src/cpu/sparc/vm/interp_masm_sparc.cpp

Tue, 09 Mar 2010 20:16:19 +0100

author
twisti
date
Tue, 09 Mar 2010 20:16:19 +0100
changeset 1730
3cf667df43ef
parent 1686
576e77447e3c
child 1858
c640000b7cc1
permissions
-rw-r--r--

6919934: JSR 292 needs to support x86 C1
Summary: This implements JSR 292 support for C1 x86.
Reviewed-by: never, jrose, kvn

     1 /*
     2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interp_masm_sparc.cpp.incl"
    28 #ifndef CC_INTERP
    29 #ifndef FAST_DISPATCH
    30 #define FAST_DISPATCH 1
    31 #endif
    32 #undef FAST_DISPATCH
    34 // Implementation of InterpreterMacroAssembler
    36 // This file specializes the assember with interpreter-specific macros
    38 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
    39 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
    41 #else // CC_INTERP
    42 #ifndef STATE
    43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
    44 #endif // STATE
    46 #endif // CC_INTERP
    48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
    49   // Note: this algorithm is also used by C1's OSR entry sequence.
    50   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
    51   assert_different_registers(args_size, locals_size);
    52   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
    53   if (TaggedStackInterpreter) sll(locals_size, 1, locals_size);
    54   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
    55   // Use br/mov combination because it works on both V8 and V9 and is
    56   // faster.
    57   Label skip_move;
    58   br(Assembler::negative, true, Assembler::pt, skip_move);
    59   delayed()->mov(G0, delta);
    60   bind(skip_move);
    61   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
    62   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
    63 }
    65 #ifndef CC_INTERP
    67 // Dispatch code executed in the prolog of a bytecode which does not do it's
    68 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
    69 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
    70   assert_not_delayed();
    71 #ifdef FAST_DISPATCH
    72   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
    73   // they both use I2.
    74   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
    75   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
    76   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
    77                                                         // add offset to correct dispatch table
    78   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
    79   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
    80 #else
    81   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
    82   // dispatch table to use
    83   AddressLiteral tbl(Interpreter::dispatch_table(state));
    84   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
    85   set(tbl, G3_scratch);                                 // compute addr of table
    86   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
    87 #endif
    88 }
    91 // Dispatch code executed in the epilog of a bytecode which does not do it's
    92 // own dispatch. The dispatch address in IdispatchAddress is used for the
    93 // dispatch.
    94 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
    95   assert_not_delayed();
    96   verify_FPU(1, state);
    97   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
    98   jmp( IdispatchAddress, 0 );
    99   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   100   else                delayed()->nop();
   101 }
   104 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
   105   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   106   assert_not_delayed();
   107   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   108   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
   109 }
   112 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
   113   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   114   assert_not_delayed();
   115   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   116   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
   117 }
   120 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   121   // load current bytecode
   122   assert_not_delayed();
   123   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
   124   dispatch_base(state, table);
   125 }
   128 void InterpreterMacroAssembler::call_VM_leaf_base(
   129   Register java_thread,
   130   address  entry_point,
   131   int      number_of_arguments
   132 ) {
   133   if (!java_thread->is_valid())
   134     java_thread = L7_thread_cache;
   135   // super call
   136   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
   137 }
   140 void InterpreterMacroAssembler::call_VM_base(
   141   Register        oop_result,
   142   Register        java_thread,
   143   Register        last_java_sp,
   144   address         entry_point,
   145   int             number_of_arguments,
   146   bool            check_exception
   147 ) {
   148   if (!java_thread->is_valid())
   149     java_thread = L7_thread_cache;
   150   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
   151   // takes responsibility for setting its own thread-state on call-out.
   152   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
   154   //save_bcp();                                  // save bcp
   155   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
   156   //restore_bcp();                               // restore bcp
   157   //restore_locals();                            // restore locals pointer
   158 }
   161 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
   162   if (JvmtiExport::can_pop_frame()) {
   163     Label L;
   165     // Check the "pending popframe condition" flag in the current thread
   166     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
   168     // Initiate popframe handling only if it is not already being processed.  If the flag
   169     // has the popframe_processing bit set, it means that this code is called *during* popframe
   170     // handling - we don't want to reenter.
   171     btst(JavaThread::popframe_pending_bit, scratch_reg);
   172     br(zero, false, pt, L);
   173     delayed()->nop();
   174     btst(JavaThread::popframe_processing_bit, scratch_reg);
   175     br(notZero, false, pt, L);
   176     delayed()->nop();
   178     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   179     // address of the same-named entrypoint in the generated interpreter code.
   180     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   182     // Jump to Interpreter::_remove_activation_preserving_args_entry
   183     jmpl(O0, G0, G0);
   184     delayed()->nop();
   185     bind(L);
   186   }
   187 }
   190 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   191   Register thr_state = G4_scratch;
   192   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   193   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
   194   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
   195   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
   196   switch (state) {
   197   case ltos: ld_long(val_addr, Otos_l);                   break;
   198   case atos: ld_ptr(oop_addr, Otos_l);
   199              st_ptr(G0, oop_addr);                        break;
   200   case btos:                                           // fall through
   201   case ctos:                                           // fall through
   202   case stos:                                           // fall through
   203   case itos: ld(val_addr, Otos_l1);                       break;
   204   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
   205   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
   206   case vtos: /* nothing to do */                          break;
   207   default  : ShouldNotReachHere();
   208   }
   209   // Clean up tos value in the jvmti thread state
   210   or3(G0, ilgl, G3_scratch);
   211   stw(G3_scratch, tos_addr);
   212   st_long(G0, val_addr);
   213   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   214 }
   217 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
   218   if (JvmtiExport::can_force_early_return()) {
   219     Label L;
   220     Register thr_state = G3_scratch;
   221     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   222     tst(thr_state);
   223     br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
   224     delayed()->nop();
   226     // Initiate earlyret handling only if it is not already being processed.
   227     // If the flag has the earlyret_processing bit set, it means that this code
   228     // is called *during* earlyret handling - we don't want to reenter.
   229     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
   230     cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
   231     br(Assembler::notEqual, false, pt, L);
   232     delayed()->nop();
   234     // Call Interpreter::remove_activation_early_entry() to get the address of the
   235     // same-named entrypoint in the generated interpreter code
   236     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
   237     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
   239     // Jump to Interpreter::_remove_activation_early_entry
   240     jmpl(O0, G0, G0);
   241     delayed()->nop();
   242     bind(L);
   243   }
   244 }
   247 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
   248   mov(arg_1, O0);
   249   mov(arg_2, O1);
   250   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
   251 }
   252 #endif /* CC_INTERP */
   255 #ifndef CC_INTERP
   257 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
   258   assert_not_delayed();
   259   dispatch_Lbyte_code(state, table);
   260 }
   263 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
   264   dispatch_base(state, Interpreter::normal_table(state));
   265 }
   268 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   269   dispatch_base(state, Interpreter::dispatch_table(state));
   270 }
   273 // common code to dispatch and dispatch_only
   274 // dispatch value in Lbyte_code and increment Lbcp
   276 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
   277   verify_FPU(1, state);
   278   // %%%%% maybe implement +VerifyActivationFrameSize here
   279   //verify_thread(); //too slow; we will just verify on method entry & exit
   280   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   281 #ifdef FAST_DISPATCH
   282   if (table == Interpreter::dispatch_table(state)) {
   283     // use IdispatchTables
   284     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
   285                                                         // add offset to correct dispatch table
   286     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   287     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
   288   } else {
   289 #endif
   290     // dispatch table to use
   291     AddressLiteral tbl(table);
   292     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   293     set(tbl, G3_scratch);                               // compute addr of table
   294     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
   295 #ifdef FAST_DISPATCH
   296   }
   297 #endif
   298   jmp( G3_scratch, 0 );
   299   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   300   else                delayed()->nop();
   301 }
   304 // Helpers for expression stack
   306 // Longs and doubles are Category 2 computational types in the
   307 // JVM specification (section 3.11.1) and take 2 expression stack or
   308 // local slots.
   309 // Aligning them on 32 bit with tagged stacks is hard because the code generated
   310 // for the dup* bytecodes depends on what types are already on the stack.
   311 // If the types are split into the two stack/local slots, that is much easier
   312 // (and we can use 0 for non-reference tags).
   314 // Known good alignment in _LP64 but unknown otherwise
   315 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
   316   assert_not_delayed();
   318 #ifdef _LP64
   319   ldf(FloatRegisterImpl::D, r1, offset, d);
   320 #else
   321   ldf(FloatRegisterImpl::S, r1, offset, d);
   322   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize(), d->successor());
   323 #endif
   324 }
   326 // Known good alignment in _LP64 but unknown otherwise
   327 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
   328   assert_not_delayed();
   330 #ifdef _LP64
   331   stf(FloatRegisterImpl::D, d, r1, offset);
   332   // store something more useful here
   333   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
   334 #else
   335   stf(FloatRegisterImpl::S, d, r1, offset);
   336   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize());
   337 #endif
   338 }
   341 // Known good alignment in _LP64 but unknown otherwise
   342 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
   343   assert_not_delayed();
   344 #ifdef _LP64
   345   ldx(r1, offset, rd);
   346 #else
   347   ld(r1, offset, rd);
   348   ld(r1, offset + Interpreter::stackElementSize(), rd->successor());
   349 #endif
   350 }
   352 // Known good alignment in _LP64 but unknown otherwise
   353 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
   354   assert_not_delayed();
   356 #ifdef _LP64
   357   stx(l, r1, offset);
   358   // store something more useful here
   359   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
   360 #else
   361   st(l, r1, offset);
   362   st(l->successor(), r1, offset + Interpreter::stackElementSize());
   363 #endif
   364 }
   366 #ifdef ASSERT
   367 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t,
   368                                                  Register r,
   369                                                  Register scratch) {
   370   if (TaggedStackInterpreter) {
   371     Label ok, long_ok;
   372     ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(0), r);
   373     if (t == frame::TagCategory2) {
   374       cmp(r, G0);
   375       brx(Assembler::equal, false, Assembler::pt, long_ok);
   376       delayed()->ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(1), r);
   377       stop("stack long/double tag value bad");
   378       bind(long_ok);
   379       cmp(r, G0);
   380     } else if (t == frame::TagValue) {
   381       cmp(r, G0);
   382     } else {
   383       assert_different_registers(r, scratch);
   384       mov(t, scratch);
   385       cmp(r, scratch);
   386     }
   387     brx(Assembler::equal, false, Assembler::pt, ok);
   388     delayed()->nop();
   389     // Also compare if the stack value is zero, then the tag might
   390     // not have been set coming from deopt.
   391     ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   392     cmp(r, G0);
   393     brx(Assembler::equal, false, Assembler::pt, ok);
   394     delayed()->nop();
   395     stop("Stack tag value is bad");
   396     bind(ok);
   397   }
   398 }
   399 #endif // ASSERT
   401 void InterpreterMacroAssembler::pop_i(Register r) {
   402   assert_not_delayed();
   403   // Uses destination register r for scratch
   404   debug_only(verify_stack_tag(frame::TagValue, r));
   405   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   406   inc(Lesp, Interpreter::stackElementSize());
   407   debug_only(verify_esp(Lesp));
   408 }
   410 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
   411   assert_not_delayed();
   412   // Uses destination register r for scratch
   413   debug_only(verify_stack_tag(frame::TagReference, r, scratch));
   414   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   415   inc(Lesp, Interpreter::stackElementSize());
   416   debug_only(verify_esp(Lesp));
   417 }
   419 void InterpreterMacroAssembler::pop_l(Register r) {
   420   assert_not_delayed();
   421   // Uses destination register r for scratch
   422   debug_only(verify_stack_tag(frame::TagCategory2, r));
   423   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   424   inc(Lesp, 2*Interpreter::stackElementSize());
   425   debug_only(verify_esp(Lesp));
   426 }
   429 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
   430   assert_not_delayed();
   431   debug_only(verify_stack_tag(frame::TagValue, scratch));
   432   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
   433   inc(Lesp, Interpreter::stackElementSize());
   434   debug_only(verify_esp(Lesp));
   435 }
   438 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
   439   assert_not_delayed();
   440   debug_only(verify_stack_tag(frame::TagCategory2, scratch));
   441   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
   442   inc(Lesp, 2*Interpreter::stackElementSize());
   443   debug_only(verify_esp(Lesp));
   444 }
   447 // (Note use register first, then decrement so dec can be done during store stall)
   448 void InterpreterMacroAssembler::tag_stack(Register r) {
   449   if (TaggedStackInterpreter) {
   450     st_ptr(r, Lesp, Interpreter::tag_offset_in_bytes());
   451   }
   452 }
   454 void InterpreterMacroAssembler::tag_stack(frame::Tag t, Register r) {
   455   if (TaggedStackInterpreter) {
   456     assert (frame::TagValue == 0, "TagValue must be zero");
   457     if (t == frame::TagValue) {
   458       st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
   459     } else if (t == frame::TagCategory2) {
   460       st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
   461       // Tag next slot down too
   462       st_ptr(G0, Lesp, -Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes());
   463     } else {
   464       assert_different_registers(r, O3);
   465       mov(t, O3);
   466       st_ptr(O3, Lesp, Interpreter::tag_offset_in_bytes());
   467     }
   468   }
   469 }
   471 void InterpreterMacroAssembler::push_i(Register r) {
   472   assert_not_delayed();
   473   debug_only(verify_esp(Lesp));
   474   tag_stack(frame::TagValue, r);
   475   st(  r,    Lesp, Interpreter::value_offset_in_bytes());
   476   dec( Lesp, Interpreter::stackElementSize());
   477 }
   479 void InterpreterMacroAssembler::push_ptr(Register r) {
   480   assert_not_delayed();
   481   tag_stack(frame::TagReference, r);
   482   st_ptr(  r,    Lesp, Interpreter::value_offset_in_bytes());
   483   dec( Lesp, Interpreter::stackElementSize());
   484 }
   486 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
   487   assert_not_delayed();
   488   tag_stack(tag);
   489   st_ptr(r, Lesp, Interpreter::value_offset_in_bytes());
   490   dec( Lesp, Interpreter::stackElementSize());
   491 }
   493 // remember: our convention for longs in SPARC is:
   494 // O0 (Otos_l1) has high-order part in first word,
   495 // O1 (Otos_l2) has low-order part in second word
   497 void InterpreterMacroAssembler::push_l(Register r) {
   498   assert_not_delayed();
   499   debug_only(verify_esp(Lesp));
   500   tag_stack(frame::TagCategory2, r);
   501   // Longs are in stored in memory-correct order, even if unaligned.
   502   // and may be separated by stack tags.
   503   int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
   504   store_unaligned_long(r, Lesp, offset);
   505   dec(Lesp, 2 * Interpreter::stackElementSize());
   506 }
   509 void InterpreterMacroAssembler::push_f(FloatRegister f) {
   510   assert_not_delayed();
   511   debug_only(verify_esp(Lesp));
   512   tag_stack(frame::TagValue, Otos_i);
   513   stf(FloatRegisterImpl::S, f, Lesp, Interpreter::value_offset_in_bytes());
   514   dec(Lesp, Interpreter::stackElementSize());
   515 }
   518 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
   519   assert_not_delayed();
   520   debug_only(verify_esp(Lesp));
   521   tag_stack(frame::TagCategory2, Otos_i);
   522   // Longs are in stored in memory-correct order, even if unaligned.
   523   // and may be separated by stack tags.
   524   int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
   525   store_unaligned_double(d, Lesp, offset);
   526   dec(Lesp, 2 * Interpreter::stackElementSize());
   527 }
   530 void InterpreterMacroAssembler::push(TosState state) {
   531   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   532   switch (state) {
   533     case atos: push_ptr();            break;
   534     case btos: push_i();              break;
   535     case ctos:
   536     case stos: push_i();              break;
   537     case itos: push_i();              break;
   538     case ltos: push_l();              break;
   539     case ftos: push_f();              break;
   540     case dtos: push_d();              break;
   541     case vtos: /* nothing to do */    break;
   542     default  : ShouldNotReachHere();
   543   }
   544 }
   547 void InterpreterMacroAssembler::pop(TosState state) {
   548   switch (state) {
   549     case atos: pop_ptr();            break;
   550     case btos: pop_i();              break;
   551     case ctos:
   552     case stos: pop_i();              break;
   553     case itos: pop_i();              break;
   554     case ltos: pop_l();              break;
   555     case ftos: pop_f();              break;
   556     case dtos: pop_d();              break;
   557     case vtos: /* nothing to do */   break;
   558     default  : ShouldNotReachHere();
   559   }
   560   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   561 }
   564 // Tagged stack helpers for swap and dup
   565 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
   566                                                  Register tag) {
   567   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
   568   if (TaggedStackInterpreter) {
   569     ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(n), tag);
   570   }
   571 }
   572 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
   573                                                   Register tag) {
   574   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
   575   if (TaggedStackInterpreter) {
   576     st_ptr(tag, Lesp, Interpreter::expr_tag_offset_in_bytes(n));
   577   }
   578 }
   581 void InterpreterMacroAssembler::load_receiver(Register param_count,
   582                                               Register recv) {
   584   sll(param_count, Interpreter::logStackElementSize(), param_count);
   585   if (TaggedStackInterpreter) {
   586     add(param_count, Interpreter::value_offset_in_bytes(), param_count);  // get obj address
   587   }
   588   ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
   589 }
   591 void InterpreterMacroAssembler::empty_expression_stack() {
   592   // Reset Lesp.
   593   sub( Lmonitors, wordSize, Lesp );
   595   // Reset SP by subtracting more space from Lesp.
   596   Label done;
   597   verify_oop(Lmethod);
   598   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
   600   // A native does not need to do this, since its callee does not change SP.
   601   ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size);  // Load access flags.
   602   btst(JVM_ACC_NATIVE, Gframe_size);
   603   br(Assembler::notZero, false, Assembler::pt, done);
   604   delayed()->nop();
   606   // Compute max expression stack+register save area
   607   lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size);  // Load max stack.
   608   if (TaggedStackInterpreter) sll ( Gframe_size, 1, Gframe_size);  // max_stack * 2 for TAGS
   609   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
   611   //
   612   // now set up a stack frame with the size computed above
   613   //
   614   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
   615   sll( Gframe_size, LogBytesPerWord, Gframe_size );
   616   sub( Lesp, Gframe_size, Gframe_size );
   617   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
   618   debug_only(verify_sp(Gframe_size, G4_scratch));
   619 #ifdef _LP64
   620   sub(Gframe_size, STACK_BIAS, Gframe_size );
   621 #endif
   622   mov(Gframe_size, SP);
   624   bind(done);
   625 }
   628 #ifdef ASSERT
   629 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
   630   Label Bad, OK;
   632   // Saved SP must be aligned.
   633 #ifdef _LP64
   634   btst(2*BytesPerWord-1, Rsp);
   635 #else
   636   btst(LongAlignmentMask, Rsp);
   637 #endif
   638   br(Assembler::notZero, false, Assembler::pn, Bad);
   639   delayed()->nop();
   641   // Saved SP, plus register window size, must not be above FP.
   642   add(Rsp, frame::register_save_words * wordSize, Rtemp);
   643 #ifdef _LP64
   644   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
   645 #endif
   646   cmp(Rtemp, FP);
   647   brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
   648   delayed()->nop();
   650   // Saved SP must not be ridiculously below current SP.
   651   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
   652   set(maxstack, Rtemp);
   653   sub(SP, Rtemp, Rtemp);
   654 #ifdef _LP64
   655   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
   656 #endif
   657   cmp(Rsp, Rtemp);
   658   brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
   659   delayed()->nop();
   661   br(Assembler::always, false, Assembler::pn, OK);
   662   delayed()->nop();
   664   bind(Bad);
   665   stop("on return to interpreted call, restored SP is corrupted");
   667   bind(OK);
   668 }
   671 void InterpreterMacroAssembler::verify_esp(Register Resp) {
   672   // about to read or write Resp[0]
   673   // make sure it is not in the monitors or the register save area
   674   Label OK1, OK2;
   676   cmp(Resp, Lmonitors);
   677   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
   678   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
   679   stop("too many pops:  Lesp points into monitor area");
   680   bind(OK1);
   681 #ifdef _LP64
   682   sub(Resp, STACK_BIAS, Resp);
   683 #endif
   684   cmp(Resp, SP);
   685   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
   686   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
   687   stop("too many pushes:  Lesp points into register window");
   688   bind(OK2);
   689 }
   690 #endif // ASSERT
   692 // Load compiled (i2c) or interpreter entry when calling from interpreted and
   693 // do the call. Centralized so that all interpreter calls will do the same actions.
   694 // If jvmti single stepping is on for a thread we must not call compiled code.
   695 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
   697   // Assume we want to go compiled if available
   699   ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
   701   if (JvmtiExport::can_post_interpreter_events()) {
   702     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   703     // compiled code in threads for which the event is enabled.  Check here for
   704     // interp_only_mode if these events CAN be enabled.
   705     verify_thread();
   706     Label skip_compiled_code;
   708     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
   709     ld(interp_only, scratch);
   710     tst(scratch);
   711     br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
   712     delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
   713     bind(skip_compiled_code);
   714   }
   716   // the i2c_adapters need methodOop in G5_method (right? %%%)
   717   // do the call
   718 #ifdef ASSERT
   719   {
   720     Label ok;
   721     br_notnull(target, false, Assembler::pt, ok);
   722     delayed()->nop();
   723     stop("null entry point");
   724     bind(ok);
   725   }
   726 #endif // ASSERT
   728   // Adjust Rret first so Llast_SP can be same as Rret
   729   add(Rret, -frame::pc_return_offset, O7);
   730   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
   731   // Record SP so we can remove any stack space allocated by adapter transition
   732   jmp(target, 0);
   733   delayed()->mov(SP, Llast_SP);
   734 }
   736 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
   737   assert_not_delayed();
   739   Label not_taken;
   740   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
   741   else             br (cc, false, Assembler::pn, not_taken);
   742   delayed()->nop();
   744   TemplateTable::branch(false,false);
   746   bind(not_taken);
   748   profile_not_taken_branch(G3_scratch);
   749 }
   752 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
   753                                   int         bcp_offset,
   754                                   Register    Rtmp,
   755                                   Register    Rdst,
   756                                   signedOrNot is_signed,
   757                                   setCCOrNot  should_set_CC ) {
   758   assert(Rtmp != Rdst, "need separate temp register");
   759   assert_not_delayed();
   760   switch (is_signed) {
   761    default: ShouldNotReachHere();
   763    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
   764    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
   765   }
   766   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
   767   sll( Rdst, BitsPerByte, Rdst);
   768   switch (should_set_CC ) {
   769    default: ShouldNotReachHere();
   771    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
   772    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
   773   }
   774 }
   777 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
   778                                   int        bcp_offset,
   779                                   Register   Rtmp,
   780                                   Register   Rdst,
   781                                   setCCOrNot should_set_CC ) {
   782   assert(Rtmp != Rdst, "need separate temp register");
   783   assert_not_delayed();
   784   add( Lbcp, bcp_offset, Rtmp);
   785   andcc( Rtmp, 3, G0);
   786   Label aligned;
   787   switch (should_set_CC ) {
   788    default: ShouldNotReachHere();
   790    case      set_CC: break;
   791    case dont_set_CC: break;
   792   }
   794   br(Assembler::zero, true, Assembler::pn, aligned);
   795 #ifdef _LP64
   796   delayed()->ldsw(Rtmp, 0, Rdst);
   797 #else
   798   delayed()->ld(Rtmp, 0, Rdst);
   799 #endif
   801   ldub(Lbcp, bcp_offset + 3, Rdst);
   802   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
   803   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
   804 #ifdef _LP64
   805   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   806 #else
   807   // Unsigned load is faster than signed on some implementations
   808   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   809 #endif
   810   or3(Rtmp, Rdst, Rdst );
   812   bind(aligned);
   813   if (should_set_CC == set_CC) tst(Rdst);
   814 }
   817 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset) {
   818   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   819   assert_different_registers(cache, tmp);
   820   assert_not_delayed();
   821   get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   822               // convert from field index to ConstantPoolCacheEntry index
   823               // and from word index to byte offset
   824   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   825   add(LcpoolCache, tmp, cache);
   826 }
   829 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
   830   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   831   assert_different_registers(cache, tmp);
   832   assert_not_delayed();
   833   get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   834               // convert from field index to ConstantPoolCacheEntry index
   835               // and from word index to byte offset
   836   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   837               // skip past the header
   838   add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
   839               // construct pointer to cache entry
   840   add(LcpoolCache, tmp, cache);
   841 }
   844 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   845 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
   846 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   847                                                   Register Rsuper_klass,
   848                                                   Register Rtmp1,
   849                                                   Register Rtmp2,
   850                                                   Register Rtmp3,
   851                                                   Label &ok_is_subtype ) {
   852   Label not_subtype;
   854   // Profile the not-null value's klass.
   855   profile_typecheck(Rsub_klass, Rtmp1);
   857   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
   858                                 Rtmp1, Rtmp2,
   859                                 &ok_is_subtype, &not_subtype, NULL);
   861   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
   862                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
   863                                 &ok_is_subtype, NULL);
   865   bind(not_subtype);
   866   profile_typecheck_failed(Rtmp1);
   867 }
   869 // Separate these two to allow for delay slot in middle
   870 // These are used to do a test and full jump to exception-throwing code.
   872 // %%%%% Could possibly reoptimize this by testing to see if could use
   873 // a single conditional branch (i.e. if span is small enough.
   874 // If you go that route, than get rid of the split and give up
   875 // on the delay-slot hack.
   877 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
   878                                                     Label&    ok ) {
   879   assert_not_delayed();
   880   br(ok_condition, true, pt, ok);
   881   // DELAY SLOT
   882 }
   884 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
   885                                                     Label&    ok ) {
   886   assert_not_delayed();
   887   bp( ok_condition, true, Assembler::xcc, pt, ok);
   888   // DELAY SLOT
   889 }
   891 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
   892                                                   Label&    ok ) {
   893   assert_not_delayed();
   894   brx(ok_condition, true, pt, ok);
   895   // DELAY SLOT
   896 }
   898 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
   899                                                 Register Rscratch,
   900                                                 Label&   ok ) {
   901   assert(throw_entry_point != NULL, "entry point must be generated by now");
   902   AddressLiteral dest(throw_entry_point);
   903   jump_to(dest, Rscratch);
   904   delayed()->nop();
   905   bind(ok);
   906 }
   909 // And if you cannot use the delay slot, here is a shorthand:
   911 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
   912                                                   address   throw_entry_point,
   913                                                   Register  Rscratch ) {
   914   Label ok;
   915   if (ok_condition != never) {
   916     throw_if_not_1_icc( ok_condition, ok);
   917     delayed()->nop();
   918   }
   919   throw_if_not_2( throw_entry_point, Rscratch, ok);
   920 }
   921 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
   922                                                   address   throw_entry_point,
   923                                                   Register  Rscratch ) {
   924   Label ok;
   925   if (ok_condition != never) {
   926     throw_if_not_1_xcc( ok_condition, ok);
   927     delayed()->nop();
   928   }
   929   throw_if_not_2( throw_entry_point, Rscratch, ok);
   930 }
   931 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
   932                                                 address   throw_entry_point,
   933                                                 Register  Rscratch ) {
   934   Label ok;
   935   if (ok_condition != never) {
   936     throw_if_not_1_x( ok_condition, ok);
   937     delayed()->nop();
   938   }
   939   throw_if_not_2( throw_entry_point, Rscratch, ok);
   940 }
   942 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
   943 // Note: res is still shy of address by array offset into object.
   945 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
   946   assert_not_delayed();
   948   verify_oop(array);
   949 #ifdef _LP64
   950   // sign extend since tos (index) can be a 32bit value
   951   sra(index, G0, index);
   952 #endif // _LP64
   954   // check array
   955   Label ptr_ok;
   956   tst(array);
   957   throw_if_not_1_x( notZero, ptr_ok );
   958   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
   959   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
   961   Label index_ok;
   962   cmp(index, tmp);
   963   throw_if_not_1_icc( lessUnsigned, index_ok );
   964   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
   965   else                  delayed()->add(array, index, res); // addr - const offset in index
   966   // convention: move aberrant index into G3_scratch for exception message
   967   mov(index, G3_scratch);
   968   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
   970   // add offset if didn't do it in delay slot
   971   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
   972 }
   975 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
   976   assert_not_delayed();
   978   // pop array
   979   pop_ptr(array);
   981   // check array
   982   index_check_without_pop(array, index, index_shift, tmp, res);
   983 }
   986 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
   987   ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
   988 }
   991 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
   992   get_constant_pool(Rdst);
   993   ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
   994 }
   997 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
   998   get_constant_pool(Rcpool);
   999   ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
  1003 // unlock if synchronized method
  1004 //
  1005 // Unlock the receiver if this is a synchronized method.
  1006 // Unlock any Java monitors from syncronized blocks.
  1007 //
  1008 // If there are locked Java monitors
  1009 //    If throw_monitor_exception
  1010 //       throws IllegalMonitorStateException
  1011 //    Else if install_monitor_exception
  1012 //       installs IllegalMonitorStateException
  1013 //    Else
  1014 //       no error processing
  1015 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
  1016                                                               bool throw_monitor_exception,
  1017                                                               bool install_monitor_exception) {
  1018   Label unlocked, unlock, no_unlock;
  1020   // get the value of _do_not_unlock_if_synchronized into G1_scratch
  1021   const Address do_not_unlock_if_synchronized(G2_thread,
  1022     JavaThread::do_not_unlock_if_synchronized_offset());
  1023   ldbool(do_not_unlock_if_synchronized, G1_scratch);
  1024   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
  1026   // check if synchronized method
  1027   const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
  1028   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1029   push(state); // save tos
  1030   ld(access_flags, G3_scratch); // Load access flags.
  1031   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
  1032   br(zero, false, pt, unlocked);
  1033   delayed()->nop();
  1035   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
  1036   // is set.
  1037   tstbool(G1_scratch);
  1038   br(Assembler::notZero, false, pn, no_unlock);
  1039   delayed()->nop();
  1041   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1042   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1044   //Intel: if (throw_monitor_exception) ... else ...
  1045   // Entry already unlocked, need to throw exception
  1046   //...
  1048   // pass top-most monitor elem
  1049   add( top_most_monitor(), O1 );
  1051   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
  1052   br_notnull(G3_scratch, false, pt, unlock);
  1053   delayed()->nop();
  1055   if (throw_monitor_exception) {
  1056     // Entry already unlocked need to throw an exception
  1057     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1058     should_not_reach_here();
  1059   } else {
  1060     // Monitor already unlocked during a stack unroll.
  1061     // If requested, install an illegal_monitor_state_exception.
  1062     // Continue with stack unrolling.
  1063     if (install_monitor_exception) {
  1064       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1066     ba(false, unlocked);
  1067     delayed()->nop();
  1070   bind(unlock);
  1072   unlock_object(O1);
  1074   bind(unlocked);
  1076   // I0, I1: Might contain return value
  1078   // Check that all monitors are unlocked
  1079   { Label loop, exception, entry, restart;
  1081     Register Rmptr   = O0;
  1082     Register Rtemp   = O1;
  1083     Register Rlimit  = Lmonitors;
  1084     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1085     assert( (delta & LongAlignmentMask) == 0,
  1086             "sizeof BasicObjectLock must be even number of doublewords");
  1088     #ifdef ASSERT
  1089     add(top_most_monitor(), Rmptr, delta);
  1090     { Label L;
  1091       // ensure that Rmptr starts out above (or at) Rlimit
  1092       cmp(Rmptr, Rlimit);
  1093       brx(Assembler::greaterEqualUnsigned, false, pn, L);
  1094       delayed()->nop();
  1095       stop("monitor stack has negative size");
  1096       bind(L);
  1098     #endif
  1099     bind(restart);
  1100     ba(false, entry);
  1101     delayed()->
  1102     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
  1104     // Entry is still locked, need to throw exception
  1105     bind(exception);
  1106     if (throw_monitor_exception) {
  1107       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1108       should_not_reach_here();
  1109     } else {
  1110       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
  1111       // Unlock does not block, so don't have to worry about the frame
  1112       unlock_object(Rmptr);
  1113       if (install_monitor_exception) {
  1114         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1116       ba(false, restart);
  1117       delayed()->nop();
  1120     bind(loop);
  1121     cmp(Rtemp, G0);                             // check if current entry is used
  1122     brx(Assembler::notEqual, false, pn, exception);
  1123     delayed()->
  1124     dec(Rmptr, delta);                          // otherwise advance to next entry
  1125     #ifdef ASSERT
  1126     { Label L;
  1127       // ensure that Rmptr has not somehow stepped below Rlimit
  1128       cmp(Rmptr, Rlimit);
  1129       brx(Assembler::greaterEqualUnsigned, false, pn, L);
  1130       delayed()->nop();
  1131       stop("ran off the end of the monitor stack");
  1132       bind(L);
  1134     #endif
  1135     bind(entry);
  1136     cmp(Rmptr, Rlimit);                         // check if bottom reached
  1137     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
  1138     delayed()->
  1139     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
  1142   bind(no_unlock);
  1143   pop(state);
  1144   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1148 // remove activation
  1149 //
  1150 // Unlock the receiver if this is a synchronized method.
  1151 // Unlock any Java monitors from syncronized blocks.
  1152 // Remove the activation from the stack.
  1153 //
  1154 // If there are locked Java monitors
  1155 //    If throw_monitor_exception
  1156 //       throws IllegalMonitorStateException
  1157 //    Else if install_monitor_exception
  1158 //       installs IllegalMonitorStateException
  1159 //    Else
  1160 //       no error processing
  1161 void InterpreterMacroAssembler::remove_activation(TosState state,
  1162                                                   bool throw_monitor_exception,
  1163                                                   bool install_monitor_exception) {
  1165   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
  1167   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
  1168   notify_method_exit(false, state, NotifyJVMTI);
  1170   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1171   verify_oop(Lmethod);
  1172   verify_thread();
  1174   // return tos
  1175   assert(Otos_l1 == Otos_i, "adjust code below");
  1176   switch (state) {
  1177 #ifdef _LP64
  1178   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
  1179 #else
  1180   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
  1181 #endif
  1182   case btos:                                      // fall through
  1183   case ctos:
  1184   case stos:                                      // fall through
  1185   case atos:                                      // fall through
  1186   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
  1187   case ftos:                                      // fall through
  1188   case dtos:                                      // fall through
  1189   case vtos: /* nothing to do */                     break;
  1190   default  : ShouldNotReachHere();
  1193 #if defined(COMPILER2) && !defined(_LP64)
  1194   if (state == ltos) {
  1195     // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1196     // or compiled so just be safe use G1 and O0/O1
  1198     // Shift bits into high (msb) of G1
  1199     sllx(Otos_l1->after_save(), 32, G1);
  1200     // Zero extend low bits
  1201     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
  1202     or3 (Otos_l2->after_save(), G1, G1);
  1204 #endif /* COMPILER2 */
  1207 #endif /* CC_INTERP */
  1210 // Lock object
  1211 //
  1212 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
  1213 //            it must be initialized with the object to lock
  1214 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
  1215   if (UseHeavyMonitors) {
  1216     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1218   else {
  1219     Register obj_reg = Object;
  1220     Register mark_reg = G4_scratch;
  1221     Register temp_reg = G1_scratch;
  1222     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
  1223     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1224     Label    done;
  1226     Label slow_case;
  1228     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
  1230     // load markOop from object into mark_reg
  1231     ld_ptr(mark_addr, mark_reg);
  1233     if (UseBiasedLocking) {
  1234       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
  1237     // get the address of basicLock on stack that will be stored in the object
  1238     // we need a temporary register here as we do not want to clobber lock_reg
  1239     // (cas clobbers the destination register)
  1240     mov(lock_reg, temp_reg);
  1241     // set mark reg to be (markOop of object | UNLOCK_VALUE)
  1242     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
  1243     // initialize the box  (Must happen before we update the object mark!)
  1244     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1245     // compare and exchange object_addr, markOop | 1, stack address of basicLock
  1246     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1247     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  1248       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1250     // if the compare and exchange succeeded we are done (we saw an unlocked object)
  1251     cmp(mark_reg, temp_reg);
  1252     brx(Assembler::equal, true, Assembler::pt, done);
  1253     delayed()->nop();
  1255     // We did not see an unlocked object so try the fast recursive case
  1257     // Check if owner is self by comparing the value in the markOop of object
  1258     // with the stack pointer
  1259     sub(temp_reg, SP, temp_reg);
  1260 #ifdef _LP64
  1261     sub(temp_reg, STACK_BIAS, temp_reg);
  1262 #endif
  1263     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  1265     // Composite "andcc" test:
  1266     // (a) %sp -vs- markword proximity check, and,
  1267     // (b) verify mark word LSBs == 0 (Stack-locked).
  1268     //
  1269     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
  1270     // Note that the page size used for %sp proximity testing is arbitrary and is
  1271     // unrelated to the actual MMU page size.  We use a 'logical' page size of
  1272     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
  1273     // field of the andcc instruction.
  1274     andcc (temp_reg, 0xFFFFF003, G0) ;
  1276     // if condition is true we are done and hence we can store 0 in the displaced
  1277     // header indicating it is a recursive lock and be done
  1278     brx(Assembler::zero, true, Assembler::pt, done);
  1279     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1281     // none of the above fast optimizations worked so we have to get into the
  1282     // slow case of monitor enter
  1283     bind(slow_case);
  1284     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1286     bind(done);
  1290 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
  1291 //
  1292 // Argument - lock_reg points to the BasicObjectLock for lock
  1293 // Throw IllegalMonitorException if object is not locked by current thread
  1294 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
  1295   if (UseHeavyMonitors) {
  1296     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1297   } else {
  1298     Register obj_reg = G3_scratch;
  1299     Register mark_reg = G4_scratch;
  1300     Register displaced_header_reg = G1_scratch;
  1301     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
  1302     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1303     Label    done;
  1305     if (UseBiasedLocking) {
  1306       // load the object out of the BasicObjectLock
  1307       ld_ptr(lockobj_addr, obj_reg);
  1308       biased_locking_exit(mark_addr, mark_reg, done, true);
  1309       st_ptr(G0, lockobj_addr);  // free entry
  1312     // Test first if we are in the fast recursive case
  1313     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
  1314     ld_ptr(lock_addr, displaced_header_reg);
  1315     br_null(displaced_header_reg, true, Assembler::pn, done);
  1316     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1318     // See if it is still a light weight lock, if so we just unlock
  1319     // the object and we are done
  1321     if (!UseBiasedLocking) {
  1322       // load the object out of the BasicObjectLock
  1323       ld_ptr(lockobj_addr, obj_reg);
  1326     // we have the displaced header in displaced_header_reg
  1327     // we expect to see the stack address of the basicLock in case the
  1328     // lock is still a light weight lock (lock_reg)
  1329     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1330     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
  1331       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1332     cmp(lock_reg, displaced_header_reg);
  1333     brx(Assembler::equal, true, Assembler::pn, done);
  1334     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1336     // The lock has been converted into a heavy lock and hence
  1337     // we need to get into the slow case
  1339     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1341     bind(done);
  1345 #ifndef CC_INTERP
  1347 // Get the method data pointer from the methodOop and set the
  1348 // specified register to its value.
  1350 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
  1351   assert(ProfileInterpreter, "must be profiling interpreter");
  1352   Label get_continue;
  1354   ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
  1355   test_method_data_pointer(get_continue);
  1356   add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
  1357   if (Roff != noreg)
  1358     // Roff contains a method data index ("mdi").  It defaults to zero.
  1359     add(ImethodDataPtr, Roff, ImethodDataPtr);
  1360   bind(get_continue);
  1363 // Set the method data pointer for the current bcp.
  1365 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  1366   assert(ProfileInterpreter, "must be profiling interpreter");
  1367   Label zero_continue;
  1369   // Test MDO to avoid the call if it is NULL.
  1370   ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
  1371   test_method_data_pointer(zero_continue);
  1372   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
  1373   set_method_data_pointer_offset(O0);
  1374   bind(zero_continue);
  1377 // Test ImethodDataPtr.  If it is null, continue at the specified label
  1379 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
  1380   assert(ProfileInterpreter, "must be profiling interpreter");
  1381 #ifdef _LP64
  1382   bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
  1383 #else
  1384   tst(ImethodDataPtr);
  1385   br(Assembler::zero, false, Assembler::pn, zero_continue);
  1386 #endif
  1387   delayed()->nop();
  1390 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1391   assert(ProfileInterpreter, "must be profiling interpreter");
  1392 #ifdef ASSERT
  1393   Label verify_continue;
  1394   test_method_data_pointer(verify_continue);
  1396   // If the mdp is valid, it will point to a DataLayout header which is
  1397   // consistent with the bcp.  The converse is highly probable also.
  1398   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
  1399   ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
  1400   add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
  1401   add(G3_scratch, O5, G3_scratch);
  1402   cmp(Lbcp, G3_scratch);
  1403   brx(Assembler::equal, false, Assembler::pt, verify_continue);
  1405   Register temp_reg = O5;
  1406   delayed()->mov(ImethodDataPtr, temp_reg);
  1407   // %%% should use call_VM_leaf here?
  1408   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
  1409   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
  1410   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
  1411   stf(FloatRegisterImpl::D, Ftos_d, d_save);
  1412   mov(temp_reg->after_save(), O2);
  1413   save_thread(L7_thread_cache);
  1414   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
  1415   delayed()->nop();
  1416   restore_thread(L7_thread_cache);
  1417   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
  1418   restore();
  1419   bind(verify_continue);
  1420 #endif // ASSERT
  1423 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
  1424                                                                 Register cur_bcp,
  1425                                                                 Register Rtmp,
  1426                                                                 Label &profile_continue) {
  1427   assert(ProfileInterpreter, "must be profiling interpreter");
  1428   // Control will flow to "profile_continue" if the counter is less than the
  1429   // limit or if we call profile_method()
  1431   Label done;
  1433   // if no method data exists, and the counter is high enough, make one
  1434 #ifdef _LP64
  1435   bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
  1436 #else
  1437   tst(ImethodDataPtr);
  1438   br(Assembler::notZero, false, Assembler::pn, done);
  1439 #endif
  1441   // Test to see if we should create a method data oop
  1442   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
  1443 #ifdef _LP64
  1444   delayed()->nop();
  1445   sethi(profile_limit, Rtmp);
  1446 #else
  1447   delayed()->sethi(profile_limit, Rtmp);
  1448 #endif
  1449   ld(Rtmp, profile_limit.low10(), Rtmp);
  1450   cmp(invocation_count, Rtmp);
  1451   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
  1452   delayed()->nop();
  1454   // Build it now.
  1455   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
  1456   set_method_data_pointer_offset(O0);
  1457   ba(false, profile_continue);
  1458   delayed()->nop();
  1459   bind(done);
  1462 // Store a value at some constant offset from the method data pointer.
  1464 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
  1465   assert(ProfileInterpreter, "must be profiling interpreter");
  1466   st_ptr(value, ImethodDataPtr, constant);
  1469 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
  1470                                                       Register bumped_count,
  1471                                                       bool decrement) {
  1472   assert(ProfileInterpreter, "must be profiling interpreter");
  1474   // Load the counter.
  1475   ld_ptr(counter, bumped_count);
  1477   if (decrement) {
  1478     // Decrement the register.  Set condition codes.
  1479     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1481     // If the decrement causes the counter to overflow, stay negative
  1482     Label L;
  1483     brx(Assembler::negative, true, Assembler::pn, L);
  1485     // Store the decremented counter, if it is still negative.
  1486     delayed()->st_ptr(bumped_count, counter);
  1487     bind(L);
  1488   } else {
  1489     // Increment the register.  Set carry flag.
  1490     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1492     // If the increment causes the counter to overflow, pull back by 1.
  1493     assert(DataLayout::counter_increment == 1, "subc works");
  1494     subc(bumped_count, G0, bumped_count);
  1496     // Store the incremented counter.
  1497     st_ptr(bumped_count, counter);
  1501 // Increment the value at some constant offset from the method data pointer.
  1503 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
  1504                                                       Register bumped_count,
  1505                                                       bool decrement) {
  1506   // Locate the counter at a fixed offset from the mdp:
  1507   Address counter(ImethodDataPtr, constant);
  1508   increment_mdp_data_at(counter, bumped_count, decrement);
  1511 // Increment the value at some non-fixed (reg + constant) offset from
  1512 // the method data pointer.
  1514 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
  1515                                                       int constant,
  1516                                                       Register bumped_count,
  1517                                                       Register scratch2,
  1518                                                       bool decrement) {
  1519   // Add the constant to reg to get the offset.
  1520   add(ImethodDataPtr, reg, scratch2);
  1521   Address counter(scratch2, constant);
  1522   increment_mdp_data_at(counter, bumped_count, decrement);
  1525 // Set a flag value at the current method data pointer position.
  1526 // Updates a single byte of the header, to avoid races with other header bits.
  1528 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
  1529                                                 Register scratch) {
  1530   assert(ProfileInterpreter, "must be profiling interpreter");
  1531   // Load the data header
  1532   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
  1534   // Set the flag
  1535   or3(scratch, flag_constant, scratch);
  1537   // Store the modified header.
  1538   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
  1541 // Test the location at some offset from the method data pointer.
  1542 // If it is not equal to value, branch to the not_equal_continue Label.
  1543 // Set condition codes to match the nullness of the loaded value.
  1545 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
  1546                                                  Register value,
  1547                                                  Label& not_equal_continue,
  1548                                                  Register scratch) {
  1549   assert(ProfileInterpreter, "must be profiling interpreter");
  1550   ld_ptr(ImethodDataPtr, offset, scratch);
  1551   cmp(value, scratch);
  1552   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
  1553   delayed()->tst(scratch);
  1556 // Update the method data pointer by the displacement located at some fixed
  1557 // offset from the method data pointer.
  1559 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
  1560                                                      Register scratch) {
  1561   assert(ProfileInterpreter, "must be profiling interpreter");
  1562   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
  1563   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1566 // Update the method data pointer by the displacement located at the
  1567 // offset (reg + offset_of_disp).
  1569 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
  1570                                                      int offset_of_disp,
  1571                                                      Register scratch) {
  1572   assert(ProfileInterpreter, "must be profiling interpreter");
  1573   add(reg, offset_of_disp, scratch);
  1574   ld_ptr(ImethodDataPtr, scratch, scratch);
  1575   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1578 // Update the method data pointer by a simple constant displacement.
  1580 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
  1581   assert(ProfileInterpreter, "must be profiling interpreter");
  1582   add(ImethodDataPtr, constant, ImethodDataPtr);
  1585 // Update the method data pointer for a _ret bytecode whose target
  1586 // was not among our cached targets.
  1588 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
  1589                                                    Register return_bci) {
  1590   assert(ProfileInterpreter, "must be profiling interpreter");
  1591   push(state);
  1592   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
  1593   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  1594   ld_ptr(l_tmp, return_bci);
  1595   pop(state);
  1598 // Count a taken branch in the bytecodes.
  1600 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
  1601   if (ProfileInterpreter) {
  1602     Label profile_continue;
  1604     // If no method data exists, go to profile_continue.
  1605     test_method_data_pointer(profile_continue);
  1607     // We are taking a branch.  Increment the taken count.
  1608     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
  1610     // The method data pointer needs to be updated to reflect the new target.
  1611     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
  1612     bind (profile_continue);
  1617 // Count a not-taken branch in the bytecodes.
  1619 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
  1620   if (ProfileInterpreter) {
  1621     Label profile_continue;
  1623     // If no method data exists, go to profile_continue.
  1624     test_method_data_pointer(profile_continue);
  1626     // We are taking a branch.  Increment the not taken count.
  1627     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
  1629     // The method data pointer needs to be updated to correspond to the
  1630     // next bytecode.
  1631     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
  1632     bind (profile_continue);
  1637 // Count a non-virtual call in the bytecodes.
  1639 void InterpreterMacroAssembler::profile_call(Register scratch) {
  1640   if (ProfileInterpreter) {
  1641     Label profile_continue;
  1643     // If no method data exists, go to profile_continue.
  1644     test_method_data_pointer(profile_continue);
  1646     // We are making a call.  Increment the count.
  1647     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1649     // The method data pointer needs to be updated to reflect the new target.
  1650     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
  1651     bind (profile_continue);
  1656 // Count a final call in the bytecodes.
  1658 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
  1659   if (ProfileInterpreter) {
  1660     Label profile_continue;
  1662     // If no method data exists, go to profile_continue.
  1663     test_method_data_pointer(profile_continue);
  1665     // We are making a call.  Increment the count.
  1666     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1668     // The method data pointer needs to be updated to reflect the new target.
  1669     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1670     bind (profile_continue);
  1675 // Count a virtual call in the bytecodes.
  1677 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1678                                                      Register scratch) {
  1679   if (ProfileInterpreter) {
  1680     Label profile_continue;
  1682     // If no method data exists, go to profile_continue.
  1683     test_method_data_pointer(profile_continue);
  1685     // Record the receiver type.
  1686     record_klass_in_profile(receiver, scratch, true);
  1688     // The method data pointer needs to be updated to reflect the new target.
  1689     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1690     bind (profile_continue);
  1694 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1695                                         Register receiver, Register scratch,
  1696                                         int start_row, Label& done, bool is_virtual_call) {
  1697   if (TypeProfileWidth == 0) {
  1698     if (is_virtual_call) {
  1699       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1701     return;
  1704   int last_row = VirtualCallData::row_limit() - 1;
  1705   assert(start_row <= last_row, "must be work left to do");
  1706   // Test this row for both the receiver and for null.
  1707   // Take any of three different outcomes:
  1708   //   1. found receiver => increment count and goto done
  1709   //   2. found null => keep looking for case 1, maybe allocate this cell
  1710   //   3. found something else => keep looking for cases 1 and 2
  1711   // Case 3 is handled by a recursive call.
  1712   for (int row = start_row; row <= last_row; row++) {
  1713     Label next_test;
  1714     bool test_for_null_also = (row == start_row);
  1716     // See if the receiver is receiver[n].
  1717     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1718     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
  1719     // delayed()->tst(scratch);
  1721     // The receiver is receiver[n].  Increment count[n].
  1722     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1723     increment_mdp_data_at(count_offset, scratch);
  1724     ba(false, done);
  1725     delayed()->nop();
  1726     bind(next_test);
  1728     if (test_for_null_also) {
  1729       Label found_null;
  1730       // Failed the equality check on receiver[n]...  Test for null.
  1731       if (start_row == last_row) {
  1732         // The only thing left to do is handle the null case.
  1733         if (is_virtual_call) {
  1734           brx(Assembler::zero, false, Assembler::pn, found_null);
  1735           delayed()->nop();
  1736           // Receiver did not match any saved receiver and there is no empty row for it.
  1737           // Increment total counter to indicate polymorphic case.
  1738           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1739           ba(false, done);
  1740           delayed()->nop();
  1741           bind(found_null);
  1742         } else {
  1743           brx(Assembler::notZero, false, Assembler::pt, done);
  1744           delayed()->nop();
  1746         break;
  1748       // Since null is rare, make it be the branch-taken case.
  1749       brx(Assembler::zero, false, Assembler::pn, found_null);
  1750       delayed()->nop();
  1752       // Put all the "Case 3" tests here.
  1753       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
  1755       // Found a null.  Keep searching for a matching receiver,
  1756       // but remember that this is an empty (unused) slot.
  1757       bind(found_null);
  1761   // In the fall-through case, we found no matching receiver, but we
  1762   // observed the receiver[start_row] is NULL.
  1764   // Fill in the receiver field and increment the count.
  1765   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1766   set_mdp_data_at(recvr_offset, receiver);
  1767   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1768   mov(DataLayout::counter_increment, scratch);
  1769   set_mdp_data_at(count_offset, scratch);
  1770   if (start_row > 0) {
  1771     ba(false, done);
  1772     delayed()->nop();
  1776 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1777                                                         Register scratch, bool is_virtual_call) {
  1778   assert(ProfileInterpreter, "must be profiling");
  1779   Label done;
  1781   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
  1783   bind (done);
  1787 // Count a ret in the bytecodes.
  1789 void InterpreterMacroAssembler::profile_ret(TosState state,
  1790                                             Register return_bci,
  1791                                             Register scratch) {
  1792   if (ProfileInterpreter) {
  1793     Label profile_continue;
  1794     uint row;
  1796     // If no method data exists, go to profile_continue.
  1797     test_method_data_pointer(profile_continue);
  1799     // Update the total ret count.
  1800     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1802     for (row = 0; row < RetData::row_limit(); row++) {
  1803       Label next_test;
  1805       // See if return_bci is equal to bci[n]:
  1806       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
  1807                        return_bci, next_test, scratch);
  1809       // return_bci is equal to bci[n].  Increment the count.
  1810       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
  1812       // The method data pointer needs to be updated to reflect the new target.
  1813       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
  1814       ba(false, profile_continue);
  1815       delayed()->nop();
  1816       bind(next_test);
  1819     update_mdp_for_ret(state, return_bci);
  1821     bind (profile_continue);
  1825 // Profile an unexpected null in the bytecodes.
  1826 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
  1827   if (ProfileInterpreter) {
  1828     Label profile_continue;
  1830     // If no method data exists, go to profile_continue.
  1831     test_method_data_pointer(profile_continue);
  1833     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
  1835     // The method data pointer needs to be updated.
  1836     int mdp_delta = in_bytes(BitData::bit_data_size());
  1837     if (TypeProfileCasts) {
  1838       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1840     update_mdp_by_constant(mdp_delta);
  1842     bind (profile_continue);
  1846 void InterpreterMacroAssembler::profile_typecheck(Register klass,
  1847                                                   Register scratch) {
  1848   if (ProfileInterpreter) {
  1849     Label profile_continue;
  1851     // If no method data exists, go to profile_continue.
  1852     test_method_data_pointer(profile_continue);
  1854     int mdp_delta = in_bytes(BitData::bit_data_size());
  1855     if (TypeProfileCasts) {
  1856       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1858       // Record the object type.
  1859       record_klass_in_profile(klass, scratch, false);
  1862     // The method data pointer needs to be updated.
  1863     update_mdp_by_constant(mdp_delta);
  1865     bind (profile_continue);
  1869 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
  1870   if (ProfileInterpreter && TypeProfileCasts) {
  1871     Label profile_continue;
  1873     // If no method data exists, go to profile_continue.
  1874     test_method_data_pointer(profile_continue);
  1876     int count_offset = in_bytes(CounterData::count_offset());
  1877     // Back up the address, since we have already bumped the mdp.
  1878     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1880     // *Decrement* the counter.  We expect to see zero or small negatives.
  1881     increment_mdp_data_at(count_offset, scratch, true);
  1883     bind (profile_continue);
  1887 // Count the default case of a switch construct.
  1889 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
  1890   if (ProfileInterpreter) {
  1891     Label profile_continue;
  1893     // If no method data exists, go to profile_continue.
  1894     test_method_data_pointer(profile_continue);
  1896     // Update the default case count
  1897     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
  1898                           scratch);
  1900     // The method data pointer needs to be updated.
  1901     update_mdp_by_offset(
  1902                     in_bytes(MultiBranchData::default_displacement_offset()),
  1903                     scratch);
  1905     bind (profile_continue);
  1909 // Count the index'th case of a switch construct.
  1911 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1912                                                     Register scratch,
  1913                                                     Register scratch2,
  1914                                                     Register scratch3) {
  1915   if (ProfileInterpreter) {
  1916     Label profile_continue;
  1918     // If no method data exists, go to profile_continue.
  1919     test_method_data_pointer(profile_continue);
  1921     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1922     set(in_bytes(MultiBranchData::per_case_size()), scratch);
  1923     smul(index, scratch, scratch);
  1924     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
  1926     // Update the case count
  1927     increment_mdp_data_at(scratch,
  1928                           in_bytes(MultiBranchData::relative_count_offset()),
  1929                           scratch2,
  1930                           scratch3);
  1932     // The method data pointer needs to be updated.
  1933     update_mdp_by_offset(scratch,
  1934                      in_bytes(MultiBranchData::relative_displacement_offset()),
  1935                      scratch2);
  1937     bind (profile_continue);
  1941 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
  1943 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
  1944                                                       Register Rtemp,
  1945                                                       Register Rtemp2 ) {
  1947   Register Rlimit = Lmonitors;
  1948   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1949   assert( (delta & LongAlignmentMask) == 0,
  1950           "sizeof BasicObjectLock must be even number of doublewords");
  1952   sub( SP,        delta, SP);
  1953   sub( Lesp,      delta, Lesp);
  1954   sub( Lmonitors, delta, Lmonitors);
  1956   if (!stack_is_empty) {
  1958     // must copy stack contents down
  1960     Label start_copying, next;
  1962     // untested("monitor stack expansion");
  1963     compute_stack_base(Rtemp);
  1964     ba( false, start_copying );
  1965     delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
  1967     // note: must copy from low memory upwards
  1968     // On entry to loop,
  1969     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
  1970     // Loop mutates Rtemp
  1972     bind( next);
  1974     st_ptr(Rtemp2, Rtemp, 0);
  1975     inc(Rtemp, wordSize);
  1976     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
  1978     bind( start_copying );
  1980     brx( notEqual, true, pn, next );
  1981     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
  1983     // done copying stack
  1987 // Locals
  1988 #ifdef ASSERT
  1989 void InterpreterMacroAssembler::verify_local_tag(frame::Tag t,
  1990                                                  Register base,
  1991                                                  Register scratch,
  1992                                                  int n) {
  1993   if (TaggedStackInterpreter) {
  1994     Label ok, long_ok;
  1995     // Use dst for scratch
  1996     assert_different_registers(base, scratch);
  1997     ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n), scratch);
  1998     if (t == frame::TagCategory2) {
  1999       cmp(scratch, G0);
  2000       brx(Assembler::equal, false, Assembler::pt, long_ok);
  2001       delayed()->ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n+1), scratch);
  2002       stop("local long/double tag value bad");
  2003       bind(long_ok);
  2004       // compare second half tag
  2005       cmp(scratch, G0);
  2006     } else if (t == frame::TagValue) {
  2007       cmp(scratch, G0);
  2008     } else {
  2009       assert_different_registers(O3, base, scratch);
  2010       mov(t, O3);
  2011       cmp(scratch, O3);
  2013     brx(Assembler::equal, false, Assembler::pt, ok);
  2014     delayed()->nop();
  2015     // Also compare if the local value is zero, then the tag might
  2016     // not have been set coming from deopt.
  2017     ld_ptr(base, Interpreter::local_offset_in_bytes(n), scratch);
  2018     cmp(scratch, G0);
  2019     brx(Assembler::equal, false, Assembler::pt, ok);
  2020     delayed()->nop();
  2021     stop("Local tag value is bad");
  2022     bind(ok);
  2025 #endif // ASSERT
  2027 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
  2028   assert_not_delayed();
  2029   sll(index, Interpreter::logStackElementSize(), index);
  2030   sub(Llocals, index, index);
  2031   debug_only(verify_local_tag(frame::TagReference, index, dst));
  2032   ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
  2033   // Note:  index must hold the effective address--the iinc template uses it
  2036 // Just like access_local_ptr but the tag is a returnAddress
  2037 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
  2038                                                            Register dst ) {
  2039   assert_not_delayed();
  2040   sll(index, Interpreter::logStackElementSize(), index);
  2041   sub(Llocals, index, index);
  2042   debug_only(verify_local_tag(frame::TagValue, index, dst));
  2043   ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
  2046 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
  2047   assert_not_delayed();
  2048   sll(index, Interpreter::logStackElementSize(), index);
  2049   sub(Llocals, index, index);
  2050   debug_only(verify_local_tag(frame::TagValue, index, dst));
  2051   ld(index, Interpreter::value_offset_in_bytes(), dst);
  2052   // Note:  index must hold the effective address--the iinc template uses it
  2056 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
  2057   assert_not_delayed();
  2058   sll(index, Interpreter::logStackElementSize(), index);
  2059   sub(Llocals, index, index);
  2060   debug_only(verify_local_tag(frame::TagCategory2, index, dst));
  2061   // First half stored at index n+1 (which grows down from Llocals[n])
  2062   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
  2066 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
  2067   assert_not_delayed();
  2068   sll(index, Interpreter::logStackElementSize(), index);
  2069   sub(Llocals, index, index);
  2070   debug_only(verify_local_tag(frame::TagValue, index, G1_scratch));
  2071   ldf(FloatRegisterImpl::S, index, Interpreter::value_offset_in_bytes(), dst);
  2075 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
  2076   assert_not_delayed();
  2077   sll(index, Interpreter::logStackElementSize(), index);
  2078   sub(Llocals, index, index);
  2079   debug_only(verify_local_tag(frame::TagCategory2, index, G1_scratch));
  2080   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
  2084 #ifdef ASSERT
  2085 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
  2086   Label L;
  2088   assert(Rindex != Rscratch, "Registers cannot be same");
  2089   assert(Rindex != Rscratch1, "Registers cannot be same");
  2090   assert(Rlimit != Rscratch, "Registers cannot be same");
  2091   assert(Rlimit != Rscratch1, "Registers cannot be same");
  2092   assert(Rscratch1 != Rscratch, "Registers cannot be same");
  2094   // untested("reg area corruption");
  2095   add(Rindex, offset, Rscratch);
  2096   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
  2097   cmp(Rscratch, Rscratch1);
  2098   brx(Assembler::greaterEqualUnsigned, false, pn, L);
  2099   delayed()->nop();
  2100   stop("regsave area is being clobbered");
  2101   bind(L);
  2103 #endif // ASSERT
  2105 void InterpreterMacroAssembler::tag_local(frame::Tag t,
  2106                                           Register base,
  2107                                           Register src,
  2108                                           int n) {
  2109   if (TaggedStackInterpreter) {
  2110     // have to store zero because local slots can be reused (rats!)
  2111     if (t == frame::TagValue) {
  2112       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
  2113     } else if (t == frame::TagCategory2) {
  2114       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
  2115       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n+1));
  2116     } else {
  2117       // assert that we don't stomp the value in 'src'
  2118       // O3 is arbitrary because it's not used.
  2119       assert_different_registers(src, base, O3);
  2120       mov( t, O3);
  2121       st_ptr(O3, base, Interpreter::local_tag_offset_in_bytes(n));
  2127 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
  2128   assert_not_delayed();
  2129   sll(index, Interpreter::logStackElementSize(), index);
  2130   sub(Llocals, index, index);
  2131   debug_only(check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);)
  2132   tag_local(frame::TagValue, index, src);
  2133   st(src, index, Interpreter::value_offset_in_bytes());
  2136 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src,
  2137                                                  Register tag ) {
  2138   assert_not_delayed();
  2139   sll(index, Interpreter::logStackElementSize(), index);
  2140   sub(Llocals, index, index);
  2141   #ifdef ASSERT
  2142   check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
  2143   #endif
  2144   st_ptr(src, index, Interpreter::value_offset_in_bytes());
  2145   // Store tag register directly
  2146   if (TaggedStackInterpreter) {
  2147     st_ptr(tag, index, Interpreter::tag_offset_in_bytes());
  2153 void InterpreterMacroAssembler::store_local_ptr( int n, Register src,
  2154                                                  Register tag ) {
  2155   st_ptr(src,  Llocals, Interpreter::local_offset_in_bytes(n));
  2156   if (TaggedStackInterpreter) {
  2157     st_ptr(tag, Llocals, Interpreter::local_tag_offset_in_bytes(n));
  2161 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
  2162   assert_not_delayed();
  2163   sll(index, Interpreter::logStackElementSize(), index);
  2164   sub(Llocals, index, index);
  2165   #ifdef ASSERT
  2166   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2167   #endif
  2168   tag_local(frame::TagCategory2, index, src);
  2169   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
  2173 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
  2174   assert_not_delayed();
  2175   sll(index, Interpreter::logStackElementSize(), index);
  2176   sub(Llocals, index, index);
  2177   #ifdef ASSERT
  2178   check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
  2179   #endif
  2180   tag_local(frame::TagValue, index, G1_scratch);
  2181   stf(FloatRegisterImpl::S, src, index, Interpreter::value_offset_in_bytes());
  2185 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
  2186   assert_not_delayed();
  2187   sll(index, Interpreter::logStackElementSize(), index);
  2188   sub(Llocals, index, index);
  2189   #ifdef ASSERT
  2190   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2191   #endif
  2192   tag_local(frame::TagCategory2, index, G1_scratch);
  2193   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
  2197 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
  2198   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  2199   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
  2200   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
  2204 Address InterpreterMacroAssembler::top_most_monitor() {
  2205   return Address(FP, top_most_monitor_byte_offset());
  2209 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
  2210   add( Lesp,      wordSize,                                    Rdest );
  2213 #endif /* CC_INTERP */
  2215 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
  2216   assert(UseCompiler, "incrementing must be useful");
  2217 #ifdef CC_INTERP
  2218   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
  2219                                  InvocationCounter::counter_offset());
  2220   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
  2221                                  InvocationCounter::counter_offset());
  2222 #else
  2223   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
  2224                                InvocationCounter::counter_offset());
  2225   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
  2226                                InvocationCounter::counter_offset());
  2227 #endif /* CC_INTERP */
  2228   int delta = InvocationCounter::count_increment;
  2230   // Load each counter in a register
  2231   ld( inv_counter, Rtmp );
  2232   ld( be_counter, Rtmp2 );
  2234   assert( is_simm13( delta ), " delta too large.");
  2236   // Add the delta to the invocation counter and store the result
  2237   add( Rtmp, delta, Rtmp );
  2239   // Mask the backedge counter
  2240   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2242   // Store value
  2243   st( Rtmp, inv_counter);
  2245   // Add invocation counter + backedge counter
  2246   add( Rtmp, Rtmp2, Rtmp);
  2248   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
  2251 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
  2252   assert(UseCompiler, "incrementing must be useful");
  2253 #ifdef CC_INTERP
  2254   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
  2255                                  InvocationCounter::counter_offset());
  2256   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
  2257                                  InvocationCounter::counter_offset());
  2258 #else
  2259   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
  2260                                InvocationCounter::counter_offset());
  2261   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
  2262                                InvocationCounter::counter_offset());
  2263 #endif /* CC_INTERP */
  2264   int delta = InvocationCounter::count_increment;
  2265   // Load each counter in a register
  2266   ld( be_counter, Rtmp );
  2267   ld( inv_counter, Rtmp2 );
  2269   // Add the delta to the backedge counter
  2270   add( Rtmp, delta, Rtmp );
  2272   // Mask the invocation counter, add to backedge counter
  2273   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2275   // and store the result to memory
  2276   st( Rtmp, be_counter );
  2278   // Add backedge + invocation counter
  2279   add( Rtmp, Rtmp2, Rtmp );
  2281   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
  2284 #ifndef CC_INTERP
  2285 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
  2286                                                              Register branch_bcp,
  2287                                                              Register Rtmp ) {
  2288   Label did_not_overflow;
  2289   Label overflow_with_error;
  2290   assert_different_registers(backedge_count, Rtmp, branch_bcp);
  2291   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
  2293   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
  2294   load_contents(limit, Rtmp);
  2295   cmp(backedge_count, Rtmp);
  2296   br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
  2297   delayed()->nop();
  2299   // When ProfileInterpreter is on, the backedge_count comes from the
  2300   // methodDataOop, which value does not get reset on the call to
  2301   // frequency_counter_overflow().  To avoid excessive calls to the overflow
  2302   // routine while the method is being compiled, add a second test to make sure
  2303   // the overflow function is called only once every overflow_frequency.
  2304   if (ProfileInterpreter) {
  2305     const int overflow_frequency = 1024;
  2306     andcc(backedge_count, overflow_frequency-1, Rtmp);
  2307     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
  2308     delayed()->nop();
  2311   // overflow in loop, pass branch bytecode
  2312   set(6,Rtmp);
  2313   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
  2315   // Was an OSR adapter generated?
  2316   // O0 = osr nmethod
  2317   tst(O0);
  2318   brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
  2319   delayed()->nop();
  2321   // Has the nmethod been invalidated already?
  2322   ld(O0, nmethod::entry_bci_offset(), O2);
  2323   cmp(O2, InvalidOSREntryBci);
  2324   br(Assembler::equal, false, Assembler::pn, overflow_with_error);
  2325   delayed()->nop();
  2327   // migrate the interpreter frame off of the stack
  2329   mov(G2_thread, L7);
  2330   // save nmethod
  2331   mov(O0, L6);
  2332   set_last_Java_frame(SP, noreg);
  2333   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  2334   reset_last_Java_frame();
  2335   mov(L7, G2_thread);
  2337   // move OSR nmethod to I1
  2338   mov(L6, I1);
  2340   // OSR buffer to I0
  2341   mov(O0, I0);
  2343   // remove the interpreter frame
  2344   restore(I5_savedSP, 0, SP);
  2346   // Jump to the osr code.
  2347   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  2348   jmp(O2, G0);
  2349   delayed()->nop();
  2351   bind(overflow_with_error);
  2353   bind(did_not_overflow);
  2358 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
  2359   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
  2363 // local helper function for the verify_oop_or_return_address macro
  2364 static bool verify_return_address(methodOopDesc* m, int bci) {
  2365 #ifndef PRODUCT
  2366   address pc = (address)(m->constMethod())
  2367              + in_bytes(constMethodOopDesc::codes_offset()) + bci;
  2368   // assume it is a valid return address if it is inside m and is preceded by a jsr
  2369   if (!m->contains(pc))                                          return false;
  2370   address jsr_pc;
  2371   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
  2372   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
  2373   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
  2374   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
  2375 #endif // PRODUCT
  2376   return false;
  2380 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
  2381   if (!VerifyOops)  return;
  2382   // the VM documentation for the astore[_wide] bytecode allows
  2383   // the TOS to be not only an oop but also a return address
  2384   Label test;
  2385   Label skip;
  2386   // See if it is an address (in the current method):
  2388   mov(reg, Rtmp);
  2389   const int log2_bytecode_size_limit = 16;
  2390   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
  2391   br_notnull( Rtmp, false, pt, test );
  2392   delayed()->nop();
  2394   // %%% should use call_VM_leaf here?
  2395   save_frame_and_mov(0, Lmethod, O0, reg, O1);
  2396   save_thread(L7_thread_cache);
  2397   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
  2398   delayed()->nop();
  2399   restore_thread(L7_thread_cache);
  2400   br_notnull( O0, false, pt, skip );
  2401   delayed()->restore();
  2403   // Perform a more elaborate out-of-line call
  2404   // Not an address; verify it:
  2405   bind(test);
  2406   verify_oop(reg);
  2407   bind(skip);
  2411 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  2412   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  2414 #endif /* CC_INTERP */
  2416 // Inline assembly for:
  2417 //
  2418 // if (thread is in interp_only_mode) {
  2419 //   InterpreterRuntime::post_method_entry();
  2420 // }
  2421 // if (DTraceMethodProbes) {
  2422 //   SharedRuntime::dtrace_method_entry(method, receiver);
  2423 // }
  2424 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2425 //   SharedRuntime::rc_trace_method_entry(method, receiver);
  2426 // }
  2428 void InterpreterMacroAssembler::notify_method_entry() {
  2430   // C++ interpreter only uses this for native methods.
  2432   // Whenever JVMTI puts a thread in interp_only_mode, method
  2433   // entry/exit events are sent for that thread to track stack
  2434   // depth.  If it is possible to enter interp_only_mode we add
  2435   // the code to check if the event should be sent.
  2436   if (JvmtiExport::can_post_interpreter_events()) {
  2437     Label L;
  2438     Register temp_reg = O5;
  2439     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2440     ld(interp_only, temp_reg);
  2441     tst(temp_reg);
  2442     br(zero, false, pt, L);
  2443     delayed()->nop();
  2444     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  2445     bind(L);
  2449     Register temp_reg = O5;
  2450     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2451     call_VM_leaf(noreg,
  2452       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2453       G2_thread, Lmethod);
  2456   // RedefineClasses() tracing support for obsolete method entry
  2457   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2458     call_VM_leaf(noreg,
  2459       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2460       G2_thread, Lmethod);
  2465 // Inline assembly for:
  2466 //
  2467 // if (thread is in interp_only_mode) {
  2468 //   // save result
  2469 //   InterpreterRuntime::post_method_exit();
  2470 //   // restore result
  2471 // }
  2472 // if (DTraceMethodProbes) {
  2473 //   SharedRuntime::dtrace_method_exit(thread, method);
  2474 // }
  2475 //
  2476 // Native methods have their result stored in d_tmp and l_tmp
  2477 // Java methods have their result stored in the expression stack
  2479 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
  2480                                                    TosState state,
  2481                                                    NotifyMethodExitMode mode) {
  2482   // C++ interpreter only uses this for native methods.
  2484   // Whenever JVMTI puts a thread in interp_only_mode, method
  2485   // entry/exit events are sent for that thread to track stack
  2486   // depth.  If it is possible to enter interp_only_mode we add
  2487   // the code to check if the event should be sent.
  2488   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  2489     Label L;
  2490     Register temp_reg = O5;
  2491     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2492     ld(interp_only, temp_reg);
  2493     tst(temp_reg);
  2494     br(zero, false, pt, L);
  2495     delayed()->nop();
  2497     // Note: frame::interpreter_frame_result has a dependency on how the
  2498     // method result is saved across the call to post_method_exit. For
  2499     // native methods it assumes the result registers are saved to
  2500     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
  2501     // implementation will need to be updated too.
  2503     save_return_value(state, is_native_method);
  2504     call_VM(noreg,
  2505             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  2506     restore_return_value(state, is_native_method);
  2507     bind(L);
  2511     Register temp_reg = O5;
  2512     // Dtrace notification
  2513     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2514     save_return_value(state, is_native_method);
  2515     call_VM_leaf(
  2516       noreg,
  2517       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2518       G2_thread, Lmethod);
  2519     restore_return_value(state, is_native_method);
  2523 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
  2524 #ifdef CC_INTERP
  2525   // result potentially in O0/O1: save it across calls
  2526   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
  2527 #ifdef _LP64
  2528   stx(O0, STATE(_native_lresult));
  2529 #else
  2530   std(O0, STATE(_native_lresult));
  2531 #endif
  2532 #else // CC_INTERP
  2533   if (is_native_call) {
  2534     stf(FloatRegisterImpl::D, F0, d_tmp);
  2535 #ifdef _LP64
  2536     stx(O0, l_tmp);
  2537 #else
  2538     std(O0, l_tmp);
  2539 #endif
  2540   } else {
  2541     push(state);
  2543 #endif // CC_INTERP
  2546 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
  2547 #ifdef CC_INTERP
  2548   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
  2549 #ifdef _LP64
  2550   ldx(STATE(_native_lresult), O0);
  2551 #else
  2552   ldd(STATE(_native_lresult), O0);
  2553 #endif
  2554 #else // CC_INTERP
  2555   if (is_native_call) {
  2556     ldf(FloatRegisterImpl::D, d_tmp, F0);
  2557 #ifdef _LP64
  2558     ldx(l_tmp, O0);
  2559 #else
  2560     ldd(l_tmp, O0);
  2561 #endif
  2562   } else {
  2563     pop(state);
  2565 #endif // CC_INTERP

mercurial