src/share/vm/opto/escape.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2951
642c68c75db9
child 3242
e69a66a1457b
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

duke@435 1 /*
kvn@2556 2 * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/bcEscapeAnalyzer.hpp"
stefank@2314 27 #include "libadt/vectset.hpp"
stefank@2314 28 #include "memory/allocation.hpp"
stefank@2314 29 #include "opto/c2compiler.hpp"
stefank@2314 30 #include "opto/callnode.hpp"
stefank@2314 31 #include "opto/cfgnode.hpp"
stefank@2314 32 #include "opto/compile.hpp"
stefank@2314 33 #include "opto/escape.hpp"
stefank@2314 34 #include "opto/phaseX.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
duke@435 36
duke@435 37 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 38 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 39 if (_edges == NULL) {
duke@435 40 Arena *a = Compile::current()->comp_arena();
duke@435 41 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 42 }
duke@435 43 _edges->append_if_missing(v);
duke@435 44 }
duke@435 45
duke@435 46 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 47 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 48
duke@435 49 _edges->remove(v);
duke@435 50 }
duke@435 51
duke@435 52 #ifndef PRODUCT
kvn@512 53 static const char *node_type_names[] = {
duke@435 54 "UnknownType",
duke@435 55 "JavaObject",
duke@435 56 "LocalVar",
duke@435 57 "Field"
duke@435 58 };
duke@435 59
kvn@512 60 static const char *esc_names[] = {
duke@435 61 "UnknownEscape",
kvn@500 62 "NoEscape",
kvn@500 63 "ArgEscape",
kvn@500 64 "GlobalEscape"
duke@435 65 };
duke@435 66
kvn@512 67 static const char *edge_type_suffix[] = {
duke@435 68 "?", // UnknownEdge
duke@435 69 "P", // PointsToEdge
duke@435 70 "D", // DeferredEdge
duke@435 71 "F" // FieldEdge
duke@435 72 };
duke@435 73
kvn@688 74 void PointsToNode::dump(bool print_state) const {
duke@435 75 NodeType nt = node_type();
kvn@688 76 tty->print("%s ", node_type_names[(int) nt]);
kvn@688 77 if (print_state) {
kvn@688 78 EscapeState es = escape_state();
kvn@688 79 tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
kvn@688 80 }
kvn@688 81 tty->print("[[");
duke@435 82 for (uint i = 0; i < edge_count(); i++) {
duke@435 83 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 84 }
duke@435 85 tty->print("]] ");
duke@435 86 if (_node == NULL)
duke@435 87 tty->print_cr("<null>");
duke@435 88 else
duke@435 89 _node->dump();
duke@435 90 }
duke@435 91 #endif
duke@435 92
kvn@1989 93 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
kvn@679 94 _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
kvn@679 95 _processed(C->comp_arena()),
kvn@2556 96 pt_ptset(C->comp_arena()),
kvn@2556 97 pt_visited(C->comp_arena()),
kvn@2556 98 pt_worklist(C->comp_arena(), 4, 0, 0),
kvn@679 99 _collecting(true),
kvn@2276 100 _progress(false),
kvn@679 101 _compile(C),
kvn@1989 102 _igvn(igvn),
kvn@679 103 _node_map(C->comp_arena()) {
kvn@679 104
kvn@688 105 _phantom_object = C->top()->_idx,
kvn@688 106 add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
kvn@688 107
kvn@688 108 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 109 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@688 110 _oop_null = oop_null->_idx;
kvn@688 111 assert(_oop_null < C->unique(), "should be created already");
kvn@688 112 add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 113
kvn@688 114 if (UseCompressedOops) {
kvn@688 115 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@688 116 _noop_null = noop_null->_idx;
kvn@688 117 assert(_noop_null < C->unique(), "should be created already");
kvn@688 118 add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 119 }
duke@435 120 }
duke@435 121
duke@435 122 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 123 PointsToNode *f = ptnode_adr(from_i);
duke@435 124 PointsToNode *t = ptnode_adr(to_i);
duke@435 125
duke@435 126 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 127 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 128 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
kvn@2276 129 add_edge(f, to_i, PointsToNode::PointsToEdge);
duke@435 130 }
duke@435 131
duke@435 132 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 133 PointsToNode *f = ptnode_adr(from_i);
duke@435 134 PointsToNode *t = ptnode_adr(to_i);
duke@435 135
duke@435 136 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 137 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 138 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 139 // don't add a self-referential edge, this can occur during removal of
duke@435 140 // deferred edges
duke@435 141 if (from_i != to_i)
kvn@2276 142 add_edge(f, to_i, PointsToNode::DeferredEdge);
duke@435 143 }
duke@435 144
kvn@500 145 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 146 const Type *adr_type = phase->type(adr);
kvn@500 147 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 148 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 149 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 150 // We are computing a raw address for a store captured by an Initialize
kvn@500 151 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 152 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 153 assert(offs != Type::OffsetBot ||
kvn@500 154 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 155 "offset must be a constant or it is initialization of array");
kvn@500 156 return offs;
kvn@500 157 }
kvn@500 158 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 159 assert(t_ptr != NULL, "must be a pointer type");
duke@435 160 return t_ptr->offset();
duke@435 161 }
duke@435 162
duke@435 163 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 164 PointsToNode *f = ptnode_adr(from_i);
duke@435 165 PointsToNode *t = ptnode_adr(to_i);
duke@435 166
duke@435 167 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 168 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 169 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 170 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 171 t->set_offset(offset);
duke@435 172
kvn@2276 173 add_edge(f, to_i, PointsToNode::FieldEdge);
duke@435 174 }
duke@435 175
duke@435 176 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
duke@435 177 PointsToNode *npt = ptnode_adr(ni);
duke@435 178 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 179 if (es > old_es)
duke@435 180 npt->set_escape_state(es);
duke@435 181 }
duke@435 182
kvn@500 183 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 184 PointsToNode::EscapeState es, bool done) {
kvn@500 185 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 186 ptadr->_node = n;
kvn@500 187 ptadr->set_node_type(nt);
kvn@500 188
kvn@500 189 // inline set_escape_state(idx, es);
kvn@500 190 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 191 if (es > old_es)
kvn@500 192 ptadr->set_escape_state(es);
kvn@500 193
kvn@500 194 if (done)
kvn@500 195 _processed.set(n->_idx);
kvn@500 196 }
kvn@500 197
kvn@1989 198 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
duke@435 199 uint idx = n->_idx;
duke@435 200 PointsToNode::EscapeState es;
duke@435 201
kvn@500 202 // If we are still collecting or there were no non-escaping allocations
kvn@500 203 // we don't know the answer yet
kvn@679 204 if (_collecting)
duke@435 205 return PointsToNode::UnknownEscape;
duke@435 206
duke@435 207 // if the node was created after the escape computation, return
duke@435 208 // UnknownEscape
kvn@679 209 if (idx >= nodes_size())
duke@435 210 return PointsToNode::UnknownEscape;
duke@435 211
kvn@679 212 es = ptnode_adr(idx)->escape_state();
duke@435 213
duke@435 214 // if we have already computed a value, return it
kvn@895 215 if (es != PointsToNode::UnknownEscape &&
kvn@895 216 ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
duke@435 217 return es;
duke@435 218
kvn@679 219 // PointsTo() calls n->uncast() which can return a new ideal node.
kvn@679 220 if (n->uncast()->_idx >= nodes_size())
kvn@679 221 return PointsToNode::UnknownEscape;
kvn@679 222
kvn@1989 223 PointsToNode::EscapeState orig_es = es;
kvn@1989 224
duke@435 225 // compute max escape state of anything this node could point to
kvn@2556 226 for(VectorSetI i(PointsTo(n)); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 227 uint pt = i.elem;
kvn@679 228 PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
duke@435 229 if (pes > es)
duke@435 230 es = pes;
duke@435 231 }
kvn@1989 232 if (orig_es != es) {
kvn@1989 233 // cache the computed escape state
kvn@1989 234 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
kvn@1989 235 ptnode_adr(idx)->set_escape_state(es);
kvn@1989 236 } // orig_es could be PointsToNode::UnknownEscape
duke@435 237 return es;
duke@435 238 }
duke@435 239
kvn@2556 240 VectorSet* ConnectionGraph::PointsTo(Node * n) {
kvn@2556 241 pt_ptset.Reset();
kvn@2556 242 pt_visited.Reset();
kvn@2556 243 pt_worklist.clear();
duke@435 244
kvn@559 245 #ifdef ASSERT
kvn@559 246 Node *orig_n = n;
kvn@559 247 #endif
kvn@559 248
kvn@500 249 n = n->uncast();
kvn@679 250 PointsToNode* npt = ptnode_adr(n->_idx);
duke@435 251
duke@435 252 // If we have a JavaObject, return just that object
kvn@679 253 if (npt->node_type() == PointsToNode::JavaObject) {
kvn@2556 254 pt_ptset.set(n->_idx);
kvn@2556 255 return &pt_ptset;
duke@435 256 }
kvn@559 257 #ifdef ASSERT
kvn@679 258 if (npt->_node == NULL) {
kvn@559 259 if (orig_n != n)
kvn@559 260 orig_n->dump();
kvn@559 261 n->dump();
kvn@679 262 assert(npt->_node != NULL, "unregistered node");
kvn@559 263 }
kvn@559 264 #endif
kvn@2556 265 pt_worklist.push(n->_idx);
kvn@2556 266 while(pt_worklist.length() > 0) {
kvn@2556 267 int ni = pt_worklist.pop();
kvn@2556 268 if (pt_visited.test_set(ni))
kvn@679 269 continue;
duke@435 270
kvn@679 271 PointsToNode* pn = ptnode_adr(ni);
kvn@679 272 // ensure that all inputs of a Phi have been processed
kvn@679 273 assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
kvn@679 274
kvn@679 275 int edges_processed = 0;
kvn@679 276 uint e_cnt = pn->edge_count();
kvn@679 277 for (uint e = 0; e < e_cnt; e++) {
kvn@679 278 uint etgt = pn->edge_target(e);
kvn@679 279 PointsToNode::EdgeType et = pn->edge_type(e);
kvn@679 280 if (et == PointsToNode::PointsToEdge) {
kvn@2556 281 pt_ptset.set(etgt);
kvn@679 282 edges_processed++;
kvn@679 283 } else if (et == PointsToNode::DeferredEdge) {
kvn@2556 284 pt_worklist.push(etgt);
kvn@679 285 edges_processed++;
kvn@679 286 } else {
kvn@679 287 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 288 }
kvn@679 289 }
kvn@679 290 if (edges_processed == 0) {
kvn@679 291 // no deferred or pointsto edges found. Assume the value was set
kvn@679 292 // outside this method. Add the phantom object to the pointsto set.
kvn@2556 293 pt_ptset.set(_phantom_object);
duke@435 294 }
duke@435 295 }
kvn@2556 296 return &pt_ptset;
duke@435 297 }
duke@435 298
kvn@536 299 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 300 // This method is most expensive during ConnectionGraph construction.
kvn@536 301 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 302 deferred_edges->clear();
kvn@2556 303 visited->Reset();
duke@435 304
kvn@679 305 visited->set(ni);
duke@435 306 PointsToNode *ptn = ptnode_adr(ni);
duke@435 307
kvn@536 308 // Mark current edges as visited and move deferred edges to separate array.
kvn@679 309 for (uint i = 0; i < ptn->edge_count(); ) {
kvn@500 310 uint t = ptn->edge_target(i);
kvn@536 311 #ifdef ASSERT
kvn@536 312 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 313 #else
kvn@536 314 visited->set(t);
kvn@536 315 #endif
kvn@536 316 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 317 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 318 deferred_edges->append(t);
kvn@559 319 } else {
kvn@559 320 i++;
kvn@536 321 }
kvn@536 322 }
kvn@536 323 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 324 uint t = deferred_edges->at(next);
kvn@500 325 PointsToNode *ptt = ptnode_adr(t);
kvn@679 326 uint e_cnt = ptt->edge_count();
kvn@679 327 for (uint e = 0; e < e_cnt; e++) {
kvn@679 328 uint etgt = ptt->edge_target(e);
kvn@679 329 if (visited->test_set(etgt))
kvn@536 330 continue;
kvn@679 331
kvn@679 332 PointsToNode::EdgeType et = ptt->edge_type(e);
kvn@679 333 if (et == PointsToNode::PointsToEdge) {
kvn@679 334 add_pointsto_edge(ni, etgt);
kvn@679 335 if(etgt == _phantom_object) {
kvn@679 336 // Special case - field set outside (globally escaping).
kvn@679 337 ptn->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 338 }
kvn@679 339 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 340 deferred_edges->append(etgt);
kvn@679 341 } else {
kvn@679 342 assert(false,"invalid connection graph");
duke@435 343 }
duke@435 344 }
duke@435 345 }
duke@435 346 }
duke@435 347
duke@435 348
duke@435 349 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 350 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 351 // a pointsto edge is added if it is a JavaObject
duke@435 352
duke@435 353 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
kvn@679 354 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 355 PointsToNode* to = ptnode_adr(to_i);
kvn@679 356 bool deferred = (to->node_type() == PointsToNode::LocalVar);
duke@435 357
kvn@679 358 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 359 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 360 int fi = an->edge_target(fe);
kvn@679 361 PointsToNode* pf = ptnode_adr(fi);
kvn@679 362 int po = pf->offset();
duke@435 363 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 364 if (deferred)
duke@435 365 add_deferred_edge(fi, to_i);
duke@435 366 else
duke@435 367 add_pointsto_edge(fi, to_i);
duke@435 368 }
duke@435 369 }
duke@435 370 }
duke@435 371
kvn@500 372 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 373 // whose offset matches "offset".
duke@435 374 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
kvn@679 375 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 376 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 377 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 378 int fi = an->edge_target(fe);
kvn@679 379 PointsToNode* pf = ptnode_adr(fi);
kvn@679 380 int po = pf->offset();
kvn@679 381 if (pf->edge_count() == 0) {
duke@435 382 // we have not seen any stores to this field, assume it was set outside this method
duke@435 383 add_pointsto_edge(fi, _phantom_object);
duke@435 384 }
duke@435 385 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 386 add_deferred_edge(from_i, fi);
duke@435 387 }
duke@435 388 }
duke@435 389 }
duke@435 390
kvn@500 391 // Helper functions
kvn@500 392
kvn@500 393 static Node* get_addp_base(Node *addp) {
kvn@500 394 assert(addp->is_AddP(), "must be AddP");
kvn@500 395 //
kvn@500 396 // AddP cases for Base and Address inputs:
kvn@500 397 // case #1. Direct object's field reference:
kvn@500 398 // Allocate
kvn@500 399 // |
kvn@500 400 // Proj #5 ( oop result )
kvn@500 401 // |
kvn@500 402 // CheckCastPP (cast to instance type)
kvn@500 403 // | |
kvn@500 404 // AddP ( base == address )
kvn@500 405 //
kvn@500 406 // case #2. Indirect object's field reference:
kvn@500 407 // Phi
kvn@500 408 // |
kvn@500 409 // CastPP (cast to instance type)
kvn@500 410 // | |
kvn@500 411 // AddP ( base == address )
kvn@500 412 //
kvn@500 413 // case #3. Raw object's field reference for Initialize node:
kvn@500 414 // Allocate
kvn@500 415 // |
kvn@500 416 // Proj #5 ( oop result )
kvn@500 417 // top |
kvn@500 418 // \ |
kvn@500 419 // AddP ( base == top )
kvn@500 420 //
kvn@500 421 // case #4. Array's element reference:
kvn@500 422 // {CheckCastPP | CastPP}
kvn@500 423 // | | |
kvn@500 424 // | AddP ( array's element offset )
kvn@500 425 // | |
kvn@500 426 // AddP ( array's offset )
kvn@500 427 //
kvn@500 428 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 429 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 430 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 431 // Allocate
kvn@500 432 // |
kvn@500 433 // Proj #5 ( oop result )
kvn@500 434 // | |
kvn@500 435 // AddP ( base == address )
kvn@500 436 //
kvn@512 437 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 438 // Raw object's field reference:
kvn@512 439 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 440 // top |
kvn@500 441 // \ |
kvn@500 442 // AddP ( base == top )
kvn@500 443 //
kvn@512 444 // case #7. Klass's field reference.
kvn@512 445 // LoadKlass
kvn@512 446 // | |
kvn@512 447 // AddP ( base == address )
kvn@512 448 //
kvn@599 449 // case #8. narrow Klass's field reference.
kvn@599 450 // LoadNKlass
kvn@599 451 // |
kvn@599 452 // DecodeN
kvn@599 453 // | |
kvn@599 454 // AddP ( base == address )
kvn@599 455 //
kvn@500 456 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 457 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 458 base = addp->in(AddPNode::Address)->uncast();
kvn@1392 459 while (base->is_AddP()) {
kvn@1392 460 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@1392 461 assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
kvn@1392 462 base = base->in(AddPNode::Address)->uncast();
kvn@1392 463 }
kvn@500 464 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@603 465 base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
kvn@512 466 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 467 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 468 }
kvn@500 469 return base;
kvn@500 470 }
kvn@500 471
kvn@500 472 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 473 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 474
kvn@500 475 Node* addp2 = addp->raw_out(0);
kvn@500 476 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 477 addp2->in(AddPNode::Base) == n &&
kvn@500 478 addp2->in(AddPNode::Address) == addp) {
kvn@500 479
kvn@500 480 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 481 //
kvn@500 482 // Find array's offset to push it on worklist first and
kvn@500 483 // as result process an array's element offset first (pushed second)
kvn@500 484 // to avoid CastPP for the array's offset.
kvn@500 485 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 486 // the AddP (Field) points to. Which would be wrong since
kvn@500 487 // the algorithm expects the CastPP has the same point as
kvn@500 488 // as AddP's base CheckCastPP (LocalVar).
kvn@500 489 //
kvn@500 490 // ArrayAllocation
kvn@500 491 // |
kvn@500 492 // CheckCastPP
kvn@500 493 // |
kvn@500 494 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 495 // | ||
kvn@500 496 // | || Int (element index)
kvn@500 497 // | || | ConI (log(element size))
kvn@500 498 // | || | /
kvn@500 499 // | || LShift
kvn@500 500 // | || /
kvn@500 501 // | AddP (array's element offset)
kvn@500 502 // | |
kvn@500 503 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 504 // | / /
kvn@500 505 // AddP (array's offset)
kvn@500 506 // |
kvn@500 507 // Load/Store (memory operation on array's element)
kvn@500 508 //
kvn@500 509 return addp2;
kvn@500 510 }
kvn@500 511 return NULL;
duke@435 512 }
duke@435 513
duke@435 514 //
duke@435 515 // Adjust the type and inputs of an AddP which computes the
duke@435 516 // address of a field of an instance
duke@435 517 //
kvn@728 518 bool ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 519 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 520 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 521 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 522 if (t == NULL) {
kvn@500 523 // We are computing a raw address for a store captured by an Initialize
kvn@728 524 // compute an appropriate address type (cases #3 and #5).
kvn@500 525 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 526 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 527 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 528 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 529 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 530 }
kvn@658 531 int inst_id = base_t->instance_id();
kvn@658 532 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 533 "old type must be non-instance or match new type");
kvn@728 534
kvn@728 535 // The type 't' could be subclass of 'base_t'.
kvn@728 536 // As result t->offset() could be large then base_t's size and it will
kvn@728 537 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 538 // constructor verifies correctness of the offset.
kvn@728 539 //
twisti@1040 540 // It could happened on subclass's branch (from the type profiling
kvn@728 541 // inlining) which was not eliminated during parsing since the exactness
kvn@728 542 // of the allocation type was not propagated to the subclass type check.
kvn@728 543 //
kvn@1423 544 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 545 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 546 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 547 //
kvn@728 548 // Do nothing for such AddP node and don't process its users since
kvn@728 549 // this code branch will go away.
kvn@728 550 //
kvn@728 551 if (!t->is_known_instance() &&
kvn@1423 552 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 553 return false; // bail out
kvn@728 554 }
kvn@728 555
duke@435 556 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@1497 557 // Do NOT remove the next line: ensure a new alias index is allocated
kvn@1497 558 // for the instance type. Note: C++ will not remove it since the call
kvn@1497 559 // has side effect.
duke@435 560 int alias_idx = _compile->get_alias_index(tinst);
duke@435 561 igvn->set_type(addp, tinst);
duke@435 562 // record the allocation in the node map
kvn@1536 563 assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
duke@435 564 set_map(addp->_idx, get_map(base->_idx));
kvn@688 565
kvn@688 566 // Set addp's Base and Address to 'base'.
kvn@688 567 Node *abase = addp->in(AddPNode::Base);
kvn@688 568 Node *adr = addp->in(AddPNode::Address);
kvn@688 569 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 570 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 571 // Skip AddP cases #3 and #5.
kvn@688 572 } else {
kvn@688 573 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 574 if (abase != base) {
kvn@688 575 igvn->hash_delete(addp);
kvn@688 576 addp->set_req(AddPNode::Base, base);
kvn@688 577 if (abase == adr) {
kvn@688 578 addp->set_req(AddPNode::Address, base);
kvn@688 579 } else {
kvn@688 580 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 581 #ifdef ASSERT
kvn@688 582 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 583 assert(adr->is_AddP() && atype != NULL &&
kvn@688 584 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 585 #endif
kvn@688 586 }
kvn@688 587 igvn->hash_insert(addp);
duke@435 588 }
duke@435 589 }
kvn@500 590 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 591 record_for_optimizer(addp);
kvn@728 592 return true;
duke@435 593 }
duke@435 594
duke@435 595 //
duke@435 596 // Create a new version of orig_phi if necessary. Returns either the newly
kvn@2741 597 // created phi or an existing phi. Sets create_new to indicate whether a new
duke@435 598 // phi was created. Cache the last newly created phi in the node map.
duke@435 599 //
duke@435 600 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 601 Compile *C = _compile;
duke@435 602 new_created = false;
duke@435 603 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 604 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 605 if (phi_alias_idx == alias_idx) {
duke@435 606 return orig_phi;
duke@435 607 }
kvn@1286 608 // Have we recently created a Phi for this alias index?
duke@435 609 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 610 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 611 return result;
duke@435 612 }
kvn@1286 613 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 614 // for different memory slices. Search all Phis for this region.
kvn@1286 615 if (result != NULL) {
kvn@1286 616 Node* region = orig_phi->in(0);
kvn@1286 617 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 618 Node* phi = region->fast_out(i);
kvn@1286 619 if (phi->is_Phi() &&
kvn@1286 620 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 621 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 622 return phi->as_Phi();
kvn@1286 623 }
kvn@1286 624 }
kvn@1286 625 }
kvn@473 626 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 627 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 628 // Retry compilation without escape analysis.
kvn@473 629 // If this is the first failure, the sentinel string will "stick"
kvn@473 630 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 631 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 632 }
kvn@473 633 return NULL;
kvn@473 634 }
duke@435 635 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 636 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 637 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 638 C->copy_node_notes_to(result, orig_phi);
duke@435 639 igvn->set_type(result, result->bottom_type());
duke@435 640 record_for_optimizer(result);
kvn@1536 641
kvn@1536 642 debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
kvn@1536 643 assert(pn == NULL || pn == orig_phi, "wrong node");
kvn@1536 644 set_map(orig_phi->_idx, result);
kvn@1536 645 ptnode_adr(orig_phi->_idx)->_node = orig_phi;
kvn@1536 646
duke@435 647 new_created = true;
duke@435 648 return result;
duke@435 649 }
duke@435 650
duke@435 651 //
kvn@2741 652 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 653 // specified alias index.
duke@435 654 //
duke@435 655 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 656
duke@435 657 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 658 Compile *C = _compile;
duke@435 659 bool new_phi_created;
kvn@500 660 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 661 if (!new_phi_created) {
duke@435 662 return result;
duke@435 663 }
duke@435 664
duke@435 665 GrowableArray<PhiNode *> phi_list;
duke@435 666 GrowableArray<uint> cur_input;
duke@435 667
duke@435 668 PhiNode *phi = orig_phi;
duke@435 669 uint idx = 1;
duke@435 670 bool finished = false;
duke@435 671 while(!finished) {
duke@435 672 while (idx < phi->req()) {
kvn@500 673 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 674 if (mem != NULL && mem->is_Phi()) {
kvn@500 675 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 676 if (new_phi_created) {
duke@435 677 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 678 // processing new one
duke@435 679 phi_list.push(phi);
duke@435 680 cur_input.push(idx);
duke@435 681 phi = mem->as_Phi();
kvn@500 682 result = newphi;
duke@435 683 idx = 1;
duke@435 684 continue;
duke@435 685 } else {
kvn@500 686 mem = newphi;
duke@435 687 }
duke@435 688 }
kvn@473 689 if (C->failing()) {
kvn@473 690 return NULL;
kvn@473 691 }
duke@435 692 result->set_req(idx++, mem);
duke@435 693 }
duke@435 694 #ifdef ASSERT
duke@435 695 // verify that the new Phi has an input for each input of the original
duke@435 696 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 697 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 698 #endif
kvn@500 699 // Check if all new phi's inputs have specified alias index.
kvn@500 700 // Otherwise use old phi.
duke@435 701 for (uint i = 1; i < phi->req(); i++) {
kvn@500 702 Node* in = result->in(i);
kvn@500 703 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 704 }
duke@435 705 // we have finished processing a Phi, see if there are any more to do
duke@435 706 finished = (phi_list.length() == 0 );
duke@435 707 if (!finished) {
duke@435 708 phi = phi_list.pop();
duke@435 709 idx = cur_input.pop();
kvn@500 710 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 711 prev_result->set_req(idx++, result);
kvn@500 712 result = prev_result;
duke@435 713 }
duke@435 714 }
duke@435 715 return result;
duke@435 716 }
duke@435 717
kvn@500 718
kvn@500 719 //
kvn@500 720 // The next methods are derived from methods in MemNode.
kvn@500 721 //
never@2170 722 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
kvn@500 723 Node *mem = mmem;
never@2170 724 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 725 // means an array I have not precisely typed yet. Do not do any
kvn@500 726 // alias stuff with it any time soon.
never@2170 727 if( toop->base() != Type::AnyPtr &&
never@2170 728 !(toop->klass() != NULL &&
never@2170 729 toop->klass()->is_java_lang_Object() &&
never@2170 730 toop->offset() == Type::OffsetBot) ) {
kvn@500 731 mem = mmem->memory_at(alias_idx);
kvn@500 732 // Update input if it is progress over what we have now
kvn@500 733 }
kvn@500 734 return mem;
kvn@500 735 }
kvn@500 736
kvn@500 737 //
kvn@1536 738 // Move memory users to their memory slices.
kvn@1536 739 //
kvn@1536 740 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *igvn) {
kvn@1536 741 Compile* C = _compile;
kvn@1536 742
kvn@1536 743 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
kvn@1536 744 assert(tp != NULL, "ptr type");
kvn@1536 745 int alias_idx = C->get_alias_index(tp);
kvn@1536 746 int general_idx = C->get_general_index(alias_idx);
kvn@1536 747
kvn@1536 748 // Move users first
kvn@1536 749 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1536 750 Node* use = n->fast_out(i);
kvn@1536 751 if (use->is_MergeMem()) {
kvn@1536 752 MergeMemNode* mmem = use->as_MergeMem();
kvn@1536 753 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
kvn@1536 754 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
kvn@1536 755 continue; // Nothing to do
kvn@1536 756 }
kvn@1536 757 // Replace previous general reference to mem node.
kvn@1536 758 uint orig_uniq = C->unique();
kvn@1536 759 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 760 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 761 mmem->set_memory_at(general_idx, m);
kvn@1536 762 --imax;
kvn@1536 763 --i;
kvn@1536 764 } else if (use->is_MemBar()) {
kvn@1536 765 assert(!use->is_Initialize(), "initializing stores should not be moved");
kvn@1536 766 if (use->req() > MemBarNode::Precedent &&
kvn@1536 767 use->in(MemBarNode::Precedent) == n) {
kvn@1536 768 // Don't move related membars.
kvn@1536 769 record_for_optimizer(use);
kvn@1536 770 continue;
kvn@1536 771 }
kvn@1536 772 tp = use->as_MemBar()->adr_type()->isa_ptr();
kvn@1536 773 if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
kvn@1536 774 alias_idx == general_idx) {
kvn@1536 775 continue; // Nothing to do
kvn@1536 776 }
kvn@1536 777 // Move to general memory slice.
kvn@1536 778 uint orig_uniq = C->unique();
kvn@1536 779 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 780 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 781 igvn->hash_delete(use);
kvn@1536 782 imax -= use->replace_edge(n, m);
kvn@1536 783 igvn->hash_insert(use);
kvn@1536 784 record_for_optimizer(use);
kvn@1536 785 --i;
kvn@1536 786 #ifdef ASSERT
kvn@1536 787 } else if (use->is_Mem()) {
kvn@1536 788 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
kvn@1536 789 // Don't move related cardmark.
kvn@1536 790 continue;
kvn@1536 791 }
kvn@1536 792 // Memory nodes should have new memory input.
kvn@1536 793 tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
kvn@1536 794 assert(tp != NULL, "ptr type");
kvn@1536 795 int idx = C->get_alias_index(tp);
kvn@1536 796 assert(get_map(use->_idx) != NULL || idx == alias_idx,
kvn@1536 797 "Following memory nodes should have new memory input or be on the same memory slice");
kvn@1536 798 } else if (use->is_Phi()) {
kvn@1536 799 // Phi nodes should be split and moved already.
kvn@1536 800 tp = use->as_Phi()->adr_type()->isa_ptr();
kvn@1536 801 assert(tp != NULL, "ptr type");
kvn@1536 802 int idx = C->get_alias_index(tp);
kvn@1536 803 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
kvn@1536 804 } else {
kvn@1536 805 use->dump();
kvn@1536 806 assert(false, "should not be here");
kvn@1536 807 #endif
kvn@1536 808 }
kvn@1536 809 }
kvn@1536 810 }
kvn@1536 811
kvn@1536 812 //
kvn@500 813 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 814 // is the specified alias index.
kvn@500 815 //
kvn@500 816 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 817 if (orig_mem == NULL)
kvn@500 818 return orig_mem;
kvn@500 819 Compile* C = phase->C;
never@2170 820 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
never@2170 821 bool is_instance = (toop != NULL) && toop->is_known_instance();
kvn@688 822 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 823 Node *prev = NULL;
kvn@500 824 Node *result = orig_mem;
kvn@500 825 while (prev != result) {
kvn@500 826 prev = result;
kvn@688 827 if (result == start_mem)
twisti@1040 828 break; // hit one of our sentinels
kvn@500 829 if (result->is_Mem()) {
kvn@688 830 const Type *at = phase->type(result->in(MemNode::Address));
kvn@2741 831 if (at == Type::TOP)
kvn@2741 832 break; // Dead
kvn@2741 833 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@2741 834 int idx = C->get_alias_index(at->is_ptr());
kvn@2741 835 if (idx == alias_idx)
kvn@2741 836 break; // Found
kvn@2741 837 if (!is_instance && (at->isa_oopptr() == NULL ||
kvn@2741 838 !at->is_oopptr()->is_known_instance())) {
kvn@2741 839 break; // Do not skip store to general memory slice.
kvn@500 840 }
kvn@688 841 result = result->in(MemNode::Memory);
kvn@500 842 }
kvn@500 843 if (!is_instance)
kvn@500 844 continue; // don't search further for non-instance types
kvn@500 845 // skip over a call which does not affect this memory slice
kvn@500 846 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 847 Node *proj_in = result->in(0);
never@2170 848 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
twisti@1040 849 break; // hit one of our sentinels
kvn@688 850 } else if (proj_in->is_Call()) {
kvn@500 851 CallNode *call = proj_in->as_Call();
never@2170 852 if (!call->may_modify(toop, phase)) {
kvn@500 853 result = call->in(TypeFunc::Memory);
kvn@500 854 }
kvn@500 855 } else if (proj_in->is_Initialize()) {
kvn@500 856 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 857 // Stop if this is the initialization for the object instance which
kvn@500 858 // which contains this memory slice, otherwise skip over it.
never@2170 859 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
kvn@500 860 result = proj_in->in(TypeFunc::Memory);
kvn@500 861 }
kvn@500 862 } else if (proj_in->is_MemBar()) {
kvn@500 863 result = proj_in->in(TypeFunc::Memory);
kvn@500 864 }
kvn@500 865 } else if (result->is_MergeMem()) {
kvn@500 866 MergeMemNode *mmem = result->as_MergeMem();
never@2170 867 result = step_through_mergemem(mmem, alias_idx, toop);
kvn@500 868 if (result == mmem->base_memory()) {
kvn@500 869 // Didn't find instance memory, search through general slice recursively.
kvn@500 870 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 871 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 872 if (C->failing()) {
kvn@500 873 return NULL;
kvn@500 874 }
kvn@500 875 mmem->set_memory_at(alias_idx, result);
kvn@500 876 }
kvn@500 877 } else if (result->is_Phi() &&
kvn@500 878 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 879 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 880 if (un != NULL) {
kvn@1536 881 orig_phis.append_if_missing(result->as_Phi());
kvn@500 882 result = un;
kvn@500 883 } else {
kvn@500 884 break;
kvn@500 885 }
kvn@1535 886 } else if (result->is_ClearArray()) {
never@2170 887 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) {
kvn@1535 888 // Can not bypass initialization of the instance
kvn@1535 889 // we are looking for.
kvn@1535 890 break;
kvn@1535 891 }
kvn@1535 892 // Otherwise skip it (the call updated 'result' value).
kvn@1019 893 } else if (result->Opcode() == Op_SCMemProj) {
kvn@1019 894 assert(result->in(0)->is_LoadStore(), "sanity");
kvn@1019 895 const Type *at = phase->type(result->in(0)->in(MemNode::Address));
kvn@1019 896 if (at != Type::TOP) {
kvn@1019 897 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 898 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 899 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 900 break;
kvn@1019 901 }
kvn@1019 902 result = result->in(0)->in(MemNode::Memory);
kvn@500 903 }
kvn@500 904 }
kvn@682 905 if (result->is_Phi()) {
kvn@500 906 PhiNode *mphi = result->as_Phi();
kvn@500 907 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 908 const TypePtr *t = mphi->adr_type();
kvn@2741 909 if (!is_instance) {
kvn@682 910 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 911 // during Phase 4 if needed.
kvn@682 912 orig_phis.append_if_missing(mphi);
kvn@2741 913 } else if (C->get_alias_index(t) != alias_idx) {
kvn@2741 914 // Create a new Phi with the specified alias index type.
kvn@2741 915 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@500 916 }
kvn@500 917 }
kvn@500 918 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 919 return result;
kvn@500 920 }
kvn@500 921
duke@435 922 //
duke@435 923 // Convert the types of unescaped object to instance types where possible,
duke@435 924 // propagate the new type information through the graph, and update memory
duke@435 925 // edges and MergeMem inputs to reflect the new type.
duke@435 926 //
duke@435 927 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 928 // The processing is done in 4 phases:
duke@435 929 //
duke@435 930 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 931 // types for the CheckCastPP for allocations where possible.
duke@435 932 // Propagate the the new types through users as follows:
duke@435 933 // casts and Phi: push users on alloc_worklist
duke@435 934 // AddP: cast Base and Address inputs to the instance type
duke@435 935 // push any AddP users on alloc_worklist and push any memnode
duke@435 936 // users onto memnode_worklist.
duke@435 937 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 938 // search the Memory chain for a store with the appropriate type
duke@435 939 // address type. If a Phi is found, create a new version with
twisti@1040 940 // the appropriate memory slices from each of the Phi inputs.
duke@435 941 // For stores, process the users as follows:
duke@435 942 // MemNode: push on memnode_worklist
duke@435 943 // MergeMem: push on mergemem_worklist
duke@435 944 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 945 // moving the first node encountered of each instance type to the
duke@435 946 // the input corresponding to its alias index.
duke@435 947 // appropriate memory slice.
duke@435 948 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 949 //
duke@435 950 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 951 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 952 // instance type.
duke@435 953 //
duke@435 954 // We start with:
duke@435 955 //
duke@435 956 // 7 Parm #memory
duke@435 957 // 10 ConI "12"
duke@435 958 // 19 CheckCastPP "Foo"
duke@435 959 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 960 // 29 CheckCastPP "Foo"
duke@435 961 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 962 //
duke@435 963 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 964 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 965 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 966 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 967 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 968 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 969 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 970 //
duke@435 971 //
duke@435 972 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 973 // and creating a new alias index for node 30. This gives:
duke@435 974 //
duke@435 975 // 7 Parm #memory
duke@435 976 // 10 ConI "12"
duke@435 977 // 19 CheckCastPP "Foo"
duke@435 978 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 979 // 29 CheckCastPP "Foo" iid=24
duke@435 980 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 981 //
duke@435 982 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 983 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 984 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 985 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 986 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 987 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 988 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 989 //
duke@435 990 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 991 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 992 // node 80 are updated and then the memory nodes are updated with the
duke@435 993 // values computed in phase 2. This results in:
duke@435 994 //
duke@435 995 // 7 Parm #memory
duke@435 996 // 10 ConI "12"
duke@435 997 // 19 CheckCastPP "Foo"
duke@435 998 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 999 // 29 CheckCastPP "Foo" iid=24
duke@435 1000 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 1001 //
duke@435 1002 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 1003 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 1004 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 1005 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 1006 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 1007 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 1008 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 1009 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 1010 //
duke@435 1011 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 1012 GrowableArray<Node *> memnode_worklist;
duke@435 1013 GrowableArray<PhiNode *> orig_phis;
kvn@1536 1014
kvn@2276 1015 PhaseIterGVN *igvn = _igvn;
duke@435 1016 uint new_index_start = (uint) _compile->num_alias_types();
kvn@1536 1017 Arena* arena = Thread::current()->resource_area();
kvn@1536 1018 VectorSet visited(arena);
duke@435 1019
kvn@500 1020
kvn@500 1021 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 1022 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 1023 //
kvn@679 1024 // (Note: don't forget to change the order of the second AddP node on
kvn@679 1025 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 1026 // see the comment in find_second_addp().)
kvn@679 1027 //
duke@435 1028 while (alloc_worklist.length() != 0) {
duke@435 1029 Node *n = alloc_worklist.pop();
duke@435 1030 uint ni = n->_idx;
kvn@500 1031 const TypeOopPtr* tinst = NULL;
duke@435 1032 if (n->is_Call()) {
duke@435 1033 CallNode *alloc = n->as_Call();
duke@435 1034 // copy escape information to call node
kvn@679 1035 PointsToNode* ptn = ptnode_adr(alloc->_idx);
kvn@1989 1036 PointsToNode::EscapeState es = escape_state(alloc);
kvn@500 1037 // We have an allocation or call which returns a Java object,
kvn@500 1038 // see if it is unescaped.
kvn@500 1039 if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
duke@435 1040 continue;
kvn@1219 1041
kvn@1219 1042 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 1043 n = alloc->result_cast();
kvn@1219 1044 if (n == NULL) { // No uses except Initialize node
kvn@1219 1045 if (alloc->is_Allocate()) {
kvn@1219 1046 // Set the scalar_replaceable flag for allocation
kvn@1219 1047 // so it could be eliminated if it has no uses.
kvn@1219 1048 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1049 }
kvn@1219 1050 continue;
kvn@474 1051 }
kvn@1219 1052 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 1053 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 1054 continue;
kvn@1219 1055 }
kvn@1219 1056
kvn@500 1057 // The inline code for Object.clone() casts the allocation result to
kvn@682 1058 // java.lang.Object and then to the actual type of the allocated
kvn@500 1059 // object. Detect this case and use the second cast.
kvn@682 1060 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 1061 // the allocation result is cast to java.lang.Object and then
kvn@682 1062 // to the actual Array type.
kvn@500 1063 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 1064 && (alloc->is_AllocateArray() ||
kvn@682 1065 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 1066 Node *cast2 = NULL;
kvn@500 1067 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1068 Node *use = n->fast_out(i);
kvn@500 1069 if (use->is_CheckCastPP()) {
kvn@500 1070 cast2 = use;
kvn@500 1071 break;
kvn@500 1072 }
kvn@500 1073 }
kvn@500 1074 if (cast2 != NULL) {
kvn@500 1075 n = cast2;
kvn@500 1076 } else {
kvn@1219 1077 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 1078 // (reflection allocation), the object can't be restored during
kvn@1219 1079 // deoptimization without precise type.
kvn@500 1080 continue;
kvn@500 1081 }
kvn@500 1082 }
kvn@1219 1083 if (alloc->is_Allocate()) {
kvn@1219 1084 // Set the scalar_replaceable flag for allocation
kvn@1219 1085 // so it could be eliminated.
kvn@1219 1086 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1087 }
kvn@500 1088 set_escape_state(n->_idx, es);
kvn@682 1089 // in order for an object to be scalar-replaceable, it must be:
kvn@500 1090 // - a direct allocation (not a call returning an object)
kvn@500 1091 // - non-escaping
kvn@500 1092 // - eligible to be a unique type
kvn@500 1093 // - not determined to be ineligible by escape analysis
kvn@1536 1094 assert(ptnode_adr(alloc->_idx)->_node != NULL &&
kvn@1536 1095 ptnode_adr(n->_idx)->_node != NULL, "should be registered");
duke@435 1096 set_map(alloc->_idx, n);
duke@435 1097 set_map(n->_idx, alloc);
kvn@500 1098 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 1099 if (t == NULL)
duke@435 1100 continue; // not a TypeInstPtr
kvn@682 1101 tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
duke@435 1102 igvn->hash_delete(n);
duke@435 1103 igvn->set_type(n, tinst);
duke@435 1104 n->raise_bottom_type(tinst);
duke@435 1105 igvn->hash_insert(n);
kvn@500 1106 record_for_optimizer(n);
kvn@500 1107 if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
kvn@500 1108 (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 1109
kvn@598 1110 // First, put on the worklist all Field edges from Connection Graph
kvn@598 1111 // which is more accurate then putting immediate users from Ideal Graph.
kvn@598 1112 for (uint e = 0; e < ptn->edge_count(); e++) {
kvn@679 1113 Node *use = ptnode_adr(ptn->edge_target(e))->_node;
kvn@598 1114 assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
kvn@598 1115 "only AddP nodes are Field edges in CG");
kvn@598 1116 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 1117 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 1118 if (addp2 != NULL) {
kvn@598 1119 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 1120 alloc_worklist.append_if_missing(addp2);
kvn@598 1121 }
kvn@598 1122 alloc_worklist.append_if_missing(use);
kvn@598 1123 }
kvn@598 1124 }
kvn@598 1125
kvn@500 1126 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 1127 // the users of the raw allocation result and push AddP users
kvn@500 1128 // on alloc_worklist.
kvn@500 1129 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 1130 assert (raw_result != NULL, "must have an allocation result");
kvn@500 1131 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 1132 Node *use = raw_result->fast_out(i);
kvn@500 1133 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 1134 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 1135 if (addp2 != NULL) {
kvn@500 1136 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 1137 alloc_worklist.append_if_missing(addp2);
kvn@500 1138 }
kvn@500 1139 alloc_worklist.append_if_missing(use);
kvn@1535 1140 } else if (use->is_MemBar()) {
kvn@500 1141 memnode_worklist.append_if_missing(use);
kvn@500 1142 }
kvn@500 1143 }
kvn@500 1144 }
duke@435 1145 } else if (n->is_AddP()) {
kvn@2556 1146 VectorSet* ptset = PointsTo(get_addp_base(n));
kvn@2556 1147 assert(ptset->Size() == 1, "AddP address is unique");
kvn@2556 1148 uint elem = ptset->getelem(); // Allocation node's index
kvn@1535 1149 if (elem == _phantom_object) {
kvn@1535 1150 assert(false, "escaped allocation");
kvn@500 1151 continue; // Assume the value was set outside this method.
kvn@1535 1152 }
kvn@500 1153 Node *base = get_map(elem); // CheckCastPP node
kvn@1535 1154 if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
kvn@500 1155 tinst = igvn->type(base)->isa_oopptr();
kvn@500 1156 } else if (n->is_Phi() ||
kvn@500 1157 n->is_CheckCastPP() ||
kvn@603 1158 n->is_EncodeP() ||
kvn@603 1159 n->is_DecodeN() ||
kvn@500 1160 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 1161 if (visited.test_set(n->_idx)) {
duke@435 1162 assert(n->is_Phi(), "loops only through Phi's");
duke@435 1163 continue; // already processed
duke@435 1164 }
kvn@2556 1165 VectorSet* ptset = PointsTo(n);
kvn@2556 1166 if (ptset->Size() == 1) {
kvn@2556 1167 uint elem = ptset->getelem(); // Allocation node's index
kvn@1535 1168 if (elem == _phantom_object) {
kvn@1535 1169 assert(false, "escaped allocation");
kvn@500 1170 continue; // Assume the value was set outside this method.
kvn@1535 1171 }
kvn@500 1172 Node *val = get_map(elem); // CheckCastPP node
duke@435 1173 TypeNode *tn = n->as_Type();
kvn@500 1174 tinst = igvn->type(val)->isa_oopptr();
kvn@658 1175 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@658 1176 (uint)tinst->instance_id() == elem , "instance type expected.");
kvn@598 1177
kvn@598 1178 const Type *tn_type = igvn->type(tn);
kvn@658 1179 const TypeOopPtr *tn_t;
kvn@658 1180 if (tn_type->isa_narrowoop()) {
kvn@658 1181 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 1182 } else {
kvn@658 1183 tn_t = tn_type->isa_oopptr();
kvn@658 1184 }
duke@435 1185
kvn@1535 1186 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
kvn@598 1187 if (tn_type->isa_narrowoop()) {
kvn@598 1188 tn_type = tinst->make_narrowoop();
kvn@598 1189 } else {
kvn@598 1190 tn_type = tinst;
kvn@598 1191 }
duke@435 1192 igvn->hash_delete(tn);
kvn@598 1193 igvn->set_type(tn, tn_type);
kvn@598 1194 tn->set_type(tn_type);
duke@435 1195 igvn->hash_insert(tn);
kvn@500 1196 record_for_optimizer(n);
kvn@728 1197 } else {
kvn@1535 1198 assert(tn_type == TypePtr::NULL_PTR ||
kvn@1535 1199 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
kvn@1535 1200 "unexpected type");
kvn@1535 1201 continue; // Skip dead path with different type
duke@435 1202 }
duke@435 1203 }
duke@435 1204 } else {
kvn@1535 1205 debug_only(n->dump();)
kvn@1535 1206 assert(false, "EA: unexpected node");
duke@435 1207 continue;
duke@435 1208 }
kvn@1535 1209 // push allocation's users on appropriate worklist
duke@435 1210 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1211 Node *use = n->fast_out(i);
duke@435 1212 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@1535 1213 // Load/store to instance's field
kvn@500 1214 memnode_worklist.append_if_missing(use);
kvn@1535 1215 } else if (use->is_MemBar()) {
kvn@500 1216 memnode_worklist.append_if_missing(use);
kvn@500 1217 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 1218 Node* addp2 = find_second_addp(use, n);
kvn@500 1219 if (addp2 != NULL) {
kvn@500 1220 alloc_worklist.append_if_missing(addp2);
kvn@500 1221 }
kvn@500 1222 alloc_worklist.append_if_missing(use);
kvn@500 1223 } else if (use->is_Phi() ||
kvn@500 1224 use->is_CheckCastPP() ||
kvn@603 1225 use->is_EncodeP() ||
kvn@603 1226 use->is_DecodeN() ||
kvn@500 1227 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 1228 alloc_worklist.append_if_missing(use);
kvn@1535 1229 #ifdef ASSERT
kvn@1535 1230 } else if (use->is_Mem()) {
kvn@1535 1231 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
kvn@1535 1232 } else if (use->is_MergeMem()) {
kvn@1535 1233 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1234 } else if (use->is_SafePoint()) {
kvn@1535 1235 // Look for MergeMem nodes for calls which reference unique allocation
kvn@1535 1236 // (through CheckCastPP nodes) even for debug info.
kvn@1535 1237 Node* m = use->in(TypeFunc::Memory);
kvn@1535 1238 if (m->is_MergeMem()) {
kvn@1535 1239 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1240 }
kvn@1535 1241 } else {
kvn@1535 1242 uint op = use->Opcode();
kvn@1535 1243 if (!(op == Op_CmpP || op == Op_Conv2B ||
kvn@1535 1244 op == Op_CastP2X || op == Op_StoreCM ||
kvn@1535 1245 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1246 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1247 n->dump();
kvn@1535 1248 use->dump();
kvn@1535 1249 assert(false, "EA: missing allocation reference path");
kvn@1535 1250 }
kvn@1535 1251 #endif
duke@435 1252 }
duke@435 1253 }
duke@435 1254
duke@435 1255 }
kvn@500 1256 // New alias types were created in split_AddP().
duke@435 1257 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 1258
duke@435 1259 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 1260 // compute new values for Memory inputs (the Memory inputs are not
duke@435 1261 // actually updated until phase 4.)
duke@435 1262 if (memnode_worklist.length() == 0)
duke@435 1263 return; // nothing to do
duke@435 1264
duke@435 1265 while (memnode_worklist.length() != 0) {
duke@435 1266 Node *n = memnode_worklist.pop();
kvn@500 1267 if (visited.test_set(n->_idx))
kvn@500 1268 continue;
kvn@1535 1269 if (n->is_Phi() || n->is_ClearArray()) {
kvn@1535 1270 // we don't need to do anything, but the users must be pushed
kvn@1535 1271 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
kvn@1535 1272 // we don't need to do anything, but the users must be pushed
kvn@1535 1273 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
kvn@500 1274 if (n == NULL)
duke@435 1275 continue;
duke@435 1276 } else {
duke@435 1277 assert(n->is_Mem(), "memory node required.");
duke@435 1278 Node *addr = n->in(MemNode::Address);
duke@435 1279 const Type *addr_t = igvn->type(addr);
duke@435 1280 if (addr_t == Type::TOP)
duke@435 1281 continue;
duke@435 1282 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1283 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1284 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1285 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1286 if (_compile->failing()) {
kvn@473 1287 return;
kvn@473 1288 }
kvn@500 1289 if (mem != n->in(MemNode::Memory)) {
kvn@1536 1290 // We delay the memory edge update since we need old one in
kvn@1536 1291 // MergeMem code below when instances memory slices are separated.
kvn@1536 1292 debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
kvn@1536 1293 assert(pn == NULL || pn == n, "wrong node");
duke@435 1294 set_map(n->_idx, mem);
kvn@679 1295 ptnode_adr(n->_idx)->_node = n;
kvn@500 1296 }
duke@435 1297 if (n->is_Load()) {
duke@435 1298 continue; // don't push users
duke@435 1299 } else if (n->is_LoadStore()) {
duke@435 1300 // get the memory projection
duke@435 1301 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1302 Node *use = n->fast_out(i);
duke@435 1303 if (use->Opcode() == Op_SCMemProj) {
duke@435 1304 n = use;
duke@435 1305 break;
duke@435 1306 }
duke@435 1307 }
duke@435 1308 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1309 }
duke@435 1310 }
duke@435 1311 // push user on appropriate worklist
duke@435 1312 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1313 Node *use = n->fast_out(i);
kvn@1535 1314 if (use->is_Phi() || use->is_ClearArray()) {
kvn@500 1315 memnode_worklist.append_if_missing(use);
duke@435 1316 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@1535 1317 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
kvn@1535 1318 continue;
kvn@500 1319 memnode_worklist.append_if_missing(use);
kvn@1535 1320 } else if (use->is_MemBar()) {
kvn@500 1321 memnode_worklist.append_if_missing(use);
kvn@1535 1322 #ifdef ASSERT
kvn@1535 1323 } else if(use->is_Mem()) {
kvn@1535 1324 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
duke@435 1325 } else if (use->is_MergeMem()) {
kvn@1535 1326 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1327 } else {
kvn@1535 1328 uint op = use->Opcode();
kvn@1535 1329 if (!(op == Op_StoreCM ||
kvn@1535 1330 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
kvn@1535 1331 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
kvn@1535 1332 op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1333 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1334 n->dump();
kvn@1535 1335 use->dump();
kvn@1535 1336 assert(false, "EA: missing memory path");
kvn@1535 1337 }
kvn@1535 1338 #endif
duke@435 1339 }
duke@435 1340 }
duke@435 1341 }
duke@435 1342
kvn@500 1343 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@1535 1344 // Walk each memory slice moving the first node encountered of each
kvn@500 1345 // instance type to the the input corresponding to its alias index.
kvn@1535 1346 uint length = _mergemem_worklist.length();
kvn@1535 1347 for( uint next = 0; next < length; ++next ) {
kvn@1535 1348 MergeMemNode* nmm = _mergemem_worklist.at(next);
kvn@1535 1349 assert(!visited.test_set(nmm->_idx), "should not be visited before");
duke@435 1350 // Note: we don't want to use MergeMemStream here because we only want to
kvn@1535 1351 // scan inputs which exist at the start, not ones we add during processing.
kvn@1535 1352 // Note 2: MergeMem may already contains instance memory slices added
kvn@1535 1353 // during find_inst_mem() call when memory nodes were processed above.
kvn@1535 1354 igvn->hash_delete(nmm);
duke@435 1355 uint nslices = nmm->req();
duke@435 1356 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1357 Node* mem = nmm->in(i);
kvn@500 1358 Node* cur = NULL;
duke@435 1359 if (mem == NULL || mem->is_top())
duke@435 1360 continue;
kvn@1536 1361 // First, update mergemem by moving memory nodes to corresponding slices
kvn@1536 1362 // if their type became more precise since this mergemem was created.
duke@435 1363 while (mem->is_Mem()) {
duke@435 1364 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1365 if (at != Type::TOP) {
duke@435 1366 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1367 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1368 if (idx == i) {
duke@435 1369 if (cur == NULL)
duke@435 1370 cur = mem;
duke@435 1371 } else {
duke@435 1372 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1373 nmm->set_memory_at(idx, mem);
duke@435 1374 }
duke@435 1375 }
duke@435 1376 }
duke@435 1377 mem = mem->in(MemNode::Memory);
duke@435 1378 }
duke@435 1379 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1380 // Find any instance of the current type if we haven't encountered
kvn@1536 1381 // already a memory slice of the instance along the memory chain.
kvn@500 1382 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1383 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1384 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1385 if (nmm->is_empty_memory(m)) {
kvn@500 1386 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1387 if (_compile->failing()) {
kvn@500 1388 return;
kvn@500 1389 }
kvn@500 1390 nmm->set_memory_at(ni, result);
kvn@500 1391 }
kvn@500 1392 }
kvn@500 1393 }
kvn@500 1394 }
kvn@500 1395 // Find the rest of instances values
kvn@500 1396 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@1536 1397 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
kvn@500 1398 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1399 if (result == nmm->base_memory()) {
kvn@500 1400 // Didn't find instance memory, search through general slice recursively.
kvn@1536 1401 result = nmm->memory_at(_compile->get_general_index(ni));
kvn@500 1402 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1403 if (_compile->failing()) {
kvn@500 1404 return;
kvn@500 1405 }
kvn@500 1406 nmm->set_memory_at(ni, result);
kvn@500 1407 }
kvn@500 1408 }
kvn@500 1409 igvn->hash_insert(nmm);
kvn@500 1410 record_for_optimizer(nmm);
duke@435 1411 }
duke@435 1412
kvn@500 1413 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1414 // the Memory input of memnodes
duke@435 1415 // First update the inputs of any non-instance Phi's from
duke@435 1416 // which we split out an instance Phi. Note we don't have
duke@435 1417 // to recursively process Phi's encounted on the input memory
duke@435 1418 // chains as is done in split_memory_phi() since they will
duke@435 1419 // also be processed here.
kvn@682 1420 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 1421 PhiNode *phi = orig_phis.at(j);
duke@435 1422 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1423 igvn->hash_delete(phi);
duke@435 1424 for (uint i = 1; i < phi->req(); i++) {
duke@435 1425 Node *mem = phi->in(i);
kvn@500 1426 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1427 if (_compile->failing()) {
kvn@500 1428 return;
kvn@500 1429 }
duke@435 1430 if (mem != new_mem) {
duke@435 1431 phi->set_req(i, new_mem);
duke@435 1432 }
duke@435 1433 }
duke@435 1434 igvn->hash_insert(phi);
duke@435 1435 record_for_optimizer(phi);
duke@435 1436 }
duke@435 1437
duke@435 1438 // Update the memory inputs of MemNodes with the value we computed
kvn@1536 1439 // in Phase 2 and move stores memory users to corresponding memory slices.
kvn@2810 1440
kvn@2810 1441 // Disable memory split verification code until the fix for 6984348.
kvn@2810 1442 // Currently it produces false negative results since it does not cover all cases.
kvn@2810 1443 #if 0 // ifdef ASSERT
kvn@2556 1444 visited.Reset();
kvn@1536 1445 Node_Stack old_mems(arena, _compile->unique() >> 2);
kvn@1536 1446 #endif
kvn@679 1447 for (uint i = 0; i < nodes_size(); i++) {
duke@435 1448 Node *nmem = get_map(i);
duke@435 1449 if (nmem != NULL) {
kvn@679 1450 Node *n = ptnode_adr(i)->_node;
kvn@1536 1451 assert(n != NULL, "sanity");
kvn@1536 1452 if (n->is_Mem()) {
kvn@2810 1453 #if 0 // ifdef ASSERT
kvn@1536 1454 Node* old_mem = n->in(MemNode::Memory);
kvn@1536 1455 if (!visited.test_set(old_mem->_idx)) {
kvn@1536 1456 old_mems.push(old_mem, old_mem->outcnt());
kvn@1536 1457 }
kvn@1536 1458 #endif
kvn@1536 1459 assert(n->in(MemNode::Memory) != nmem, "sanity");
kvn@1536 1460 if (!n->is_Load()) {
kvn@1536 1461 // Move memory users of a store first.
kvn@1536 1462 move_inst_mem(n, orig_phis, igvn);
kvn@1536 1463 }
kvn@1536 1464 // Now update memory input
duke@435 1465 igvn->hash_delete(n);
duke@435 1466 n->set_req(MemNode::Memory, nmem);
duke@435 1467 igvn->hash_insert(n);
duke@435 1468 record_for_optimizer(n);
kvn@1536 1469 } else {
kvn@1536 1470 assert(n->is_Allocate() || n->is_CheckCastPP() ||
kvn@1536 1471 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
duke@435 1472 }
duke@435 1473 }
duke@435 1474 }
kvn@2810 1475 #if 0 // ifdef ASSERT
kvn@1536 1476 // Verify that memory was split correctly
kvn@1536 1477 while (old_mems.is_nonempty()) {
kvn@1536 1478 Node* old_mem = old_mems.node();
kvn@1536 1479 uint old_cnt = old_mems.index();
kvn@1536 1480 old_mems.pop();
kvn@2810 1481 assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
kvn@1536 1482 }
kvn@1536 1483 #endif
duke@435 1484 }
duke@435 1485
kvn@679 1486 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@679 1487 // EA brings benefits only when the code has allocations and/or locks which
kvn@679 1488 // are represented by ideal Macro nodes.
kvn@679 1489 int cnt = C->macro_count();
kvn@679 1490 for( int i=0; i < cnt; i++ ) {
kvn@679 1491 Node *n = C->macro_node(i);
kvn@679 1492 if ( n->is_Allocate() )
kvn@679 1493 return true;
kvn@679 1494 if( n->is_Lock() ) {
kvn@679 1495 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@679 1496 if( !(obj->is_Parm() || obj->is_Con()) )
kvn@679 1497 return true;
kvn@679 1498 }
kvn@679 1499 }
kvn@679 1500 return false;
kvn@679 1501 }
kvn@679 1502
kvn@1989 1503 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
kvn@1989 1504 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
kvn@1989 1505 // to create space for them in ConnectionGraph::_nodes[].
kvn@1989 1506 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@1989 1507 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@1989 1508
kvn@1989 1509 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
kvn@1989 1510 // Perform escape analysis
kvn@1989 1511 if (congraph->compute_escape()) {
kvn@1989 1512 // There are non escaping objects.
kvn@1989 1513 C->set_congraph(congraph);
kvn@1989 1514 }
kvn@1989 1515
kvn@1989 1516 // Cleanup.
kvn@1989 1517 if (oop_null->outcnt() == 0)
kvn@1989 1518 igvn->hash_delete(oop_null);
kvn@1989 1519 if (noop_null->outcnt() == 0)
kvn@1989 1520 igvn->hash_delete(noop_null);
kvn@1989 1521 }
kvn@1989 1522
kvn@679 1523 bool ConnectionGraph::compute_escape() {
kvn@679 1524 Compile* C = _compile;
duke@435 1525
kvn@598 1526 // 1. Populate Connection Graph (CG) with Ideal nodes.
duke@435 1527
kvn@500 1528 Unique_Node_List worklist_init;
kvn@679 1529 worklist_init.map(C->unique(), NULL); // preallocate space
kvn@500 1530
kvn@500 1531 // Initialize worklist
kvn@679 1532 if (C->root() != NULL) {
kvn@679 1533 worklist_init.push(C->root());
kvn@500 1534 }
kvn@500 1535
kvn@500 1536 GrowableArray<int> cg_worklist;
kvn@1989 1537 PhaseGVN* igvn = _igvn;
kvn@500 1538 bool has_allocations = false;
kvn@500 1539
kvn@500 1540 // Push all useful nodes onto CG list and set their type.
kvn@500 1541 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1542 Node* n = worklist_init.at(next);
kvn@500 1543 record_for_escape_analysis(n, igvn);
kvn@679 1544 // Only allocations and java static calls results are checked
kvn@679 1545 // for an escape status. See process_call_result() below.
kvn@679 1546 if (n->is_Allocate() || n->is_CallStaticJava() &&
kvn@679 1547 ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1548 has_allocations = true;
kvn@500 1549 }
kvn@1535 1550 if(n->is_AddP()) {
kvn@2276 1551 // Collect address nodes. Use them during stage 3 below
kvn@2276 1552 // to build initial connection graph field edges.
kvn@2276 1553 cg_worklist.append(n->_idx);
kvn@1535 1554 } else if (n->is_MergeMem()) {
kvn@1535 1555 // Collect all MergeMem nodes to add memory slices for
kvn@1535 1556 // scalar replaceable objects in split_unique_types().
kvn@1535 1557 _mergemem_worklist.append(n->as_MergeMem());
kvn@1535 1558 }
kvn@500 1559 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1560 Node* m = n->fast_out(i); // Get user
kvn@500 1561 worklist_init.push(m);
kvn@500 1562 }
kvn@500 1563 }
kvn@500 1564
kvn@679 1565 if (!has_allocations) {
kvn@500 1566 _collecting = false;
kvn@679 1567 return false; // Nothing to do.
kvn@500 1568 }
kvn@500 1569
kvn@500 1570 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@679 1571 uint delayed_size = _delayed_worklist.size();
kvn@679 1572 for( uint next = 0; next < delayed_size; ++next ) {
kvn@500 1573 Node* n = _delayed_worklist.at(next);
kvn@500 1574 build_connection_graph(n, igvn);
kvn@500 1575 }
kvn@500 1576
kvn@2276 1577 // 3. Pass to create initial fields edges (JavaObject -F-> AddP)
kvn@2276 1578 // to reduce number of iterations during stage 4 below.
kvn@679 1579 uint cg_length = cg_worklist.length();
kvn@679 1580 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1581 int ni = cg_worklist.at(next);
kvn@2276 1582 Node* n = ptnode_adr(ni)->_node;
kvn@2276 1583 Node* base = get_addp_base(n);
kvn@2276 1584 if (base->is_Proj())
kvn@2276 1585 base = base->in(0);
kvn@2276 1586 PointsToNode::NodeType nt = ptnode_adr(base->_idx)->node_type();
kvn@2276 1587 if (nt == PointsToNode::JavaObject) {
kvn@2276 1588 build_connection_graph(n, igvn);
kvn@2276 1589 }
kvn@500 1590 }
kvn@500 1591
kvn@500 1592 cg_worklist.clear();
kvn@500 1593 cg_worklist.append(_phantom_object);
kvn@2276 1594 GrowableArray<uint> worklist;
kvn@500 1595
kvn@500 1596 // 4. Build Connection Graph which need
kvn@500 1597 // to walk the connection graph.
kvn@2276 1598 _progress = false;
kvn@679 1599 for (uint ni = 0; ni < nodes_size(); ni++) {
kvn@679 1600 PointsToNode* ptn = ptnode_adr(ni);
kvn@500 1601 Node *n = ptn->_node;
kvn@500 1602 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1603 build_connection_graph(n, igvn);
kvn@500 1604 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1605 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@2276 1606 if (!_processed.test(n->_idx))
kvn@2276 1607 worklist.append(n->_idx); // Collect C/A/L/S nodes
kvn@500 1608 }
duke@435 1609 }
duke@435 1610
kvn@2276 1611 // After IGVN user nodes may have smaller _idx than
kvn@2276 1612 // their inputs so they will be processed first in
kvn@2276 1613 // previous loop. Because of that not all Graph
kvn@2276 1614 // edges will be created. Walk over interesting
kvn@2276 1615 // nodes again until no new edges are created.
kvn@2276 1616 //
kvn@2276 1617 // Normally only 1-3 passes needed to build
kvn@2276 1618 // Connection Graph depending on graph complexity.
kvn@2409 1619 // Observed 8 passes in jvm2008 compiler.compiler.
kvn@2409 1620 // Set limit to 20 to catch situation when something
kvn@2276 1621 // did go wrong and recompile the method without EA.
kvn@2276 1622
kvn@2409 1623 #define CG_BUILD_ITER_LIMIT 20
kvn@2276 1624
kvn@2276 1625 uint length = worklist.length();
kvn@2276 1626 int iterations = 0;
kvn@2276 1627 while(_progress && (iterations++ < CG_BUILD_ITER_LIMIT)) {
kvn@2276 1628 _progress = false;
kvn@2276 1629 for( uint next = 0; next < length; ++next ) {
kvn@2276 1630 int ni = worklist.at(next);
kvn@2276 1631 PointsToNode* ptn = ptnode_adr(ni);
kvn@2276 1632 Node* n = ptn->_node;
kvn@2276 1633 assert(n != NULL, "should be known node");
kvn@2276 1634 build_connection_graph(n, igvn);
kvn@2276 1635 }
kvn@2276 1636 }
kvn@2276 1637 if (iterations >= CG_BUILD_ITER_LIMIT) {
kvn@2276 1638 assert(iterations < CG_BUILD_ITER_LIMIT,
kvn@2276 1639 err_msg("infinite EA connection graph build with %d nodes and worklist size %d",
kvn@2276 1640 nodes_size(), length));
kvn@2276 1641 // Possible infinite build_connection_graph loop,
kvn@2276 1642 // retry compilation without escape analysis.
kvn@2276 1643 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@2276 1644 _collecting = false;
kvn@2276 1645 return false;
kvn@2276 1646 }
kvn@2276 1647 #undef CG_BUILD_ITER_LIMIT
kvn@2276 1648
kvn@1535 1649 Arena* arena = Thread::current()->resource_area();
kvn@1535 1650 VectorSet visited(arena);
kvn@2276 1651 worklist.clear();
duke@435 1652
kvn@1535 1653 // 5. Remove deferred edges from the graph and adjust
kvn@1535 1654 // escape state of nonescaping objects.
kvn@679 1655 cg_length = cg_worklist.length();
kvn@679 1656 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1657 int ni = cg_worklist.at(next);
kvn@679 1658 PointsToNode* ptn = ptnode_adr(ni);
duke@435 1659 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1660 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@2276 1661 remove_deferred(ni, &worklist, &visited);
kvn@679 1662 Node *n = ptn->_node;
duke@435 1663 if (n->is_AddP()) {
kvn@1535 1664 // Search for objects which are not scalar replaceable
kvn@1535 1665 // and adjust their escape state.
kvn@2556 1666 adjust_escape_state(ni, igvn);
duke@435 1667 }
duke@435 1668 }
duke@435 1669 }
kvn@500 1670
kvn@679 1671 // 6. Propagate escape states.
kvn@2276 1672 worklist.clear();
kvn@679 1673 bool has_non_escaping_obj = false;
kvn@679 1674
duke@435 1675 // push all GlobalEscape nodes on the worklist
kvn@679 1676 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1677 int nk = cg_worklist.at(next);
kvn@679 1678 if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
kvn@679 1679 worklist.push(nk);
duke@435 1680 }
kvn@679 1681 // mark all nodes reachable from GlobalEscape nodes
duke@435 1682 while(worklist.length() > 0) {
kvn@679 1683 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1684 uint e_cnt = ptn->edge_count();
kvn@679 1685 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1686 uint npi = ptn->edge_target(ei);
duke@435 1687 PointsToNode *np = ptnode_adr(npi);
kvn@500 1688 if (np->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1689 np->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 1690 worklist.push(npi);
duke@435 1691 }
duke@435 1692 }
duke@435 1693 }
duke@435 1694
duke@435 1695 // push all ArgEscape nodes on the worklist
kvn@679 1696 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1697 int nk = cg_worklist.at(next);
kvn@679 1698 if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
duke@435 1699 worklist.push(nk);
duke@435 1700 }
kvn@679 1701 // mark all nodes reachable from ArgEscape nodes
duke@435 1702 while(worklist.length() > 0) {
kvn@679 1703 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1704 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1705 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1706 uint e_cnt = ptn->edge_count();
kvn@679 1707 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1708 uint npi = ptn->edge_target(ei);
duke@435 1709 PointsToNode *np = ptnode_adr(npi);
kvn@500 1710 if (np->escape_state() < PointsToNode::ArgEscape) {
duke@435 1711 np->set_escape_state(PointsToNode::ArgEscape);
kvn@679 1712 worklist.push(npi);
duke@435 1713 }
duke@435 1714 }
duke@435 1715 }
kvn@500 1716
kvn@679 1717 GrowableArray<Node*> alloc_worklist;
kvn@679 1718
kvn@500 1719 // push all NoEscape nodes on the worklist
kvn@679 1720 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1721 int nk = cg_worklist.at(next);
kvn@679 1722 if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1723 worklist.push(nk);
kvn@500 1724 }
kvn@679 1725 // mark all nodes reachable from NoEscape nodes
kvn@500 1726 while(worklist.length() > 0) {
kvn@679 1727 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1728 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1729 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1730 Node* n = ptn->_node;
kvn@679 1731 if (n->is_Allocate() && ptn->_scalar_replaceable ) {
twisti@1040 1732 // Push scalar replaceable allocations on alloc_worklist
kvn@679 1733 // for processing in split_unique_types().
kvn@679 1734 alloc_worklist.append(n);
kvn@679 1735 }
kvn@679 1736 uint e_cnt = ptn->edge_count();
kvn@679 1737 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1738 uint npi = ptn->edge_target(ei);
kvn@500 1739 PointsToNode *np = ptnode_adr(npi);
kvn@500 1740 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@500 1741 np->set_escape_state(PointsToNode::NoEscape);
kvn@679 1742 worklist.push(npi);
kvn@500 1743 }
kvn@500 1744 }
kvn@500 1745 }
kvn@500 1746
duke@435 1747 _collecting = false;
kvn@679 1748 assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
duke@435 1749
kvn@2951 1750 if (EliminateLocks) {
kvn@2951 1751 // Mark locks before changing ideal graph.
kvn@2951 1752 int cnt = C->macro_count();
kvn@2951 1753 for( int i=0; i < cnt; i++ ) {
kvn@2951 1754 Node *n = C->macro_node(i);
kvn@2951 1755 if (n->is_AbstractLock()) { // Lock and Unlock nodes
kvn@2951 1756 AbstractLockNode* alock = n->as_AbstractLock();
kvn@2951 1757 if (!alock->is_eliminated()) {
kvn@2951 1758 PointsToNode::EscapeState es = escape_state(alock->obj_node());
kvn@2951 1759 assert(es != PointsToNode::UnknownEscape, "should know");
kvn@2951 1760 if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
kvn@2951 1761 // Mark it eliminated
kvn@2951 1762 alock->set_eliminated();
kvn@2951 1763 }
kvn@2951 1764 }
kvn@2951 1765 }
kvn@2951 1766 }
kvn@2951 1767 }
kvn@2951 1768
kvn@1989 1769 #ifndef PRODUCT
kvn@1989 1770 if (PrintEscapeAnalysis) {
kvn@1989 1771 dump(); // Dump ConnectionGraph
kvn@1989 1772 }
kvn@1989 1773 #endif
kvn@1989 1774
kvn@679 1775 bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
kvn@679 1776 if ( has_scalar_replaceable_candidates &&
kvn@679 1777 C->AliasLevel() >= 3 && EliminateAllocations ) {
kvn@473 1778
kvn@679 1779 // Now use the escape information to create unique types for
kvn@679 1780 // scalar replaceable objects.
kvn@679 1781 split_unique_types(alloc_worklist);
duke@435 1782
kvn@679 1783 if (C->failing()) return false;
duke@435 1784
kvn@679 1785 C->print_method("After Escape Analysis", 2);
duke@435 1786
kvn@500 1787 #ifdef ASSERT
kvn@679 1788 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@500 1789 tty->print("=== No allocations eliminated for ");
kvn@679 1790 C->method()->print_short_name();
kvn@500 1791 if(!EliminateAllocations) {
kvn@500 1792 tty->print(" since EliminateAllocations is off ===");
kvn@679 1793 } else if(!has_scalar_replaceable_candidates) {
kvn@679 1794 tty->print(" since there are no scalar replaceable candidates ===");
kvn@679 1795 } else if(C->AliasLevel() < 3) {
kvn@500 1796 tty->print(" since AliasLevel < 3 ===");
duke@435 1797 }
kvn@500 1798 tty->cr();
kvn@500 1799 #endif
duke@435 1800 }
kvn@679 1801 return has_non_escaping_obj;
duke@435 1802 }
duke@435 1803
kvn@2556 1804 // Adjust escape state after Connection Graph is built.
kvn@2556 1805 void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) {
kvn@1535 1806 PointsToNode* ptn = ptnode_adr(nidx);
kvn@1535 1807 Node* n = ptn->_node;
kvn@1535 1808 assert(n->is_AddP(), "Should be called for AddP nodes only");
kvn@1535 1809 // Search for objects which are not scalar replaceable.
kvn@1535 1810 // Mark their escape state as ArgEscape to propagate the state
kvn@1535 1811 // to referenced objects.
kvn@1535 1812 // Note: currently there are no difference in compiler optimizations
kvn@1535 1813 // for ArgEscape objects and NoEscape objects which are not
kvn@1535 1814 // scalar replaceable.
kvn@1535 1815
kvn@1535 1816 Compile* C = _compile;
kvn@1535 1817
kvn@1535 1818 int offset = ptn->offset();
kvn@1535 1819 Node* base = get_addp_base(n);
kvn@2556 1820 VectorSet* ptset = PointsTo(base);
kvn@2556 1821 int ptset_size = ptset->Size();
kvn@1535 1822
kvn@1535 1823 // Check if a oop field's initializing value is recorded and add
kvn@1535 1824 // a corresponding NULL field's value if it is not recorded.
kvn@1535 1825 // Connection Graph does not record a default initialization by NULL
kvn@1535 1826 // captured by Initialize node.
kvn@1535 1827 //
kvn@1535 1828 // Note: it will disable scalar replacement in some cases:
kvn@1535 1829 //
kvn@1535 1830 // Point p[] = new Point[1];
kvn@1535 1831 // p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1832 //
kvn@1535 1833 // but it will save us from incorrect optimizations in next cases:
kvn@1535 1834 //
kvn@1535 1835 // Point p[] = new Point[1];
kvn@1535 1836 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1837 //
kvn@1535 1838 // Do a simple control flow analysis to distinguish above cases.
kvn@1535 1839 //
kvn@1535 1840 if (offset != Type::OffsetBot && ptset_size == 1) {
kvn@2556 1841 uint elem = ptset->getelem(); // Allocation node's index
kvn@1535 1842 // It does not matter if it is not Allocation node since
kvn@1535 1843 // only non-escaping allocations are scalar replaced.
kvn@1535 1844 if (ptnode_adr(elem)->_node->is_Allocate() &&
kvn@1535 1845 ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
kvn@1535 1846 AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
kvn@1535 1847 InitializeNode* ini = alloc->initialization();
kvn@1535 1848
kvn@1535 1849 // Check only oop fields.
kvn@1535 1850 const Type* adr_type = n->as_AddP()->bottom_type();
kvn@1535 1851 BasicType basic_field_type = T_INT;
kvn@1535 1852 if (adr_type->isa_instptr()) {
kvn@1535 1853 ciField* field = C->alias_type(adr_type->isa_instptr())->field();
kvn@1535 1854 if (field != NULL) {
kvn@1535 1855 basic_field_type = field->layout_type();
kvn@1535 1856 } else {
kvn@1535 1857 // Ignore non field load (for example, klass load)
kvn@1535 1858 }
kvn@1535 1859 } else if (adr_type->isa_aryptr()) {
kvn@1535 1860 const Type* elemtype = adr_type->isa_aryptr()->elem();
kvn@1535 1861 basic_field_type = elemtype->array_element_basic_type();
kvn@1535 1862 } else {
kvn@1535 1863 // Raw pointers are used for initializing stores so skip it.
kvn@1535 1864 assert(adr_type->isa_rawptr() && base->is_Proj() &&
kvn@1535 1865 (base->in(0) == alloc),"unexpected pointer type");
kvn@1535 1866 }
kvn@1535 1867 if (basic_field_type == T_OBJECT ||
kvn@1535 1868 basic_field_type == T_NARROWOOP ||
kvn@1535 1869 basic_field_type == T_ARRAY) {
kvn@1535 1870 Node* value = NULL;
kvn@1535 1871 if (ini != NULL) {
kvn@1535 1872 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
kvn@1535 1873 Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
kvn@1535 1874 if (store != NULL && store->is_Store()) {
kvn@1535 1875 value = store->in(MemNode::ValueIn);
kvn@1535 1876 } else if (ptn->edge_count() > 0) { // Are there oop stores?
kvn@1535 1877 // Check for a store which follows allocation without branches.
kvn@1535 1878 // For example, a volatile field store is not collected
kvn@1535 1879 // by Initialize node. TODO: it would be nice to use idom() here.
kvn@1535 1880 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1881 store = n->fast_out(i);
kvn@1535 1882 if (store->is_Store() && store->in(0) != NULL) {
kvn@1535 1883 Node* ctrl = store->in(0);
kvn@1535 1884 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
kvn@1535 1885 ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
kvn@1535 1886 ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
kvn@1535 1887 ctrl = ctrl->in(0);
kvn@1535 1888 }
kvn@1535 1889 if (ctrl == ini || ctrl == alloc) {
kvn@1535 1890 value = store->in(MemNode::ValueIn);
kvn@1535 1891 break;
kvn@1535 1892 }
kvn@1535 1893 }
kvn@1535 1894 }
kvn@1535 1895 }
kvn@1535 1896 }
kvn@1535 1897 if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
kvn@1535 1898 // A field's initializing value was not recorded. Add NULL.
kvn@1535 1899 uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
kvn@1535 1900 add_pointsto_edge(nidx, null_idx);
kvn@1535 1901 }
kvn@1535 1902 }
kvn@1535 1903 }
kvn@1535 1904 }
kvn@1535 1905
kvn@1535 1906 // An object is not scalar replaceable if the field which may point
kvn@1535 1907 // to it has unknown offset (unknown element of an array of objects).
kvn@1535 1908 //
kvn@1535 1909 if (offset == Type::OffsetBot) {
kvn@1535 1910 uint e_cnt = ptn->edge_count();
kvn@1535 1911 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@1535 1912 uint npi = ptn->edge_target(ei);
kvn@1535 1913 set_escape_state(npi, PointsToNode::ArgEscape);
kvn@1535 1914 ptnode_adr(npi)->_scalar_replaceable = false;
kvn@1535 1915 }
kvn@1535 1916 }
kvn@1535 1917
kvn@1535 1918 // Currently an object is not scalar replaceable if a LoadStore node
kvn@1535 1919 // access its field since the field value is unknown after it.
kvn@1535 1920 //
kvn@1535 1921 bool has_LoadStore = false;
kvn@1535 1922 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1923 Node *use = n->fast_out(i);
kvn@1535 1924 if (use->is_LoadStore()) {
kvn@1535 1925 has_LoadStore = true;
kvn@1535 1926 break;
kvn@1535 1927 }
kvn@1535 1928 }
kvn@1535 1929 // An object is not scalar replaceable if the address points
kvn@1535 1930 // to unknown field (unknown element for arrays, offset is OffsetBot).
kvn@1535 1931 //
kvn@1535 1932 // Or the address may point to more then one object. This may produce
kvn@1535 1933 // the false positive result (set scalar_replaceable to false)
kvn@1535 1934 // since the flow-insensitive escape analysis can't separate
kvn@1535 1935 // the case when stores overwrite the field's value from the case
kvn@1535 1936 // when stores happened on different control branches.
kvn@1535 1937 //
kvn@1535 1938 if (ptset_size > 1 || ptset_size != 0 &&
kvn@1535 1939 (has_LoadStore || offset == Type::OffsetBot)) {
kvn@2556 1940 for( VectorSetI j(ptset); j.test(); ++j ) {
kvn@1535 1941 set_escape_state(j.elem, PointsToNode::ArgEscape);
kvn@1535 1942 ptnode_adr(j.elem)->_scalar_replaceable = false;
kvn@1535 1943 }
kvn@1535 1944 }
kvn@1535 1945 }
kvn@1535 1946
duke@435 1947 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 1948
duke@435 1949 switch (call->Opcode()) {
kvn@500 1950 #ifdef ASSERT
duke@435 1951 case Op_Allocate:
duke@435 1952 case Op_AllocateArray:
duke@435 1953 case Op_Lock:
duke@435 1954 case Op_Unlock:
kvn@500 1955 assert(false, "should be done already");
duke@435 1956 break;
kvn@500 1957 #endif
kvn@1535 1958 case Op_CallLeaf:
kvn@500 1959 case Op_CallLeafNoFP:
kvn@500 1960 {
kvn@500 1961 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 1962 // Adjust escape state for outgoing arguments.
kvn@500 1963 const TypeTuple * d = call->tf()->domain();
kvn@500 1964 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1965 const Type* at = d->field_at(i);
kvn@500 1966 Node *arg = call->in(i)->uncast();
kvn@500 1967 const Type *aat = phase->type(arg);
kvn@1535 1968 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
kvn@1535 1969 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
kvn@1535 1970
kvn@500 1971 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 1972 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 1973 #ifdef ASSERT
kvn@1535 1974 if (!(call->Opcode() == Op_CallLeafNoFP &&
kvn@1535 1975 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1976 (strstr(call->as_CallLeaf()->_name, "arraycopy") != 0) ||
kvn@1535 1977 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1978 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
kvn@1535 1979 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
kvn@1535 1980 ) {
kvn@1535 1981 call->dump();
kvn@1535 1982 assert(false, "EA: unexpected CallLeaf");
kvn@1535 1983 }
kvn@1535 1984 #endif
kvn@500 1985 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1986 if (arg->is_AddP()) {
kvn@500 1987 //
kvn@500 1988 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 1989 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 1990 //
kvn@500 1991 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 1992 // pointer to the base (with offset) is passed as argument.
kvn@500 1993 //
kvn@500 1994 arg = get_addp_base(arg);
kvn@500 1995 }
kvn@2556 1996 for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
kvn@500 1997 uint pt = j.elem;
kvn@500 1998 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 1999 }
kvn@500 2000 }
kvn@500 2001 }
kvn@500 2002 break;
kvn@500 2003 }
duke@435 2004
duke@435 2005 case Op_CallStaticJava:
duke@435 2006 // For a static call, we know exactly what method is being called.
duke@435 2007 // Use bytecode estimator to record the call's escape affects
duke@435 2008 {
duke@435 2009 ciMethod *meth = call->as_CallJava()->method();
kvn@500 2010 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 2011 // fall-through if not a Java method or no analyzer information
kvn@500 2012 if (call_analyzer != NULL) {
duke@435 2013 const TypeTuple * d = call->tf()->domain();
kvn@500 2014 bool copy_dependencies = false;
duke@435 2015 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2016 const Type* at = d->field_at(i);
duke@435 2017 int k = i - TypeFunc::Parms;
kvn@1535 2018 Node *arg = call->in(i)->uncast();
duke@435 2019
kvn@1535 2020 if (at->isa_oopptr() != NULL &&
kvn@1571 2021 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) {
duke@435 2022
kvn@500 2023 bool global_escapes = false;
kvn@500 2024 bool fields_escapes = false;
kvn@500 2025 if (!call_analyzer->is_arg_stack(k)) {
duke@435 2026 // The argument global escapes, mark everything it could point to
kvn@500 2027 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 2028 global_escapes = true;
kvn@500 2029 } else {
kvn@500 2030 if (!call_analyzer->is_arg_local(k)) {
kvn@500 2031 // The argument itself doesn't escape, but any fields might
kvn@500 2032 fields_escapes = true;
kvn@500 2033 }
kvn@500 2034 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 2035 copy_dependencies = true;
kvn@500 2036 }
duke@435 2037
kvn@2556 2038 for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
kvn@500 2039 uint pt = j.elem;
kvn@500 2040 if (global_escapes) {
kvn@500 2041 //The argument global escapes, mark everything it could point to
duke@435 2042 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 2043 } else {
kvn@500 2044 if (fields_escapes) {
kvn@500 2045 // The argument itself doesn't escape, but any fields might
kvn@500 2046 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 2047 }
kvn@500 2048 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 2049 }
duke@435 2050 }
duke@435 2051 }
duke@435 2052 }
kvn@500 2053 if (copy_dependencies)
kvn@679 2054 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 2055 break;
duke@435 2056 }
duke@435 2057 }
duke@435 2058
duke@435 2059 default:
kvn@500 2060 // Fall-through here if not a Java method or no analyzer information
kvn@500 2061 // or some other type of call, assume the worst case: all arguments
duke@435 2062 // globally escape.
duke@435 2063 {
duke@435 2064 // adjust escape state for outgoing arguments
duke@435 2065 const TypeTuple * d = call->tf()->domain();
duke@435 2066 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2067 const Type* at = d->field_at(i);
duke@435 2068 if (at->isa_oopptr() != NULL) {
kvn@500 2069 Node *arg = call->in(i)->uncast();
kvn@500 2070 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@2556 2071 for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
duke@435 2072 uint pt = j.elem;
duke@435 2073 set_escape_state(pt, PointsToNode::GlobalEscape);
duke@435 2074 }
duke@435 2075 }
duke@435 2076 }
duke@435 2077 }
duke@435 2078 }
duke@435 2079 }
duke@435 2080 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
kvn@679 2081 CallNode *call = resproj->in(0)->as_Call();
kvn@679 2082 uint call_idx = call->_idx;
kvn@679 2083 uint resproj_idx = resproj->_idx;
duke@435 2084
duke@435 2085 switch (call->Opcode()) {
duke@435 2086 case Op_Allocate:
duke@435 2087 {
duke@435 2088 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2089 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
duke@435 2090 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 2091 ciKlass* cik = kt->klass();
duke@435 2092
kvn@500 2093 PointsToNode::EscapeState es;
kvn@500 2094 uint edge_to;
kvn@1894 2095 if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
kvn@1894 2096 !cik->is_instance_klass() || // StressReflectiveCode
kvn@1894 2097 cik->as_instance_klass()->has_finalizer()) {
kvn@500 2098 es = PointsToNode::GlobalEscape;
kvn@500 2099 edge_to = _phantom_object; // Could not be worse
duke@435 2100 } else {
kvn@500 2101 es = PointsToNode::NoEscape;
kvn@679 2102 edge_to = call_idx;
duke@435 2103 }
kvn@679 2104 set_escape_state(call_idx, es);
kvn@679 2105 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2106 _processed.set(resproj_idx);
duke@435 2107 break;
duke@435 2108 }
duke@435 2109
duke@435 2110 case Op_AllocateArray:
duke@435 2111 {
kvn@1894 2112
kvn@1894 2113 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2114 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
kvn@1894 2115 assert(kt != NULL, "TypeKlassPtr required.");
kvn@1894 2116 ciKlass* cik = kt->klass();
kvn@1894 2117
kvn@1894 2118 PointsToNode::EscapeState es;
kvn@1894 2119 uint edge_to;
kvn@1894 2120 if (!cik->is_array_klass()) { // StressReflectiveCode
kvn@1894 2121 es = PointsToNode::GlobalEscape;
kvn@1894 2122 edge_to = _phantom_object;
kvn@1894 2123 } else {
kvn@1894 2124 es = PointsToNode::NoEscape;
kvn@1894 2125 edge_to = call_idx;
kvn@1894 2126 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@1894 2127 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@1894 2128 // Not scalar replaceable if the length is not constant or too big.
kvn@1894 2129 ptnode_adr(call_idx)->_scalar_replaceable = false;
kvn@1894 2130 }
kvn@500 2131 }
kvn@1894 2132 set_escape_state(call_idx, es);
kvn@1894 2133 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2134 _processed.set(resproj_idx);
duke@435 2135 break;
duke@435 2136 }
duke@435 2137
duke@435 2138 case Op_CallStaticJava:
duke@435 2139 // For a static call, we know exactly what method is being called.
duke@435 2140 // Use bytecode estimator to record whether the call's return value escapes
duke@435 2141 {
kvn@500 2142 bool done = true;
duke@435 2143 const TypeTuple *r = call->tf()->range();
duke@435 2144 const Type* ret_type = NULL;
duke@435 2145
duke@435 2146 if (r->cnt() > TypeFunc::Parms)
duke@435 2147 ret_type = r->field_at(TypeFunc::Parms);
duke@435 2148
duke@435 2149 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2150 // _multianewarray functions return a TypeRawPtr.
kvn@500 2151 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@679 2152 _processed.set(resproj_idx);
duke@435 2153 break; // doesn't return a pointer type
kvn@500 2154 }
duke@435 2155 ciMethod *meth = call->as_CallJava()->method();
kvn@500 2156 const TypeTuple * d = call->tf()->domain();
duke@435 2157 if (meth == NULL) {
duke@435 2158 // not a Java method, assume global escape
kvn@679 2159 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2160 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2161 } else {
kvn@500 2162 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
kvn@500 2163 bool copy_dependencies = false;
duke@435 2164
kvn@500 2165 if (call_analyzer->is_return_allocated()) {
kvn@500 2166 // Returns a newly allocated unescaped object, simply
kvn@500 2167 // update dependency information.
kvn@500 2168 // Mark it as NoEscape so that objects referenced by
kvn@500 2169 // it's fields will be marked as NoEscape at least.
kvn@679 2170 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 2171 add_pointsto_edge(resproj_idx, call_idx);
kvn@500 2172 copy_dependencies = true;
kvn@679 2173 } else if (call_analyzer->is_return_local()) {
duke@435 2174 // determine whether any arguments are returned
kvn@679 2175 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@742 2176 bool ret_arg = false;
duke@435 2177 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2178 const Type* at = d->field_at(i);
duke@435 2179
duke@435 2180 if (at->isa_oopptr() != NULL) {
kvn@500 2181 Node *arg = call->in(i)->uncast();
duke@435 2182
kvn@500 2183 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@742 2184 ret_arg = true;
kvn@679 2185 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2186 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 2187 done = false;
kvn@500 2188 else if (arg_esp->node_type() == PointsToNode::JavaObject)
kvn@679 2189 add_pointsto_edge(resproj_idx, arg->_idx);
duke@435 2190 else
kvn@679 2191 add_deferred_edge(resproj_idx, arg->_idx);
duke@435 2192 arg_esp->_hidden_alias = true;
duke@435 2193 }
duke@435 2194 }
duke@435 2195 }
kvn@742 2196 if (done && !ret_arg) {
kvn@742 2197 // Returns unknown object.
kvn@742 2198 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@742 2199 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@742 2200 }
kvn@500 2201 copy_dependencies = true;
duke@435 2202 } else {
kvn@679 2203 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2204 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@500 2205 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 2206 const Type* at = d->field_at(i);
kvn@500 2207 if (at->isa_oopptr() != NULL) {
kvn@500 2208 Node *arg = call->in(i)->uncast();
kvn@679 2209 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2210 arg_esp->_hidden_alias = true;
kvn@500 2211 }
kvn@500 2212 }
duke@435 2213 }
kvn@500 2214 if (copy_dependencies)
kvn@679 2215 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 2216 }
kvn@500 2217 if (done)
kvn@679 2218 _processed.set(resproj_idx);
duke@435 2219 break;
duke@435 2220 }
duke@435 2221
duke@435 2222 default:
duke@435 2223 // Some other type of call, assume the worst case that the
duke@435 2224 // returned value, if any, globally escapes.
duke@435 2225 {
duke@435 2226 const TypeTuple *r = call->tf()->range();
duke@435 2227 if (r->cnt() > TypeFunc::Parms) {
duke@435 2228 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 2229
duke@435 2230 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2231 // _multianewarray functions return a TypeRawPtr.
duke@435 2232 if (ret_type->isa_ptr() != NULL) {
kvn@679 2233 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2234 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2235 }
duke@435 2236 }
kvn@679 2237 _processed.set(resproj_idx);
duke@435 2238 }
duke@435 2239 }
duke@435 2240 }
duke@435 2241
kvn@500 2242 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 2243 // connection graph edges (do not need to check the node_type of inputs
kvn@500 2244 // or to call PointsTo() to walk the connection graph).
kvn@500 2245 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 2246 if (_processed.test(n->_idx))
kvn@500 2247 return; // No need to redefine node's state.
kvn@500 2248
kvn@500 2249 if (n->is_Call()) {
kvn@500 2250 // Arguments to allocation and locking don't escape.
kvn@500 2251 if (n->is_Allocate()) {
kvn@500 2252 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 2253 record_for_optimizer(n);
kvn@500 2254 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 2255 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 2256 // the first IGVN optimization when escape information is still available.
kvn@500 2257 record_for_optimizer(n);
kvn@500 2258 _processed.set(n->_idx);
kvn@500 2259 } else {
kvn@1535 2260 // Don't mark as processed since call's arguments have to be processed.
kvn@500 2261 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@1535 2262 PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
kvn@500 2263
kvn@500 2264 // Check if a call returns an object.
kvn@500 2265 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@1535 2266 if (r->cnt() > TypeFunc::Parms &&
kvn@1535 2267 r->field_at(TypeFunc::Parms)->isa_ptr() &&
kvn@500 2268 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@1535 2269 nt = PointsToNode::JavaObject;
kvn@1535 2270 if (!n->is_CallStaticJava()) {
kvn@1535 2271 // Since the called mathod is statically unknown assume
kvn@1535 2272 // the worst case that the returned value globally escapes.
kvn@1535 2273 es = PointsToNode::GlobalEscape;
kvn@500 2274 }
duke@435 2275 }
kvn@1535 2276 add_node(n, nt, es, false);
duke@435 2277 }
kvn@500 2278 return;
duke@435 2279 }
kvn@500 2280
kvn@500 2281 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 2282 // ThreadLocal has RawPrt type.
kvn@500 2283 switch (n->Opcode()) {
kvn@500 2284 case Op_AddP:
kvn@500 2285 {
kvn@500 2286 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 2287 break;
kvn@500 2288 }
kvn@500 2289 case Op_CastX2P:
kvn@500 2290 { // "Unsafe" memory access.
kvn@500 2291 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2292 break;
kvn@500 2293 }
kvn@500 2294 case Op_CastPP:
kvn@500 2295 case Op_CheckCastPP:
kvn@559 2296 case Op_EncodeP:
kvn@559 2297 case Op_DecodeN:
kvn@500 2298 {
kvn@500 2299 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2300 int ti = n->in(1)->_idx;
kvn@679 2301 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2302 if (nt == PointsToNode::UnknownType) {
kvn@500 2303 _delayed_worklist.push(n); // Process it later.
kvn@500 2304 break;
kvn@500 2305 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2306 add_pointsto_edge(n->_idx, ti);
kvn@500 2307 } else {
kvn@500 2308 add_deferred_edge(n->_idx, ti);
kvn@500 2309 }
kvn@500 2310 _processed.set(n->_idx);
kvn@500 2311 break;
kvn@500 2312 }
kvn@500 2313 case Op_ConP:
kvn@500 2314 {
kvn@500 2315 // assume all pointer constants globally escape except for null
kvn@500 2316 PointsToNode::EscapeState es;
kvn@500 2317 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 2318 es = PointsToNode::NoEscape;
kvn@500 2319 else
kvn@500 2320 es = PointsToNode::GlobalEscape;
kvn@500 2321
kvn@500 2322 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 2323 break;
kvn@500 2324 }
coleenp@548 2325 case Op_ConN:
coleenp@548 2326 {
coleenp@548 2327 // assume all narrow oop constants globally escape except for null
coleenp@548 2328 PointsToNode::EscapeState es;
coleenp@548 2329 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 2330 es = PointsToNode::NoEscape;
coleenp@548 2331 else
coleenp@548 2332 es = PointsToNode::GlobalEscape;
coleenp@548 2333
coleenp@548 2334 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 2335 break;
coleenp@548 2336 }
kvn@559 2337 case Op_CreateEx:
kvn@559 2338 {
kvn@559 2339 // assume that all exception objects globally escape
kvn@559 2340 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@559 2341 break;
kvn@559 2342 }
kvn@500 2343 case Op_LoadKlass:
kvn@599 2344 case Op_LoadNKlass:
kvn@500 2345 {
kvn@500 2346 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2347 break;
kvn@500 2348 }
kvn@500 2349 case Op_LoadP:
coleenp@548 2350 case Op_LoadN:
kvn@500 2351 {
kvn@500 2352 const Type *t = phase->type(n);
kvn@688 2353 if (t->make_ptr() == NULL) {
kvn@500 2354 _processed.set(n->_idx);
kvn@500 2355 return;
kvn@500 2356 }
kvn@500 2357 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2358 break;
kvn@500 2359 }
kvn@500 2360 case Op_Parm:
kvn@500 2361 {
kvn@500 2362 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 2363 uint con = n->as_Proj()->_con;
kvn@500 2364 if (con < TypeFunc::Parms)
kvn@500 2365 return;
kvn@500 2366 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 2367 if (t->isa_ptr() == NULL)
kvn@500 2368 return;
kvn@500 2369 // We have to assume all input parameters globally escape
kvn@500 2370 // (Note: passing 'false' since _processed is already set).
kvn@500 2371 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 2372 break;
kvn@500 2373 }
kvn@500 2374 case Op_Phi:
kvn@500 2375 {
kvn@688 2376 const Type *t = n->as_Phi()->type();
kvn@688 2377 if (t->make_ptr() == NULL) {
kvn@688 2378 // nothing to do if not an oop or narrow oop
kvn@500 2379 _processed.set(n->_idx);
kvn@500 2380 return;
kvn@500 2381 }
kvn@500 2382 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2383 uint i;
kvn@500 2384 for (i = 1; i < n->req() ; i++) {
kvn@500 2385 Node* in = n->in(i);
kvn@500 2386 if (in == NULL)
kvn@500 2387 continue; // ignore NULL
kvn@500 2388 in = in->uncast();
kvn@500 2389 if (in->is_top() || in == n)
kvn@500 2390 continue; // ignore top or inputs which go back this node
kvn@500 2391 int ti = in->_idx;
kvn@679 2392 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2393 if (nt == PointsToNode::UnknownType) {
kvn@500 2394 break;
kvn@500 2395 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2396 add_pointsto_edge(n->_idx, ti);
kvn@500 2397 } else {
kvn@500 2398 add_deferred_edge(n->_idx, ti);
kvn@500 2399 }
kvn@500 2400 }
kvn@500 2401 if (i >= n->req())
kvn@500 2402 _processed.set(n->_idx);
kvn@500 2403 else
kvn@500 2404 _delayed_worklist.push(n);
kvn@500 2405 break;
kvn@500 2406 }
kvn@500 2407 case Op_Proj:
kvn@500 2408 {
kvn@1535 2409 // we are only interested in the oop result projection from a call
kvn@500 2410 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2411 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2412 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2413 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2414 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@1535 2415 int ti = n->in(0)->_idx;
kvn@1535 2416 // The call may not be registered yet (since not all its inputs are registered)
kvn@1535 2417 // if this is the projection from backbranch edge of Phi.
kvn@1535 2418 if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
kvn@1535 2419 process_call_result(n->as_Proj(), phase);
kvn@1535 2420 }
kvn@1535 2421 if (!_processed.test(n->_idx)) {
kvn@1535 2422 // The call's result may need to be processed later if the call
kvn@1535 2423 // returns it's argument and the argument is not processed yet.
kvn@1535 2424 _delayed_worklist.push(n);
kvn@1535 2425 }
kvn@1535 2426 break;
kvn@500 2427 }
kvn@500 2428 }
kvn@1535 2429 _processed.set(n->_idx);
kvn@500 2430 break;
kvn@500 2431 }
kvn@500 2432 case Op_Return:
kvn@500 2433 {
kvn@500 2434 if( n->req() > TypeFunc::Parms &&
kvn@500 2435 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2436 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 2437 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 2438 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2439 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2440 if (nt == PointsToNode::UnknownType) {
kvn@500 2441 _delayed_worklist.push(n); // Process it later.
kvn@500 2442 break;
kvn@500 2443 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2444 add_pointsto_edge(n->_idx, ti);
kvn@500 2445 } else {
kvn@500 2446 add_deferred_edge(n->_idx, ti);
kvn@500 2447 }
kvn@500 2448 }
kvn@500 2449 _processed.set(n->_idx);
kvn@500 2450 break;
kvn@500 2451 }
kvn@500 2452 case Op_StoreP:
coleenp@548 2453 case Op_StoreN:
kvn@500 2454 {
kvn@500 2455 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2456 adr_type = adr_type->make_ptr();
kvn@500 2457 if (adr_type->isa_oopptr()) {
kvn@500 2458 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2459 } else {
kvn@500 2460 Node* adr = n->in(MemNode::Address);
kvn@500 2461 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 2462 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2463 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2464 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2465 // We are computing a raw address for a store captured
kvn@500 2466 // by an Initialize compute an appropriate address type.
kvn@500 2467 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2468 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2469 } else {
kvn@500 2470 _processed.set(n->_idx);
kvn@500 2471 return;
kvn@500 2472 }
kvn@500 2473 }
kvn@500 2474 break;
kvn@500 2475 }
kvn@500 2476 case Op_StorePConditional:
kvn@500 2477 case Op_CompareAndSwapP:
coleenp@548 2478 case Op_CompareAndSwapN:
kvn@500 2479 {
kvn@500 2480 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2481 adr_type = adr_type->make_ptr();
kvn@500 2482 if (adr_type->isa_oopptr()) {
kvn@500 2483 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2484 } else {
kvn@500 2485 _processed.set(n->_idx);
kvn@500 2486 return;
kvn@500 2487 }
kvn@500 2488 break;
kvn@500 2489 }
kvn@1535 2490 case Op_AryEq:
kvn@1535 2491 case Op_StrComp:
kvn@1535 2492 case Op_StrEquals:
kvn@1535 2493 case Op_StrIndexOf:
kvn@1535 2494 {
kvn@1535 2495 // char[] arrays passed to string intrinsics are not scalar replaceable.
kvn@1535 2496 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@1535 2497 break;
kvn@1535 2498 }
kvn@500 2499 case Op_ThreadLocal:
kvn@500 2500 {
kvn@500 2501 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 2502 break;
kvn@500 2503 }
kvn@500 2504 default:
kvn@500 2505 ;
kvn@500 2506 // nothing to do
kvn@500 2507 }
kvn@500 2508 return;
duke@435 2509 }
duke@435 2510
kvn@500 2511 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@679 2512 uint n_idx = n->_idx;
kvn@1535 2513 assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
kvn@679 2514
kvn@500 2515 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 2516 // they may need more then one pass to process.
kvn@2276 2517 // Also don't mark as processed Call nodes since their
kvn@2276 2518 // arguments may need more then one pass to process.
kvn@679 2519 if (_processed.test(n_idx))
kvn@500 2520 return; // No need to redefine node's state.
duke@435 2521
duke@435 2522 if (n->is_Call()) {
duke@435 2523 CallNode *call = n->as_Call();
duke@435 2524 process_call_arguments(call, phase);
duke@435 2525 return;
duke@435 2526 }
duke@435 2527
kvn@500 2528 switch (n->Opcode()) {
duke@435 2529 case Op_AddP:
duke@435 2530 {
kvn@500 2531 Node *base = get_addp_base(n);
kvn@500 2532 // Create a field edge to this node from everything base could point to.
kvn@2556 2533 for( VectorSetI i(PointsTo(base)); i.test(); ++i ) {
duke@435 2534 uint pt = i.elem;
kvn@679 2535 add_field_edge(pt, n_idx, address_offset(n, phase));
kvn@500 2536 }
kvn@500 2537 break;
kvn@500 2538 }
kvn@500 2539 case Op_CastX2P:
kvn@500 2540 {
kvn@500 2541 assert(false, "Op_CastX2P");
kvn@500 2542 break;
kvn@500 2543 }
kvn@500 2544 case Op_CastPP:
kvn@500 2545 case Op_CheckCastPP:
coleenp@548 2546 case Op_EncodeP:
coleenp@548 2547 case Op_DecodeN:
kvn@500 2548 {
kvn@500 2549 int ti = n->in(1)->_idx;
kvn@1535 2550 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
kvn@679 2551 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2552 add_pointsto_edge(n_idx, ti);
kvn@500 2553 } else {
kvn@679 2554 add_deferred_edge(n_idx, ti);
kvn@500 2555 }
kvn@679 2556 _processed.set(n_idx);
kvn@500 2557 break;
kvn@500 2558 }
kvn@500 2559 case Op_ConP:
kvn@500 2560 {
kvn@500 2561 assert(false, "Op_ConP");
kvn@500 2562 break;
kvn@500 2563 }
kvn@598 2564 case Op_ConN:
kvn@598 2565 {
kvn@598 2566 assert(false, "Op_ConN");
kvn@598 2567 break;
kvn@598 2568 }
kvn@500 2569 case Op_CreateEx:
kvn@500 2570 {
kvn@500 2571 assert(false, "Op_CreateEx");
kvn@500 2572 break;
kvn@500 2573 }
kvn@500 2574 case Op_LoadKlass:
kvn@599 2575 case Op_LoadNKlass:
kvn@500 2576 {
kvn@500 2577 assert(false, "Op_LoadKlass");
kvn@500 2578 break;
kvn@500 2579 }
kvn@500 2580 case Op_LoadP:
kvn@559 2581 case Op_LoadN:
kvn@500 2582 {
kvn@500 2583 const Type *t = phase->type(n);
kvn@500 2584 #ifdef ASSERT
kvn@688 2585 if (t->make_ptr() == NULL)
kvn@500 2586 assert(false, "Op_LoadP");
kvn@500 2587 #endif
kvn@500 2588
kvn@500 2589 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 2590 Node* adr_base;
kvn@500 2591 if (adr->is_AddP()) {
kvn@500 2592 adr_base = get_addp_base(adr);
kvn@500 2593 } else {
kvn@500 2594 adr_base = adr;
kvn@500 2595 }
kvn@500 2596
kvn@500 2597 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 2598 // this node to each field with the same offset.
kvn@500 2599 int offset = address_offset(adr, phase);
kvn@2556 2600 for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
kvn@500 2601 uint pt = i.elem;
kvn@679 2602 add_deferred_edge_to_fields(n_idx, pt, offset);
duke@435 2603 }
duke@435 2604 break;
duke@435 2605 }
duke@435 2606 case Op_Parm:
duke@435 2607 {
kvn@500 2608 assert(false, "Op_Parm");
kvn@500 2609 break;
kvn@500 2610 }
kvn@500 2611 case Op_Phi:
kvn@500 2612 {
kvn@500 2613 #ifdef ASSERT
kvn@688 2614 const Type *t = n->as_Phi()->type();
kvn@688 2615 if (t->make_ptr() == NULL)
kvn@500 2616 assert(false, "Op_Phi");
kvn@500 2617 #endif
kvn@500 2618 for (uint i = 1; i < n->req() ; i++) {
kvn@500 2619 Node* in = n->in(i);
kvn@500 2620 if (in == NULL)
kvn@500 2621 continue; // ignore NULL
kvn@500 2622 in = in->uncast();
kvn@500 2623 if (in->is_top() || in == n)
kvn@500 2624 continue; // ignore top or inputs which go back this node
kvn@500 2625 int ti = in->_idx;
kvn@742 2626 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@742 2627 assert(nt != PointsToNode::UnknownType, "all nodes should be known");
kvn@742 2628 if (nt == PointsToNode::JavaObject) {
kvn@679 2629 add_pointsto_edge(n_idx, ti);
kvn@500 2630 } else {
kvn@679 2631 add_deferred_edge(n_idx, ti);
kvn@500 2632 }
duke@435 2633 }
kvn@679 2634 _processed.set(n_idx);
duke@435 2635 break;
duke@435 2636 }
kvn@500 2637 case Op_Proj:
duke@435 2638 {
kvn@1535 2639 // we are only interested in the oop result projection from a call
kvn@500 2640 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2641 assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
kvn@1535 2642 "all nodes should be registered");
kvn@1535 2643 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2644 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2645 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2646 process_call_result(n->as_Proj(), phase);
kvn@1535 2647 assert(_processed.test(n_idx), "all call results should be processed");
kvn@1535 2648 break;
kvn@1535 2649 }
kvn@500 2650 }
kvn@1535 2651 assert(false, "Op_Proj");
duke@435 2652 break;
duke@435 2653 }
kvn@500 2654 case Op_Return:
duke@435 2655 {
kvn@500 2656 #ifdef ASSERT
kvn@500 2657 if( n->req() <= TypeFunc::Parms ||
kvn@500 2658 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2659 assert(false, "Op_Return");
kvn@500 2660 }
kvn@500 2661 #endif
kvn@500 2662 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@1535 2663 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
kvn@679 2664 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2665 add_pointsto_edge(n_idx, ti);
kvn@500 2666 } else {
kvn@679 2667 add_deferred_edge(n_idx, ti);
kvn@500 2668 }
kvn@679 2669 _processed.set(n_idx);
duke@435 2670 break;
duke@435 2671 }
duke@435 2672 case Op_StoreP:
kvn@559 2673 case Op_StoreN:
duke@435 2674 case Op_StorePConditional:
duke@435 2675 case Op_CompareAndSwapP:
kvn@559 2676 case Op_CompareAndSwapN:
duke@435 2677 {
duke@435 2678 Node *adr = n->in(MemNode::Address);
kvn@656 2679 const Type *adr_type = phase->type(adr)->make_ptr();
kvn@500 2680 #ifdef ASSERT
duke@435 2681 if (!adr_type->isa_oopptr())
kvn@500 2682 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2683 #endif
duke@435 2684
kvn@500 2685 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2686 Node *adr_base = get_addp_base(adr);
kvn@500 2687 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@500 2688 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2689 // to "val" from each field with the same offset.
kvn@2556 2690 for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
duke@435 2691 uint pt = i.elem;
kvn@500 2692 add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
duke@435 2693 }
duke@435 2694 break;
duke@435 2695 }
kvn@1535 2696 case Op_AryEq:
kvn@1535 2697 case Op_StrComp:
kvn@1535 2698 case Op_StrEquals:
kvn@1535 2699 case Op_StrIndexOf:
kvn@1535 2700 {
kvn@1535 2701 // char[] arrays passed to string intrinsic do not escape but
kvn@1535 2702 // they are not scalar replaceable. Adjust escape state for them.
kvn@1535 2703 // Start from in(2) edge since in(1) is memory edge.
kvn@1535 2704 for (uint i = 2; i < n->req(); i++) {
kvn@1535 2705 Node* adr = n->in(i)->uncast();
kvn@1535 2706 const Type *at = phase->type(adr);
kvn@1535 2707 if (!adr->is_top() && at->isa_ptr()) {
kvn@1535 2708 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
kvn@1535 2709 at->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 2710 if (adr->is_AddP()) {
kvn@1535 2711 adr = get_addp_base(adr);
kvn@1535 2712 }
kvn@1535 2713 // Mark as ArgEscape everything "adr" could point to.
kvn@1535 2714 set_escape_state(adr->_idx, PointsToNode::ArgEscape);
kvn@1535 2715 }
kvn@1535 2716 }
kvn@1535 2717 _processed.set(n_idx);
kvn@1535 2718 break;
kvn@1535 2719 }
kvn@500 2720 case Op_ThreadLocal:
duke@435 2721 {
kvn@500 2722 assert(false, "Op_ThreadLocal");
duke@435 2723 break;
duke@435 2724 }
duke@435 2725 default:
kvn@1535 2726 // This method should be called only for EA specific nodes.
kvn@1535 2727 ShouldNotReachHere();
duke@435 2728 }
duke@435 2729 }
duke@435 2730
duke@435 2731 #ifndef PRODUCT
duke@435 2732 void ConnectionGraph::dump() {
duke@435 2733 bool first = true;
duke@435 2734
kvn@679 2735 uint size = nodes_size();
kvn@500 2736 for (uint ni = 0; ni < size; ni++) {
kvn@679 2737 PointsToNode *ptn = ptnode_adr(ni);
kvn@500 2738 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2739
kvn@500 2740 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2741 continue;
kvn@1989 2742 PointsToNode::EscapeState es = escape_state(ptn->_node);
kvn@500 2743 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2744 if (first) {
kvn@500 2745 tty->cr();
kvn@500 2746 tty->print("======== Connection graph for ");
kvn@679 2747 _compile->method()->print_short_name();
kvn@500 2748 tty->cr();
kvn@500 2749 first = false;
kvn@500 2750 }
kvn@500 2751 tty->print("%6d ", ni);
kvn@500 2752 ptn->dump();
kvn@500 2753 // Print all locals which reference this allocation
kvn@500 2754 for (uint li = ni; li < size; li++) {
kvn@679 2755 PointsToNode *ptn_loc = ptnode_adr(li);
kvn@500 2756 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2757 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2758 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@688 2759 ptnode_adr(li)->dump(false);
duke@435 2760 }
duke@435 2761 }
kvn@500 2762 if (Verbose) {
kvn@500 2763 // Print all fields which reference this allocation
kvn@500 2764 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2765 uint ei = ptn->edge_target(i);
kvn@688 2766 ptnode_adr(ei)->dump(false);
kvn@500 2767 }
kvn@500 2768 }
kvn@500 2769 tty->cr();
duke@435 2770 }
duke@435 2771 }
duke@435 2772 }
duke@435 2773 #endif

mercurial