *limit = loop_head->limit();
duke@435 1174 Node *init = loop_head->init_trip();
kvn@2665 1175 Node *stride = loop_head->stride();
duke@435 1176
duke@435 1177 Node *opaq = NULL;
kvn@2877 1178 if (adjust_min_trip) { // If not maximally unrolling, need adjustment
kvn@2877 1179 // Search for zero-trip guard.
duke@435 1180 assert( loop_head->is_main_loop(), "" );
duke@435 1181 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 1182 Node *iff = ctrl->in(0);
duke@435 1183 assert( iff->Opcode() == Op_If, "" );
duke@435 1184 Node *bol = iff->in(1);
duke@435 1185 assert( bol->Opcode() == Op_Bool, "" );
duke@435 1186 Node *cmp = bol->in(1);
duke@435 1187 assert( cmp->Opcode() == Op_CmpI, "" );
duke@435 1188 opaq = cmp->in(2);
kvn@2877 1189 // Occasionally it's possible for a zero-trip guard Opaque1 node to be
duke@435 1190 // optimized away and then another round of loop opts attempted.
duke@435 1191 // We can not optimize this particular loop in that case.
kvn@2877 1192 if (opaq->Opcode() != Op_Opaque1)
kvn@2877 1193 return; // Cannot find zero-trip guard! Bail out!
kvn@2877 1194 // Zero-trip test uses an 'opaque' node which is not shared.
kvn@2877 1195 assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
duke@435 1196 }
duke@435 1197
duke@435 1198 C->set_major_progress();
duke@435 1199
kvn@2877 1200 Node* new_limit = NULL;
kvn@2877 1201 if (UnrollLimitCheck) {
kvn@2877 1202 int stride_con = stride->get_int();
kvn@2877 1203 int stride_p = (stride_con > 0) ? stride_con : -stride_con;
kvn@2877 1204 uint old_trip_count = loop_head->trip_count();
kvn@2877 1205 // Verify that unroll policy result is still valid.
kvn@2877 1206 assert(old_trip_count > 1 &&
kvn@2877 1207 (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
duke@435 1208
kvn@2877 1209 // Adjust loop limit to keep valid iterations number after unroll.
kvn@2877 1210 // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
kvn@2877 1211 // which may overflow.
kvn@2877 1212 if (!adjust_min_trip) {
kvn@2877 1213 assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
kvn@2877 1214 "odd trip count for maximally unroll");
kvn@2877 1215 // Don't need to adjust limit for maximally unroll since trip count is even.
kvn@2877 1216 } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
kvn@2877 1217 // Loop's limit is constant. Loop's init could be constant when pre-loop
kvn@2877 1218 // become peeled iteration.
kvn@2877 1219 long init_con = init->get_int();
kvn@2877 1220 // We can keep old loop limit if iterations count stays the same:
kvn@2877 1221 // old_trip_count == new_trip_count * 2
kvn@2877 1222 // Note: since old_trip_count >= 2 then new_trip_count >= 1
kvn@2877 1223 // so we also don't need to adjust zero trip test.
kvn@2877 1224 long limit_con = limit->get_int();
kvn@2877 1225 // (stride_con*2) not overflow since stride_con <= 8.
kvn@2877 1226 int new_stride_con = stride_con * 2;
kvn@2877 1227 int stride_m = new_stride_con - (stride_con > 0 ? 1 : -1);
kvn@2877 1228 long trip_count = (limit_con - init_con + stride_m)/new_stride_con;
kvn@2877 1229 // New trip count should satisfy next conditions.
kvn@2877 1230 assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
kvn@2877 1231 uint new_trip_count = (uint)trip_count;
kvn@2877 1232 adjust_min_trip = (old_trip_count != new_trip_count*2);
kvn@2877 1233 }
duke@435 1234
kvn@2877 1235 if (adjust_min_trip) {
kvn@2877 1236 // Step 2: Adjust the trip limit if it is called for.
kvn@2877 1237 // The adjustment amount is -stride. Need to make sure if the
kvn@2877 1238 // adjustment underflows or overflows, then the main loop is skipped.
kvn@2877 1239 Node* cmp = loop_end->cmp_node();
kvn@2877 1240 assert(cmp->in(2) == limit, "sanity");
kvn@2877 1241 assert(opaq != NULL && opaq->in(1) == limit, "sanity");
duke@435 1242
kvn@2877 1243 // Verify that policy_unroll result is still valid.
kvn@2877 1244 const TypeInt* limit_type = _igvn.type(limit)->is_int();
kvn@2877 1245 assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
kvn@2877 1246 stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
duke@435 1247
kvn@2877 1248 if (limit->is_Con()) {
kvn@2877 1249 // The check in policy_unroll and the assert above guarantee
kvn@2877 1250 // no underflow if limit is constant.
kvn@2877 1251 new_limit = _igvn.intcon(limit->get_int() - stride_con);
kvn@2877 1252 set_ctrl(new_limit, C->root());
kvn@2877 1253 } else {
kvn@2880 1254 // Limit is not constant.
kvn@2899 1255 if (loop_head->unrolled_count() == 1) { // only for first unroll
kvn@2880 1256 // Separate limit by Opaque node in case it is an incremented
kvn@2880 1257 // variable from previous loop to avoid using pre-incremented
kvn@2880 1258 // value which could increase register pressure.
kvn@2880 1259 // Otherwise reorg_offsets() optimization will create a separate
kvn@2880 1260 // Opaque node for each use of trip-counter and as result
kvn@2880 1261 // zero trip guard limit will be different from loop limit.
kvn@2880 1262 assert(has_ctrl(opaq), "should have it");
kvn@2880 1263 Node* opaq_ctrl = get_ctrl(opaq);
kvn@2880 1264 limit = new (C, 2) Opaque2Node( C, limit );
kvn@2880 1265 register_new_node( limit, opaq_ctrl );
kvn@2880 1266 }
kvn@2877 1267 if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
kvn@2877 1268 stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
kvn@2877 1269 // No underflow.
kvn@2877 1270 new_limit = new (C, 3) SubINode(limit, stride);
kvn@2877 1271 } else {
kvn@2877 1272 // (limit - stride) may underflow.
kvn@2877 1273 // Clamp the adjustment value with MININT or MAXINT:
kvn@2877 1274 //
kvn@2877 1275 // new_limit = limit-stride
kvn@2877 1276 // if (stride > 0)
kvn@2877 1277 // new_limit = (limit < new_limit) ? MININT : new_limit;
kvn@2877 1278 // else
kvn@2877 1279 // new_limit = (limit > new_limit) ? MAXINT : new_limit;
kvn@2877 1280 //
kvn@2877 1281 BoolTest::mask bt = loop_end->test_trip();
kvn@2877 1282 assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
kvn@2877 1283 Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
kvn@2877 1284 set_ctrl(adj_max, C->root());
kvn@2877 1285 Node* old_limit = NULL;
kvn@2877 1286 Node* adj_limit = NULL;
kvn@2877 1287 Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
kvn@2877 1288 if (loop_head->unrolled_count() > 1 &&
kvn@2877 1289 limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
kvn@2877 1290 limit->in(CMoveNode::IfTrue) == adj_max &&
kvn@2877 1291 bol->as_Bool()->_test._test == bt &&
kvn@2877 1292 bol->in(1)->Opcode() == Op_CmpI &&
kvn@2877 1293 bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
kvn@2877 1294 // Loop was unrolled before.
kvn@2877 1295 // Optimize the limit to avoid nested CMove:
kvn@2877 1296 // use original limit as old limit.
kvn@2877 1297 old_limit = bol->in(1)->in(1);
kvn@2877 1298 // Adjust previous adjusted limit.
kvn@2877 1299 adj_limit = limit->in(CMoveNode::IfFalse);
kvn@2877 1300 adj_limit = new (C, 3) SubINode(adj_limit, stride);
kvn@2877 1301 } else {
kvn@2877 1302 old_limit = limit;
kvn@2877 1303 adj_limit = new (C, 3) SubINode(limit, stride);
kvn@2877 1304 }
kvn@2877 1305 assert(old_limit != NULL && adj_limit != NULL, "");
kvn@2877 1306 register_new_node( adj_limit, ctrl ); // adjust amount
kvn@2877 1307 Node* adj_cmp = new (C, 3) CmpINode(old_limit, adj_limit);
kvn@2877 1308 register_new_node( adj_cmp, ctrl );
kvn@2877 1309 Node* adj_bool = new (C, 2) BoolNode(adj_cmp, bt);
kvn@2877 1310 register_new_node( adj_bool, ctrl );
kvn@2877 1311 new_limit = new (C, 4) CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
kvn@2877 1312 }
kvn@2877 1313 register_new_node(new_limit, ctrl);
kvn@2877 1314 }
kvn@2877 1315 assert(new_limit != NULL, "");
kvn@2880 1316 // Replace in loop test.
kvn@2929 1317 assert(loop_end->in(1)->in(1) == cmp, "sanity");
kvn@2929 1318 if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
kvn@2929 1319 // Don't need to create new test since only one user.
kvn@2929 1320 _igvn.hash_delete(cmp);
kvn@2929 1321 cmp->set_req(2, new_limit);
kvn@2929 1322 } else {
kvn@2929 1323 // Create new test since it is shared.
kvn@2929 1324 Node* ctrl2 = loop_end->in(0);
kvn@2929 1325 Node* cmp2 = cmp->clone();
kvn@2929 1326 cmp2->set_req(2, new_limit);
kvn@2929 1327 register_new_node(cmp2, ctrl2);
kvn@2929 1328 Node* bol2 = loop_end->in(1)->clone();
kvn@2929 1329 bol2->set_req(1, cmp2);
kvn@2929 1330 register_new_node(bol2, ctrl2);
kvn@2929 1331 _igvn.hash_delete(loop_end);
kvn@2929 1332 loop_end->set_req(1, bol2);
kvn@2929 1333 }
kvn@2880 1334 // Step 3: Find the min-trip test guaranteed before a 'main' loop.
kvn@2880 1335 // Make it a 1-trip test (means at least 2 trips).
kvn@2877 1336
kvn@2880 1337 // Guard test uses an 'opaque' node which is not shared. Hence I
kvn@2880 1338 // can edit it's inputs directly. Hammer in the new limit for the
kvn@2880 1339 // minimum-trip guard.
kvn@2880 1340 assert(opaq->outcnt() == 1, "");
kvn@2880 1341 _igvn.hash_delete(opaq);
kvn@2880 1342 opaq->set_req(1, new_limit);
kvn@2877 1343 }
kvn@2877 1344
kvn@2877 1345 // Adjust max trip count. The trip count is intentionally rounded
kvn@2877 1346 // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
kvn@2877 1347 // the main, unrolled, part of the loop will never execute as it is protected
kvn@2877 1348 // by the min-trip test. See bug 4834191 for a case where we over-unrolled
kvn@2877 1349 // and later determined that part of the unrolled loop was dead.
kvn@2877 1350 loop_head->set_trip_count(old_trip_count / 2);
kvn@2877 1351
kvn@2877 1352 // Double the count of original iterations in the unrolled loop body.
kvn@2877 1353 loop_head->double_unrolled_count();
kvn@2877 1354
kvn@2877 1355 } else { // LoopLimitCheck
kvn@2877 1356
kvn@2877 1357 // Adjust max trip count. The trip count is intentionally rounded
kvn@2877 1358 // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
kvn@2877 1359 // the main, unrolled, part of the loop will never execute as it is protected
kvn@2877 1360 // by the min-trip test. See bug 4834191 for a case where we over-unrolled
kvn@2877 1361 // and later determined that part of the unrolled loop was dead.
kvn@2877 1362 loop_head->set_trip_count(loop_head->trip_count() / 2);
kvn@2877 1363
kvn@2877 1364 // Double the count of original iterations in the unrolled loop body.
kvn@2877 1365 loop_head->double_unrolled_count();
kvn@2877 1366
kvn@2877 1367 // -----------
kvn@2877 1368 // Step 2: Cut back the trip counter for an unroll amount of 2.
kvn@2877 1369 // Loop will normally trip (limit - init)/stride_con. Since it's a
kvn@2877 1370 // CountedLoop this is exact (stride divides limit-init exactly).
kvn@2877 1371 // We are going to double the loop body, so we want to knock off any
kvn@2877 1372 // odd iteration: (trip_cnt & ~1). Then back compute a new limit.
kvn@2877 1373 Node *span = new (C, 3) SubINode( limit, init );
kvn@2877 1374 register_new_node( span, ctrl );
kvn@2877 1375 Node *trip = new (C, 3) DivINode( 0, span, stride );
kvn@2877 1376 register_new_node( trip, ctrl );
kvn@2877 1377 Node *mtwo = _igvn.intcon(-2);
kvn@2877 1378 set_ctrl(mtwo, C->root());
kvn@2877 1379 Node *rond = new (C, 3) AndINode( trip, mtwo );
kvn@2877 1380 register_new_node( rond, ctrl );
kvn@2877 1381 Node *spn2 = new (C, 3) MulINode( rond, stride );
kvn@2877 1382 register_new_node( spn2, ctrl );
kvn@2877 1383 new_limit = new (C, 3) AddINode( spn2, init );
kvn@2877 1384 register_new_node( new_limit, ctrl );
kvn@2877 1385
kvn@2877 1386 // Hammer in the new limit
kvn@2877 1387 Node *ctrl2 = loop_end->in(0);
kvn@2877 1388 Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), new_limit );
kvn@2877 1389 register_new_node( cmp2, ctrl2 );
kvn@2877 1390 Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
kvn@2877 1391 register_new_node( bol2, ctrl2 );
kvn@2877 1392 _igvn.hash_delete(loop_end);
kvn@2877 1393 loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
kvn@2877 1394
kvn@2877 1395 // Step 3: Find the min-trip test guaranteed before a 'main' loop.
kvn@2877 1396 // Make it a 1-trip test (means at least 2 trips).
kvn@2877 1397 if( adjust_min_trip ) {
kvn@2877 1398 assert( new_limit != NULL, "" );
kvn@2877 1399 // Guard test uses an 'opaque' node which is not shared. Hence I
kvn@2877 1400 // can edit it's inputs directly. Hammer in the new limit for the
kvn@2877 1401 // minimum-trip guard.
kvn@2877 1402 assert( opaq->outcnt() == 1, "" );
kvn@2877 1403 _igvn.hash_delete(opaq);
kvn@2877 1404 opaq->set_req(1, new_limit);
kvn@2877 1405 }
kvn@2877 1406 } // LoopLimitCheck
duke@435 1407
duke@435 1408 // ---------
duke@435 1409 // Step 4: Clone the loop body. Move it inside the loop. This loop body
duke@435 1410 // represents the odd iterations; since the loop trips an even number of
duke@435 1411 // times its backedge is never taken. Kill the backedge.
duke@435 1412 uint dd = dom_depth(loop_head);
duke@435 1413 clone_loop( loop, old_new, dd );
duke@435 1414
duke@435 1415 // Make backedges of the clone equal to backedges of the original.
duke@435 1416 // Make the fall-in from the original come from the fall-out of the clone.
duke@435 1417 for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
duke@435 1418 Node* phi = loop_head->fast_out(j);
duke@435 1419 if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
duke@435 1420 Node *newphi = old_new[phi->_idx];
duke@435 1421 _igvn.hash_delete( phi );
duke@435 1422 _igvn.hash_delete( newphi );
duke@435 1423
duke@435 1424 phi ->set_req(LoopNode:: EntryControl, newphi->in(LoopNode::LoopBackControl));
duke@435 1425 newphi->set_req(LoopNode::LoopBackControl, phi ->in(LoopNode::LoopBackControl));
duke@435 1426 phi ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 1427 }
duke@435 1428 }
duke@435 1429 Node *clone_head = old_new[loop_head->_idx];
duke@435 1430 _igvn.hash_delete( clone_head );
duke@435 1431 loop_head ->set_req(LoopNode:: EntryControl, clone_head->in(LoopNode::LoopBackControl));
duke@435 1432 clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
duke@435 1433 loop_head ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 1434 loop->_head = clone_head; // New loop header
duke@435 1435
duke@435 1436 set_idom(loop_head, loop_head ->in(LoopNode::EntryControl), dd);
duke@435 1437 set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
duke@435 1438
duke@435 1439 // Kill the clone's backedge
duke@435 1440 Node *newcle = old_new[loop_end->_idx];
duke@435 1441 _igvn.hash_delete( newcle );
duke@435 1442 Node *one = _igvn.intcon(1);
duke@435 1443 set_ctrl(one, C->root());
duke@435 1444 newcle->set_req(1, one);
duke@435 1445 // Force clone into same loop body
duke@435 1446 uint max = loop->_body.size();
duke@435 1447 for( uint k = 0; k < max; k++ ) {
duke@435 1448 Node *old = loop->_body.at(k);
duke@435 1449 Node *nnn = old_new[old->_idx];
duke@435 1450 loop->_body.push(nnn);
duke@435 1451 if (!has_ctrl(old))
duke@435 1452 set_loop(nnn, loop);
duke@435 1453 }
never@802 1454
never@802 1455 loop->record_for_igvn();
duke@435 1456 }
duke@435 1457
duke@435 1458 //------------------------------do_maximally_unroll----------------------------
duke@435 1459
duke@435 1460 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1461 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@2877 1462 assert(cl->has_exact_trip_count(), "trip count is not exact");
kvn@2665 1463 assert(cl->trip_count() > 0, "");
kvn@2665 1464 #ifndef PRODUCT
kvn@2665 1465 if (TraceLoopOpts) {
kvn@2665 1466 tty->print("MaxUnroll %d ", cl->trip_count());
kvn@2665 1467 loop->dump_head();
kvn@2665 1468 }
kvn@2665 1469 #endif
duke@435 1470
duke@435 1471 // If loop is tripping an odd number of times, peel odd iteration
kvn@2665 1472 if ((cl->trip_count() & 1) == 1) {
kvn@2665 1473 do_peeling(loop, old_new);
duke@435 1474 }
duke@435 1475
duke@435 1476 // Now its tripping an even number of times remaining. Double loop body.
duke@435 1477 // Do not adjust pre-guards; they are not needed and do not exist.
kvn@2665 1478 if (cl->trip_count() > 0) {
kvn@2877 1479 assert((cl->trip_count() & 1) == 0, "missed peeling");
kvn@2665 1480 do_unroll(loop, old_new, false);
duke@435 1481 }
duke@435 1482 }
duke@435 1483
duke@435 1484 //------------------------------dominates_backedge---------------------------------
duke@435 1485 // Returns true if ctrl is executed on every complete iteration
duke@435 1486 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
duke@435 1487 assert(ctrl->is_CFG(), "must be control");
duke@435 1488 Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
duke@435 1489 return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
duke@435 1490 }
duke@435 1491
kvn@2915 1492 //------------------------------adjust_limit-----------------------------------
kvn@2915 1493 // Helper function for add_constraint().
kvn@2915 1494 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
kvn@2915 1495 // Compute "I :: (limit-offset)/scale"
kvn@2915 1496 Node *con = new (C, 3) SubINode(rc_limit, offset);
kvn@2915 1497 register_new_node(con, pre_ctrl);
kvn@2915 1498 Node *X = new (C, 3) DivINode(0, con, scale);
kvn@2915 1499 register_new_node(X, pre_ctrl);
kvn@2915 1500
kvn@2915 1501 // Adjust loop limit
kvn@2915 1502 loop_limit = (stride_con > 0)
kvn@2915 1503 ? (Node*)(new (C, 3) MinINode(loop_limit, X))
kvn@2915 1504 : (Node*)(new (C, 3) MaxINode(loop_limit, X));
kvn@2915 1505 register_new_node(loop_limit, pre_ctrl);
kvn@2915 1506 return loop_limit;
kvn@2915 1507 }
kvn@2915 1508
duke@435 1509 //------------------------------add_constraint---------------------------------
kvn@2877 1510 // Constrain the main loop iterations so the conditions:
kvn@2877 1511 // low_limit <= scale_con * I + offset < upper_limit
duke@435 1512 // always holds true. That is, either increase the number of iterations in
duke@435 1513 // the pre-loop or the post-loop until the condition holds true in the main
duke@435 1514 // loop. Stride, scale, offset and limit are all loop invariant. Further,
duke@435 1515 // stride and scale are constants (offset and limit often are).
kvn@2877 1516 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
duke@435 1517 // For positive stride, the pre-loop limit always uses a MAX function
duke@435 1518 // and the main loop a MIN function. For negative stride these are
duke@435 1519 // reversed.
duke@435 1520
duke@435 1521 // Also for positive stride*scale the affine function is increasing, so the
duke@435 1522 // pre-loop must check for underflow and the post-loop for overflow.
duke@435 1523 // Negative stride*scale reverses this; pre-loop checks for overflow and
duke@435 1524 // post-loop for underflow.
kvn@2915 1525
kvn@2915 1526 Node *scale = _igvn.intcon(scale_con);
kvn@2915 1527 set_ctrl(scale, C->root());
kvn@2915 1528
kvn@2915 1529 if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
kvn@2877 1530 // The overflow limit: scale*I+offset < upper_limit
kvn@2877 1531 // For main-loop compute
kvn@2877 1532 // ( if (scale > 0) /* and stride > 0 */
kvn@2877 1533 // I < (upper_limit-offset)/scale
kvn@2877 1534 // else /* scale < 0 and stride < 0 */
kvn@2877 1535 // I > (upper_limit-offset)/scale
kvn@2877 1536 // )
kvn@2877 1537 //
kvn@2915 1538 // (upper_limit-offset) may overflow or underflow.
kvn@2877 1539 // But it is fine since main loop will either have
kvn@2877 1540 // less iterations or will be skipped in such case.
kvn@2915 1541 *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
duke@435 1542
kvn@2877 1543 // The underflow limit: low_limit <= scale*I+offset.
kvn@2877 1544 // For pre-loop compute
kvn@2877 1545 // NOT(scale*I+offset >= low_limit)
kvn@2877 1546 // scale*I+offset < low_limit
kvn@2877 1547 // ( if (scale > 0) /* and stride > 0 */
kvn@2877 1548 // I < (low_limit-offset)/scale
kvn@2877 1549 // else /* scale < 0 and stride < 0 */
kvn@2877 1550 // I > (low_limit-offset)/scale
kvn@2877 1551 // )
kvn@2877 1552
kvn@2877 1553 if (low_limit->get_int() == -max_jint) {
kvn@2877 1554 if (!RangeLimitCheck) return;
kvn@2877 1555 // We need this guard when scale*pre_limit+offset >= limit
kvn@2915 1556 // due to underflow. So we need execute pre-loop until
kvn@2915 1557 // scale*I+offset >= min_int. But (min_int-offset) will
kvn@2915 1558 // underflow when offset > 0 and X will be > original_limit
kvn@2915 1559 // when stride > 0. To avoid it we replace positive offset with 0.
kvn@2915 1560 //
kvn@2915 1561 // Also (min_int+1 == -max_int) is used instead of min_int here
kvn@2915 1562 // to avoid problem with scale == -1 (min_int/(-1) == min_int).
kvn@2877 1563 Node* shift = _igvn.intcon(31);
kvn@2877 1564 set_ctrl(shift, C->root());
kvn@2915 1565 Node* sign = new (C, 3) RShiftINode(offset, shift);
kvn@2915 1566 register_new_node(sign, pre_ctrl);
kvn@2915 1567 offset = new (C, 3) AndINode(offset, sign);
kvn@2877 1568 register_new_node(offset, pre_ctrl);
kvn@2877 1569 } else {
kvn@2877 1570 assert(low_limit->get_int() == 0, "wrong low limit for range check");
kvn@2877 1571 // The only problem we have here when offset == min_int
kvn@2915 1572 // since (0-min_int) == min_int. It may be fine for stride > 0
kvn@2915 1573 // but for stride < 0 X will be < original_limit. To avoid it
kvn@2915 1574 // max(pre_limit, original_limit) is used in do_range_check().
kvn@2877 1575 }
kvn@2915 1576 // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
kvn@2915 1577 *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
kvn@2877 1578
kvn@2877 1579 } else { // stride_con*scale_con < 0
kvn@2877 1580 // For negative stride*scale pre-loop checks for overflow and
kvn@2877 1581 // post-loop for underflow.
kvn@2877 1582 //
kvn@2877 1583 // The overflow limit: scale*I+offset < upper_limit
kvn@2877 1584 // For pre-loop compute
kvn@2877 1585 // NOT(scale*I+offset < upper_limit)
kvn@2877 1586 // scale*I+offset >= upper_limit
kvn@2877 1587 // scale*I+offset+1 > upper_limit
kvn@2877 1588 // ( if (scale < 0) /* and stride > 0 */
kvn@2877 1589 // I < (upper_limit-(offset+1))/scale
kvn@2915 1590 // else /* scale > 0 and stride < 0 */
kvn@2877 1591 // I > (upper_limit-(offset+1))/scale
kvn@2877 1592 // )
kvn@2915 1593 //
kvn@2915 1594 // (upper_limit-offset-1) may underflow or overflow.
kvn@2915 1595 // To avoid it min(pre_limit, original_limit) is used
kvn@2915 1596 // in do_range_check() for stride > 0 and max() for < 0.
kvn@2915 1597 Node *one = _igvn.intcon(1);
kvn@2915 1598 set_ctrl(one, C->root());
kvn@2915 1599
kvn@2915 1600 Node *plus_one = new (C, 3) AddINode(offset, one);
kvn@2877 1601 register_new_node( plus_one, pre_ctrl );
kvn@2915 1602 // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
kvn@2915 1603 *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
kvn@2877 1604
kvn@2915 1605 if (low_limit->get_int() == -max_jint) {
kvn@2915 1606 if (!RangeLimitCheck) return;
kvn@2915 1607 // We need this guard when scale*main_limit+offset >= limit
kvn@2915 1608 // due to underflow. So we need execute main-loop while
kvn@2915 1609 // scale*I+offset+1 > min_int. But (min_int-offset-1) will
kvn@2915 1610 // underflow when (offset+1) > 0 and X will be < main_limit
kvn@2915 1611 // when scale < 0 (and stride > 0). To avoid it we replace
kvn@2915 1612 // positive (offset+1) with 0.
kvn@2915 1613 //
kvn@2915 1614 // Also (min_int+1 == -max_int) is used instead of min_int here
kvn@2915 1615 // to avoid problem with scale == -1 (min_int/(-1) == min_int).
kvn@2915 1616 Node* shift = _igvn.intcon(31);
kvn@2915 1617 set_ctrl(shift, C->root());
kvn@2915 1618 Node* sign = new (C, 3) RShiftINode(plus_one, shift);
kvn@2915 1619 register_new_node(sign, pre_ctrl);
kvn@2915 1620 plus_one = new (C, 3) AndINode(plus_one, sign);
kvn@2915 1621 register_new_node(plus_one, pre_ctrl);
kvn@2915 1622 } else {
kvn@2915 1623 assert(low_limit->get_int() == 0, "wrong low limit for range check");
kvn@2915 1624 // The only problem we have here when offset == max_int
kvn@2915 1625 // since (max_int+1) == min_int and (0-min_int) == min_int.
kvn@2915 1626 // But it is fine since main loop will either have
kvn@2915 1627 // less iterations or will be skipped in such case.
kvn@2915 1628 }
kvn@2915 1629 // The underflow limit: low_limit <= scale*I+offset.
kvn@2915 1630 // For main-loop compute
kvn@2915 1631 // scale*I+offset+1 > low_limit
kvn@2915 1632 // ( if (scale < 0) /* and stride > 0 */
kvn@2915 1633 // I < (low_limit-(offset+1))/scale
kvn@2915 1634 // else /* scale > 0 and stride < 0 */
kvn@2915 1635 // I > (low_limit-(offset+1))/scale
kvn@2915 1636 // )
kvn@2877 1637
kvn@2915 1638 *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
duke@435 1639 }
duke@435 1640 }
duke@435 1641
duke@435 1642
duke@435 1643 //------------------------------is_scaled_iv---------------------------------
duke@435 1644 // Return true if exp is a constant times an induction var
duke@435 1645 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
duke@435 1646 if (exp == iv) {
duke@435 1647 if (p_scale != NULL) {
duke@435 1648 *p_scale = 1;
duke@435 1649 }
duke@435 1650 return true;
duke@435 1651 }
duke@435 1652 int opc = exp->Opcode();
duke@435 1653 if (opc == Op_MulI) {
duke@435 1654 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1655 if (p_scale != NULL) {
duke@435 1656 *p_scale = exp->in(2)->get_int();
duke@435 1657 }
duke@435 1658 return true;
duke@435 1659 }
duke@435 1660 if (exp->in(2) == iv && exp->in(1)->is_Con()) {
duke@435 1661 if (p_scale != NULL) {
duke@435 1662 *p_scale = exp->in(1)->get_int();
duke@435 1663 }
duke@435 1664 return true;
duke@435 1665 }
duke@435 1666 } else if (opc == Op_LShiftI) {
duke@435 1667 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1668 if (p_scale != NULL) {
duke@435 1669 *p_scale = 1 << exp->in(2)->get_int();
duke@435 1670 }
duke@435 1671 return true;
duke@435 1672 }
duke@435 1673 }
duke@435 1674 return false;
duke@435 1675 }
duke@435 1676
duke@435 1677 //-----------------------------is_scaled_iv_plus_offset------------------------------
duke@435 1678 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
duke@435 1679 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
duke@435 1680 if (is_scaled_iv(exp, iv, p_scale)) {
duke@435 1681 if (p_offset != NULL) {
duke@435 1682 Node *zero = _igvn.intcon(0);
duke@435 1683 set_ctrl(zero, C->root());
duke@435 1684 *p_offset = zero;
duke@435 1685 }
duke@435 1686 return true;
duke@435 1687 }
duke@435 1688 int opc = exp->Opcode();
duke@435 1689 if (opc == Op_AddI) {
duke@435 1690 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1691 if (p_offset != NULL) {
duke@435 1692 *p_offset = exp->in(2);
duke@435 1693 }
duke@435 1694 return true;
duke@435 1695 }
duke@435 1696 if (exp->in(2)->is_Con()) {
duke@435 1697 Node* offset2 = NULL;
duke@435 1698 if (depth < 2 &&
duke@435 1699 is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
duke@435 1700 p_offset != NULL ? &offset2 : NULL, depth+1)) {
duke@435 1701 if (p_offset != NULL) {
duke@435 1702 Node *ctrl_off2 = get_ctrl(offset2);
duke@435 1703 Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
duke@435 1704 register_new_node(offset, ctrl_off2);
duke@435 1705 *p_offset = offset;
duke@435 1706 }
duke@435 1707 return true;
duke@435 1708 }
duke@435 1709 }
duke@435 1710 } else if (opc == Op_SubI) {
duke@435 1711 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1712 if (p_offset != NULL) {
duke@435 1713 Node *zero = _igvn.intcon(0);
duke@435 1714 set_ctrl(zero, C->root());
duke@435 1715 Node *ctrl_off = get_ctrl(exp->in(2));
duke@435 1716 Node* offset = new (C, 3) SubINode(zero, exp->in(2));
duke@435 1717 register_new_node(offset, ctrl_off);
duke@435 1718 *p_offset = offset;
duke@435 1719 }
duke@435 1720 return true;
duke@435 1721 }
duke@435 1722 if (is_scaled_iv(exp->in(2), iv, p_scale)) {
duke@435 1723 if (p_offset != NULL) {
duke@435 1724 *p_scale *= -1;
duke@435 1725 *p_offset = exp->in(1);
duke@435 1726 }
duke@435 1727 return true;
duke@435 1728 }
duke@435 1729 }
duke@435 1730 return false;
duke@435 1731 }
duke@435 1732
duke@435 1733 //------------------------------do_range_check---------------------------------
duke@435 1734 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
duke@435 1735 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1736 #ifndef PRODUCT
kvn@2665 1737 if (PrintOpto && VerifyLoopOptimizations) {
duke@435 1738 tty->print("Range Check Elimination ");
duke@435 1739 loop->dump_head();
kvn@2665 1740 } else if (TraceLoopOpts) {
kvn@2665 1741 tty->print("RangeCheck ");
kvn@2665 1742 loop->dump_head();
duke@435 1743 }
duke@435 1744 #endif
kvn@2665 1745 assert(RangeCheckElimination, "");
duke@435 1746 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@2665 1747 assert(cl->is_main_loop(), "");
kvn@2665 1748
kvn@2665 1749 // protect against stride not being a constant
kvn@2665 1750 if (!cl->stride_is_con())
kvn@2665 1751 return;
duke@435 1752
duke@435 1753 // Find the trip counter; we are iteration splitting based on it
duke@435 1754 Node *trip_counter = cl->phi();
duke@435 1755 // Find the main loop limit; we will trim it's iterations
duke@435 1756 // to not ever trip end tests
duke@435 1757 Node *main_limit = cl->limit();
kvn@2665 1758
kvn@2665 1759 // Need to find the main-loop zero-trip guard
kvn@2665 1760 Node *ctrl = cl->in(LoopNode::EntryControl);
kvn@2665 1761 assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
kvn@2665 1762 Node *iffm = ctrl->in(0);
kvn@2665 1763 assert(iffm->Opcode() == Op_If, "");
kvn@2665 1764 Node *bolzm = iffm->in(1);
kvn@2665 1765 assert(bolzm->Opcode() == Op_Bool, "");
kvn@2665 1766 Node *cmpzm = bolzm->in(1);
kvn@2665 1767 assert(cmpzm->is_Cmp(), "");
kvn@2665 1768 Node *opqzm = cmpzm->in(2);
kvn@2877 1769 // Can not optimize a loop if zero-trip Opaque1 node is optimized
kvn@2665 1770 // away and then another round of loop opts attempted.
kvn@2665 1771 if (opqzm->Opcode() != Op_Opaque1)
kvn@2665 1772 return;
kvn@2665 1773 assert(opqzm->in(1) == main_limit, "do not understand situation");
kvn@2665 1774
duke@435 1775 // Find the pre-loop limit; we will expand it's iterations to
duke@435 1776 // not ever trip low tests.
duke@435 1777 Node *p_f = iffm->in(0);
kvn@2665 1778 assert(p_f->Opcode() == Op_IfFalse, "");
duke@435 1779 CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
kvn@2665 1780 assert(pre_end->loopnode()->is_pre_loop(), "");
duke@435 1781 Node *pre_opaq1 = pre_end->limit();
duke@435 1782 // Occasionally it's possible for a pre-loop Opaque1 node to be
duke@435 1783 // optimized away and then another round of loop opts attempted.
duke@435 1784 // We can not optimize this particular loop in that case.
kvn@2665 1785 if (pre_opaq1->Opcode() != Op_Opaque1)
duke@435 1786 return;
duke@435 1787 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
duke@435 1788 Node *pre_limit = pre_opaq->in(1);
duke@435 1789
duke@435 1790 // Where do we put new limit calculations
duke@435 1791 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 1792
duke@435 1793 // Ensure the original loop limit is available from the
duke@435 1794 // pre-loop Opaque1 node.
duke@435 1795 Node *orig_limit = pre_opaq->original_loop_limit();
kvn@2665 1796 if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
duke@435 1797 return;
duke@435 1798
duke@435 1799 // Must know if its a count-up or count-down loop
duke@435 1800
duke@435 1801 int stride_con = cl->stride_con();
duke@435 1802 Node *zero = _igvn.intcon(0);
duke@435 1803 Node *one = _igvn.intcon(1);
kvn@2877 1804 // Use symmetrical int range [-max_jint,max_jint]
kvn@2877 1805 Node *mini = _igvn.intcon(-max_jint);
duke@435 1806 set_ctrl(zero, C->root());
duke@435 1807 set_ctrl(one, C->root());
kvn@2877 1808 set_ctrl(mini, C->root());
duke@435 1809
duke@435 1810 // Range checks that do not dominate the loop backedge (ie.
duke@435 1811 // conditionally executed) can lengthen the pre loop limit beyond
duke@435 1812 // the original loop limit. To prevent this, the pre limit is
duke@435 1813 // (for stride > 0) MINed with the original loop limit (MAXed
duke@435 1814 // stride < 0) when some range_check (rc) is conditionally
duke@435 1815 // executed.
duke@435 1816 bool conditional_rc = false;
duke@435 1817
duke@435 1818 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 1819 // loop-invariant.
duke@435 1820 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 1821 Node *iff = loop->_body[i];
duke@435 1822 if( iff->Opcode() == Op_If ) { // Test?
duke@435 1823
duke@435 1824 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 1825 // we need loop unswitching instead of iteration splitting.
duke@435 1826 Node *exit = loop->is_loop_exit(iff);
duke@435 1827 if( !exit ) continue;
duke@435 1828 int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
duke@435 1829
duke@435 1830 // Get boolean condition to test
duke@435 1831 Node *i1 = iff->in(1);
duke@435 1832 if( !i1->is_Bool() ) continue;
duke@435 1833 BoolNode *bol = i1->as_Bool();
duke@435 1834 BoolTest b_test = bol->_test;
duke@435 1835 // Flip sense of test if exit condition is flipped
duke@435 1836 if( flip )
duke@435 1837 b_test = b_test.negate();
duke@435 1838
duke@435 1839 // Get compare
duke@435 1840 Node *cmp = bol->in(1);
duke@435 1841
duke@435 1842 // Look for trip_counter + offset vs limit
duke@435 1843 Node *rc_exp = cmp->in(1);
duke@435 1844 Node *limit = cmp->in(2);
duke@435 1845 jint scale_con= 1; // Assume trip counter not scaled
duke@435 1846
duke@435 1847 Node *limit_c = get_ctrl(limit);
duke@435 1848 if( loop->is_member(get_loop(limit_c) ) ) {
duke@435 1849 // Compare might have operands swapped; commute them
duke@435 1850 b_test = b_test.commute();
duke@435 1851 rc_exp = cmp->in(2);
duke@435 1852 limit = cmp->in(1);
duke@435 1853 limit_c = get_ctrl(limit);
duke@435 1854 if( loop->is_member(get_loop(limit_c) ) )
duke@435 1855 continue; // Both inputs are loop varying; cannot RCE
duke@435 1856 }
duke@435 1857 // Here we know 'limit' is loop invariant
duke@435 1858
duke@435 1859 // 'limit' maybe pinned below the zero trip test (probably from a
duke@435 1860 // previous round of rce), in which case, it can't be used in the
duke@435 1861 // zero trip test expression which must occur before the zero test's if.
duke@435 1862 if( limit_c == ctrl ) {
duke@435 1863 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1864 }
duke@435 1865
duke@435 1866 // Check for scaled induction variable plus an offset
duke@435 1867 Node *offset = NULL;
duke@435 1868
duke@435 1869 if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
duke@435 1870 continue;
duke@435 1871 }
duke@435 1872
duke@435 1873 Node *offset_c = get_ctrl(offset);
duke@435 1874 if( loop->is_member( get_loop(offset_c) ) )
duke@435 1875 continue; // Offset is not really loop invariant
duke@435 1876 // Here we know 'offset' is loop invariant.
duke@435 1877
duke@435 1878 // As above for the 'limit', the 'offset' maybe pinned below the
duke@435 1879 // zero trip test.
duke@435 1880 if( offset_c == ctrl ) {
duke@435 1881 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1882 }
kvn@2877 1883 #ifdef ASSERT
kvn@2877 1884 if (TraceRangeLimitCheck) {
kvn@2877 1885 tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
kvn@2877 1886 bol->dump(2);
kvn@2877 1887 }
kvn@2877 1888 #endif
duke@435 1889 // At this point we have the expression as:
duke@435 1890 // scale_con * trip_counter + offset :: limit
duke@435 1891 // where scale_con, offset and limit are loop invariant. Trip_counter
duke@435 1892 // monotonically increases by stride_con, a constant. Both (or either)
duke@435 1893 // stride_con and scale_con can be negative which will flip about the
duke@435 1894 // sense of the test.
duke@435 1895
duke@435 1896 // Adjust pre and main loop limits to guard the correct iteration set
duke@435 1897 if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
duke@435 1898 if( b_test._test == BoolTest::lt ) { // Range checks always use lt
kvn@2877 1899 // The underflow and overflow limits: 0 <= scale*I+offset < limit
kvn@2877 1900 add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1901 if (!conditional_rc) {
kvn@2915 1902 // (0-offset)/scale could be outside of loop iterations range.
kvn@2915 1903 conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
duke@435 1904 }
duke@435 1905 } else {
duke@435 1906 #ifndef PRODUCT
duke@435 1907 if( PrintOpto )
duke@435 1908 tty->print_cr("missed RCE opportunity");
duke@435 1909 #endif
duke@435 1910 continue; // In release mode, ignore it
duke@435 1911 }
duke@435 1912 } else { // Otherwise work on normal compares
duke@435 1913 switch( b_test._test ) {
kvn@2877 1914 case BoolTest::gt:
kvn@2877 1915 // Fall into GE case
kvn@2877 1916 case BoolTest::ge:
kvn@2877 1917 // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
duke@435 1918 scale_con = -scale_con;
duke@435 1919 offset = new (C, 3) SubINode( zero, offset );
duke@435 1920 register_new_node( offset, pre_ctrl );
duke@435 1921 limit = new (C, 3) SubINode( zero, limit );
duke@435 1922 register_new_node( limit, pre_ctrl );
duke@435 1923 // Fall into LE case
kvn@2877 1924 case BoolTest::le:
kvn@2877 1925 if (b_test._test != BoolTest::gt) {
kvn@2877 1926 // Convert X <= Y to X < Y+1
kvn@2877 1927 limit = new (C, 3) AddINode( limit, one );
kvn@2877 1928 register_new_node( limit, pre_ctrl );
kvn@2877 1929 }
duke@435 1930 // Fall into LT case
duke@435 1931 case BoolTest::lt:
kvn@2877 1932 // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
kvn@2915 1933 // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
kvn@2915 1934 // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
kvn@2877 1935 add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1936 if (!conditional_rc) {
kvn@2915 1937 // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
kvn@2915 1938 // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
kvn@2915 1939 // still be outside of loop range.
kvn@2915 1940 conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
duke@435 1941 }
duke@435 1942 break;
duke@435 1943 default:
duke@435 1944 #ifndef PRODUCT
duke@435 1945 if( PrintOpto )
duke@435 1946 tty->print_cr("missed RCE opportunity");
duke@435 1947 #endif
duke@435 1948 continue; // Unhandled case
duke@435 1949 }
duke@435 1950 }
duke@435 1951
duke@435 1952 // Kill the eliminated test
duke@435 1953 C->set_major_progress();
duke@435 1954 Node *kill_con = _igvn.intcon( 1-flip );
duke@435 1955 set_ctrl(kill_con, C->root());
duke@435 1956 _igvn.hash_delete(iff);
duke@435 1957 iff->set_req(1, kill_con);
duke@435 1958 _igvn._worklist.push(iff);
duke@435 1959 // Find surviving projection
duke@435 1960 assert(iff->is_If(), "");
duke@435 1961 ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
duke@435 1962 // Find loads off the surviving projection; remove their control edge
duke@435 1963 for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
duke@435 1964 Node* cd = dp->fast_out(i); // Control-dependent node
duke@435 1965 if( cd->is_Load() ) { // Loads can now float around in the loop
duke@435 1966 _igvn.hash_delete(cd);
duke@435 1967 // Allow the load to float around in the loop, or before it
duke@435 1968 // but NOT before the pre-loop.
duke@435 1969 cd->set_req(0, ctrl); // ctrl, not NULL
duke@435 1970 _igvn._worklist.push(cd);
duke@435 1971 --i;
duke@435 1972 --imax;
duke@435 1973 }
duke@435 1974 }
duke@435 1975
duke@435 1976 } // End of is IF
duke@435 1977
duke@435 1978 }
duke@435 1979
duke@435 1980 // Update loop limits
duke@435 1981 if (conditional_rc) {
duke@435 1982 pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
duke@435 1983 : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
duke@435 1984 register_new_node(pre_limit, pre_ctrl);
duke@435 1985 }
duke@435 1986 _igvn.hash_delete(pre_opaq);
duke@435 1987 pre_opaq->set_req(1, pre_limit);
duke@435 1988
duke@435 1989 // Note:: we are making the main loop limit no longer precise;
duke@435 1990 // need to round up based on stride.
kvn@2877 1991 cl->set_nonexact_trip_count();
kvn@2877 1992 if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
duke@435 1993 // "Standard" round-up logic: ([main_limit-init+(y-1)]/y)*y+init
duke@435 1994 // Hopefully, compiler will optimize for powers of 2.
duke@435 1995 Node *ctrl = get_ctrl(main_limit);
duke@435 1996 Node *stride = cl->stride();
duke@435 1997 Node *init = cl->init_trip();
duke@435 1998 Node *span = new (C, 3) SubINode(main_limit,init);
duke@435 1999 register_new_node(span,ctrl);
duke@435 2000 Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
duke@435 2001 Node *add = new (C, 3) AddINode(span,rndup);
duke@435 2002 register_new_node(add,ctrl);
duke@435 2003 Node *div = new (C, 3) DivINode(0,add,stride);
duke@435 2004 register_new_node(div,ctrl);
duke@435 2005 Node *mul = new (C, 3) MulINode(div,stride);
duke@435 2006 register_new_node(mul,ctrl);
duke@435 2007 Node *newlim = new (C, 3) AddINode(mul,init);
duke@435 2008 register_new_node(newlim,ctrl);
duke@435 2009 main_limit = newlim;
duke@435 2010 }
duke@435 2011
duke@435 2012 Node *main_cle = cl->loopexit();
duke@435 2013 Node *main_bol = main_cle->in(1);
duke@435 2014 // Hacking loop bounds; need private copies of exit test
duke@435 2015 if( main_bol->outcnt() > 1 ) {// BoolNode shared?
duke@435 2016 _igvn.hash_delete(main_cle);
duke@435 2017 main_bol = main_bol->clone();// Clone a private BoolNode
duke@435 2018 register_new_node( main_bol, main_cle->in(0) );
duke@435 2019 main_cle->set_req(1,main_bol);
duke@435 2020 }
duke@435 2021 Node *main_cmp = main_bol->in(1);
duke@435 2022 if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
duke@435 2023 _igvn.hash_delete(main_bol);
duke@435 2024 main_cmp = main_cmp->clone();// Clone a private CmpNode
duke@435 2025 register_new_node( main_cmp, main_cle->in(0) );
duke@435 2026 main_bol->set_req(1,main_cmp);
duke@435 2027 }
duke@435 2028 // Hack the now-private loop bounds
duke@435 2029 _igvn.hash_delete(main_cmp);
duke@435 2030 main_cmp->set_req(2, main_limit);
duke@435 2031 _igvn._worklist.push(main_cmp);
duke@435 2032 // The OpaqueNode is unshared by design
duke@435 2033 _igvn.hash_delete(opqzm);
duke@435 2034 assert( opqzm->outcnt() == 1, "cannot hack shared node" );
duke@435 2035 opqzm->set_req(1,main_limit);
duke@435 2036 _igvn._worklist.push(opqzm);
duke@435 2037 }
duke@435 2038
duke@435 2039 //------------------------------DCE_loop_body----------------------------------
duke@435 2040 // Remove simplistic dead code from loop body
duke@435 2041 void IdealLoopTree::DCE_loop_body() {
duke@435 2042 for( uint i = 0; i < _body.size(); i++ )
duke@435 2043 if( _body.at(i)->outcnt() == 0 )
duke@435 2044 _body.map( i--, _body.pop() );
duke@435 2045 }
duke@435 2046
duke@435 2047
duke@435 2048 //------------------------------adjust_loop_exit_prob--------------------------
duke@435 2049 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
duke@435 2050 // Replace with a 1-in-10 exit guess.
duke@435 2051 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
duke@435 2052 Node *test = tail();
duke@435 2053 while( test != _head ) {
duke@435 2054 uint top = test->Opcode();
duke@435 2055 if( top == Op_IfTrue || top == Op_IfFalse ) {
duke@435 2056 int test_con = ((ProjNode*)test)->_con;
duke@435 2057 assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
duke@435 2058 IfNode *iff = test->in(0)->as_If();
duke@435 2059 if( iff->outcnt() == 2 ) { // Ignore dead tests
duke@435 2060 Node *bol = iff->in(1);
duke@435 2061 if( bol && bol->req() > 1 && bol->in(1) &&
duke@435 2062 ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
kvn@855 2063 (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
duke@435 2064 (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
duke@435 2065 (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
duke@435 2066 (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
coleenp@548 2067 (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
coleenp@548 2068 (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
duke@435 2069 return; // Allocation loops RARELY take backedge
duke@435 2070 // Find the OTHER exit path from the IF
duke@435 2071 Node* ex = iff->proj_out(1-test_con);
duke@435 2072 float p = iff->_prob;
duke@435 2073 if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
duke@435 2074 if( top == Op_IfTrue ) {
duke@435 2075 if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
duke@435 2076 iff->_prob = PROB_STATIC_FREQUENT;
duke@435 2077 }
duke@435 2078 } else {
duke@435 2079 if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
duke@435 2080 iff->_prob = PROB_STATIC_INFREQUENT;
duke@435 2081 }
duke@435 2082 }
duke@435 2083 }
duke@435 2084 }
duke@435 2085 }
duke@435 2086 test = phase->idom(test);
duke@435 2087 }
duke@435 2088 }
duke@435 2089
duke@435 2090
duke@435 2091 //------------------------------policy_do_remove_empty_loop--------------------
duke@435 2092 // Micro-benchmark spamming. Policy is to always remove empty loops.
duke@435 2093 // The 'DO' part is to replace the trip counter with the value it will
duke@435 2094 // have on the last iteration. This will break the loop.
duke@435 2095 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
duke@435 2096 // Minimum size must be empty loop
kvn@2735 2097 if (_body.size() > EMPTY_LOOP_SIZE)
kvn@2665 2098 return false;
duke@435 2099
kvn@2665 2100 if (!_head->is_CountedLoop())
kvn@2665 2101 return false; // Dead loop
duke@435 2102 CountedLoopNode *cl = _head->as_CountedLoop();
kvn@2665 2103 if (!cl->loopexit())
kvn@2665 2104 return false; // Malformed loop
kvn@2665 2105 if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
duke@435 2106 return false; // Infinite loop
never@2685 2107
duke@435 2108 #ifdef ASSERT
duke@435 2109 // Ensure only one phi which is the iv.
duke@435 2110 Node* iv = NULL;
duke@435 2111 for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
duke@435 2112 Node* n = cl->fast_out(i);
duke@435 2113 if (n->Opcode() == Op_Phi) {
duke@435 2114 assert(iv == NULL, "Too many phis" );
duke@435 2115 iv = n;
duke@435 2116 }
duke@435 2117 }
duke@435 2118 assert(iv == cl->phi(), "Wrong phi" );
duke@435 2119 #endif
never@2685 2120
never@2685 2121 // main and post loops have explicitly created zero trip guard
never@2685 2122 bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
never@2685 2123 if (needs_guard) {
kvn@2747 2124 // Skip guard if values not overlap.
kvn@2747 2125 const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
kvn@2747 2126 const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
kvn@2747 2127 int stride_con = cl->stride_con();
kvn@2747 2128 if (stride_con > 0) {
kvn@2747 2129 needs_guard = (init_t->_hi >= limit_t->_lo);
kvn@2747 2130 } else {
kvn@2747 2131 needs_guard = (init_t->_lo <= limit_t->_hi);
kvn@2747 2132 }
kvn@2747 2133 }
kvn@2747 2134 if (needs_guard) {
never@2685 2135 // Check for an obvious zero trip guard.
kvn@2727 2136 Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
never@2685 2137 if (inctrl->Opcode() == Op_IfTrue) {
never@2685 2138 // The test should look like just the backedge of a CountedLoop
never@2685 2139 Node* iff = inctrl->in(0);
never@2685 2140 if (iff->is_If()) {
never@2685 2141 Node* bol = iff->in(1);
never@2685 2142 if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
never@2685 2143 Node* cmp = bol->in(1);
never@2685 2144 if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
never@2685 2145 needs_guard = false;
never@2685 2146 }
never@2685 2147 }
never@2685 2148 }
never@2685 2149 }
never@2685 2150 }
never@2685 2151
never@2685 2152 #ifndef PRODUCT
never@2685 2153 if (PrintOpto) {
never@2685 2154 tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
never@2685 2155 this->dump_head();
never@2685 2156 } else if (TraceLoopOpts) {
never@2685 2157 tty->print("Empty with%s zero trip guard ", needs_guard ? "out" : "");
never@2685 2158 this->dump_head();
never@2685 2159 }
never@2685 2160 #endif
never@2685 2161
never@2685 2162 if (needs_guard) {
never@2685 2163 // Peel the loop to ensure there's a zero trip guard
never@2685 2164 Node_List old_new;
never@2685 2165 phase->do_peeling(this, old_new);
never@2685 2166 }
never@2685 2167
duke@435 2168 // Replace the phi at loop head with the final value of the last
duke@435 2169 // iteration. Then the CountedLoopEnd will collapse (backedge never
duke@435 2170 // taken) and all loop-invariant uses of the exit values will be correct.
duke@435 2171 Node *phi = cl->phi();
kvn@2877 2172 Node *exact_limit = phase->exact_limit(this);
kvn@2877 2173 if (exact_limit != cl->limit()) {
kvn@2877 2174 // We also need to replace the original limit to collapse loop exit.
kvn@2877 2175 Node* cmp = cl->loopexit()->cmp_node();
kvn@2877 2176 assert(cl->limit() == cmp->in(2), "sanity");
kvn@2877 2177 phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
kvn@2877 2178 phase->_igvn.hash_delete(cmp);
kvn@2877 2179 cmp->set_req(2, exact_limit);
kvn@2877 2180 phase->_igvn._worklist.push(cmp); // put cmp on worklist
kvn@2877 2181 }
kvn@2877 2182 // Note: the final value after increment should not overflow since
kvn@2877 2183 // counted loop has limit check predicate.
kvn@2877 2184 Node *final = new (phase->C, 3) SubINode( exact_limit, cl->stride() );
duke@435 2185 phase->register_new_node(final,cl->in(LoopNode::EntryControl));
kvn@1976 2186 phase->_igvn.replace_node(phi,final);
duke@435 2187 phase->C->set_major_progress();
duke@435 2188 return true;
duke@435 2189 }
duke@435 2190
kvn@2747 2191 //------------------------------policy_do_one_iteration_loop-------------------
kvn@2747 2192 // Convert one iteration loop into normal code.
kvn@2747 2193 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
kvn@2747 2194 if (!_head->as_Loop()->is_valid_counted_loop())
kvn@2747 2195 return false; // Only for counted loop
kvn@2747 2196
kvn@2747 2197 CountedLoopNode *cl = _head->as_CountedLoop();
kvn@2747 2198 if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
kvn@2747 2199 return false;
kvn@2747 2200 }
kvn@2747 2201
kvn@2747 2202 #ifndef PRODUCT
kvn@2747 2203 if(TraceLoopOpts) {
kvn@2747 2204 tty->print("OneIteration ");
kvn@2747 2205 this->dump_head();
kvn@2747 2206 }
kvn@2747 2207 #endif
kvn@2747 2208
kvn@2747 2209 Node *init_n = cl->init_trip();
kvn@2747 2210 #ifdef ASSERT
kvn@2747 2211 // Loop boundaries should be constant since trip count is exact.
kvn@2747 2212 assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
kvn@2747 2213 #endif
kvn@2747 2214 // Replace the phi at loop head with the value of the init_trip.
kvn@2747 2215 // Then the CountedLoopEnd will collapse (backedge will not be taken)
kvn@2747 2216 // and all loop-invariant uses of the exit values will be correct.
kvn@2747 2217 phase->_igvn.replace_node(cl->phi(), cl->init_trip());
kvn@2747 2218 phase->C->set_major_progress();
kvn@2747 2219 return true;
kvn@2747 2220 }
duke@435 2221
duke@435 2222 //=============================================================================
duke@435 2223 //------------------------------iteration_split_impl---------------------------
never@836 2224 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
kvn@2747 2225 // Compute exact loop trip count if possible.
kvn@2747 2226 compute_exact_trip_count(phase);
kvn@2747 2227
kvn@2747 2228 // Convert one iteration loop into normal code.
kvn@2747 2229 if (policy_do_one_iteration_loop(phase))
kvn@2747 2230 return true;
kvn@2747 2231
duke@435 2232 // Check and remove empty loops (spam micro-benchmarks)
kvn@2747 2233 if (policy_do_remove_empty_loop(phase))
cfang@1607 2234 return true; // Here we removed an empty loop
duke@435 2235
duke@435 2236 bool should_peel = policy_peeling(phase); // Should we peel?
duke@435 2237
duke@435 2238 bool should_unswitch = policy_unswitching(phase);
duke@435 2239
duke@435 2240 // Non-counted loops may be peeled; exactly 1 iteration is peeled.
duke@435 2241 // This removes loop-invariant tests (usually null checks).
kvn@2747 2242 if (!_head->is_CountedLoop()) { // Non-counted loop
duke@435 2243 if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
never@836 2244 // Partial peel succeeded so terminate this round of loop opts
never@836 2245 return false;
duke@435 2246 }
kvn@2747 2247 if (should_peel) { // Should we peel?
duke@435 2248 #ifndef PRODUCT
duke@435 2249 if (PrintOpto) tty->print_cr("should_peel");
duke@435 2250 #endif
duke@435 2251 phase->do_peeling(this,old_new);
kvn@2747 2252 } else if (should_unswitch) {
duke@435 2253 phase->do_unswitching(this, old_new);
duke@435 2254 }
never@836 2255 return true;
duke@435 2256 }
duke@435 2257 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 2258
kvn@2747 2259 if (!cl->loopexit()) return true; // Ignore various kinds of broken loops
duke@435 2260
duke@435 2261 // Do nothing special to pre- and post- loops
kvn@2747 2262 if (cl->is_pre_loop() || cl->is_post_loop()) return true;
duke@435 2263
duke@435 2264 // Compute loop trip count from profile data
duke@435 2265 compute_profile_trip_cnt(phase);
duke@435 2266
duke@435 2267 // Before attempting fancy unrolling, RCE or alignment, see if we want
duke@435 2268 // to completely unroll this loop or do loop unswitching.
kvn@2747 2269 if (cl->is_normal_loop()) {
cfang@1224 2270 if (should_unswitch) {
cfang@1224 2271 phase->do_unswitching(this, old_new);
cfang@1224 2272 return true;
cfang@1224 2273 }
duke@435 2274 bool should_maximally_unroll = policy_maximally_unroll(phase);
kvn@2747 2275 if (should_maximally_unroll) {
duke@435 2276 // Here we did some unrolling and peeling. Eventually we will
duke@435 2277 // completely unroll this loop and it will no longer be a loop.
duke@435 2278 phase->do_maximally_unroll(this,old_new);
never@836 2279 return true;
duke@435 2280 }
duke@435 2281 }
duke@435 2282
kvn@2735 2283 // Skip next optimizations if running low on nodes. Note that
kvn@2735 2284 // policy_unswitching and policy_maximally_unroll have this check.
kvn@2735 2285 uint nodes_left = MaxNodeLimit - phase->C->unique();
kvn@2735 2286 if ((2 * _body.size()) > nodes_left) {
kvn@2735 2287 return true;
kvn@2735 2288 }
duke@435 2289
duke@435 2290 // Counted loops may be peeled, may need some iterations run up
duke@435 2291 // front for RCE, and may want to align loop refs to a cache
duke@435 2292 // line. Thus we clone a full loop up front whose trip count is
duke@435 2293 // at least 1 (if peeling), but may be several more.
duke@435 2294
duke@435 2295 // The main loop will start cache-line aligned with at least 1
duke@435 2296 // iteration of the unrolled body (zero-trip test required) and
duke@435 2297 // will have some range checks removed.
duke@435 2298
duke@435 2299 // A post-loop will finish any odd iterations (leftover after
duke@435 2300 // unrolling), plus any needed for RCE purposes.
duke@435 2301
duke@435 2302 bool should_unroll = policy_unroll(phase);
duke@435 2303
duke@435 2304 bool should_rce = policy_range_check(phase);
duke@435 2305
duke@435 2306 bool should_align = policy_align(phase);
duke@435 2307
duke@435 2308 // If not RCE'ing (iteration splitting) or Aligning, then we do not
duke@435 2309 // need a pre-loop. We may still need to peel an initial iteration but
duke@435 2310 // we will not be needing an unknown number of pre-iterations.
duke@435 2311 //
duke@435 2312 // Basically, if may_rce_align reports FALSE first time through,
duke@435 2313 // we will not be able to later do RCE or Aligning on this loop.
duke@435 2314 bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
duke@435 2315
duke@435 2316 // If we have any of these conditions (RCE, alignment, unrolling) met, then
duke@435 2317 // we switch to the pre-/main-/post-loop model. This model also covers
duke@435 2318 // peeling.
kvn@2747 2319 if (should_rce || should_align || should_unroll) {
kvn@2747 2320 if (cl->is_normal_loop()) // Convert to 'pre/main/post' loops
duke@435 2321 phase->insert_pre_post_loops(this,old_new, !may_rce_align);
duke@435 2322
duke@435 2323 // Adjust the pre- and main-loop limits to let the pre and post loops run
duke@435 2324 // with full checks, but the main-loop with no checks. Remove said
duke@435 2325 // checks from the main body.
kvn@2747 2326 if (should_rce)
duke@435 2327 phase->do_range_check(this,old_new);
duke@435 2328
duke@435 2329 // Double loop body for unrolling. Adjust the minimum-trip test (will do
duke@435 2330 // twice as many iterations as before) and the main body limit (only do
duke@435 2331 // an even number of trips). If we are peeling, we might enable some RCE
duke@435 2332 // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
duke@435 2333 // peeling.
kvn@2747 2334 if (should_unroll && !should_peel)
kvn@2747 2335 phase->do_unroll(this,old_new, true);
duke@435 2336
duke@435 2337 // Adjust the pre-loop limits to align the main body
duke@435 2338 // iterations.
kvn@2747 2339 if (should_align)
duke@435 2340 Unimplemented();
duke@435 2341
duke@435 2342 } else { // Else we have an unchanged counted loop
kvn@2747 2343 if (should_peel) // Might want to peel but do nothing else
duke@435 2344 phase->do_peeling(this,old_new);
duke@435 2345 }
never@836 2346 return true;
duke@435 2347 }
duke@435 2348
duke@435 2349
duke@435 2350 //=============================================================================
duke@435 2351 //------------------------------iteration_split--------------------------------
never@836 2352 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
duke@435 2353 // Recursively iteration split nested loops
kvn@2665 2354 if (_child && !_child->iteration_split(phase, old_new))
never@836 2355 return false;
duke@435 2356
duke@435 2357 // Clean out prior deadwood
duke@435 2358 DCE_loop_body();
duke@435 2359
duke@435 2360
duke@435 2361 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
duke@435 2362 // Replace with a 1-in-10 exit guess.
kvn@2665 2363 if (_parent /*not the root loop*/ &&
duke@435 2364 !_irreducible &&
duke@435 2365 // Also ignore the occasional dead backedge
kvn@2665 2366 !tail()->is_top()) {
duke@435 2367 adjust_loop_exit_prob(phase);
duke@435 2368 }
duke@435 2369
duke@435 2370 // Gate unrolling, RCE and peeling efforts.
kvn@2665 2371 if (!_child && // If not an inner loop, do not split
duke@435 2372 !_irreducible &&
kvn@474 2373 _allow_optimizations &&
kvn@2665 2374 !tail()->is_top()) { // Also ignore the occasional dead backedge
duke@435 2375 if (!_has_call) {
kvn@2665 2376 if (!iteration_split_impl(phase, old_new)) {
cfang@1607 2377 return false;
cfang@1607 2378 }
duke@435 2379 } else if (policy_unswitching(phase)) {
duke@435 2380 phase->do_unswitching(this, old_new);
duke@435 2381 }
duke@435 2382 }
duke@435 2383
duke@435 2384 // Minor offset re-organization to remove loop-fallout uses of
kvn@2665 2385 // trip counter when there was no major reshaping.
kvn@2665 2386 phase->reorg_offsets(this);
kvn@2665 2387
kvn@2665 2388 if (_next && !_next->iteration_split(phase, old_new))
never@836 2389 return false;
never@836 2390 return true;
duke@435 2391 }
cfang@1607 2392
cfang@1607 2393
kvn@2727 2394 //=============================================================================
never@2118 2395 // Process all the loops in the loop tree and replace any fill
never@2118 2396 // patterns with an intrisc version.
never@2118 2397 bool PhaseIdealLoop::do_intrinsify_fill() {
never@2118 2398 bool changed = false;
never@2118 2399 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
never@2118 2400 IdealLoopTree* lpt = iter.current();
never@2118 2401 changed |= intrinsify_fill(lpt);
never@2118 2402 }
never@2118 2403 return changed;
never@2118 2404 }
never@2118 2405
never@2118 2406
never@2118 2407 // Examine an inner loop looking for a a single store of an invariant
never@2118 2408 // value in a unit stride loop,
never@2118 2409 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
never@2118 2410 Node*& shift, Node*& con) {
never@2118 2411 const char* msg = NULL;
never@2118 2412 Node* msg_node = NULL;
never@2118 2413
never@2118 2414 store_value = NULL;
never@2118 2415 con = NULL;
never@2118 2416 shift = NULL;
never@2118 2417
never@2118 2418 // Process the loop looking for stores. If there are multiple
never@2118 2419 // stores or extra control flow give at this point.
never@2118 2420 CountedLoopNode* head = lpt->_head->as_CountedLoop();
never@2118 2421 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2422 Node* n = lpt->_body.at(i);
never@2118 2423 if (n->outcnt() == 0) continue; // Ignore dead
never@2118 2424 if (n->is_Store()) {
never@2118 2425 if (store != NULL) {
never@2118 2426 msg = "multiple stores";
never@2118 2427 break;
never@2118 2428 }
never@2118 2429 int opc = n->Opcode();
never@2118 2430 if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
never@2118 2431 msg = "oop fills not handled";
never@2118 2432 break;
never@2118 2433 }
never@2118 2434 Node* value = n->in(MemNode::ValueIn);
never@2118 2435 if (!lpt->is_invariant(value)) {
never@2118 2436 msg = "variant store value";
never@2140 2437 } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
never@2140 2438 msg = "not array address";
never@2118 2439 }
never@2118 2440 store = n;
never@2118 2441 store_value = value;
never@2118 2442 } else if (n->is_If() && n != head->loopexit()) {
never@2118 2443 msg = "extra control flow";
never@2118 2444 msg_node = n;
never@2118 2445 }
never@2118 2446 }
never@2118 2447
never@2118 2448 if (store == NULL) {
never@2118 2449 // No store in loop
never@2118 2450 return false;
never@2118 2451 }
never@2118 2452
never@2118 2453 if (msg == NULL && head->stride_con() != 1) {
never@2118 2454 // could handle negative strides too
never@2118 2455 if (head->stride_con() < 0) {
never@2118 2456 msg = "negative stride";
never@2118 2457 } else {
never@2118 2458 msg = "non-unit stride";
never@2118 2459 }
never@2118 2460 }
never@2118 2461
never@2118 2462 if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
never@2118 2463 msg = "can't handle store address";
never@2118 2464 msg_node = store->in(MemNode::Address);
never@2118 2465 }
never@2118 2466
never@2168 2467 if (msg == NULL &&
never@2168 2468 (!store->in(MemNode::Memory)->is_Phi() ||
never@2168 2469 store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
never@2168 2470 msg = "store memory isn't proper phi";
never@2168 2471 msg_node = store->in(MemNode::Memory);
never@2168 2472 }
never@2168 2473
never@2118 2474 // Make sure there is an appropriate fill routine
never@2118 2475 BasicType t = store->as_Mem()->memory_type();
never@2118 2476 const char* fill_name;
never@2118 2477 if (msg == NULL &&
never@2118 2478 StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
never@2118 2479 msg = "unsupported store";
never@2118 2480 msg_node = store;
never@2118 2481 }
never@2118 2482
never@2118 2483 if (msg != NULL) {
never@2118 2484 #ifndef PRODUCT
never@2118 2485 if (TraceOptimizeFill) {
never@2118 2486 tty->print_cr("not fill intrinsic candidate: %s", msg);
never@2118 2487 if (msg_node != NULL) msg_node->dump();
never@2118 2488 }
never@2118 2489 #endif
never@2118 2490 return false;
never@2118 2491 }
never@2118 2492
never@2118 2493 // Make sure the address expression can be handled. It should be
never@2118 2494 // head->phi * elsize + con. head->phi might have a ConvI2L.
never@2118 2495 Node* elements[4];
never@2118 2496 Node* conv = NULL;
never@2140 2497 bool found_index = false;
never@2118 2498 int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
never@2118 2499 for (int e = 0; e < count; e++) {
never@2118 2500 Node* n = elements[e];
never@2118 2501 if (n->is_Con() && con == NULL) {
never@2118 2502 con = n;
never@2118 2503 } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
never@2118 2504 Node* value = n->in(1);
never@2118 2505 #ifdef _LP64
never@2118 2506 if (value->Opcode() == Op_ConvI2L) {
never@2118 2507 conv = value;
never@2118 2508 value = value->in(1);
never@2118 2509 }
never@2118 2510 #endif
never@2118 2511 if (value != head->phi()) {
never@2118 2512 msg = "unhandled shift in address";
never@2118 2513 } else {
never@2730 2514 if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
never@2730 2515 msg = "scale doesn't match";
never@2730 2516 } else {
never@2730 2517 found_index = true;
never@2730 2518 shift = n;
never@2730 2519 }
never@2118 2520 }
never@2118 2521 } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
never@2118 2522 if (n->in(1) == head->phi()) {
never@2140 2523 found_index = true;
never@2118 2524 conv = n;
never@2118 2525 } else {
never@2118 2526 msg = "unhandled input to ConvI2L";
never@2118 2527 }
never@2118 2528 } else if (n == head->phi()) {
never@2118 2529 // no shift, check below for allowed cases
never@2140 2530 found_index = true;
never@2118 2531 } else {
never@2118 2532 msg = "unhandled node in address";
never@2118 2533 msg_node = n;
never@2118 2534 }
never@2118 2535 }
never@2118 2536
never@2118 2537 if (count == -1) {
never@2118 2538 msg = "malformed address expression";
never@2118 2539 msg_node = store;
never@2118 2540 }
never@2118 2541
never@2140 2542 if (!found_index) {
never@2140 2543 msg = "missing use of index";
never@2140 2544 }
never@2140 2545
never@2118 2546 // byte sized items won't have a shift
never@2118 2547 if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
never@2118 2548 msg = "can't find shift";
never@2118 2549 msg_node = store;
never@2118 2550 }
never@2118 2551
never@2118 2552 if (msg != NULL) {
never@2118 2553 #ifndef PRODUCT
never@2118 2554 if (TraceOptimizeFill) {
never@2118 2555 tty->print_cr("not fill intrinsic: %s", msg);
never@2118 2556 if (msg_node != NULL) msg_node->dump();
never@2118 2557 }
never@2118 2558 #endif
never@2118 2559 return false;
never@2118 2560 }
never@2118 2561
never@2118 2562 // No make sure all the other nodes in the loop can be handled
never@2118 2563 VectorSet ok(Thread::current()->resource_area());
never@2118 2564
never@2118 2565 // store related values are ok
never@2118 2566 ok.set(store->_idx);
never@2118 2567 ok.set(store->in(MemNode::Memory)->_idx);
never@2118 2568
never@2118 2569 // Loop structure is ok
never@2118 2570 ok.set(head->_idx);
never@2118 2571 ok.set(head->loopexit()->_idx);
never@2118 2572 ok.set(head->phi()->_idx);
never@2118 2573 ok.set(head->incr()->_idx);
never@2118 2574 ok.set(head->loopexit()->cmp_node()->_idx);
never@2118 2575 ok.set(head->loopexit()->in(1)->_idx);
never@2118 2576
never@2118 2577 // Address elements are ok
never@2118 2578 if (con) ok.set(con->_idx);
never@2118 2579 if (shift) ok.set(shift->_idx);
never@2118 2580 if (conv) ok.set(conv->_idx);
never@2118 2581
never@2118 2582 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2583 Node* n = lpt->_body.at(i);
never@2118 2584 if (n->outcnt() == 0) continue; // Ignore dead
never@2118 2585 if (ok.test(n->_idx)) continue;
never@2118 2586 // Backedge projection is ok
never@2118 2587 if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
never@2118 2588 if (!n->is_AddP()) {
never@2118 2589 msg = "unhandled node";
never@2118 2590 msg_node = n;
never@2118 2591 break;
never@2118 2592 }
never@2118 2593 }
never@2118 2594
never@2118 2595 // Make sure no unexpected values are used outside the loop
never@2118 2596 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2597 Node* n = lpt->_body.at(i);
never@2118 2598 // These values can be replaced with other nodes if they are used
never@2118 2599 // outside the loop.
never@2168 2600 if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
never@2118 2601 for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
never@2118 2602 Node* use = iter.get();
never@2118 2603 if (!lpt->_body.contains(use)) {
never@2118 2604 msg = "node is used outside loop";
never@2118 2605 // lpt->_body.dump();
never@2118 2606 msg_node = n;
never@2118 2607 break;
never@2118 2608 }
never@2118 2609 }
never@2118 2610 }
never@2118 2611
never@2118 2612 #ifdef ASSERT
never@2118 2613 if (TraceOptimizeFill) {
never@2118 2614 if (msg != NULL) {
never@2118 2615 tty->print_cr("no fill intrinsic: %s", msg);
never@2118 2616 if (msg_node != NULL) msg_node->dump();
never@2118 2617 } else {
never@2118 2618 tty->print_cr("fill intrinsic for:");
never@2118 2619 }
never@2118 2620 store->dump();
never@2118 2621 if (Verbose) {
never@2118 2622 lpt->_body.dump();
never@2118 2623 }
never@2118 2624 }
never@2118 2625 #endif
never@2118 2626
never@2118 2627 return msg == NULL;
never@2118 2628 }
never@2118 2629
never@2118 2630
never@2118 2631
never@2118 2632 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
never@2118 2633 // Only for counted inner loops
never@2118 2634 if (!lpt->is_counted() || !lpt->is_inner()) {
never@2118 2635 return false;
never@2118 2636 }
never@2118 2637
never@2118 2638 // Must have constant stride
never@2118 2639 CountedLoopNode* head = lpt->_head->as_CountedLoop();
never@2118 2640 if (!head->stride_is_con() || !head->is_normal_loop()) {
never@2118 2641 return false;
never@2118 2642 }
never@2118 2643
never@2118 2644 // Check that the body only contains a store of a loop invariant
never@2118 2645 // value that is indexed by the loop phi.
never@2118 2646 Node* store = NULL;
never@2118 2647 Node* store_value = NULL;
never@2118 2648 Node* shift = NULL;
never@2118 2649 Node* offset = NULL;
never@2118 2650 if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
never@2118 2651 return false;
never@2118 2652 }
never@2118 2653
kvn@2727 2654 #ifndef PRODUCT
kvn@2727 2655 if (TraceLoopOpts) {
kvn@2727 2656 tty->print("ArrayFill ");
kvn@2727 2657 lpt->dump_head();
kvn@2727 2658 }
kvn@2727 2659 #endif
kvn@2727 2660
never@2118 2661 // Now replace the whole loop body by a call to a fill routine that
never@2118 2662 // covers the same region as the loop.
never@2118 2663 Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
never@2118 2664
never@2118 2665 // Build an expression for the beginning of the copy region
never@2118 2666 Node* index = head->init_trip();
never@2118 2667 #ifdef _LP64
never@2118 2668 index = new (C, 2) ConvI2LNode(index);
never@2118 2669 _igvn.register_new_node_with_optimizer(index);
never@2118 2670 #endif
never@2118 2671 if (shift != NULL) {
never@2118 2672 // byte arrays don't require a shift but others do.
never@2118 2673 index = new (C, 3) LShiftXNode(index, shift->in(2));
never@2118 2674 _igvn.register_new_node_with_optimizer(index);
never@2118 2675 }
never@2118 2676 index = new (C, 4) AddPNode(base, base, index);
never@2118 2677 _igvn.register_new_node_with_optimizer(index);
never@2118 2678 Node* from = new (C, 4) AddPNode(base, index, offset);
never@2118 2679 _igvn.register_new_node_with_optimizer(from);
never@2118 2680 // Compute the number of elements to copy
never@2118 2681 Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
never@2118 2682 _igvn.register_new_node_with_optimizer(len);
never@2118 2683
never@2118 2684 BasicType t = store->as_Mem()->memory_type();
never@2118 2685 bool aligned = false;
never@2118 2686 if (offset != NULL && head->init_trip()->is_Con()) {
never@2118 2687 int element_size = type2aelembytes(t);
never@2118 2688 aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
never@2118 2689 }
never@2118 2690
never@2118 2691 // Build a call to the fill routine
never@2118 2692 const char* fill_name;
never@2118 2693 address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
never@2118 2694 assert(fill != NULL, "what?");
never@2118 2695
never@2118 2696 // Convert float/double to int/long for fill routines
never@2118 2697 if (t == T_FLOAT) {
never@2118 2698 store_value = new (C, 2) MoveF2INode(store_value);
never@2118 2699 _igvn.register_new_node_with_optimizer(store_value);
never@2118 2700 } else if (t == T_DOUBLE) {
never@2118 2701 store_value = new (C, 2) MoveD2LNode(store_value);
never@2118 2702 _igvn.register_new_node_with_optimizer(store_value);
never@2118 2703 }
never@2118 2704
never@2118 2705 Node* mem_phi = store->in(MemNode::Memory);
never@2118 2706 Node* result_ctrl;
never@2118 2707 Node* result_mem;
never@2118 2708 const TypeFunc* call_type = OptoRuntime::array_fill_Type();
never@2118 2709 int size = call_type->domain()->cnt();
never@2118 2710 CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
never@2118 2711 fill_name, TypeAryPtr::get_array_body_type(t));
never@2118 2712 call->init_req(TypeFunc::Parms+0, from);
never@2118 2713 call->init_req(TypeFunc::Parms+1, store_value);
never@2199 2714 #ifdef _LP64
never@2199 2715 len = new (C, 2) ConvI2LNode(len);
never@2199 2716 _igvn.register_new_node_with_optimizer(len);
never@2199 2717 #endif
never@2118 2718 call->init_req(TypeFunc::Parms+2, len);
never@2199 2719 #ifdef _LP64
never@2199 2720 call->init_req(TypeFunc::Parms+3, C->top());
never@2199 2721 #endif
never@2118 2722 call->init_req( TypeFunc::Control, head->init_control());
never@2118 2723 call->init_req( TypeFunc::I_O , C->top() ) ; // does no i/o
never@2118 2724 call->init_req( TypeFunc::Memory , mem_phi->in(LoopNode::EntryControl) );
never@2118 2725 call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
never@2118 2726 call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
never@2118 2727 _igvn.register_new_node_with_optimizer(call);
never@2118 2728 result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
never@2118 2729 _igvn.register_new_node_with_optimizer(result_ctrl);
never@2118 2730 result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
never@2118 2731 _igvn.register_new_node_with_optimizer(result_mem);
never@2118 2732
never@2118 2733 // If this fill is tightly coupled to an allocation and overwrites
never@2118 2734 // the whole body, allow it to take over the zeroing.
never@2118 2735 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
never@2118 2736 if (alloc != NULL && alloc->is_AllocateArray()) {
never@2118 2737 Node* length = alloc->as_AllocateArray()->Ideal_length();
never@2118 2738 if (head->limit() == length &&
never@2118 2739 head->init_trip() == _igvn.intcon(0)) {
never@2118 2740 if (TraceOptimizeFill) {
never@2118 2741 tty->print_cr("Eliminated zeroing in allocation");
never@2118 2742 }
never@2118 2743 alloc->maybe_set_complete(&_igvn);
never@2118 2744 } else {
never@2118 2745 #ifdef ASSERT
never@2118 2746 if (TraceOptimizeFill) {
never@2118 2747 tty->print_cr("filling array but bounds don't match");
never@2118 2748 alloc->dump();
never@2118 2749 head->init_trip()->dump();
never@2118 2750 head->limit()->dump();
never@2118 2751 length->dump();
never@2118 2752 }
never@2118 2753 #endif
never@2118 2754 }
never@2118 2755 }
never@2118 2756
never@2118 2757 // Redirect the old control and memory edges that are outside the loop.
never@2118 2758 Node* exit = head->loopexit()->proj_out(0);
never@2168 2759 // Sometimes the memory phi of the head is used as the outgoing
never@2168 2760 // state of the loop. It's safe in this case to replace it with the
never@2168 2761 // result_mem.
never@2168 2762 _igvn.replace_node(store->in(MemNode::Memory), result_mem);
never@2118 2763 _igvn.replace_node(exit, result_ctrl);
never@2118 2764 _igvn.replace_node(store, result_mem);
never@2118 2765 // Any uses the increment outside of the loop become the loop limit.
never@2118 2766 _igvn.replace_node(head->incr(), head->limit());
never@2118 2767
never@2118 2768 // Disconnect the head from the loop.
never@2118 2769 for (uint i = 0; i < lpt->_body.size(); i++) {
never@2118 2770 Node* n = lpt->_body.at(i);
never@2118 2771 _igvn.replace_node(n, C->top());
never@2118 2772 }
never@2118 2773
never@2118 2774 return true;
never@2118 2775 }

mercurial